TW201107381A - Fluorescence conversion solar cell-production in an injection moulding process - Google Patents

Fluorescence conversion solar cell-production in an injection moulding process Download PDF

Info

Publication number
TW201107381A
TW201107381A TW099111289A TW99111289A TW201107381A TW 201107381 A TW201107381 A TW 201107381A TW 099111289 A TW099111289 A TW 099111289A TW 99111289 A TW99111289 A TW 99111289A TW 201107381 A TW201107381 A TW 201107381A
Authority
TW
Taiwan
Prior art keywords
shaped polymer
polymer body
acrylate
methyl
poly
Prior art date
Application number
TW099111289A
Other languages
Chinese (zh)
Inventor
Hans Lichtenstein
Claudius Neumann
Arne Schmidt
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of TW201107381A publication Critical patent/TW201107381A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F120/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a combination of fluorescence conversion dyes in shaped polymer bodies composed of polymethyl (meth) acrylate, which are used to convert natural solar radiation to light usable by the solar cells. The shaped polymer bodies are produced in an injection moulding process.

Description

201107381 六、發明說明: 【發明所屬之技術領域】 本發明係關於螢光轉換型染料在由聚(甲基)丙燃酸 甲酯所構成的成型聚合物體中之組合,該組合用以將自然 太陽射線轉換成太陽能電池可使用的光。該成型聚合物體 係在注射模塑法中製造。 【先前技術】 光電池僅能將入射陽光的一部分轉換成可使用的電能 :大部分能量以熱形式損耗。例如,矽太陽能電池能夠吸 收具有能量高於矽晶體的帶邊緣K1電子伏特的所有光子 。此對應於波長<1 100奈米。吸收的光子的過剩能量轉化 成熱並導致光電池發熱;光電池的效能因而降低。 已經由 US 4,110,123 (Fraunhofer)或由 Appl. Phys. 14, 123 ff ( 1 977 )知道螢光轉換型太陽能電池的構造和效 果。 WO 200 7/0 31446 (BASF AG)描述由一或多個已塗覆 有螢光染料之玻璃板或聚合物平板形成的螢光轉換型太陽 能電池所使用的螢光染料係以三合並苯(terrylene)羧酸 衍生物爲基礎的染料或這些染料與其他螢光染料之組合。 該專利的一項缺點是須有以包含該染料之調合物塗覆玻璃 板的獨立步驟。 包含透鏡或鏡子的聚光系統 -5- 201107381 已經知道用以將光聚集在太陽能電池上之以透鏡或鏡 子爲基礎的光學系統;達到的聚光倍數高達1 000倍。但是 ’光學解決方案的缺點是全電磁光譜的光均被聚集,使得 不僅有效的光被聚集,光電無效的光亦被聚集。此導致在 太陽能電池上產生不欲的熱應力及降低效能。要使得溫度 不會變得過高,可以主動或被動的方式冷卻太陽能電池。 此外,透鏡或透鏡系統必須以複雜的機械方式追蹤太陽的 位置:此外,其僅能反映直射光。擴散光對於能量產生的 貢獻極微,若有的話(請參考 US-A 5,589,297)。 【發明內容】 問題 就前文討論的先前技藝觀之,所針對的問題係發展用 於聚集太陽的光輻射之方法,其能夠 •利用擴散光並因此而不須複雜的追蹤機械, •將光調整至所用的太陽能電池(例如Si或GaAs )的 吸收光譜, •達到與聚光器相仿的聚光效果, •以簡單且花費不高的方式製造, •降低在太陽能電池的熱應力及相關的效能耗損, •降低活性太陽能電池面積, •抵抗氣候影響,且在操作期間內的光學性質維持實 質上未改變 201107381 解決方案 藉由在成型聚合物體中使用不同的螢光轉換型染料解 決前述問題,而該成型聚合物體與該螢光轉換型染料的光 譜彼此相符,使得入射光以經控制的方式發射且波長與特 別的太陽能電池相符。 此解決方案進一步包含染料或染料混合物溶於單體混 合物中,該單體混合物於之後聚合成成型聚合物體。 該成型聚合物體可以具有單層或多層結構,並包含有 相同或不同染料或染料混合物的層。各層可以固著方式彼 此結合,例如,藉由黏著結合或藉由多層注射模塑。此可 藉由,例如,申請案DE 1 023 3 6 84和DE 1 0254276中所描述 的方法完成。 但是,亦可藉由鬆散方式將個別成型聚合物體堆疊在 另一者上方的方式而完成層疊。 本發明之解決方案提供下列優點: -入射陽光被轉換成用於矽光電池的最適波長, -可藉已知方法製造螢光轉換型太陽能電池, -保護太陽能電池免受破壞, -轉換率驚人地高, -成型聚合物體可以簡單的方式與太陽能電池的形狀 和靜態需求相配合, -成型聚合物體比製自無機玻璃之相仿的裝置來得輕 -成型聚合物體可經衝擊修飾,使得太陽能電池裝置 201107381 不會受到冰雹衝擊。 成型聚合物體之製造 單體 (甲基)丙烯酸酯 特別佳的單體係(甲基)丙烯酸酯單體。“(甲基) 丙烯酸酯”含括甲基丙烯酸酯和丙烯酸酯及此二者之混合 物。 這些單體已眾所周知。它們包括衍生自飽和醇的(甲 基)丙烯酸酯,例如(甲基)丙烯酸甲酯、(甲基)丙烯 酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、 (甲基)丙烯酸正丁酯、(甲基)丙烯酸三級丁酯、(甲 基)丙烯酸丁氧基甲酯、(甲基)丙烯酸戊酯、(甲基) 丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸辛酯 、(甲基)丙烯酸異辛酯' (甲基)丙烯酸異癸酯、(甲 基)丙烯酸四氫糠酯、(甲基)丙烯酸環己酯和(甲基) 丙烯酸2-乙基己酯;衍生自不飽和醇的(甲基)丙烯酸酯 ,例如(甲基)丙烯酸油酯、(甲基)丙烯酸2-丙炔酯、 (甲基)丙烯酸烯丙酯、(甲基)丙烯酸乙烯酯;(甲基 )丙烯酸芳酯’例如(甲基)丙烯酸苄酯或(甲基)丙烯 酸苯酯,其中芳基分別是未經取代或至多經四取代;(甲 基)丙燦酸環院酯’例如(甲基)丙稀酸3 -乙稀基環己醋 、(甲基)丙烯酸萡酯、(甲基)丙烯酸異萡酯;(甲基 )丙烯酸羥烷酯,例如(甲基)丙烯酸3 -羥丙酯、(甲基 -8 - 201107381 )丙烯酸3,4-二羥丁酯、(甲基)丙烯酸2-羥乙酯、(甲 基)丙烯酸2_羥丙酯;二(甲基)丙烯酸二醇酯,例如( 甲基)丙烯酸1,4-丁二醇酯;醚醇的(甲基)丙烯酸酯, 例如(甲基)丙烯酸四氫糠酯、(甲基)丙烯酸乙烯氧基 乙氧基乙酯;(甲基)丙烯酸的醯胺和腈,例如N-( 3 _二 甲胺基丙基)(甲基)丙烯醯胺、N-(二乙基膦醯基)( 甲基)丙烯醯胺、1·甲基丙烯醯基醯胺基-2-甲基-2-丙醇 ;含硫的甲基丙烯酸酯,例如(甲基)丙烯酸乙基亞磺醯 基乙酯、(甲基)丙烯酸4-硫氰基丁酯、(甲基)丙烯酸 乙基磺醢基乙醋、(甲基)丙烯酸硫氰基甲醋、(甲基) 丙烯酸甲基亞磺醯基甲酯、雙((甲基)丙烯醯氧基乙基 )硫;多官能性(甲基)丙烯酸酯,例如三羥甲基丙烷三 (甲基)丙烯酸酯。 這些單體可以單獨使用或以混合物形式使用。此處特 別佳者係包含甲基丙烯酸酯和丙烯酸酯之混合物。 自由基形成物 此聚合反應通常藉已知的自由基引發劑引發。較佳引 發劑包括此技術領域中眾所周知的偶氮引發劑(如AIBN 和1,1 -偶氮基雙環己腈)和過氧基化合物,例如甲基乙基 酮過氧化物、乙醯基丙酮過氧化物、二月桂基過氧化物、 過氧-2-乙基己酸三級丁酯、酮過氧化物、甲基異丁基酮過 氧化物、環己酮過氧化物、二苄醯過氧化物、過氧苯甲酸 三級丁酯、過氧異丙基碳酸三級丁酯、2,5-雙(2-乙基己 -9 - 201107381 釀基過氧基)-2,5 -—甲基己院、過氧基-2 -乙基己酸三級 丁酯、過氧基-3,5,5-三甲基己酸三級丁酯、二枯基過氧化 物、1,1-雙(三級丁基過氧基)環己烷、1,1-雙(三級丁 基過氧基)-3,3,5-三甲基環己烷、枯基過氧化氫、三級丁 基過氧化氫、過氧基二碳酸雙(4-三級丁基-環己基)酯、 前述化合物彼此的二或更多者之混合物、及前述化合物與 未提及且亦能夠形成自由基的化合物之混合物。 這些化合物的用量通常是以單體重量計爲0.01至1.0重 量%,較佳爲0.05至0.3重量%。 衝擊修飾劑 本發明之一特別的觀點中,模塑材料可任意經衝擊修 飾劑加以修飾以使其更具機械安定性。此用於聚甲基丙烯 酸酯聚合物的衝擊修飾劑爲習知者;例如,經衝擊修飾的 聚甲基丙烯酸酯模塑材料之製備和形成尤其述於EP-A 0 113 924 、 EP-A 0 522 351 、 EP-A 0 465 049和 EP-A 0 683 028 ° 較佳的耐衝擊模塑材料具有70-99重量%聚(甲基)丙 烯酸甲酯。這些聚(甲基)丙烯酸酯甲酯已述於前文中。 本發明之一特別的觀點中,用以製造經衝擊修飾之模 塑材料的聚(甲基)丙烯酸甲酯係藉由包含80重量°/。至100 重量% (較佳爲9 0重量%至9 8重量% )甲基丙烯酸甲酯和任 意的0重量%至2 0重量% (較佳爲2重量%至1 0重量% )亦列 於前文中之其他自由基可聚合的共聚單體之混合物的自由 -10- 201107381 基聚合反應而得到。特別佳的共聚單體包括(甲基)丙烯 酸匕^广烷酯’特別是丙烯酸甲酯、丙烯酸乙酯或甲基丙 烯酸丁酯。 用以製造特別的耐衝擊模塑材料之聚(甲基)丙烯酸 甲酯的平均分子量Mw較佳在90,000克/莫耳至200,000克 /莫耳,特別是100, 〇〇〇克/莫耳至150,000克/莫耳的範 圍內。 較佳的耐衝擊模塑材料含有1重量%至6 0重量%,較佳 爲2重量%至5 0重量%,更佳爲3重量%至4 5重量%,特別是 5重量%至4 2重量%,的衝擊修飾劑,其提供由交聯的聚合 物粒所組成的彈性相。 衝擊修飾劑可藉由珠粒聚合反應或乳化聚合反應以已 知的方式得到。 較佳的衝擊修飾劑係平均粒子尺寸在50至1 000奈米, 較佳爲60至500奈米且更佳爲8至450奈米範圍內的交聯粒 子。 此粒子可藉由,例如,通常含下列的混合物之自由基 聚合反應而製得:至少40重量%且較佳爲50重量%至70重 量%的甲基丙烯酸甲酯、20重量%至50重量%且較佳爲25重 量%至4 5重量%的丙烯酸丁酯、和0 · 1重量%至2重量%且較 佳爲〇 · 5重量%至1重量%的交聯單體(例如多官能性(甲基 )丙烯酸酯,例如甲基丙烯酸烯丙酯)、及能夠與前述乙 烯基化合物共聚合的共聚單體。 較佳共聚單體包括(甲基)丙烯酸Ci-Cc烷酯(如丙 -11 - 201107381 烯酸乙酯或甲基丙烯酸丁酯,較佳爲丙烯酸甲酯)或其他 乙烯系可共聚單體(例如苯乙烯)。較佳地,用以製備前 述粒子之混合物包含0重量%至3 0重量%且較佳爲〇 · 5重量% 至15重量%的共聚單體。 特別佳的衝擊修飾劑是具有兩層核-殻結構,三層核-殻結構更佳,的聚合物粒子。此核-殻聚合物述於文件, 包括 EP-A 0 113 924、EP-A 0 522 351、EP-A 0 465 049 和 EP-A 0 683 028。 以丙烯酸酯橡膠爲基礎之特別佳的衝擊修飾劑的一種 結構如下: 核:含有以核重量計爲至少90重量%的甲基丙烯酸甲 酯之聚合物。 殼1 ( S1 ):含有以第一殼重量計爲至少80重量%的丙 烯酸丁酯之聚合物。 殼2 ( S2):含有以第二殻重量計爲至少90重量%的甲 基丙烯酸甲酯之聚合物" 所述之核和殼以及所述單體均可以各自包含其他單體 〇 例如,較佳的丙烯酸酯橡膠修飾劑可具有下列構造: 核:甲基丙烯酸甲酯(95·7重量% )、丙烯酸乙酯(4 重量%)和甲基丙烯酸烯丙酯(〇.3重量% )之共 聚物, S1:丙烯酸丁酯(81.2重量% )、苯乙烯(17·5重量% )和甲基丙烯酸烯丙酯(1.3重量% )之共聚物, -12- 201107381 S2:甲基丙烯酸甲酯(96重量%)和丙烯酸乙酯(4 重量%)之共聚物。 丙烯酸酯橡膠修飾劑之核對殼的比可以在寬廣範圍內 變化。在修飾劑具有一個殼的情況中,核對殼的重量比 C/S較佳在20: 80至80: 20,較佳在30: 70至70: 30的範 圍內,或在修飾劑具有兩個殼的情況中,核對殻1對殼2的 重量比C/S1/S2較佳在10 : 80 : 10至40 ·· 20 : 40,更佳在 20: 60: 20 至 30: 40: 30 的範圍內。 核-殻修飾劑的粒子尺寸基本上在50至1 000奈米範圍 內,較佳由1 〇〇至5 00奈米且更佳由150至45 0奈米,但不欲 以此造成任何限制。 此衝擊修飾劑可爲Mitsubishi販售之註冊商標 Μ E T A B L E N ® IR 4 4 1者。此外,亦可得到經衝擊修飾的模 塑材料。這些包括製造商CYRO Industries的ACRYLITE PLUS®。 成型聚合物體亦可製自聚碳酸酯(PC)、聚苯乙烯( PS )、聚醯胺(PA )、聚酯(PE )、熱塑性聚胺甲酸酯 (PU )、聚醚颯、聚碱、乙烯聚合物(例如聚氯乙烯( PVC))。 光安定劑 所用的光安定劑是UV-A和/或UV-B吸收劑。可以使 用的物質類型的例子包括HALS化合物。瞭解HALS化合物 是指,例如,:Γ P 〇 3 4 7 8 5 6中描述的立體受阻胺。這些“受阻 -13- 201107381 胺光安定劑”清除在照射應力下形成的自由基。這些產品 由 Ciba 以 TINUVIN® 123、TINUVIN® 571、TINUVIN® 770 和TINUVIN® 622品牌銷售。 此外’可以使用以二苯基酮衍生物爲基礎的光安定劑 。這些產品由B ASF以UVINUL® 541 1品牌銷售。 亦可使用以苯并***爲基礎的光安定劑。這些產物由 Cytec 以 CYASORB®UV 5411 品牌或由 Ciba 以 TINUVIN® P、 Tinuvin® 571 和 TINUVIN® 234 品牌銷售。 氧化安定劑 所用的氧化安定劑可爲立體受阻酚或亞磷酸酯或膦酸 酯。這些產物由Ciba以Irganox®和Irgafos®品牌銷售。 此外,模塑材料可包含其他聚合物以修飾性質。這些 包括聚丙烯腈、聚苯乙烯、聚醚、聚酯、聚碳酸酯和聚氯 乙烯。這些聚合物可以單獨使用或以混合物形式使用,且 可能使用由前述聚合物衍生之共聚物。 用於模塑材料之均聚物和/或共聚物的重量平均分子 量Mw可以在寬廣範圍內變化,此分子量基本上與模塑材 料的終用途和加工方法相配合。但是,通常,其在介於 20, 〇〇〇和 1,〇〇〇,〇〇〇 克 / 莫耳,較佳爲 50,000 至 500,000克 / 莫耳,且更佳爲80,000至300,000克/莫耳的範圍內,但不 欲以此造成任何限制。 用以製造模塑物之模塑材料可包含所有類型的慣用添 加劑。這些包括染料、抗靜電劑、抗氧化劑、脫模劑、阻 -14 - 201107381 燃劑、潤滑劑、流動改良劑、塡料、光安定劑和有機磷化 合物(如亞磷酸鹽或膦酸鹽)、顏料、耐候劑和塑化劑。 但是,添加劑的量受限於終用途。例如,模塑材料的導光 性質和其透光性必須不會因爲添加劑而大幅受損。 本發明之特別的體系中,模塑材料具有以模塑材料重 量計爲至少7 0重量%,較佳爲至少8 0重量%,且更佳爲至 少90重量%的聚(甲基)丙烯酸甲酯。 注射模塑法 本發明中使用之用以加工熱塑性模塑材料的注射模塑 技術爲此技藝已知者。綜述可見於,例如:W. Mink, Grundzuge der Spritzgeptechnik [Introduction to injection moulding technology], 1st edition, Zechner & Huthig Verlag, Speyer, 1 966; Seachtling, Kunststofftaschenbuch [Plastics Handbook], 26th edition, Carl Hanser Verlag, 1 9 9 5 ; 和 F. Johannaber/W. Mi ch a e 1 i, Handbuch201107381 VI. Description of the Invention: [Technical Field] The present invention relates to a combination of a fluorescent conversion type dye in a shaped polymer body composed of poly(methyl)propionate methyl ester, which combination is used for natural The sun rays are converted into light that can be used by solar cells. The shaped polymer system is produced in an injection molding process. [Prior Art] A photocell can only convert a portion of incident sunlight into usable electrical energy: most of the energy is lost in the form of heat. For example, a germanium solar cell is capable of absorbing all photons having an energy higher than the band edge K1 electron volts of the germanium crystal. This corresponds to a wavelength < 1 100 nm. The excess energy of the absorbed photons is converted into heat and causes the photocell to heat up; the performance of the photocell is thus reduced. The construction and effect of a fluorescent conversion type solar cell have been known from US 4,110,123 (Fraunhofer) or by Appl. Phys. 14, 123 ff (1 977). WO 200 7/0 31446 (BASF AG) describes a fluorescent dye used in a fluorescent conversion type solar cell formed by one or more glass plates or polymer plates coated with a fluorescent dye, with triphenyl benzene ( Terrylene) a carboxylic acid derivative based dye or a combination of these dyes with other fluorescent dyes. A disadvantage of this patent is the need for a separate step of coating the glass sheet with a blend comprising the dye. A concentrating system comprising a lens or a mirror -5-201107381 A lens or mirror-based optical system for collecting light on a solar cell is known; the concentrating factor achieved is up to 1,000 times. However, the disadvantage of the optical solution is that the light of the entire electromagnetic spectrum is concentrated, so that not only the effective light is concentrated, but also the photo-ineffective light is concentrated. This results in undesirable thermal stresses on the solar cell and reduced performance. To keep the temperature from becoming too high, the solar cell can be cooled in an active or passive manner. In addition, the lens or lens system must track the position of the sun in a complex mechanical manner: in addition, it can only reflect direct light. Diffused light contributes minimally to energy production, if any (see US-A 5,589,297). SUMMARY OF THE INVENTION The problem is in the prior art concept discussed above, the problem being addressed is the development of a method for concentrating the optical radiation of the sun, which is capable of utilizing diffused light and thus without the need for complicated tracking machinery, • adjusting the light The absorption spectrum of the solar cell used (such as Si or GaAs), • achieves a similar concentrating effect as the concentrator, • is manufactured in a simple and inexpensive manner, • reduces the thermal stress in the solar cell and related efficiency Loss, • Reduce active solar cell area, • Resist climate impact, and maintain virtually unchanged optical properties during operation. 