TW201110417A - Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate - Google Patents

Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate Download PDF

Info

Publication number
TW201110417A
TW201110417A TW099119722A TW99119722A TW201110417A TW 201110417 A TW201110417 A TW 201110417A TW 099119722 A TW099119722 A TW 099119722A TW 99119722 A TW99119722 A TW 99119722A TW 201110417 A TW201110417 A TW 201110417A
Authority
TW
Taiwan
Prior art keywords
layer
light
transparent conductive
conductive layer
epitaxial
Prior art date
Application number
TW099119722A
Other languages
Chinese (zh)
Inventor
Hiroyuki Kitabayashi
Hideki Matsubara
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW201110417A publication Critical patent/TW201110417A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Disclosed is a light-emitting element (200) which comprises a transparent supporting substrate (1), an adhesive layer (2) that is arranged on one main surface of the transparent supporting substrate (1), a transparent conductive layer (3) that is arranged on a main surface of the adhesive layer (2), said main surface being on the reverse side of another main surface that faces the transparent supporting substrate (1), and an epitaxial layer (4) that is arranged on a main surface of the transparent conductive layer (3), said main surface being on the reverse side of another main surface that faces the adhesive layer (2). A part of the second main surface of the transparent conductive layer (3) is exposed, said second main surface being on the reverse side of the first main surface that faces the adhesive layer (2). The light-emitting element (200) is additionally provided with electrodes (9, 10) which are respectively formed on the exposed second main surface and a main surface of the epitaxial layer (4), said main surface being on the reverse side of another main surface that faces the transparent conductive layer (3). Consequently, the light-emitting element is capable of achieving a large uniform emission output. Also disclosed are an epitaxial substrate which is capable of providing such a light-emitting element, and a method for producing the epitaxial substrate.

Description

201110417 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種磊晶基板、發光元件、發光裝置及蟲 晶基板之製造方法。 【先前技術】 半導體發光元件(LED(Light Emitting Diode,發光二極 體))將藉由構成半導體層之p型半導體層所供給之電洞與構 成半導體層之η型半導體層所供給之電子於發光層中再結 合而釋放之能量擷取為光,該半導體發光元件(LED)被用 於光學顯示器、信號機等廣泛用途中。為了提高輸出該半 導體發光元件中所發出之光的效率,提高所輸出之光之強 度’自先前以來設想了各種方法。 例如,於以下日本專利特開2〇〇2_134785號公報(專利文 獻1)中’藉由加熱附著技術’將形成於半導體基板之一主 表面上且發出光之半導體層、與相對於該半導體層所發出 〇 之光而具有透明性之透明基板進行接合。再者,此處主表 面係指表面中面積最大之主要面。 可使用如此形成之基板以提高輸出所發出之光之效率的 半導體發光元件之製造方法,係揭示於專利文獻丨中。於 此處所揭示之製造方法中,於將半導體層與透明基板進行 接合後,去除用以形成半導體層之半導體基板。因此,可 抑制該半導體基板吸收半導體層所發出之光,從而可提高 光之輸出強度。 又,於以下曰本專利特開20〇2_24664〇號公報(專利文獻 148937.doc 201110417 2)中,作為用以形成半導體發光元件之半導體基板,揭示 有如下者。即,使用樹脂,將形成於半導體基板之一主表 面上且發出光之半導體層、與相對於該半導體層所發出之 光而具有透明性之透明基板進行接合。具體而言,上述樹 脂係指BCB(benzocyclobutene,料環丁稀)樹脂或環氧樹 脂等透明黏著性物質材料。使用該種樹脂材料而接合之基 板中,即便接合之半導體層之主表面之表面粗糙度較= (即該主表面較粗糙)’亦可藉由彈性優異之樹脂材料之效 果而牢固地接合。 進而於以下曰本專利特開2〇〇3_〇86836號公報(專利文獻 3)中,作為用以形成半導體發光元件之半導體基板,揭示 有如下者。即,使用透明接著層,將形成於半導體基板之 -主表面上且發出光之半導體層、與相對於該半導體層所 發出之光而具有透明性之透明基板進行接合。此時,於半 導體層之使用透明接著層而接合之主表面上,形成與該半 導體層歐姆接觸之歐姆接觸層之後,將透明基板與^體 層接合。由於透明基板不具有導電性,故而形成於該基: 上之發光元件中兩個電極均存在於半導體層之主表面= 因此,藉由蝕刻處理而去除半導體層之一部分” 之半導體蟲晶層之主表面上形成第W屬電極。秋後,於 並未藉由蝕刻處理而去除之半導體磊晶層之主表’面上來杰 第2金屬電極。為了使該等金屬電極電性導通,例如夢 電極連接通道將S 1金屬電極與歐姆接觸層進行電^ 接。如此一來’使第1金屬電極與第2金屬電極導通時半導 148937.doc 201110417 體層所發光之光通過不吸收該光之透明基板而以較高比例 輸出。 先前技術文獻 專利文獻 專利文獻1:曰本專利特開2002-134785號公報 專利文獻2 :日本專利特開2002-246640號公報 專利文獻3 :日本專利特開20〇3_〇86836號公報 _ 【發明内容】 〇 發明所欲解決之問題 上述各專利文獻中所揭示之半導體發光元件均具有將半 導體層與透明基板接合之構成。該半導體發光元件中兩個 電極均存在於半導體層之主表面上。半導體層例如包含作 為用以發光之載子之電子與電洞所結合之區域即活性層, 及以夾持該活性層之方式而配置之、對活性層提供電子之 尘匕覆層、對活性層提供電洞之P型包覆層等。因此,成 ◎為於η型包覆層之主表面上與p型包覆層之主表面上配置兩 個電極,且對η型包覆層與Ρ型包覆層之間施加電壓之構 成。因此,藉由對上述半導體發光元件施加電壓,例如, 於η型包覆層或ρ型包覆層之内部,在沿該半導體發光元件 之主表面之方向上流動電流。 但是,於上述半導體發光元件中,可能會產生下述問 ^此處’兩個電極均配置於半導體層之主表面上。因 b例如考慮如下情形:η型包覆層配置於半導體層之最 面’且Ρ型包覆層位於半導體層之内部、即包含半導體 148937.doc 201110417201110417 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to an epitaxial substrate, a light-emitting element, a light-emitting device, and a method of manufacturing the same. [Prior Art] A semiconductor light-emitting element (LED (Light Emitting Diode)) is an electron supplied from a p-type semiconductor layer constituting a semiconductor layer and an electron supplied from an n-type semiconductor layer constituting a semiconductor layer. The energy that is recombined and released in the light-emitting layer is extracted into light, and the semiconductor light-emitting element (LED) is used in a wide range of applications such as an optical display and a signal. In order to increase the efficiency of outputting light emitted from the semiconductor light-emitting element, the intensity of the outputted light is increased. Various methods have been conceived since the prior art. For example, in the following Japanese Patent Laid-Open Publication No. 2-134785 (Patent Document 1), a semiconductor layer formed on one main surface of a semiconductor substrate and emitting light, and a semiconductor layer with respect to the semiconductor layer A transparent substrate having a transparent light and being bonded is bonded. Furthermore, the main surface here refers to the main surface having the largest area in the surface. A method of manufacturing a semiconductor light-emitting device which can use the substrate thus formed to increase the efficiency of light emitted from the output is disclosed in the patent document. In the manufacturing method disclosed herein, after the semiconductor layer and the transparent substrate are bonded, the semiconductor substrate for forming the semiconductor layer is removed. Therefore, it is possible to suppress the semiconductor substrate from absorbing light emitted from the semiconductor layer, thereby improving the output intensity of light. Further, as a semiconductor substrate for forming a semiconductor light-emitting device, the following is disclosed in the following Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. That is, a resin is used to bond a semiconductor layer which is formed on one main surface of a semiconductor substrate and emits light, and a transparent substrate which is transparent with respect to light emitted from the semiconductor layer. Specifically, the above-mentioned resin means a transparent adhesive material such as BCB (benzocyclobutene) resin or epoxy resin. In the substrate joined by using such a resin material, even if the surface roughness of the main surface of the bonded semiconductor layer is lower than that (i.e., the main surface is rough), it can be firmly bonded by the effect of the resin material excellent in elasticity. Further, as a semiconductor substrate for forming a semiconductor light-emitting device, the following is disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. That is, a transparent semiconductor layer formed on the main surface of the semiconductor substrate and emitting light is bonded to the transparent substrate having transparency with respect to the light emitted from the semiconductor layer. At this time, the ohmic contact layer which is in ohmic contact with the semiconductor layer is formed on the main surface of the semiconductor layer which is bonded using the transparent bonding layer, and then the transparent substrate is bonded to the bulk layer. Since the transparent substrate is not electrically conductive, both of the electrodes are formed on the main surface of the semiconductor layer in the light-emitting element of the substrate: Therefore, the semiconductor crystal layer of the semiconductor layer is removed by etching treatment. The Wth metal electrode is formed on the main surface. After the autumn, the second metal electrode is formed on the main surface of the semiconductor epitaxial layer which is not removed by the etching treatment. In order to electrically conduct the metal electrodes, for example, the dream The electrode connection channel electrically connects the S 1 metal electrode and the ohmic contact layer. Thus, when the first metal electrode and the second metal electrode are turned on, the semi-conductive 148937.doc 201110417 light emitted by the body layer does not absorb the light. The transparent substrate is output at a higher ratio. PRIOR ART DOCUMENT Patent Document Patent Document 1: Japanese Patent Laid-Open Publication No. 2002-134785 Patent Publication No. JP-A-2002-246640 〇3_〇86836 _ SUMMARY OF THE INVENTION Problems to be Solved by the Invention The semiconductor light-emitting elements disclosed in each of the above patent documents each have a semiconductor layer and a structure in which a transparent substrate is bonded. Both electrodes of the semiconductor light-emitting element are present on a main surface of the semiconductor layer. The semiconductor layer includes, for example, an active layer which is a region where electrons and holes are used as carriers for emitting light, and a dust ash coating layer for supplying an active layer to the active layer, a P-type cladding layer for providing a hole to the active layer, etc., so that the main surface of the η-type cladding layer is formed Two electrodes are disposed on the main surface of the upper p-type cladding layer, and a voltage is applied between the n-type cladding layer and the Ρ-type cladding layer. Therefore, by applying a voltage to the semiconductor light-emitting element, for example, Inside the n-type cladding layer or the p-type cladding layer, a current flows in a direction along the main surface of the semiconductor light emitting element. However, in the above semiconductor light emitting element, the following may be generated. Each of the electrodes is disposed on the main surface of the semiconductor layer. For example, b considers the case where the n-type cladding layer is disposed at the outermost surface of the semiconductor layer and the germanium-type cladding layer is located inside the semiconductor layer, that is, includes the semiconductor 148937.d. Oc 201110417

