TW201106517A - Dye-sensitized solar cell structure and its manufacturing method - Google Patents

Dye-sensitized solar cell structure and its manufacturing method Download PDF

Info

Publication number
TW201106517A
TW201106517A TW098126018A TW98126018A TW201106517A TW 201106517 A TW201106517 A TW 201106517A TW 098126018 A TW098126018 A TW 098126018A TW 98126018 A TW98126018 A TW 98126018A TW 201106517 A TW201106517 A TW 201106517A
Authority
TW
Taiwan
Prior art keywords
dye
solar cell
sensitized solar
titanium dioxide
layer
Prior art date
Application number
TW098126018A
Other languages
Chinese (zh)
Inventor
rong-quan Zhou
Ying-Cong Liu
Yi-Ming You
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW098126018A priority Critical patent/TW201106517A/en
Publication of TW201106517A publication Critical patent/TW201106517A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention provides a dye-sensitized solar cell structure and its manufacturing method. The structure includes: a dense nano-crystal modified titanium dioxide electrode, an electrolyte and an auxiliary electrode. The manufacturing method is provided to place the electrolyte on the dense nano-crystal modified titanium dioxide electrode and arrange the auxiliary electrode on the electrolyte, so as to form a dye-sensitized solar cell.

Description

201106517 六、發明說明: 【發明所屬之技術領域】 一種增進轉換效率的太陽能電池結構,尤指一種藉由加入緻 密奈米晶修飾二氧化鈦層而增進轉換效率的染料敏化太陽能電池 結構。 【先前技術】 20世紀70年代發展之矽晶太陽能電池,總能量轉換效率達到 25%以上,但其昂貴造價反而使人望之卻步,亦限制其實際用途, • 間接造成染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSSC)之發展,此種太陽能電池具製程簡單、較少之使用材料及 低生產成本之優點。 景>響染料敏化太陽能電池轉換效率之因素有三:一、敏化染 料,敏化染料之選擇為非常重要因素之一,染料之優劣會直接影 響太陽能電池的光電轉換效率,故敏化染料需符合以下條件:(i) 於一氧化鈦奈米結構表面需有良好之吸附性,亦即能快速達到吸 附平衡’且不易脫落,故染料分子應具有易與奈米半導體表面結 合之基團:如-C00H、-S03H、-P03H2等,(2)於可見光區有較寬、 較強之吸收帶’(3)其氧化態與激發態要雜高之敎性,⑷ 激發悲可〒長,且需有極高之電荷傳輸效率,(5)具有足夠負之 激發態氧化财、電仙舰紐激鶴電子_觀人二氧化欽 導電帶(6)於氧化還原過程(基態與激發態)_需有相對低之 電位’以利於初級和次級電子轉移中之自由能損失。 -、半導體電極’半導體電極其性能優劣浦係太陽能電池 之效率,染料敏化太陽能電池對於半導體電極有以下二個要求: 201106517 (y半導體電極之表面積越大越佳,⑵適當能極結構,半導體 之能帶結構應與染料触和電解f的氧化還原電位相匹配。 電解s電解3於轉敏化太陽能電池情任傳輸電子 :、再生染料之功月匕I期以來染料敏化太陽能電池以液態電解質 =主^賴電解質,馳電位易於㈣,但液態電解 、仍子在以下缺點.(1)有機溶獅點較低具有高蒸汽屋,易 於揮發對祕敏化太陽能電池長期穩定性有所影響,⑵液態電 解液密封技術’長期放置會造成電嫩_,膽封劑亦可 月b與電解質發生反應,(3)有機賴之毒性,⑷液態電解質中 微量水分何能導致__,⑸雜敏化續能電池形狀設 2限制。雖餘態電解質具有以上缺點,改善染料敏化太陽能 電池以上缺點係目前努力之目標,儘管如此液態電解質所獲得之 轉換效率仍較固態電解質高。 “而相關之專利有中華民國發明專利第麵烈號「染料敏化 太%能電池及其電極」,該專利於雜敏化太電池電極之半導 體奈米晶财加人金練子,其包括金、銀备轉。利用其 本身良好之導電丨生’以提㊂半導體奈米晶之導電率,加快電子向 =遷移之速率,從而改善整個染料敏化太陽能電池之光電 中華民崎明專利第127娜號「電極、光電轉換元件,及染 料敏感化太陽錢池」’該專利使料電性輔絲結碳顆粒或始 顆粒’形成—具有孔雜結構之雜,藉此增加電極之有效面積 (表面積)。該發明皆可由低成本製造且藉由增加有效面積 獲得優良之光電轉換效率。 〃 201106517 ‘旦巾華民國新型專利第M323⑽號「具有奈米金粒子作為鎮埋 里子點之染料敏化太陽能電池」,該專利主要目的在於提供一種具 有^米金粒子作為鑲埋量子點之染料敏化太陽能電池,利用浸泡 於f米金粒子溶液中’增加吸收之頻段,將光電轉換之功能提升, 以仔到一具有高轉換比之染料敏化太陽能電池結構。 中華民國發明專利第1304065號「用於染槪化太陽能電池 的有機木料」’該專利主要目的為提供一種用於染料敏化太陽能電 池的有機染料,其具有通式(1): ® D-Spl-Ch-Sp2-Acc-Y.........⑴ 其中官能基D、Ch、Acc與Y彼此共輕;f能基D是一種 電子供體基’官能基ch是-種可導致低職0—LUM0能係的發色 團,疋-多芬芳還發色團;官能基Acc是一電子受體基;官能 f Y疋-固^基;Spl代表單鍵’或是使官能基D與⑶共轭的間 隔基·且Sp2代表單鍵,或是使官能基⑶與Acc共輛的間隔基。 中華民國發明專利第1241721號「染料敏化太陽能電池模組 鲁及其製法」’該發明是一種染料敏化太陽能電池模組及其製法,其 中揭露了-種可崎低導線製程之成本,提高絲躍區以及製程 ^率的染料敏化太陽能電池模組及其製法;本發明採用積體模組 =法,透過合併兩塊分職有陽極與陰極之陽極板和陰極板的手 奴’使之共用絕緣體與導線,故能降低導線製程的成本,並使導 線與絕緣體的製作步驟挪至高溫(約棚。c)製程後,以提高太陽能 電池=製程良率;另-方面,由於絕緣體和導線共享的設計,也 可使單位面積内的光活躍區增加。 美國發明專利第7,179, 988號「Dye 201106517 ‘_ Electrodes」’該專利主要目的在於提供一奈米線或 不未孔洞電極,藉崎低電子聽賴。此雜綠大之比表面 積’ rmrr爾,以提刪敏化機電池之效能。 爰是,本發日_主要目的在於揭露—婦槪化太陽能電池 1與其製造綠,㈣糊單、雜並可提升元件之光 效率。 基於上述目的’本發明賊餘化讀能電池結構與 ,、製造方法’其結構包括—緻密奈米晶修飾二氧化鈦電極、一電 解液、-辅助電極,其中該緻密奈米晶修都二氧化欽電極包含一 透明導電玻璃、-緻密H日日修飾二氧化鈦層一多孔性半導體 層與一染料,其中製造方法為讓該緻密奈米晶修飾二氧化鈦層置 於該透明導電玻璃上,該多紐半導體層置於舰密奈米晶修御 一虱化鈦層上且該染料置於該多孔性半導體層上。 、而該辅助電極包含—透明導電玻璃與-催化層,其中製造方 法為讓該催化層置於該透明導電玻璃。 又該染料敏化太陽能電池結構的製造方法為提供該緻密奈米 晶修飾二氧化鈦電極、該電解液與該輔助電極,並讓該電解液形 成於該難奈米晶修飾二氧化鈦電極上,讓雜助電極 該 電解液上。 據此’如上所述的結構與製造方法,其製程簡單、環保並可 提升元件之光電轉換效率。 【實施方式】 為使貴委員對本發明之特徵、目的及功效有更加深入之瞭 201106517 解與認同’茲列舉較佳實施例並配合圖式說明如后: 請參閱「圖1」所示,本發明一染料敏化太陽能電池3〇之結 構包括一緻密奈米晶修飾二氧化鈦電極10、一輔助電極20以及一 電解液31。其中該電解液31形成於該緻密奈米晶修飾二氧化鈦電 極10上’該輔助電極2〇形成於電解液31上。 染料敏化太陽能電池30之電解液31可為一具氧化還原作用 之電解液,例如破化納(Sodium Iodide, Nal)、例如碘(i〇dide, 12)、例如 4-特-丁基口比咬(4-Tert-Butylpyridine,TBP)以及碳 酸丙烯酯(propylene Carbonate, PC)共同組成。 請參閱「圖2」所示,該緻密奈米晶修飾二氧化鈦電極1〇包 含一透明導電玻璃11、一緻密奈米晶修飾二氧化鈦層12、一多孔 性半導體層13以及一染料14,其中該緻密奈米晶修飾二氧化鈦層 12形成於透明導電玻璃n上,該多孔性半導體層13形成於該緻 密奈米晶修飾二氧化鈦層12上,該染料14形成於該多孔性半導 體層13上。 該透明導電基板11可為一氧化銦錫玻璃基板、一氧化氟錫玻 璃基板及一氧化銦錫可撓式基板的任一種形成。 該緻岔奈米晶修飾二氧化鈦層12可由一緻密且導電性佳之薄 膜、例如二氧化鈦以及例如釕金屬共同組成。 該多孔性半導體層13可由-具高比表面積、禁帶寬度大以及 易吸附染料之半導體,例如二氧化鈦與氧化鋅。 該染料14可由一可吸收光而激發電子之有機釕金屬錯合物粉 末例如 N3 (Ruthenium-535)、N719 及黑染料(Black Dye)、以及 例如酒精之溶劑共同組成。 201106517 又請參閱「圖3」所示,該輔助電極2〇包括一透明導電玻璃 21以及一催化層22。催化層22形成於透明導電玻璃21上。 辅助電極20之透明導電基板21可為一氧化銦錫玻璃基板、 一氧化氟錫玻璃基板及一氧化銦錫可撓式基板。 催化層22可為-具可催化電解液氧化還原反應之材料、例如 鉑金屬、碳以及鎳金屬等。 而如「圖1」的結構’染料敏化太陽能電池3〇的製造方法, 包括下列轉。首先’提供-職奈米晶修飾二氧化鈦電極1〇。 接著,形成一電解液31於緻密奈米晶修飾二氧化鈦電極1〇上。 之後’形成一辅助電極20於電解液31上。 電解液31之製造方法,包括下列步驟:(a)取一碘化鈉 (Sodium Iodide,Nal )、碘(i〇dide,12)、4-特-丁基口 比咬 (4-Tert-Butylpyridine,TBP)以及碳酸丙烯酯(Pr〇pylene Carbonate,PC)共同組成,以得到一混合溶液;(b)取該混合溶 液以超音波振盪器充分攪拌,即可形成該電解液31 而如「圖2」的結構,緻密奈米晶修飾二氧化鈦電極1〇的製 造方法,包括下列步驟。首先,提供一透明導電玻璃n ;接著形 成一緻密奈米晶修飾二氧化鈦層12於透明導電玻璃u上;之後, 形成一多孔性半導體層13於緻密奈米晶修飾二氧化鈦層a上; 最後形成一染料14於多孔性半導體層13上。 緻岔奈米晶修飾二氧化鈦層12可藉由共射頻滅錄法 (Co-sputtering system)形成於透明導電玻璃11上;多孔性半導 體層13可藉由旋轉塗佈法(Spin Coating)形成於緻密奈米晶修掷 二氧化鈦層12上;染料14可藉由浸泡法吸附於多孔性半導體層 201106517 13上。 多孔性半導體層13之製造方法包括下列步騾:(a)取一定量 之二氧化鈦粉末、例如乙基丙酮(Ethylacetoacetone)之分散劑、 例如Triton X-100之介面活性劑與例如去離子水(Dei〇nized Water,D. I· Water)之溶劑混合之’以得到一二氧化鈦塗佈膠體; (b)將上述塗佈膠體均勻塗佈於緻密奈米晶修飾二氧化鈦層12 上;(c)於退火爐内於定溫下進行退火,使其晶相更加完整,即可 完成一多孔性半導體層13。