201107381 Solution Solve the aforementioned problems by using different fluorescent conversion dyes in the shaped polymer body The spectra of the shaped polymer body and the fluorescent conversion type dye are coincident with each other such that incident light is emitted in a controlled manner and the wavelength is consistent with a particular solar cell. This solution further comprises dissolving the dye or mixture of dyes in a monomer mixture which is subsequently polymerized into a shaped polymer body. The shaped polymer body may have a single layer or a multilayer structure and comprise layers of the same or different dyes or dye mixtures. The layers may be bonded to each other in a fixed manner, for example, by adhesive bonding or by multilayer injection molding. This can be done, for example, by the method described in the applications DE 1 023 3 6 84 and DE 1 0 254 276. However, the lamination can also be accomplished by loosely stacking the individual shaped polymer bodies over the other. The solution of the present invention provides the following advantages: - incident sunlight is converted to an optimum wavelength for a neon battery, - a fluorescent conversion type solar cell can be manufactured by a known method, - protection of the solar cell from damage, - an amazing conversion rate High, - the shaped polymer body can be matched in a simple manner with the shape and static requirements of the solar cell. - The shaped polymer body is lighter than the similar device made of inorganic glass. The shaped polymer body can be modified by impact, so that the solar cell device 201107381 Will not be affected by hail. Production of a shaped polymer body Monomer (Meth) acrylate A particularly preferred single system (meth) acrylate monomer. "(Meth) acrylate" includes methacrylate and acrylate and a mixture of the two. These monomers are well known. They include (meth) acrylates derived from saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (A) Base) n-butyl acrylate, butyl (meth) acrylate, butoxymethyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, glycol (meth) acrylate Ester, octyl (meth) acrylate, isooctyl (meth) acrylate (isodecyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate and (methyl) 2-ethylhexyl acrylate; (meth) acrylate derived from an unsaturated alcohol, such as (meth) acrylate, 2-propynyl (meth) acrylate, allyl (meth) acrylate , (meth)acrylic acid acrylate; (meth)acrylic acid aryl ester 'such as benzyl (meth) acrylate or phenyl (meth) acrylate, wherein the aryl group is unsubstituted or at most tetrasubstituted; Base) acrylic acid ring esters such as (meth)acrylic acid 3 - Dilute cyclohexyl vinegar, decyl (meth) acrylate, isodecyl (meth) acrylate; hydroxyalkyl (meth) acrylate, such as 3-hydroxypropyl (meth) acrylate, (methyl-8 - 201107381 ) 3,4-dihydroxybutyl acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate; diol (meth) acrylate, such as (meth) acrylate 1,4-butanediol ester; (meth) acrylate of ether alcohol, such as tetrahydrofurfuryl (meth) acrylate, vinyl ethoxy ethoxyethyl (meth) acrylate; (meth) acrylate Indoleamine and nitrile, such as N-(3-dimethylaminopropyl)(meth)acrylamide, N-(diethylphosphonium)(methyl)propenamide, 1·methacryl Alkylamino-2-methyl-2-propanol; sulfur-containing methacrylate such as ethyl sulfinyl (meth) acrylate, 4-thiocyanobutyl (meth) acrylate , ethyl sulfonate ethyl (meth) acrylate, thiocyanomethyl (meth) acrylate, methyl sulfinyl methyl (meth) acrylate, bis ((meth) propylene oxy ethoxylate base Sulfur; a polyfunctional (meth) acrylate such as trimethylolpropane tri(meth) acrylate. These monomers may be used singly or in the form of a mixture. Particularly preferred herein is a mixture comprising methacrylate and acrylate. Free radical formers This polymerization is usually initiated by known free radical initiators. Preferred initiators include azo initiators (such as AIBN and 1,1 -azobiscyclohexanecarbonitrile) and peroxy compounds well known in the art, such as methyl ethyl ketone peroxide, acetamidine Peroxide, dilauryl peroxide, tertiary butyl peroxy-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, dibenzyl hydrazine Peroxide, butyl peroxybenzoate, butyl peroxyisopropyl carbonate, 2,5-bis(2-ethylhex-9 - 201107381 aryl peroxy)-2,5 - —Methylhexine, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy-3,5,5-trimethylhexanoate, dicumyl peroxide, 1, 1-bis(tri-butylperoxy)cyclohexane, 1,1-bis(tertiarybutylperoxy)-3,3,5-trimethylcyclohexane, cumyl hydroperoxide, Tertiary butyl hydroperoxide, bis(4-tert-butyl-cyclohexyl)peroxydicarbonate, a mixture of two or more of the foregoing compounds, and the aforementioned compounds are not mentioned and can also be formed A mixture of free radical compounds. These compounds are usually used in an amount of from 0.01 to 1.0% by weight, based on the weight of the monomers, preferably from 0.05 to 0.3% by weight. Impact modifier In a particular aspect of the invention, the molding material can be optionally modified with an impact modifier to make it more mechanically stable. Such impact modifiers for polymethacrylate polymers are conventional; for example, the preparation and formation of impact modified polymethacrylate molding materials are described in particular in EP-A 0 113 924, EP-A 0 522 351 , EP-A 0 465 049 and EP-A 0 683 028 ° The preferred impact-resistant molding material has 70 to 99% by weight of polymethyl (meth)acrylate. These poly(meth) acrylate methyl esters have been described above. In a particular aspect of the invention, the poly(methyl) acrylate used to make the impact modified molding material comprises 80 weight percent. Up to 100% by weight (preferably 90% to 98% by weight) methyl methacrylate and optionally 0% to 20% by weight (preferably 2% to 10% by weight) are also listed A free -10-201107381-based polymerization of a mixture of other free-radically polymerizable comonomers as hereinbefore described. Particularly preferred comonomers include bismuth(meth)acrylates, particularly methyl acrylate, ethyl acrylate or butyl methacrylate. The polymethylene (meth) acrylate used to make the special impact-resistant molding material preferably has an average molecular weight Mw of from 90,000 g/mol to 200,000 g/mole, especially 100, gram/mole to Within the range of 150,000 g/mole. The preferred impact-resistant molding material contains from 1% by weight to 60% by weight, preferably from 2% by weight to 50% by weight, more preferably from 3% by weight to 45% by weight, particularly from 5% by weight to 4% by weight. A % by weight impact modifier which provides an elastomeric phase comprised of crosslinked polymer particles. The impact modifier can be obtained in a known manner by bead polymerization or emulsion polymerization. Preferred impact modifiers are crosslinked particles having an average particle size in the range of from 50 to 1,000 nanometers, preferably from 60 to 500 nanometers and more preferably from 8 to 450 nanometers. The particles can be obtained, for example, by free radical polymerization generally comprising a mixture of at least 40% by weight and preferably 50% to 70% by weight of methyl methacrylate, 20% to 50% by weight. % and preferably from 25% by weight to 45% by weight of butyl acrylate, and from 0.1% by weight to 2% by weight and preferably from 5% by weight to 1% by weight of crosslinking monomer (for example, polyfunctional) A (meth) acrylate, such as allyl methacrylate, and a comonomer capable of copolymerizing with the aforementioned vinyl compound. Preferred comonomers include Ci-Cc alkyl (meth)acrylates (e.g., C-11-11 072813 ethyl acrylate or butyl methacrylate, preferably methyl acrylate) or other vinyl copolymerizable monomers ( For example styrene). Preferably, the mixture used to prepare the aforementioned particles comprises from 0% by weight to 30% by weight and preferably from 5% by weight to 15% by weight of comonomer. A particularly preferred impact modifier is a polymer particle having a two-layer core-shell structure and a three-layer core-shell structure. The core-shell polymer is described in the document and includes EP-A 0 113 924, EP-A 0 522 351, EP-A 0 465 049 and EP-A 0 683 028. A structure of a particularly preferred impact modifier based on acrylate rubber is as follows: Core: a polymer containing at least 90% by weight of methyl methacrylate based on the weight of the core. Shell 1 (S1): a polymer containing at least 80% by weight of butyl acrylate based on the weight of the first shell. Shell 2 (S2): a polymer containing at least 90% by weight of methyl methacrylate based on the weight of the second shell " the core and shell and the monomer may each comprise other monomers, for example, A preferred acrylate rubber modifier may have the following configuration: Core: methyl methacrylate (95.7% by weight), ethyl acrylate (4% by weight), and allyl methacrylate (〇.3% by weight) Copolymer, S1: butyl acrylate (81.2% by weight), styrene (17.5% by weight) and allyl methacrylate (1.3% by weight) copolymer, -12- 201107381 S2: methacrylic acid Copolymer of ester (96% by weight) and ethyl acrylate (4% by weight). The ratio of the core to shell of the acrylate rubber modifier can vary over a wide range. In the case where the modifier has a shell, the weight ratio C/S of the core shell is preferably in the range of 20:80 to 80:20, preferably 30:70 to 70:30, or two in the modifier. In the case of the shell, the weight ratio C/S1/S2 of the core 1 to the shell 2 is preferably 10:80:10 to 40··20:40, more preferably 20:60:20 to 30:40:30. Within the scope. The particle size of the core-shell modifier is substantially in the range of 50 to 1000 nm, preferably from 1 〇〇 to 500 nm and more preferably from 150 to 405 nm, but is not intended to cause any limitation. . The impact modifier may be a registered trademark of sub E T A B L E N ® IR 4 4 1 sold by Mitsubishi. In addition, impact-modified molding materials can also be obtained. These include the ACRYLITE PLUS® from the manufacturer CYRO Industries. The shaped polymer body can also be made from polycarbonate (PC), polystyrene (PS), polydecylamine (PA), polyester (PE), thermoplastic polyurethane (PU), polyether oxime, polyalkali. , ethylene polymer (such as polyvinyl chloride (PVC)). Light stabilizers The photosensitizers used are UV-A and/or UV-B absorbers. Examples of types of substances that can be used include HALS compounds. Understanding HALS compounds means, for example, the sterically hindered amines described in ΓP 〇 3 4 7 8 5 6 . These "blocked -13-201107381 amine light stabilizers" remove free radicals formed under irradiation stress. These products are marketed by Ciba under the TINUVIN® 123, TINUVIN® 571, TINUVIN® 770 and TINUVIN® 622 brands. Further, a photo-stabilizer based on a diphenyl ketone derivative can be used. These products are sold under the UVINUL® 541 1 brand by B ASF. A light stabilizer based on benzotriazole can also be used. These products are marketed by Cytec under the CYASORB® UV 5411 brand or by Ciba under the TINUVIN® P, Tinuvin® 571 and TINUVIN® 234 brands. Oxidation stabilizer The oxidative stabilizer used may be a sterically hindered phenol or a phosphite or phosphonate. These products are marketed by Ciba under the Irganox® and Irgafos® brands. Further, the molding material may contain other polymers to modify the properties. These include polyacrylonitrile, polystyrene, polyether, polyester, polycarbonate and polyvinyl chloride. These polymers may be used singly or in the form of a mixture, and it is possible to use a copolymer derived from the aforementioned polymer. The weight average molecular weight Mw of the homopolymer and/or copolymer used in the molding material can be varied within a wide range, and this molecular weight substantially matches the end use and processing method of the molding material. However, usually, it is between 20, 〇〇〇 and 1, 〇〇〇, 〇〇〇 / mol, preferably 50,000 to 500,000 g / mol, and more preferably 80,000 to 300,000 g / m Within the scope of, but do not want to cause any restrictions. The molding material used to manufacture the molding may contain all types of conventional additives. These include dyes, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, flow improvers, tanning agents, light stabilizers, and organophosphorus compounds (such as phosphites or phosphonates). , pigments, weathering agents and plasticizers. However, the amount of additive is limited to the end use. For example, the light guiding properties of the molding material and its light transmittance must not be greatly impaired by the additives. In a particular system of the invention, the molding material has a poly(meth)acrylic acid of at least 70% by weight, preferably at least 80% by weight, and more preferably at least 90% by weight, based on the weight of the molding material. ester. Injection Molding The injection molding techniques used in the present invention to process thermoplastic molding materials are known to those skilled in the art. A review can be found, for example, in W. Mink, Grundzuge der Spritzgeptechnik [Introduction to injection moulding technology], 1st edition, Zechner & Huthig Verlag, Speyer, 1 966; Seachtling, Kunststofftaschenbuch [Plastics Handbook], 26th edition, Carl Hanser Verlag, 1 9 9 5 ; and F. Johannaber/W. Mi ch ae 1 i, Handbuch