層與透明基板接合之主表面的蟲晶層中β此時,為了於P 型包覆層之主表面上配置電極,而使P型包覆層之主表面 露出,為此’例如藉由蝕刻處理而去除P型包覆層之主表 面上所積層之活性層或η型包覆層之一部分。 如此一來’關於該半導體層之主表面,對於ρ型包覆層 露出之區域係在ρ型包覆層之主表面上配置電極,對於配 置有π型包覆層之區域係在η型包覆層之主表面上配置電 極。因此’各電極之大小與原來積層之半導體層之主表面 之大小相比更小。由於各電極之大小較小,故而於電流自 該兩個電極中之一者朝另一者流動時,將ρ型包覆層等磊 晶層作為電流擴散層,使電流在與該磊晶層之主表面相關 的較寬之區域擴散。藉此,需要使電流相對於較寬之區域 大致均勻地流動。 但是,η型包覆層或ρ型包覆層等磊晶層中,與其主表面 交叉之方向之厚度非常薄。χ,因該等為半導體層,故而 與包含導電體之層相比導電性較差。因此,難以使電流於 該蟲晶層中均句地擴散(即’難以使電流於該蟲晶層中均 句地流動)。又’為了改善該導電性,使用蟲晶成長法將η 型包覆層或ρ型包覆層較厚地形成為可充分進行電流之擴 ^之程f,從而成本會增高。因Λ,流經該遙晶層之電流 ,與沿主表面之方向相關的電流分佈變得不均勻。其結 =,例如存在如下情形:關於與沿該蟲晶層之主表面^ 向相關的—部分區_,與其他區域相比電流更集中,藉此 電流密度増大,電壓婵+ 、L ^ ^ 寬&增大。如此,該半導體發光元件之電 I48937.doc 201110417 特性有可能變得不穩定。若如上所述半導體發光元件之電 特性變付不穩定,則會有活性層中之發光狀態亦變得不均 勻之〖月形。因此,該半導體發光元件之品質降低。 • 又,例如存在如下情形:如上述專利文獻3所揭示之半 f體發光元件般,為了使流經電極間之電流大致均句地擴 政於該半導體發&元件寬之區域而配置歐姆接觸層 等於此情形時,需要形成用以將磊晶層與歐姆接觸層電 〇 ㈣接之1極連接通道。因此,用以形成該半導體發光元 件之步驟變得繁雜。由於步驟變得繁雜,故而亦有所形成 之半導體發光元件之良率降低之情形。 進而,於該歐姆接觸層相對於該半導體發光元件所發出 之光為不透明之情形時,該歐姆接觸層之存在會於輸出所 發出之光時成為阻礙。因此,存在藉由配置有歐姆接觸 層,而使該半導體發光元件之光之輸出降低之情形。 本發明係鑒於上述問題而完成者。本發明之目的在於提 〇 供種可提供發光元件之磊晶基板,該發光元件能夠藉由 鞑加電壓而使電流均勻地流動,並能夠獲得均勻且較大之 發光輸出。又,本發明之目的在於提供一種使用該磊晶基 板之發光元件、包括發光元件之發光裝置、及上述磊晶基 板之製造方法。 解決問題之技術手段 本發明之發光元件包括:支持基板;接著層,其係配置 於支持基板之一主表面上;透明導電層,其係配置於接著 層之與支持基板對向之主表面的相反側之主表面上;以及 14S937.doc 201110417 磊晶層,其係配置於透明導電層之與接著層對向之主表面 的相反側之主表面上。透明導電層之與接著層對向之第i 主表面的相反側之第2主表面之—部分露出。上述發光元 件包括電極,其係形成於透明導電層所露出之第2主表面 上、及磊晶層之與透明導電層對向之主表面的相反側之主 表面上。 於此情形時,若對上述兩個電極之間施加電壓,則產生 電流。如上所述,於透明導電層上形成有磊晶層,透明導 電層成為與磊晶層鄰接配置之狀態。作為透明導電層,導 電性較尚,且使用電流之擴散性優異之材質。如此,則透 明導電層作為電流擴散層而發揮功能,因此上述電流將以 於透明導電層之内部廣泛擴散之方式均勻地流動。因此, 於上述發光元件中,能夠關於沿磊晶層之主表面的方向而 流動均勻之電流。因此,關於發光元件所發出之光,亦可 輸出均勻之光。 又,由於透明導電層透明,故而可使發光元件所發出之 光透過。再者,此處,透明係指使該發光元件所發出之波 長之光以80/。以上之尚透過率透過。反之,將該透過率未 達80 /。之情形定義為不透明。因此,可使發光元件所發出 之光通過透明導電層之内部。因此,可使該光朝所期望之 方向輸出。 本發明之磊晶基板包括:支持基板;接著層,其係配置 於支持基板之一主表面上;透明導電層,其係配置於接著 層之與支持基板對向之主表面的相反側之主表面上;以及 148937.doc 201110417 磊晶層,其係配置於透明導電層之與接著層對向之主表面 的相反側之主表面上。 上述磊晶基板包括:支持基板;以及磊晶層,其係例如 於使用該磊晶基板而形成發光元件之情形時為發光之區 域。磊晶層係指例如藉由使半導體材料磊晶成長而形成之 薄膜。 上述磊晶基板例如可用於發光元件之製造。此處,考慮 ◎ 於構成磊晶層之例如n型之包覆層與p型之包覆層之主表面 上分別形成電極而形成發光元件之情形。此時,藉由對該 電極之間施加電壓而產生電流。如上所述,該磊晶基板包 含透明導電層,且透明導電層係配置於磊晶層之一主表面 上。作為透明導電層,使用導電性較高、電流之擴散性優 異之材質。如此,則透明導電層作為電流擴散層而發揮功 能,因此上述電流以於透明導電層之内部廣泛擴散之方式 均勻地流動《因此,於該發光元件中,能夠關於沿磊晶基 〇 板之主表面的方向而流動均勻之電流。因此,於使用本發 明之磊晶基板而形成例如發光元件之情形時,關於該發光 元件所發出之光’亦可輸出均勻之光。 又,由於透明導電層透明,故而可使發光元件所發出之 光透過。因此,可使利用該磊晶基板而形成之發光元件所 發出之光通過透明導電層之内部。因此,可使該光朝所期 望之方向輸出。 上述發光元件或蟲晶基板中之磊晶層宜為積層有複數個 AlxInyGarx.yAsCOS 1、〇$ η之構成。 148937.doc -9- 201110417 例如,構成蟲晶層之η型包覆層或活性層、及p型包 包含上述AlxInyGai-x-yAs(0SG 1、〇客Κ υ,適當設定X 與y之值。此處’宜以活性層之帶隙能量小於㈣型 層之帶隙能量之方式設之值。如此,則可自被_ (p型)包覆層夾持之活性層產生光。進而,若適當設定咖 之值’則使用該磊晶基板而形成之發光元件可發出紅外 線。又’若適當選定♦之值,則可使11型包覆層或p型包 覆層相對於發光元件所發出之光為透明。因此,藉由如上 所述於蟲晶基板中包含透明導電層,可形成可發出均句之 紅外線的發光元件。 於上述發光元件或蟲晶基板中,透明導電層宜為ιτ〇(氧 化銦錫:Indium Tin Oxide)。 ITO具有導電性並且具有高透明度。例如,考慮該磊晶 基板中之支持基板為不具有導電性之透明基板且於構成 磊晶層之例如η型包覆層與透明導電層之主表面上之一部 分之區域配置電極而形成之發光元件。如此,則該發光元 件所發出之光可透過(透明之)磊晶層或作為透明導電層之 〇而透過透明之支持基板之内部。如此,若使用ιτο作 為透明導電層,則可使利用該羞晶基板而形成之發光元件 所發出之光自所期望之方向良好地輸出。 又,若使用ΙΤΟ,則可與例如由AixInyGai χ yAs(〇$xg i、 〇 $ y s 1)構成之磊晶層形成良好之歐姆接合。 於上述發光元件或磊晶基板中,接著層宜包含選自由 BCB樹脂、聚醯亞胺樹脂、環氧樹脂、聚矽氧樹脂所組成 148937.doc -10- 201110417 之群中的任一種。 該等樹脂材料除黏著性以外,彈性亦較高。因此,歹· 即便藉由該接著層而接合之支持基板之主表面或透明= • 4之主表面之表面粗糙度較高(表面較粗糖)時,亦可與支 . 持基板之主表面或透明導電層之主表面良好地接合1 此’若使用該等樹脂材料作為接著層,則可提高所形成之 磊晶基板之良率。 〇 又,該等樹脂材料相對於以基板上所形成之發光元件 所發出之光的透明度亦較高。因此,例如支持基板為透明 材料之it形時,使用該蟲晶基板而形成之發光元件之蟲晶 層所發出之光可良好地透過該接著層。 於上述發光元件或蟲晶基板中,支持基板宜為相對於蟲 晶層中所發出之光為透明之透明支持基板。 此處:磊晶層中所發出之光係指使用該磊晶基板而形成 之發光兀件所發出之光。於該支持基板為透明支持基板之 〇 #形時,使㈣《晶基板而形成之發光元件可使所發出 ^光通過透明支持基板之内部而朝外部輸出。因此,可提 门所發出之光之刖進方向之自由度,可使所發出之光以更 高之比例(高效地)朝所期望之方向前進。 於上述發光元件或磊晶基板中,上述透明支持基板宜包 含選自由藍寶石、玻璃、碳切、磷化鎵、石英及尖晶石 所組成之群中的任一種。若使用該等材質,則如上所述使 用蟲晶基板而形成之發光元件所發出之光可於該透明支持 基板之内部高效地前進。 148937.doc -11 - 201110417 又’若將上述材料用於透明支持基板,則該透明支持基 板可作為用以自下側支持構成該磊晶基板之磊晶層、或使 用蟲晶基板而形成之發光元件等的基底以確保充分之強 度。 於上述發光元件或磊晶基板中,透明導電層之一主表面 及與一主表面對向之另一主表面宜受到粗面化處理。 此處,粗面化處理係指提高該表面之表面粗糙度、即, 使該表面粗糙之處理。若藉由實施粗面化處理而提高透明 V電層之一主表面及另一主表面之表面粗糙度,則可抑制 形成於該磊晶基板之發光元件之磊晶層所發出之光例如於 透明導電層之主表面上發生全反射。 若假設光於透明導電層之主表面上發生全反射,則該光 例如為朝外部輸出而不通過本來應前進之方向(通過接著 層或支持基板等之内部之方向)。因此,存在該光朝外部 輸出之強度減弱之情形。因此,如上所述抑制全反射,藉 此,可使所發出之光以較高之比例(高效地)朝所期望之方 向輪出。 於上述發光元件或磊晶基板中,宜在透明導電層之與磊 晶層對向之主表面的相反側之主表面上、及位於支持基2 之與磊晶層為相反側之位置的主表面上之間的任一區域, 更包括反射層。 對於使用具有該種反射層之磊晶基板而形成之發光元件 所發出之光中,朝與欲輸出之方向相反之方向前進的光, 亦可藉由於該反射層中進行反射,而使該光以朝所期望之 148937.doc -12- 201110417 方向前進之方式轉換前進方向。例如,欲使該光相對於磊 曰曰層,自存在於與支持基板存在之方向為相反方向之主表 面朝外部輸出之情形時,於該反射層中使該光反射。如 此,則可使該光之前進轉向。因此,例如,即便使用包含 相對於該光為不透明之材質者作為支持基板,亦可使所發 出之光例如自配置有電極之主表面輸出等自任意方向輸 出。 0 使用上述磊晶基板之發光元件中,宜為透明導電層之與 接著層對向之第1主表面的相反側之第2主表面之一部分露 出,且於所露出之第2主表面上、及磊晶層之與透明導電 層對向之主表面的相反側之主表面上具有電極。 具有上述構成之發光元件中,兩個電極係相對支持基板 之主表面而配置於同一側,即均配置於存在磊晶層之一側 (例如磊晶層之主表面上p此情形係對與磊晶層之主表面 相關的一部分區域進行蝕刻處理,藉此使透明導電層部分 〇 地露出,並於該露出之透明導電層之主表面上形成一個電 極。藉由形成該種構成,可使於電極間施加有電壓時所流 動之電流於透明導電層之内部大致均勻地擴散於較寬之範 圍。因此,所發出之光亦成為區域間之偏差較少者,可大 致均句地輸出β 上述磊晶基板亦可更包括埋入電極,其係與透明導電層 直接連接,且包含與透明導電層不同之導電性材料。於此 情形時,部分地去除與埋入電極疊合之位置之磊晶層而形 成與透明導電層電性連接之電極時,可將埋入電極用作磊 148937.doc •13- 201110417 晶層之蝕刻步驟中的蝕刻終止。 又,本發明之發光元件包括:支持基板;接著層,其係 配置於支持基板之一主表面上;透明導電層,其係配置於 接著層之與支持基板對向之主表面的相反側之主表面上; 磊晶層,其係配置於透明導電層之與接著層對向之主表面 的相反側之主表面上,以及埋入電極,其係與透明導電層 直接連接,且包含與透明導電層不同之導電性材料。以埋 入電極之一部分露出之方式去除至少磊晶層之一部分,藉 此形成開D部。上述發光元件更包括電極,該電極係形成 於所露出之埋人電極之―部分上、及蟲晶層之與上述透明 導電層對向之主表面的相反側之主表面上。 於此情形時’於在電極間施加有電壓時,可使電流自電 極起經由埋入電極而於透明導電層之内部之較寬之範圍大 致均勻地流動。因&,所發出之光亦成為區_之偏差較 少者,可大致均勻地輸出光。 於上述發光元件或磊晶基 明導電層^亦可配置於透 ㈣對向之表面上。於此情形時,於形成 透明導電層後可繼而形成 導雷m &埋入電極。又’於不特別對透明 导1:層進仃開口部之形ώ笙 雲眘开'成4而形成埋入電極之情形時,益 化。 卩之步驟’因此可避免製造步驟之繁雜 ;上述1光70件或蟲晶基板中,於透明導電層之 :可在配置有埋入電極之部分形成有凹部。埋二 ; 包括填充凹部之内部之突出 I参亦可 犬出。Ρ。於此情形時,與未形成上 148937.doc 201110417 迷凹部之情形相比,可進-步增寬埋入電極與透明導電層 之接觸面積。因此,可進一步提高透明導電層與埋入電極 之接者強度。又,於經由埋入電極進行朝向透明導電層之 電流之供給之情形時,可藉由增寬埋入電極與透明導電層 之接觸面積,而更穩定地朝透明導電層供給電流。因此, 2 一步促進透明導電層中之電流之均自化,因㈣㈣ 提同使用该磊晶基板而形成之發光元件之光輸出。 Ο Ο 於上述發光兀件或蠢晶基板中,亦可於透明導電層形成 有貫通孔,該貫通孔係自與接著層對向之表面起到達與遙 晶層對向之表面為止。埋入電極亦能以填充貫通孔之内1 之方式配置。於此情形時,與未形成上述貫通孔之情形相 比,可進-步增寬埋入電極與透明導電層之接觸面積。因 此,可進-步提高透明導電層與埋入電極之接著強产。 又,埋入電極成為於該貫通孔之一端部(透明導電層中应 蟲晶層對向之表面側之貫通孔之端部)與蟲晶層接觸之^ 態。因此,可容易地將埋入電極用作蟲晶層之餘刻 刻終止。 又’於經由埋入電極進行朝向透明導電層之電流之供終 之情形時’埋入電極與透明導電層之接觸面積與未形成貫In the mycelium layer of the main surface where the layer is bonded to the transparent substrate, β is formed so that the main surface of the P-type cladding layer is exposed in order to dispose the electrode on the main surface of the P-type cladding layer, for example, by etching A portion of the active layer or the n-type cladding layer deposited on the main surface of the P-type cladding layer is removed by treatment. Thus, regarding the main surface of the semiconductor layer, the region where the p-type cladding layer is exposed is disposed on the main surface of the p-type cladding layer, and the region where the p-type cladding layer is disposed is attached to the n-type package. An electrode is disposed on the main surface of the cladding. Therefore, the size of each electrode is smaller than the size of the main surface of the semiconductor layer which is originally laminated. Since the size of each electrode is small, when a current flows from one of the two electrodes toward the other, an epitaxial layer such as a p-type cladding layer is used as a current diffusion layer, and a current is applied to the epitaxial layer. The wider area associated with the main surface spreads. Thereby, it is necessary to make the current flow substantially uniformly with respect to a wider area. However, in the epitaxial layer such as the n-type cladding layer or the p-type cladding layer, the thickness in the direction intersecting the main surface is extremely thin. That is, since these are semiconductor layers, the conductivity is inferior to that of the layer containing the conductor. Therefore, it is difficult to uniformly spread current in the crystal layer (i.e., it is difficult to cause current to flow uniformly in the crystal layer). Further, in order to improve the conductivity, the n-type cladding layer or the p-type cladding layer is formed thickly by the worm growth method to form a process f in which the current can be sufficiently expanded, and the cost is increased. Because of the current flowing through the crystal layer, the current distribution associated with the direction along the main surface becomes uneven. The junction =, for example, there is a case where the current is more concentrated than the other regions, and the current density is large, and the voltages 婵+, L ^ ^ are related to the partial regions _ related to the main surface along the crystal layer. Width & increase. As such, the characteristics of the semiconductor light-emitting element may become unstable. If the electrical characteristics of the semiconductor light-emitting device are unstable as described above, the light-emitting state in the active layer may become uneven. Therefore, the quality of the semiconductor light emitting element is lowered. In addition, for example, in the case of a semi-f-body light-emitting element disclosed in Patent Document 3, ohmic is disposed in order to spread the current flowing between the electrodes substantially uniformly over the wide area of the semiconductor light-emitting element. When the contact layer is equal to this case, it is necessary to form a 1-pole connection channel for electrically connecting the epitaxial layer and the ohmic contact layer. Therefore, the steps for forming the semiconductor light-emitting element become complicated. Since the steps become complicated, the yield of the semiconductor light-emitting device formed is also lowered. Further, when the ohmic contact layer is opaque with respect to the light emitted from the semiconductor light emitting element, the presence of the ohmic contact layer becomes an obstacle when outputting the emitted light. Therefore, there is a case where the output of light of the semiconductor light emitting element is lowered by arranging the ohmic contact layer. The present invention has been accomplished in view of the above problems. SUMMARY OF THE INVENTION An object of the present invention is to provide an epitaxial substrate capable of providing a light-emitting element capable of uniformly flowing a current by applying a voltage and capable of obtaining a uniform and large light-emitting output. Further, an object of the present invention is to provide a light-emitting element using the epitaxial substrate, a light-emitting device including the light-emitting element, and a method of manufacturing the above-described epitaxial substrate. Solution to Problem The light-emitting element of the present invention comprises: a support substrate; an adhesive layer disposed on one main surface of the support substrate; and a transparent conductive layer disposed on the main surface of the adhesive layer opposite to the support substrate On the opposite side of the major surface; and 14 S937.doc 201110417 epitaxial layer, which is disposed on the major surface of the transparent conductive layer opposite the major surface opposite the subsequent layer. A portion of the transparent conductive layer that is opposite to the second major surface on the opposite side of the i-th main surface opposite to the subsequent layer is exposed. The illuminating element includes an electrode formed on the second main surface exposed by the transparent conductive layer and on the main surface of the epitaxial layer opposite to the main surface opposite to the transparent conductive layer. In this case, if a voltage is applied between the two electrodes, a current is generated. As described above, the epitaxial layer is formed on the transparent conductive layer, and the transparent conductive layer is placed adjacent to the epitaxial layer. As the transparent conductive layer, it has a good electrical conductivity and is excellent in diffusibility of current. As a result, since the transparent conductive layer functions as a current diffusion layer, the current flows uniformly over the inside of the transparent conductive layer. Therefore, in the above light-emitting element, a uniform current can flow with respect to the direction along the main surface of the epitaxial layer. Therefore, uniform light can be outputted with respect to the light emitted from the light-emitting element. Further, since the transparent conductive layer is transparent, light emitted from the light-emitting element can be transmitted. Here, the term "transparent" means that the light emitted by the light-emitting element is 80/. The above is still transmitted through. On the contrary, the transmittance is less than 80 /. The situation is defined as opaque. Therefore, the light emitted from the light-emitting element can be made to pass through the inside of the transparent conductive layer. Therefore, the light can be output in a desired direction. The epitaxial substrate of the present invention comprises: a support substrate; an adhesive layer disposed on one main surface of the support substrate; and a transparent conductive layer disposed on the opposite side of the main surface of the adhesive layer opposite to the support substrate On the surface; and 148937.doc 201110417 an epitaxial layer disposed on a major surface of the transparent conductive layer opposite the major surface opposite the back layer. The epitaxial substrate includes a support substrate, and an epitaxial layer which is, for example, a region where light is emitted when the epitaxial substrate is used to form a light-emitting element. The epitaxial layer refers to a thin film formed, for example, by epitaxial growth of a semiconductor material. The epitaxial substrate described above can be used, for example, in the manufacture of a light-emitting element. Here, a case is considered in which an electrode is formed on each of the main surfaces of the n-type cladding layer and the p-type cladding layer which constitute the epitaxial layer to form a light-emitting element. At this time, a current is generated by applying a voltage between the electrodes. As described above, the epitaxial substrate includes a transparent conductive layer, and the transparent conductive layer is disposed on one main surface of the epitaxial layer. As the transparent conductive layer, a material having high conductivity and excellent current diffusibility is used. In this manner, since the transparent conductive layer functions as a current diffusion layer, the current flows uniformly throughout the transparent conductive layer. Therefore, in the light-emitting element, it is possible to A current that flows evenly in the direction of the surface. Therefore, when the epitaxial substrate of the present invention is used to form, for example, a light-emitting element, light emitted by the light-emitting element can also output uniform light. Further, since the transparent conductive layer is transparent, light emitted from the light-emitting element can be transmitted. Therefore, light emitted from the light-emitting element formed by the epitaxial substrate can be passed through the inside of the transparent conductive layer. Therefore, the light can be output in the desired direction. Preferably, the epitaxial layer in the light-emitting element or the insect crystal substrate is formed by laminating a plurality of AlxInyGarx.yAsCOS 1 and 〇$ η. 148937.doc -9- 201110417 For example, the n-type cladding layer or active layer constituting the insect layer, and the p-type package include the above-mentioned AlxInyGai-x-yAs (0SG 1, 〇客Κ, appropriately setting the values of X and y Here, it is preferable to set the value of the band gap energy of the active layer to be smaller than the band gap energy of the (four) type layer. Thus, light can be generated from the active layer held by the _ (p type) cladding layer. If the value of the coffee is appropriately set, the light-emitting element formed by using the epitaxial substrate can emit infrared rays. Further, if the value of ♦ is appropriately selected, the 11-type cladding layer or the p-type cladding layer can be made relative to the light-emitting element. The light emitted is transparent. Therefore, by including a transparent conductive layer in the crystal substrate as described above, a light-emitting element capable of emitting infrared rays of a uniform sentence can be formed. In the light-emitting element or the insect crystal substrate, the transparent conductive layer is preferably Ιτ〇 (Indium Tin Oxide). ITO has electrical conductivity and high transparency. For example, consider that the support substrate in the epitaxial substrate is a transparent substrate having no conductivity and is, for example, n-type constituting the epitaxial layer. On the main surface of the cladding layer and the transparent conductive layer In a part of the region, the light-emitting element is formed by arranging the electrodes. Thus, the light emitted by the light-emitting element can pass through the (transparent) epitaxial layer or as a transparent conductive layer and pass through the inside of the transparent support substrate. When ιτο is used as the transparent conductive layer, the light emitted from the light-emitting element formed by the imaginary substrate can be favorably outputted from the desired direction. Further, if ΙΤΟ is used, it can be compared with, for example, AixInyGai χ yAs (〇$ The epitaxial layer formed by xg i, 〇 $ ys 1) forms a good ohmic junction. In the above light-emitting element or epitaxial substrate, the subsequent layer preferably comprises a material selected from the group consisting of BCB resin, polyimide resin, epoxy resin, and polyfluorene. The oxygen resin is composed of any one of the group of 148937.doc -10- 201110417. The resin materials have higher elasticity in addition to adhesion, and therefore, even the main surface of the supporting substrate joined by the bonding layer Or transparent = • 4 The main surface has a high surface roughness (the surface is coarser), and can also be well joined to the main surface of the substrate or the main surface of the transparent conductive layer. By using these resin materials as the adhesive layer, the yield of the formed epitaxial substrate can be improved. Further, the transparency of the resin material with respect to the light emitted from the light-emitting element formed on the substrate is also high. For example, when the support substrate is in the shape of a transparent material, the light emitted by the crystal layer of the light-emitting element formed using the crystal substrate can pass through the adhesive layer well. In the light-emitting element or the insect crystal substrate, the support substrate It is preferably a transparent support substrate that is transparent with respect to the light emitted from the crystal layer. Here, the light emitted from the epitaxial layer refers to the light emitted by the light-emitting element formed using the epitaxial substrate. When the support substrate is a transparent support substrate, the light-emitting element formed by the (4) "crystal substrate allows the emitted light to be output to the outside through the inside of the transparent support substrate. Therefore, the degree of freedom in the direction of the light emitted by the door can be raised, and the emitted light can be advanced in a desired ratio in a higher proportion (effectively). In the above light-emitting element or epitaxial substrate, the transparent support substrate preferably contains any one selected from the group consisting of sapphire, glass, carbon cut, gallium phosphide, quartz, and spinel. When these materials are used, the light emitted from the light-emitting element formed by using the insect crystal substrate as described above can be efficiently advanced inside the transparent support substrate. 148937.doc -11 - 201110417 Further, if the above material is used for a transparent supporting substrate, the transparent supporting substrate can be formed as an epitaxial layer for supporting the epitaxial substrate from the lower side or using a crystal substrate. A substrate of a light-emitting element or the like to ensure sufficient strength. In the above light-emitting element or epitaxial substrate, one main surface of the transparent conductive layer and the other main surface opposed to one main surface are preferably subjected to roughening treatment. Here, the roughening treatment refers to a treatment for increasing the surface roughness of the surface, that is, roughening the surface. When the surface roughness of one of the main surface and the other main surface of the transparent V-electrode layer is increased by performing the roughening treatment, the light emitted from the epitaxial layer of the light-emitting element formed on the epitaxial substrate can be suppressed, for example, Total reflection occurs on the main surface of the transparent conductive layer. If it is assumed that total reflection occurs on the main surface of the transparent conductive layer, the light is output toward the outside, for example, without passing through the direction in which the film should be advanced (through the direction of the inside of the bonding layer or the supporting substrate or the like). Therefore, there is a case where the intensity of the light output to the outside is weakened. Therefore, total reflection is suppressed as described above, whereby the emitted light can be rotated in a desired ratio in a relatively high proportion (effectively). Preferably, in the light-emitting element or the epitaxial substrate, the main surface of the transparent conductive layer opposite to the main surface opposite to the epitaxial layer, and the main surface of the support base 2 opposite to the epitaxial layer Any area between the surfaces, including a reflective layer. In the light emitted by the light-emitting element formed using the epitaxial substrate having the reflective layer, the light traveling in a direction opposite to the direction to be output may be caused by reflection in the reflective layer. Change the direction of the way in the direction of the desired 148937.doc -12- 201110417. For example, when the light is to be output to the outside with respect to the Lei-Ping layer from the main surface which is opposite to the direction in which the support substrate exists, the light is reflected in the reflective layer. In this way, the light can be turned forward. Therefore, for example, even if a material including a material that is opaque with respect to the light is used as the support substrate, the emitted light can be output from an arbitrary direction, for example, from the main surface on which the electrode is disposed. Preferably, in the light-emitting element using the epitaxial substrate, a portion of the second main surface opposite to the first main surface opposite to the adhesive layer of the transparent conductive layer is exposed, and on the exposed second main surface, And an electrode having an opposite surface of the epitaxial layer opposite to the main surface opposite to the transparent conductive layer. In the light-emitting device having the above configuration, the two electrodes are disposed on the same side with respect to the main surface of the support substrate, that is, both are disposed on one side of the epitaxial layer (for example, on the main surface of the epitaxial layer). A portion of the main surface of the epitaxial layer is etched, whereby the transparent conductive layer is partially exposed, and an electrode is formed on the main surface of the exposed transparent conductive layer. When a voltage is applied between the electrodes, the current flowing in the transparent conductive layer diffuses substantially uniformly over a wide range. Therefore, the emitted light also has a small variation between regions, and can be output substantially uniformly. The epitaxial substrate may further include a buried electrode directly connected to the transparent conductive layer and containing a conductive material different from the transparent conductive layer. In this case, the position overlapping with the buried electrode is partially removed. When the epitaxial layer is formed to form an electrode electrically connected to the transparent conductive layer, the buried electrode can be used as an etching termination in the etching step of the 148937.doc •13-201110417 crystal layer. The light-emitting element of the present invention comprises: a support substrate; an adhesive layer disposed on one main surface of the support substrate; and a transparent conductive layer disposed on the opposite side of the main surface of the adhesive layer opposite to the support substrate An epitaxial layer disposed on a main surface of the transparent conductive layer opposite to a main surface opposite to the main surface of the transparent layer, and a buried electrode directly connected to the transparent conductive layer and containing transparent conductive a conductive material different in layers, wherein at least one portion of the epitaxial layer is removed in such a manner that a portion of the buried electrode is exposed, thereby forming an open D portion. The light emitting device further includes an electrode formed on the exposed buried electrode ―Partially, and on the main surface of the insect crystal layer opposite to the main surface opposite to the transparent conductive layer. In this case, when a voltage is applied between the electrodes, current can be buried from the electrode. The electrode flows substantially uniformly over a wide range of the inside of the transparent conductive layer. The light emitted by the electrode also becomes a region with less deviation, and the light can be output substantially uniformly. The light-emitting element or the epitaxial conductive layer can also be disposed on the surface of the transparent (four) opposite surface. In this case, after the transparent conductive layer is formed, a thundering m & embedded electrode can be formed. Especially for the transparent guide 1: the shape of the opening into the ώ笙 慎 慎 慎 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成Or in the crystal substrate, in the transparent conductive layer: a recessed portion may be formed in a portion where the buried electrode is disposed. The buried portion; and the protrusion I including the inside of the filled recess portion may also be in dogs. In this case, Compared with the case where the concave portion is not formed, the contact area between the buried electrode and the transparent conductive layer can be further widened. Therefore, the strength of the contact between the transparent conductive layer and the buried electrode can be further improved. Further, when the supply of current to the transparent conductive layer is performed via the buried electrode, the contact area between the buried electrode and the transparent conductive layer can be widened, and current can be supplied to the transparent conductive layer more stably. Therefore, the current uniformity of the current in the transparent conductive layer is promoted in one step, and the light output of the light-emitting element formed using the epitaxial substrate is referred to in (4) and (4). Further, in the above-mentioned light-emitting element or the dummy substrate, a through hole may be formed in the transparent conductive layer from the surface facing the adhesive layer to the surface facing the remote layer. The buried electrode can also be disposed so as to fill the inside of the through hole. In this case, the contact area between the buried electrode and the transparent conductive layer can be further widened as compared with the case where the through hole is not formed. Therefore, the subsequent strong production of the transparent conductive layer and the buried electrode can be further improved. Further, the buried electrode is in contact with the insect crystal layer at one end portion of the through hole (the end portion of the transparent conductive layer in the through hole on the surface side opposite to the surface of the insect crystal layer). Therefore, the buried electrode can be easily terminated as a lining layer. Further, when the current toward the transparent conductive layer is terminated via the buried electrode, the contact area between the buried electrode and the transparent conductive layer is not formed.