201106517 VI. Description of the Invention: [Technical Field of the Invention] A solar cell structure for improving conversion efficiency, in particular, a dye-sensitized solar cell structure which improves conversion efficiency by adding a dense nanocrystal-modified titanium dioxide layer. [Prior Art] The twin-crystal solar cells developed in the 1970s have a total energy conversion efficiency of more than 25%, but their expensive cost is deterred and limits their practical use. • Indirectly causing dye-sensitized solar cells ( The development of Dye-Sensitized Solar Cell (DSSC), which has the advantages of simple process, low material usage and low production cost. There are three factors in the conversion efficiency of the dye-sensitized solar cell: 1. The selection of sensitizing dyes and sensitizing dyes is one of the most important factors. The advantages and disadvantages of dyes directly affect the photoelectric conversion efficiency of solar cells, so sensitizing dyes The following conditions must be met: (i) the surface of the titanium oxide nanostructure needs good adsorption, that is, it can quickly reach the adsorption equilibrium' and is not easy to fall off, so the dye molecule should have a group that is easy to bond with the surface of the nano semiconductor. : such as -C00H, -S03H, -P03H2, etc., (2) in the visible region, there is a wider, stronger absorption band '(3) its oxidation state and excited state are mixed, (4) sorrow and sorrow And need to have a very high charge transfer efficiency, (5) have a negative negative excited state oxidation, electric fairy ship 激 激 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ) _ requires a relatively low potential 'to facilitate the loss of free energy in primary and secondary electron transfer. -, semiconductor electrode 'semiconductor electrode's performance is superior to that of pura solar cell. Dye-sensitized solar cell has the following two requirements for semiconductor electrode: 201106517 (y semiconductor electrode has a larger surface area, better (2) proper energy structure, semiconductor The band structure should be matched with the redox potential of the dye contact and electrolysis f. Electrolytic s electrolysis 3 is used in the transmission of sensitized solar cells: the dye-sensitized solar cell with liquid electrolyte since the regenerative dye = main electrolyte, easy to move potential (four), but liquid electrolysis, still in the following shortcomings. (1) low organic lion point has a high steam house, easy to volatilize on the long-term stability of the sensitized solar cell, (2) Liquid electrolyte sealing technology 'Long-term placement will cause sensation _, biliary sealant can also react with electrolytes in month b, (3) toxicity of organic sputum, (4) how trace water in liquid electrolyte can cause __, (5) The continuation of the battery shape is limited to 2. The remaining electrolyte has the above disadvantages, and the above disadvantages of the dye-sensitized solar cell are improved. The goal is that the conversion efficiency obtained by the liquid electrolyte is still higher than that of the solid electrolyte. "The related patent has the invention of the Republic of China, the first face of the "Dye-sensitized too energy battery and its electrode", the patent is sensitized The semiconductor battery of the battery electrode is a nano-crystal, which includes gold and silver. It uses its own good electrical conductivity to improve the conductivity of the three semiconductor nanocrystals and accelerate the rate of electron migration. , thereby improving the photoelectricity of the entire dye-sensitized solar cell, Zhonghua Minzaki Patent No. 127 Na "electrode, photoelectric conversion element, and dye-sensitized solar money pool" 'this patent enables electric auxiliary wire carbon particles or primary particles 'Forming—having a heterogeneous structure of pores, thereby increasing the effective area (surface area) of the electrode. The invention can be manufactured at low cost and obtain excellent photoelectric conversion efficiency by increasing the effective area. 〃 201106517 'Den towel Huaminguo new patent No. M323(10) "Dye-sensitized solar cells with nano-gold particles as sub-buried sub-points", the main purpose of which is to provide a There are ^Mijin particles as dye-sensitized solar cells with embedded quantum dots. The function of increasing the absorption frequency is immersed in the f-m gold particle solution to enhance the function of photoelectric conversion, so as to dye sensitive with a high conversion ratio. Solar cell structure. The Republic of China invention patent No. 1304065 "Organic wood for dyeing solar cells" 'The main purpose of this patent is to provide an organic dye for dye-sensitized solar cells, which has the general formula (1) : ® D-Spl-Ch-Sp2-Acc-Y (1) wherein the functional groups D, Ch, Acc and Y are lightly related to each other; the f energy group D is an electron donor group 'functional group' Ch is a chromophore which can lead to the lower 0-LUM0 energy system, 疋-poly fragrant chromophore; functional group Acc is an electron acceptor group; functional f Y疋-solid group; Spl represents a single bond 'Or a spacer which conjugates the functional group D to (3) and Sp2 represents a single bond or a spacer which shares the functional group (3) with Acc. The Republic of China Invention Patent No. 1241721 "Dye-sensitized solar cell module Lu and its preparation method" is a dye-sensitized solar cell module and a method for producing the same, which exposes the cost of a low-wire manufacturing process Dye-sensitized solar cell module with silk-leaf zone and process rate and method for preparing the same; the invention adopts integrated module=method, and combines two hand slaves with anode and cathode anode and cathode plates The common insulator and the wire can reduce the cost of the wire manufacturing process, and the manufacturing steps of the wire and the insulator are moved to a high temperature (about shed. c) process to improve the solar cell = process yield; another aspect, due to the insulator and The design of wire sharing also increases the active area of light per unit area. U.S. Patent No. 7,179,988, "Dye 201106517 ‘_ Electrodes" The main purpose of this patent is to provide a nanowire or a non-porous electrode. This heterogeneous green ratio has a surface area of 'rmrr' to improve the performance of the sensitizer battery. The main purpose of this issue is to expose the maternalized solar cell 1 and its manufacturing green, (4) paste and miscellaneous and improve the light efficiency of the component. Based on the above object, the structure and manufacturing method of the present invention includes a dense nanocrystal-modified titanium dioxide electrode, an electrolyte, and