Spritzgiepen [Injection moulding handbook], 2nd e d., Carl Hanser Verlag,2004。 注射模塑可以藉熱澆道(hot runner)技術或藉冷澆 道(cold runner )技術進行。熱澆道技術提供一些優於冷 澆道技術之處,例如達到長流徑,使得澆口可位於最適位 置’因爲可避免形成澆鑄道廢料而爲無耗損操作,由於材 料不會在澆口凍結,所以保壓較長,及可達到較短的循環 時間。缺點包括由於構造更複雜之較高的維護成本、斷層 -15- 201107381 的可能性較高及維護的難度較大。 較佳的聚合物基板可爲Evnik R0hm GmbH的販售的註 冊商標爲PLEXIGLAS®者商標;此外,用以製造模塑材料 之聚合物可爲CYRO Industries製造販售之註冊商標爲 ACRYLITE® 者。 用以製造高光學品質模塑品的注射模塑法以下列方式 進行爲佳: 熔融模塑材料在注射模塑法中的溫度較佳爲2 1 0 °C -27〇°C,且更佳爲240°C -250°C,但不欲以此造成任何限制 。此外,注射模塑噴嘴的溫度較佳爲230°C-270°C,更佳 爲240-250°C,而注射模具的溫度較佳爲40°C-80°C,且更 佳爲 5 0 t: - 6 0 °C。 注射模塑料筒的溫度較佳爲220 °C -260 °C,且更佳爲 2 3(TC -2 50〇C。 根據本發明之方法中,模塑材料在壓力爲50巴至1000 巴的範圍內注入模具中。特別的體系中,此壓力可以是遞 變的,在第一階段是50巴而在第二階段爲400巴。 相同地,注射速率可以遞變,在第一階段中係在0.01 米/秒至0.1米/秒的範圍內,在第二階段中係在0.1米/ 秒至1米/秒的範圍內,而在可能的第三階段中係在0.05 米/秒至ο.5米/秒的範圍內。計量行程較佳爲螺桿直徑 的1至4倍。 此外,壓縮注射模塑變體提供嫻於此技藝者已知之與 機械所須的關閉力和產物的張力自由度相關的優點。此提 -16- 201107381 供產物較佳的光學性質,特別是較低的雙折射率。 聚合物基板的尺寸是,例如,長和寬至多!米,較佳 爲平板的長和寬由0.1米至0.5米》 使用的染料 螢光染料 使用的染料可以是菲、三合並苯(terrylene)和/或 並苯(quterrylene)衍生物類型,選自BASF的Lumogen® 系列、玫紅、Exciton的LDS®系列、經取代的哌喃(如 DCM)、香豆素(如 Coumari η 30、Coumarin 1、Coumarin 102··等)、噁哄(如Nile blue,亦稱爲 Nile blue A)、吡 啶、苯乙烯基衍生物、二噁哄 '萘醯亞胺、噻哄、藶和氰 胺(如 DODC1)形式(例如,Lambdachrome® 和 Exciton® )。菲、三合並苯(terrylene)和/或並苯(rylene)衍 生物型染料述於WO 2007/031446。Spritzgiepen [Injection moulding handbook], 2nd e d., Carl Hanser Verlag, 2004. Injection molding can be carried out by hot runner technology or by cold runner technology. Hot runner technology provides some advantages over cold runner technology, such as reaching a long flow path, so that the gate can be in the optimum position 'because it avoids the formation of casting waste and operates without loss, since the material does not freeze at the gate, Therefore, the pressure is longer and the cycle time can be shortened. Disadvantages include higher maintenance costs due to more complex construction, higher probability of faults -15-201107381, and greater difficulty in maintenance. A preferred polymer substrate is commercially available from Evnik R0hm GmbH under the registered trademark PLEXIGLAS®; in addition, the polymer used to make the molding material is commercially available under the registered trademark ACRYLITE® by CYRO Industries. The injection molding method for producing a high optical quality molded article is preferably carried out in the following manner: The temperature of the melt molding material in the injection molding method is preferably 2 1 0 ° C -27 ° C, and more preferably It is 240 ° C -250 ° C, but does not want to cause any restrictions. Further, the temperature of the injection molding nozzle is preferably from 230 ° C to 270 ° C, more preferably from 240 to 250 ° C, and the temperature of the injection mold is preferably from 40 ° C to 80 ° C, and more preferably 50. t: - 6 0 °C. The temperature of the injection molding cylinder is preferably from 220 ° C to 260 ° C, and more preferably 2 3 (TC - 2 50 ° C. In the method of the present invention, the molding material is at a pressure of 50 to 1000 bar Inject into the mold in a range. In a special system, this pressure can be variable, 50 bar in the first stage and 400 bar in the second stage. Similarly, the injection rate can be changed, in the first stage In the range of 0.01 m/s to 0.1 m/s, in the second stage, it is in the range of 0.1 m/s to 1 m/s, and in the possible third stage, it is 0.05 m/s to ο. In the range of .5 m/sec, the metering stroke is preferably from 1 to 4 times the diameter of the screw. In addition, the compression-molded variant provides freedom of the closing force and product tension known to those skilled in the art. Degree-related advantages. This mentions from 16 to 201107381 for better optical properties of the product, especially lower birefringence. The size of the polymer substrate is, for example, length and width up to meters, preferably the length of the plate And the dye used in the dye fluorescent dye used from 0.1 m to 0.5 m can be phenanthrene and triphenyl (t) Types of errylene) and/or penterylene derivatives, selected from the Lumogen® series of BASF, rose red, the LDS® series of Exciton, substituted melo (eg DCM), coumarin (eg Coumari η 30, Coumarin 1, Coumarin 102, etc.), cockroach (such as Nile blue, also known as Nile blue A), pyridine, styryl derivatives, dioxin 'naphthoquinone imine, thiazide, hydrazine and cyanamide ( In the form of DODC1) (for example, Lambdachrome® and Exciton®), phenanthrene, terrylene and/or rylene derivative dyes are described in WO 2007/031446.

