TW201110422A - Light emitting diode package structure and method for making same - Google Patents

Light emitting diode package structure and method for making same Download PDF

Info

Publication number
TW201110422A
TW201110422A TW98130457A TW98130457A TW201110422A TW 201110422 A TW201110422 A TW 201110422A TW 98130457 A TW98130457 A TW 98130457A TW 98130457 A TW98130457 A TW 98130457A TW 201110422 A TW201110422 A TW 201110422A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
emitting diode
light emitting
nanotube film
light
Prior art date
Application number
TW98130457A
Other languages
Chinese (zh)
Inventor
Sei-Ping Louh
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98130457A priority Critical patent/TW201110422A/en
Publication of TW201110422A publication Critical patent/TW201110422A/en

Links

Abstract

The present invention relates to a light emitting diode package structure. The light emitting diode package structure includes an enclosing body and a light emitting unit received in the enclosing body. The light emitting unit includes a first carbon nanotube film electrode layer, at least two light emitting chips on the first carbon nanotube film electrode layer and a second carbon nanotube film electrode layer on the at least two light emitting chips. In this configuration, since the carbon nanotube film has conductivity and transparentness, a light emitting efficiency of the light emitting diode package structure is enhanced. The present invention also relates to a method for making the light emitting diode package structure.

Description

201110422 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發光二極體封裝結構及其製造方法。 [0002] • 【先前技術】 先前的發光二極體封裝結構一般包括一個發光二極體晶 片,及位於該發光光二極體晶片兩外表面的二個電極及 用以封裝保護該發光二極體晶片及電極的壓克力或環氧 樹脂等膠體材料。 Ο _3] 惟,該封裝結構的兩個電極一般利用金或銅等不透明的 金屬材料製成,這降低了發光二極體封裝結構的出光效 率。 [0004] 【發明内容】 有鑒於此,有必要提供一種可提升出光效率的發光二極 體封裝結構及其製造方法。 [0005] 一種發光二極體封裝結構,其包括封裝體和位於該封裝 〇 體内的發光單元,其中,該發光單元包括一個第一奈米 碳管薄膜電極層、位於該第一奈米碳管薄膜電極層上的 至少兩個發光二極體晶片以及一個位於該至少兩個發光 二極體晶片上且透明的第二奈米碳管薄膜電極層。 [0006] 一種發光二極體封裝結構的製造方法,其包括: [0007] 提供一個發光二極體晶片結構,其包括一個基板及一個 位於該基板上的發光二極體晶片層; [0008] 蝕刻該發光二極體晶片層以形成至少兩個發光二極體晶 片; 098130457 表單編號A0101 第3頁/共26頁 0982052262-0 201110422 [0009] 在該至少兩個發光二極體晶片的表面形成一個透明的第 二奈米碳管薄膜電極層; [0010] 去除該基板; [0011] 在該至少兩個發光二極體晶片的另一個表面形成第一奈 米碳管薄膜電極層;及 [0012] 封裝該發光二極體晶片結構。 [0013] —種發光二極體封裝結構,其包括封裝體和位於該封裝 體内的發光單元。其中,該發光單元包括一個第一奈米 碳管薄膜電極層、位於該第一奈米碳管薄膜電極層上的 一個發光二極體晶片以及一個位於該發光二極體晶片上 且透明的第二奈米碳管薄膜電極層。 [0014] 所述的發光二極體封裝結構及其製造方法,藉由以奈米 碳管薄膜作為電極層,因奈米碳管薄膜具有導電性及透 光性,使該發光二極體封裝結構提升了出光效率。 【實施方式】 [0015] 下面將結合附圖對本發明作進一步詳細說明。 [0016] 請參閱圖1及圖2,本發明第一實施方式提供的一種發光 二極體封裝結構20包括一個封裝體22,位於封裝體22内 的發光單元24。 [0017] 該封裝體22可選用壓克力或環氧樹脂等材料製成以封裝 保護該發光單元24不受外部環境侵蝕。 [0018] 本實施方式中,該發光單元24為發出白光的發光單元, 其包括一個光反射層200,一個位於該光射層200上的第 098130457 表單編號A0101 第4頁/共26頁 0982052262-0 201110422 一奈米碳管薄膜電極層202,複數呈矩陣排列在該第—奈 米碳管薄膜電極層202上的發光二極體晶片204 (見圖2) ’一個位於該複數發光二極體晶片204上且透日月的第二奈 米石反官薄膜電極層206及一個位於該第二奈米碳管薄膜電 極層206上的螢光層208。 [0019] Ο [0020] 該光反射層200為銀反射層,其厚度為20〜25微米,其用 於將發光二極體晶片204的出射光反射至該發光單元24的 出光面24a,以充分利用發光二極體晶片204的出射光, 提高光線利用率。 ❹ 該發光二極體晶片204為藍光發光二極體晶片,對應地, 該螢光層208為混有釔鋁石榴石晶體(YAG)螢光粉的光 學膠層,如混有YAG螢光粉的環氬樹脂等。藍光發光二極 體晶片204所發出藍光之波長約為400~530奈米,利用藍 光發光二極體晶片204所發出的光線激發YAG螢光粉產生 黃色光。然後,藍色光配合上螢光粉所發出的黃色光, 即形成白光。可以理解,在其他實施方式中,該螢光層 208可以去除或為混合有其他材料的螢光粉,因此,該發 光單元24發出的光為發光二極體晶片204本身的光或與相 應的螢光粉激發的光的混合光。 [0021] 發光二極艎晶片204包括一個具有微結構204b的出光面 204a及與出光面204a相背的底面204c »該第二奈米碳管 薄膜電極層206位於該複數發光二極體晶片204的出光面 204a上,該第一奈米碳管薄膜電極層202位於該複數發光 二極體晶片204的底面204c上。該出光面204a的面積約 為1平方毫米(長與寬均約為1毫米),發光二極體晶片204 098130457 表單編號A0101 第5頁/共26頁 0982052262-0 201110422 的厚度約為200微米以上。該微結構204b為形成在該出光 面204a的複數圓錐形凹槽204b,該凹槽204b可有效地將 出射光導向出光面204a上方,從而使該發光單元24的光 集中,增強照明亮度。該凹槽204b的深度為3〜10微米。 因在發光二極體晶片的出光面204a開設凹槽204b,當第 二奈米碳管薄膜電極層206放置於該複數發光二極體晶片 204的出光面204a上時,第二奈米碳管薄膜電極層206靠 近該發光二極體晶片204的出光面204a的奈米碳管薄膜層 會鋪設在凹槽204b的内壁,增加了發光二極體晶片204與 第二奈米碳管薄膜電極層206的接觸面積,從而增加了發 光二極體晶片204與第二奈米碳管薄膜電極層206間的導 電率。 [0022] 該第一奈米碳管薄膜電極層202及該第二奈米碳管薄膜電 極層206的奈米碳管薄膜的製備方法包括直接生長法、絮 化法、碾壓法或拉膜法等其他方法。所述直接生長法為 用化學氣相沉積法於一基板上生長獲得奈米碳管薄膜, 該奈米碳管薄膜為無序或有序奈米碳管薄膜,所述無序 奈米碳管薄膜中包括複數無序排列的奈米碳管,所述有 序奈米碳管薄膜中包括複數相互平行的奈米碳管。所述 絮化法製備奈米碳管薄膜包括以下步驟:將直接生長得 到的奈米碳管加入到溶劑中並進行絮化處理獲得奈米碳 管絮狀結構;以及將上述奈米碳管絮狀結構從溶劑中分 離,並對該奈米碳管絮狀結構定型處理以獲得奈米碳管 薄膜,該奈米碳管薄膜為無序奈米碳管薄膜,且包括複 數相互纏繞且各向同性的奈米碳管。所述碾壓法製備奈 098130457 表單編號A0101 第6頁/共26頁 0982052262-0 201110422 t碳管薄膜包括以下步驟:提供1米碳管陣列形成於 一基底;以及提供-施壓裝置擠壓上述奈米碳管陣列, 從而得到奈米碳管薄膜’該《礙營薄膜為有序奈米碳 官薄膜’且包括複數沿-個或複數方向擇優取向排列的 奈米碳管。 剛m參閱圖3,以拉膜法製備-奈米碳管薄膜的方法作為例 子加以說明,該方法具體包括以下步驟: [0024] (一)製備一奈米碳管陣列116於一基底114上。 ❹ [0025] 本實施方式中,所述奈米碳管陣列116為一超順排奈米碳 管陣列,該超順排奈米碳管陣列116的製備方法採用化學 氣相沉積法,其具體步驟包括:(a)提供一平整基底 114,該基底可選用P型或N蜇矽基底,或選用形成有氧化 層的矽基底,本實施方式優選為採用4英寸的矽基底114201110422 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a light emitting diode package structure and a method of fabricating the same. [0002] The prior art LED package structure generally includes a light emitting diode chip, and two electrodes on the outer surfaces of the light emitting diode chip and the package for protecting the light emitting diode. Acrylic materials such as acrylics for wafers and electrodes or epoxy resins. Ο _3] However, the two electrodes of the package structure are generally made of an opaque metal material such as gold or copper, which reduces the light-emitting efficiency of the light-emitting diode package structure. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a light emitting diode package structure and a method of fabricating the same that can improve light extraction efficiency. [0005] A light emitting diode package structure comprising a package body and a light emitting unit located in the package body, wherein the light emitting unit comprises a first carbon nanotube film electrode layer located at the first nano carbon At least two light emitting diode chips on the thin film electrode layer and a second carbon nanotube film electrode layer on the at least two light emitting diode wafers and transparent. A manufacturing method of a light emitting diode package structure, comprising: [0007] providing a light emitting diode wafer structure including a substrate and a light emitting diode wafer layer on the substrate; [0008] Etching the light emitting diode wafer layer to form at least two light emitting diode wafers; 098130457 Form No. A0101 Page 3 / Total 26 pages 0982052262-0 201110422 [0009] Forming on the surface of the at least two light emitting diode wafers a transparent second carbon nanotube film electrode layer; [0010] removing the substrate; forming a first carbon nanotube film electrode layer on the other surface of the at least two light emitting diode wafers; and 0012] encapsulating the light emitting diode structure. [0013] A light emitting diode package structure comprising a package body and a light emitting unit located within the package body. Wherein, the light emitting unit comprises a first carbon nanotube film electrode layer, a light emitting diode chip on the first carbon nanotube film electrode layer, and