TW201109609A - Manufacturing apparatus and manufacturing method for carbon nanotube heat sink - Google Patents

Manufacturing apparatus and manufacturing method for carbon nanotube heat sink Download PDF

Info

Publication number
TW201109609A
TW201109609A TW98129622A TW98129622A TW201109609A TW 201109609 A TW201109609 A TW 201109609A TW 98129622 A TW98129622 A TW 98129622A TW 98129622 A TW98129622 A TW 98129622A TW 201109609 A TW201109609 A TW 201109609A
Authority
TW
Taiwan
Prior art keywords
substrate
carbon nanotube
heat sink
carbon
preparing
Prior art date
Application number
TW98129622A
Other languages
Chinese (zh)
Other versions
TWI377331B (en
Inventor
Yuan Yao
Feng-Wei Dai
Kai-Li Jiang
Chang-Hong Liu
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98129622A priority Critical patent/TWI377331B/en
Publication of TW201109609A publication Critical patent/TW201109609A/en
Application granted granted Critical
Publication of TWI377331B publication Critical patent/TWI377331B/en

Links

Abstract

The invention relates to a method for manufacturing carbon nanotube heat sink. The method includes the following steps: providing a board; growing a plurality of first carbon nanotubes and a plurality of second carbon nanotubes on a surface of the board in one direction wherein a height difference is defined between a common free end of the first carbon nanotubes and a common free end of the second carbon nanotubes; providing a first substrate and a second substrate, and securing the common free end of the first carbon nanotubes which is far away from the board compared to the common free end of the second carbon nanotubes into the first substrate; moving the first carbon nanotubes from the board to let the first carbon nanotubes be formed on the first substrate independently to obtain a first carbon nanotube heat sink; securing the common free end of the second carbon nanotubes into the second substrate; moving the second carbon nanotubes from the board to let the second carbon nanotubes be formed on the second surbstrate independently to obtain a second carbon nanotube heat sink. The invention also relates to a apparatus for manufacturing carbon nanotube heat sink.