類鑭元素錯合物和奈米級的半導體結構(稱爲量子點 )’例如,以硒化鎘、硫化鎘、硫化鋅、硒化鉛、硫化鉛 爲基礎者和其他化合物,亦適用於此目的。量子點之製造 和使用述於 US 2007/0132052、US 2007/0174939、WO 0229 1 40 、 WO 200402263 7 、 WO 2006065054 和 WO 2007073467 〇 i S3 類鑭元素錯合物述於CA 20072589575、EP 0767912和 WO 983 9822及 Appl. Phys. Lett. 91,05 1 903 ( 2007 ),23rd European Photovoltaic Solar Energy Conference, Valencia, -17- 201107381Quinium-like element complexes and nano-scale semiconductor structures (called quantum dots)', for example, based on cadmium selenide, cadmium sulfide, zinc sulfide, lead selenide, lead sulfide, and other compounds, purpose. The manufacture and use of quantum dots are described in US 2007/0132052, US 2007/0174939, WO 0229 1 40 , WO 200402263 7 , WO 2006065054 and WO 2007073467 〇i S3 镧 elemental complexes are described in CA 20072589575, EP 0767912 and WO 983 9822 and Appl. Phys. Lett. 91,05 1 903 ( 2007 ), 23rd European Photovoltaic Solar Energy Conference, Valencia, -17- 201107381