a transparent portion on the light emitting diode chip Two carbon nanotube film electrode layer. [0014] The light-emitting diode package structure and the manufacturing method thereof, the light-emitting diode package is provided by using a carbon nanotube film as an electrode layer, and the carbon nanotube film has conductivity and light transmittance. The structure enhances the light extraction efficiency. [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, a light emitting diode package structure 20 according to a first embodiment of the present invention includes a package body 22, and a light emitting unit 24 located in the package body 22. [0017] The package body 22 may be made of a material such as acryl or epoxy resin to protect the light-emitting unit 24 from the external environment. [0018] In the embodiment, the light emitting unit 24 is a white light emitting unit, and includes a light reflecting layer 200, a 098130457 form number A0101 located on the light emitting layer 200, page 4 of 26 pages 0982052262- 0 201110422 A carbon nanotube film electrode layer 202, a plurality of light emitting diode chips 204 arranged in a matrix on the first carbon nanotube film electrode layer 202 (see FIG. 2) 'one in the plurality of light emitting diodes A second nano-stone anti-segment electrode layer 206 on the wafer 204 and permeable to the sun and the moon and a phosphor layer 208 on the second carbon nanotube film electrode layer 206. [0020] The light-reflecting layer 200 is a silver reflective layer having a thickness of 20 to 25 micrometers for reflecting the light emitted from the light-emitting diode wafer 204 to the light-emitting surface 24a of the light-emitting unit 24, The light emitted from the LED array 204 is fully utilized to improve light utilization.发光 The LED chip 204 is a blue light emitting diode wafer. Correspondingly, the phosphor layer 208 is an optical adhesive layer mixed with yttrium aluminum garnet crystal (YAG) phosphor powder, such as YAG phosphor powder. Ring argon resin, etc. The blue light emitting diode 204 emits blue light having a wavelength of about 400 to 530 nm, and the YAG phosphor is used to generate yellow light by the light emitted from the blue light emitting diode chip 204. Then, the blue light is combined with the yellow light emitted by the phosphor, that is, white light is formed. It can be understood that in other embodiments, the phosphor layer 208 can be removed or mixed with other materials, so that the light emitted by the light-emitting unit 24 is the light of the light-emitting diode wafer 204 itself or the corresponding A mixture of light that is excited by fluorescent powder. [0021] The light-emitting diode wafer 204 includes a light-emitting surface 204a having a microstructure 204b and a bottom surface 204c opposite to the light-emitting surface 204a. The second carbon nanotube film electrode layer 206 is located on the plurality of light-emitting diode wafers 204. The first carbon nanotube film electrode layer 202 is located on the bottom surface 204c of the plurality of LED arrays 204 on the light emitting surface 204a. The light-emitting surface 204a has an area of about 1 square millimeter (each length and width is about 1 mm), and the light-emitting diode wafer 204 098130457 has the thickness of about 200 micrometers and has a thickness of about 200 micrometers. . The microstructure 204b is a plurality of conical grooves 204b formed on the light-emitting surface 204a. The groove 204b can effectively guide the emitted light above the light-emitting surface 204a, thereby concentrating the light of the light-emitting unit 24 and enhancing the illumination brightness. The groove 204b has a depth of 3 to 10 μm. The second carbon nanotube is formed when the second carbon nanotube film electrode layer 206 is placed on the light-emitting surface 204a of the plurality of light-emitting diode chips 204 because the groove 204b is formed on the light-emitting surface 204a of the light-emitting diode chip. The carbon nanotube film layer of the thin film electrode layer 206 adjacent to the light emitting surface 204a of the light emitting diode wafer 204 is laid on the inner wall of the recess 204b, and the light emitting diode wafer 204 and the second carbon nanotube film electrode layer are added. The contact area of 206 increases the conductivity between the LED array 204 and the second nanotube film electrode layer 206. [0022] The method for preparing the carbon nanotube film of the first carbon nanotube film electrode layer 202 and the second carbon nanotube film electrode layer 206 comprises direct growth method, flocculation method, rolling method or film stretching Other methods such as law. The direct growth method is to obtain a carbon nanotube film by chemical vapor deposition on a substrate, and the carbon nanotube film is a disordered or ordered carbon nanotube film, and the disordered carbon nanotube film The film includes a plurality of randomly arranged carbon nanotubes, and the ordered carbon nanotube film includes a plurality of mutually parallel carbon nanotubes. The preparation of the carbon nanotube film by the flocculation method comprises the steps of: adding a directly grown nano carbon tube to a solvent and performing a flocculation treatment to obtain a nano carbon tube floc structure; and the above carbon nanotube floc The structure is separated from the solvent, and the carbon nanotube floc structure is shaped to obtain a carbon nanotube film, which is a disordered carbon nanotube film, and includes a plurality of intertwined and oriented Same-same carbon nanotubes. The rolling method prepares Nai 098130457 Form No. A0101 Page 6 / 26 pages 0982052262-0 201110422 t The carbon tube film comprises the steps of: providing a 1 meter carbon tube array formed on a substrate; and providing a pressure device to squeeze the above The carbon nanotube array, thereby obtaining a carbon nanotube film 'the barrier film is an ordered nano carbon official film' and comprising a plurality of carbon nanotubes arranged in a preferred orientation along a direction or a plurality of directions. Referring to FIG. 3, a method for preparing a carbon nanotube film by a film drawing method is described as an example, and the method specifically includes the following steps: [0024] (1) preparing a carbon nanotube array 116 on a substrate 114 . [0025] In the embodiment, the carbon nanotube array 116 is a super-sequential carbon nanotube array, and the method for preparing the super-sequential carbon nanotube array 116 is by chemical vapor deposition. The steps include: (a) providing a flat substrate 114, which may be a P-type or N-type substrate, or a germanium substrate formed with an oxide layer, preferably using a 4-inch germanium substrate 114 in this embodiment.

