TW201105509A - Method for preparing polyurethane laminate and polyurethane laminate obtained from the said method - Google Patents

Method for preparing polyurethane laminate and polyurethane laminate obtained from the said method Download PDF

Info

Publication number
TW201105509A
TW201105509A TW099117174A TW99117174A TW201105509A TW 201105509 A TW201105509 A TW 201105509A TW 099117174 A TW099117174 A TW 099117174A TW 99117174 A TW99117174 A TW 99117174A TW 201105509 A TW201105509 A TW 201105509A
Authority
TW
Taiwan
Prior art keywords
polyurethane
layer
urethane
temperature
melt
Prior art date
Application number
TW099117174A
Other languages
Chinese (zh)
Other versions
TWI466778B (en
Inventor
Hisao Yoneda
Kazumasa Inoue
Tetsuya Ashida
Original Assignee
Kuraray Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co filed Critical Kuraray Co
Publication of TW201105509A publication Critical patent/TW201105509A/en
Application granted granted Critical
Publication of TWI466778B publication Critical patent/TWI466778B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention is to provide a method for preparing polyurethane laminate, comprising a step of melting and mixing urethane resin composition formed from urethane prepolymer as semi-solid or solid at normal temperature, chain extending agent and temperature-sensitive urethane catalyst at the temperature 10 to 30 DEG C less than exothermic peak temperature; a step of forming resin layer by using urethane resin composition to form urethane resin layer on the surface of a sheet; and a step of heat treatment to urethane resin layer at the above-mentioned exothermic peak temperature or more. Further, it provides a polyurethane laminate, which is a