Description

201109609 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及散熱器的製備裝置及方法,尤其涉及一種奈 米碳管散熱器的製備裝置及方法。 【先前技術】 [〇〇〇2]自上世紀九十年代初以來,以奈米碳管為代表的奈米材 料以其獨特的結構及性質引起了人們極大的關注。奈米 碳管具有機械強度高且密度較小的優點。近幾年來,隨 著對奈米管研究的不斷深入,其廣闊的應用前景不斷 顯現出來。例如,由於奈米碳管具有獨特的電磁學、光 學、力學、化學等性能,大暈有關其在場發射電子源、 感測器、新型光學材料'軟罈磁材料等領域的應用研究 不斷被報導。由於奈米碳管沿其徑向具有良好的熱傳導 性,因此奈米碳管陣列可在半導體領域用作散熱器。 [00〇3]請參見於2005年11月11日申請,於2007年05月16曰公 開的第010964028八號中國大陸公開專利申請所揭示的一 種散熱器及其製備方法。該散.熱器包括:一基底及複數 奈米碳管。所述基底具有一第一表面及一與所述第一表 面相對的第二表面。所述複數奈米碳管從基底的第一表 面穿透所述第二表面並向外延伸。所述散熱器的製備方 法具體包括以下步驟:提供一基板;在所述基板上形成 複數奈米碳管;在所述複數奈米碳管的一末端固定一基 底;去除所述基板。該方法所製備的散熱器採用奈米碳 管可作為散熱鰭片。然而,該種方法製備的散熱器中奈 米碳管密度較大,使奈米碳管令的熱量不易傳導至空氣 098129622 表單編號A0101 第4頁/共32頁 0982050826-0 201109609 中’因此,該種散熱器的熱對流效果較差。 [0004] Ο [0005] Ο 為了克服上述問題,“Chip cooling with integrated carbon nanotube microfin architectures (K. Kordas et al. Appl. Phys. Lett. 90. 123105(2007))中揭示了一種散熱器及其製備方法。所 述散熱器包括一矽基底,所述矽基底上呈方陣狀生長有 10x10個奈米碳管陣列,所述奈米碳管陣列的尺寸為I 2 xl 0x10立方毫米。所述散熱器的製備方法包括以下步驟 .在石夕基底上生長奈米碳管陣列;採用脈衝雷射以5 〇毫 米/秒的掃描速率處理奈米碳管陣列,使被雷射處理過的 奈米碳管被去除,從而形成IGxlG個奈米料陣列。該種 散熱器中各個奈米碳管陣列之間κ間隙,從而提高 了散熱器的熱對流效果。 ,、二而上述放熱器的製備方法,由於其所採用的用於生 長奈米碳管陣列的基底卜平面,因此每次僅可於基底 上形成-個奈米碳管陣列,從而每次於基底上製備出的 奈米碳管㈣也僅可製得—個散熱器1此,該種散熱 器的製備方法成本較高,效率較低。 [0006] 【發明内容】 有繁於此,提供-種有效製備奈米碳管散熱器的裝置及 採用該裝置製備奈米碳管散熱器的方法實為必要。 [0007] 一種奈米碳管散熱器的製備裝置 ’其包括一基板,該基 板具有-表面’該基板的表面上形成有複數第—奈米碳 管及複數第二奈米碳管,所述第—及第二奈糸碳管均自 098129622 0982050826-0 201109609 與第二奈米碳管的自由端之間具有一高度差。 [0008] —種奈米碳管散熱器的製備方法,其包括以下步驟:提 供一基板;於所述基板上沿同一方向生長複數第一奈米 碳管及複數第二奈米碳管,其中第一奈米碳管的自由端 與第二奈米碳管的自由端具有一高度差;提供一第一基 底及一第二基底,將距離基板較遠的第一奈米碳管的自 由端固定於所述第一基底中;將自由端固定於第一基底 中的第一奈米碳管從基板上去除,使其獨立地形成於所 述第一基底上從而得到一第一奈米碳管散熱器;將第二 奈米碳管的自由端固定於所述第二基底中;將自由端固 定於第二基底中的第二奈米碳管從基板上去除,使其獨 立地形成於所述第二基底上從而得到一第二奈米碳管散 熱器。 [0009] 相對於先前技術,本發明提供的用於製備奈米碳管散熱 器的裝置,其包括一基板,該基板的表面上形成有複數 第一奈米碳管及複數第二奈米碳管,且所述第一奈米碳 管的自由端與第二奈米碳管的自由端之間具有一高度差 。採用該種製備奈米碳管散熱器的裝置可製備複數奈米 碳管散熱器,提高了奈米碳管散熱器的製備效率,降低 了生產成本。 【實施方式】 [0010] 為了對本發明作更進一步的說明,舉以下具體實施例並 配合附圖詳細描述如下。 [0011] 請參閱圖1,其為本發明具體實施例提供製備奈米碳管散 熱器的方法的流程圖。請參閱圖2至圖7為本發明具體實 098129622 表單編號 A0101 第 6 頁/共 32 頁 0982050826-0 201109609施例提供的製備奈米碳管散熱器的方法的工藝流程圖。- =方法包括從si〇到邡〇六個步驟。 剛_s1〇,請參閲圖2,提供一基板12 ’該基板12具有-第〆表面即底表面,-第二表面即頂表面’且該第-表 面肀行於第二表面。該第二表面上設有複數相互間隔的 四槽130,從而使基板12形成有兩個不同高度且相互間隔 的第一生長表面120及第二生長表面14〇。所述凹槽130 於基板的第二表面呈點陣狀排列。所述第一生長表面120 及暴板12的第二表面共面。凹槽130的底表面為第二生長 〇 *面140。所述第一生長表面120的高度較每1二生長 表面140的高度高° , _所述基板12<遂用P型或N型石夕基板,或選用形成有氧化 廣的矽基板。本實施例中基板12採用石夕塞板。所述凹槽 13〇的形狀及層數不限。可以理解地,所述凹槽130可以 為 層凹槽、二廣凹槽、三及.凹稽.或N層.凹槽等。同一層 四槽的底面到基板12的第,表面钩距離相等’不同層的 q 四槽的底面到基板12的第二表面的距離不等。所述凹槽 00玎以呈階梯形亦即臺階狀,如圖8所示,也可設置成 同心狀的,如圖9所示。所述凹槽130可以為交錯排列的 t ,點陣形成於所述基板12的表面,如圖13所示。所述凹槽 I30可通過鑄造或蝕刻基板12的方法形成。如圖11所示, 本實施例中發基板12上形成有6個凹槽130 。所述6個凹槽 呈3x2點陣狀排列在矽基板12的表面 ’即所述6個凹槽排 列成2行,每行間隔設置有3個凹槽130 »所述每一凹槽 130均’、有一層且每一凹槽13〇的底面均為第二生長表面 098129622 表單編號A0101 第7頁/共32頁 0982050826-0 201109609 140 ’且該第二生長表面i4〇的形狀為矩形。 [0014] [0015] [0016] 步驟S20,請參閱圖3,於所述基板12的第一生長表面 120及第二生長表面14〇上形成長度大致相等的奈米碳管 陣列,其中形成於基板12的第一生長表面120上的奈米碳 管陣列為第一奈米碳管陣列10,形成於第二生長表面14〇 上的奈米碳管陣列為第二奈米碳管陣列20。第一奈米碳 管陣列10及第二奈米碳管陣列2〇的生長方向相同。控制 所生長的奈米碳管陣列的長度,從而使得第二奈米碳管 陣列20中的奈米碳管超出基板12的第一生長表面12(^由 於第一生長表面120高於第二生長表面14〇,且第一奈米 碳管陣列10及第二奈米碳管捧列2〇的長度相同。因此, 第一奈米碳管陣列10高於第二奈;米碳管陣列2〇,即第一 奈米碳管陣列10的自由端及第二奈米碳管陣列2〇的自由 端具有一高度差。 請參閱圖10,在所述第一生長表面120及第二生長表面 140上分別形成第-奈米碳管陣列1()及第二奈米碳管陣列 20的方法包括以下步驟: 步驟S201,在所述基板12的第一生長表面12〇的部分區 域及第二生長表面140上均勻形成一催化劑層。所述催化 劑層的材料可選用鐵(Fe)、鈷(c〇)、鎳(Ni)或其任意組 合的合金之一。本實施例中催化劑的材料為鐵。 在基板12的第-生長表面12〇形成催化劑的區域可為任意 形狀。本實施例中,請參閱圖u,圖中陰影區域為形成 有催化劑的區域,其中形成於基板12的第—生長表面12〇 098129622 表單編號A0101 第8頁/共32頁 0982050826-0 [0017] 201109609 [0018] 〇 [0019] ❹ [0020] 的催化劑區域50為4x2排列的8個矩形區域,每個矩形區 域均與一凹槽130相鄰接。所述凹槽130排列成2行,所述 催化劑區域50與凹槽130同行排列、並間隔設置。所述凹 槽130及所述催化劑區域50形成相互平行的兩行。所述圖 11中形成於凹槽130中的催化劑區域為3x2排列的複數矩 形區域。 步驟S202,將上述形成有催化劑層的基板12在700 °C ~900 °C的空氣中退火約30分鐘〜90分鐘。 步驟S203,將退火處理過的基板12置於反應爐中,在保 護氣體環境下加熱到500°C ~740°C,然後通入碳源氣體 反應約5分鐘〜30分鐘,在基板12的第一生長表面120形 成有催化劑的區域50生長得到第一奈米碳管陣列10,在 第二生長表面140上生長得到第二奈米碳管陣列20。其中 ,碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的 碳氫化合物,保護氣體為氮氣或惰性氣體。本實施例中 所述碳源氣為乙炔,保護氣體為氬氣《由於第一奈米碳 管陣列10及第二奈米碳管陣列20為一次生長奈米碳管的 過程同時製得,因此,第一奈米碳管陣列10及第二奈米 碳管陣列20中的奈米碳管的生長時間及生長速度相同, 因此第一奈米碳管陣列10及第二奈米碳管陣列20的長度 大致相同。 步驟S30,請參閱圖4,提供一第一基底18,將所述基板 12及生長於其上的奈米碳管陣列10、20倒置,使第一奈 米碳管陣列10的遠離基板12的自由端固定於所述第一基 底18中。可選擇地,也可以不倒置所述基板12及生長於 098129622 表單編號A0101 第9頁/共32頁 0982050826-0 201109609 其上的奈米碳管陣列10、20,使第一奈米碳管陣列10的 遠離基板12的自由端固定於所述第一基底18中。 [0021] 所述第一基底1 8的材料可以為聚合物相變材料也可以為 低溶點金屬材料。 [0022] 所述聚合物相變材料係指在一定溫度(相變點)下能熔 融的聚合物,例如,矽橡膠、聚酯、聚氣乙烯、聚乙烯 醇、聚乙烯、聚丙烯、環氧樹脂、聚甲醛、聚縮醛或石 蠟等。可選擇地,該聚合物相變材料中添加有至少一種 添加劑。所述添加劑也可為聚合物。添加劑用於改善聚 合物材料的柔韌性及穩定性,還可調節聚合物材料的相 變溫度,如二曱基亞颯添加在石蠟基體材料中,可起到 上述作用。可選擇地,聚合物基體材料中填充有一些非 奈米碳管導熱材料微粒。所述非奈米碳管導熱材料微粒 在熱介面材料中的含量介於0. 1 wt%〜5wt%,該微粒導熱 無方向性,可提高熱介面材料的導熱性能。該非奈米碳 管導熱材料微粒包括奈来金屬粉體及奈米陶瓷粉體,如 銘、銀、銅、氧化銘、氮化紹.、氮化棚等。 [0023] 所述低熔點金屬包括錫、銅、銦、鉛、銻、金、銀、鉍 、銘及前述各材料的合金或混合物,如錫錯合金、銦錫 合金、錫銀銅合金、金碎合金、金鍺合金等。本實施例 中,所述第一基底18的材料為石蠟,第一基底18的厚度 為1毫米。本實施方式中,所述第一奈米碳管陣列10中的 奈米碳管的高度為3毫米,其中奈米碳管有1毫米高的部 分位於石蠟基底中,2毫米高的奈米碳管暴露在空氣中。 098129622 表單編號A0101 第10頁/共32頁 0982050826-0 201109609 闺’、中’將所述第一奈米碳管陣列⑺遠離基板I〗的自由端 口疋於帛基底18t的方法具體包括以下步驟:步驟 S3(U,將第-奈米破管陣列1()的遠離基板丨2的自由端浸 入-熔融態的第一基底材料中,並且第二奈米碳管陣列 2G不被浸入該縣態的第—基底材料中;步驟S302,固 化所述第一基底材料。 [0025] 所述第-基底18具有相對的第一表面⑽及第二表面 。所述第一奈米碳管陣列1〇由第一基底18的所述第—表 〇 面180延伸至所述第二表面182並沿垂直於第二表面ι82 的方向向外延伸’即第一奈米碳管陣列〗〇貫穿第一基底 18。所述第一基底ι8的厚度依據實際需要確定,如所需 散熱量的大小,及所需奈米碳管的固持力的大小。優選 地,所述第一基底18的厚度為〇. }毫米〜丨厘米。所述第二 奈米碳管陣列20的自由端與第一基底18之間形成一間隙 17,使第二奈米碳管陣列2〇與第一基底18不接觸。 [0026] 步驟S40,請參閱圖5,從基板12的第一生長表面12〇上 D 去除第一奈米碳管陣列1〇 ,使第一奈米碳管陣列1〇脫離 基板12而獨立形成於第一基底18上從而得到第一奈米碳 管散熱器100。該第一奈米碳管散熱器100包括一第一基 底18及第一奈米碳管陣列1〇,所述第一奈米碳管陣列1〇 貫穿第一基底18。本實施例中,第一奈米碳管陣列1〇為 呈4x2排列且相互間隔的8個矩形區域》由於該8個矩形區 域間隔排列’因此奈米碳管密度較小,使奈米碳管中的 熱量容易傳導至空氣中’因此,該種奈米碳管散熱器的 熱對流效果較好》 098129622 表單編號Α0101 第11頁/共32頁 0982050826-0 201109609 [0027] 所述去除第一奈米碳管陣列1 0的方法有多種,如機械研 磨、化學蝕刻等。本實施例中,去除第一奈米碳管陣列 1 0的方法為直接拉拔第一基底18使第一奈米碳管陣列1 0 從基板12的第一生長表面120脫離。由於第一奈米碳管陣 列10僅僅為生長於基板12的表面,第一奈米碳管陣列10 同基板12的結合力較弱。然而第一奈米碳管陣列10貫穿 第一基底18且固定於第一基底18中,第一奈米碳管陣列 10同第一基底18的結合力較強。因此,在較小的作用力 下即可使得第一奈米碳管陣列1 〇及基板12分離從而得到 第一奈米碳管散熱器100。 [0028] 可選擇地對第一散熱器100的第一基底18的第二表面182 進行蝕刻去除部分第一基底材料,使更多的奈米碳管露 出。蝕刻第一基底材料的方法可以為氧電漿蝕刻或酸腐 蝕法。若第一基底的材料為石蠟可以用氧電漿蝕刻去除 石蠟從而使第一散熱器100漏出奈米碳管,若第一基底18 的材料為低熔點金屬,則用駿腐蝕金屬基體材料從而漏 出奈米碳管。第一奈来碳管.陣列10在第一基底18的第一 表面180及第二表面182均露頭,可以使第一散熱器100 更好地與熱源或空氣接觸,從而使第一散熱器1〇〇的散熱 效果更好。 [0029] 步驟S50,請參閱圖6,提供一第二基底22,將所述基板 12及生長於第二生長表面140上的第二奈米碳管陣列20倒 置,將所述第二奈米碳管陣列20的遠離基板12的自由端 固定於所述第二基底22中。可選擇地,也可以不倒置所 述基板12及生長於第二生長表面140上的第二奈米碳管陣 098129622 表單編號A0101 第12頁/共32頁 0982050826-0 201109609 〇 列20,將所述第二奈米碳管陣列20的遠離基板12的自由 端固定於所述第二基板22中。步驟S50與步驟S30相似。 所述第二基底22的材料為聚合物相變材料或低熔點金屬 材料。所述第二基底22的材料同第一基底18的材料可以 相同也可以不同。本實施例中,第二基底22的材料為石 蠟。所述將第二奈米碳管陣列20的遠離基板12的自由端 固定於所述第二基底22中的方法與步驟S30中所述的將所 述第一奈米碳管陣列10遠離基板12的自由端固定於一第 一基底18中的方法相似。所述將第二奈米碳管陣列20的 遠離基板12的自由端固定於所述第二基底22中的方法包 括以下步驟:步驟S501,將第二奈米碳管陣列20的遠離 基板12的自由端浸入一熔融態的第二基底材料中;步驟 S502,固化所述第二基底材料。由於在步驟S20中,所製 備的第二奈米碳管陣列2 0中的奈米碳管超出基板12的第 一生長表面120,因此可實現將第二奈米碳管陣列20的自 由端固定於第二基底22中。 ❹ [0030] 步驟S60,請參閱圖7,從基板12的第二生長表面140上 去除所述第二奈米碳管陣列20使第二奈米碳管陣列20脫 離基板12使其獨立地形成於第二基底22上從而得到第二 奈米碳管散熱器200。該第二奈米碳管散熱器200包括一 第二基底22及第二奈米碳管陣列20。本實施例中,去除 第二奈米碳管陣列20的方法為直接拉拔第二基底22使第 二奈米碳管陣列20從基板的第二生長表面140脫離。本實 施例中,第二奈米碳管陣列20為3x2排列且相互間隔的6 個矩形區域。由於該6個矩形區域間隔排列,因此奈米碳 098129622 表單編號A0101 第13頁/共32頁 0982050826-0 201109609 管密度較小,使奈米碳管中的熱量容易傳導至空氣中, 因此,該種奈米碳管散熱器的熱對流效果較好。 [0031] 可選擇地,對第二奈米碳管散熱器200形成有奈米碳管的 表面進行蝕刻,使更多的奈米碳管露出。所述蝕刻第二 奈米碳管散熱器200的方法同蝕刻第一奈米碳管散熱器 100的方法相同。 [0032] 本實施例中,利用具有一層凹槽130的基板12可在一次生 長奈米碳管陣列的過程中同時製備兩個處於不同水平面 的奈米碳管陣列即第一奈米碳管陣列1 0及第二奈米碳管 陣列20。可以理解,若所述基板12的第一生長表面120所 具有的階臺式凹槽1 30為二層凹槽時,則利用本發明提供 的奈米碳管散熱器的製備方法可以在一次生長奈米碳管 陣列的過程中製備三個奈米碳管散熱器。若所述基板12 上的凹槽為N層凹槽時,則利用本發明提供的奈米碳管散 熱器的製備方法可以在一次生長奈米碳管陣列的過程中 製備出N+1個奈米碳管散熱器。請參閱圖12,為本發明提201109609 VI. Description of the Invention: [Technical Field] The present invention relates to a device and method for preparing a heat sink, and more particularly to a device and method for preparing a carbon nanotube heat sink. [Prior Art] [〇〇〇2] Since the early 1990s, nanomaterials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. Nano carbon tubes have the advantages of high mechanical strength and low density. In recent years, with the deepening of research on nanotubes, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, the application of large halo in field emission electron sources, sensors, and new optical materials, such as soft magnetic materials, has been continuously studied. Report. Since the carbon nanotubes have good thermal conductivity along their radial direction, the carbon nanotube array can be used as a heat sink in the field of semiconductors. [003] Please refer to a heat sink disclosed in Chinese Patent Application No. 010964028, filed on Nov. 11, 2005. The heat sink comprises: a substrate and a plurality of carbon nanotubes. The substrate has a first surface and a second surface opposite the first surface. The plurality of carbon nanotubes penetrate the second surface from the first surface of the substrate and extend outward. The method for preparing the heat sink specifically includes the steps of: providing a substrate; forming a plurality of carbon nanotubes on the substrate; fixing a substrate at one end of the plurality of carbon nanotubes; and removing the substrate. The heat sink prepared by the method uses a carbon nanotube as a heat sink fin. However, the density of the carbon nanotubes in the heat sink prepared by this method is relatively large, so that the heat of the carbon nanotubes is not easily conducted to the air 098129622. Form No. A0101 Page 4 / Total 32 pages 0992050826-0 201109609 'Therefore, The heat convection effect of the radiator is poor. [0004] Ο In order to overcome the above problems, a heat sink and a heat sink thereof are disclosed in "Chip cooling with integrated carbon nanotube microfin architectures (K. Kordas et al. Appl. Phys. Lett. 90. 