;(b)在基底114表面均勻形成一催化劑層,該催化劑 層材料可選用鐵(Fe)、鈷(C〇)、鎳(Ni)或其任意 組合的合金之一;(c)將上述形成有催化劑層的基底 114在700~900*t的空氣中退火約30分鐘~90分鐘;(d )將處理過的基底114置於反應爐中,在保護氣體環境下 加熱到500~74(TC ’然後通入碳源氣體反應約5〜30分鐘 ,生長得到超順排奈米碳管陣列116,其高度為200微米 〜400微米。該超順排奈米碳管陣列116為複數彼此平行且 垂直於基底114生長的奈米碳管形成的純奈米碳管陣列 116。藉由上述控制生長條件,該超順排奈米碳管陣列 116中基本不含有雜質’如無定裂碳或殘留的催化劑金屬 顆粒等。該奈米碳管陣列116中的奈米碳管彼此藉由范德 098130457 表單編號A0101 第7頁/共26 S 0982 201110422 華力緊密接觸形成陣列。本實施方式中碳源氣可選用乙 快等化學性質較活潑的碳氫化合物,保護氣體可選用氮 氣、氨氣或惰性氣體。 [_上述形成有奈米碳管陣列116的基底114可固定於樣品台 no上。具體地可以選„帶、粘結劑或機械方式固^基 底114於樣品台11〇上。 闕㈡制—拉伸I具⑽從奈米碳管陣列116中拉取獲 得一奈米碳管薄膜11 8。 闕所述拉取獲得奈㈣料膜118的方法具體包括以下步驟 i從上述奈米碳管陣列116中選定—定寬度的複數奈来碳 管片斷,將該複數奈米碳管片段固定於拉伸工具ι〇〇上, 本實施方式韻為剌具有4寬度_帶接觸奈米碳 管陣列U6以選定-定寬度的複數奈米碳管片斷;以一定 速度沿基本垂直於奈米碳管陣列116生長方向拉伸該複數 奈米碳管片斷,以形成一連續的奈㈣管薄膜118。 闺S上述拉伸過程中’該複數奈米碳管片斷在拉力作用下 沿拉伸方向逐漸脫離基底114的同時,由於范德華力作用 ,該選定的複數奈米碳管片斷分別與其他奈米碳管片斷 首尾相連地連續地被拉出,從而形成一奈米碳管薄膜ιΐ8 。奈米碳管薄膜118為定向排列的複數奈米碳管束首尾相 連形成的具有-定寬度的奈米碳管薄膜118。該奈来礙管 薄膜118中奈米碳管的排列方向基本平行於該奈米碳管薄 膜118的拉伸方向。在上述選定複數奈米碳管片段並拉伸 的步驟中,由於該複數奈米碳管片段的厚度很難控制, 098130457 表單編號A0101 第8頁/共26頁 0982052262-0 201110422 拉伸獲得的奈米碳管薄膜118厚度均勻性不佳,該奈米碳 管薄膜118中具有較多大直徑的奈米碳管束,該大直徑的 奈米碳管束的透光性差,從而使得拉伸獲得的該奈米碳 管薄膜11 8具有較差的透光性,該奈米碳管薄膜118的透 光率最大為75%。 [0030] 該奈米碳管薄膜118的寬度與奈米碳管陣列11 6所生長的 基底114的尺寸有關,該奈米碳管薄膜118的長度不限, 可根據實際需求制得,厚度為0. 001微米〜100微米。本 ^ 實施方式中,採用4英寸的基底114生長超順排奈米碳管 Ο 陣列,該奈米碳管薄膜118的寬度可為1釐米〜10釐米,厚 度為0. 01微米〜100微米。 [0031] 由於發光二極體晶片204的出射光要經過該第二奈米碳管 薄膜電極層206向外出射,因此對第二奈米碳管薄膜電極 層206的透光率要求較第一奈米碳管薄膜電極層202的透 光率要高。在形成上述奈米碳管薄膜後,製作該第二奈 米碳管薄膜電極層206時,還進一步要對該奈米碳管薄膜 Ο 進行加熱處理,使該奈米碳管薄膜118中的部分奈米碳管 被氧化,使該奈米碳管薄膜118變薄,從而提高透光率。 [0032] 具體地,為避免奈米碳管薄膜118加熱時被破壞,所述加 熱奈米碳管薄膜118的方法採用局部加熱法。其具體包括 以下步驟:局部加熱奈米碳管薄膜,使奈米碳管薄膜在 局部位置的部分奈米碳管被氧化;移動奈米碳管被局部 加熱的位置,從局部到整體實現整個奈米碳管薄膜的加 熱。具體地,可將該奈米碳管薄膜118分成複數小的區域 ,採用由局部到整體的方式,逐區域地加熱該奈米碳管 098130457 表單編號A0101 第9頁/共26頁 0982052262-0 201110422 薄膜118。所述局部加熱奈米碳管薄膜118的方法可以有 多種,如鐳射加熱法、微波加熱法料,如藉由功率密 度大於0.1x104瓦特/平方㈣鐳射掃描照射該奈米碳管 薄膜118由局部到整體的加熱該奈米碳管薄膜us,由 於奈米碳管對鐳射具有較好吸收特性,該奈米碳管薄膜 118中具有較大直徑的奈米碳管束將會吸收較多的熱量, 從而被氧化,使得該奈米碳管薄膜118的透光性大幅度上 升,本例子中的鐘射照射後的奈米碳管薄膜ιΐ8的透二 可以大於75%。 [0033] [0034] 為了增加奈米碳管薄概電極層的導電率,本實施方式令 ,該第-奈米碳管薄膜電極屠2〇2及第二奈米碳管薄膜電 極層206均由兩層奈米碳管薄膜118相互垂直疊年,並且 在疊交之處選擇性地點上銀膠而形成。此處“兩層奈米 碳管薄臈相互垂直’,係指在__個奈米碳管薄膜層118中的 奈米碳管的排列方向與另一個奈米碳管薄膜層118中的奈 米碳管的排列方向大致垂直》 由於對第一奈米碳管薄膜電極層2〇2的透光率要求較低, 同時對第-奈米碳管薄膜電極層2〇2對於發光二極體晶片 204的散熱要求比對第二奈米碳管薄膜電極層2〇6的散熱 要求高,因此,在製造第一奈米碳管薄膜電極層2〇2時, 可不對該第一奈米碳管薄膜電極層2〇2進行加熱處理,其 目的係,相對於第二奈米碳管薄膜電極層2〇6,增加了該 第一奈米碳管薄膜電極層202中的奈米碳管的密度使第一 奈米碳管薄膜電極層202的厚度增加,以增加導熱係數。 因此,本實施方式中,第一奈米碳管薄膜電極層202的厚 098130457 表單編號A0101 第10頁/共26頁 0982052262-0 201110422 [0035] ❹ [0036] [0037] 〇 [0038] 度大於第二奈米碳管薄臈電極層206的厚度。 為了進-步增加發光二極體晶片⑽分別與第—奈米碳管 薄膜電極層2G2及第二奈米碳管薄膜電極層2Q6的連接強 度(包括電性連接強度與機構連接強度),可以分別在 發光一極體晶片204與第一奈米碳管薄膜電極層2〇2之間 ’及發光二極體晶2G4與第二奈米碳管薄膜電極層2〇6 之間使用錫球焊接的方切行連接。較佳地,為較少影 響發光單的出光效率’可使用粒徑為20~5{)微米的錫 球在所需固接的位置進行連接。在其他實施方式中,可 以使用透明的f電膝連接方式替換上述的錫球焊接方式 ,在發光二極體晶片的出光灰;赛©_4c上選擇性 地點上導電膠,以固牢電極層2〇2、2〇β。 請參閱圖4、圖5a至圖5h,本發明第二實施方式提供的一 種上述發光二極體封裝結構2〇的製造次法,其包括: 步驟S100 :提供一個發光二極馥晶片結構3〇,其包括一 個基板32及一個位聆秦基板32上錄•光二極體晶片層34 〇 " - 步驟S102 .姓刻該發光二極體晶片層34以將該發光二極 體晶片層34的表面34a形成微結構204b及形成複數相互 間隔的發光二極體晶片204,該複數發光二極體晶片204 的表面204a具有該微結構2〇4b。 步驟S104 :在該複數發光二極體晶片2〇4的該表面2〇4a 依次形成透明的第二奈米碳管薄膜電極層2〇6及一個螢光 層 208。 098130457 表單編號A0101 第11頁/共26頁 0982052262-0 [0039] 201110422 #驟S1G6:去除該基板32。 [0041] 步驟SI 08 .在讀複數發光二極體晶片2〇4的底面2〇4c形 成第—奈米碳管薄膜電極層202。 [0042] 步驟 S110:在該势 z第一奈米奴管薄膜電極層202的外表面 2〇2a形成一個光反射層200。 [0043] 步驟S112:封装兮改k τ装4發先二極體晶片結構3 0以形成該發光 二極體封裝結構2〇。 [酬在步驟sioo中,該發光二極體晶片释構3〇為藍光發光二 極體晶片結構°在步驟S1G2中,參圖5b至圖5d,可採用 等離子體㈣法對該發光二極體晶片|34進行姓刻以在 该發先二極體晶片層34的表面34a形成微結構204b,及 形成複數相互間隔的發光二極體晶片204。該微結構2〇4b 為形成在該表面34a的複數圓錐形凹槽204b。較佳地,可 採用電感耦合等離子體法(Inductively Coupled Plasma’ ICP)進行上述的蝕刻,控制蝕刻參數及選擇入 適的光阻層圖案對凹槽別补的深度及冶狀進行蝕刻。在 形成複數相互間隔的發光二極體晶片204時,可在發光二 極體晶片層34的表面34a設置光阻層400,該光阻層4〇〇 開設複數通孔402以構成對該發光二極體晶片層34餘刻的 圖案。 [0045] 在步驟S104中,該螢光層208為混有YAG螢光粉的光學膠 層鋪設於該第二奈米碳管薄膜電極層206之上而形成勞光 層208。可以理解,該螢光層208還可選用其他結構的勞 光層。在步驟S106中,可採用鐘射加熱法作用於該發光 098130457 表單編號A0101 第12頁/共26頁 0982052262-0 201110422 二極體晶片204與讀基板32之間的連接面以去除基板32。 [0046] 在完成步驟106後’可將該發光二極體晶片204翻轉後再 铺上該第一奈米碳營薄膜電極層202。在步驟S110中,該 光反射層為銀反射層2〇〇,並可藉由濺鍍方式將該銀反射 層200形成在該第一奈米碳管薄膜電極層2〇2的外表面 202a 上。 [0047] Ο 在步驟S112中’採用壓克力或環氧樹脂等封裝體22對該 發光二極體晶片結構3〇進行封裝。另外,在該步驟中, 可對該封裝體22進行光學設計,對該發光二極體晶片結 構30進行散熱設計,引腳引線設計等以滿足實際需要。 在步驟S104及步驟S108中,還可以分別在發光二極體晶 片204與第一奈米碳管薄膜電極層202之間,及發光二極 體晶片204與第二奈米碳管薄膜電極層206之間使用錫球 焊接的方式進行連接。 [0048] Ο 綜上所述,本發明實施方式提供的發先二‘體封裝結構 及其製造方法,藉由以奈米碳管薄膜作為電極層,因奈 米碳管薄膜具有透光性及導電性,使該發光二極體封裝 結構提升了出光效率。同時,因複數發光二極體晶片形 成在該第一奈米碳管薄膜電極層上,使得整個發光單元 在製作完成後封裝前’具有較佳的可撓性,適用於其他 非平面的結構,如弧形柱壁等。另外,奈米碳管薄膜也 具有導熱性’因此,該發光二極體封裝結構具有較好的 散熱性能。 [0049] 請參閱圖6,為本發明第三實施方式提供的一種發光二極 098130457 表單編號A0101 第13頁/共26頁 0982052262-0 201110422 裝、。構5〇。3亥發光一極體封裝結構5〇包括封裝體μ 和位於該封裂體52内的發光單⑽。該發光單元54包括 =固光反射層500,-個位於該光射層㈣上的第一奈米 碳管薄膜電極層5G2,—個位於該第—奈米碳管薄膜電極 = 502上的發光二極體晶片5Q4,—個位於該發光二極體 曰曰片504上且透明的第二奈米碳管薄膜電極層⑽及一個 位於該第二奈米碳管薄膜電極層5〇6上的螢光層5〇8。(b) uniformly forming a catalyst layer on the surface of the substrate 114, the catalyst layer material may be selected from one of iron (Fe), cobalt (C〇), nickel (Ni) or any combination thereof; (c) forming the above The substrate 114 having the catalyst layer is annealed in air of 700 to 900*t for about 30 minutes to 90 minutes; (d) the treated substrate 114 is placed in a reaction furnace and heated to 500 to 74 (TC) in a protective gas atmosphere. 'The carbon source gas is then reacted for about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array 116 having a height of 200 micrometers to 400 micrometers. The super-sequential carbon nanotube array 116 is parallel to each other and A pure carbon nanotube array 116 formed perpendicular to the carbon nanotubes grown on the substrate 114. The super-sequential carbon nanotube array 116 contains substantially no impurities such as undetermined carbon or residue by controlling the growth conditions described above. Catalyst metal particles, etc. The carbon nanotubes in the carbon nanotube array 116 are formed into an array by van 098130457 Form No. A0101, page 7 / 26 S 0982 201110422. The gas can be selected with a chemically active hydrocarbon such as B-speed. The protective gas may be selected from nitrogen, ammonia or an inert gas. [_ The substrate 114 on which the carbon nanotube array 116 is formed may be fixed on the sample stage no. Specifically, the tape, the adhesive or the mechanical means may be selected. The substrate 114 is mounted on the sample stage 11. The I (2)-stretching tool (10) is pulled from the carbon nanotube array 116 to obtain a carbon nanotube film 11 8 . The method of 118 specifically includes the following steps i: selecting a plurality of carbon nanotube segments of a predetermined width from the carbon nanotube array 116, and fixing the plurality of carbon nanotube segments to the stretching tool ι, the embodiment Rhyme is a multi-nano carbon nanotube segment having a width of 4 widths with a contact carbon nanotube array U6 to select a predetermined width; stretching the plurality of nanocarbons at a rate substantially perpendicular to the growth direction of the carbon nanotube array 116 a tube segment to form a continuous naphthalene film 118. 