laminate obtained from a composite fiber sheet having numerous voids on surface formed from fiber sheet and polymer elastomer immersed the whole, and laminating a polyurethane resin layer on the said composite fiber sheet. The said laminate has a mixing layer, and the mixing layer is obtained by invading voids into one part of the polyurethane resin layer so that one part of the said polyurethane resin layer and the surface of the composite fiber sheet are mixed in the state of non-miscibility, and the thickness of said mixing layer is 10 μ m or more?

Description

201105509 六、發明說明: 【發明所屬之技術領域】 本發明係關於聚胺基甲酸酯積層體的製造方法及藉由 該製造方法得到的聚胺基甲酸酯積層體。 【先前技術】 自先前以來,聚胺基甲酸酯積層體就被廣泛用作鞋子、 衣類、皮包、家具等的表面原料。 就此等聚胺基甲酸酯積層體的代表構成而言,可列舉在 使聚胺基甲酸酯等含浸於不織布、織布、編布等纖維質基 材而成的複合纖維基材的表面上,積層聚胺基甲酸酯層的 構成。該聚胺基甲酸酯層係使用下述方法來形成:將溶劑 型聚胺基甲酸酯或水系聚胺基甲酸酯塗布於複合纖維基材 表面上後’進行乾燥的方法,·或將預先在離型紙表面上成 膜的聚胺基甲酸酯膜藉由接著劑接著於複合纖維基材表面 的方法。 可是,近年’爲了減低環境負荷,在聚胺基甲酸酯積層 體的製造方面,要求採用不用有機溶劑而用無溶劑型胺基 甲酸酯預聚物的製程。 例如,在下述專利文獻1中,揭示將A成分即於常溫爲 半固體狀或固體狀的含異氰酸基的胺基甲酸酯預聚物、B 成分即可與異氰酸基反應的化合物及/或胺基甲酸酯硬化 觸媒加熱熔融後,攪拌混合並機械發泡而製造聚胺基甲酸 酯多孔質體的方法。而且記載若依照如此之方法,可在不 使用溶劑或乾燥機下,以良好的效率製造高強度的聚胺基 201105509 甲酸酯多孔質體。 又,向來,使用聚胺基甲酸酯積層體的皮 泛用作近似皮包 '鞋子、衣類、家具等所用 料。 就此等聚胺基甲酸酯積層體的代表構成而 使多孔質聚胺基甲酸酯含浸於不織布等纖維 合纖維片材的表面上,積層聚胺基甲酸酯樹 成。其製造方法的具體例,已知,例如,如 2所揭示,藉由將剛用T模押出後的熱可塑 酯膜壓著於複合纖維片材的表面而形成聚胺 層的方法。又,關於其他方法,已知如下述 揭示,藉由在離型紙的表面塗布乾燥溶劑型 脂而形成聚胺基甲酸酯樹脂層,藉由使用溶 酯接著劑貼合所得到的聚胺基甲酸酯樹脂層 製造皮革樣片材的方法。關於另外的其他方 知如下述專利文獻4所揭示,藉由將水系胺 塗布於離型紙的表面後,進行乾燥而形成聚 脂層,並藉由使用水系胺基甲酸酯接著劑將 基甲酸酯樹脂層與複合纖維片材貼合及乾燥 片材的方法。又,例如,亦已知如下述專利3 藉由將熔融的熱熔型胺基甲酸酯樹脂塗布於 的表面後,進行交聯而形成聚胺基甲酸酯樹 [先前技術文獻] [專利文獻] 革樣片材被廣 皮革的表面原 言,可列舉在 基材而成的複 脂層而成的構 下述專利文獻 性聚胺基甲酸 基甲酸酯樹脂 專利文獻3所 胺基甲酸酯樹 劑型胺基甲酸 並加以乾燥而 法,例如,已 基甲酸酯樹脂 胺基甲酸酯樹 所得到的聚胺 而製造皮革樣 〔獻5所揭示, 複合纖維片材 脂層的方法。 