通孔之情形相比更寬’因此可更穩定地朝透明導電層供I 電流。因&,可進一步促進透明導電層令之電流 之 化’因而結果可提高使用該蟲晶基板而形成之發光 光輸出π 於上述發光it件或蟲晶基板中,埋人電極包括延伸部, 148937.doc -15· 201110417 該延伸部係於透明導電層中與接著層 伸,且與透明導電層直接接觸。於此 ° 面上延 而進-步增寬埋入電極與透明導電層二:面:由延伸部 , t 臂义接觸面積,因此, 以由埋人電極進行朝向透明導電層之電流之供給之情步 時’可更穩定地朝透明導電層供給電流。其結果 : 使用該蟲晶基板而形成之發光元件之光輸出。&,藉由: 寬上述接觸面積’可進一步提高透明導電層‘: 接著強度。 徑之 於上述發光元m日日基板中,埋人電極亦可為積層有 不同種類之複數個導電體層之多層結構。於此情形 埋入電極之材料可增大選擇之自由度。 於上述發光元件或蟲晶基板中,於埋人電極中,構成多 層結構之複數個導電體層亦可包㈣i導電體層與第2導二 體層。第^導電體層亦可與透明導電層及蟲晶層接觸。第2 導電體層亦可形成為接觸第i導電體層中位於與透明導電 層接觸之表面之相反側的面。第1導電體層宜為與第2導電 體層相比’與透明導電層及磊晶層之密接性相對較高。; 2導電體層宜為對於蝕刻磊晶層之蝕刻劑的選擇比高於第1 導:體層。於此情形時’藉由第1導電體層可將埋入電極 確實地連接固定於透明導電層及磊晶層,並且藉由第2導 電體層可使埋人電極確實地發揮作為触刻終止之功能。 於上述發光70件或磊晶基板中,第1導電體層亦可包含 鉻及鈦中之至少—者。x,於此情形時,蟲晶層亦可為積 層有複數個AlxInyGai x yAs(〇$xs丨、1}之構成,且 148937.doc •16- 201110417 電:亦可包含ΙΤΟ。於此情形時,可將㈣電體層 確實地固定於透明導電層及磊晶層。 於上述發光元件或m板中,第2導電體層亦可包含選 由金(Au)、㈣Pt)、把(pd)所組成之群中之至少—者。於此 情形時’ Μ層亦可為積層有複數個、 心各1)之構成。於此情形時,係藉由對於^層選擇比 Ο ο 較兩之材料構成第2導電體層,因此可於蟲晶層之姓刻中 將埋入電極用作蝕刻終止。 、本發明之發光元件為使用上述蟲晶基板之發光元件,且 、電極之冑分露出之方式去除至少蟲晶層之一部 分二形成開口部。上述發光元件於所露出之埋入電極 之一部分上、及蟲日日日層之與透明導電層對向之主表面的相 反側之主表面上具有電極。藉由形成該種構成,於在電極 1 &加有電塵時’可使電流自電極^經由埋人電極而於透 明導電層之内部之較寬之範圍大致均句地流動。因此,、所 發出之光亦成為區域間之偏差較少者,可大致均勾地輸出 光0 本發明之發光裝置包括:―對引線框架,其係於上述發 光元件與外部之間輸入輸出電信號;上述發光元件,其係 配置於上述一對引線框架中之第i引線框架之主表面上丨 以及金屬線,其係連接上述發光元件之電極、與第丨引線 «及第2引線框架之各個。使用上述發光元件之發光裝 置可高效地輸出所發出之光。 本發明之蟲晶基板之製造方法包括:準#基板之步驟丨 148937.doc •17· 201110417 於基板之一主表面上形成磊晶層之步驟;於磊晶層之與基 板對向之主表面的相反側之主表面上形成透明導電層之步 驟;以及於透明導電層之與磊晶層對向之主表面的相反側 之主表面上接合支持基板之步驟。如此,則可容易地獲得 本發明之磊晶基板。 上述磊晶基板之製造方法亦可更包括形成埋入電極之步 驟,該埋入電極係與透明導電層直接連接,且包含與透明 導電層不同之導電性材料。於此情形時,可獲得如下磊晶 基板,該磊晶基板具有可於磊晶層之蝕刻中用作蝕刻終止 等的埋入電極。 上述磊晶基板之製造方法亦可更包括在透明導電層形成 開口部之步驟。於形成埋人電極之步驟中,亦能以填充開 口部之内部之方式形成埋入電極。於此情形時,可獲得填 充開口部之埋人電極與透明導電層之連接強度經蟲 晶基板。 上述基板包含鎵砷等化合物半導體材料,其可於主表面 上形成例如半導體材料之蟲晶層。即,該基板並不構:使 用该蟲晶基板之發光元件。因此,於形成發光元件時 可去除上述基板1去除該基板,則於形成發光元件時, 可抑制例如磊晶層所發出之光被上述基板 之產生。 个艮匱况 又如上所述,該蟲晶基板包括透明導電層。因此 ㈣蟲晶基板而形成之發光元件可使藉由施加於兩個^ 間之電而產生的電流於透明導電層中均句地擴散^此 148937.doc -18* 201110417 可均勻且高效地輸出光。該磊晶基板之支持基板既可相對 於使用該磊晶基板而形成之發光元件所發出之光為透明, 亦可為不透明。 . 依照本發明之發光元件之製造方法包括:準備基板之步 驟;於基板之一主表面上形成磊晶層之步驟;於磊晶層之 與基板對向之主表面的相反側之主表面上形成透明導電層 之步驟;於透明導電層之與磊晶層對向之主表面的相反^ 〇 之主表面上接合支持基板之步驟;於接合支持基板之步驟 後自磊晶層去除上述基板之步驟;藉由去除磊晶層之一部 刀而使透明導電層之一部分露出之步驟;以及於所露出之 透明導電層上及蟲晶層上形成電極之步驟。 依照本發明之發光元件之製造方法包括:準備基板之步 驟,於基板之-主表面上形成蟲晶層之步驟;於遙晶層之 與基板對向之主表面的相反側之主表面上形成透明導電層 之步驟;形成與透明導電層直接連接且包含與透明導電層 〇 =之導電性材料的埋入電極之步驟;於透明導電層之: 猫曰曰層對向之主I面的相反側之主表面上接合支持基板之 步驟’於接合支持基板之步驟後自蟲晶層去除基板之步 驟’猎由去除蟲晶層之一部分而使埋入電極之一部分露出 之步驟;以及於所露出之埋入電極上及蟲晶層上形成電極 之步驟。如此,則可容易地獲得本發明之發光元件。 上述發光兀件之製造方法亦可更包括在透明導電層形成 Ρ之步驟。於形成埋入電極之步驟中,亦能以填充開 口部之内部之方式形成埋入電極。 148937.doc -19· 201110417 發明之效果 根據本發明’可提供-種用以形成可均勻且高效地輸出 光之發光兀件的蟲晶基板、及上述發光元件、使用上述發 光元件之發光裝置、以及上述磊晶基板之製造方法。 【實施方式】 乂下 邊參照圖式一邊說明本發明之各實施形態。再 者’於各實施形態中’對發揮相同功能之要素標註相同參 照符號,若非特別必要則不重複其說明。 (實施形態1) 圖1所示,本實知形態1之蟲晶基板丨包括透明支持 基板1、及配置於透明支持基板丨之一主表面上(圖丨中之上 側)之接著層2。於接著層2之與透明支持基板i對向之主表 面的相反側之主表面上(圖!中之上側)具有透明導電们。 於透明導電層3之與接著層2對向之主表面的相反側之主表 面上(圖1中之上側)具有磊晶層4。 透明支持基板1係包含相對於使用該蟲晶基板1〇〇而形成 之下述發光元件所發出之光為透明之材f的支持基板。且 體而言’例如透明支持基板!較佳為使用&藍寳石、玻 璃、碳化矽(SiC)、磷化鎵(GaP)、石英及尖晶石等形成 者。★該透明支持基扳1自了側支持構成蟲晶基板1〇〇之蟲晶 層4等,藉此具有作為抑制該磊晶層4等破損之基底之作 用又,可使利用该蟲晶基板1〇〇而形成之發光元件所發 出之光透過透明支持基板i,藉此以較高比例(高效地) 期望之方向前進。 148937.doc -20- 201110417 磊晶層4具體而言,如圖2所示,包括第1包覆層5、配置 於第1包覆層5之一主表面上(圖2中之上側)之活性層6、及 配置於活性層6之一主表面上(圖2中之上側)之第2包覆層 Ί。 磊晶基板100係用以形成例如LED等發光元件之基板。構成 磊晶基板100之磊晶層4為積層有複數個藉由磊晶成長而形成 之半導體層的構成。例如於形成使用蟲晶基板⑽而發出紅 〇 ^卜線之發光70件之情形時’較佳為構成蟲晶層4之第1包覆層 5、活性層6、第2包覆層7均包含AlxInyGai x-yAs(〇gx^ i、 1)。再者,此處紅外線係指具有85〇 nm以上、95〇 nm以下之波長之紅外線。 又’於第1包覆層5例如包含n型半導體(上述A1JnyGaixyAs) 之情形時’第2包覆層7較佳為包含p型半導體。反之,於 第1包覆層5包含P型半導體之情形時,第2包覆層7較佳為 包含η型半導體。 ❹ 透明導電層3係在使用該蟲晶基板1〇〇而形成之發光元件 之兩個電極間施加有電壓時,用於使所輸出之電流於該發 光元件之内部均勻地流動& λ p l J ®机動而配置之區域。上述發光元件 中,例如於圖1中之磊晶層4之上側 w 上侧之主表面上或内部具有 兩個電極之情形日存,矣:ί & Λ 對該兩個電極間施加電壓,則電流 基於電位差而流動。續蕾ν么、,丄 0電OIL係以在關於圖1中之透明導電 層3之左右方向、及圖1中 闽1甲之與紙面垂直之方向(深度方向 而較寬之區域均勻流叙 > 七4 Μ / 方式擴散。如此,透明導電層3 係用於使電流順暢地擴散而配置。 148937.doc •21 · 201110417 作為透明導電層3,例如較佳為使用ITO(Indium Tin Oxide)。ITO具有導電性並且具有高透明度。因此,若使 用ΙΤΟ作為透明導電層3,則可使利用該磊晶基板ι〇〇而形 成之發光元件所發出之光於透明導電層3之内部前進,藉 此以較高比例(高效地)朝所期望之方向前進。 進而,ΙΤΟ可與構成配置於透明導電層3之上側之主表面 (透明導電層主表面3b)上之蟲晶層4的打型或 P型AlxInyGai_x_yAs獲得良好之歐姆接合。再者,接著層2 較佳為包含選自由BCB樹脂、聚醯亞胺樹脂、環氧樹脂、 聚石夕氧樹脂所組成之群中的任一種。該等樹脂材料之黏著 性較高。因此’例如’ ^藉由於透明支持基板i之圖】中之 上側之主表面上、或透明導電層3之下側之主表面(透明導 電層主表面3a)上配置(塗布)接著層2,而如_所示接合透 明支持基才反i與透明f電層3,則可將兩者牢固地接著。 又’上述各樹脂材料之彈性亦較高。因此,例如即便欲經 由接著層2而接合之上述透明支持基板1之主表面或透明導 電層主表面3a之表面粗链度較高之情形時,亦可藉由接著 層2之彈性’對所欲接合之表面上之粗糙區域中之凹凸形 ’柔軟且牛固地接著。再者,接著層2為於例如接合透明 導電層3與透明支持基板!之時間點具有柔軟性之材質,但 於例如形成發光元件後之狀態下成為牢固地固定之狀 態。 ,又,構成接著層2之材質均相對於使用該蟲晶基板⑽而 形成之發光元件200所發出之光為透明。因此,可使利用 148937.doc -22· 201110417 該磊晶基板100而形成之發光元件200所發出之光透過接著 層2,藉此以較高比例(高效地)朝所期望之方向前進。 使用具有以上性質之磊晶基板丨〇 〇,可形成圖3所示之發 . 光兀件200。發光元件2〇〇中,與構成圖1之磊晶基板1〇〇之 磊晶層4之主表面相關的一部分區域(圖3中之右側之區域) 被去除。於未去除磊晶層4之區域(圖3中之左側之區域), 於磊晶層4之最上層即第2包覆層7之上側之主表面上配置 0 有電極9。又,關於已去除磊晶層4之區域,透明導電層3 之上側之主表面(透明導電層主表面3b)露出。於該露出之 透明導電層主表面3b上配置有電極1〇。 進而於透明支持基板1之不與接著層2對向之側之主表 面(圖3中之下側之主表面)上配置有光反射層8。於活性層6 所產生之光中,於朝向圖3中之上側之方向上前進的光可 直接自例如配置有電極9之第2包覆層7之上側之主表面、 或配置有電極10之透明導電層主表面3b輸出。又,於活性 〇 層6所產生之光中,於朝向圖3中之下侧之方向上前進的光 係通過透明支持基板丨之内部,而到達光反射層8之與透明 支持基板1對向之主表面上。如此,則該光在光反射層8之 與透明支持基板1對向之主表面上反射,並自圖3中之下側 之方向轉向為朝向上側之方向。因此,該光例如可自配置 有電極9之第2包覆層7之上側之主表面、或配置有電極1〇 之透明導電層主表面3b輸出。若該光於光反射層8以較高 比例反射,則該光中透過透明支持基板丨而自透明支持基 板1之下側之主表面朝外部輸出之比例減少。因此,可使 148937.doc •23- 201110417 °亥光以較尚比例(高效地)朝所期望之方向輸出。 此處說明使用磊晶基板100而形成之發光元件2〇〇之動 作。對電極9與電極1G之間施加電壓。如此,則由於電極9 與電極10之電位差,例如電子自電極1〇朝電極9流動。該 電子之流動係作為與電子之流動為反向流動之電流而輸 出。 該電流例如自電極9起,自圖3之上側朝下側流經磊晶層 4,並通過透明導電層3之内部而流入至電極1〇。透明導電 層3如上所述例如包含IT〇。因此,藉由施加於電極&與電 極10之間之電壓,可使電流於透明導電層3流動。又自 電極9流入至透明導電層3之内部之電流,於透明導電層〕 之内部,係在關於與圖3所示之左右方向交又之剖面而較 寬之區域擴散。因此,該電流於透明導電層3之内部均勻 地自圖3之左側流向右侧。因此,電流自透明導電層3起, 關於第1包覆層5之主表面上之較寬之區域而大致均勻地流 入。即’關於沿第1包覆層5與第2包覆層7之主表面之方 向,於该主表面上之任一區域,電流均大致均勻地流動 (電子大致均勻地自第1包覆層5流向第2包覆層7)。再者, 圖3中之配置於透明導電層3之下側之接著層2及透明支持 基板1不具有導電性。因此,於透明導電層3之内部以上述 方式流動之電流例如幾乎不朝接著層2或透明支持基板!流 入0 如此’使得用以使發光元件200發光之電流於透明導電 層3之内部流動。如此,則例如可降低如下之可能性:於 148937.doc -24- 201110417 透明導電層3之内部之一部分區域集中地流動較大之電 流,反之局部地流動之電流減小。 又,由於該電流係藉由擴散於透明導電層3之内部之方 式而流動,故而例如於磊晶層4之第1包覆層5等之内部, 該電流幾乎不會自圖3之左側流向右側。因此,不需要為 使電流於磊晶層4之内部流動而較厚地形成磊晶層4。因 此’可降低形成蟲晶層4之成本。 ΟThe case of the via hole is wider than that of the case where the current is supplied to the transparent conductive layer more stably. Because &, the current of the transparent conductive layer can be further promoted', and as a result, the light output light formed by using the crystal substrate can be increased in the light-emitting or insect-crystalline substrate, and the buried electrode includes an extension portion. 148937.doc -15· 201110417 The extension is in the transparent conductive layer and the subsequent layer is stretched and is in direct contact with the transparent conductive layer. On the surface of the surface, the buried electrode and the transparent conductive layer are extended: the surface: the extension area, the t-arm contact area, and therefore, the supply of current to the transparent conductive layer by the buried electrode In the case of the situation, the current can be supplied to the transparent conductive layer more stably. As a result, the light output of the light-emitting element formed using the crystal substrate. &, by: widening the above contact area' can further increase the transparent conductive layer ‘: subsequent strength. In the substrate of the above-mentioned illuminating element m, the buried electrode may have a multilayer structure in which a plurality of different conductor layers of different types are laminated. In this case, the material embedded in the electrode increases the degree of freedom of choice. In the above-mentioned light-emitting element or insect crystal substrate, a plurality of conductor layers constituting a multi-layer structure in the buried electrode may include a (iv) i-conductor layer and a second conductor layer. The second conductor layer may also be in contact with the transparent conductive layer and the insect layer. The second conductor layer may also be formed to contact a surface of the i-th conductor layer on the opposite side of the surface in contact with the transparent conductive layer. The first conductor layer preferably has a higher adhesion to the transparent conductive layer and the epitaxial layer than the second conductor layer. 2 The conductor layer should preferably have a higher selectivity ratio for the etchant for etching the epitaxial layer than the first conductor layer. In this case, the buried conductor can be surely connected and fixed to the transparent conductive layer and the epitaxial layer by the first conductor layer, and the buried conductor can be reliably used as the termination of the touch by the second conductor layer. . In the above-described 70-emission or epitaxial substrate, the first conductor layer may also contain at least one of chromium and titanium. x, in this case, the worm layer may also be composed of a plurality of layers of AlxInyGai x yAs (〇$xs丨, 1}, and 148937.doc •16- 201110417 electricity: may also contain ΙΤΟ. In this case The (IV) electric layer can be reliably fixed to the transparent conductive layer and the epitaxial layer. In the above light-emitting element or m-plate, the second conductor layer may also comprise gold (Au), (4) Pt), and (pd). At least one of the groups. In this case, the Μ layer may also be composed of a plurality of layers and a heart 1). In this case, since the second conductor layer is formed of a material having a ratio of two to λ, the buried electrode can be used as the etching termination in the case of the surname of the crystal layer. The light-emitting element of the present invention is a light-emitting element using the above-described insect crystal substrate, and at least one portion of the crystal layer is removed to form an opening portion so that the electrodes are exposed. The light-emitting element has an electrode on a portion of the exposed buried electrode and on a major surface opposite to the main surface of the day-to-day layer opposite to the transparent conductive layer. By forming such a configuration, when the electrode 1 & is charged with electric dust, a current can flow from the electrode to the wide range of the inside of the transparent conductive layer via the buried electrode. Therefore, the emitted light also has a small deviation between the regions, and the light can be outputted substantially uniformly. The light-emitting device of the present invention includes: a pair of lead frames that are input and output between the light-emitting elements and the outside. a light-emitting element disposed on a main surface of the i-th lead frame of the pair of lead frames and a metal wire connected to the electrode of the light-emitting element and the second lead and the second lead frame each. The light-emitting device using the above-described light-emitting element can efficiently output the emitted light. The manufacturing method of the insect crystal substrate of the present invention comprises: a step of a substrate: 丨 148937.doc • 17· 201110417 a step of forming an epitaxial layer on one main surface of the substrate; and a main surface opposite to the substrate of the epitaxial layer a step of forming a transparent conductive layer on the main surface of the opposite side; and a step of bonding the support substrate on the main surface of the transparent conductive layer opposite to the main surface opposite to the epitaxial layer. Thus, the epitaxial substrate of the present invention can be easily obtained. The method for fabricating the epitaxial substrate may further include the step of forming a buried electrode that is directly connected to the transparent conductive layer and includes a conductive material different from the transparent conductive layer. In this case, an epitaxial substrate having an embedded electrode which can be used as an etching stopper or the like in etching of the epitaxial layer can be obtained. The method of manufacturing the epitaxial substrate may further include the step of forming an opening in the transparent conductive layer. In the step of forming the buried electrode, the buried electrode can also be formed to fill the inside of the opening portion. In this case, the connection strength between the buried electrode and the transparent conductive layer filling the opening portion can be obtained through the insect crystal substrate. The substrate includes a compound semiconductor material such as gallium arsenide which can form a crystal layer of, for example, a semiconductor material on the main surface. Namely, the substrate is not configured to use a light-emitting element of the insect crystal substrate. Therefore, when the light-emitting element is formed, the substrate 1 can be removed to remove the substrate, and when the light-emitting element is formed, for example, the light emitted from the epitaxial layer can be prevented from being generated by the substrate. Further, as described above, the insect crystal substrate includes a transparent conductive layer. Therefore, the light-emitting element formed by the (4) crystal substrate can uniformly diffuse the current generated by the application of electricity between the two layers in the transparent conductive layer. 148937.doc -18* 201110417 can be output uniformly and efficiently Light. The support substrate of the epitaxial substrate may be transparent or opaque with respect to light emitted from a light-emitting element formed using the epitaxial substrate. A method of manufacturing a light-emitting element according to the present invention includes: a step of preparing a substrate; a step of forming an epitaxial layer on one main surface of the substrate; and a main surface on an opposite side of the main surface of the epitaxial layer opposite to the substrate a step of forming a transparent conductive layer; a step of bonding the support substrate on a main surface of the transparent conductive layer opposite to the opposite main surface of the epitaxial layer; removing the substrate from the epitaxial layer after the step of bonding the support substrate a step of exposing a portion of the transparent conductive layer by removing one of the dicing layers; and forming an electrode on the exposed transparent conductive layer and the worm layer. A method of manufacturing a light-emitting device according to the present invention includes the steps of: preparing a substrate, forming a layer of a serif on the main surface of the substrate; forming on a main surface of the telecrystal layer opposite to a main surface opposite to the substrate a step of forming a transparent conductive layer; forming a buried electrode directly connected to the transparent conductive layer and comprising a conductive material with a transparent conductive layer ;; in the transparent conductive layer: opposite to the main I surface of the meerkat layer a step of bonding the support substrate on the main surface of the side, the step of removing the substrate from the worm layer after the step of bonding the support substrate, the step of removing a portion of the buried electrode by removing a portion of the worm layer; and exposing The step of embedding the electrode and forming an electrode on the insect layer. Thus, the light-emitting element of the present invention can be easily obtained. The method for fabricating the above-described light-emitting element may further comprise the step of forming a crucible in the transparent conductive layer. In the step of forming the buried electrode, the buried electrode can also be formed to fill the inside of the opening portion. 148937.doc -19 201110417 Effects of the Invention According to the present invention, there is provided a crystal substrate for forming a light-emitting element capable of outputting light uniformly and efficiently, and the above-described light-emitting element, a light-emitting device using the same, And a method of manufacturing the epitaxial substrate described above. [Embodiment] Each embodiment of the present invention will be described with reference to the drawings. In the respective embodiments, elements that perform the same functions are denoted by the same reference numerals, and the description thereof will not be repeated unless otherwise necessary. (Embodiment 1) As shown in Fig. 1, the insect crystal substrate of the first embodiment includes a transparent support substrate 1 and an adhesive layer 2 disposed on one main surface of the transparent support substrate (upper side in the drawing). On the main surface of the adhesive layer 2 opposite to the main surface opposite to the transparent support substrate i (the upper side in the figure!), there are transparent conductive members. The epitaxial layer 4 is provided on the main surface (the upper side in Fig. 1) of the transparent conductive layer 3 on the opposite side to the main surface opposite to the bonding layer 2. The transparent support substrate 1 includes a support substrate which is transparent to the light f emitted from the light-emitting element formed by using the crystal substrate. In terms of body, for example, a transparent support substrate! It is preferably formed using & sapphire, glass, tantalum carbide (SiC), gallium phosphide (GaP), quartz, and spinel. The transparent support base plate 1 supports the crystal layer 4 or the like which constitutes the insect crystal substrate 1 from the side, thereby having the function of suppressing the damage of the epitaxial layer 4 or the like, and the use of the crystal substrate The light emitted by the light-emitting element formed by the light transmission through the transparent support substrate i is thereby advanced in a desired direction at a high ratio (effectively). 148937.doc -20- 201110417 Specifically, as shown in FIG. 2, the epitaxial layer 4 includes a first cladding layer 5 and is disposed on one main surface of the first cladding layer 5 (on the upper side in FIG. 2). The active layer 6 and the second cladding layer disposed on one main surface of the active layer 6 (on the upper side in FIG. 2). The epitaxial substrate 100 is a substrate for forming a light-emitting element such as an LED. The epitaxial layer 4 constituting the epitaxial substrate 100 has a structure in which a plurality of semiconductor layers formed by epitaxial growth are laminated. For example, in the case of forming 70 kinds of light-emitting materials using the crystal substrate (10) and emitting red ray, it is preferable that the first cladding layer 5, the active layer 6, and the second cladding layer 7 constituting the worm layer 4 are both Contains AlxInyGai x-yAs (〇gx^ i, 1). Here, the infrared ray means infrared ray having a wavelength of 85 〇 nm or more and 95 〇 nm or less. Further, when the first cladding layer 5 includes, for example, an n-type semiconductor (the above-described A1JnyGaixyAs), the second cladding layer 7 preferably includes a p-type semiconductor. On the other hand, when the first cladding layer 5 includes a P-type semiconductor, the second cladding layer 7 preferably includes an n-type semiconductor.透明 The transparent conductive layer 3 is used to uniformly flow the output current between the two electrodes of the light-emitting element formed by using the crystal substrate 1 λ pl J ® mobile and configured area. In the above light-emitting element, for example, in the case where two electrodes are provided on or in the main surface on the upper side of the upper side w of the epitaxial layer 4 in FIG. 1, 矣: ί & 施加 a voltage is applied between the two electrodes, Then the current flows based on the potential difference. The continuation of the ν ν, , 丄 0 electric OIL is in the direction of the left and right direction of the transparent conductive layer 3 in Fig. 1, and the direction perpendicular to the paper surface in Fig. 1 > VII 4 Μ / mode diffusion. Thus, the transparent conductive layer 3 is used to smoothly spread the current. 148937.doc • 21 · 201110417 As the transparent conductive layer 3, for example, ITO (Indium Tin Oxide) is preferably used. ITO has electrical conductivity and high transparency. Therefore, if ruthenium is used as the transparent conductive layer 3, light emitted from the light-emitting element formed by the epitaxial substrate can be advanced inside the transparent conductive layer 3. Thereby, the film is advanced in a desired direction in a higher ratio (highly). Further, the crucible can be bonded to the crystal layer 4 constituting the main surface (the transparent conductive layer main surface 3b) disposed on the upper side of the transparent conductive layer 3. The ohmic junction of the type or P-type AlxInyGai_x_yAs is obtained. Further, the layer 2 preferably comprises any one selected from the group consisting of BCB resin, polyimide resin, epoxy resin, and polyoxo resin. These resin materials The adhesiveness is high. Therefore, it is disposed on the main surface of the upper side of the transparent support substrate i or the main surface (the transparent conductive layer main surface 3a) of the lower side of the transparent conductive layer 3 (for example). Coating) is followed by layer 2, and if the transparent support group is bonded to the transparent f-electrode layer 3 as shown in _, the two can be firmly adhered to each other. Further, the elasticity of each of the above resin materials is also high. When the main surface of the transparent support substrate 1 or the surface of the transparent conductive layer main surface 3a to be bonded via the bonding layer 2 has a high surface thickness, the surface of the layer 2 may be bonded by the elasticity of the layer 2 The concavo-convex shape in the upper rough region is soft and solid, and the layer 2 is a material having flexibility at the time of bonding the transparent conductive layer 3 and the transparent support substrate, for example, but forms, for example, a light-emitting element. In the subsequent state, the material is firmly fixed. Further, the material constituting the adhesive layer 2 is transparent to the light emitted from the light-emitting element 200 formed using the crystal substrate (10). Therefore, it is possible to use 148937.doc. - 22· 201110417 The light emitted from the light-emitting element 200 formed by the epitaxial substrate 100 is transmitted through the adhesive layer 2, thereby proceeding in a desired direction at a high ratio (highly efficient). Using an epitaxial substrate having the above properties丨〇 〇, the light-emitting member 200 shown in Fig. 3 can be formed. In the light-emitting element 2, a part of the region related to the main surface of the epitaxial layer 4 constituting the epitaxial substrate 1 of Fig. 1 (in Fig. 3) The region on the right side is removed. In the region where the epitaxial layer 4 is not removed (the region on the left side in FIG. 3), the upper surface of the epitaxial layer 4, that is, the upper surface of the second cladding layer 7 is disposed on the main surface. There is an electrode 9. Further, regarding the region where the epitaxial layer 4 has been removed, the main surface (the transparent conductive layer main surface 3b) on the upper side of the transparent conductive layer 3 is exposed. An electrode 1 is disposed on the exposed transparent conductive layer main surface 3b. Further, a light reflecting layer 8 is disposed on the main surface (the main surface on the lower side in Fig. 3) of the side of the transparent supporting substrate 1 which is not opposed to the bonding layer 2. Among the light generated by the active layer 6, light traveling in the direction toward the upper side in FIG. 3 may be directly applied to, for example, the main surface on the upper side of the second cladding layer 7 on which the electrode 9 is disposed, or in which the electrode 10 is disposed. The transparent conductive layer main surface 3b is output. Further, among the light generated by the active germanium layer 6, light traveling in the direction toward the lower side in FIG. 3 passes through the inside of the transparent supporting substrate ,, and reaches the light reflecting layer 8 opposite to the transparent supporting substrate 1. On the main surface. Thus, the light is reflected on the main surface of the light reflecting layer 8 opposed to the transparent supporting substrate 1, and is turned from the lower side in Fig. 3 toward the upper side. Therefore, the light can be output, for example, from the main surface on the upper side of the second cladding layer 7 on which the electrode 9 is disposed, or the main surface 3b on the transparent conductive layer on which the electrode 1 is disposed. If the light is reflected at a relatively high ratio in the light reflecting layer 8, the proportion of the light which is transmitted through the transparent supporting substrate 丨 from the main surface of the lower side of the transparent supporting substrate 1 toward the outside is reduced. Therefore, it is possible to output 148937.doc •23-201110417 ° haiguang in a desired ratio (effectively) in the desired direction. Here, the operation of the light-emitting element 2A formed using the epitaxial substrate 100 will be described. A voltage is applied between the counter electrode 9 and the electrode 1G. Thus, due to the potential difference between the electrode 9 and the electrode 10, for example, electrons flow from the electrode 1 to the electrode 9. The flow of the electrons is output as a current flowing in the opposite direction to the flow of electrons. This current flows from the electrode 9, for example, from the upper side toward the lower side of Fig. 3 through the epitaxial layer 4, and flows into the electrode 1 through the inside of the transparent conductive layer 3. The transparent conductive layer 3 contains, for example, IT〇 as described above. Therefore, current can flow in the transparent conductive layer 3 by the voltage applied between the electrode & and the electrode 10. Further, the current flowing from the electrode 9 to the inside of the transparent conductive layer 3 is diffused inside the transparent conductive layer in a region wide with respect to the cross section intersecting with the left-right direction shown in Fig. 3 . Therefore, the current flows uniformly from the left side of Fig. 3 to the right side inside the transparent conductive layer 3. Therefore, the current flows from the transparent conductive layer 3 substantially uniformly over the wide area on the main surface of the first cladding layer 5. That is, with respect to the direction along the main surface of the first cladding layer 5 and the second cladding layer 7, the current flows substantially uniformly on any of the regions on the main surface (electrons are substantially uniformly from the first cladding layer) 5 flows to the second cladding layer 7). Further, the adhesive layer 2 and the transparent supporting substrate 1 disposed on the lower side of the transparent conductive layer 3 in Fig. 3 have no conductivity. Therefore, the current flowing in the above manner inside the transparent conductive layer 3 is, for example, hardly directed toward the adhesion layer 2 or the transparent support substrate! The flow of 0 causes the current for causing the light-emitting element 200 to emit light to flow inside the transparent conductive layer 3. Thus, for example, it is possible to reduce the possibility that a part of the inner portion of the transparent conductive layer 3 concentrates a large current in a concentrated manner, and the current flowing locally is reduced at 148937.doc -24 - 201110417. Further, since the current flows through the inside of the transparent conductive layer 3, for example, in the first cladding layer 5 of the epitaxial layer 4, the current hardly flows from the left side of FIG. Right. Therefore, it is not necessary to form the epitaxial layer 4 thickly in order to cause current to flow inside the epitaxial layer 4. Therefore, the cost of forming the crystal layer 4 can be reduced. Ο