闺S during the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate 114 by the tensile force while being pulled by the van der Waals force. Selected multiple carbon nanotube segments Don't continuously pull out with other carbon nanotube segments end to end, forming a carbon nanotube film ιΐ8. The carbon nanotube film 118 is oriented with a plurality of aligned carbon nanotube bundles connected end to end. The carbon nanotube film 118. The arrangement direction of the carbon nanotubes in the film 118 is substantially parallel to the stretching direction of the carbon nanotube film 118. The plurality of carbon nanotube segments are selected and stretched as described above. In the step, since the thickness of the plurality of carbon nanotube segments is difficult to control, 098130457 Form No. A0101 Page 8 of 26 0982052262-0 201110422 The carbon nanotube film 118 obtained by stretching has poor thickness uniformity, The carbon nanotube film 118 has a plurality of large-diameter carbon nanotube bundles, and the large-diameter carbon nanotube bundle has poor light transmittance, so that the carbon nanotube film 11 obtained by stretching has poor light transmittance. The carbon nanotube film 118 has a light transmittance of at most 75%. [0030] The width of the carbon nanotube film 118 is related to the size of the substrate 114 grown by the carbon nanotube array 116. The length of the carbon nanotube film 118 is not limited, and can be obtained according to actual needs, and the thickness is 0. 001 microns ~ 100 microns. In this embodiment, a 4-inch substrate 114 is used to grow a super-sequential carbon nanotube array. The carbon nanotube film 118 may have a width of from 1 cm to 10 cm and a thickness of from 0.01 μm to 100 μm. [0031] Since the light emitted from the LED wafer 204 is emitted outward through the second carbon nanotube film electrode layer 206, the transmittance of the second carbon nanotube film electrode layer 206 is relatively first. The carbon nanotube film electrode layer 202 has a high light transmittance. After the second carbon nanotube film electrode layer 206 is formed after the formation of the carbon nanotube film, the carbon nanotube film Ο is further subjected to heat treatment to make a portion of the carbon nanotube film 118. The carbon nanotubes are oxidized to thin the carbon nanotube film 118, thereby increasing the light transmittance. [0032] Specifically, in order to prevent the carbon nanotube film 118 from being destroyed upon heating, the method of heating the carbon nanotube film 118 employs a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film to oxidize a portion of the carbon nanotube film at a local position; and moving the carbon nanotube to be locally heated to achieve a whole from the local to the whole Heating of the carbon nanotube film. Specifically, the carbon nanotube film 118 can be divided into a plurality of small regions, and the carbon nanotubes 098130457 are heated region by region from a partial to a whole manner. Form No. A0101 Page 9 / Total 26 Page 0982052262-0 201110422 Film 118. The method for locally heating the carbon nanotube film 118 may be various, such as laser heating, microwave heating, for example, by irradiating the carbon nanotube film 118 with a power density of more than 0.1 x 104 watts/square (4). By heating the carbon nanotube film us as a whole, since the carbon nanotubes have good absorption characteristics for the laser, the carbon nanotube bundle having a larger diameter in the carbon nanotube film 118 will absorb more heat. Thereby, it is oxidized, so that the light transmittance of the carbon nanotube film 118 is greatly increased, and the permeability of the carbon nanotube film ι 8 after the clock irradiation in the present example can be more than 75%. [0034] In order to increase the conductivity of the thin carbon electrode layer of the carbon nanotubes, in the present embodiment, the first carbon nanotube film electrode 2 2 and the second carbon nanotube film electrode layer 206 are both The two layers of carbon nanotube film 118 are vertically stacked one on another, and are formed by selectively selecting silver paste at the intersection. Here, "the two layers of carbon nanotubes are perpendicular to each other" means the arrangement direction of the carbon nanotubes in the __ carbon nanotube film layer 118 and the nemesis in the other carbon nanotube film layer 118. The arrangement direction of the carbon nanotubes is substantially perpendicular" because the light transmittance of the first carbon nanotube film electrode layer 2〇2 is low, and the second-carbon nanotube film electrode layer 2〇2 is for the light-emitting diode The heat dissipation requirement of the wafer 204 is higher than that of the second carbon nanotube film electrode layer 2〇6. Therefore, when the first carbon nanotube film electrode layer 2〇2 is manufactured, the first nanocarbon may not be used. The tube film electrode layer 2〇2 is subjected to heat treatment for the purpose of increasing the carbon nanotubes in the first carbon nanotube film electrode layer 202 with respect to the second carbon nanotube film electrode layer 2〇6. The density increases the thickness of the first carbon nanotube film electrode layer 202 to increase the thermal conductivity. Therefore, in the present embodiment, the thickness of the first carbon nanotube film electrode layer 202 is 098130457. Form No. A0101 Page 10 of 26 Page 0982052262-0 201110422 [0035] [0037] 〇[0038] Degree is greater than the second nanometer The thickness of the carbon tube thin electrode layer 206. In order to further increase the connection strength of the light emitting diode chip (10) with the first carbon nanotube film electrode layer 2G2 and the second carbon nanotube film electrode layer 2Q6 (including electricity) The strength of the connection and the strength of the mechanical connection can be between the light-emitting diode wafer 204 and the first carbon nanotube film electrode layer 2〇2, and the light-emitting diode crystal 2G4 and the second carbon nanotube film electrode Between the layers 2〇6, the square ball bonding using solder ball bonding is used. Preferably, the light-emitting efficiency of the illuminating sheet is less affected. 