201105509 [專利文獻1]日本特開2002-249534號公報 [專利文獻2]日本特開平9-24590號公報 [專利文獻3]日本特開2005-113318號公報 [專利文獻4]日本特開2005-264371號公報 [專利文獻5]國際公開W02005/083173號小冊子。 【發明內容】 如在上述專利文獻1中記載的製造聚胺基甲酸酯多孔質 體的方法中,的確可實現無溶劑化。但是,根據本發明者 等的探討,使用如上述的方法在工業上連續生產聚胺基甲 酸酯積層體時,具有下述問題。 如專利文獻1所記載之在常溫爲半固體狀或固體狀的胺 基甲酸酯預聚物,藉由於較高的溫度下加熱而成爲低黏 度,並調整成可機械發泡的黏度。將包含胺基甲酸酯預聚 物及胺基甲酸酯硬化觸媒的胺基甲酸酯樹脂組成物加熱至 可機械發泡的程度時,藉由胺基甲酸酯硬化觸媒活化而進 行交聯反應。在如此將胺基甲酸酯樹脂組成物加熱至可機 械發泡的溫度的情形,由於隨著胺基甲酸酯預聚物的交聯 反應進行熔融黏度慢慢上升,所以胺基甲酸酯樹脂組成物 的適用期(pot life)變短,而有所謂難以長時間連續生產的 問題。 再者,藉由如在專利文獻1中記載的方法製造聚胺基甲 酸酯多孔質體時’由於使用機械發泡所得到的氣孔成爲連 通孔’亦有所謂得不到具有均一獨立孔的多孔質體的問題。 本發明之目的爲:當於片材上形成由於常溫爲半固體或 201105509 固體的胺基甲酸酯預聚物所形成的聚胺基甲酸酯層時,藉 由長時間維持所塗布胺基甲酸酯樹脂組成物的適用期,可 連續且安定地形成未交聯的聚胺基甲酸酯層,又,藉由熱 處理所塗布的未交聯聚胺基甲酸酯層,快速地進行交聯, 以提高生產性。 爲本發明之一面向的聚胺基甲酸酯積層體的製造方 法,其特徵爲具備:藉由將於常溫爲半固體或固體的胺基 甲酸酯預聚物(A)、鏈延長劑(B)及藉由示差掃描熱量測定 展現所規定的產熱尖峰溫度的感溫性胺基甲酸酯化觸媒 (C),在比該產熱尖峰溫度低1〇〜30°C範圍的溫度下進行加 熱熔融混合,而形成胺基甲酸酯樹脂組成物的熔融混合步 驟;使用該胺基甲酸酯樹脂組成物在如離型紙或纖維基材 的片材表面形成胺基甲酸酯樹脂層的樹脂層形成步驟;以 及將該胺基甲酸酯樹脂層在該產熱尖峰溫度以上的溫度進 行熱處理的熱處理步驟。 又,根據本發明者等的探討,如上述專利文獻2所揭示, 如依照藉由將剛用T模押出後的熱可塑性聚胺基甲酸酯膜 壓著於複合纖維片材的表面而形成聚胺基甲酸酯樹脂層的 方法,由於熱可塑性聚胺基甲酸酯膜接著於複合纖維片材 的表面時被急冷’所以係以進行某種程度固化的狀態施行 壓著。因此,複合纖維片材與熱可塑性聚胺基甲酸酯膜的 界面成爲2次元平面狀的界面。基於此,折曲聚胺基甲酸 酯積層體時’由於複合纖維片材與聚胺基甲酸酯膜在彈性 率及延伸性上有差異’複合纖維片材與熱可塑性聚胺基甲 201105509 酸酯膜的界面發生參差不齊或剝離》在此等界面的層間參 差不齊或剝離會引起下述問題。具體而言,例如,折曲皮 革時所產生的折曲皺摺,如第7圖所示爲細駿紋,與其相 比,藉由上述方法所得到之聚胺基甲酸酯積層體,如第8 圖所示,產生如折曲瓦愣紙般大的皺紋。又,亦有折曲後, 折皺(折曲皺紋)多會殘留的問題。 又,根據本發明者等的探討,如上述專利文獻3所揭示, 若依照藉由在離型紙的表面塗布乾燥溶劑型胺基甲酸酯樹 脂而形成聚胺基甲酸酯樹脂層的方法,則有所謂若重複進 行多次塗布及乾燥的步驟,將無法得到於表面具有平滑性 且厚度足夠的聚胺基甲酸酯樹脂層的問題。又,如此在離 型紙上所形成的聚胺基甲酸酯樹脂層,係使用溶劑型胺基 甲酸酯接著劑貼合於複合纖維片材表面。如此藉由接著而 積層的方法’在聚胺基甲酸酯樹脂層與複合纖維片材之間 存在接著層。因此,聚胺基甲酸酯樹脂層大體上無法浸透· 充塡於複合纖維片材的表層部分的空隙,所以聚胺基甲酸 酯樹脂層與複合纖維片材的一體感無法得到。從而,皮革 樣的手感及折皺感方面有變差的傾向。再者,在其他問題 方面,亦有所謂含浸於複合纖維片材的多孔質聚胺基甲酸 酯的氣孔壁被接著劑中的溶劑溶解而使氣孔構造破壞,手 感及表面平滑性降低的問題。 