123105 (2007)). The heat sink comprises a crucible substrate on which a 10×10 carbon nanotube array is grown in a square array, and the size of the carbon nanotube array is I 2×10×10×3 mm. The preparation method comprises the steps of: growing a carbon nanotube array on a Shixi substrate; treating the carbon nanotube array with a pulsed laser at a scanning rate of 5 〇 mm/second to enable the laser-treated nanocarbon The tube is removed to form an array of IGxlG nano-materials. The heat sink has a kappa gap between the arrays of carbon nanotubes, thereby improving the heat convection effect of the heat sink. Because of the substrate plane used to grow the carbon nanotube array, only one array of carbon nanotubes can be formed on the substrate at a time, so that the carbon nanotubes (four) prepared on the substrate each time are also Can only be made A heat sink 1 , the method for preparing the heat sink is relatively high in cost and low in efficiency. [0006] The invention provides a device for efficiently preparing a carbon nanotube heat sink and adopting the same A method for preparing a carbon nanotube heat sink is necessary. [0007] A preparation device for a carbon nanotube heat sink includes a substrate having a surface having a plurality of layers formed on the surface of the substrate The carbon nanotubes and the plurality of second carbon nanotubes, wherein the first and second carbon nanotubes have a height difference from the free ends of the second carbon nanotubes from 098129622 0982050826-0 201109609. [0008] a method for preparing a carbon nanotube heat sink, comprising the steps of: providing a substrate; growing a plurality of first carbon nanotubes and a plurality of second carbon nanotubes in the same direction on the substrate, wherein the first nano tube The free end of the carbon nanotube has a height difference from the free end of the second carbon nanotube; a first substrate and a second substrate are provided, and the free end of the first carbon nanotube farther from the substrate is fixed at the In the first substrate; fixing the free end to a first carbon nanotube in a substrate is removed from the substrate, and is independently formed on the first substrate to obtain a first carbon nanotube heat sink; the free end of the second carbon nanotube is fixed In the second substrate; the second carbon nanotube having the free end fixed in the second substrate is removed from the substrate, and is independently formed on the second substrate to obtain a second carbon nanotube The device for preparing a carbon nanotube heat sink according to the prior art includes a substrate having a plurality of first carbon nanotubes and a plurality of second surfaces formed on the surface of the substrate The carbon nanotube has a height difference between the free end of the first carbon nanotube and the free end of the second carbon nanotube. The device for preparing a carbon nanotube radiator can prepare a plurality of carbon nanotube radiators, thereby improving the preparation efficiency of the carbon nanotube radiator and reducing the production cost. [Embodiment] [0010] In order to further clarify the present invention, the following specific embodiments are described in detail below with reference to the accompanying drawings. [0011] Please refer to FIG. 1, which is a flow chart of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. Please refer to FIG. 2 to FIG. 7 for a specific embodiment of the present invention. 098129622 Form No. A0101 Page 6 of 32 0982050826-0 201109609 A process flow diagram of a method for preparing a carbon nanotube heat sink is provided. The -= method consists of six steps from si〇 to 邡〇. Just _s1〇, referring to Fig. 2, a substrate 12' is provided. The substrate 12 has a second surface, i.e., a bottom surface, and a second surface, i.e., a top surface, and the first surface is crucated on the second surface. The second surface is provided with a plurality of four grooves 130 spaced apart from each other such that the substrate 12 is formed with two different heights and spaced apart from each other by the first growth surface 120 and the second growth surface 14A. The grooves 130 are arranged in a lattice on the second surface of the substrate. The first growth surface 120 and the second surface of the storm panel 12 are coplanar. The bottom surface of the groove 130 is a second growth 〇 * face 140. The height of the first growth surface 120 is higher than the height of each of the two growth surfaces 140. The substrate 12 is made of a P-type or N-type slab substrate, or a ruthenium substrate having a large oxidization is selected. In the embodiment, the substrate 12 is a stone plate. The shape and number of layers of the groove 13A are not limited. It can be understood that the groove 130 can be a layer groove, a second groove, a third and a concave, or an N layer, a groove or the like. The bottom surface of the same layer of the four grooves is equal to the surface of the substrate 12, and the surface hooks are equidistant. The distance from the bottom surface of the q-slot of the different layers to the second surface of the substrate 12 is not equal. The groove 00玎 is stepped or stepped, as shown in Fig. 8, and may be arranged concentrically, as shown in Fig. 9. The grooves 130 may be staggered t, and a dot matrix is formed on the surface of the substrate 12 as shown in FIG. The groove I30 can be formed by a method of casting or etching the substrate 12. As shown in FIG. 11, in the embodiment, six recesses 130 are formed on the base substrate 12. The six grooves are arranged in a 3x2 dot matrix on the surface of the 矽 substrate 12, that is, the six grooves are arranged in two rows, and three grooves 130 are arranged at intervals of each row. ', one layer and the bottom surface of each groove 13〇 are the second growth surface 098129622 Form No. A0101 Page 7 / Total 32 pages 0982050826-0 201109609 140 ' and the shape of the second growth surface i4〇 is rectangular. [0016] [0016] Step S20, referring to FIG. 3, an array of carbon nanotubes having substantially the same length is formed on the first growth surface 120 and the second growth surface 14 of the substrate 12, wherein The carbon nanotube array on the first growth surface 120 of the substrate 12 is the first carbon nanotube array 10, and the carbon nanotube array formed on the second growth surface 14 is the second carbon nanotube array 20. The growth direction of the first carbon nanotube array 10 and the second carbon nanotube array 2 is the same. The length of the carbon nanotube array grown is controlled such that the carbon nanotubes in the second carbon nanotube array 20 extend beyond the first growth surface 12 of the substrate 12 (because the first growth surface 120 is higher than the second growth) The surface is 14 〇, and the lengths of the first carbon nanotube array 10 and the second carbon nanotubes are the same. Therefore, the first carbon nanotube array 10 is higher than the second nano tube; the carbon nanotube array 2〇 That is, the free end of the first carbon nanotube array 10 and the free end of the second carbon nanotube array 2 have a height difference. Referring to FIG. 10, the first growth surface 120 and the second growth surface 140 are The method for forming the first-carbon nanotube array 1 () and the second carbon nanotube array 20 respectively includes the following steps: Step S201, a partial region of the first growth surface 12 of the substrate 12 and a second growth A catalyst layer is uniformly formed on the surface 140. The material of the catalyst layer may be selected from iron (Fe), cobalt (c), nickel (Ni) or any combination thereof. The material of the catalyst in the embodiment is iron. The region where the catalyst is formed on the first growth surface 12 of the substrate 12 may be of any shape. In this embodiment, please refer to FIG. 9 , where the shaded area is the region where the catalyst is formed, wherein the first growth surface 12 129129622 is formed on the substrate 12. Form No. A0101 Page 8 / Total 32 pages 0992050826-0 [0017] 201109609 [0019] 催化剂 [0020] The catalyst region 50 is 8 rectangular regions of 4x2 arrangement, each rectangular region is adjacent to a groove 130. The grooves 130 are arranged in 2 rows, The catalyst region 50 is arranged in parallel with the groove 130 and spaced apart. The groove 130 and the catalyst region 50 form two rows parallel to each other. The catalyst regions formed in the groove 130 in Fig. 11 are arranged in a 3x2 arrangement. In step S202, the substrate 12 on which the catalyst layer is formed is annealed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes. Step S203, the annealed substrate 12 is placed in a reaction furnace. In the protective gas atmosphere, the mixture is heated to 500 ° C ~ 740 ° C, and then the carbon source gas is introduced for about 5 minutes to 30 minutes, and the region 50 where the catalyst is formed on the first growth surface 120 of the substrate 12 is grown to obtain the first Nano carbon tube array 10, The second carbon nanotube array 20 is grown on the second growth surface 140. The carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane, and the shielding gas is nitrogen or an inert gas. In the example, the carbon source gas is acetylene, and the shielding gas is argon. "Because the first carbon nanotube array 10 and the second carbon nanotube array 20 are simultaneously grown carbon nanotubes, the process is simultaneously produced, therefore, The growth time and growth rate of the carbon nanotubes in the carbon nanotube array 10 and the second carbon nanotube array 20 are the same, so the lengths of the first carbon nanotube array 10 and the second carbon nanotube array 20 Roughly the same. Step S30, referring to FIG. 4, a first substrate 18 is provided, and the substrate 12 and the carbon nanotube arrays 10, 20 grown thereon are inverted to make the first carbon nanotube array 10 away from the substrate 12. The free end is fixed in the first substrate 18. Alternatively, the substrate 12 and the carbon nanotube arrays 10 and 20 grown on the 098129622 Form No. A0101, page 9 / 32 pages 0982050826-0 201109609 may be omitted, so that the first carbon nanotube array is The free end of the 10 away from the substrate 12 is fixed in the first substrate 18. [0021] The material of the first substrate 18 may be a polymer phase change material or a low melting point metal material. [0022] The polymer phase change material refers to a polymer that can be melted at a certain temperature (phase change