700 ( 2008 ) , Am. Chem. Soc. ( 2007 ) , DOI 1 0· 1 02 1 /j a07005 8e ° 光子層 光子層配置在成型聚合物體上,使得陽光必須先穿透 此層之後,成型聚合物體中的螢光染料才能被誘發至發螢 光。 已知的光子層或與波長相關的鏡子是,例如,干擾濾 光器(堆疊的濾光器、Rugate濾光器,切口濾光器·.等) ,可建構成帶通濾光器或邊緣濾光器。這些製自,例如, 將具有不同折射指數的多個薄介電層沉積在基材上(請參 考 01 a f Stenzel, “The Physics of Thin Film Optical700 ( 2008 ) , Am. Chem. Soc. ( 2007 ) , DOI 1 0· 1 02 1 /j a07005 8e ° Photonic layer photonic layer is placed on the shaped polymer body, so that sunlight must penetrate this layer first, then form polymerization Fluorescent dyes in objects can be induced to fluoresce. Known photonic layers or wavelength dependent mirrors are, for example, interference filters (stacked filters, Rugate filters, slit filters, etc.) that can be constructed to form bandpass filters or edges Filter. These are made, for example, by depositing a plurality of thin dielectric layers having different refractive indices on a substrate (refer to 01 a f Stenzel, "The Physics of Thin Film Optical

Spectra”, Springer-V erlag and N. Kaiser, H.K.Pulker, “Optical Interference Coatings”,Springer-Verlag ) ° 個別層的層厚度通常低於光波長。 另一選擇係使用光晶體,其述於下列申請案:DE 1 0024466、DE 1 020433 8、DE 1 022707 1、DE 1 0228228、 DE 1 02004055 3 03、US 6,8 63,847、WO 024430 1 、DE 1 03 5 76 8 1、DE 1 02004009569、DE 1 02004032 1 20、WO 2006045567、DE 1 0245848 ' DE 1 020060 1 7 1 63。這些是小 的透光球狀無機或有機物體,其以最緊密的可能球堆集方 式配置。根據球體的尺寸和間隔,它們反射在定義範圍內 的光並使光實質上完全傳輸通過此層。也可以使用中空球 形結構。因此可爲反蛋白石。個別球或中空球形結構的直 -18- 201107381 徑是待反射的光波長的約1 /3 (取決於光的入射角度和球 的間隔)。 反射器 在成型聚合物體下方可以任意配置光反射成型體(例 如,鏡子或白色膜或板),以增進收率。 太陽能電池 太陽能電池可製自慣用材料,例如 •矽太陽能電池 單晶矽(c - S i )、多晶矽(m c - s i )、非晶狀矽(a- S i )以及由多晶和非晶矽所構成之層疊式電池 • III-V半導體太陽能電池 砷化鎵(GaAs)、磷化鎵銦(GalnP)、砷化鎵銦 (GalnAs )、磷化鎵銦砷(GalnAsP)、磷化鎵銦 (GalnP )、銻化鎵(GaSb )。以及由磷化鎵銦和 砷化鎵、砷化鎵銦和磷化鎵銦砷、磷化鎵銦和砷化 鎵銦、砷化鎵和銻化鎵或砷化鎵和鍺所構成的層疊 式電池(多元太陽能電池),或由磷化鎵銦、砷化 鎵和鍺或磷化鎵銦、砷化鎵銦和銻化鎵所構成的三 元電池(三元太陽能電池) • II-VI半導體太陽能電池 鉈化鎘(CdTe)、硫化鎘(CdS ) • ϊ-m-v半導體太陽能電池 -19· 201107381 CIS電池:二硒化銅銦(CuInSe2)或二硫化銅銦( CuInS2) CIGS電池:二硒化銅銦鎵(CuInGaSe2 )、二硒化 銅鎵(CuGaSe2 )、二硫化銅鎵(CuGaS2 ) •此外,亦有最近發展之以有機材料爲基礎的太陽能 電池。 下面的表出示用於太陽能電池的半導體的一些例子。 所報導的波長對應於由相等於半導體的能隙之能量提供的 光之波長,即,利用此光時半導體作爲太陽能電池最爲有 效(螢光轉變型電池調整至此波長)。 電池材料 能噑[電子伏特] 波長[奈米] Gg 0.66 1879 GaSb 0.73 1708 CuInSe2 1.0 1240 Si 1.12 1107 GalnAs 1.24-1.39 998-891 GaAs 1.42 873 CuInS2 1.55 800 CdTe 1.56 795 GalnP 1.64 - 1.81 756-687 CuGaSe2 1.68 738 a-Si:H 1.7 729 Cu GaS2 2.30 539 CdS 2.42 512 【實施方式】 實例 以PLEXIGLAS®7N或8N進行單組份注射模塑 -20- 201107381 表:用於藉注射模塑(DEMAG D 1 50注射模塑機)加工模 塑材料之設定參數 溫度re] 熔融物 245 料筒 230 ; 235 ; 240 ; 245 模具 55 熱澆道(噴嘴,澆道) 246 ; 246 計量行程 26mm 注射速率(遞變) 階段1 (23毫米-20毫米) 13 階段2 (2〇毫米-15毫米) 16 階段3 (15毫米-0毫米) 13 保壓(遞變) 保壓切換 與行程相關,於螺桿行程5毫米處 階段1 (18秒) 82 階段1 (8秒) 75 藉下列方法變體可製造多組份體: 多組份注射模塑/注射壓縮模塑係多種聚合物熔融物 之連續組合:圖式出層疊法(請參考圖4,此圖摘自 Handbuch Spritzgieflen )與多組份複合物(包覆模塑法/ 多層法)之差異。 多層模塑物可藉由使用數種塑化單元及使用轉盤模塑 技術、滑軌桌模具製得,或藉由使用旋轉刻度盤的轉移技 術製得。所有的方法皆可用於注射模塑法和注射壓縮模塑 -21 - 201107381 法。同時,可以使用冷澆道或熱澆道技術。 發光的太陽能聚光器之製造的描述 實例1 :均勻著色的注射模塑物之製造 0.3 5重量份的二月桂醯過氧化物和 4.5重量份的锍乙酸2-乙基己酯溶解於 940重量份的甲基丙烯甲酯和 60重量份的丙烯酸甲酯中。 然後,添加含括下列之混合物 0.15 重量份 Lumogen Yellow 083 (BASF) 0.16重量份 Lumogen Organge 240 ( BASF) 0.40重量份 Lumogen Red 305 ( BASF )。 劇烈攪拌此混合物,塡入聚酯膜的袋中,密封並在60 °C水浴中聚合24小時。終聚合反應在加熱箱中於12G°C進 行約1 0小時。然後,所得材料在硏磨機中粒化。 藉注射模塑,自所得粒子製造尺寸爲50x50毫米且厚 10毫米的試樣。 得到厚度爲1 0毫米的均勻紅色螢光板。 實例2 :藉注射模塑法製造具有三層的裝置 綠色板: 〇. 3 5重量份的二月桂醯過氧化物和 4.5重量份的锍乙酸2 -乙基己酯溶解於 94 0重量份的甲基丙烯甲酯和 -22- 201107381 60重量份的丙烯酸甲酯中。 然後’添加 0.15 重量份 Lumogen Yellow 083 ( BASF) ο 劇烈攪拌此混合物,塡入聚酯膜的袋中,密封並在60 °C水浴中聚合24小時。終聚合反應在加熱箱中於12〇。(:進 行約1 〇小時。然後,所得材料在硏磨機中粒化》 紅色板: 〇 . 3 5重量份的二月桂醯過氧化物和 4.5重量份的毓乙酸2 -乙基己酯溶解於 940重量份的甲基丙烯甲酯和 60重量份的丙烯酸甲酯中。 然後,添加 0.40 重量份 Lumogen Red 305 ( BASF)。 劇烈攪拌此混合物,塡入聚酯膜的袋中,密封並在60 t水浴中聚合24小時。終聚合反應在加熱箱中於120 °C進 行約1 0小時。然後,所得材料在硏磨機中粒化。 橘色板: 〇-35重量份的二月桂醯過氧化物和 4·5重量份的巯乙酸2_乙基己酯溶解於 940重量份的甲基丙烯甲酯和 60重量份的丙烯酸甲酯中。Spectra", Springer-Verlag and N. Kaiser, HKPulker, "Optical Interference Coatings", Springer-Verlag) ° The layer thickness of individual layers is usually lower than the wavelength of light. Another option is to use a photonic crystal, which is described in the following application DE 1 0024466, DE 1 020433 8 , DE 1 022707 1 , DE 1 0228228, DE 1 02004055 3 03, US 6,8 63,847, WO 024430 1 , DE 1 03 5 76 8 1 , DE 1 02004009569, DE 1 02004032 1 20, WO 2006045567, DE 1 0245848 'DE 1 020060 1 7 1 63. These are small, light-transmissive spherical inorganic or organic objects which are arranged in the closest possible ball stacking manner. Depending on the size and spacing of the spheres, They reflect light in a defined range and transmit light substantially completely through this layer. Hollow spherical structures can also be used. Therefore, it can be an inverse opal. The individual -18-201107381 diameter of individual spheres or hollow spherical structures is the light to be reflected. About 1 / 3 of the wavelength (depending on the angle of incidence of the light and the spacing of the balls). The reflector can be arbitrarily arranged under the molded polymer body (for example, a mirror or a white film or a plate) to enhance Solar cell solar cells can be fabricated from conventional materials such as 矽 solar cell single crystal germanium (c - S i ), polycrystalline germanium (mc - si ), amorphous germanium (a-S i ), and polycrystalline and non- Stacked battery composed of wafers • III-V semiconductor solar cells gallium arsenide (GaAs), gallium indium arsenide (GalnP), gallium indium arsenide (GalnAs), gallium indium arsenide (GalnAsP), gallium phosphide Indium (GalnP), gallium antimonide (GaSb), and gallium indium phosphide and gallium arsenide, gallium arsenide and gallium indium arsenide, gallium indium phosphide and gallium indium arsenide, gallium arsenide and germanium A stacked battery (multi-element solar cell) composed of gallium or gallium arsenide and germanium, or a ternary composed of gallium phosphide indium, gallium arsenide and antimony or gallium indium phosphide, gallium indium arsenide and gallium antimonide Battery (ternary solar cell) • II-VI semiconductor solar cell cadmium telluride (CdTe), cadmium sulfide (CdS) • ϊ-mv semiconductor solar cell-19· 201107381 CIS battery: copper indium diselenide (CuInSe2) or two Copper indium sulfide (CuInS2) CIGS battery: copper indium gallium diselide (CuInGaSe2), copper gallium diselide (CuGaSe2), two Copper gallium (CuGaS2) • In addition, some of the recent developments in the organic material-based solar cell. The following table shows some examples of semiconductors for solar cells. The reported wavelength corresponds to the wavelength of light provided by the energy equivalent to the energy gap of the semiconductor, i.e., the semiconductor is most effective as a solar cell when the light is utilized (the fluorescent conversion type battery is adjusted to this wavelength). Battery material 噑 [electron volt] wavelength [nano] Gg 0.66 1879 GaSb 0.73 1708 CuInSe2 1.0 1240 Si 1.12 1107 GalnAs 1.24-1.39 998-891 GaAs 1.42 873 CuInS2 1.55 800 CdTe 1.56 795 GalnP 1.64 - 1.81 756-687 CuGaSe2 1.68 738 a-Si:H 1.7 729 Cu GaS2 2.30 539 CdS 2.42 512 [Embodiment] Example One-component injection molding with PLEXIGLAS® 7N or 8N-20-201107381 Table: for injection molding (DEMAG D 1 50 Injection molding machine) setting parameter temperature of processing molding material re] melt 245 barrel 230; 235; 240; 245 mold 55 hot runner (nozzle, runner) 246; 246 metering stroke 26 mm injection rate (gradient) Stage 1 (23 mm - 20 mm) 13 Stage 2 (2 mm - 15 mm) 16 Stage 3 (15 mm - 0 mm) 13 Holding (gradual) Holding pressure is related to stroke, 5 mm at screw travel Stage 1 (18 seconds) 82 Stage 1 (8 seconds) 75 Multi-components can be made by the following variants: Multi-component injection molding/injection compression molding is a continuous combination of multiple polymer melts: Cascading (Please refer to FIG. 4, this figure is extracted Handbuch Spritzgieflen) and the multi-component composite (coated molding / multilayer method) of the difference. Multilayer moldings can be made by using several plasticizing units and using turntable molding techniques, rail table molds, or by transfer techniques using a rotating dial. All methods can be used for injection molding and injection compression molding -21 - 201107381. At the same time, cold runner or hot runner technology can be used. Description of the manufacture of a luminescent solar concentrator Example 1: Production of uniformly colored injection moldings 0.3 5 parts by weight of dilauroside peroxide and 4.5 parts by weight of 2-ethylhexyl phthalate are dissolved in 940 weight A portion of methyl methacrylate and 60 parts by weight of methyl acrylate. Then, a mixture containing the following was added 0.15 parts by weight Lumogen Yellow 083 (BASF) 0.16 parts by weight Lumogen Organge 240 (BASF) 0.40 parts by weight Lumogen Red 305 (BASF). The mixture was stirred vigorously, poured into a bag of a polyester film, sealed and polymerized in a water bath at 60 ° C for 24 hours. The final polymerization was carried out in a heating cabinet at 12 °C for about 10 hours. The resulting material is then granulated in a honing machine. A sample having a size of 50 x 50 mm and a thickness of 10 mm was produced from the obtained particles by injection molding. A uniform red fluorescent plate having a thickness of 10 mm was obtained. Example 2: A green plate having three layers was produced by injection molding: 〇. 3 5 parts by weight of dilaurin peroxide and 4.5 parts by weight of 2-ethylhexyl phthalate were dissolved in 94 parts by weight. Methyl methacrylate and -22-201107381 60 parts by weight of methyl acrylate. Then, 0.15 parts by weight of Lumogen Yellow 083 (BASF) was added. ο The mixture was vigorously stirred, poured into a bag of a polyester film, sealed and polymerized in a water bath at 60 ° C for 24 hours. The final polymerization was carried out in a heating cabinet at 12 Torr. (: about 1 hour. Then, the obtained material is granulated in a honing machine) Red plate: 〇. 3 5 parts by weight of dilaurin peroxide and 4.5 parts by weight of 2-ethylhexyl phthalate are dissolved In 940 parts by weight of methyl methacrylate and 60 parts by weight of methyl acrylate. Then, 0.40 parts by weight of Lumogen Red 305 (BASF) was added. The mixture was stirred vigorously, poured into a bag of polyester film, sealed and The polymerization was carried out for 24 hours in a 60 t water bath. The final polymerization was carried out in a heating cabinet at 120 ° C for about 10 hours. Then, the obtained material was granulated in a honing machine. Orange plate: 〇-35 parts by weight of birnia The peroxide and 4·5 parts by weight of 2-ethylhexylacetate were dissolved in 940 parts by weight of methyl methacrylate and 60 parts by weight of methyl acrylate.