an auxiliary electrode, wherein the dense nano crystal repairs are both oxidized. The electrode comprises a transparent conductive glass, a dense H-day modified titanium dioxide layer, a porous semiconductor layer and a dye, wherein the dense nanocrystal-modified titanium dioxide layer is disposed on the transparent conductive glass, the multi-new semiconductor The layer is placed on a layer of nanocrystalline silicon and the dye is placed on the porous semiconductor layer. And the auxiliary electrode comprises a transparent conductive glass and a catalytic layer, wherein the catalytic layer is placed in the transparent conductive glass. The method for manufacturing the dye-sensitized solar cell structure provides the dense nanocrystal-modified titanium dioxide electrode, the electrolyte and the auxiliary electrode, and the electrolyte is formed on the nano-crystal modified titanium dioxide electrode, and the auxiliary The electrode is on the electrolyte. According to the structure and manufacturing method as described above, the process is simple, environmentally friendly, and the photoelectric conversion efficiency of the element can be improved. [Embodiment] In order to make the members of the present invention more in-depth, the purpose and the effect of the present invention 201106517 The solution and the identification of the present invention are described with reference to the following description: Please refer to FIG. The structure of a dye-sensitized solar cell comprises a uniform nanocrystalline modified titanium dioxide electrode 10, an auxiliary electrode 20 and an electrolyte 31. The electrolyte 31 is formed on the dense nanocrystalline modified titanium oxide electrode 10. The auxiliary electrode 2 is formed on the electrolyte 31. The electrolyte 31 of the dye-sensitized solar cell 30 may be a redox effect electrolyte such as sodium Iodide (Nal), such as iodine (i〇dide, 12), for example, 4-tert-butyl port. It is composed of 4-Tert-Butylpyridine (TBP) and propylene carbonate (PC). Referring to FIG. 2, the dense nanocrystalline modified titanium dioxide electrode 1A comprises a transparent conductive glass 11, a uniform nanocrystalline modified titanium dioxide layer 12, a porous semiconductor layer 13, and a dye 14, wherein The dense nanocrystalline modified titanium dioxide layer 12 is formed on the transparent conductive glass n, and the porous semiconductor layer 13 is formed on the dense nanocrystalline modified titanium oxide layer 12, and the dye 14 is formed on the porous semiconductor layer 13. The transparent conductive substrate 11 may be formed of any one of an indium tin oxide glass substrate, a fluorine oxide glass substrate, and an indium tin oxide flexible substrate. The ruthenium nanocrystal-modified titanium dioxide layer 12 may be composed of a film which is uniform and electrically conductive, such as titanium dioxide and, for example, ruthenium metal. The porous semiconductor layer 13 can be a semiconductor having a high specific surface area, a large band gap, and a dye-adsorbing dye such as titanium oxide and zinc oxide. The dye 14 may be composed of an organic ruthenium metal complex powder which absorbs light and excites electrons such as N3 (Ruthenium-535), N719 and Black Dye, and a solvent such as alcohol. 201106517 Please also refer to FIG. 3, the auxiliary electrode 2 includes a transparent conductive glass 21 and a catalytic layer 22. The catalytic layer 22 is formed on the transparent conductive glass 21. The transparent conductive substrate 21 of the auxiliary electrode 20 may be an indium tin oxide glass substrate, a fluorine tin oxide glass substrate, and an indium tin oxide flexible substrate. The catalytic layer 22 may be a material having a catalytic redox reaction, such as platinum metal, carbon, nickel metal or the like. The method of manufacturing the dye-sensitized solar cell 3 of the structure of Fig. 1 includes the following conversion. First, 'providing a job-nano crystal modified titanium dioxide electrode 1 〇. Next, an electrolyte 31 is formed on the dense nanocrystal-modified titanium oxide electrode 1〇. Thereafter, an auxiliary electrode 20 is formed on the electrolytic solution 31. The method for producing the electrolyte 31 comprises the steps of: (a) taking sodium monoiodide (Sodium Iodide, Nal), iodine (i〇dide, 12), 4-tert-butyl butyl bite (4-Tert-Butylpyridine). , TBP) and propylene carbonate (Pr〇pylene Carbonate, PC) are combined to obtain a mixed solution; (b) the mixed solution is thoroughly stirred by an ultrasonic oscillator to form the electrolyte 31 as shown in the figure The structure of 2", a method for producing a dense nanocrystal-modified titanium dioxide electrode, includes the following steps. First, a transparent conductive glass n is provided; then a uniform nanocrystalline modified titanium dioxide layer 12 is formed on the transparent conductive glass u; thereafter, a porous semiconductor layer 13 is formed on the dense nanocrystalline modified titanium dioxide layer a; A dye 14 is on the porous semiconductor layer 13. The ruthenium nanocrystal-modified titanium dioxide layer 12 can be formed on the transparent conductive glass 11 by a co-sputtering system; the porous semiconductor layer 13 can be formed on the dense by spin coating. The nanocrystals are lifted onto the titanium dioxide layer 12; the dye 14 can be adsorbed onto the porous semiconductor layer 201106517 13 by immersion. The manufacturing method of the porous semiconductor layer 13 includes the following steps: (a) taking a certain amount of titanium dioxide powder, a dispersant such as ethyl acetonate (Ethylacetoacetone), an intercalating agent such as Triton X-100, and, for example, deionized water (Dei)溶剂nized Water, D. I·Water) solvent mixed to obtain a titanium dioxide coating colloid; (b) uniformly coating the above coating colloid on the dense nanocrystalline modified titanium dioxide layer 12; (c) retreating A porous semiconductor layer 13 can be completed by annealing in a furnace at a constant temperature to make the crystal phase more complete.