point), for example, ruthenium rubber, polyester, polyethylene, polyvinyl alcohol, polyethylene, polypropylene, ring Oxygen resin, polyoxymethylene, polyacetal or paraffin. Optionally, at least one additive is added to the polymeric phase change material. The additive may also be a polymer. Additives are used to improve the flexibility and stability of the polymer material, and also to adjust the phase transition temperature of the polymer material, such as the addition of dimercaptoarthene to the paraffin matrix material. Alternatively, the polymeric matrix material is filled with particles of non-carbon nanotube heat conductive material. The content of the non-carbon nanotube heat conductive material particles in the thermal interface material is between 0.1 wt% and 5 wt%, and the particles are thermally conductive and non-directional to improve the thermal conductivity of the thermal interface material. The non-nano carbon nanotube thermal conductive material particles include neiled metal powder and nano ceramic powder, such as Ming, silver, copper, oxidized Ming, nitriding, and nitriding shed. [0023] The low melting point metal includes tin, copper, indium, lead, antimony, gold, silver, antimony, and alloys or mixtures of the foregoing materials, such as tin alloy, indium tin alloy, tin silver copper alloy, gold Broken alloy, gold-bismuth alloy, etc. In this embodiment, the material of the first substrate 18 is paraffin, and the thickness of the first substrate 18 is 1 mm. In this embodiment, the height of the carbon nanotubes in the first carbon nanotube array 10 is 3 mm, wherein the carbon nanotubes having a height of 1 mm are located in the paraffin substrate, and the carbon of 2 mm is high. The tube is exposed to the air. 098129622 Form No. A0101 Page 10 / Total 32 pages 0992050826-0 201109609 The method of arranging the free port of the first carbon nanotube array (7) away from the substrate I to the base 18t includes the following steps: Step S3 (U, immersing the free end of the first-nano-tube array 1 () away from the substrate 丨2 into the first base material in a molten state, and the second carbon nanotube array 2G is not immersed in the county state In the first substrate material, in step S302, the first substrate material is cured. [0025] The first substrate 18 has an opposite first surface (10) and a second surface. The first carbon nanotube array 1〇 Extending from the first surface 180 of the first substrate 18 to the second surface 182 and extending outward in a direction perpendicular to the second surface ι82, ie, the first carbon nanotube array 〇 penetrates the first substrate 18. The thickness of the first substrate ι8 is determined according to actual needs, such as the amount of heat required, and the amount of holding force of the desired carbon nanotube. Preferably, the thickness of the first substrate 18 is 〇. } mm to 丨 cm. The free end of the second carbon nanotube array 20 A gap 17 is formed between the first substrates 18 so that the second carbon nanotube array 2 is not in contact with the first substrate 18. [Step S40] Referring to FIG. 5, from the first growth surface 12 of the substrate 12 The first carbon nanotube array 1 is removed from the upper surface, and the first carbon nanotube array 1 is separated from the substrate 12 and formed on the first substrate 18 to obtain the first carbon nanotube heat sink 100. The first The carbon nanotube heat sink 100 includes a first substrate 18 and a first carbon nanotube array 1 〇, the first carbon nanotube array 1 〇 extends through the first substrate 18. In this embodiment, the first nanometer The carbon tube array 1 is 8 rectangular regions arranged in a 4x2 arrangement and spaced apart from each other. Since the eight rectangular regions are spaced apart, the carbon nanotube density is small, so that the heat in the carbon nanotubes is easily conducted into the air. Therefore, the heat convection effect of the carbon nanotube heat sink is better. 098129622 Form No. 1010101 Page 11 / Total 32 page 0992050826-0 201109609 [0027] The method for removing the first carbon nanotube array 10 is a variety of, such as mechanical grinding, chemical etching, etc. In this embodiment, the first nanocarbon is removed The method of tube array 10 is to directly pull the first substrate 18 to detach the first nanotube array 10 from the first growth surface 120 of the substrate 12. Since the first nanotube array 10 is only grown on the substrate 12 The surface of the first carbon nanotube array 10 is weaker than the substrate 12. However, the first carbon nanotube array 10 penetrates the first substrate 18 and is fixed in the first substrate 18, the first carbon nanotube array The bonding force with the first substrate 18 is strong. Therefore, the first carbon nanotube array 1 and the substrate 12 can be separated by a small force to obtain the first carbon nanotube heat sink 100. [0028] Optionally, the second surface 182 of the first substrate 18 of the first heat spreader 100 is etched to remove a portion of the first substrate material to expose more of the carbon nanotubes. The method of etching the first substrate material may be an oxygen plasma etching or an acid etching method. If the material of the first substrate is paraffin, the paraffin wax can be removed by etching with oxygen plasma to cause the first heat sink 100 to leak out of the carbon nanotubes. If the material of the first substrate 18 is a low melting point metal, the metal substrate is corroded to leak out. Carbon nanotubes. The first carbon nanotubes. The array 10 has an outcrop on the first surface 180 and the second surface 182 of the first substrate 18, so that the first heat sink 100 can better contact the heat source or the air, thereby making the first heat sink 1 The heat dissipation effect of the crucible is better. [0029] Step S50, referring to FIG. 6, a second substrate 22 is provided, and the substrate 12 and the second carbon nanotube array 20 grown on the second growth surface 140 are inverted, and the second nanometer is The free end of the carbon tube array 20 remote from the substrate 12 is fixed in the second substrate 22. Alternatively, the substrate 12 and the second carbon nanotube array 098129622 grown on the second growth surface 140 may not be inverted. Form No. A0101 Page 12/32 Page 0992050826-0 201109609 20列20, The free end of the second carbon nanotube array 20 remote from the substrate 12 is fixed in the second substrate 22. Step S50 is similar to step S30. The material of the second substrate 22 is a polymer phase change material or a low melting point metal material. The material of the second substrate 22 may be the same as or different from the material of the first substrate 18. In this embodiment, the material of the second substrate 22 is paraffin wax. The method of fixing the free end of the second carbon nanotube array 20 away from the substrate 12 in the second substrate 22 and the step of disposing the first carbon nanotube array 10 away from the substrate 12 in step S30 The method in which the free end is fixed in a first substrate 18 is similar. The method of fixing the free end of the second carbon nanotube array 20 away from the substrate 12 in the second substrate 22 includes the following steps: Step S501, moving the second carbon nanotube array 20 away from the substrate 12 The free end is immersed in a molten second substrate material; in step S502, the second substrate material is cured. Since the carbon nanotubes in the prepared second carbon nanotube array 20 exceed the first growth surface 120 of the substrate 12 in step S20, the free ends of the second carbon nanotube array 20 can be fixed. In the second substrate 22. [0030] Step S60, referring to FIG. 7, the second carbon nanotube array 20 is removed from the second growth surface 140 of the substrate 12 to separate the second carbon nanotube array 20 from the substrate 12 to form independently. On the second substrate 22, a second carbon nanotube heat sink 200 is obtained. The second carbon nanotube heat sink 200 includes a second substrate 22 and a second carbon nanotube array 20. In the present embodiment, the second carbon nanotube array 20 is removed by directly drawing the second substrate 22 to detach the second carbon nanotube array 20 from the second growth surface 140 of the substrate. In the present embodiment, the second carbon nanotube array 20 is 6 rectangular regions arranged in 3x2 and spaced apart from each other. Since the six rectangular regions are arranged at intervals, the carbon carbon 098129622 form number A0101 page 13 / total 32 pages 0982050826-0 201109609 The tube density is small, so that the heat in the carbon nanotubes is easily conducted to the air, therefore, The carbon convection heat sink has better heat convection effect. [0031] Alternatively, the surface of the second carbon nanotube heat sink 200 formed with the carbon nanotubes is etched to expose more of the carbon nanotubes. The method of etching the second carbon nanotube heat sink 200 is the same as the method of etching the first carbon nanotube heat sink 100. [0032] In this embodiment, the substrate 12 having a layer of grooves 130 can simultaneously prepare two carbon nanotube arrays at different levels, that is, the first carbon nanotube array, in the process of growing the carbon nanotube array. 10 and a second carbon nanotube array 20. It can be understood that if the first growth surface 120 of the substrate 12 has a stepped groove 130 of a two-layer groove, the method for preparing the carbon nanotube heat sink provided by the present invention can be grown once. Three carbon nanotube heat sinks were prepared during the carbon nanotube array process. If the groove on the substrate 12 is an N-layer groove, the method for preparing a carbon nanotube heat sink provided by the present invention can prepare N+1 nannies in the process of once growing the carbon nanotube array. Carbon tube radiator. Please refer to FIG. 12, which is a description of the present invention.