然後’添加 0.16重量份 Lumogen Organge 240 ( BASF -23- 201107381 劇烈攪拌此混合物’塡入聚酯膜的袋中,密封並在60 °C水浴中聚合24小時。終聚合反應在加熱箱中於l2〇°C進 行約1 〇小時。然後,所得材料在硏磨機中粒化。 藉多組份注射模塑和加工’自綠色、紅色和橘色粒子 製造尺寸爲50x50毫米的多層試樣。各個彩色層的厚度是3 毫米。紅或綠層位於外側;內層爲橘色。 得到總厚度爲9毫米的三層螢光板。 結果 自實例1和2的實驗得到之樣品的所有周圍經拋光。然 後,在LS-55螢光光譜儀(Perkin Elmer)上測定螢光強度 。使用似日光的氙燈源於激發° 最高強度和對應波長記錄於表1 ° 表1 實驗 波長(奈米) 相對強度 實例1 632 54 實例2 577 487 根據實例2的實驗顯示明顯較高的強度。 【圖式簡單說明】 圖1:具有根據實例1之均勻著色的螢光集光器之太陽 能電池的構造。 圖2:具有根據實例2之多層著色的螢光集光器之太陽 -24- 201107381 能電池的構造。 圖3 :螢光測定的基本槪要。 圖4 :圖像6.97係二組份注射模塑程序之圖示。 【主要元件符號說明】 1 :光子層 2:均勻著色的螢光聚光器 21,22,23:多層著色的螢光聚光器 3 :反射器,例如鏡子或白色板 4,41,42,43:調整至螢光聚光器的太陽能電池 3 · 1 :光源 3 · 2 :樣品表面 3 - 3 ·樣品邊緣 3.4 :偵測器 圖1和圖2顯示太陽能電池(4、41-43 )在螢光聚光器 (2、2 1 -23 )上的配置,螢光收集器的頂部任意地配備有 光成型體(1 ),且其下方任意地配備有反射器(例如鏡 子或白色板(3 ))。 -25-Then 'add 0.16 parts by weight of Lumogen Organge 240 (BASF -23- 201107381 to stir this mixture vigorously) into a bag of polyester film, seal and polymerize in a water bath at 60 ° C for 24 hours. The final polymerization reaction is in a heating box at l2 The mixture was granulated in a honing machine. The multi-component injection molded and processed 'multilayer samples of 50 x 50 mm were prepared from green, red and orange particles. The thickness of the colored layer was 3 mm. The red or green layer was on the outside; the inner layer was orange. A three-layered phosphor plate having a total thickness of 9 mm was obtained. Results All the samples from the experiments obtained in Examples 1 and 2 were polished. Then, the fluorescence intensity was measured on an LS-55 fluorescence spectrometer (Perkin Elmer). The daylight-based xenon lamp was used to generate the highest intensity and the corresponding wavelength recorded in Table 1 ° Table 1 Experimental wavelength (nano) Relative intensity Example 1 632 54 Example 2 577 487 The experiment according to Example 2 showed a significantly higher strength. [Schematic Description] Fig. 1: Configuration of a solar cell having a uniformly colored fluorescent concentrator according to Example 1. 2: Solar-24-201107381 energy battery structure having a multi-layered fluorescent concentrator according to Example 2. Fig. 3: Basic outline of fluorescence measurement Fig. 4: Image 6.97 two-component injection molding Graphical representation of the program. [Main component symbol description] 1 : Photonic layer 2: Uniformly colored fluorescent concentrator 21, 22, 23: Multi-layered colored fluorescent concentrator 3: Reflector, such as mirror or white plate 4 , 41, 42, 43: Solar cells adjusted to the fluorescent concentrator 3 · 1 : Light source 3 · 2 : Sample surface 3 - 3 · Sample edge 3.4 : Detector Figure 1 and Figure 2 show solar cells (4, 41-43) In the configuration of the fluorescent concentrator (2, 2 1 -23 ), the top of the fluorescent collector is arbitrarily equipped with a light-molded body (1), and a reflector is arbitrarily provided below it (for example) Mirror or white plate (3)). -25-