染料14之製造方法,包括下列步驟:⑷取一船染料粉末 (Ruthenium-535’ N3)與溶劑,以得到一染料混合液;(b)取該染 料混合液以超音波振盪器充分攪拌,即可完成該染料14。 敏密奈米晶修飾二氧化鈦電極10之製造方法為:將上述多孔 性半導體層13浸泡於上錢料14於定溫下丨小時,即可得。 而如「圖3」的結構,輔助電極2〇的製造方法,包括下列步 驟。首先提供-透明導電玻璃2卜接著,形成於—催化層四於該 透明導電玻璃21上。 該催化㈣可藉㈣頻賴雜adiQ聊伽也 system)形成於該透明導電玻璃η上。 以下揭示本發明之較佳實施例 【實施例】 1.緻密奈米晶修飾二氧化鈦層12之備製 化銦錫玻璃基版’依序以_、甲醇 '超純水於超省 自清洗10分鐘。接著錢錄财賴,並置於 C烤相内20分鐘,使™/Glass内含之水份蒸發。 201106517 將已清洗完成之ITO/Glass固定於藏鍵機上將無需賤錢部分 以鐵氟龍膠帶遮蓋,接著將Ti02靶材置於即輸出,功率為 90〜110W ’將Ru乾材置於DC輸出,功率為2〜20W。製程壓力約為 25〜35mTorr,氬氣(Ar)流量為35 seem〜45 seem,氧氣(〇2)流量 為0· 01 seem〜5 seem,濺鍍時間為1〇分鐘~30分鐘。 2. 二氧化鈦膠體之調配The method for producing the dye 14 comprises the following steps: (4) taking a boat dye powder (Ruthenium-535' N3) and a solvent to obtain a dye mixture; (b) taking the dye mixture and stirring it thoroughly with an ultrasonic oscillator, that is, This dye 14 can be completed. The method for producing the dense nanocrystal-modified titanium oxide electrode 10 is obtained by immersing the porous semiconductor layer 13 in the upper material 14 at a constant temperature for a few hours. As for the structure of Fig. 3, the manufacturing method of the auxiliary electrode 2 includes the following steps. First, a transparent conductive glass 2 is provided, which is then formed on the catalytic layer 4 on the transparent conductive glass 21. The catalysis (4) can be formed on the transparent conductive glass η by means of a (four) frequency ray adiQ. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention is disclosed. 1. An indium tin glass base plate of a dense nanocrystalline modified titanium dioxide layer 12 is sequentially washed with super-pure water of _, methanol 'super pure water for 10 minutes. . Then the money was recorded and placed in the C-baked phase for 20 minutes to evaporate the water contained in the TM/Glass. 201106517 Fixing the cleaned ITO/Glass on the Tibetan key machine will cover the Teflon tape without the money, then place the Ti02 target at the output, the power is 90~110W. Output, power is 2~20W. The process pressure is about 25 to 35 mTorr, the argon (Ar) flow rate is 35 seem to 45 seem, the oxygen (〇2) flow rate is 0. 01 seem~5 seem, and the sputtering time is 1 minute to 30 minutes. 2. Titanium dioxide colloidal blending