供的具有二層凹槽的基板12上生長有三個不同高度的奈 CJ 米碳管陣列,所述奈米碳管陣列包括複數奈米碳管,利 用該基板12可以一次製備出三個奈米碳管散熱器。 [0033] 本發明提供的用於製備奈米碳管散熱器的裝置,其包括 一基板,該基板的表面上形成有複數第一奈米碳管及複 數第二奈米碳管,且所述第一奈米碳管的自由端與第二 奈米碳管的自由端之間具有一高度差。採用該種製備奈 米碳管散熱器的裝置可製備複數奈米碳管散熱器,提高 了奈米碳管散熱器的製備效率,降低了生產成本。 098129622 表單編號A0101 第14頁/共32頁 0982050826-0 201109609 【圖式簡單說明】 [0034] 圖1係本發明實施例奈米碳管散熱器的製備方法流程圖。 [0035] 圖2至圖7係本發明實施例奈米碳管散熱器的製備方法的 工藝流程圖。 [0036] 圖8係本發明實施例奈米碳管散熱器的製備方法中採用的 具有二層階梯狀凹槽的基板的俯視圖。 [0037] 圖9係本發明實施例奈米碳管散熱器的製備方法中採用的 具有同心狀凹槽的基板的俯視圖。 〇 ^ [0038] 圖10係本發明實施例奈米碳管散熱器製備方法中採用的 奈米碳管陣列的製備方法流程圖。 [0039] 圖11係本發明實施例奈米碳管散熱器製備方法中於基板 表面形成催化劑的區域的示意圖。 [0040] 圖12係本發明實施例奈米碳管散熱器製備方法中採用的 具有二層凹槽的奈米碳管散熱器的製備裝置的主視圖。 [0041] 圖13係本發明實施例奈米碳管散熱器製備方法中採用的Three different heights of carbon nanotube arrays are grown on the substrate 12 having two layers of grooves, and the carbon nanotube array includes a plurality of carbon nanotubes, and the substrate 12 can be used to prepare three nanometers at a time. Carbon tube radiator. [0033] The apparatus for preparing a carbon nanotube heat sink according to the present invention includes a substrate having a plurality of first carbon nanotubes and a plurality of second carbon nanotubes formed on a surface thereof, and There is a height difference between the free end of the first carbon nanotube and the free end of the second carbon nanotube. The device for preparing a carbon nanotube radiator can prepare a plurality of carbon nanotube radiators, thereby improving the preparation efficiency of the carbon nanotube radiator and reducing the production cost. 098129622 Form No. A0101 Page 14 of 32 0982050826-0 201109609 [Simplified Schematic] [0034] FIG. 1 is a flow chart of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 2 to FIG. 7 are process flow diagrams of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 8 is a plan view of a substrate having two stepped grooves used in a method of fabricating a carbon nanotube heat sink according to an embodiment of the present invention. 9 is a plan view of a substrate having concentric grooves used in a method of fabricating a carbon nanotube heat sink according to an embodiment of the present invention. 〇 ^ [0038] FIG. 10 is a flow chart showing a method for preparing a carbon nanotube array used in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 11 is a schematic view showing a region where a catalyst is formed on a surface of a substrate in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 12 is a front view of a preparation apparatus of a carbon nanotube heat sink having a two-layer groove used in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 13 is a view of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention;