Claims (1)

201107381 七、申請專利範圍: 1. 一種由聚(甲基)丙烯酸甲酯所構成的成型聚合 物體,其特徵在於其已經至少一種螢光染料著色β 2. —種由聚(甲基)丙烯酸甲酯所構成的多層成型 聚合物體,其特徵在於其已經至少一種螢光染料著色。 3. 如申請專利範圍第2項之由聚(甲基)丙烯酸甲酯 所構成的成型聚合物體,其中,該成型聚合物體係由許多 個別的成型聚合物體所形成,且該個別的成型聚合物體已 經至少一種螢光染料著色。 4. 如申請專利範圍第2項之由聚(甲基)丙烯酸甲酯 所構成的成型聚合物體’其中,該成型聚合物體係由個別 黏著結合的成型聚合物體所形成,且該個別的成型聚合物 體已經至少一種螢光染料著色。 5 ·如申請專利範圍第1項之由聚(甲基)丙烯酸甲酯 所構成的成型聚合物體’其中,其係藉注射模塑法或注射 壓縮模塑法製造。 6·如申請專利範圍第2項之由聚(甲基)丙烯酸甲酯 所構成的成型聚合物體’其中,其藉層疊注射模塑法、層 疊注射壓縮模塑法、多組份注射模塑法或多組份注射壓縮 模塑法中之一者製造。 7.如申請專利範圍第1項之由聚(甲基)丙烯酸甲酯 所構成的成型聚合物體,其中,其已經至少一種有機螢光 染料著色。 8·如申請專利範圍第1項之由聚(甲基)丙烯酸甲醋 -26- 201107381 所構成的成型聚合物體,其中,其已經至少一種以並苯( rylene )、茈、三合並苯(terrylene )和/或四合並苯( quterrylene )爲基礎的有機螢光染料著色。 9. 如申i靑專利範圍第1項之由聚(甲基)丙稀酸甲醋 所構成的成型聚合物體,其中,其已經至少一種以類鑭元 素錯合物爲基礎的染料著色。 10. 如申請專利範圍第1項之由聚(甲基)丙烯酸甲 酯所構成的成型聚合物體,其中,其已經至少一種以奈米 級的半導體結構(量子點)爲基礎的染料| @。 11. 一種製造如申請專利範圍第1項之由聚(甲基) 丙烯酸甲酯所構成的成型聚合物體之方法,其特徵在於該 成型聚合物體係以包括下列步驟的注射模塑法製造:令染 料或染料混合物溶於單體混合物中,令單體混合物轉移至 膜袋,藉提高溫度而聚合及接著令所得聚合物粒化,藉注 射模塑法或壓縮注射模塑法進一步加工該聚合物粒。 1 2 · —種裝置’其由如申請專利範圍第2項之成型聚 合物體和太陽能電池所構成。 13. 如申請專利範圍第12項之裝置,其中光子層配置 在該成型聚合物體上方。 14. 如申請專利範圍第12項之裝置,其中由介電干擾 濾光器構成的光子層配置在該成型聚合物體上方。 15. 如申請專利範圍第12項之裝置,其中由介電干擾 濾光器構成的光子層以邊緣濾光器的形式配置在該成型聚 合物體上方。 -27- 201107381 16.如申請專利範圍第12項之裝置,其中由介電干擾 濾光器構成的光子層以帶通濾光器的形式配置在該成型聚 合物體上方。 1 7.如申請專利範圍第1 2項之裝置,其中由光子晶體 形成的光子層配置在該成型聚合物體上方。 18·如申請專利範圍第12項之裝置,其中反蛋白石形 式的光子層配置在該成型聚合物體上方。 19·如申請專利範圍第12項之裝置,其中平面反射器 配置在該成型聚合物體的下方。 20. 如申請專利範圍第12項之裝置,其中配置在該成 型聚合物體下方的該反射器是鏡子。 21. 如申請專利範圍第12項之裝置,其中配置在該成 型聚合物體下方的該反射器是白色膜或板。 22. 如申請專利範圍第12項之裝置,其中光子層係配 置在該成型聚合物體上方,和反射器係配置在該成型聚合 物體的下方。 23 .如申請專利範圍第1 2項之裝置,其中如申請專利 範圍第13至18項中任一項之光子層係配置在該成型聚合物 體上方,和如申請專利範圍第1 9至2 1項中任一項之反射器 係配置在該成型聚合物體的下方。 24. —種如申請專利範圍第1至10項中任一項之成型 聚合物體於製造太陽能收集器之用途。 25· —種如申請專利範圍第12至23項中任一項之裝置 於製造太陽能收集器之用途。 -28-201107381 VII. Patent application scope: 1. A shaped polymer body composed of poly(methyl) acrylate, characterized in that it has been colored by at least one fluorescent dye β 2. A multilayer shaped polymer body composed of an ester characterized in that it has been colored by at least one fluorescent dye. 3. A shaped polymer body composed of poly(methyl) acrylate according to claim 2, wherein the shaped polymer system is formed from a plurality of individual shaped polymer bodies, and the individual shaped polymer bodies At least one fluorescent dye has been colored. 4. A shaped polymer body composed of poly(methyl) acrylate as claimed in claim 2, wherein the shaped polymer system is formed by a separately bonded molded polymer body, and the individual shaped polymerization The object has been colored with at least one fluorescent dye. 5. A shaped polymer body composed of poly(methyl) acrylate as claimed in claim 1 wherein it is produced by injection molding or injection compression molding. 6. A shaped polymer body composed of poly(methyl) acrylate as claimed in claim 2, wherein by laminating injection molding, laminating injection compression molding, multi-component injection molding Or one of the multi-component injection compression molding methods. 7. A shaped polymer body composed of poly(methyl) acrylate according to the first aspect of the patent application, wherein it has been colored with at least one organic fluorescent dye. 8. The shaped polymer body consisting of poly(methyl)acrylate methyl vinegar-26-201107381, as claimed in claim 1, wherein at least one of hexene (rylene), ruthenium and ternary benzene (terrylene) And/or four combined benzene (quterrylene) based organic fluorescent dyes. 9. A shaped polymer body composed of poly(methyl)acrylic acid methyl vinegar according to item 1 of the patent application, wherein it has been colored with at least one dye based on a terpene-like complex. 10. A shaped polymer body composed of poly(methyl) acrylate according to the first aspect of the patent application, wherein it has at least one dye based on a nano-scale semiconductor structure (quantum dot). A method of producing a shaped polymer body composed of poly(methyl) acrylate as claimed in claim 1, wherein the shaped polymer system is produced by an injection molding method comprising the following steps: The dye or dye mixture is dissolved in the monomer mixture, the monomer mixture is transferred to the film bag, polymerized by increasing the temperature and then the resulting polymer is granulated, and the polymer is further processed by injection molding or compression injection molding. grain. A device consisting of a molded polymer object and a solar cell as in the second aspect of the patent application. 13. The device of claim 12, wherein the photonic layer is disposed above the shaped polymer body. 14. The device of claim 12, wherein the photonic layer composed of a dielectric interference filter is disposed over the shaped polymer body. 15. The device of claim 12, wherein the photonic layer of dielectric interference filters is disposed above the shaped polymeric object in the form of an edge filter. The apparatus of claim 12, wherein the photonic layer composed of the dielectric interference filter is disposed above the shaped polymer object in the form of a band pass filter. The device of claim 12, wherein the photonic layer formed of the photonic crystal is disposed above the shaped polymer body. 18. The device of claim 12, wherein the opal-like photonic layer is disposed over the shaped polymer body. 19. The device of claim 12, wherein the planar reflector is disposed below the shaped polymer body. 20. The device of claim 12, wherein the reflector disposed below the molded polymer body is a mirror. 21. The device of claim 12, wherein the reflector disposed under the molded polymer body is a white film or plate. 22. The device of claim 12, wherein the photonic layer is disposed above the shaped polymer body, and the reflector is disposed below the shaped polymeric object. 23. The device of claim 12, wherein the photonic layer of any one of claims 13 to 18 is disposed above the shaped polymer body, and as disclosed in claim 19th to 21st The reflector of any of the items is disposed below the shaped polymer body. 24. Use of a shaped polymer body as claimed in any one of claims 1 to 10 for the manufacture of a solar collector. 25. The use of a device according to any one of claims 12 to 23 for the manufacture of a solar collector. -28-
TW099111289A 2009-04-15 2010-04-12 Fluorescence conversion solar cell-production in an injection moulding process TW201107381A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009002386A DE102009002386A1 (en) 2009-04-15 2009-04-15 Fluorescence Conversion Solar Cell - Injection Molding Production

Publications (1)

Publication Number Publication Date
TW201107381A true TW201107381A (en) 2011-03-01

Family

ID=42110239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099111289A TW201107381A (en) 2009-04-15 2010-04-12 Fluorescence conversion solar cell-production in an injection moulding process

Country Status (3)

Country Link
DE (1) DE102009002386A1 (en)
TW (1) TW201107381A (en)
WO (1) WO2010118920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540677A (en) * 2012-05-16 2015-04-22 诺沃聚合物公司 Polymer sheet