進而,於發光元件200中,該電流於透明導電層3之内部 均勻且穩定地流動。因此,不需要例如上述專利文獻3中 所揭示之半導體基板般,進行如下等繁雜步驟:形成用於 使用以形成半導體發光元件之電流流動的歐姆接觸層般之 區域、藉由電極連接通道而將其與電極連接。由此,亦可 以說可降低形成磊晶層4之成本。 再者,上述電流於透明導電層3之内部均句地自圖3之左 側流向右側,目此,電子於透明導電層3之内部均句地自 圖3之右側流向左側。而且,因該電子流向電極9,故其流 動之方向自圖3之下側轉向為朝向上側之方向。由於透明 導電層3與第1包覆層5歐播4 姆接5 ’因此經轉向之電子於透 明導電層3與第1包禮層Si,4 層之界面(透明導電層主表面3b)可順 暢地流向第1包覆層5。 此處,假設第1包覆層5你丨^ — 續$例如包含η型半導體材料,第2 覆層7例如包含ρ型半導體 等體材枓’考慮對電極9施加正 壓,對電極10施加負電屬夕样 电靨之情形。此時,電子自第1包 層5朝活性層6流入。相斟於 于於此’電洞自第2包覆層7朝活. 148937.doc •25- 201110417 層6流入。於活性層6之内部,自各包覆層流入之作為載子 之電子與電洞發生再結合。該再結合時所釋放之能量係作 為光能而發光。因此,若在沿第丨包覆層5及第2包覆層7之 主表面之方向上之較見之區域大致均勻地施加電塵,以使 上述電流流動,則作為載子而自第1包覆層5進入至活性層 6之電子亦均勻地進入至關於沿第丨包覆層5之主表面之方 向而較寬之區域。關於作為載子而自第2包覆層7進入活性 層6之電洞亦同樣地,大致均勻地進入至關於沿第2包覆層 之主表面之方向而較寬之區域。因此,上述再結合之發 光元件200 了相對於所期望之區域而大致均勻地發光。具 體而吕,例如上述發光元件2〇〇可關於沿活性層6之主表面 之方向(圖3中之活性層6之左右方向、及與紙面垂直之深 度方向)而大致均勻地發光。 活性層6中所發出之光例如透過第1包覆層5、透明導電 層3、接者層2、透明支持基板1,於透明支持基板1與光反 射層8之界φ產生反射^然後’可反向透過透明支持基板 1接著層2、透明導電層3等,自配置有電極9之第2包覆 層7之上側之主表面、或配置有電極1〇之透明導電層主表 面3b輸出。但是,亦可使上述光例如自透明支持基板^之 圖3中之左右側面輸出,或亦可不配置光反射層8,使上述 光自透明支持基板i之下側之主表面輸出。即,可使該光 自任意方向輸出。 如上所述,若使所發出之光透過第1包覆層5、透明導電 層3、接著層2、透明支持基板1,例如於光反射層8進行: 148937.doc •26- 201110417 射並且自所期望之方向輸出,則可抑制在直至輸出所發出 之光為止之過程中,於基板之内部以較高比例吸收該光。 其原因在於,如上所述,透明導電層3、接著層2、透明支 持基板1均係利用相對於該光為透明之材質而形成。進 而,可自透明支持基板工之主表面之較寬之區域輸出該 光藉由以上,該發光元件200可相對於電極9與電極1〇之 間所施加之電壓,以較高比例(高效地)輸出光。 〇 &處’說明蟲晶基板⑽之製造方法。如圖4之流程圖所 示,首先實施準備磊晶用基板之步驟(S10)。具體而言, 其係準備圖5所示之磊晶用基板η之步驟。 日日用基板1 1係作為用以於後述步驟中形成圖2之蟲晶 層4的基底而使用之基板。因此,作為磊晶用基板Η,較 佳為使用包含糾(GaAS)之基板,其可藉^晶成長而形 成構成蟲晶層4之AlxInyGa丨-x_yAs之積層結構。 其次,實施形成磊晶層之步驟(S20)。具體而言,其係 Ο 如圖5所示,於磊晶用基板11之一主表面上形成磊晶層4之 步驟。 如上述圖2所示,磊晶層4為第1包覆層5、活性層6及第2 包覆層7之積層結構。再者,此外亦可視需要而形成半導 體層。 此處,作為一例,可考慮如下情形:圖!之磊晶基板1〇〇 之磊晶層4如圖2所示,自下側起依序配置第i包覆層5、活 性層6、及第2包覆層7,即,於透明導電層主表面扑上配 置第1包覆層5,於第1包覆層5之上配置活性層6,於活性 148937.doc •27- 201110417 層6之上配置第2包覆層7。於此情形時,為形成作為磊晶 層4之AlxInyGai_"As之積層結構,而使用磊晶成長法,於 磊晶用基板11之主表面上依序形成第2包覆層7、活性層 6、第1包覆層5。 再者,特別是對於第1包覆層5或第2包覆層7,較佳為根 據使用該磊晶基板1 〇〇而形成之發光元件2〇〇所發出之光之 波長’改變八15{111心1-)^八3(〇^$1、〇$01)之乂及丫之 值。又,例如形成活性層6時較佳為增大鎵(Ga)之比例, 視情況亦可形成僅包含銦與鎵之化合物。又,第丨包覆層5 或第2包覆層7較佳為以使活性層6中所產生之光以較高比 例透過之方式選定\與y之值。 繼而,實施形成ITO之步驟(S3〇)。具體而言,其係如 圖6所不,於利用步驟(S2〇)而形成之磊晶層4(第i包覆層 5)之主表面上形成IT〇薄膜作為透明導電層3之步驟。作 為形成ΙΤΟ之薄膜之方法,例如較佳為使用電子束蒸鍍 (EB(Electron Beam,電子束)蒸鍵)法。具體而言,於高真 二下邊供給氧氣一邊對銦(In)與錫(sn)之合金照射電子 束,藉此對一部分該合金進行加熱蒸發。使所蒸發之該合 金與氧氣之反應物質凝結並附著(堆積)於所期望之磊晶層 4(第1包覆層5)之主表面上。該附著之薄膜係作料明導電 層3之ITO薄膜。藉由以上方〉去,可形成ιτ〇薄膜。 再者,右將自活性層6所發出之光之波長設為λ,將ΙΤ〇 之折射率設為ηίτ〇,貝彳ΙΤ〇之薄膜之厚度設 較佳為丁。此處, 148937.doc -28- 201110417 m為自然數。又’上述ίΙΤ0(μιη)較佳為1 以下,較佳為 0.2 μπι左右。其中,該ίιτ〇(μηι)尤佳為〇 12 μηι以上、〇16 μηι以下’或0.36 μηι以上、0.44 μηι以下。 如此,如圖6所示形成透明導電層3後,如圖4所示進行 接合支持基板之步驟(S40)。具體而言,其係將圖6所示之 透明導電層3之透明導電層主表面3a與圖7所示之透明支持 基板1之一主表面進行接合之步驟。 〇 於例如以選自由藍寳石、玻璃、碳化矽(Sic)、磷化鎵 (GaP)、石英及尖晶石所組成之群的i種以上作為材料之透 明支持基板1之一主表面上,如圖7所示,配置例如包含 BCB樹脂等之接著層2。此處,接著層2之厚度較佳為〇1 μηι以上、1〇 μπι以下。然後,如圖7所示,將接著層2與透 明導電層主表面3a貼合。即,於圖7中,使圖6所示之積層 結構上下顛倒,並使用接著層2而與透明支持基板丨貼合。 對於如圖7所示經貼合者,加熱至例如ι2(Γ(:以上、 〇 6〇〇°c以下,自磊晶用基板灯之不與磊晶層4對向之主表面 側(上側)施加例如0.2 MPa以上、4 MPa以下之壓力。如 此,則可經由接著層2牢固地接合透明導電層3與透明支持 基板1。 然後進行去除磊晶用基板之步驟(S5〇) ^具體而言,其 係自利用步驟(S40)而形成之圖7所示之積層結構中去除磊 晶用基板U之步驟。蟲晶用基板„如上所述,係用以形成 磊晶層4之基板,例如包含鎵砷等相對於使用該磊晶基板 _形成之發光元件200所發出之光為不透明之材質。因 148937.doc -29- 201110417 此,右使用保留有磊晶用基板丨丨之基板形成發光元件,則 該發光元件所發出之光於磊晶用基板11之内部被吸收,輸 出所發出之光的效率有可能降低。因此,於用以形成發光 元件200之磊晶基板〗〇〇中,較佳為去除磊晶用基板u。 包含鎵砷之磊晶用基板21之去除具體而言,例如係於氨 水(NH4〇H)與雙氧水饵2〇2)之質量比為17 : 1之溶液中浸 潰包含該磊晶用基板u之圖7所示之積層結構。如此,則 可错由濕式蝕刻而去除磊晶用基板i丨,可形成具有圖i所 示之積層結構之磊晶基板1〇〇。 藉由以上而形成用以形成發光元件200之磊晶基板100, 為了使用該磊晶基板1〇〇形成發光元件2〇〇,進而進行圖4 所不之以下各步驟。首先進行蝕刻磊晶層之步驟(s6〇)。 八體而s ’其係為了使用圖1所示之蟲晶基板1 〇〇形成圖3 所示之發光元件2〇〇,而部分地去除蟲晶層4之步驟。 於步驟(S60)中,較佳為將構成磊晶層4之第i包覆層5、 活I*生層6、第2包覆層7全部去除。換言之,較佳為進行處 理使得去除磊晶層4之區域中透明導電層3之透明導電層主 表面3b露出。 為了進行上述處理,例如較佳為對所期望之區域進行使 用氨水(NhOH)與雙氧水(H2〇2)之質量比為17 : 1之溶液 的濕式蝕刻處理。或亦可藉由使用含氯之蝕刻氣體的乾式 餘刻處理’同樣地部分地蝕刻磊晶層4。 然後進行形成電極之步驟(S70)。具體而言,其係如圖3 所示,於磊晶層4之不與透明導電層3對向之主表面上(第2 148937.doc -30- 201110417 包覆層:之不與活性層6對向之主表面上)、及透明導電層3 之與接著層2為相反側之主表面上形成電極9及電極之步 驟。再者,亦可首先實施形成電極9之步驟,然後進行之 前所說明之蝕刻蟲晶層之步驟_),其後實施 10之步驟。 如圖3所示,電極9與電極1〇均存在於相對於透明支持基 板1之主表面為同一側(上側)。作為電極9之材質,較佳為 使用與AIxI%Gai-x.yAs歐姆接觸之材f。於成為電極9之基 底之第2包覆層7Ap型半導體材料之情形時,電極9較佳^ 金(Au)與Zn(鋅)之合金。於第2包覆層%型半導體材料之 情形時,電極9較佳為使用金(Au)與鍺(Ge)、及鎳之合 金0 作為電極U)之材質,較佳為使用與ITQ之密接性充分且 與1T〇歐姆接觸之材f。具體而言,例如較佳為使用鈦㈤ 與金㈣之積層結構、或鉻(⑺與金(Au)之積層結構。再 〇 *,料極9、1G例如可使用金屬之電阻加熱蒸鍍法或離 子束蒸鍍法、濺鍍法等一般眾所周知之方法而形成。 最後’作為其他步驟(S8〇) ’例如於欲使所發出之光暫 時反射並輸出至外部之情形等時,視需要而形成圖3所示 之光反射層8。作為光反射層8 ’例如較佳為使用能夠以較 高比例反射蟲晶層4所發出之光(例如波長為85〇⑽以上且 950細以下之紅外線)的材料,具體而言例如較佳為使用 鋁(A1)或銀(Ag)»例如,如圖3所示,於透明支持基板丨之 不與接著層2對向之主表面上配置光反射層8之情形時,例 148937.doc -31- 201110417 如較佳為使用電阻加熱蒸鍍法或離子束蒸鍍法、濺鍍法等 一般眾所周知之方法’以達到〇·〇5 _以上、i叫以下之 厚度之方式形成。 (實施形態2) / =圖8所示,本實施形態2之磊晶基板3〇〇具有與本實施 形態1之磊晶基板100基本相同之態樣。然而,磊晶基板 3〇〇中,透明導電層3之各主表面(透明導電層主表面3&、 3b)受到粗面化處理。即,磊晶基板3〇〇之透明導電層主表 面3a、3b與磊晶基板100之透明導電層主表面3a、扑相比 表面粗糙度更高(表面更粗糙)。磊晶基板3〇〇之透明導電層 主表面3a、3b之表面粗糙度較高,因此於該各主表面上, 無序之凹凸形狀較多。為表示此情形,於圖8中將透明導 電層主表面3a、3b描晝為鋸刀狀。 考慮使用具有該種態樣之磊晶基板3〇〇,例如形成與上 述發光元件200相同之發光元件之情形。於該發光元件 中,磊晶層4中所發出之光朝透明導電層3前進。此時,只 要透明導電層主表面3a、3b中表面粗糙度較高,且該透明 導電層主表面3a、3b之形狀為具有較多凹凸形狀之形狀, 則可降低該透明導電層主表面33、3b中光發生全反射之可 能性。 若透明導電層主表面3a、3b之表面粗糖度較小,則根據 磊晶層4中所發出之光入射至透明導電層3之角度自磊晶 層4入射至透明導電層3之光有可能於透明導電層主表=二 發生全反射。假設若該光於透明導電層主表面扑發生全反 148937.doc -32- 201110417 射’則該光之後將被封入至發光元件之内部,從而可操取 至外部之可能性降低。因此,所期望之部位中之該光之輸 出減弱。為抑制該種現象,較佳為提高透明導電層主表面 3a、3b之表面粗糙度。於凹凸形狀較多之主表面,光不產 生全反射而透過,或者發生亂反射。因此,可抑制由於全 反射而使光不輸出至發光元件之外部的現象之產生。Further, in the light-emitting element 200, the current flows uniformly and stably inside the transparent conductive layer 3. Therefore, it is not necessary to perform a complicated step of forming an ohmic contact layer-like region for flowing a current for forming a semiconductor light-emitting element by using an electrode connection channel, for example, as in the semiconductor substrate disclosed in Patent Document 3 above. It is connected to the electrode. Therefore, it can be said that the cost of forming the epitaxial layer 4 can be reduced. Further, the current flows from the left side of the transparent conductive layer 3 to the right side from the left side of Fig. 3, and the electrons flow from the right side of Fig. 3 to the left side uniformly inside the transparent conductive layer 3. Further, since the electrons flow toward the electrode 9, the direction of the flow is shifted from the lower side in Fig. 3 to the direction toward the upper side. Since the transparent conductive layer 3 and the first cladding layer 5 are connected to each other, the electrons are transferred to the transparent conductive layer 3 and the first cladding layer Si, and the interface of the fourth layer (the transparent conductive layer main surface 3b) can be Smoothly flows to the first cladding layer 5. Here, it is assumed that the first cladding layer 5 includes, for example, an n-type semiconductor material, and the second cladding layer 7 includes, for example, a body material such as a p-type semiconductor, in which a positive pressure is applied to the electrode 9, and the electrode 10 is applied. Negative electricity is a case of eve-like electricity. At this time, electrons flow from the first cladding layer 5 toward the active layer 6. Contrary to this, the hole is moving from the second cladding layer 7. 148937.doc •25- 201110417 Layer 6 inflow. Inside the active layer 6, electrons that are in the carrier from the respective cladding layers are recombined with the holes. The energy released during the recombination emits light as light energy. Therefore, if the electric dust is applied substantially uniformly in a region which is relatively seen in the direction along the main surface of the second cladding layer 5 and the second cladding layer 7, so that the current flows, the carrier is used as the carrier. The electrons entering the active layer 6 of the cladding layer 5 also uniformly enter into a region wide with respect to the direction along the main surface of the second cladding layer 5. Similarly, the hole that enters the active layer 6 from the second cladding layer 7 as a carrier substantially uniformly enters a region wide with respect to the direction along the main surface of the second cladding layer. Therefore, the above-described recombined light-emitting element 200 emits light substantially uniformly with respect to a desired region. Specifically, for example, the light-emitting element 2 can emit light substantially uniformly in the direction along the main surface of the active layer 6 (the horizontal direction of the active layer 6 in Fig. 3 and the depth direction perpendicular to the plane of the paper). The light emitted from the active layer 6 passes through, for example, the first cladding layer 5, the transparent conductive layer 3, the carrier layer 2, and the transparent supporting substrate 1, and is reflected at the boundary φ between the transparent supporting substrate 1 and the light reflecting layer 8 and then ' The transparent support substrate 1 can be reversely transmitted through the transparent layer 3, the transparent conductive layer 3, and the like, and the main surface of the upper surface of the second cladding layer 7 on which the electrode 9 is disposed or the main surface 3b of the transparent conductive layer on which the electrode 1 is disposed can be output. . However, the light may be output from, for example, the left and right side surfaces of the transparent support substrate in Fig. 3, or the light reflection layer 8 may not be disposed, and the light may be output from the main surface on the lower side of the transparent support substrate i. That is, the light can be outputted from any direction. As described above, when the emitted light is transmitted through the first cladding layer 5, the transparent conductive layer 3, the adhesion layer 2, and the transparent support substrate 1, for example, the light reflection layer 8 is performed: 148937.doc •26- 201110417 The desired direction output suppresses absorption of the light at a higher ratio inside the substrate during the process until the light emitted by the output. The reason for this is that, as described above, the transparent conductive layer 3, the adhesive layer 2, and the transparent supporting substrate 1 are all formed using a material transparent to the light. Further, the light can be outputted from a wide area of the main surface of the transparent supporting substrate, and the light-emitting element 200 can be applied with a higher voltage (relatively) with respect to the voltage applied between the electrode 9 and the electrode 1 ) Output light. 〇 &' describes the method of manufacturing the insect crystal substrate (10). As shown in the flow chart of Fig. 4, the step (S10) of preparing the substrate for epitaxy is first carried out. Specifically, it is a step of preparing the epitaxial substrate η shown in FIG. 5. The day-use substrate 11 is used as a substrate for forming the substrate of the insect layer 4 of Fig. 2 in the later-described step. Therefore, as the substrate for epitaxial growth, it is preferable to use a substrate including a correction (GaAS) which can form a laminated structure of AlxInyGa丨-x_yAs constituting the crystal layer 4 by crystal growth. Next, a step (S20) of forming an epitaxial layer is carried out. Specifically, as shown in Fig. 5, a step of forming the epitaxial layer 4 on one main surface of the epitaxial substrate 11 is shown. As shown in FIG. 2 described above, the epitaxial layer 4 has a laminated structure of the first cladding layer 5, the active layer 6, and the second cladding layer 7. Further, a semiconductor layer may be formed as needed. Here, as an example, consider the following situation: Figure! As shown in FIG. 2, the epitaxial layer 4 of the epitaxial substrate 1 is arranged such that the i-th cladding layer 5, the active layer 6, and the second cladding layer 7 are sequentially disposed from the lower side, that is, in the transparent conductive layer. The first cladding layer 5 is placed on the main surface, the active layer 6 is placed on the first cladding layer 5, and the second cladding layer 7 is placed on the layer 148937.doc • 27-201110417. In this case, in order to form the laminated structure of AlxInyGai_"As as the epitaxial layer 4, the second cladding layer 7 and the active layer 6 are sequentially formed on the main surface of the epitaxial substrate 11 by the epitaxial growth method. The first cladding layer 5. Further, in particular, in the first cladding layer 5 or the second cladding layer 7, it is preferable that the wavelength of the light emitted by the light-emitting element 2 形成 formed by using the epitaxial substrate 1 ' is changed by eight 15 The value of 111 and 丫 of the {111 heart 1-)^ 八3 (〇^$1, 〇$01). Further, for example, when the active layer 6 is formed, it is preferable to increase the ratio of gallium (Ga), and a compound containing only indium and gallium may be formed as the case may be. Further, it is preferable that the second cladding layer 5 or the second cladding layer 7 has a value of \ and y selected so that the light generated in the active layer 6 is transmitted at a higher ratio. Then, the step of forming ITO (S3〇) is carried out. Specifically, it is a step of forming an IT tantalum film as the transparent conductive layer 3 on the main surface of the epitaxial layer 4 (i-th cladding layer 5) formed by the step (S2) as shown in Fig. 6. As a method of forming a film of tantalum, for example, electron beam evaporation (EB (Electron Beam)) is preferably used. Specifically, an alloy of indium (In) and tin (sn) is irradiated with an electron beam while supplying oxygen under the high-order two, whereby a part of the alloy is heated and evaporated. The evaporated reaction product of the alloy and oxygen is condensed and adhered (stacked) to the main surface of the desired epitaxial layer 4 (first cladding layer 5). The adhered film was used as the ITO film of the conductive layer 3. By removing from above, a film of ιτ〇 can be formed. Further, the right wavelength of the light emitted from the active layer 6 is λ, and the refractive index of ΙΤ〇 is set to ηίτ〇, and the thickness of the film of the beryllium is preferably dic. Here, 148937.doc -28- 201110417 m is a natural number. Further, the above ΙΤ0 (μιη) is preferably 1 or less, preferably about 0.2 μπι. Among them, the ίιτ〇 (μηι) is preferably 〇 12 μηι or more, 〇16 μηι or less or 0.36 μηι or more, 0.44 μηι or less. Thus, after the transparent conductive layer 3 is formed as shown in Fig. 6, the step of bonding the supporting substrate is carried out as shown in Fig. 4 (S40). Specifically, it is a step of joining the main surface 3a of the transparent conductive layer 3 of the transparent conductive layer 3 shown in Fig. 6 to one main surface of the transparent supporting substrate 1 shown in Fig. 7. For example, on one main surface of the transparent support substrate 1 selected from the group consisting of sapphire, glass, samarium sulphide (Sic), gallium phosphide (GaP), quartz, and spinel as the material, As shown in FIG. 7, for example, the adhesive layer 2 including a BCB resin or the like is disposed. Here, the thickness of the subsequent layer 2 is preferably 〇1 μηι or more and 1 〇 μπι or less. Then, as shown in Fig. 7, the adhesive layer 2 is bonded to the transparent conductive layer main surface 3a. That is, in Fig. 7, the laminated structure shown in Fig. 6 is turned upside down, and the adhesive layer 2 is bonded to the transparent support substrate by using the adhesive layer 2. For the bonding as shown in Fig. 7, for example, ι2 (Γ(: above, 〇6〇〇°c or less, the main surface side opposite to the epitaxial layer 4 from the substrate lamp for epitaxy) (upper side) Applying a pressure of, for example, 0.2 MPa or more and 4 MPa or less. Thus, the transparent conductive layer 3 and the transparent support substrate 1 can be firmly bonded via the adhesive layer 2. Then, the step of removing the substrate for epitaxy is performed (S5〇). In other words, the step of removing the epitaxial substrate U from the laminated structure shown in FIG. 7 formed by the step (S40) is used. The substrate for the insect crystal is used to form the substrate of the epitaxial layer 4 as described above. For example, a material containing gallium arsenide or the like is opaque with respect to light emitted from the light-emitting element 200 formed using the epitaxial substrate. Since 148937.doc -29- 201110417, the substrate is formed by using the substrate for epitaxial deposition. In the light-emitting element, the light emitted from the light-emitting element is absorbed inside the epitaxial substrate 11, and the efficiency of outputting the emitted light may be lowered. Therefore, in the epitaxial substrate for forming the light-emitting element 200, Preferably, the substrate u for epitaxial removal is removed. Specifically, the removal of the epitaxial substrate 21 including gallium arsenide is performed, for example, in a solution having a mass ratio of ammonia (NH 4 〇 H) and hydrogen peroxide bait 2 〇 2) of 17:1; In the laminated structure shown in Fig. 7, the epitaxial substrate 1 具有 having the laminated structure shown in Fig. i can be formed by removing the epitaxial substrate i 湿 by wet etching. The epitaxial substrate 100 for forming the light-emitting element 200 is formed by using the epitaxial substrate 1 to form the light-emitting element 2, and further the following steps are performed in Fig. 4. First, the step of etching the epitaxial layer is performed (s6〇) The eight-body s' is a step of partially removing the worm layer 4 in order to form the light-emitting element 2 图 shown in FIG. 3 using the worm substrate 1 shown in FIG. 1. In the step (S60) Preferably, the ith cladding layer 5, the active I* green layer 6, and the second cladding layer 7 constituting the epitaxial layer 4 are all removed. In other words, it is preferable to perform processing so that the region of the epitaxial layer 4 is removed. The transparent conductive layer main surface 3b of the transparent conductive layer 3 is exposed. For the above processing, for example, it is preferably for the period The region is subjected to a wet etching treatment using a solution having a mass ratio of ammonia (NhOH) to hydrogen peroxide (H2〇2) of 17: 1. Alternatively, it may be treated by a dry residue using a chlorine-containing etching gas. Etching the epitaxial layer 4. Then, the step of forming an electrode (S70) is performed. Specifically, as shown in FIG. 3, on the main surface of the epitaxial layer 4 opposite to the transparent conductive layer 3 (2nd) 148937.doc -30- 201110417 The step of forming the electrode 9 and the electrode on the main surface opposite to the adhesive layer 3 on the main surface opposite to the active layer 6 and the transparent conductive layer 3 and the adhesive layer 3 on the opposite side. Alternatively, the step of forming the electrode 9 may be performed first, followed by the step _) of etching the layer of the worm layer described above, followed by the step of 10. As shown in Fig. 3, both the electrode 9 and the electrode 1 are present on the same side (upper side) as the main surface of the transparent supporting substrate 1. As the material of the electrode 9, it is preferable to use a material f which is in ohmic contact with AIxI% Gai-x.yAs. In the case of the second cladding layer 7Ap type semiconductor material which becomes the base of the electrode 9, the electrode 9 is preferably an alloy of gold (Au) and Zn (zinc). In the case of the second cladding layer type semiconductor material, the electrode 9 is preferably made of gold (Au) and germanium (Ge), and nickel alloy 0 as the electrode U), and is preferably used in close contact with ITQ. The material f is sufficient and in contact with 1T ohm. Specifically, for example, it is preferable to use a laminated structure of titanium (f) and gold (four), or a laminated structure of chromium ((7) and gold (Au). Further, for the material electrodes 9, 1G, for example, a metal resistance heating vapor deposition method can be used. Or a generally well-known method such as ion beam evaporation method or sputtering method. Finally, as another step (S8〇), for example, when the light to be emitted is temporarily reflected and output to the outside, etc., as needed The light-reflecting layer 8 shown in Fig. 3 is formed. As the light-reflecting layer 8', for example, it is preferable to use light capable of reflecting the crystal layer 4 at a high ratio (for example, an infrared ray having a wavelength of 85 〇 (10) or more and 950 or less. For the material, specifically, for example, aluminum (A1) or silver (Ag) is preferably used. For example, as shown in FIG. 3, light reflection is disposed on the main surface of the transparent support substrate which is not opposed to the adhesive layer 2. In the case of the layer 8, the example 148937.doc - 31 - 201110417 is preferably a well-known method such as a resistance heating vapor deposition method, an ion beam evaporation method, or a sputtering method to achieve 〇·〇5 _ or more, i. It is formed by the following thickness. (Embodiment 2) / = As shown in Fig. 8, the epitaxial substrate 3A of the second embodiment has substantially the same shape as the epitaxial substrate 100 of the first embodiment. However, in the epitaxial substrate 3, the main surfaces of the transparent conductive layer 3 are (The transparent conductive layer main surfaces 3&, 3b) are subjected to roughening treatment, that is, the transparent conductive layer main surfaces 3a, 3b of the epitaxial substrate 3 are compared with the transparent conductive layer main surface 3a of the epitaxial substrate 100, and the flutter The surface roughness is higher (the surface is rougher). The surface roughness of the main surfaces 3a, 3b of the transparent conductive layer of the epitaxial substrate 3 is high, so that the irregularities of the disordered shape are large on the main surfaces. In this case, the transparent conductive layer main surfaces 3a, 3b are depicted as a saw blade shape in Fig. 8. Considering the use of the epitaxial substrate 3A having such a state, for example, the same light-emitting element as the above-described light-emitting element 200 is formed. In the case of the light-emitting element, the light emitted from the epitaxial layer 4 advances toward the transparent conductive layer 3. At this time, as long as the surface roughness of the transparent conductive layer main surfaces 3a, 3b is high, and the transparent conductive layer is mainly The shapes of the surfaces 3a, 3b are more concave and convex. The shape can reduce the possibility of total reflection of light in the main surfaces 33, 3b of the transparent conductive layer. If the surface roughness of the main surfaces 3a, 3b of the transparent conductive layer is small, the light emitted from the epitaxial layer 4 is The light incident on the transparent conductive layer 3 from the angle of incidence to the transparent conductive layer 3 may be totally reflected on the main surface of the transparent conductive layer = 2. It is assumed that if the light is on the main surface of the transparent conductive layer, the total reflection 148937 occurs. .doc -32- 201110417 Shooting 'The light will be sealed inside the light-emitting element, so that the possibility of being able to operate to the outside is reduced. Therefore, the output of the light in the desired part is weakened. To suppress this kind The phenomenon is preferably to increase the surface roughness of the main surfaces 3a, 3b of the transparent conductive layer. On a main surface having a large number of concavo-convex shapes, light is transmitted without total reflection, or chaotic reflection occurs. Therefore, it is possible to suppress the occurrence of a phenomenon in which light is not outputted to the outside of the light-emitting element due to total reflection.