Q 具有交錯排列凹槽的基板的示意圖。 【主要元件符號說明】 [0042] 第一奈米碳管陣列 10 基板 12 間隙 17 第一基底 18 第二奈米碳管陣列 20 第二基底 22 表單編號A0101 第15頁/共32頁 0982050826-0 098129622 201109609 催化劑區域 50 第一奈米碳管散熱 100 器 第一生長表面 120 凹槽 130 第二生長表面 140 第一基底的第一表 180 面 第一基底的第二表 182 面 第二奈米碳管散熱 200 . 器 098129622 表單編號A0101 第16頁/共32頁 0982050826-0Q Schematic diagram of a substrate having staggered grooves. [Main component symbol description] [0042] First carbon nanotube array 10 Substrate 12 Gap 17 First substrate 18 Second carbon nanotube array 20 Second substrate 22 Form No. A0101 Page 15 of 32 0982050826-0 098129622 201109609 Catalyst Zone 50 First Carbon Tube Heat Dissipation 100 First Growth Surface 120 Groove 130 Second Growth Surface 140 First Table 180 of the First Substrate Second Table 182 of the First Substrate Second Surface Carbon Tube heat dissipation 200. 098129622 Form number A0101 Page 16 / Total 32 page 0992050826-0

Claims (1)