'The solder ball with a particle size of 20~5{) micron can be used for the required fixing. The position is connected. In other embodiments, the above-mentioned solder ball soldering method may be replaced by a transparent f-electron knee connection method, and the conductive glue may be selectively placed on the light-emitting diode of the light-emitting diode wafer; 2, 2〇β. Please refer to FIG. 4, FIG. 5a to FIG. 5h, a second method for manufacturing the above-mentioned LED package structure 2 according to the second embodiment of the present invention, comprising: Step S100 : Provides a light-emitting diode chip structure 3〇, its package a substrate 32 and a recording diode substrate 32 on the photodiode wafer layer 34 〇" - step S102. The light emitting diode wafer layer 34 is first formed to form the surface 34a of the light emitting diode wafer layer 34. The microstructure 204b and the plurality of mutually spaced light-emitting diode wafers 204, the surface 204a of the plurality of light-emitting diode wafers 204 having the microstructures 2〇4b. Step S104: at the plurality of light-emitting diode wafers 2〇4 The surface 2〇4a sequentially forms a transparent second carbon nanotube film electrode layer 2〇6 and a phosphor layer 208. 098130457 Form No. A0101 Page 11/26 Page 0982052262-0 [0039] 201110422 #STEPS1G6: The substrate 32 is removed. [0041] Step SI 08. The first carbon nanotube film electrode layer 202 is formed on the bottom surface 2〇4c of the read complex light-emitting diode wafer 2〇4. [0042] Step S110: Forming a light reflecting layer 200 on the outer surface 2〇2a of the potential first magnet nanotube layer 202. [0043] Step S112: The package tampering k τ is loaded with the four-transistor diode structure 30 to form the light-emitting diode package structure 2 . [Receiving in the step sioo, the light emitting diode wafer is configured to be a blue light emitting diode wafer structure. In step S1G2, referring to FIG. 5b to FIG. 5d, the light emitting diode may be plasma (four) method. The wafer|34 is surnamed to form a microstructure 204b on the surface 34a of the first diode wafer layer 34, and to form a plurality of mutually spaced light-emitting diode wafers 204. The microstructure 2〇4b is a plurality of conical grooves 204b formed on the surface 34a. Preferably, the etching can be performed by Inductively Coupled Plasma (ICP), the etching parameters are controlled, and the appropriate photoresist layer pattern is selected to etch the depth and the grain of the recess. When forming a plurality of mutually spaced light-emitting diode wafers 204, a photoresist layer 400 may be disposed on the surface 34a of the light-emitting diode wafer layer 34, and the photoresist layer 4 defines a plurality of via holes 402 to constitute the light-emitting diodes The pattern of the polar wafer layer 34 is all the time. [0045] In step S104, the phosphor layer 208 is deposited on the second carbon nanotube film electrode layer 206 by an optical adhesive layer mixed with YAG phosphor powder to form a working layer 208. It can be understood that the phosphor layer 208 can also be a layer of other structures. In step S106, a clockwise heating method may be applied to the light source 098130457. Form No. A0101 Page 12 of 26 0982052262-0 201110422 The connection surface between the diode wafer 204 and the read substrate 32 to remove the substrate 32. [0046] After the step 106 is completed, the light-emitting diode wafer 204 may be turned over and then the first nanocarbon camp thin film electrode layer 202 may be deposited. In step S110, the light reflecting layer is a silver reflective layer 2, and the silver reflective layer 200 is formed on the outer surface 202a of the first carbon nanotube film electrode layer 2〇2 by sputtering. . [0047] The light-emitting diode structure 3A is packaged by a package 22 such as acryl or epoxy resin in step S112. In addition, in this step, the package body 22 can be optically designed, and the light-emitting diode structure 30 can be thermally designed, pin-lead design, etc. to meet actual needs. In step S104 and step S108, a light emitting diode wafer 204 and the first carbon nanotube film electrode layer 202, and a light emitting diode wafer 204 and a second carbon nanotube film electrode layer 206 may be respectively disposed. Use solder ball soldering to connect them. [0048] In summary, the first two-body package structure and the manufacturing method thereof provided by the embodiments of the present invention, by using a carbon nanotube film as an electrode layer, the carbon nanotube film has light transmittance and The conductivity makes the light emitting diode package structure improve light extraction efficiency. At the same time, since the plurality of light-emitting diode chips are formed on the first carbon nanotube film electrode layer, the entire light-emitting unit has better flexibility before being packaged, and is suitable for other non-planar structures. Such as curved column walls and so on. In addition, the carbon nanotube film also has thermal conductivity. Therefore, the light emitting diode package structure has better heat dissipation performance. Please refer to FIG. 6 , which is a light-emitting diode 098130457 form number A0101 page 13 of 26 0982052262-0 201110422. Construct 5〇. The 3H light emitting diode package structure 5 includes a package body μ and a light emitting sheet (10) located in the cracker body 52. The light emitting unit 54 includes a fixed light reflecting layer 500, a first carbon nanotube film electrode layer 5G2 located on the light emitting layer (4), and a light emitting on the first carbon nanotube film electrode=502. a diode wafer 5Q4, a transparent second carbon nanotube film electrode layer (10) on the light-emitting diode chip 504 and a second electrode on the second carbon nanotube film electrode layer 5〇6 The fluorescent layer is 5〇8.