再者,根據本發明者等的探討,如上述專利文獻4所揭 示’在藉由將水系胺基甲酸酯樹脂塗布於離型紙的表面 後,進行乾燥而形成聚胺基甲酸酯樹脂層的方法,亦有所 201105509 謂若重複進行多次塗布及乾燥的步驟,將無法得到於表面 具有平滑性且厚度足夠的聚胺基甲酸酯樹脂層的問題。 又,此種聚胺基甲酸酯樹脂層,係使用水系胺基甲酸酯接 著劑經由接著層積層於複合纖維片材表面。因此,聚胺基 甲酸酯樹脂層與複合纖維片材的一體感無法得到。 又,根據本發明者等的探討,如上述專利文獻5所揭示, 若依照藉由將熔融的熱熔型胺基甲酸酯樹脂塗布於複合纖 維片材的表面後,進行交聯而形成聚胺基甲酸酯樹脂層的 方法,由於僅是藉由將熔融的熱熔型胺基甲酸酯樹脂塗布 於複合纖維片材的表面來積層聚胺基甲酸酯樹脂層,所以 在複合纖維片材與聚胺基甲酸酯樹脂層的界面發生所謂參 差不齊或剝離的問題無法獲得解決。 本發明,鑑於上述的問題,係以提供類似皮革、有充實 感的手感及折曲時折皺感良好,且折曲後折皺難以殘留的 聚胺基甲酸酯積層體爲目的。 爲本發明之另一面向的聚胺基甲酸酯積層體的製造方 法,以具備下述步驟爲較佳:藉由將熔融狀態的交聯性熱 熔型胺基甲酸酯樹脂塗布於離型紙表面而形成離型紙-塗 膜積層體的塗膜形成步驟:使該交聯性熱熔型胺基甲酸酯 樹脂部分交聯的熱處理步驟;在壓力下使該塗膜積層於複 合纖維片材的表面上的積層步驟,其中該複合纖維片材係 纖維片材與高分子彈性體經含.浸一體化而在表層具有多個 空隙者,該壓力係可使該離型紙·塗膜積層體的塗膜的一部 分侵入該複合纖維片材的該空隙中者;以及使該交聯性熱 .201105509 熔型胺基甲酸酯樹脂冷卻固化的冷卻步驟。 又,上述塗膜形成步驟較佳具有:將於100 °c熔融黏度 爲10000 mPa·秒以下的熱溶型胺基甲酸酯預聚物(A)、鏈 延長劑(B)及藉由示差掃描熱量測定展現規定的產熱尖峰 溫度的感溫性胺基甲酸酯化觸媒(C),在比上述產熱尖峰溫 度低10〜30°C範圍的溫度下進行加熱筚融混合,形成交聯性 熱熔型胺基甲酸酯樹脂的熔融混合步驟;以及藉由將熔融 狀態的交聯性熱熔型胺基甲酸酯樹脂塗布於離型紙表面而 形成離型紙-塗膜積層體的塗膜形成步驟;熱處理步驟較佳 爲將離型紙-塗膜積層體在該產熱尖峰溫度以上的溫度進 行熱處理而使塗膜部分交聯的步驟。 爲本發明之再一面向的聚胺基甲酸酯積層體係:纖維片 材與高分子彈性體經含浸一體化而在表層具有多個空隙的 複合纖維片材,與積層於該複合纖維片材上的聚胺基甲酸 酯樹脂層的積層體;該積層體較佳具有混在層,該混在層 係藉由該聚胺基甲酸酯樹脂層的一部分侵入該空隙,而使 該聚胺基甲酸酯樹脂層的一部分與該複合纖維片材的表層 以非相溶狀態混在’且該混在層具有1 〇 μιη以上,較佳3 0 μηι 以上的厚度。 本發明的目的、特徵、面向及有利點可藉由以下的詳細 說明及隨附的圖式而明白。 【實施方式】 [實施態樣Π 實施態樣1之聚胺基甲酸酯積層體的製造方法具備:藉 } -10- 201105509 由將於常溫爲半固體或固體的胺基甲酸酯預聚物(A)、鏈延 長劑(B)及藉由示差掃描熱量測定展現所規定的產熱尖峰 溫度的感溫性胺基甲酸酯化觸媒(C),在比該產熱尖峰溫度 低10〜30°C範圍的溫度下進行加熱熔融混合,而形成胺基甲 酸酯樹脂組成物的熔融混合步驟;使用該胺基甲酸酯樹脂 組成物在如離型紙或纖維基材的片材表面形成胺基甲酸酯 樹脂層的樹脂層形成步驟;以及將該胺基甲酸酯樹脂層在 該產熱尖峰溫度以上的溫度進行熱處理的熱處理步驟。 首先說明在本實施態樣中所使用之於常溫爲半固體或 固體的胺基甲酸酯預聚物(A)、鏈延長劑(B)及感溫性胺基 甲酸酯化觸媒(C)。 在本實施態樣中所使用之胺基甲酸酯預聚物(A)爲使多 元醇與聚異氰酸酯反應所得到的具有異氰酸基的胺基甲酸 酯預聚物,且爲於常溫爲半固體或固體的實質無溶劑型聚 胺基甲酸酯形成成分。