再者’即便使用該種凹凸形狀較多之透明導電層主表面 3a、3b之情形時’亦與本實施形態1之磊晶基板1〇〇同樣 地’若使用彈性較高之接著層2,則可使透明導電層3與透 明支持基板1之接合強度良好。因此,可使磊晶基板3〇〇之 良率良好。 再者’例如為了提高包含ITO之透明導電層3之與磊晶層 4對向之透明導電層主表面3b之表面粗糙度’較佳為進行 以下處理。即,於上述步驟(S2〇)中形成磊晶層4(第!包覆 層5)後,較佳為使用硝酸系之溶液,對第丨包覆層5之形成 透明導電層3之主表面進行濕式㈣,藉此將第i包覆層$ 之所期望之主表面加以粗面化。或者,亦可對第1包覆層$ 之形成透明導電層3之主表面使用光微影技術,而形成曰多 數個微米級之微細的凹凸形狀。 一…〜μ N〒电增王衣曲3a之表 面粗趟度,較佳為進行以下處理。即,於上述步驟( 中形成透明導電層3後,較佳為使用氫氟酸_系之溶 ^,對透明導電層主表面3a±進行濕式㈣,藉此將透明 導電層主表面3_以粗面化。或者,亦可對透明導電層主 148937.doc -33- 201110417 表面3a主表面使用光微影技術,而形成多數個微米級之微 細的凹凸形狀。 再者’透明導電層主表面3a、3b之進行粗面化處理後之 表面粗链度較佳為Ra為0.05 μιη以上、5 μπι以下。 本實施形態2僅關於上述各方面與本實施形態1不同。 即’關於實施形態2 ’上文未敍述之構成或條件、順序或 效果等全部依照實施形態1。 (實施形態3) 本實施形態3之磊晶基板400具有與本實施形態1之磊晶 基板100基本相同之態樣。但是,如圖9所示,屋晶基板 400使用不透明支持基板12作為支持基板。又,透明導電 層3與接著層2之間具有光反射層8。 作為不透明支持基板12 ’可使用:使利用該磊晶基板 400而形成之下述發光元件5〇〇(參照圖2〇)所發出之光透過 的比例較低之、例如鎵砷。又,作為接著層2,既可與上 述蟲晶基板100等同樣地使用包含透明之BCB樹脂等之接 著層,亦可使用包含相對於發光元件5〇〇所發出之光為不 透明之材質的接著層。 使用上述磊晶基板1〇〇、300而形成之發光元件具有如下 構成.支持基板為透明支持基板1,使磊晶層4中所發出之 光透過透明導電層3、接著層2、透明支持基板丨,並例如 自透明支持基板1之下側之主表面輸出 '然而,磊晶基板 4〇〇之支持基板為不透明支持基板12。此處,例如考慮使 用圖9之磊晶基板400而形成之圖1〇之發光元件5〇〇。發光 148937.doc -34· 201110417 元件500中,無法使蟲晶層4中所發出之光透過不透明支持 基板12而例如自不透明支持基板12之下側之主表面輸出。 因此,於磊晶基板400中,於透明導電層3之透明導電層主 表面3a上配置有光反射層8。 . 於光反射層8中,使例如由磊晶層4發出並欲朝不透明支 寺土板12别進之光反射。所反射之光例如轉向為朝向圖1〇 之上方因此,可使該光例如自配置有電極9之第2包覆層 ❹ 7之上側之主表面、或配置有電極1〇之透明導電層主表面 3b輸出。右该光於配置在圖1〇之位置之光反射層$以較高 比例被反射,則該光中僅未進入不透明支持基板12之内部 的部分通過積層結構之内部之距離較短。因此,被該積層 、” Q構之内。卩吸收之比例減少。因此,可使該光以更高比例 輸出至外部。 如此,作為可使用透明導電層3擴散電流之發光元件之 支持基板,既可例如發光元件2〇〇般使用相對於所發出之 Ο 光為透明之材質,亦可例如發光元件500般使用不透明之 材質。 职日b基板400之光反射層8於圖4之步驟(S3〇)後,例如較 佳為使用冑空蒸鍍法或離子束蒸鐘法、藏鐘法等一般眾所 周知之方法,以達到〇.05 μΓη以上、i μηι以下之厚度之方 式形成於透明導電層主表面3&上。因此,於磊晶基板 之製造步驟中,可省略圖4所示之其他步驟(S8〇)。 本實施形態3僅關於上述各方面與本實施形態丨不同。 即,關於實施形態3,上文未敍述之構成或條件、順序或 148937.doc •35- 201110417 效果等全部依照實施形態i。 (實施形態4) 本實施形態4之磊晶基板600具有與本實施形態!之磊晶 基板100基本相同之態樣。但是,如圖丨丨所示,磊晶基板 600包括與透明導電層3接觸之埋入電極21方面與圖1所示 之磊晶基板100不同。具體而言,磊晶基板6〇〇更包括埋入 電極21,其係與透明導電層3直接連接,且包含與透明導 電層3不同之導電性材料。於透明導電層3形成有作為貫通 孔之開口部22,該作為貫通孔之開口部22係自與接著層2 對向之表面起到達與磊晶層4對向之表面為止。埋入電極 21以填充開口部22之内部之方式配置。 再者,開口部22之平面形狀如圖12所示為四邊形狀,但 可成為其他任意形狀(例如三角形狀、五邊形以上之多邊 形狀、圓形狀、橢圓形狀等)。又,埋入電極21之平^形 狀(圖之埋入電極21之外周部24)亦如圖以斤*為四邊形 狀,但可成為如上所述之其他任意形狀。其中,亦可使埋 入電極21之平面形狀與開口部22之平面形狀成為相似形。 又,埋入電極21之平面形狀亦可大於開口部。之平面彤 狀。於此情形時,埋入電極21之一部分(延伸部)自開口: 22之内部延伸至透明導電層3之表面上為止,因此^進二 步增大埋入電極21與透明導電層3之接觸面積。 又’埋入電極21亦可於磊晶基板6〇〇中隔開特 而形成複數個。埋入電極21較佳為如下文所述二 個使用磊晶基板000而形成之元件(發光 μ 尤兀件),而形成一 148937.doc -36 - 201110417 個。因此’例如埋入電極21於磊晶基板6〇〇中既可排列為 矩陣狀而配置,亦能以隔開特定之間隔而形成三角格子或 正方格子之方式配置。 就圖11所示之磊晶基板600而言,除已說明之藉由本實 施形1之磊晶基板100而獲得之效果以外,以下還可用於 如下述之圖12及圖13所示之結構。即,當部分地去除與埋 入電極21疊合之位置之磊晶層4而形成與透明導電層3電性 〇 連接之電極10時,可將埋入電極21用作磊晶層4之蝕刻步 驟中的蝕刻終止。 又,可使埋入電極21與透明導電層3之接觸面積比未形 成上述開口部22之情形更寬。因&,可進一步提高透明導 電層3與埋入電極21之接著強度。又,埋入電極2ι成為於 該開口部22之一端部(透明導電層3中與磊晶層4對向之表 面側之開口部22之端部)與磊晶層4接觸之狀態。因此,可 確實地將埋入電極用作磊晶層4之蝕刻中的蝕刻終止。 ◎ 又,於經由埋入電極21進行朝向透明導電層3之電流之 供給之情形時,藉由形成開口部22,埋入電極21與透明導 電層3之接觸面積比未形成該開口部22之情形更寬,因 此,可更穩定地朝透明導電層3供給電流。因此,可進一 ^足進透明導電層3中之電流之均勻化。因此,結果可提 南使用該蟲晶基板600而形成之圖12及圖13所示之發光元 件700之光輸出。 又’於蟲晶基板600中,埋入電極21亦可包括延伸部(凸 緣4 )該延伸部係於透明導電層3中與接著層靖向之主 148937.doc •37· 201110417 表面上延伸並與透明導電層3直接接觸。於此情形時,藉 由延伸部而進一步增寬埋入電極21與透明導電層3之接觸 面積,因此,於經由埋入電極21進行朝向透明導電層3之 電流之供給之情形時,可更穩定地朝透明導電層3供給電 々IL。又’藉由增寬上述接觸面積,可進一步提高透明導電 層3與埋入電極21之接著強度。 圖12及圖13所示之發光元件700係使用圖丨丨所示之爲晶 基板600而形成之發光元件。發光元件700具有與圖3所示 之發光元件200基本相同之構成,但因配置有上述埋入電 極21,電極10之周圍之構成與圖3所示之發光元件2〇〇不 同。具體而言,圖12及圖13所示之發光元件7〇〇t,以埋 入電極21之一部分露出之方式去除至少磊晶層4之一部 分,错此形成開口部23。開口部23之平面形狀為四邊形 狀,但開口部23之形狀可成為其他任意形狀(三角形狀、 五邊形以上之多邊形狀、圓形狀、橢圓形狀等其中, 開口部23之平面形狀較佳為小於形成於透明導電層i之開 口部22之平面形狀(即’埋入電㈣之上部表面之平面: 狀)。於所露出之埋入電極21之—部分上、及蟲晶層4之斑 透明導電層3對向之主表面的相反側之主表面上具有電極 ΊΟ;電極1〇之平面形狀為四邊形狀,但亦可成為其他 任思形狀(二角形狀、五邊形以上多邊形狀、圓形狀、橢 圓形狀等)。又,電極1〇之平 卞167 φ狀較佳為與開口部23之 平面形狀成為相似形。又 ^ 電極9之平面形狀為大致圓形 狀,且形成有自該電極9延伸至蟲晶 層之表面上的線狀之 148937.doc -38- 201110417 延長電極部。該延長電極部係為了對磊晶層4儘量均勻地 進行電流之供給而形成。 藉由形成該種構成,於電極9、1〇間施加有電壓時,可 • 使電流自電極10起經由埋入電極21而於透明導電層3之内 部之較寬之範圍大致均勻地流動。因此,所發出之光亦成 為區域間之偏差較少者,可大致均勻地輸出光。 其次,說明磊晶基板6〇〇之製造方法。如圖14之流程圖 ❹ 所不,首先實施準備磊晶用基板之步驟(S10)。具體而 吕,與本實施形態1同樣地,準備圖5所示之磊晶用基板 11° 其次,與本實施形態丨同樣,實施形成磊晶層之步驟 (S20)。具體而言,如圖5所示,於磊晶用基板η之一主表 面上形成磊晶層4。 其次,與本實施形態1同樣,實施形成IT〇之步驟 (S3 0)。具體而言,其係如圖6所示,於利用步驟(s2〇)而形 〇 成之磊晶層4之主表面上形成ITO薄膜作為透明導電層3之 步驟。 其次,如圖14所示,實施形成金屬層之步驟(S9〇)。具 體而言,首先實施圖15所示之蝕刻IT0而形成開口部之步 驟(S91)。於作為形成開口部之步驟的該步驟(S9i)中,如 圖16所示,於透明導電層3上形成具有特定之開口圖案% 的光阻膜25。開口圖案26具有與形成於透明導電層3之開 口部22之平面形狀相同的平面形狀。 其次,上述光阻膜25用作遮罩,藉由蝕刻部分地去除透 148937.doc •39· 201110417 月導電層3。其結果’如圖! 7所示,於透明導電層3形成開 口部22。其後’去除光阻膜25。 其次’實施圖15所示之作為形成埋人電極之步驟的於開 口部内形成金屬膜之步驟(S92)。具體而言,首先如圖18 所示,於透明導電層3上形成具有特定之開口圖案之光阻 ^27。該開口圖案與之前形成於透明導電層]之開口部^ 且口並且具有與應形成之埋入電極21之平面形狀相同的 平面形狀。 其次,如圖19所示,於開口圖案之内部及光阻膜”之上 部表面上形成導電體膜28。導電體膜28為應成為埋入電極 21之導電體,只要具有導電性則可使用任意材料,但較佳 為韻刻速率與磊晶層4及/或透明導電層3不同之導電性材 料。又,對於導電體28,可使用先前眾所周知之任意方法 作為形成方法。而且,使用化學藥品等去除光阻膜27。此 時,亦將形成於光阻膜27之上部表面上之導電體膜28同時 去除(脫膜)。其結果,如圖2〇所示,可形成埋入電極21, 该埋入電極21填充開口部22之内部,並且具有部分地延伸 至透明導電層3之上部表面上為止的延伸部。 如此,如圖20所示形成埋入電極21後,如圖14所示進行 接合支持基板之步驟(S40)。具體而言,與本實施形態!同 樣地,使用接著層2,將圖2〇所示之形成有透明導電層3及 埋入電極21之面與圖21所示之透明支持基板丨之―主表面 進行接合。於圖21中,使圖20所示之積層結構上下顛倒, 並使用接著層2而與透明支持基板1貼合。 148937.doc -40· 201110417 其次,亦可與本實施形態1同樣,將如圖21所示貼合之 基板加熱至例如120t以上且600。(:以下,進而自磊晶用基 板11之不與磊晶層4對向之主表面側(上側)起施加例如〇 2 MPa以上且4 Mpa以下之壓力。如此,則可經由接著層2牢 固地接合透明導電層3與透明支持基板1。 其次,如圖14所示進行去除磊晶用基板之步驟(S5〇)。 具體而言,與本實施形態1同樣,自利用步驟(S4〇)而形成 〇 之圖21所示之積層結構中去除磊晶用基板11。作為磊晶用 基板11之去除方法,能夠以適合於磊晶用基板11之材質之 方式使用先前眾所周知之任意方法。 藉由以上’形成用以形成發光元件700之磊晶基板60〇。 而且為了使用該磊晶基板600來形成發光元件7〇〇,進而 進行圖14所示之以下各步驟。首先,實施形成第1電極之 ^驟(871)。具體而言,如圖22所示,於磊晶層4之上部表 面上自不同觀點而言係於磊晶層4之不與透明導電層3對 〇 向之主表面上(第2包覆層7之不與活性層6對向之主表面上) 形成电極9。作為電極9之形成方法’可使用先前眾所周知 之任意方法。 其人如圖14所示進行蝕刻磊晶層之步驟(S60)。具體 °其係如圖23所示部分地去除磊晶層4而形成開口部 之^驟。於该步驟(S60)中,以使埋入電極21之上部表 面露出之古4·' L . 式’在與埋入電極21疊合之位置形成開口部 乍為開口 23之形成方法可使用任意方法,例如可使In the case of using the transparent conductive layer main surfaces 3a and 3b having a large number of irregularities, the same as the epitaxial substrate 1A of the first embodiment, the same elastic layer 2 is used. The bonding strength between the transparent conductive layer 3 and the transparent supporting substrate 1 can be made good. Therefore, the yield of the epitaxial substrate 3 can be made good. Further, for example, in order to increase the surface roughness of the transparent conductive layer 3 including the ITO and the transparent conductive layer main surface 3b opposed to the epitaxial layer 4, it is preferable to carry out the following treatment. That is, after the epitaxial layer 4 (the cladding layer 5) is formed in the above step (S2), it is preferable to form the main surface of the transparent conductive layer 3 on the second cladding layer 5 by using a nitric acid solution. The wet type (4) is performed, whereby the desired main surface of the i-th cladding layer is roughened. Alternatively, a photolithography technique may be applied to the main surface of the first cladding layer $ forming the transparent conductive layer 3 to form a fine uneven shape of a plurality of micrometers. A...~μ N〒 电增王衣曲3a The surface roughness is preferably the following treatment. That is, after the transparent conductive layer 3 is formed in the above step, it is preferable to use a hydrofluoric acid-based solution to wet the main surface 3a of the transparent conductive layer (4), thereby making the transparent conductive layer main surface 3_ Or roughen the surface of the transparent conductive layer 148937.doc -33- 201110417 surface 3a main surface using photolithography, and form a micron-scale fine concavo-convex shape. The surface roughness of the surface 3a and 3b after the roughening treatment is preferably Ra of 0.05 μm or more and 5 μm or less. The second embodiment differs from the first embodiment only in the above aspects. 2' The configuration, the condition, the order, the effect, and the like, which are not described above, are all in accordance with the first embodiment. (Embodiment 3) The epitaxial substrate 400 of the third embodiment has substantially the same state as the epitaxial substrate 100 of the first embodiment. However, as shown in Fig. 9, the house substrate 400 uses the opaque support substrate 12 as a support substrate. Further, the transparent conductive layer 3 and the adhesive layer 8 have a light reflection layer 8. As the opaque support substrate 12', it is possible to use: Make profit The light-emitting element 5A (see FIG. 2A) formed by the epitaxial substrate 400 has a low ratio of light transmission, such as gallium arsenide. Further, as the adhesion layer 2, the above-mentioned insect crystal can be used. In the same manner as the substrate 100 and the like, an adhesive layer including a transparent BCB resin or the like is used, and an adhesive layer containing a material which is opaque to light emitted from the light-emitting element 5 is used. The above-described epitaxial substrates 1 and 300 are used. The light-emitting element formed has the following structure. The support substrate is a transparent support substrate 1, and the light emitted from the epitaxial layer 4 is transmitted through the transparent conductive layer 3, the subsequent layer 2, the transparent support substrate, and, for example, from the transparent support substrate 1. The main surface of the side is outputted. However, the support substrate of the epitaxial substrate 4 is the opaque support substrate 12. Here, for example, the light-emitting element 5 of FIG. 1 formed using the epitaxial substrate 400 of FIG. 9 is considered. 148937.doc -34· 201110417 In the element 500, the light emitted from the crystal layer 4 cannot be transmitted through the opaque support substrate 12, for example, from the main surface on the lower side of the opaque support substrate 12. Therefore, in the epitaxial substrate 400 The light-reflecting layer 8 is disposed on the transparent conductive layer main surface 3a of the transparent conductive layer 3. In the light-reflecting layer 8, for example, light emitted from the epitaxial layer 4 and intended to be opaque to the slab 12 The reflected light is, for example, turned toward the top of FIG. 1A. Therefore, the light can be made, for example, from the main surface on the upper side of the second cladding layer 7 on which the electrode 9 is disposed, or the transparent conductive electrode on which the electrode 1 is disposed. The layer main surface 3b is output. The right light is reflected at a higher ratio in the light reflecting layer $ disposed at the position of FIG. 1A, and only the portion of the light that does not enter the inside of the opaque supporting substrate 12 passes through the inside of the laminated structure. The distance is shorter. Therefore, the ratio of the 卩 absorption is reduced by the laminated layer and the "Q structure. Therefore, the light can be output to the outside at a higher ratio. Thus, as a supporting substrate of a light-emitting element that can diffuse current using the transparent conductive layer 3, For example, a material transparent to the emitted light may be used as the light-emitting element 2, or an opaque material may be used as the light-emitting element 500. The light-reflecting layer 8 of the substrate b of the substrate b is in the step of FIG. After S3 〇), for example, a generally known method such as a hollow vapor deposition method, an ion beam vaporization method, or a Tibetan clock method is preferably used to form a transparent conductive layer to a thickness of 〇.05 μΓη or more and i μηι or less. The main surface 3& of the layer is formed. Therefore, in the manufacturing step of the epitaxial substrate, the other steps (S8A) shown in Fig. 4 can be omitted. The third embodiment differs from the present embodiment only in the above aspects. In the third embodiment, the configuration, the condition, the procedure, or the 148937.doc • 35-201110417 effects, which are not described above, are all in accordance with the embodiment i. (Embodiment 4) The epitaxial substrate 600 of the fourth embodiment has The epitaxial substrate 100 of the embodiment is substantially the same. However, as shown in FIG. 3, the epitaxial substrate 600 includes the buried electrode 21 in contact with the transparent conductive layer 3 and the epitaxial substrate 100 shown in FIG. Specifically, the epitaxial substrate 6 further includes a buried electrode 21 that is directly connected to the transparent conductive layer 3 and includes a conductive material different from the transparent conductive layer 3. The transparent conductive layer 3 is formed as a conductive material. The opening 22 of the through hole is such that the opening 22 as the through hole reaches the surface facing the epitaxial layer 4 from the surface opposite to the bonding layer 2. The electrode 21 is buried to fill the inside of the opening 22. Further, the planar shape of the opening 22 is a quadrangular shape as shown in FIG. 12, but may be any other shape (for example, a triangular shape, a pentagon or more polygonal shape, a circular shape, an elliptical shape, etc.). The shape of the buried electrode 21 (the outer peripheral portion 24 of the buried electrode 21 in the drawing) is also in the shape of a square as shown in Fig. 2, but may be any other shape as described above. Among them, the buried electrode 21 may be used. Plane shape and opening portion 22 Further, the planar shape of the buried electrode 21 may be larger than the planar shape of the opening portion. In this case, a portion (extension portion) of the buried electrode 21 extends from the inside of the opening 22 to On the surface of the transparent conductive layer 3, the contact area between the buried electrode 21 and the transparent conductive layer 3 is increased in two steps. The embedded electrode 21 can also be formed separately in the epitaxial substrate 6? The plurality of embedded electrodes 21 are preferably two elements (light-emitting μ 兀 使用) formed by using the epitaxial substrate 000 as described below, thereby forming a 148937.doc -36 - 201110417. Therefore, for example, buried The electrodes 21 may be arranged in a matrix in the epitaxial substrate 6A, or may be arranged such that a triangular lattice or a square lattice is formed at a predetermined interval. The epitaxial substrate 600 shown in Fig. 11 can be used for the structure shown in Fig. 12 and Fig. 13 below, in addition to the effects obtained by the epitaxial substrate 100 of the embodiment 1. That is, when the epitaxial layer 4 at a position overlapping the buried electrode 21 is partially removed to form the electrode 10 electrically connected to the transparent conductive layer 3, the buried electrode 21 can be used as an etching of the epitaxial layer 4. The etching in the step is terminated. Further, the contact area between the buried electrode 21 and the transparent conductive layer 3 can be made wider than in the case where the opening portion 22 is not formed. The adhesion strength between the transparent conductive layer 3 and the buried electrode 21 can be further improved by & Further, the buried electrode 2i is in a state in which one end portion of the opening portion 22 (the end portion of the opening portion 22 on the surface side of the transparent conductive layer 3 facing the epitaxial layer 4) is in contact with the epitaxial layer 4. Therefore, the etching in the etching using the buried electrode as the epitaxial layer 4 can be surely terminated. When the supply of current to the transparent conductive layer 3 is performed via the buried electrode 21, by forming the opening 22, the contact area between the buried electrode 21 and the transparent conductive layer 3 is smaller than that of the opening 22. The situation is wider, and therefore, current can be supplied to the transparent conductive layer 3 more stably. Therefore, the current uniformity in the transparent conductive layer 3 can be further advanced. Therefore, as a result, the light output of the light-emitting element 700 shown in Figs. 12 and 13 formed using the crystal substrate 600 can be extracted. Further, in the insect crystal substrate 600, the buried electrode 21 may further include an extension portion (the flange 4) which is extended in the transparent conductive layer 3 and extends on the surface of the adhesive layer 148937.doc • 37· 201110417 And in direct contact with the transparent conductive layer 3. In this case, since the contact area between the buried electrode 21 and the transparent conductive layer 3 is further widened by the extending portion, the supply of current to the transparent conductive layer 3 via the buried electrode 21 can be further improved. The electric power supply IL is stably supplied to the transparent conductive layer 3. Further, by widening the above contact area, the adhesion strength between the transparent conductive layer 3 and the buried electrode 21 can be further improved. The light-emitting element 700 shown in Figs. 12 and 13 is a light-emitting element formed by using the crystal substrate 600 as shown in the figure. The light-emitting element 700 has substantially the same configuration as that of the light-emitting element 200 shown in Fig. 3. However, since the buried electrode 21 is disposed, the configuration of the periphery of the electrode 10 is different from that of the light-emitting element 2 shown in Fig. 3. Specifically, in the light-emitting element 7〇〇t shown in Figs. 12 and 13, at least one portion of the epitaxial layer 4 is removed so that one of the buried electrodes 21 is partially exposed, and the opening portion 23 is formed by this. The planar shape of the opening 23 is a quadrangular shape, but the shape of the opening 23 may be any other shape (a triangular shape, a polygonal shape of a pentagon or more, a circular shape, an elliptical shape, etc., and the planar shape of the opening 23 is preferably It is smaller than the planar shape of the opening portion 22 formed in the transparent conductive layer i (that is, a plane embedded in the upper surface of the electric (four) surface). The portion of the exposed buried electrode 21 and the spot of the insectized layer 4 are transparent. The main surface of the conductive layer 3 opposite to the main surface has an electrode ΊΟ; the planar shape of the electrode 1〇 is a quadrilateral shape, but may be other shapes (a polygonal shape, a pentagon or more polygonal shape, a circle) Further, the shape of the electrode 1 卞 167 φ is preferably similar to the planar shape of the opening portion 23. Further, the planar shape of the electrode 9 is substantially circular and formed from the electrode. 9 extending to the surface of the crystal layer 148937.doc -38 - 201110417 extending the electrode portion. The elongated electrode portion is formed to supply the current to the epitaxial layer 4 as uniformly as possible. In a configuration, when a voltage is applied between the electrodes 9 and 1 , a current can flow from the electrode 10 through the buried electrode 21 to a substantially uniform range within the transparent conductive layer 3 . The light also has a small variation between the regions, and the light can be outputted substantially uniformly. Next, a method of manufacturing the epitaxial substrate 6A will be described. As shown in the flow chart of Fig. 14, the step of preparing the substrate for epitaxing is first performed. (S10). Specifically, in the same manner as in the first embodiment, the epitaxial substrate 11 shown in Fig. 5 is prepared. Next, a step (S20) of forming an epitaxial layer is carried out in the same manner as in the embodiment. As shown in Fig. 5, an epitaxial layer 4 is formed on one main surface of the epitaxial substrate η. Next, in the same manner as in the first embodiment, a step (S30) of forming an IT〇 is performed. Specifically, As shown in Fig. 6, a step of forming an ITO film as the transparent conductive layer 3 on the main surface of the epitaxial layer 4 formed by the step (s2) is used. Next, as shown in Fig. 14, a metal layer is formed. Step (S9〇). Specifically, first, FIG. 15 is implemented. a step of etching the IT0 to form an opening portion (S91). In the step (S9i) of the step of forming the opening portion, as shown in FIG. 16, a photoresist film having a specific opening pattern % is formed on the transparent conductive layer 3. 25. The opening pattern 26 has the same planar shape as the planar shape of the opening portion 22 formed in the transparent conductive layer 3. Next, the above-mentioned photoresist film 25 is used as a mask, which is partially removed by etching 148937.doc • 39· 201110417 The conductive layer 3. The result is as shown in Fig. 7 , and the opening portion 22 is formed in the transparent conductive layer 3. Thereafter, the photoresist film 25 is removed. Next, the step of forming the buried electrode as shown in Fig. 15 is carried out. The step of forming a metal film in the opening portion (S92). Specifically, first, as shown in Fig. 18, a photoresist having a specific opening pattern is formed on the transparent conductive layer 3. The opening pattern has a planar shape which is formed in the opening portion of the transparent conductive layer and has the same planar shape as the buried electrode 21 to be formed. Next, as shown in Fig. 19, a conductor film 28 is formed on the inside of the opening pattern and the upper surface of the photoresist film. The conductor film 28 is an electric conductor to be the buried electrode 21, and can be used as long as it has conductivity. Any material, but preferably a conductive material having a different rhythm rate than the epitaxial layer 4 and/or the transparent conductive layer 3. Further, as the conductor 28, any method known in the art can be used as a forming method. The photoresist film 27 is removed by a drug or the like. At this time, the conductor film 28 formed on the upper surface of the photoresist film 27 is also simultaneously removed (released). As a result, as shown in FIG. 2A, a buried electrode can be formed. 21, the buried electrode 21 fills the inside of the opening portion 22, and has an extension portion partially extending to the upper surface of the transparent conductive layer 3. Thus, after the buried electrode 21 is formed as shown in Fig. 20, as shown in Fig. The step of bonding the support substrate is performed as shown in the above (S40). Specifically, in the same manner as the present embodiment, the surface of the transparent conductive layer 3 and the buried electrode 21 shown in FIG. Transparent branch shown in Figure 21 The main surface of the substrate is bonded. In Fig. 21, the laminated structure shown in Fig. 20 is turned upside down and bonded to the transparent support substrate 1 using the adhesive layer 2. 148937.doc -40· 201110417 Secondly, In the same manner as in the first embodiment, the substrate bonded as shown in FIG. 21 is heated to, for example, 120 t or more and 600. (In the following, the main surface side of the epitaxial substrate 11 which is not opposed to the epitaxial layer 4 is further The upper side is applied with a pressure of, for example, 〇2 MPa or more and 4 Mpa or less. Thus, the transparent conductive layer 3 and the transparent support substrate 1 can be firmly bonded via the adhesive layer 2. Next, the substrate for removing the epitaxial layer is removed as shown in FIG. In the same manner as in the first embodiment, the epitaxial substrate 11 is removed from the laminated structure shown in Fig. 21 in which the step (S4) is formed by using the step (S4). In the method of removing the material of the substrate 11 for epitaxial use, any previously known method can be used. The epitaxial substrate 60A for forming the light-emitting element 700 is formed by the above. Moreover, in order to use the epitaxial substrate 600. To form a hair The element 7 is further subjected to the following steps shown in Fig. 14. First, the step of forming the first electrode (871) is carried out. Specifically, as shown in Fig. 22, on the upper surface of the epitaxial layer 4 Different from the viewpoint, the electrode 9 is formed on the main surface of the epitaxial layer 4 which is not opposed to the transparent conductive layer 3 (on the main surface of the second cladding layer 7 which is not opposed to the active layer 6). The method of forming the electrode 9 can be performed by any method known in the art. The person performs the step of etching the epitaxial layer (S60) as shown in FIG. 14. Specifically, the epitaxial layer 4 is partially removed as shown in FIG. In the step (S60), an opening portion 形成 is formed at an upper surface of the buried electrode 21 at an upper surface of the buried electrode 21 at an overlapping position with the buried electrode 21 as an opening 23 The method of forming can use any method, for example,