取 10mL 去離子水(Deionized Water,D. I. Water)與 lmL 乙基丙酮(Ethylacetoacetone)均勻混合後,加入30g之二氧化鈦 鲁 粉末(Titanium Dioxide Powder,Ti02 Powder),使其均勻分散 於溶液中,加入40mL之去離子水稀釋溶液,再滴入lmL之界面活 性劑(Triton X-100),最後靜置1〇分鐘即完成二氡化鈦漿糊。其 中乙基丙酮於溶液中可作為安定劑避免二氧化鈦粒子再聚集,另 外介面活性劑可減少膠體溶液之表面張力。 3. 緻密奈米晶修飾二氧化鈦電極1〇之備製 將二氧化鈦塗佈膠體以旋轉塗佈法(Spin_c〇ating)製於緻密 • 奈米晶修飾二氧化鈦層12上。其中旋轉塗佈初速為1〇〇〇轉After uniformly mixing 10 mL of deionized water (Deionized Water, DI Water) with 1 mL of ethyl acetonide (Ethylacetoacetone), 30 g of Titanium Dioxide Powder (Ti02 Powder) was added to uniformly disperse it in the solution, and 40 mL of the solution was added. The solution was diluted with deionized water, and then 1 mL of the surfactant (Triton X-100) was added dropwise, and finally the titanium diacetide paste was completed after standing for 1 minute. Among them, ethyl acetone can be used as a stabilizer in the solution to avoid re-aggregation of the titanium dioxide particles, and the other surfactant can reduce the surface tension of the colloidal solution. 3. Preparation of a dense nanocrystal-modified titanium dioxide electrode The titanium dioxide coating colloid was spin-coated on a dense nanocrystal-modified titanium dioxide layer 12. Where the initial speed of the spin coating is 1 turn