此種胺基甲酸酯預聚物,雖然於常 溫爲固體至具有難以塗布程度的黏稠性的半固體性狀,但 藉由加熱低黏度化至可塗布的程度》 就上述多元醇的具體例而言,可列舉如聚酯系多元醇、 聚醚系多元醇、聚碳酸酯系多元醇等高分子量多元醇;乙 二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁 二醇、1,4-丁 二醇、 2,2-二甲基-1,3-丙二醇、1,6-己二醇、3-甲基-1,5·戊二醇、 1,8-辛二醇、1,4-雙(羥乙氧基)苯、1,3-雙(羥異丙基)苯、 二乙二醇、三乙二醇、二丙二醇、三丙二醇、環己-1,4-二 醇、環己-1,4-二甲醇、甘油、三羥甲基丙烷、三羥甲基乙 -11 - 201105509 烷、己三醇、新戊四醇、山梨醇、甲基葡萄糖苷等低 量多元醇等。此等可單獨使用’或將2種以上組合使 又,就聚異氰酸酯的具體例而言,可列舉如苯二異 酯、甲苯二異氰酸酯、4,4’-二苯基甲烷二異氰酸酯、 二苯基甲烷二異氰酸酯、萘二異氰酸酯、二甲苯二異 酯等芳香族二異氰酸酯;六亞甲基二異氰酸酯 '離胺 異氰酸酯、環己烷二異氰酸酯、異佛爾酮二異氰酸酯 環己基甲烷二異氰酸酯、四甲基二甲苯二異氰酸酯等 族二異氰酸酯或脂環族二異氰酸酯;4,4’-二苯基甲烷 氰酸酯的二聚體及三聚體等聚合二苯基甲烷二異氰 等。此等可單獨使用,也可將2種以上組合使用。 上述胺基甲酸酯預聚物的製造,雖然通常可在無溶 進行,但也可在有機溶劑中製造。在有機溶劑中製造 雖可在不阻害上述鏈延長劑與聚異氰酸酯的反應下, 乙酸乙酯、乙酸正丁酯、甲基乙基酮、甲苯等有機溶 但必須在反應途中或反應終了後藉由減壓加熱等方法 有機溶劑。 關於多元醇與聚異氰酸酯的反應比率,聚異氰酸酯 異氰酸基與多元醇中的羥基的當量比[NCO/OH]係 1.1〜5.0的範圍內爲較佳,以在1.2〜3.0的範圍內爲更 就胺基甲酸酯預聚物的數平均分子量而言,在 30,000的範圍,進一步在1 000〜1 〇,〇〇〇的範圍者,從 調整熔融黏度,且可形成具有優異柔軟性、機械強度 磨耗性、耐水解性的聚胺基甲酸酯層的觀點言之爲較 分子 用。 氰酸 2,4’- 氰酸 酸二 ' 二 脂肪 二異 酸酯 劑下 時, 使用 劑, 除去 中的 以在 佳。 500〜 容易 、耐 佳。 -12- 201105509 就胺基甲酸酯預聚物的熔融黏度而言,用完全型黏度計 測得的於120 °C的熔融黏度在500〜100,000 mPa_s的範圍, 進—步在1 000〜1 0,000 mPa. s的範圍者,從容易調整膜厚 的觀點言之爲較佳。 就此等胺基甲酸酯預聚物的市售品而言,可列舉DIC股 份有限公司製的商品名 Task Force KMM-100,Tyforce NH-122A、NH-200、NH-300、H-1041,及武田藥品工業股 份有限公司製的 Take da Melt SC-13、SL-(H、SL-02、SL-03、 SL-04 等。 睽基甲酸酯預聚物(A),藉由以胺基甲酸酯化觸媒促進 胺基甲酸酯預聚物(A)中的異氰酸基與下述鏈延長劑(B)中 的羥基或胺基等的反應而高分子量化。又,高分子量化聚 合物進一步藉由存在於系統內的異氰酸基起反應而進行交 聯反應。 本實施態樣所使用的鏈延長劑(B)係具有2個以上含 '活 性氫的官能基的化合物,該官能基如可與胺基甲酸酯預聚 物(A)的異氰酸基反應的羥基及胺基。 就鏈延長劑的具體例而言,除了上述各種多元醇之外, 可列舉:乙二胺、1,3-丙二胺、1,2·丙二胺、六亞甲基二胺、 降冰片烯二胺、肼、哌阱、N,N’-二胺基哌阱、2·甲基哌哄、 4,4’-二胺基二環己基甲烷、異佛爾酮二胺、二胺基苯、二 苯基甲二胺、亞甲基雙(二氯苯胺)、三伸乙基二胺、四甲 基六亞甲基二胺、三乙基胺、三丙基胺、三甲基胺基乙基 哌阱、N-甲基嗎啉、N-乙基嗎啉、二(2,6-二甲基- (N-嗎啉 -13- 201105509 基乙基)醚等多元胺類。此等可單獨使用或將2種以上組合 使用。 本實施態樣所使用之藉由示差掃描熱量測定展現所規 定的產熱尖峰溫度的感溫性胺基甲酸酯觸媒(C),係在氮氣 罩下,以10°c/l分鐘的升溫速度,在0°c至200°C的範圍內 進行示差掃描熱量測定時,展現所規定的產熱尖峰溫度的 胺基甲酸酯化觸媒。