用如下方法.+ U 忠.將具有特定之開口圖案之光阻膜形成於磊晶 148937.doc 201110417 :4上4’藉由將該光阻膜用作遮罩之蚀刻而部分地去除蟲 二21作此時’若埋入電極21包含例如金屬等,則該埋入 電極1作為蝕刻終止發揮作用。 其-人’貫施形成第2電極之步驟(S72)。具體而言,如圖 所不’於在開口部23之底部露出之埋人電極21之上部表 成電極1〇。作為電極10之形成方法,可使用脫膜法 4先刖眾所周知之方法。 作為電極H)之材質,較佳為使用與埋人電極&密接性 充分且與埋人電極21歐姆接觸之材f。具體而言,例如較 佳為使用鈦(Ti)與金(Au)之積層結構、或任意金屬之單層 結構或積層結構。 其次,如圖14所示,亦可實施其他步驟(s8〇)。作為步 驟⑽0),與本實施形態!同樣,例如於欲使所發出之光暫 時反射並輸出至外部之橹# $ ndt ^ Λ r丨之障形等時,視需要而形成圖I3所示 之光反射層8。如此一來’可獲得圖12及圖13所示之發光 元件700。 其次,參照圖25,說明圖11所示之蟲晶基板_之變形 例。圖25所示之磊晶基板6〇〇具有基本上與圖⑽示之磊 晶基板_相同之構成’但埋人電極21之構成與圖u所示 之蟲晶基板_不同。具體而言,於圖25所示之蟲晶基板 600中,埋入電極21具有包含第i導電體層31與第2導電體 層32兩層之積層結構。再者,作為埋入電極以之結構,亦 可採用三層以上之積層結構。 於圖25所示之磊晶基板6〇〇中,第】導電體層31接觸磊晶 148937.doc •42· 201110417 層4之下部表面、透明導電層 守赝3之開口部22之側壁、及透明 導電層主表面3a之與開口 興间。P 22鄰接之部分。又,第2導電 體層32接觸第1導電體層31Φ访i;s Β Η ^中與秘晶層4接觸之面之相反側 的面。 即’於上述磊晶基板_中,埋入電極2ι具有積層有不 同種Θ之複數個—電體層、即第丄導電體層31及第2導電體 層32之夕層結構。於此情形時,可獲得與圖u所示之蠢晶 I板600相同之效果’並且可增大對埋入電極以材料選 擇之自由度。 於上述蟲晶基板600中’在埋入電極21中’構成多層結 構之複數個導電體層包括第丨導電體層31與第2導電體層 32。第1導電體層31與透明導電層3及磊晶層4接觸。第2導 電體層32形成為與第!導電體層31中位於與透明導電層3接 觸之表面之相反側的面接觸。第丨導電體層31較佳為與第2 導電體層32相比’與透明導電層3及磊晶層4之密接性相對 〇 較尚。第2導電體層32亦可為對於蝕刻磊晶層4之蝕刻劑的 選擇比高於第1導電體層31。於此情形時,藉由第1導電體 層31可將埋入電極21確實地連接固定於透明導電層3及磊 晶層4’並且藉由第2導電體層32,埋入電極21於在磊晶層 4進行用以形成開口部23之蝕刻時,可確實地發揮作為蝕 刻終止之功能。 於上述蠢晶基板600中,第1導電體層31亦可包含鉻(Cr) 及鈥(Τι)中之至少任一者。又,於此情形時,磊晶層4亦可 為積層有複數個 AlxInyGai_x.yAs(0Sxg 1、1)之構 148937.doc •43- 201110417 成,透明導電層3亦可包含ITO。於此情形時,可將第1導 電體層31確實地固定於透明導電層3及磊晶層4。 於上述磊晶基板600中,第2導電體層32亦可包含選自由 金(Au)、翻(pt)、鈀(Pd)所組成之群中之至少一者。於此 情形時,係藉由對於磊晶層4選擇比較高之材料構成第2導 電體層32,因此可於磊晶層4之蝕刻中將埋入電極21確實 地用作蝕刻終止。 圖26所示之發光元件700為使用圖25所示之磊晶基板6〇〇 之發光元件700,且具有基本上與圖12及圖13所示之發光 元件700相同之構成,但如上所述埋入電極21具有積層結 構之方面與圖12及圖13所示之發光元件7〇〇不同。於圖% 所不之發光元件700中,於埋入電極21之第1導電體層”之 表面形成有電極10。於此情形時,除可獲得與藉由圖丨之及 圖13所示之發光元件700而獲得之效果相同之效果以外, 還可如上所述,於形成開口部23時可將埋入電極21用作蝕 刻終止。又,經由埋入電極21自電極1〇朝透明導電層3流 動電流時,可藉由增大埋入電極21與透明導電層3之接觸 面積,而更均勻地進行朝向透明導電層3之電流之供給。 再者,上述埋入電極21之積層結構可適用於下述本發明之 實施形態5及實施形態6。 (實施形態5) 本實施形態5之磊晶基板6〇〇具有與圖丨丨所示之本實施形 態4之磊晶基板600基本相同之態樣。但是,如圖27所示, 磊晶基板600中形成於透明導電層3之開口部22並未貫通透 148937.doc -44- 201110417 明導電層3之方面與圖"所示之磊晶基板6〇〇不同。 即’於上述磊晶基板600中,埋入電極21係配置於透 導電層3中與接著層2對向之表面上。於透明導電層3之表 面’於配置有埋入電極21之部分形成有作為凹部之開口部 22埋入電極21包括填充開口部22之内部之突出部。Use the following method. + U loyal. A photoresist film with a specific opening pattern is formed on the epitaxial 148937.doc 201110417 : 4 4' by partially removing the insect by etching the photoresist film as a mask In this case, if the buried electrode 21 contains, for example, a metal or the like, the buried electrode 1 functions as an etching stopper. It is a step of forming a second electrode (S72). Specifically, the electrode 1 is formed on the upper portion of the buried electrode 21 exposed at the bottom of the opening portion 23 as shown. As a method of forming the electrode 10, a well-known method can be used by using the stripping method 4. As the material of the electrode H), it is preferable to use a material f which is sufficiently in contact with the buried electrode & and is in ohmic contact with the buried electrode 21. Specifically, for example, a laminated structure of titanium (Ti) and gold (Au) or a single layer structure or a laminated structure of any metal is preferably used. Next, as shown in FIG. 14, other steps (s8〇) can also be performed. As a step (10) 0), this embodiment is implemented! Similarly, for example, when the emitted light is temporarily reflected and output to the outside, 障# $ ndt ^ Λ r丨, the light-reflecting layer 8 shown in Fig. I3 is formed as needed. In this way, the light-emitting element 700 shown in Figs. 12 and 13 can be obtained. Next, a modified example of the insect crystal substrate shown in Fig. 11 will be described with reference to Fig. 25 . The epitaxial substrate 6A shown in Fig. 25 has a configuration substantially the same as that of the epitaxial substrate _ shown in Fig. 10, but the configuration of the buried electrode 21 is different from that of the insect crystal substrate _ shown in Fig. Specifically, in the silicon wafer substrate 600 shown in Fig. 25, the buried electrode 21 has a laminated structure including two layers of the i-th conductor layer 31 and the second conductor layer 32. Further, as the structure for embedding the electrodes, a laminated structure of three or more layers may be employed. In the epitaxial substrate 6A shown in FIG. 25, the first conductor layer 31 contacts the lower surface of the epitaxial layer 148937.doc • 42·201110417 layer 4, the side wall of the opening portion 22 of the transparent conductive layer guard 3, and is transparent. The main surface 3a of the conductive layer is spaced apart from the opening. P 22 adjacent part. Further, the second conductor layer 32 is in contact with the surface of the first conductor layer 31 Φ i; s Β Η ^ on the side opposite to the surface in contact with the crystal layer 4. That is, in the epitaxial substrate _, the buried electrode 2i has a plurality of layers of a plurality of electric layers, i.e., the second electric conductor layer 31 and the second electric conductor layer 32. In this case, the same effect as that of the amorphous I plate 600 shown in Fig. u can be obtained and the degree of freedom in material selection for the buried electrode can be increased. The plurality of conductor layers constituting the multilayer structure in the buried electrode 21 in the above-described insect crystal substrate 600 include the second conductor layer 31 and the second conductor layer 32. The first conductor layer 31 is in contact with the transparent conductive layer 3 and the epitaxial layer 4. The second conductor layer 32 is formed to be the same as the first! The surface of the conductor layer 31 on the opposite side to the surface in contact with the transparent conductive layer 3 is in contact. The second conductive layer 31 preferably has a better adhesion to the transparent conductive layer 3 and the epitaxial layer 4 than the second conductive layer 32. The second conductor layer 32 may have a higher selectivity to the etchant for etching the epitaxial layer 4 than the first conductor layer 31. In this case, the buried electrode 21 can be surely connected and fixed to the transparent conductive layer 3 and the epitaxial layer 4' by the first conductor layer 31, and the electrode 21 can be buried in the epitaxial layer by the second conductor layer 32. When the layer 4 is etched to form the opening 23, the function of terminating etching can be surely exhibited. In the above-described stray substrate 600, the first conductor layer 31 may include at least one of chromium (Cr) and tantalum (Τι). Further, in this case, the epitaxial layer 4 may be formed by laminating a plurality of AlxInyGai_x.yAs (0Sxg 1, 1) 148937.doc • 43- 201110417, and the transparent conductive layer 3 may also contain ITO. In this case, the first conductor layer 31 can be surely fixed to the transparent conductive layer 3 and the epitaxial layer 4. In the epitaxial substrate 600, the second conductor layer 32 may further include at least one selected from the group consisting of gold (Au), turn (pt), and palladium (Pd). In this case, since the second conductor layer 32 is formed by selecting a relatively high material for the epitaxial layer 4, the buried electrode 21 can be used as the etching termination in the etching of the epitaxial layer 4. The light-emitting element 700 shown in FIG. 26 is a light-emitting element 700 using the epitaxial substrate 6 shown in FIG. 25, and has substantially the same configuration as the light-emitting element 700 shown in FIGS. 12 and 13, but as described above. The buried electrode 21 has a laminated structure and is different from the light-emitting element 7A shown in FIGS. 12 and 13. In the light-emitting element 700 of Fig. 100, the electrode 10 is formed on the surface of the first conductor layer "embedded in the electrode 21." In this case, in addition to the light source shown in Fig. 13 In addition to the effect obtained by the element 700, as described above, the buried electrode 21 can be used as an etching termination when the opening portion 23 is formed. Further, from the electrode 1 to the transparent conductive layer 3 via the buried electrode 21 When the current is flowing, the supply of current to the transparent conductive layer 3 can be more uniformly performed by increasing the contact area between the buried electrode 21 and the transparent conductive layer 3. Further, the laminated structure of the buried electrode 21 can be applied. The fifth embodiment and the sixth embodiment of the present invention are as follows. (Embodiment 5) The epitaxial substrate 6A of the fifth embodiment has substantially the same structure as the epitaxial substrate 600 of the fourth embodiment shown in the drawing. However, as shown in FIG. 27, the opening portion 22 formed in the transparent conductive layer 3 in the epitaxial substrate 600 does not penetrate through the 148937.doc-44-201110417 conductive layer 3 and the figure " The epitaxial substrate is different from that of the epitaxial substrate. In the 600, the buried electrode 21 is disposed on the surface of the transmissive conductive layer 3 opposite to the adhesive layer 2. On the surface of the transparent conductive layer 3, an opening portion 22 as a concave portion is formed in a portion where the buried electrode 21 is disposed. The buried electrode 21 includes a protrusion that fills the inside of the opening portion 22.