剛纟實施方式的發光二極體封裝結構5〇,可由本發明的第 -實施方式中的製造方法中_成的複數發光二極體晶 片2〇4切割成單個發紅極體晶片5〇4,然後進行封裝所 得到/或封裝後再進行切割所得到。The light emitting diode package structure 5 of the embodiment of the present invention can be cut into a single red body wafer 5〇4 by the plurality of light emitting diode chips 2〇4 in the manufacturing method of the first embodiment of the present invention. Then, it is obtained by encapsulation and/or encapsulation and then cutting.

_]綜上所述,本發明確已符合_專利之要件遂依法提 出專财μ »惟’以上所述者僅為本發明之較佳實施方 式’自不能以此限制本案之巾請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作冬等效修飾或變化 ,如在其他實施方式中,如圖7所示,該複數發光二極體 晶片204也為條狀,並沿—個方向順序排列在該第一奈米 碳官薄膜電極層202上。這取決於在製造該複數發光二極 體晶片204時,所選擇的光阻層4〇〇的圖案;及視實際所 需,第一奈米碳管薄膜電極層2〇2及/或第二奈米碳管薄 膜電極層206只包括一個奈米碳管薄膜層等,皆應涵蓋於 以下申請專利範圍内。 【圖式簡單說明】 [0052]圖1為本發明第一實施方式提供的一種發光二極體封裝結 構的截面示意圖。 098130457 表單編號Α0101 第14頁/共26頁 0982052262-0 201110422 [0053] 圖2為圖1的發光二極體封裝結構的部分平面示意圖。 [0054] 圖3為本發明第一實施方式中奈米碳管薄膜製備方法的裝 置示意圖。 [0055] ’圖4為本發明第二實施方式提供的 構的製造方法流程圖。 一種發光二極體封裝結 [0056] 圖5a至圖5h為圖4中的發光二極體封裝結構的製造方法的 流程示意圖。 Λ [0057] ❹ 圖6為本發明第三實施方式提供的 .構的截面示意圖。 一種發光二極體封裝結 [0058] 圖7為本發明其他實施方式提供的 構的部分平面示意圖。 一種發光二極體封裝結 [0059] 【主要元件符號說明】 發光二極體封裝結構:20,50 [0060] 封裝體:22,52 f i哞〆 Q [0061] 發光單元:24,54 . V. -, [0062] 光反射層:200,500 [0063] 第一奈米碳管薄膜電極層:202, 502 [0064] 第二奈米碳管薄膜電極層:206, 506 [0065] 發光二極體晶片:204,504 [0066] 螢光層:208,508 [0067] 出光面:24a,204a 098130457 表單編號A0101 第15頁/共26頁 0982052262-0 201110422 [0068]微結構:204b [0069] 底面:204c [0070] 奈米碳管陣列:116 [0071] 基底:114 [0072] 樣品台:11 0 [0073] 奈米碳管薄膜:118 [0074] 基板:32 [0075] 發光二極體晶片結構:30 [0076] 表面:34a [0077] 發光二極體晶片層:34 098130457 表單編號A0101 第16頁/共26頁 0982052262-0_] In summary, the present invention has indeed met the requirements of the patent, and the special money has been proposed according to law. However, the above description is only a preferred embodiment of the present invention. . Any person skilled in the art will be able to make winter equivalent modifications or variations in accordance with the spirit of the present invention. As in other embodiments, as shown in FIG. 7, the plurality of LED chips 204 are also strip-shaped and The directions are sequentially arranged on the first nano-carbon thin film electrode layer 202. This depends on the pattern of the selected photoresist layer 4 在 when fabricating the plurality of LED arrays 204; and the first carbon nanotube film electrode layer 2 〇 2 and/or the second as needed The carbon nanotube film electrode layer 206 includes only one carbon nanotube film layer and the like, and is intended to be included in the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0052] FIG. 1 is a schematic cross-sectional view showing a light emitting diode package structure according to a first embodiment of the present invention. 098130457 Form No. Α0101 Page 14 of 26 0982052262-0 201110422 [0053] FIG. 2 is a partial plan view of the LED package structure of FIG. 3 is a schematic view showing the apparatus for preparing a carbon nanotube film according to a first embodiment of the present invention. 4 is a flow chart of a manufacturing method of a structure according to a second embodiment of the present invention. LED Light Emitting Package [0056] FIGS. 5a to 5h are schematic flow charts showing a method of manufacturing the light emitting diode package structure of FIG. 4. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 6 is a schematic cross-sectional view showing a configuration of a third embodiment of the present invention. A Light Emitting Diode Package [0058] FIG. 7 is a partial plan view of a configuration of another embodiment of the present invention. Light-emitting diode package junction [0059] [Main component symbol description] Light-emitting diode package structure: 20, 50 [0060] Package: 22, 52 fi哞〆Q [0061] Light-emitting unit: 24, 54 . V -, [0062] Light reflecting layer: 200,500 [0063] First carbon nanotube film electrode layer: 202, 502 [0064] Second carbon nanotube film electrode layer: 206, 506 [0065] Polar body wafer: 204, 504 [0066] Fluorescent layer: 208, 508 [0067] Light-emitting surface: 24a, 204a 098130457 Form number A0101 Page 15 / Total 26 page 0982052262-0 201110422 [0068] Microstructure: 204b [0069 Bottom surface: 204c [0070] Carbon nanotube array: 116 [0071] Substrate: 114 [0072] Sample stage: 11 0 [0073] Nano carbon tube film: 118 [0074] Substrate: 32 [0075] Light-emitting diode Body Wafer Structure: 30 [0076] Surface: 34a [0077] Light Emitting Diode Wafer Layer: 34 098130457 Form No. A0101 Page 16 of 26 0982052262-0