(rad/s) : 1〇秒;末速為3〇00轉(rad/s) : 2〇秒,以堆疊方式獲 得不同二氧化鈦薄膜厚度。 X 以兩酿退火爐將上述之緻岔奈米晶修飾二氧化鈦電極於 峨〜赋進行退火1G分鐘至丨小時,使其晶㈣度增加,並 產生較佳之結晶性(Crystallization)。 4. 染料14之備製 取一 N3染料(Ruthenium—535, N3)溶於無水酒精,並以超音 波振堡3小時,其濃度為3x10-4 Μ。 曰 201106517 . 5.電解液31之備製 取一碘化鈉(Sodium Iodide, Nal),以碳酸丙烯酯為溶劑, 混合後之濃度為〇. 5M。 取一碘(Iodide,12),以碳酸丙烯酯為溶劑,混合後之濃度 為 0.05M。 取一 4-特-丁基口比啶(4-Tert-Butylpyridine,TBP),以碳 酸丙烯酯為溶劑,混合後之濃度為0. 5M。 將上述三種溶液混合後,以超音波振盪5分鐘,即可完成電 # 解液31之備製。 6.染料敏化太陽能電池30之備製 取一緻密奈米晶修飾二氧化鈦電極10置於染料14中,並放 置於室溫下8小時。 取一氧化銦錫玻璃基板,將鉑金屬濺鐘其上,可得辅助電極 20 ° 將上述二電極以溶膠封裝後,注入電解液31,即完成染料敏 0 化太陽能電池30之製備。 惟上述僅為本發明讀佳實蝴而已,並_來限林發明 實施之範圍。即凡依本發明申請專利範圍所做的均等變化與修 飾,皆為本發明專利範圍所涵蓋。 … 【圖式簡單說明】 圖1,本發明染料敏化太陽能電池之結構。 圖2,本發明緻密奈米晶修飾二氧化欽電極之結構。 圖3 ’本發明輔助電極之結構。 【元件標號說明】 201106517 . 10:緻密奈米晶修飾二氧化鈦電極 11 .透明導電玻璃 12 :緻密奈米晶修飾二氧化鈦層 13 :多孔性半導體 14 :染料 20 :輔助電極 21 :透明導電玻璃 22 :催化層 φ 30 :染料敏化太陽能電池 31 :電解液(rad/s): 1 〇 second; end speed is 3 〇 00 (rad/s): 2 sec., and different thicknesses of TiO 2 film are obtained in a stacked manner. X The above-mentioned bismuth nanocrystal-modified TiO2 electrode is annealed in a two-strength annealing furnace for 1 G minutes to 丨 hours to increase the crystal (tetra) degree and to produce better crystallinity. 4. Preparation of Dye 14 A N3 dye (Ruthenium-535, N3) was dissolved in absolute alcohol and supersonic for 3 hours at a concentration of 3 x 10 -4 Torr.曰 201106517 . 5. Prepare the electrolyte 31. Take sodium iodate (Sodium Iodide, Nal), propylene carbonate as a solvent, and the concentration after mixing is 〇. 5M. Iodide (12) was taken and propylene carbonate was used as a solvent, and the concentration was 0.05 M after mixing. 5M。 The concentration of 5-Mert-Butylpyridine (TBP), with a propylene carbonate as a solvent, a concentration of 0. 5M. After mixing the above three solutions, the ultrasonic solution is shaken for 5 minutes to complete the preparation of the electricity solution 31. 6. Preparation of Dye-Sensitized Solar Cell 30 A uniform dense nanocrystal-modified titanium oxide electrode 10 was placed in the dye 14 and allowed to stand at room temperature for 8 hours. An indium tin oxide glass substrate is taken, and the platinum metal is splashed thereon to obtain an auxiliary electrode 20 °. The second electrode is encapsulated in a sol and then injected into the electrolyte 31 to complete the preparation of the dye-sensitive solar cell 30. However, the above is only for the purpose of reading the invention, and it is limited to the scope of implementation of the invention. That is, the equivalent changes and modifications made by the scope of the patent application of the present invention are covered by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the structure of a dye-sensitized solar cell of the present invention. Figure 2 is a diagram showing the structure of a dense nanocrystal-modified dioxygen electrode of the present invention. Figure 3 'Structure of the auxiliary electrode of the present invention. [Description of component numbers] 201106517 . 10: dense nanocrystalline modified titanium dioxide electrode 11. Transparent conductive glass 12: dense nanocrystalline modified titanium dioxide layer 13: porous semiconductor 14: dye 20: auxiliary electrode 21: transparent conductive glass 22: catalytic Layer φ 30 : Dye-sensitized solar cell 31 : electrolyte

1212

Claims (1)