於此情形時,可使埋入電極21與透明導電層3之接觸面 積比未形成上述開口部22之情形更大。因&,可提高透明 導電層3與埋入電極21之接著強度。χ,於經由埋入電極 21進行朝向透明導電層3之電流之供給之情形時,可藉由 增寬埋入電極21與透明導電層3之接觸面積,而更穩定地 朝透明導電層3供給電流。因此,可進一步促進透明導電 層3中之電流之均句化,因此結果可提高使用該遙晶基板 6〇〇形成之如圖28所示之發光元件7〇〇之光輸出。 圖28所示之發光元件700為使用圖27所示之磊晶基板6〇〇 而形成之發光元件。發光元件7GG具有基本上與圖12及圖 尸、之發光元件7〇〇相同之構成,但由於上述開口部Μ 、不貝通透明導電層3之方式形成,故而電極之周圍之 構成與圖12及圖13所示之發光元件7〇〇不同。具體而言, 於圖28所示之發光元件700中’以埋入電極21之一部分露 出之f式去除磊晶層4及透明導電層3之一部分,藉此形成 開口。卩23。即,開口部23之側壁由磊晶層4及透明導電層3 之多而面所構成。藉由該種構成’亦可獲得與圖12及圖13所 示之發光元件7〇〇相同之效果。 其_人,5兒明磊晶基板6〇〇之製造方法。如本實施形態4中 148937.doc •45· 201110417 之圖14之流程圖所示,實施準備磊晶用基板之步驟(S10)〜 形成ITO之步驟(S30)。然後,實施形成金屬層之步驟 (S90)。具體而言,實施圖15所示之蝕刻ITO而形成開口部 之步驟(S91)。其中,於該步驟(S91)中,如圖29所示,形 成於透明導電層3之開口部22並未貫通透明導電層3。即, 開口部22之側壁及底壁均由透明導電層3之表面所構成。 自圖29所示之狀態去除光阻膜25後,實施圖15所示之於 開口部内形成金屬層之步驟(S92)。該步驟(S92)之具體步 驟基本上與本實施形態4中之步驟(S92)相同。其結果,如 圖30所示,以填充開口部22之内部並且覆蓋透明導電層3 之上部表面之一部分之方式形成埋入電極21。 其次,進行圖14所示之接合支持基板之步驟(S40)及去 除磊晶用基板之步驟(S50)。其結果,可獲得圖27所示之 蟲晶基板600。 其次,為了使用該磊晶基板600形成圖28所示之發光元 件700,與本實施形態4同樣地實施形成第1電極之步驟 (S71)。其後,實施蝕刻磊晶層之步驟(S60)。具體而言, 如圖3 1所示,藉由蝕刻而去除位於埋入電極2 1上之磊晶層 4及透明導電層3之一部分。其結果,獲得如圖3 1所示之結 構。 其後,實施圖14所示之形成第2電極之步驟(S72)及其他 步驟(S80),藉此可獲得圖28所示之發光元件700。 其次,參照圖32,說明圖27所示之磊晶基板600之變形 例。圖32所示之磊晶基板600具有基本上與圖27所示之磊 148937.doc -46- 201110417 晶基板600相同之構成,但埋入電極21之構成與圖27所示 之蟲晶基板600不同。具體而言,於圖32所示之蟲晶基板 600中’與圖25所示之蟲晶基板600同樣地,埋入電極21具 有包含第1導電體層31與第2導電體層32兩層之積層結構。 再者,作為埋入電極21之結構’亦可採用三層以上之積層 結構。圖32所示之埋入電極21可採用基本上與圖25所示之 埋入電極21相同之構成(例如材料或積層結構)。 〇 於圖25所示之磊晶基板600中,第1導電體層31接觸透明 導電層3之開口部22之側壁、底壁、及透明導電層主表面 3 a之與開口部22鄰接之部分。又,第2導電體層32接觸第j 導電體層31中與磊晶層4接觸之面之相反側的面。藉由該 種構成,除圖27所示之蟲晶基板6〇〇之效果以外,還可獲 得圖25所示之磊晶基板6〇〇之效果。 圖33所示之發光元件700為使用圖32所示之磊晶基板6⑽ 之發光元件700,且具有基本上與圖28所示之發光元件7〇〇 〇 相同之構成,但如上所述埋入電極21具有積層結構之方面 與圖28所示之發光元件7〇〇不同。於圖33所示之發光元件 7〇〇中,於埋入電極21之第!導電體層31之表面形成有電極 1〇。於此情形時,可獲得與藉由圖28所示之發光元件7〇〇 而獲侍之效果相同之效果。又,經由埋入電極21自電極 朝透明導電層3流動電流時,可藉由使開口部之平面形 狀小於開口部22之平面形狀,以增大埋入電極21與透明導 電層3之接觸面積。因此,可更均勻地進行朝向透明導電 層3之電流之供給。 148937.doc -47- 201110417 (實施形態6) 本實施形態6之磊晶基板600具有與圖丨丨所示之本實施形 態4之磊晶基板600基本相同之態樣。然而,如圖34所示, 磊晶基板600中於透明導電層3並未形成開口部22之方面與 圖11所示之屋晶基板6 0 0不同。 即,於上述磊晶基板600中,埋入電極21係配置於透明 導電層3中與接著層2對向之表面上。於此情形時,於形成 透明導電層3後可繼而形成埋入電極21。又,由於能夠無 需特別對透明導電層3進行開口部22之形成等而形成埋入 電極21 ’故而無需貫施形成該開口部22之步驟,因此可避 免製造步驟之繁雜化。 圖35所示之發光元件700為使用圖34所示之磊晶基板6〇〇 而形成之發光元件。發光元件700具有基本上與圖12及圖 13所示之發光元件700相同之構成,但由於如圖12及圖13 所示之開口部22並未形成於透明導電層3,故而電極1〇之 周圍之構成與圖12及圖13所示之發光元件7〇〇不同。具體 而言’於圖35所示之發光元件700中,以埋入電極21之一 部分露出之方式,且以貫通磊晶層4及透明導電層3之方式 形成開口部23。即,開口部23之侧壁包括磊晶層4及透明 導電層3之端面。藉由該種構成,亦可獲得與圖12及圖13 所示之發光元件700相同之效果。 其次,說明磊晶基板600之製造方法。如本實施形態4中 之圖14之流程圖所示,實施準備磊晶用基板之步驟(S10)〜 形成ITO之步驟(S30)。然後,實施形成金屬層之步驟 148937.doc -48 - 201110417 (S90)。具體而言,不實施圖15所示之蝕刻ιτ〇而形成開口 部之步驟(S91),而實施形成金屬層之㈣。該形成金屬 層之步驟之具體方法與圖15所示之於開口部内形成金屬層 之步驟(S92)相同。其結果’如圖36所示,以覆蓋透明導 電層3之上部表面之一部分之方式形成複數個埋入電極 21。如圖36所示,於透明導電層3之平坦之表面上形成埋 入電極21。 ❹ 其:欠,執行圖14所示之接合支持基板之步驟(S40)及去 除磊晶用基板之步驟(S50)。其結果,可獲得圖34所示之 羞晶基板600。 其次,為了使用該磊晶基板600形成圖35所示之發光元 件7〇〇,與本實施形態4同樣地實施形成第i電極之步驟 (S71)。其後,實施蝕刻磊晶層之步驟(s6〇)。具體而言, 如圖37所示,藉由蝕刻而去除位於埋入電極21上之磊晶層 4及透明導電層3。其結果,獲得如圖37所示之結構。 Ο 其後,可藉由實施圖14所示之形成第2電極之步驟(S72) 及其他步驟(S80)而獲得圖35所示之發光元件7〇〇。 其次,參照圖38,說明圖34所示之磊晶基板6〇〇之變形 例。圖38所示之磊晶基板600具有基本上與圖“所示之磊 晶基板600相同之構成,但埋入電極21之構成與圖%所示 之磊晶基板600不同。具體而言,於圖%所示之磊晶基板 600中,與圖25所示之屢晶基板6〇〇同樣地,埋入電極21具 有包含第1導電體層31與第2導電體層32兩層之積層結構。 再者,作為埋入電極21之結構,亦可採用三層以上之積層 148937.doc •49- 201110417 結構。圖38所示之埋入電極21可採用基本上與圖25所示之 埋入電極21相同之構成(例如材料或積層結構)。 於圖38所示之蟲晶基板600中,第1導電體層31接觸透明 導電層3之平坦之表面。又,第2導電體層32接觸第!導電 體層3 1中與磊晶層4接觸之面之相反側的面。藉由該種構 成’除利用圖34所示之蟲晶基板600之效果以外,還可獲 得利用圖25所示之磊晶基板600之效果。 圖39所示之發光元件700為使用圖38所示之磊晶基板6〇〇 之發光元件700,且具有基本上與圖35所示之發光元件7〇〇 相同之構成,但如上所述埋入電極21具有積層結構之方面 與圖35所示之發光元件700不同。於圖39所示之發光元件 7〇〇中,於埋入電極21之第i導電體層31之表面形成有電極 於此情形時’可獲得與藉由圖35所示之發光元件7〇〇 而獲得之效果相同之效果。又,經由埋入電極2丨自電極1 〇 朝透明導電層3流動電流時,可藉由使開口部23之平面形 狀小於開口部22之平面形狀,而與圖33所示之發光元件 7〇〇同樣地,增大埋入電極21與透明導電層3之接觸面積。 因此,可更均勻地進行朝向透明導電層3之電流之供給。 實施例1 上述本發明之各實施形態之例如發光元件2〇〇、5〇〇作為 一例可用於圖40所示之炮彈型燈8〇〇。於構成炮彈型燈8〇〇 之一對引線框架62中之一引線框架62上配置發光元件晶片 61。該發光兀件晶片61包含上述發光元件2〇〇、5〇〇、 70〇、或集成有複數個該等發光元件之晶片。 M8937.doc -50- 201110417 例如將發光元件晶片61设為圖3所示之發光元件2 〇 〇。此 時,發光元件200之一對電極9、電極丨〇分別藉由接線63而 連接炮彈型燈800之一對引線框架62之各個。一對引線框 木62为別連接所期望之電源等之端子。又,於引線框架62 之上部,以埋設發光元件晶片61、接線63之方式配置有樹 脂64。 如此,則可藉由施加於一對引線框架62間之電壓,對發 光元件200之一對電極9、1 〇間施加電壓,並使發光元件 200發光。再者,於該例之情形時,如圖4〇所示,發光元 件200係以圖3之發光元件200之最下面之主表面接觸於左 側之引線框架62上之方式設置。因此,發光元件2〇〇較佳 為使用如圖3所示具有光反射層8,且自該發光元件2〇〇之 上側(配置電極9、10之側)輸出光之構成者。再者,即便於 發光元件晶片61為不具有光反射層8之元件之情形時,亦 可藉由使用銀漿等將該元件安裝於引線柩架,而獲得相同 之反射效果。 如上所述說明了本發明之各實施形態及實施例,但應認 為此次所揭示之各實施形態及實施例僅為例示而並非進行 限制者。本發明之範圍係由申請專利範圍表示,並意圖包 含與申請專利範圍均等之含義及範圍内之所有變更。 產業上之可利用性 本發明作為提供如下磊晶基本之技術而特別優異,該磊 曰曰基板可提供一種可藉由施加電壓而使電流均勻地流動、 且可獲得均勻且較大之發光輸出的發光元件。 148937.doc •51 · 201110417 【圖式簡單說明】In this case, the contact area between the buried electrode 21 and the transparent conductive layer 3 can be made larger than in the case where the above-described opening portion 22 is not formed. The adhesion strength of the transparent conductive layer 3 and the buried electrode 21 can be improved by & When the supply of current to the transparent conductive layer 3 is performed via the buried electrode 21, the contact area of the buried electrode 21 and the transparent conductive layer 3 can be widened, and the supply to the transparent conductive layer 3 can be more stably supplied. Current. Therefore, the uniformization of the current in the transparent conductive layer 3 can be further promoted, and as a result, the light output of the light-emitting element 7 shown in Fig. 28 formed using the remote substrate 6 can be improved. The light-emitting element 700 shown in Fig. 28 is a light-emitting element formed using the epitaxial substrate 6A shown in Fig. 27. The light-emitting element 7GG has substantially the same configuration as that of the light-emitting element 7A of FIG. 12 and the corpse, but is formed by the above-described opening portion 、 and the non-beton transparent conductive layer 3, so that the configuration of the periphery of the electrode and FIG. 12 The light-emitting element 7A shown in Fig. 13 is different. Specifically, in the light-emitting element 700 shown in Fig. 28, a portion of the epitaxial layer 4 and the transparent conductive layer 3 is removed by a portion of the embedded electrode 21, whereby an opening is formed.卩 23. That is, the side wall of the opening portion 23 is composed of a plurality of layers of the epitaxial layer 4 and the transparent conductive layer 3. With this configuration, the same effects as those of the light-emitting elements 7A shown in Figs. 12 and 13 can be obtained. The manufacturing method of the _ person, 5 children's bright crystal substrate 6 。. As shown in the flowchart of Fig. 14 of 148937.doc •45·201110417 in the fourth embodiment, the step (S10) of preparing the substrate for epitaxing is performed to the step of forming ITO (S30). Then, a step of forming a metal layer is carried out (S90). Specifically, the step of etching the ITO shown in Fig. 15 to form an opening is performed (S91). Here, in this step (S91), as shown in Fig. 29, the opening portion 22 formed in the transparent conductive layer 3 does not penetrate the transparent conductive layer 3. That is, both the side wall and the bottom wall of the opening portion 22 are formed by the surface of the transparent conductive layer 3. After the photoresist film 25 is removed from the state shown in Fig. 29, a step of forming a metal layer in the opening portion as shown in Fig. 15 is carried out (S92). The specific steps of this step (S92) are basically the same as the steps (S92) in the fourth embodiment. As a result, as shown in Fig. 30, the buried electrode 21 is formed so as to fill the inside of the opening portion 22 and cover a part of the upper surface of the transparent conductive layer 3. Next, the step (S40) of bonding the support substrate shown in Fig. 14 and the step (S50) of removing the substrate for epitaxy are performed. As a result, the insect crystal substrate 600 shown in Fig. 27 can be obtained. Next, in order to form the light-emitting element 700 shown in Fig. 28 using the epitaxial substrate 600, a step of forming a first electrode is carried out in the same manner as in the fourth embodiment (S71). Thereafter, a step of etching the epitaxial layer (S60) is performed. Specifically, as shown in Fig. 31, one portion of the epitaxial layer 4 and the transparent conductive layer 3 on the buried electrode 21 is removed by etching. As a result, a structure as shown in Fig. 31 is obtained. Thereafter, the step (S72) of forming the second electrode shown in Fig. 14 and the other step (S80) are carried out, whereby the light-emitting element 700 shown in Fig. 28 can be obtained. Next, a modification of the epitaxial substrate 600 shown in Fig. 27 will be described with reference to Fig. 32. The epitaxial substrate 600 shown in FIG. 32 has substantially the same configuration as the 148937.doc-46-201110417 crystal substrate 600 shown in FIG. 27, but the composition of the buried electrode 21 and the insect crystal substrate 600 shown in FIG. different. Specifically, in the silicon wafer substrate 600 shown in FIG. 32, the buried electrode 21 has a laminate including the first conductor layer 31 and the second conductor layer 32, similarly to the crystal substrate 600 shown in FIG. structure. Further, as the structure of the buried electrode 21, a laminated structure of three or more layers may be employed. The buried electrode 21 shown in Fig. 32 can adopt a configuration (e.g., material or laminated structure) substantially the same as that of the buried electrode 21 shown in Fig. 25. In the epitaxial substrate 600 shown in Fig. 25, the first conductor layer 31 contacts the side wall of the opening portion 22 of the transparent conductive layer 3, the bottom wall, and a portion of the main surface 3a of the transparent conductive layer adjacent to the opening portion 22. Further, the second conductor layer 32 is in contact with the surface on the opposite side of the surface of the j-th conductor layer 31 that is in contact with the epitaxial layer 4. With this configuration, in addition to the effect of the crystal substrate 6 shown in Fig. 27, the effect of the epitaxial substrate 6 shown in Fig. 25 can be obtained. The light-emitting element 700 shown in Fig. 33 is a light-emitting element 700 using the epitaxial substrate 6 (10) shown in Fig. 32, and has a configuration substantially the same as that of the light-emitting element 7 shown in Fig. 28, but buried as described above. The electrode 21 has a laminated structure different from the light-emitting element 7A shown in Fig. 28. In the light-emitting element 7A shown in Fig. 33, the electrode 21 is buried! An electrode 1〇 is formed on the surface of the conductor layer 31. In this case, the same effect as that obtained by the light-emitting element 7A shown in Fig. 28 can be obtained. Further, when a current flows from the electrode toward the transparent conductive layer 3 via the buried electrode 21, the contact area between the buried electrode 21 and the transparent conductive layer 3 can be increased by making the planar shape of the opening smaller than the planar shape of the opening portion 22. . Therefore, the supply of current to the transparent conductive layer 3 can be performed more uniformly. 148937.doc -47- 201110417 (Embodiment 6) The epitaxial substrate 600 of the sixth embodiment has substantially the same appearance as the epitaxial substrate 600 of the present embodiment 4 shown in the drawing. However, as shown in Fig. 34, the epitaxial substrate 600 is different from the case substrate 60 shown in Fig. 11 in that the transparent conductive layer 3 is not formed with the opening portion 22. That is, in the epitaxial substrate 600, the buried electrode 21 is disposed on the surface of the transparent conductive layer 3 opposite to the bonding layer 2. In this case, the buried electrode 21 may be formed after the transparent conductive layer 3 is formed. Further, since it is not necessary to form the buried electrode 21 ′ particularly in the formation of the opening portion 22 of the transparent conductive layer 3, it is not necessary to form the opening portion 22, so that the manufacturing steps can be prevented from being complicated. The light-emitting element 700 shown in Fig. 35 is a light-emitting element formed using the epitaxial substrate 6A shown in Fig. 34. The light-emitting element 700 has substantially the same configuration as the light-emitting element 700 shown in FIGS. 12 and 13, but since the opening portion 22 shown in FIGS. 12 and 13 is not formed on the transparent conductive layer 3, the electrode 1 is The surrounding configuration is different from that of the light-emitting elements 7A shown in Figs. 12 and 13 . Specifically, in the light-emitting element 700 shown in Fig. 35, the opening portion 23 is formed so as to penetrate the epitaxial layer 4 and the transparent conductive layer 3 so that one portion of the buried electrode 21 is exposed. That is, the side wall of the opening portion 23 includes the end faces of the epitaxial layer 4 and the transparent conductive layer 3. With this configuration, the same effects as those of the light-emitting element 700 shown in Figs. 12 and 13 can be obtained. Next, a method of manufacturing the epitaxial substrate 600 will be described. As shown in the flowchart of Fig. 14 in the fourth embodiment, the step (S10) of preparing the substrate for epitaxing is performed to the step of forming ITO (S30). Then, a step of forming a metal layer is carried out 148937.doc -48 - 201110417 (S90). Specifically, the step (S91) of forming the opening portion without performing the etching process shown in Fig. 15 is carried out, and (4) of forming the metal layer is carried out. The specific method of the step of forming the metal layer is the same as the step (S92) of forming a metal layer in the opening portion shown in Fig. 15. As a result, as shown in Fig. 36, a plurality of buried electrodes 21 are formed so as to cover a part of the upper surface of the transparent conductive layer 3. As shown in Fig. 36, the buried electrode 21 is formed on the flat surface of the transparent conductive layer 3. ❹ It is a step (S40) of bonding the support substrate shown in Fig. 14 and a step (S50) of removing the substrate for epitaxy. As a result, the imaginary substrate 600 shown in Fig. 34 can be obtained. Next, in order to form the light-emitting element 7A shown in Fig. 35 using the epitaxial substrate 600, the step of forming the i-th electrode is carried out in the same manner as in the fourth embodiment (S71). Thereafter, a step (s6〇) of etching the epitaxial layer is performed. Specifically, as shown in Fig. 37, the epitaxial layer 4 and the transparent conductive layer 3 on the buried electrode 21 are removed by etching. As a result, a structure as shown in Fig. 37 was obtained. Thereafter, the light-emitting element 7A shown in Fig. 35 can be obtained by performing the step (S72) of forming the second electrode shown in Fig. 14 and the other steps (S80). Next, a modified example of the epitaxial substrate 6A shown in Fig. 34 will be described with reference to Fig. 38. The epitaxial substrate 600 shown in FIG. 38 has substantially the same configuration as the epitaxial substrate 600 shown in the drawing, but the buried electrode 21 has a different configuration from the epitaxial substrate 600 shown in FIG. %. Specifically, In the epitaxial substrate 600 shown in Fig. 25, the buried electrode 21 has a laminated structure including two layers of the first conductor layer 31 and the second conductor layer 32, similarly to the multilayer substrate 6A shown in Fig. 25. As the structure of the buried electrode 21, a laminate of 148937.doc • 49-201110417 may be used. The buried electrode 21 shown in FIG. 38 may be substantially the same as the buried electrode 21 shown in FIG. The same structure (for example, material or laminated structure). In the crystal substrate 600 shown in Fig. 38, the first conductor layer 31 contacts the flat surface of the transparent conductive layer 3. Further, the second conductor layer 32 contacts the !! conductor layer The surface on the opposite side to the surface in contact with the epitaxial layer 4 in the layer 1 is formed by using the epitaxial substrate shown in Fig. 25 in addition to the effect of using the crystal substrate 600 shown in Fig. The effect of 600. The light-emitting element 700 shown in Fig. 39 is an epitaxial crystal as shown in Fig. 38. The light-emitting element 700 of the board 6 has the same configuration as that of the light-emitting element 7A shown in FIG. 35, but the buried electrode 21 has a laminated structure as described above and the light-emitting element 700 shown in FIG. In the light-emitting element 7A shown in Fig. 39, an electrode is formed on the surface of the i-th conductor layer 31 of the buried electrode 21, and in this case, the light-emitting element 7 shown in Fig. 35 can be obtained. The effect obtained by the same effect is the same. When the current flows from the electrode 1 〇 toward the transparent conductive layer 3 via the buried electrode 2, the planar shape of the opening 23 can be made smaller than the planar shape of the opening 22, and Similarly, the light-emitting element 7A shown in Fig. 33 increases the contact area between the buried electrode 21 and the transparent conductive layer 3. Therefore, the supply of current to the transparent conductive layer 3 can be more uniformly performed. For example, the light-emitting elements 2A and 5A of the embodiments of the present invention can be applied to the bullet-type lamp 8A shown in Fig. 40. One of the lead frames 62 is formed in one of the bullet-type lamps 8'. A light-emitting element wafer 61 is disposed on the frame 62 The light-emitting element wafer 61 includes the above-mentioned light-emitting elements 2, 5, 70, or a wafer in which a plurality of the light-emitting elements are integrated. M8937.doc -50- 201110417 For example, the light-emitting element wafer 61 is set as a figure. The light-emitting element 2 shown in Fig. 3. At this time, one of the pair of electrodes 9 and the electrode electrodes of the light-emitting element 200 is connected to each of the lead frame 62 of the bullet-type lamp 800 by a wire 63. 62 is a terminal for connecting a desired power source or the like. Further, a resin 64 is disposed on the upper portion of the lead frame 62 so as to embed the light-emitting element wafer 61 and the wiring 63. Thus, a voltage is applied between one of the pair of light-emitting elements 200 and the electrodes 9 and 1 by the voltage applied between the pair of lead frames 62, and the light-emitting element 200 is caused to emit light. Further, in the case of this example, as shown in Fig. 4A, the light-emitting element 200 is disposed in such a manner that the lowermost main surface of the light-emitting element 200 of Fig. 3 is in contact with the lead frame 62 on the left side. Therefore, it is preferable that the light-emitting element 2 is formed by using the light-reflecting layer 8 as shown in Fig. 3 and outputting light from the upper side of the light-emitting element 2A (the side where the electrodes 9 and 10 are disposed). Further, even in the case where the light-emitting element wafer 61 is an element having no light-reflecting layer 8, the same reflection effect can be obtained by attaching the element to the lead truss using silver paste or the like. The embodiments and examples of the present invention have been described above, but the embodiments and examples disclosed herein are intended to be illustrative and not restrictive. The scope of the present invention is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope of the claims. INDUSTRIAL APPLICABILITY The present invention is particularly excellent as a technique for providing an epitaxial substrate which can provide a uniform current flow by applying a voltage and obtain a uniform and large light-emitting output. Light-emitting elements. 148937.doc •51 · 201110417 [Simplified illustration]

圖1係表示本實施形態1之磊晶基板之積層結構之概略 面圖; Q 圖2係詳細表示圖1之磊晶層之構成之概略剖面圖; 圖3係表示使用圖1之磊晶基板而形成之發光元件之構成 之概略剖面圖; 圖4係表示本實施形態1之蟲晶基板、及使用該蟲晶基板 之發光元件之製造步驟之流程圖; 圖5係表示圖4之步驟(S20)之態樣之概略剖面圖; 圖6係表示圖4之步驟(S30)之態樣之概略剖面圖; 圖7係表示圖4之步驟(S40)之態樣之概略剖面圖; 圖8係表示本實施形態2之磊晶基板之積層結構之概略剖 面圖; 圖9係表示本實施形態3之磊晶基板之積層結構之概略剖 面圖; 圖1 〇係表示使用圖9之蟲晶基板而形成之發光元件之構 成之概略剖面圖; 圖11係表示本實施形態4之蠢晶基板之積層結構之概略 剖面圖; 圖12係表示使用圖11之蟲晶基板而形成之發光元件之構 成之概略平面圖; 圖13係圖12之線段ΧΙΙΙ-ΧΠΙ中之概略剖面圖; 圖14係表示本實施形態4之磊晶基板、及使用該磊晶基 板之發光元件之製造步驟之流程圖; 148937.doc -52- 201110417 圖丨5係表示圖14所示之形成金屬層之步驟之詳細情形之 流程圖; 圖Μ係表示圖15之步驟(S91)之態樣之概略剖面圖; 圖丨7係表示圖15之步驟(S91)之態樣之概略剖面圖; 圖Μ係表示圖15之步驟(S92)之態樣之概略剖面圖; 圖丨9係表示圖15之步驟(S92)之態樣之概略刮面圖; 圖20係表示圖15之步驟(S92)之態樣之概略剖面圖; 0 圖21係表示圖14之步驟(S4〇)之態樣之概略剖面圖; 圖22係表示圖14之步驟(S71)之態樣之概略剖面圖; 圖23係表示圖14之步驟(S6〇)之態樣之概略剖面圖; 圖24係表示圖14之步驟(S72)之態樣之概略剖面圖; 圖25係表示本實施形態4之磊晶基板之變形例之積層結 構之概略剖面圖; 圖26係表示使用圖25之磊晶基板而形成之發光元件之構 成之概略剖面圖; Q 圖27係表示本實施形態5之磊晶基板之積層結構之概略 剖面圖; 圖28係表示使用圖27之磊晶基板而形成之發光元件之構 成之概略剖面圖; 圖29係用以說明本實施形態5之磊晶基板及使用該磊晶 基板之發光元件之製造步驟之概略剖面圖; 圖3 0係用以說明本實施形態5之蟲晶基板及使用該蟲晶 基板之發光元件之製造步驟之概略剖面圖; 圖31係用以說明本實施形態5之磊晶基板及使用該磊晶 148937.doc •53· 201110417 基板之發光元件之製造步驟之概略剖面圖; 圖3 2係表不本實施形癌5之蟲晶基板之變形例之積層社 構之概略剖面圖; 圖33係表不使用圖32之蟲晶基板而形成之發光元件之構 成之概略剖面圖; 圖3 4係表示本實施形態6之蟲晶基板之積層結構之概略 剖面圖; 圖35係表示使用圖34之蠢晶基板而形成之發光元件之構 成之概略剖面圖; 圖36係用以說明本實施形態6之磊晶基板及使用該蟲晶 基板之發光元件之製造步驟之概略剖面圖; 圖37係用以說明本實施形態6之磊晶基板及使用該蟲晶 基板之發光元件之製造步驟之概略剖面圖; 圖3 8係表示本實施形態6之磊晶基板之變形例之積層結 構之概略剖面圖; 圖39係表示使用圖38之蟲晶基板而形成之發光元件之構 成之概略剖面圖;及 圖40係表示使用本發明之發光元件之發光裝置之構成之 概略圖。 【t要元件符號說明】 1 透明支持基板 2 接著層 3 透明導電層 3a、3b 透明導電層主表面 148937.doc -54- 201110417 4 5 6 7 8 9、10 11 121 is a schematic cross-sectional view showing a laminated structure of an epitaxial substrate according to the first embodiment; FIG. 2 is a schematic cross-sectional view showing the structure of the epitaxial layer of FIG. 1 in detail; and FIG. 3 is a view showing an epitaxial substrate using FIG. FIG. 4 is a flow chart showing the steps of manufacturing the insect crystal substrate of the first embodiment and the light-emitting element using the crystal substrate; FIG. 5 is a view showing the steps of the step (FIG. 5) Figure 6 is a schematic cross-sectional view showing the aspect of the step (S30) of Figure 4; Figure 7 is a schematic cross-sectional view showing the aspect of the step (S40) of Figure 4; Fig. 9 is a schematic cross-sectional view showing a laminated structure of an epitaxial substrate according to the second embodiment; Fig. 9 is a schematic cross-sectional view showing a laminated structure of the epitaxial substrate according to the third embodiment; FIG. 11 is a schematic cross-sectional view showing a laminated structure of the stray substrate of the fourth embodiment; and FIG. 12 is a view showing a configuration of a light-emitting element formed by using the insect crystal substrate of FIG. a rough plan view; Figure 13 is a Figure 14 is a schematic cross-sectional view of the line segment ΧΙΙΙ-ΧΠΙ in Fig. 12; Fig. 14 is a flow chart showing the steps of manufacturing the epitaxial substrate of the fourth embodiment and the light-emitting element using the epitaxial substrate; 148937.doc -52- 201110417 5 is a flow chart showing the details of the step of forming a metal layer shown in FIG. 14; FIG. 7 is a schematic cross-sectional view showing the state of the step (S91) of FIG. 15; and FIG. 7 is a step showing the steps of FIG. A schematic cross-sectional view of the aspect of S91); a schematic cross-sectional view showing the aspect of the step (S92) of Fig. 15; and Fig. 9 is a schematic plan view showing the aspect of the step (S92) of Fig. 15; Figure 20 is a schematic cross-sectional view showing the aspect of the step (S92) of Figure 15; 0 Figure 21 is a schematic cross-sectional view showing the aspect of the step (S4) of Figure 14; Figure 22 is a view showing the step of Figure 14 (S71) FIG. 23 is a schematic cross-sectional view showing a state of the step (S6〇) of FIG. 14; and FIG. 24 is a schematic cross-sectional view showing a state of the step (S72) of FIG. 14; A schematic cross-sectional view showing a laminated structure of a modified example of the epitaxial substrate of the fourth embodiment; Fig. 27 is a schematic cross-sectional view showing a laminated structure of an epitaxial substrate according to the fifth embodiment; Fig. 28 is a view showing an epitaxial structure using the epitaxial substrate of Fig. 25; FIG. 29 is a schematic cross-sectional view showing the steps of manufacturing the epitaxial substrate and the light-emitting element using the epitaxial substrate according to the fifth embodiment; FIG. A schematic cross-sectional view showing a manufacturing process of the insect crystal substrate of the fifth embodiment and a light-emitting element using the same, and FIG. 31 is a view for explaining the epitaxial substrate of the fifth embodiment and using the epitaxial 148937.doc • 53 201110417 A schematic cross-sectional view showing a manufacturing step of a light-emitting device of a substrate; FIG. 3 is a schematic cross-sectional view showing a laminated structure of a modified example of the crystal-crystalline substrate of the present invention; FIG. 33 is a diagram showing the use of FIG. FIG. 3 is a schematic cross-sectional view showing a laminated structure of the insect crystal substrate of the sixth embodiment; and FIG. 35 is a view showing the use of the amorphous substrate of FIG. FIG. 36 is a schematic cross-sectional view showing the steps of manufacturing the epitaxial substrate and the light-emitting element using the same according to the sixth embodiment; FIG. 37 is a view for explaining the embodiment. FIG. 3 is a schematic cross-sectional view showing a laminated structure of a modified example of the epitaxial substrate of the sixth embodiment; FIG. 39 is a schematic cross-sectional view showing a manufacturing process of the epitaxial substrate of the epitaxial substrate; A schematic cross-sectional view showing a configuration of a light-emitting element formed using the insect crystal substrate of Fig. 38; and Fig. 40 is a schematic view showing a configuration of a light-emitting device using the light-emitting element of the present invention. [t required symbol description] 1 transparent support substrate 2 subsequent layer 3 transparent conductive layer 3a, 3b transparent conductive layer main surface 148937.doc -54- 201110417 4 5 6 7 8 9, 10 11 12