Claims (1)

201110422 七、申請專利範圍: 1 . 一種發光二極體封裝結構,其包括封裝體和位於該封裝體 内的發光單元,其中,該發光單元包括一個第一奈米碳管 薄膜電極層、位於該第一奈米碳管薄膜電極層上的至少兩 個發光二極體晶片以及一個位於該至少兩個發光二極體晶 片上且透明的第二奈米碳管薄膜電極層。 2 .如申請專利範圍第1項所述的發光二極體封裝結構,其中 ,該第一奈米碳管薄膜電極層的厚度大於該第二奈米碳管 薄膜電極層的厚度。 〇 3.如申請專利範圍第1項所述的發光二極體封裝結構,其中 ,每個該發光二極體晶片包括一個具有微結構的出光面, 該第二奈米碳管薄膜電極層位於該出光面上。 4 .如申請專利範圍第3項所述的發光二極體封裝結構,其中 ,該微結構為形成在該出光面的複數凹槽,該複數凹槽的 内壁分佈有該第二奈米碳管薄膜電極層。 5 .如申請專利範圍第1項所述的發光二極體封裝結構,其中 ^ ,該發光二極體封裝結構還包括一個形成在該第二奈米碳 管薄膜電極層上的螢光層。 6 .如申請專利範圍第5項所述的發光二極體封裝結構,其中 ,該至少兩個發光二極體晶片均為藍光發光二極體晶片。 7 .如申請專利範圍第1項所述的發光二極體封裝結構,其中 ,該發光二極體封裝結構還包括一個形成在該第一奈米碳 管薄膜電極層外表面的光反射層。 8 .如申請專利範圍第3項所述的發光二極體封裝結構,其中 ,該第一奈米碳管薄膜電極層及該第二奈米碳管薄膜電極 098130457 表單編號A0101 第17頁/共26頁 0982052262-0 201110422 層均包括兩個奈米碳管薄膜層’該兩個奈米碳管薄膜層的 奈米碳管的排列方向大致相互垂直。 9 種發光二極體封裝結構的製造方法,其包括: k供一個發光二極體晶片結構’其包括一個基板及~個位 於該基板上的發光二極體晶片層, 蝕刻該發光二極體晶片層以形成至少兩個發光二極體晶片 在該至少兩個發光二極體晶片的表面形成一個透明的第二 奈米碳管薄膜電極層; 去除該基板; 在該至少兩個發光二極體晶片的另一個表面形成第一奈米 碳管薄膜電極層;及 . : 封裝該發光二極體晶片結構。 098130457 10 . 11 . 12 . 如申請專利範圍第9項所述的發光二極體封裝結構的製造 方法,其中,在蝕刻以形成該至少兩傭發光二極體晶片前 還包括··在該發光二極體晶片層的表面形成微結構。 如申請專利範圍第9項所述的發光二極體封裝結構的製造 方法,其中,在封裝該發光二極體晶片結構前還包括:在 該第-奈来碳管薄膜電極層的外表面形成—個光反射層。 如申凊專利範圍第9項所述的發光二極體封裝結構的製造 13 . 方法其中’該第-奈米碳管薄膜電極層及該第二奈米碳 管薄膜電極層均包括兩個奈米碳管薄關,該兩個奈米碳 管薄膜層的奈求碳管的排列方向大致相互垂直。 -種發光二極體縣結構,其包括封裝體和位於該封裝體 内的發光單元’其中’該發光單元包括一個第一奈米碳管 *、電極&於该第_奈米碳管薄膜電極層上的一個發 0982052262-0 201110422 光二極體晶片以及-個位於該發光二極體晶片上且透明的 苐二奈米碳管薄膜電極層。 14 .如申請專利範圍第13項所述的發光二極體封裝結構,其中 ,該第一奈米碳管薄膜電極層的厚度大於該第二奈米碳管 薄祺電極層的厚度。 B ❹201110422 VII. Patent application scope: 1. A light emitting diode package structure, comprising a package body and a light emitting unit located in the package body, wherein the light emitting unit comprises a first carbon nanotube film electrode layer, At least two light emitting diode chips on the first carbon nanotube film electrode layer and a transparent second carbon nanotube film electrode layer on the at least two light emitting diode chips. 2. The light emitting diode package structure of claim 1, wherein the first carbon nanotube film electrode layer has a thickness greater than a thickness of the second carbon nanotube film electrode layer. The light emitting diode package structure of claim 1, wherein each of the light emitting diode chips comprises a light emitting surface having a microstructure, and the second carbon nanotube film electrode layer is located The light surface. 4. The light emitting diode package structure according to claim 3, wherein the microstructure is a plurality of grooves formed on the light exiting surface, and the second carbon nanotube is distributed on an inner wall of the plurality of grooves Thin film electrode layer. 5. The light emitting diode package structure of claim 1, wherein the light emitting diode package further comprises a phosphor layer formed on the second carbon nanotube film electrode layer. 6. The light emitting diode package structure of claim 5, wherein the at least two light emitting diode chips are blue light emitting diode chips. 7. The light emitting diode package structure of claim 1, wherein the light emitting diode package structure further comprises a light reflecting layer formed on an outer surface of the first carbon nanotube film electrode layer. 8. The light emitting diode package structure of claim 3, wherein the first carbon nanotube film electrode layer and the second carbon nanotube film electrode 098130457 Form No. A0101 Page 17 / Total Page 26 0982052262-0 201110422 The layers each comprise two carbon nanotube film layers. The arrangement of the carbon nanotubes of the two carbon nanotube film layers is substantially perpendicular to each other. A method for fabricating nine light-emitting diode package structures, comprising: k for a light-emitting diode structure comprising: a substrate and a light-emitting diode wafer layer on the substrate, etching the light-emitting diode Forming a transparent second carbon nanotube film electrode layer on the surface of the at least two light emitting diode wafers by forming at least two light emitting diode chips; removing the substrate; at the at least two light emitting diodes The other surface of the bulk wafer forms a first carbon nanotube film electrode layer; and: the light emitting diode wafer structure is packaged. 098130457. The manufacturing method of the light emitting diode package structure according to claim 9, wherein the light is further included before the etching to form the at least two light emitting diode chips. The surface of the diode wafer layer forms a microstructure. The method for manufacturing a light emitting diode package structure according to claim 9, wherein before the package of the light emitting diode structure, the method further comprises: forming an outer surface of the electrode layer of the first carbon nanotube film a light reflecting layer. The manufacture of the light emitting diode package structure according to claim 9 of the invention, wherein the 'the first carbon nanotube film electrode layer and the second carbon nanotube film electrode layer both comprise two nai The carbon nanotubes are thinly closed, and the arrangement of the carbon nanotube layers of the two carbon nanotube layers is substantially perpendicular to each other. a light-emitting diode structure comprising a package and a light-emitting unit in the package, wherein the light-emitting unit comprises a first carbon nanotube*, an electrode & One of the 0982052262-0 201110422 photodiode wafers on the electrode layer and a transparent bismuth carbon nanotube film electrode layer on the luminescent diode wafer. The light emitting diode package structure according to claim 13, wherein the thickness of the first carbon nanotube film electrode layer is greater than the thickness of the second carbon nanotube thin electrode layer. B ❹ 098130457 表單編號A0101 第19頁/共26頁 0982052262-0098130457 Form No. A0101 Page 19 of 26 0982052262-0
TW98130457A 2009-09-09 2009-09-09 Light emitting diode package structure and method for making same TW201110422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130457A TW201110422A (en) 2009-09-09 2009-09-09 Light emitting diode package structure and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130457A TW201110422A (en) 2009-09-09 2009-09-09 Light emitting diode package structure and method for making same