201106517 七、申請專利範圍: 1· 一種染料敏化太陽能電池結構,其包含: 一緻密奈米晶修飾二氧化鈦電極; 一電解液’形成於該緻密奈米晶修飾二氧化鈦電極上; 一輔助電極,設置於該電解液上。 2·如申請專利範圍第丨項所述之染料敏化太陽能電池結構, 八中該電解液包括礙化鈉(S〇dium丨⑻丨此,似1)、破(Iodide, h)、4-特-丁基口比啶(4-Tert_Butylpyridine,TBp)及碳酸丙烯201106517 VII. Patent application scope: 1. A dye-sensitized solar cell structure comprising: a uniform dense nanocrystalline modified titanium dioxide electrode; an electrolyte 'formed on the dense nanocrystalline modified titanium dioxide electrode; an auxiliary electrode, set On the electrolyte. 2. The structure of the dye-sensitized solar cell according to the scope of the patent application, wherein the electrolyte includes sodium (S〇dium丨(8), like 1), broken (Iodide, h), 4- 4-tert-Butylpyridine (TBp) and propylene carbonate 酯(Propylene Carbonate,PC)共同組成。 3·如申請專纖圍第丨項所述之練敏化太陽能電池結構, 其中該輔助電極包括—透明導電玻璃以及—雜層,雌催化層 开7成於該透明導電玻璃上,又雜化層為具可雜電解液氧化還 原反應之材料。 4.如申凊專利關第3項所述之染料敏化太陽能電池結構, ,中該輔助電極之透明導電基板為—氧化銦錫玻璃基板、一氧化 氟錫破璃基板及—氧化銦錫可撓式基板的任一種。 .如I專利範㈣3項所述之染料敏化太陽能電池結構, -中該催化層為鈾金屬、碳以及鎳金屬的任一種。 6.如ΐ料概圍第丨項所述之染概化太陽能電池結構, 八中該緻密奈米晶修飾二氧化鈦電極,包括: —透明導電玻璃; ’該緻密奈米晶修飾二氧化欽 緻役奈米晶修飾二氧化鈦層 層形成於該透明導電玻璃上; 夕孔性半導縣,㈣孔性轉體層形狀該聰奈米晶 13 201106517 - 修飾二氧化鈦層上; 一染料,該染料形成於該多孔性半導體層上。 7·如申μ專利删第6項所述之染料敏化太陽能電池結構, ,、中該透明導電基板為一氧化銦锡玻璃基板、一氧化氟錫玻璃基 板及一氧化銦錫可撓式基板的任一種。 8·如申5Η專利範圍第6項所述之染料敏化太陽能電池結構, 其中該緻密奈米晶修飾二氧化欽層由一緻密且導電性佳之薄膜址 成。 , • 9.如申印專利範圍第8項所述之染料敏化太陽能電池結構, /、中該緻⑥、奈米晶修飾二氧化鈦層為二氧化鈦以及釕金屬共同組 成。 10. 如申凊專利範圍第6項所述之染料敏化太陽能電池結構, /、中該夕孔H半導體層為—具高比表面積、禁帶寬度大以及易吸 附染料之半導體。 11. 如申4專利翻第1Q項所述之純敏化太陽能電池結 鲁構,其中該多孔性半導體層為二氧化欽與氧化辞。 12. 如申請糊麵第6項所述之染瓶化太陽能電池結構, 其中該染料為—可吸收光而激發電子之有機訂金屬錯合物粉末。 13. 如申切專利範圍第12項所述之染料敏化太陽能電池結 構,其中該染料4 N3 (Ruthenium-535)、_及黑染料⑻妙 Dye)、以及酒精之溶劑共同組成。 14· 一種染料敏化太陽能電池製造方法,其步驟包含: 提供一緻密奈米晶修飾二氧化鈦電極; I成電解液於該緻雄、奈米晶修飾二氧化欽電極上; 201106517 形成一輔助電極於該電解液上。 15.如申請專利範圍第14項所述之雜敏化太陽能電池製造 方法,其中該電解液之製造方法,包括: (a) 取一破化鋼(Sodium Iodide, Nal)、破(l〇dide,12)、 4-特-丁基口比啶(4-Tert-Butylpyridine, TBP)以及碳酸丙烯酯 (Propylene Carbonate,PC)共同組成,以得到一混合溶液; (b) 取該混合溶液以超音波振盪器充分攪拌形成該電解液。 16·如申凊專利細第η項所述之染概化太陽能電池製造 方法,其中該緻岔奈米晶修飾二氧化鈦電極之製造方法,包括: 提供一透明導電玻璃; 接著形成一緻密奈米晶修飾二氧化鈦層於該透明導電玻璃 上; 形成-多孔性轉縣於舰密奈米晶修飾二氧化鈦層上; 形成一染料於該多孔性半導體層上。 17. 如申請專利細帛16項所叙染料敏化太陽能電池製造 方法’其中該緻密奈东晶修飾二氧化鈦層藉由共射頻麟法 (Co-sputtering system)开^成於該透明導電玻璃上。 18. 如申請專利範圍帛16項所述之染料敏化太陽能電池製造 方法,其中該多孔性半導體層藉由旋轉塗佈法(Spin .細)形 成於該緻密奈米晶修飾二氧化鈦層上。 19·如申請專職圍第18項所述之染料敏化太陽能電池製造 方法,其巾該多孔性轉襲之製造方法包括下列步驟: (a)取疋里之一氧化欽粉末、乙基丙嗣(Ethyiacet〇acet〇ne) 之分散劑、Triton X-1GG之介面活性劑與去離子水(Dei〇nized 15 201106517 • Water’ D· L Water)之溶劑混合之,以得到一二氧化鈦之塗佈膠 體; 7 (b)將上述之塗佈膠體均勻塗佈於該緻密奈米晶修飾二 鈦層上; —(〇於退火爐内於定溫下進行敎,使其晶相更加完整,即可 完成該多孔性半導體層。 、20.如申請專利範圍第16項所述之染料敏化太陽能電池製造 方法,其中該染料藉由浸泡法吸附於該多孔性半導體層上。 • 21·如申請專利範圍帛2〇項所述之染料敏化太陽能電池製造 方法,其申該染料之製造方法,包括下列步驟: (a) 取一 N3染料粉末(Ruthenium-535,N3)與溶劑,以得到 一染料混合液; (b) 取該染料混合液以超音波振盪器充分攪拌,即可完成該 染料。 ° 22·如申請專利範圍第14項所述之染料敏化太陽能電池製造 φ 方法,其中該辅助電極的製造方法,包括: 提供一透明導電玻璃; 形成於一催化層於該透明導電玻璃上。 u 23.如申請專利範圍第22項所述之染料敏化太陽能電池 製造方法,其中該催化層藉由射頻濺鍍法(Radi〇 frequency sputtering system)形成於透明導電玻璃上。The ester (Propylene Carbonate, PC) is composed together. 3. The application of the sensitized solar cell structure described in the special item, wherein the auxiliary electrode comprises a transparent conductive glass and a hetero-layer, the female catalytic layer is opened on the transparent conductive glass, and is hybridized. The layer is a material having a redox reaction of the electrolyte. 4. The dye-sensitized solar cell structure according to claim 3, wherein the transparent conductive substrate of the auxiliary electrode is an indium tin oxide glass substrate, a fluorine tin oxide glass substrate, and an indium tin oxide. Any of the flexible substrates. The dye-sensitized solar cell structure according to the invention of claim 4, wherein the catalytic layer is any one of uranium metal, carbon and nickel metal. 6. In the case of the dyed generalized solar cell structure described in item ΐ, the eight-phase dense nanocrystalline modified titanium dioxide electrode comprises: - transparent conductive glass; 'the dense nanocrystal modified dioxide oxidizing capsule a nanocrystalline modified titanium dioxide layer is formed on the transparent conductive glass; a smectic semi-conducting county, (iv) a porous swivel layer shape of the Cong Nai crystal 13 201106517 - a modified titanium dioxide layer; a dye, the dye is formed in the porous On the semiconductor layer. 7. The dye-sensitized solar cell structure according to the sixth aspect of the invention, wherein the transparent conductive substrate is an indium tin oxide glass substrate, a fluorine tin oxide glass substrate and an indium tin oxide flexible substrate. Any of them. 8. The dye-sensitized solar cell structure of claim 6, wherein the dense nanocrystalline modified dioxide layer is formed of a film of uniform density and good conductivity. 9. The dye-sensitized solar cell structure according to item 8 of the scope of the patent application, /, the middle 6, the nanocrystalline modified titanium dioxide layer is composed of titanium dioxide and base metal. 10. The dye-sensitized solar cell structure according to claim 6, wherein the semiconductor layer of the H-hole is a semiconductor having a high specific surface area, a large band gap, and a dye-absorptive dye. 11. The method of claim 4, wherein the porous semiconductor layer is a sensitized solar cell structure, wherein the porous semiconductor layer is oxidized and oxidized. 12. The method of claim 6, wherein the dye is an organic metal-compound powder that absorbs light and excites electrons. 13. The dye-sensitized solar cell structure according to claim 12, wherein the dye 4 N3 (Ruthenium-535), _ and black dye (8) Dye), and a solvent of alcohol are combined. 14) A method for fabricating a dye-sensitized solar cell, comprising the steps of: providing a uniform nanocrystalline modified titanium dioxide electrode; forming an electrolyte on the male and nanocrystalline modified dioxide electrode; 201106517 forming an auxiliary electrode On the electrolyte. 15. The method of manufacturing a hybrid sensitized solar cell according to claim 14, wherein the method for producing the electrolyte comprises: (a) taking a broken steel (Sodium Iodide, Nal), breaking (l〇dide) , 12), 4-Tert-Butylpyridine (TBP) and Propylene Carbonate (PC) are combined to obtain a mixed solution; (b) taking the mixed solution to super The sonic oscillator is stirred sufficiently to form the electrolyte. The method for producing a dyed solar cell according to the invention, wherein the method for producing the nanowire-modified titanium dioxide electrode comprises: providing a transparent conductive glass; and then forming a uniform dense crystal And modifying a titanium dioxide layer on the transparent conductive glass; forming a porous-converted layer on the surface of the dense nano-titanium dioxide layer; forming a dye on the porous semiconductor layer. 17. The method of fabricating a dye-sensitized solar cell as described in claim 16 wherein the dense nanocrystalline modified titanium dioxide layer is formed on the transparent conductive glass by a co-sputtering system. 18. The method of fabricating a dye-sensitized solar cell according to claim 16, wherein the porous semiconductor layer is formed on the dense nanocrystal-modified titanium oxide layer by spin coating (spinning). 19. The method for manufacturing a dye-sensitized solar cell according to Item 18 of the full-time application, the method for manufacturing the porous transition of the towel comprises the following steps: (a) taking one of the oxidized powder and ethyl propyl hydrazine (Ethyiacet〇acet〇ne) dispersant, Triton X-1GG surfactant mixed with deionized water (Dei〇nized 15 201106517 • Water' D·L Water) solvent to obtain a titanium dioxide coating colloid 7 (b) uniformly coating the above-mentioned coating colloid on the dense nanocrystalline modified titanium layer; - (in the annealing furnace, the crucible is made at a constant temperature to make the crystal phase more complete, and then complete The method of manufacturing a dye-sensitized solar cell according to claim 16, wherein the dye is adsorbed on the porous semiconductor layer by a immersion method. The method for producing a dye-sensitized solar cell according to the above, wherein the method for producing the dye comprises the following steps: (a) taking a N3 dye powder (Ruthenium-535, N3) and a solvent to obtain a dye mixture. Liquid; (b) The dye mixture is stirred by a supersonic oscillator to complete the dye. The method of manufacturing the dye-sensitized solar cell according to claim 14, wherein the auxiliary electrode is manufactured, including A method of manufacturing a dye-sensitized solar cell according to claim 22, wherein the catalytic layer is irradiated by radio frequency sputtering, wherein a transparent conductive glass is provided on the transparent conductive glass. (Radi〇frequency sputtering system) is formed on a transparent conductive glass.
TW098126018A 2009-08-03 2009-08-03 Dye-sensitized solar cell structure and its manufacturing method TW201106517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098126018A TW201106517A (en) 2009-08-03 2009-08-03 Dye-sensitized solar cell structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098126018A TW201106517A (en) 2009-08-03 2009-08-03 Dye-sensitized solar cell structure and its manufacturing method