201109609 七、申請專利範圍: 1 . 一種奈米碳管散熱器的製備裝置,其包括一基板,該基板 具有一表面,其中,該基板的表面上形成有複數第一奈米 碳管及複數第二奈米碳管,所述第一及第二奈米碳管均自 基板朝同一生長方向生長,所述第一奈米碳管的自由端與 第二条米碳管的自由端之間具有一高度差。 2 .如申請專利範圍第1項所述的奈米碳管散熱器的製備裝置 ,其中,所述基板的所述表面上設有複數凹槽,該凹槽具 有一底面,所述複數第一奈米碳管生長於所述基板的所述 0 表面上,所述第二奈米碳管生長於所述凹槽的底面内。 3 .如申請專利範圍第2項所述的奈米碳管散熱器的製備裝置 ,其中,所述複數凹槽中的每一凹槽為N層凹槽,其中N大 於等於1。 4 .如申請專利範圍第3項所述的奈米碳管散熱器的製備裝置 ,其中,所述N大於等於2時,所述第二奈米碳管包括複數 高度不同的奈米碳管。. ^ 5 .如申請專利範圍第3項所述的奈米碳管散熱器的製備裝置 ,其中,所述每一凹槽内同一層凹槽的底面到所述基板的 表面的距離相等。 6 .如申請專利範圍第1項或第2項所述的奈米碳管散熱器的製 備裝置,其中,所述第一奈米碳管及第二奈米碳管的長度 相同。 7 .如申請專利範圍第1項或.第2項所述的奈米碳管散熱器的製 備裝置,其中,所述第一奈米碳管及第二奈米碳管均超出 所述基板的表面。 098129622 表單編號A0101 第17頁/共32頁 0982050826-0 201109609 的製備方法,其包括以下步驟: 8 . —種奈米碳管散熱|| 提供一基板; 於所述基板上沿同〜. 二奈米碳管,其中第〜向生長複數第—奈米碳管及複數第 的自由端具有一高夜:奈米碳管的自由端與第二奈米碳管 提供一第一基底及〜结 卓二基底,將距離基板較遠的第一夺 米碳管的自由端" 於所述第一基底中; 將自由端固定於苐〜甘 基底中的第一奈米碳管從基板上去除 ,使其獨立地形成於所述第—基底上從而得到—第一夺米 碳管散熱器; 將第二奈米碳”自由端固定於所述第二基底中; 將自由端固定於第二基底中的第二奈米碳管從基板上去除 ,使其獨立地形成於所述第二基底上從而得到一第二奈米 碳管散熱器。 •如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ,其中,所述提供一基板的步驟後還進么步包括在所述基 板的一表面開設凹槽的步驟,並在基板的所述表面上生長 所述複數第一奈米碳管,友在凹槽的底面内生長所述複數 第二奈米碳管。 10 .如申請專利範圍第9項所述的奈米碳管散熱器的製備方法 ,其中,所述凹槽為N層凹槽,其中N大於等於1。 11 _如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ,其中,所述基底的厚度為0. 1毫米〜1厘米。 12 .如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ’其中’所述將距離基板較遠的第一奈米碳管的自由端固 定於所述第一基底中的方法包括以下步驟:將第—奈米碳 098129622 表單編號A0101 0982050826-0 第18頁/共32頁 201109609 管的自由端浸入一熔融態的第一基底材料中;固化該第一 基底材料;所述將距離第二基底較近的第二奈米碳管的自 由端固定於所述第二基底中的方法包括以下步驟:將第二 奈米碳管的自由端浸入一熔融態的第二基底材料中;固化 該第二基底材料。 13 .如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ,其中,所述第一基底材料包括聚合物相變材料或低熔點 金屬材料;所述第二基底材料包括聚合物相變材料或低熔 點金屬材料。 14 .如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ,其中,所述第一奈米碳管及第二奈米碳管均超出所述基 板的表面。 15 .如申請專利範圍第8項所述的奈米碳管散熱器的製備方法 ,其中,所述第一奈米碳管及第二奈米碳管的長度相同。 〇 098129622 表單編號A0101 第19頁/共32頁 0982050826-0201109609 VII. Patent application scope: 1. A device for preparing a carbon nanotube heat sink, comprising: a substrate, wherein the substrate has a surface, wherein a plurality of first carbon nanotubes and plural numbers are formed on a surface of the substrate a second carbon nanotube, wherein the first and second carbon nanotubes are grown from the substrate toward the same growth direction, and the free end of the first carbon nanotube has a free end between the first carbon nanotube and the second carbon nanotube A height difference. 2. The apparatus for preparing a carbon nanotube heat sink according to claim 1, wherein the surface of the substrate is provided with a plurality of grooves, the groove having a bottom surface, the plurality first A carbon nanotube is grown on the 0 surface of the substrate, and the second carbon nanotube is grown in a bottom surface of the recess. 3. The apparatus for preparing a carbon nanotube heat sink according to claim 2, wherein each of the plurality of grooves is an N-layer groove, wherein N is greater than one. 4. The apparatus for preparing a carbon nanotube heat sink according to claim 3, wherein, when the N is greater than or equal to 2, the second carbon nanotube comprises a plurality of carbon nanotubes having different heights. The apparatus for preparing a carbon nanotube heat sink according to claim 3, wherein a distance from a bottom surface of the same layer of grooves in each of the grooves to a surface of the substrate is equal. 6. The apparatus for preparing a carbon nanotube heat sink according to claim 1 or 2, wherein the first carbon nanotube and the second carbon nanotube have the same length. 7. The apparatus for preparing a carbon nanotube heat sink according to claim 1 or 2, wherein the first carbon nanotube and the second carbon nanotube are both beyond the substrate. surface. 098129622 Form No. A0101 Page 17 / Total 32 page 0992050826-0 201109609 The preparation method includes the following steps: 8 - a kind of carbon nanotube heat dissipation | | providing a substrate; along the substrate along the same ~. The carbon nanotubes, wherein the first to the growing plurality of carbon nanotubes and the plurality of free ends have a high night: the free end of the carbon nanotube and the second carbon nanotube provide a first substrate and a knot a substrate, the free end of the first carbon nanotube having a distance from the substrate is " in the first substrate; and the first carbon nanotube having the free end fixed in the substrate is removed from the substrate Forming independently on the first substrate to obtain a first carbon nanotube heat sink; fixing a second nano carbon free end in the second substrate; fixing the free end to the second substrate The second carbon nanotube is removed from the substrate, and is independently formed on the second substrate to obtain a second carbon nanotube heat sink. • The nanocarbon as described in claim 8 Method for preparing a tube heat sink, wherein After the step of providing a substrate, the method further includes the step of forming a groove on a surface of the substrate, and growing the plurality of first carbon nanotubes on the surface of the substrate, in the bottom surface of the groove The method for preparing a carbon nanotube heat sink according to claim 9, wherein the groove is an N-layer groove, wherein N is greater than or equal to 1 The thickness of the substrate is 0.1 mm to 1 cm. 12. As described in claim 8 of the patent application, the method of preparing the carbon nanotube heat sink according to claim 8 Method for preparing a carbon nanotube heat sink, wherein the method of fixing a free end of a first carbon nanotube farther from the substrate to the first substrate comprises the steps of: first carbon 098129622 Form No. A0101 0982050826-0 Page 18 of 32 201109609 The free end of the tube is immersed in a molten first substrate material; the first substrate material is cured; the second nano-near is closer to the second substrate The free end of the carbon tube is fixed to the first The method in the substrate comprises the steps of: dipping the free end of the second carbon nanotube into a second substrate material in a molten state; curing the second substrate material. 13. The nanoparticle as described in claim 8 A method of preparing a carbon tube heat sink, wherein the first substrate material comprises a polymer phase change material or a low melting point metal material; and the second substrate material comprises a polymer phase change material or a low melting point metal material. The method for preparing a carbon nanotube heat sink according to Item 8, wherein the first carbon nanotube and the second carbon nanotube are both beyond the surface of the substrate. The method for producing a carbon nanotube heat sink according to claim 8, wherein the first carbon nanotube and the second carbon nanotube have the same length. 〇 098129622 Form No. A0101 Page 19 of 32 0982050826-0
TW98129622A 2009-09-03 2009-09-03 Manufacturing apparatus and manufacturing method for carbon nanotube heat sink TWI377331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98129622A TWI377331B (en) 2009-09-03 2009-09-03 Manufacturing apparatus and manufacturing method for carbon nanotube heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98129622A TWI377331B (en) 2009-09-03 2009-09-03 Manufacturing apparatus and manufacturing method for carbon nanotube heat sink