Publications (1)

Publication Number Publication Date
TW201110422A true TW201110422A (en) 2011-03-16

Family

ID=44836271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130457A TW201110422A (en) 2009-09-09 2009-09-09 Light emitting diode package structure and method for making same

Country Status (1)

Country Link
TW (1) TW201110422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466326B (en) * 2011-04-29 2014-12-21 Hon Hai Prec Ind Co Ltd Light-emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466326B (en) * 2011-04-29 2014-12-21 Hon Hai Prec Ind Co Ltd Light-emitting diode

Similar Documents

Publication Publication Date Title
US10497830B2 (en) Optoelectronics semiconductor device and method for producing an optoelectronic semiconductor device
US9263660B2 (en) Generator
JP5518933B2 (en) Manufacturing method of light emitting diode
JP5746235B2 (en) Surface heat source
TW200832755A (en) Semiconductor and method of manufacturing semiconductor
JP2009091239A (en) Heat and light source, and method for making the same
JP2009094074A (en) Exothermic light source and its manufacturing method
TW200926449A (en) Light-emitting diode device and manufacturing method thereof
TW201214760A (en) Optoelectronic device and method for manufacturing the same
US8298841B2 (en) Method for manufacturing light emitting diode package
JP2015060789A (en) Fluorescence light source device and manufacturing method of the same
KR101714904B1 (en) Photoelectronic device using hybrid structure of silica nano particles-graphene quantum dots and method of manufacturing the same
JP2010034058A (en) Planar heat source
TW201110422A (en) Light emitting diode package structure and method for making same
WO2018176194A1 (en) Photonic crystal-based flexible laser and preparation method therefor
TW202044611A (en) Light emitting diode
JP5175248B2 (en) Surface heat source
JP4669060B2 (en) Surface heat source
TWI357672B (en) High light efficiency solid-state light emitting d
US8808857B1 (en) Carbon nanotube array interface material and methods
JP6067079B2 (en) Indium oxide nanorods and method for producing the same
JP2010034056A (en) Planar heat source
JP5390288B2 (en) Surface heat source
TW200836374A (en) High efficiency light emitting articles and methods of forming the same
TW595017B (en) Light-emitting diode with high thermal conductivity and its manufacturing method