蟲晶層 第1包覆層 活性層 第2包覆層 光反射層 電極 蟲晶用基板 不透明支持基板 埋入電極 22、23 24 25 ' 27 26 28 31Insect layer First cladding layer Active layer Second cladding layer Light-reflecting layer Electrode Insect crystal substrate Opaque support substrate Buried electrode 22, 23 24 25 ' 27 26 28 31

32 61 62 63 64 100 ' 300 ' 400 ' 600 200 、 500 、 700 800 開口部 埋入電極之外周部 光阻膜 開口圖案 導電體膜 第1導電體層 第2導電體層 發光元件晶片 引線框架 接線 樹脂 蟲晶基板 發光元件 炮彈型燈 148937.doc 55-32 61 62 63 64 100 ' 300 ' 400 ' 600 200 , 500 , 700 800 Opening part of the electrode embedded in the peripheral part of the photoresist film opening pattern Conductor film 1st conductor layer 2nd conductor layer Light-emitting element Wafer lead frame wiring resin insect Crystal substrate light-emitting element cannonball type lamp 148937.doc 55-

Claims (1)

201110417 七、申請專利範圍: 1. 一種發光元件,其包括: 支持基板; 接著層,其係配置於上述支持基板之一主表面上; 透明導電層,其係配置於上述接著層之與上述支持基 板對向之主表面的相反側之主表面上; 磊晶層,其係配置於上述透明導電層之與上述接著層 對向之主表面的相反側之主表面上;以及 電極,其係形成於:上述透明導電層之與上述接著層 對向之第1主表面的相反側之第2主表面之一部分露出、 所硌出之上述第2主表面上,及上述磊晶層之與上述透 明導電層對向之主表面的相反側之主表面上。 2.如請求項1之發光元件,其中 上述蟲晶層為積層有複數個A1JnyGa—As_心, 1)之構成。 3. ❹ 如請求項1或2之發光元件,其中 上述透明導電層為ITO。 4. 如請求項1或2之發光元件,其中 上述接著層係包含選自由BCB谢· at * , s ρ 心曰田树脂、聚醯亞胺樹脂、 5. 環氧樹脂、聚石夕氧樹脂所組成之群中的任一種。 如請求項1或2之發光元件,其中 述支持基板為相對於上述蟲晶層中所發出之光為透 明之透明支持基板。 6.如請求項5之發光元件,其中 148937.doc 201110417 上述透明支持基板係包含選自由藍寶石、玻璃、碳化 矽、磷化鎵、石英及尖晶石所組成之群中的任一種。 7. 如請求項1或2之發光元件,其中 上述透明導電層之一主表面、及與上述一主表面對向 之另一主表面係受到粗面化處理。 8. 如請求項丨或2之發光元件,其中 在上述透明導電層之與上述磊晶層對向之主表面的相 反側之主表面上、及位於上述支持基板之與上述磊晶層 為相反側之位置的主表面上之間的任一區域,更包括^ 射上述蟲晶層中所發出之光之反射層。 9. 一種發光元件,其包括: 支持基板; 接著層,其係配置於上述支持基板之一主表面上; 透明導電層,其係配置於上述接著層之與上述支持基 板對向之主表面的相反側之主表面上,· 磊晶層,其係配置於上述透明導電層之與上述接著層 對向之主表面的相反側之主表面上;以及 埋入電極,其係與上述透明導電層直接連接,且包含 與上述透明導電層不同之導電性材料;且 匕3 以上述埋入電極之一部分露出之方式去除至少上述磊 晶層之一部分,藉此形成開口部, μ 上述發光元件更包括電極,該電極係形成於所露 :::入電極之一部分上、及上述磊晶層之與上述透明 導電層對向之主表面的相反側之主表面上。 148937,doc 201110417 ίο 11. 12,Ο 13. Ο 14. 15. 如請求項9之發光元件,其中 二:埋入電極係配置於上述透明導電層中與上述接著 層對句之表面上。 如請求項10之發光元件,其中 於上述透明導電層之上述表面,在配置有上述埋入電 極之部分形成有凹部; 上述埋入電極包括填充上述凹部之内部之突出部。 如請求項9之發光元件,其中 於上述透明導電層形成有貫通孔,該貫通孔係自與上 述接著層對向之表面起到達與上述蟲晶層對向之/面為 止; 上述埋入電極以填充上述貫通孔之内部之方式配置。 如請求項12之發光元件,其中 上述埋入電極包括延伸部,該延伸部係於上述透明導 電層中與上述接著層對向之上述主表面上延伸,且與上 述透明導電層直接接觸。 如請求項9至13中任一項之發光元件,其中 上述埋入電極係積層有不同種類之複數個導電體層之 多層結構。 如請求項14之發光元件,其中 上述埋入電極中,構成上述多層結構之複數個導電體 層包括: 第1導電體層,其係與上述透明導電層及上述磊晶層 接觸;以及 148937.doc 201110417 16 17 18. 19. 20. 第2導電體層’其係形成為接觸上述第1導電體層中位 於與上述透明導電層接觸之表面之相反側的面;且 上述第1導電體層係與上述第2導電體層相比,與上述 透明導電層及上述磊晶層之密接性相對較高, 上述第2導電體層係對於蝕刻上述磊晶層之蝕刻劑的 選擇比高於上述第1導電體層。 •如請求項15之發光元件,其中 上述第1導電體層包含鉻及鈦中之至少任一者。 .如請求項1 5之發光元件,其中 上述第2導電體層包含選自由金、始、把所組成 中之至少一者。 如請求項1 6之發光元件,其中 上述第2導電體層包含選自由金、麵、纪所 中之至少—者。 一種發光裝置,其包括: -對引線框架,其係於如請求項之發光元件 部之間輸入輸出電信號; 上述發光元件,其係配置於上述ϋ線框架中 1引線框架之主表面上;以及 金屬線,其係連接上述發光元件之電極、與上述第】 引線框架及上述第2引線框架之各個。 一種蠢晶基板,其包括:支持基板; 接著層,其係配置於上述支持基板之一主表面上; 148937.doc 201110417 透明導電層’其係配置於上述接著層之與上述支持基 板對向之主表面的相反側之主表面上;以及 磊晶層’其係配置於上述透明導電層之與上述接著層 對向之主表面的相反側之主表面上。 21 _如請求項20之磊晶基板,其中 上述磊晶層為積層有複數個AlJnyGah.yAs^OSxS 1、 0$ 1)之構成。 22. 如請求項20或21之磊晶基板,其中 〇 上述透明導電層為ITO。 23. 如請求項20或21之磊晶基板,其中 上述接著層係包含選自由BCB樹脂、聚醯亞胺樹脂、 環氧樹脂、聚矽氧樹脂所組成之群中的任一種。 24. 如請求項20或21之磊晶基板,其中 上述支持基板為相對於上述磊晶層中所發出之光為透 明之透明支持基板。 ◎ 25.如清求項24之蠢晶基板’其中 上述透明支持基板係包含選自由藍寶石、玻璃、碳化 矽、磷化鎵、石英及尖晶石所組成之群中的任一種。 26. 如請求項20或21之磊晶基板,其中 上述透明導電層之一主表面、及與上述一主表面對向 之另一主表面係受到粗面化處理。 27. 如清求項20或21之蠢晶基板,其中 在上述透明導電層之與上述蟲晶層對向之主表面的相 反側之主表面上、及位於上述支持基板之與上述磊晶層 148937.doc 201110417 為相反側之位置的主表面上之間的任一區域,更包括反 射上述磊晶層中所發出之光之反射層。 28·如請求項20或21之磊晶基板’其更包括埋入電極,該埋 入電極係與上述透明導電層直接連接,且包含與上述透 明導電層不同之導電性材料。 29.如請求項28之磊晶基板,其中 上述埋入電極係配置於上述透明導電層中與上述接著 層對向之表面上。 3 0.如請求項29之磊晶基板,其中 於上述透日科電層之上述表自,在配置有上述埋入電 極之部分形成有凹部; 上述埋入電極包括填充上述凹部之内部之突出部。 3 1.如請求項28之磊晶基板,其中 於上述透明導電層形成有貫通孔,該貫通孔係自斑上 述接著層對向之表面起到達與上Μ晶層對向之表 止; 句 上述埋入電極以填充上述貫通孔之内部之方式配置。 32·如請求項3 1之磊晶基板,其中 上述埋入電極包括延伸部,該延伸部係於上述透 電層中與上述接著層對向之上述主表面上延伸,且 述透明導電層直接接觸。 33.如請求項28之磊晶基板,其中 上述埋入電極為積層有不同種類 多層結構。 之複數個導電體層 之 148937.doc 201110417 34.如請求項33之磊晶基板,其中 上述埋入電極中,構成上述多層結構之複數個導電體 層包括: 第1導電體層,其係與上述透明導電層及上述磊晶層 接觸;以及 第2導電體層’其係形成為接觸上述第1導電體層中位 於與上述透明導電層接觸之表面之相反側的面;且 上述第1導電體層係與上述第2導電體層相比,與上述 透明導電層及上述磊晶層之密接性相對較高, 上述第2導電體層係對於餘刻上述磊晶層之餘刻劑的 選擇比高於上述第1導電體層。 3 5.如請求項34之磊晶基板,其中 上述第1導電體層係包含絡及鈦中之至少一者。 36. 如請求項34之磊晶基板,其中 上述第2導電體層係包含選自由金、鉑、鈀所組成之 群中之至少一者。 37. —種磊晶基板之製造方法,其包括: 準備基板之步驟; 於上述基板之一主表面上形成磊晶層之步驟; 於上述磊晶層之與上述基板對向之主表面的相反側之 主表面上形成透明導電層之步驟;以及 於上述透明導電層之與上述蟲晶層對向之主表面的相 反側之主表面上接合支持基板之步驟。 38·如請求項37之以基板之製造方法,其更包括形成埋入 148937.doc 201110417 電極之步驟,該埋入電極係與上述透明導電層直接連 接,且包含與上述透明導電層不同之導電性材料。 39.如請求項38之磊晶基板之製造方法,其更包括在上述透 明導電層形成開口部之步驟; 於上述形成埋入電極之步驟中,以填充上述開口部之 内部之方式形成上述埋入電極。 148937.doc201110417 VII. Patent application scope: 1. A light-emitting component, comprising: a support substrate; a subsequent layer disposed on one main surface of the support substrate; a transparent conductive layer disposed on the adhesive layer and the support a main surface opposite to a main surface opposite to the main surface; an epitaxial layer disposed on a main surface of the transparent conductive layer opposite to a main surface opposite to the bonding layer; and an electrode formed And forming, on the second main surface of the transparent conductive layer, a portion of the second main surface opposite to the first main surface opposite to the first layer, and the transparent layer and the transparent layer and the transparent layer The conductive layer faces the major surface on the opposite side of the major surface. 2. The light-emitting element according to claim 1, wherein the insect crystal layer is composed of a plurality of A1JnyGa-As_ cores, 1). 3. The light-emitting element of claim 1 or 2, wherein the transparent conductive layer is ITO. 4. The light-emitting element according to claim 1 or 2, wherein the above-mentioned adhesive layer comprises a material selected from the group consisting of BCB Xie·at*, s ρ Xintian resin, polyimine resin, 5. epoxy resin, polyoxin Any of the group consisting of. The light-emitting element of claim 1 or 2, wherein the support substrate is a transparent transparent support substrate with respect to light emitted from the insect layer. 6. The light-emitting element of claim 5, wherein the transparent support substrate comprises any one selected from the group consisting of sapphire, glass, tantalum carbide, gallium phosphide, quartz, and spinel. 7. The light-emitting element of claim 1 or 2, wherein one of the major surfaces of the transparent conductive layer and the other major surface opposite the one of the major surfaces are roughened. 8. The light-emitting element of claim 2 or 2, wherein the main surface of the transparent conductive layer opposite to the main surface opposite to the epitaxial layer and the support substrate are opposite to the epitaxial layer Any of the areas between the major surfaces of the side locations further includes a reflective layer that emits light from the layer of insects. A light-emitting element comprising: a support substrate; a subsequent layer disposed on one main surface of the support substrate; and a transparent conductive layer disposed on a main surface of the adhesive layer opposite to the support substrate On the main surface of the opposite side, an epitaxial layer is disposed on a main surface of the transparent conductive layer opposite to a main surface opposite to the bonding layer; and a buried electrode is bonded to the transparent conductive layer Directly connecting, and comprising a conductive material different from the transparent conductive layer; and 匕3 removing at least one portion of the epitaxial layer in such a manner that one of the buried electrodes is partially exposed, thereby forming an opening portion, and the light-emitting element further includes And an electrode formed on a portion of the exposed electrode that is opposite to the main surface of the epitaxial layer opposite to the main surface of the epitaxial layer. 148937, doc 201110417 ί 11. 11. 12, Ο 13. Ο 14. 15. The light-emitting element of claim 9, wherein: the buried electrode is disposed on the surface of the transparent conductive layer and the layer of the above-mentioned layer. The light-emitting element according to claim 10, wherein the surface of the transparent conductive layer has a concave portion formed in a portion where the buried electrode is disposed, and the buried electrode includes a protruding portion filling the inside of the concave portion. The light-emitting element of claim 9, wherein the transparent conductive layer is formed with a through hole that reaches a surface facing the crystal layer from a surface opposite to the adhesive layer; the buried electrode It is disposed so as to fill the inside of the through hole. The light-emitting element of claim 12, wherein the buried electrode comprises an extension portion extending from the main surface of the transparent conductive layer opposite to the adhesive layer and in direct contact with the transparent conductive layer. The light-emitting element according to any one of claims 9 to 13, wherein the buried electrode layer has a multilayer structure of a plurality of different conductor layers. The light-emitting element of claim 14, wherein the plurality of conductor layers constituting the multilayer structure include: a first conductor layer contacting the transparent conductive layer and the epitaxial layer; and 148937.doc 201110417 16 17 18. 19. 20. The second conductor layer ' is formed to contact a surface of the first conductor layer opposite to a surface in contact with the transparent conductive layer; and the first conductor layer and the second The conductivity of the conductive layer is relatively higher than that of the transparent conductive layer and the epitaxial layer, and the second conductor layer has a higher selectivity to the etchant for etching the epitaxial layer than the first conductor layer. The light-emitting element of claim 15, wherein the first conductor layer comprises at least one of chromium and titanium. The light-emitting element of claim 15, wherein the second conductor layer comprises at least one selected from the group consisting of gold, primaries, and handles. The light-emitting element of claim 16, wherein the second conductor layer comprises at least one selected from the group consisting of gold, surface, and film. A light-emitting device comprising: - a pair of lead frames, which are input and output electrical signals between the light-emitting element portions of the request; the light-emitting elements are disposed on a main surface of the lead frame of the first wire frame; And a metal wire connecting the electrode of the light-emitting element to each of the first lead frame and the second lead frame. An amorphous substrate comprising: a support substrate; a subsequent layer disposed on one of the main surfaces of the support substrate; 148937.doc 201110417 a transparent conductive layer disposed on the support substrate opposite to the support substrate The main surface on the opposite side of the main surface; and the epitaxial layer 'on the main surface of the transparent conductive layer opposite to the main surface opposite to the subsequent layer. The epitaxial substrate of claim 20, wherein the epitaxial layer is formed by laminating a plurality of AlJnyGah.yAs^OSxS 1, 0$ 1). 22. The epitaxial substrate of claim 20 or 21, wherein 〇 the transparent conductive layer is ITO. 23. The epitaxial substrate according to claim 20 or 21, wherein the adhesive layer comprises any one selected from the group consisting of BCB resin, polyimide resin, epoxy resin, and polyoxymethylene resin. 24. The epitaxial substrate of claim 20 or 21, wherein the support substrate is a transparent support substrate that is transparent relative to light emitted from the epitaxial layer. The transparent substrate of claim 24, wherein the transparent support substrate comprises any one selected from the group consisting of sapphire, glass, tantalum carbide, gallium phosphide, quartz, and spinel. 26. The epitaxial substrate of claim 20 or 21, wherein one of the major surfaces of the transparent conductive layer and the other major surface opposite the one of the major surfaces are roughened. 27. The amorphous substrate of claim 20 or 21, wherein the main surface of the transparent conductive layer opposite to the main surface opposite to the insect layer, and the epitaxial layer on the support substrate 148937.doc 201110417 is any region between the major surfaces on the opposite side, and further includes a reflective layer that reflects the light emitted in the epitaxial layer. 28. The epitaxial substrate of claim 20 or 21, further comprising a buried electrode, the buried electrode being directly connected to the transparent conductive layer and comprising a conductive material different from the transparent conductive layer. The epitaxial substrate according to claim 28, wherein the buried electrode is disposed on a surface of the transparent conductive layer opposite to the bonding layer. The epitaxial substrate according to claim 29, wherein the surface of the permeabilization layer is formed with a concave portion at a portion where the buried electrode is disposed; and the buried electrode includes a protrusion filling the inside of the concave portion unit. 3. The epitaxial substrate according to claim 28, wherein the transparent conductive layer is formed with a through hole that reaches a surface opposite to the upper twin layer from the surface of the opposite layer of the epitaxial layer; The buried electrode is disposed to fill the inside of the through hole. The epitaxial substrate of claim 3, wherein the buried electrode comprises an extension portion extending in the dielectric layer and the main surface opposite to the bonding layer, and the transparent conductive layer is directly contact. 33. The epitaxial substrate of claim 28, wherein the buried electrodes are laminated with different types of multilayer structures. The plurality of conductor layers of the invention, wherein the plurality of conductor layers constituting the multilayer structure comprise: the first conductor layer and the transparent conductive layer; The layer and the epitaxial layer are in contact with each other; and the second conductor layer is formed to contact a surface of the first conductor layer opposite to a surface in contact with the transparent conductive layer; and the first conductor layer and the first The second conductor layer has a higher selectivity to the transparent conductive layer and the epitaxial layer than the conductor layer, and the second conductor layer has a higher selectivity ratio for the remaining layer of the epitaxial layer than the first conductor layer . 3. The epitaxial substrate of claim 34, wherein the first conductor layer comprises at least one of a network and a titanium. 36. The epitaxial substrate of claim 34, wherein the second conductor layer comprises at least one selected from the group consisting of gold, platinum, and palladium. 37. A method of fabricating an epitaxial substrate, comprising: a step of preparing a substrate; a step of forming an epitaxial layer on one of the main surfaces of the substrate; and a reverse of a surface of the epitaxial layer opposite to the substrate a step of forming a transparent conductive layer on the main surface of the side; and a step of bonding the support substrate to the main surface of the transparent conductive layer opposite to the main surface opposite to the insect layer. 38. The method of manufacturing a substrate according to claim 37, further comprising the step of forming an electrode buried in 148937.doc 201110417, the buried electrode being directly connected to the transparent conductive layer and comprising a conductive different from the transparent conductive layer Sexual material. The method of manufacturing an epitaxial substrate according to claim 38, further comprising the step of forming an opening in the transparent conductive layer; and forming the buried electrode in the step of forming the buried electrode Into the electrode. 148937.doc
TW099119722A 2009-06-17 2010-06-17 Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate TW201110417A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009144349 2009-06-17
JP2010091578A JP2011023703A (en) 2009-06-17 2010-04-12 Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate

Publications (1)

Publication Number Publication Date
TW201110417A true TW201110417A (en) 2011-03-16

Family

ID=43356333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119722A TW201110417A (en) 2009-06-17 2010-06-17 Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate

Country Status (3)

Country Link
JP (1) JP2011023703A (en)
TW (1) TW201110417A (en)
WO (1) WO2010147012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617195A (en) * 2015-02-06 2015-05-13 扬州乾照光电有限公司 Near infrared LED and production method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218137B (en) * 2013-06-05 2017-11-28 江苏豪迈照明科技有限公司 LED light substrate, LED chip COB encapsulating structures and using the structure LED
JP6906891B2 (en) * 2015-09-02 2021-07-21 三菱ケミカル株式会社 Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
JP7171172B2 (en) * 2016-08-29 2022-11-15 キヤノン株式会社 Light emitting element, light emitting element array, exposure head, and image forming apparatus
JP7292138B2 (en) * 2019-07-23 2023-06-16 株式会社ジャパンディスプレイ Display device repair system
CN113410361B (en) * 2021-04-29 2023-06-09 华灿光电(浙江)有限公司 Light-emitting diode chip with composite protective layer and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351918A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Light-emitting device
TWI291243B (en) * 2005-06-24 2007-12-11 Epistar Corp A semiconductor light-emitting device
JP5116291B2 (en) * 2006-11-22 2013-01-09 京セラ株式会社 LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
JP2008177525A (en) * 2006-12-20 2008-07-31 Showa Denko Kk Method for manufacturing group iii nitride compound semiconductor light-emitting element, the group iii nitride compound semiconductor light-emitting element and lamp
JP4985260B2 (en) * 2007-09-18 2012-07-25 日立電線株式会社 Light emitting device
JP5325506B2 (en) * 2008-09-03 2013-10-23 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2010080817A (en) * 2008-09-29 2010-04-08 Hitachi Cable Ltd Light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617195A (en) * 2015-02-06 2015-05-13 扬州乾照光电有限公司 Near infrared LED and production method thereof
CN104617195B (en) * 2015-02-06 2017-10-17 扬州乾照光电有限公司 A kind of near-infrared luminous diode and its production method

Also Published As

Publication number Publication date
JP2011023703A (en) 2011-02-03
WO2010147012A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
US7067340B1 (en) Flip-chip light emitting diode and fabricating method thereof
TWI234298B (en) Semiconductor light emitting diode and method for manufacturing the same
US7018859B2 (en) Method of fabricating AlGaInP light-emitting diode and structure thereof
TWI305425B (en)
US20090127575A1 (en) Light-Emitting Diode Chip With High Light Extraction And Method For Manufacturing The Same
WO2010041370A1 (en) Nitride semiconductor light emitting diode
JP2007123573A (en) Semiconductor light emitting element, its manufacturing method and semiconductor light-emitting device
TW200908490A (en) Photonic crystal laser and method for manufacturing photonic crystal laser
US8624262B2 (en) Light emitting diode
TW201110417A (en) Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
KR20090111861A (en) Thin­film light emitting diode chip and method for producing a thin­film light emitting diode chip
TW201225334A (en) Optoelectronic device and method for manufacturing the same
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
TW200939535A (en) Semiconductor light-emitting device and method for producing semiconductor light-emitting device
TW564556B (en) Semiconductor light-emitting element, image display device as well as illuminator and its manufacturing method
TW200814374A (en) Semiconductor light emitting device, method of forming the same, and compound semiconductor device
JPWO2013051326A1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2007013093A (en) Light emitting diode
TW200845428A (en) Radiation-emitting chip comprising at least one semiconductor body
WO2010051680A1 (en) Led which has current barrier layer distributed corresponding to upper electrodes and the fabricating method thereof
JP2014207327A (en) Semiconductor light-emitting element
JP2010092957A (en) Light emitting diode and method of manufacturing the same
JP2016072494A (en) Semiconductor light emitting element
JP2010206133A (en) Light emitting element, method of manufacturing the same, and electronic apparatus
JP2001015810A (en) Light emitting diode and manufacture thereof