Publications (2)

Publication Number Publication Date
TW201109609A true TW201109609A (en) 2011-03-16
TWI377331B TWI377331B (en) 2012-11-21

Family

ID=44835996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98129622A TWI377331B (en) 2009-09-03 2009-09-03 Manufacturing apparatus and manufacturing method for carbon nanotube heat sink

Country Status (1)

Country Link
TW (1) TWI377331B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483893B (en) * 2012-03-28 2015-05-11 Hon Hai Prec Ind Co Ltd Epitaxial base
US9048347B2 (en) 2012-03-28 2015-06-02 Tsinghua University Epitaxial structure including carbon nanotube layer in grooves
US9570293B2 (en) 2012-03-28 2017-02-14 Tsinghua University Method for making epitaxial base
US9613802B2 (en) 2012-03-28 2017-04-04 Tsinghua University Method for making epitaxial structure
TWI582370B (en) * 2015-03-17 2017-05-11 Method for Making High Thermal Conductivity Elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483893B (en) * 2012-03-28 2015-05-11 Hon Hai Prec Ind Co Ltd Epitaxial base
US9048347B2 (en) 2012-03-28 2015-06-02 Tsinghua University Epitaxial structure including carbon nanotube layer in grooves
US9570293B2 (en) 2012-03-28 2017-02-14 Tsinghua University Method for making epitaxial base
US9613802B2 (en) 2012-03-28 2017-04-04 Tsinghua University Method for making epitaxial structure
US9773664B2 (en) 2012-03-28 2017-09-26 Tsinghua University Epitaxial base
TWI582370B (en) * 2015-03-17 2017-05-11 Method for Making High Thermal Conductivity Elements

Also Published As

Publication number Publication date
TWI377331B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CN101996890B (en) Preparation device and method of carbon nanotube radiators
JP5102328B2 (en) Manufacturing method of heat conduction member
US10622516B2 (en) Epitaxial structure and method for making the same
JP4713301B2 (en) Thermally conductive material and method for producing the same
JP5001387B2 (en) Manufacturing method of heat conduction structure
CN101121497A (en) Carbon nano-tube composite material and preparation method thereof
US20130288458A1 (en) Method for making epitaxial structure
TW201109609A (en) Manufacturing apparatus and manufacturing method for carbon nanotube heat sink
US9450142B2 (en) Method for making epitaxial structure
US20130285212A1 (en) Epitaxial structure
CN104952984B (en) The preparation method of epitaxial structure
TW201238887A (en) A method for making epitaxial structure
KR101169538B1 (en) Method for manufacturing graphene semiconductor device, graphene semiconductor device manufactured by the same, graphene transistor comprising the graphene semiconductor device
KR102618807B1 (en) Semiconductor device, Method for forming semiconductor nanorods, and Manufacturing the Same
KR101113287B1 (en) Method for manufacturing graphene semiconductor device, graphene semiconductor device manufactured by the same, graphene transistor comprising the graphene semiconductor device
TWI792462B (en) Composite substrate for epitaxial growth and method of manufacturing the same
TWI417404B (en) Thermal interface material and method for making same
CN102723414B (en) Preparation method for epitaxial structure body
Wang et al. Method of fabricating vertically aligned group III-V nanowires
JP2004250314A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE SEMICONDUCTOR EPITAXIAL SUBSTRATE, FIELD EMISSION TYPE CATHODE DEVICE, FIELD EMISSION DISPLAY DEVICE AND ITS MANUFACTURING METHOD
TW201043909A (en) Thermal interface material and method for manufacturing the same