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028180A1 (en) * 2010-04-26 2011-10-27 Evonik Röhm Gmbh Plastic molding useful for manufacturing solar panels, comprises polymethyl(meth)acrylate coated with a film made of several individual layers, which are dyed with a fluorescent dye
US9287419B2 (en) * 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US20140007940A1 (en) * 2011-03-31 2014-01-09 Shaofu Wu Light transmitting thermoplastic resins comprising down conversion material and their use in photovoltaic modules
EP2760941A2 (en) 2011-09-26 2014-08-06 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
WO2013052381A2 (en) 2011-10-05 2013-04-11 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
CN103195240A (en) * 2013-03-25 2013-07-10 江苏百新塑业有限公司 Plastic extruding and edge banding process of hollow plastic building templates
TWI641645B (en) * 2016-07-08 2018-11-21 羅門哈斯電子材料有限公司 Multilayer polymer composite for encapsulating quantum dots

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH612541A5 (en) 1976-05-06 1979-07-31 Fraunhofer Ges Forschung
DE2737847A1 (en) * 1977-08-23 1979-03-08 Fraunhofer Ges Forschung Solar energy electric or thermal energy converter - has stacked concentrators with fluorescence centres and solar cells each converting part of incident light
US4175980A (en) * 1978-12-18 1979-11-27 Atlantic Richfield Company Luminescent solar collector
DE2908770A1 (en) * 1979-03-06 1980-10-02 Siemens Ag METHOD FOR COLLECTING LIGHT AND DEVICE FOR CARRYING OUT SUCH A METHOD
US4488047A (en) * 1981-11-25 1984-12-11 Exxon Research & Engineering Co. High efficiency multiple layer, all solid-state luminescent solar concentrator
DE3300526A1 (en) 1983-01-10 1984-07-12 Röhm GmbH, 6100 Darmstadt IMPACT MODIFIER
US4845223A (en) * 1985-12-19 1989-07-04 Basf Aktiengesellschaft Fluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
DE3545004A1 (en) * 1985-12-19 1987-06-25 Basf Ag FLUORESCENT AROXY-SUBSTITUTED PERYLENE-3,4,9,10-TETRACARBONIC ACID DIIMIDES AND THEIR USE FOR AREA CONCENTRATION OF LIGHT
JPH0347856A (en) 1989-04-18 1991-02-28 Kuraray Co Ltd Methacrylic resin having excellent light resistance
US5063259A (en) 1990-07-03 1991-11-05 Rohm And Haas Company Clear, impact-resistant plastics
DE4121652A1 (en) 1991-06-29 1993-01-07 Roehm Gmbh Impact MODIFIERS
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
DE4417559A1 (en) 1994-05-19 1995-11-23 Roehm Gmbh Process for dewatering a water-containing plastic melt in a twin-screw extruder
US5622821A (en) 1994-06-29 1997-04-22 The Regents Of The University Of California Luminescent lanthanide chelates and methods of use
JPH11511592A (en) * 1995-08-28 1999-10-05 ミネソタ マイニング アンド マニュファクチャリング カンパニー Persistent fluorescent solar collector
DE69627205T2 (en) * 1996-05-17 2004-02-05 Smith, Geoffrey Burton, Epping IMPROVEMENTS IN FLUORESCENT MATERIALS
DE19705046A1 (en) * 1996-08-20 1998-02-26 Fraunhofer Ges Forschung System for using solar energy, e.g. for illuminating buildings etc.
EP0965154A1 (en) 1997-03-03 1999-12-22 Akzo Nobel N.V. Polymeric optical waveguide doped with a lanthanide-sensitizer complex
FR2792461B3 (en) * 1999-04-19 2001-06-29 Biocube PHOTOVOLTAIC GENERATORS WITH LIGHT CASCADE AND ELECTROMOMAGNETIC FLOW VARIATION
DE10024466A1 (en) 2000-05-18 2001-11-22 Merck Patent Gmbh Highly stable opal-structured pigments useful in e.g. lacquers, paints, inks, plastics or cosmetics are obtained from monodisperse spheres, e.g. of silica, metal oxides such as titanium dioxide or polymer
JP2004504242A (en) 2000-06-15 2004-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing spherical crystals
JP2004510678A (en) 2000-10-04 2004-04-08 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー Synthesis of colloidal nanocrystals
WO2002044301A2 (en) 2000-11-30 2002-06-06 Merck Patent Gmbh Particles with opalescent effect
DE10228228A1 (en) 2001-09-14 2003-04-03 Merck Patent Gmbh Shaped body made of core-shell particles
DE10204338A1 (en) 2002-02-01 2003-08-14 Merck Patent Gmbh Shaped body made of core-shell particles
DE10227071A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
DE10233684A1 (en) 2002-07-24 2004-02-12 Röhm GmbH & Co. KG Method for bonding at least two plastic sheets and apparatus for carrying out the method
CN100584921C (en) 2002-09-05 2010-01-27 奈米***股份有限公司 Organic species that facilitate charge transfer to or from nanostructures
DE10245848A1 (en) 2002-09-30 2004-04-01 Merck Patent Gmbh Process for the production of inverse opal structures
DE10254276A1 (en) 2002-11-20 2004-06-03 Röhm GmbH & Co. KG Process for producing a plastic plate with a layered structure
DE10357681A1 (en) 2003-12-10 2005-07-21 Merck Patent Gmbh Use of core-shell particles
DE102004009569A1 (en) 2004-02-25 2005-09-15 Merck Patent Gmbh Use of core-shell particles
US7746681B2 (en) 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US7742322B2 (en) 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
DE102004032120A1 (en) 2004-07-01 2006-02-09 Merck Patent Gmbh Diffractive colorants for cosmetics
WO2006045567A2 (en) 2004-10-25 2006-05-04 Merck Patent Gmbh Use of moulding bodies made of core-shell particles
DE102004055303A1 (en) 2004-11-16 2006-05-18 Röhm GmbH & Co. KG Core-shell particles
KR100657639B1 (en) 2004-12-13 2006-12-14 재단법인서울대학교산학협력재단 Large scale one-pot synthesis of semiconductor quantum dots
DE102005040351B4 (en) * 2005-08-25 2007-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Radiation modules, arrangements containing them and methods for detection, control and monitoring
DE102005043572A1 (en) * 2005-09-12 2007-03-15 Basf Ag Fluorescence conversion solar cells based on terrylene fluorescent dyes
US7414294B2 (en) 2005-12-16 2008-08-19 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix
US20070137696A1 (en) * 2005-12-21 2007-06-21 Hans-Joachim Krokoszinski Solar panels, methods of manufacture thereof and articles comprising the same
DE102006017163A1 (en) 2006-04-12 2007-10-18 Merck Patent Gmbh Preparing inverse opal with adjustable canal diameter, comprises arranging and partially fusing template sphere, increasing temperature, soaking sphere space with wall material precursor, forming wall material and removing template sphere
US20080149165A1 (en) * 2006-12-22 2008-06-26 General Electric Company Luminescent solar collector
AU2007346889B2 (en) * 2007-02-16 2014-05-15 Opalux Incorporated Compressible photonic crystal
WO2008110567A1 (en) * 2007-03-13 2008-09-18 Basf Se Photovoltaic modules with improved quantum efficiency
US20110114174A1 (en) * 2007-08-17 2011-05-19 Basf Se Solar cell structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540677A (en) * 2012-05-16 2015-04-22 诺沃聚合物公司 Polymer sheet
CN104540677B (en) * 2012-05-16 2018-05-22 北欧化工公司 Polymer sheet

Also Published As

Publication number Publication date
WO2010118920A1 (en) 2010-10-21
DE102009002386A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
TW201107381A (en) Fluorescence conversion solar cell-production in an injection moulding process
US20130074930A1 (en) Polymethyl (meth)acrylate mouldings for fluorescence conversion, production of these by the sheet casting process and use in solar collectors
JP6337776B2 (en) Film containing vinylidene fluoride resin, laminated film, and laminate
TWI597298B (en) Solar battery module
TW201125947A (en) Adhesive sheet for protecting back face of solar battery module, and solar battery module using the same
KR20120083887A (en) Polyester film for solar cells
CN103348192A (en) Novel solar concentration device
JP2010135652A (en) Planar sealer for solar batteries, and solar battery module
CN101740649A (en) Solar panel and method for making same
WO2022057139A1 (en) Solder strip carrier film, preparation method therefor, and application thereof
TWI534194B (en) Sealing resin sheet of solar cell and solar cell modules using the same and manufacturing method thereof
US9176474B2 (en) Light-concentrating film, method for producing same, focusing element, solar cell, and focusing method
WO2022057138A1 (en) Solder strip carrier film, solder strip composite, and battery piece composite
WO2016112200A1 (en) Thermal regulating wavelength conversion films incorporating phase change materials
CN111253876A (en) Packaging adhesive film for photovoltaic module and preparation method thereof
TW201124506A (en) Fluorescence conversion solar cell-production in an extrusion process or in a coextrusion process
CN110023437A (en) PV battery and backboard polyester film
TW201043681A (en) Fluorescence conversion solar cell I production in a sheet casting process
TWI553894B (en) Sealing material for photovoltaic cell and photovoltaic cell module
JP2010177384A (en) Backsheet for solar cell
CN115923212B (en) Preparation method of casting film, casting film prepared by method and application of casting film
TW201244930A (en) New solar concentration devices
DE102010028180A1 (en) Plastic molding useful for manufacturing solar panels, comprises polymethyl(meth)acrylate coated with a film made of several individual layers, which are dyed with a fluorescent dye
DE102010028186A1 (en) Plastic molded body made from a transparent, thermoplastic polymer, useful in an arrangement for producing a collector of solar cell, comprises coatings, which are colored with fluorescent dye, and are applied by roll coating method
WO2017060609A1 (en) Adhesive, the precursor of which is applied in liquid form and uv-polymerized, for encapsulating flexible electronic devices, improving the protection against gas permeability