Publications (1)

Publication Number Publication Date
TW201106517A true TW201106517A (en) 2011-02-16

Family

ID=44814364

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126018A TW201106517A (en) 2009-08-03 2009-08-03 Dye-sensitized solar cell structure and its manufacturing method

Country Status (1)

Country Link
TW (1) TW201106517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426636B (en) * 2011-06-24 2014-02-11
TWI559561B (en) * 2011-12-28 2016-11-21 國立台北科技大學 Array electrospinning for dye sensitized solar cells
TWI801059B (en) * 2021-12-23 2023-05-01 高翊凱 Manufacturing method of solar cell with heat insulation and light transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426636B (en) * 2011-06-24 2014-02-11
TWI559561B (en) * 2011-12-28 2016-11-21 國立台北科技大學 Array electrospinning for dye sensitized solar cells
TWI801059B (en) * 2021-12-23 2023-05-01 高翊凱 Manufacturing method of solar cell with heat insulation and light transmission

Similar Documents

Publication Publication Date Title
Wu et al. Recent progress of counter electrode catalysts in dye-sensitized solar cells
Calogero et al. A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells
Lee et al. Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells
KR100929812B1 (en) Solar cell having increased energy conversion efficiency and manufacturing method thereof
Lepleux et al. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells
TW200937648A (en) Dye-sensitized solar cell module
Ursu et al. Investigation of the p-type dye-sensitized solar cell based on full Cu2O electrodes
CN101916670B (en) Titanium dioxide nanoflower film photoanode and preparation method thereof
US20090114278A1 (en) Dye-sensitized solar cell and fabrication method thereof
Jiang et al. Electrodeposited cobalt and nickel selenides as high-performance electrocatalytic materials for dye-sensitized solar cells
TW201101508A (en) Dye-sensitized solar cells and manufacturing method for thereof
Jia et al. Influence of deposition voltage of cobalt diselenide preparation on the film quality and the performance of dye-sensitized solar cells
Peng et al. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte
US20140144501A1 (en) Method of fabricating a transparent electrode and a dye-sensitized solar cell using the transparent electrode
CN102324316B (en) Compound light anode and preparation method thereof
Asemi et al. The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells
Guo et al. NiS/Cc composite electrocatalyst as efficient Pt-free counter electrode for dye-sensitized solar cells
Chou et al. Fabrication and electrochemical impedance analysis of dye-sensitized solar cells with titanium dioxide compact layer and graphene oxide dye absorption layer
CN102254702A (en) Composite light anode material and application thereof to dye sensitized cell preparation
Zhao et al. Nickel foam supported Pt as highly flexible counter electrode of dye-sensitized solar cells
CN105513812B (en) A kind of graphene solar cell and preparation method thereof
Chang et al. A composite catalytic film of Ni-NPs/PEDOT: PSS for the counter electrodes in dye–sensitized solar cells
JP2007084671A (en) Binder composition for dispersing semiconductor micro-particle
TW201106517A (en) Dye-sensitized solar cell structure and its manufacturing method
Cruz-Gutiérrez et al. Carbon nanotube-carbon black hybrid counter electrodes for dye-sensitized solar cells and the effect on charge transfer kinetics