就產熱尖峰溫度而言,在50〜160 °C的 範圍,進而在80〜140 °C的範圍者,從胺基甲酸酯化的處理 效率及安定化方面優異的觀點言之爲較佳。 就此等胺基甲酸酯化觸媒的具體例而言,可列舉1,8·二 氮雜雙環(5,4,0)-十一烯-7(DBU)的有機酸鹽,具體言之, DBU的酚鹽(產熱尖峰溫度88°C)、DBU的辛酸鹽(產熱尖峰 溫度99°C)、DBU的酞酸鹽(產熱尖峰溫度138t:)、DBU的 油酸鹽(產熱尖峰溫度110°C)等。此等胺基甲酸酯化觸媒, 可在考量所使用的胺基甲酸酯預聚物(A)的軟化溫度下,予 以適當選擇。 在本實施態樣中,爲了使所得到的聚胺基甲酸酯層成爲 多孔質,在所塗布的胺基甲酸酯樹脂組成物中,以視需要 配合發泡劑爲較佳》發泡劑的種類雖無特殊限定,但從容 易控制氣孔的均一性的觀點言之,以使用熱膨脹性微膠囊 爲較佳。就此等熱膨脹性微膠囊而言,可列舉如感溫性發 泡劑,該感溫性發泡劑在被內包的烴藉由加熱而膨脹的同 時,形成外殼的熱可塑性樹脂軟化而開始膨脹,藉由微膠 囊的內壓與外壓達到均衡所決定的膨脹倍率(以膨脹成2倍 -14- 201105509 以上爲較佳),形成均一的獨立氣泡。就此等熱膨脹性微膠 囊的具體例而言,可列舉如松本油脂製藥股份有限公司製 的松本微球體F(Matsumoto microsphere F)系列等。 在本實施態樣中,除配入上述各種成分之外,視需要可 配入顏料等著色劑、增黏劑、抗氧化劑等添加劑.。 關於使用上述各種成分實施本實施態樣之聚胺基甲酸 酯積層體的製造方法的一例,參照第1圖說明。 第1圖係用於說明本實施態樣的聚胺基甲酸酯積層體的 製造方法的模式步驟圖。在第1圖中,1係離型紙,2係於 常溫爲半固體或固體的胺基甲酸酯預聚物,3係鏈延長劑, 4係具有所規定的產熱尖峰溫度的感溫性胺基甲酸酯化觸 媒,5係熱膨脹性微膠囊。又,由供給胺基甲酸酯預聚物 用的第1噴嘴6a、供給鏈延長劑用的第2噴嘴6b、以及混 合室6c構成混合頭6。又,6a、6b、6c分別具備加熱器(在 圖中省略)。又,7係基材片材,8係基材片材7的送出捲 軸,9a係接觸輥,9b係逆轉輥,1 0係胺基甲酸酯樹脂組 成物(胺基甲酸酯樹脂層),1 1係送出輥,1 2係加熱裝置’ 13係聚胺基甲酸酯積層體,14係聚胺基甲酸酯積層體13 的捲取捲軸,1 6係冷卻輥,PR係加壓輥。再者,在第1 圖中,藉由接觸輥9a與逆轉輥9b‘的組合構成逆轉輥塗布 器。 在本實施態樣的聚胺基甲酸酯積層體的製造方法中’首 先將胺基甲酸酯預聚物2、鏈延長劑3、感溫性胺基甲酸酯 化觸媒4及熱膨脹性微膠囊5在比上述產熱尖峰溫度低 -15- 201105509 10~30°C範圍的溫度下進行加熱熔融混合(熔融混合步驟)。 就加熱熔融混合方法的具體例而言,可列舉如以下的方 法》 在混合方法方面,可採用下述方法:藉由將胺基甲酸酯 預聚物2在可成爲規定黏度的溫度下加溫,另一方面,將 鏈延長劑3、感溫性胺基甲酸酯化觸媒4及熱膨脹性微膠 囊5保溫後,將該等高壓噴射並衝撞而進行混合之如第i 圖所示的公知使用混合頭進行混合或混合後攪拌的方法; 或者單純地於熔融狀態進行攪拌混合的方法。 使用混合頭進行混合的方法,如第1圖所示,將胺基甲 酸酯預聚物2於加熱熔融狀態從第1噴嘴6a加壓噴射而霧 化並供給至混合室6c:另一方面,將感溫性胺基甲酸酯化 觸媒4及熱膨脹性微膠囊5與鏈延長劑3混合,並從第2 噴嘴6b加壓噴射而霧化並供給至混合室6c。然後,在混 合室6c內使已霧化的各成分衝撞而進行混合。又,在以形 成多孔性胺基甲酸酯層爲目的之情況,視需要可配入熱膨 脹性微膠囊5。在該情況,爲了在由混合所形成的胺基甲 酸酯樹脂組成物的溫度比上述產熱尖峰溫度低10~30°C範 圍的溫度進行加熱熔融混合,控制混合頭的第1噴嘴6a、 第2噴嘴6b、及混合室6c的溫度。若採用此種使用混合 頭的混合方法,可更均一地混合。 又,就單純地於熔融狀態進行攪拌混合的方法而言,可 列舉如以下的方法。 首先’將胺基甲酸酯預聚物2加溫至可成爲規定黏度的 -16- 201105509 溫度並貯藏於規定的容器內。另一方面,在另一容器內, 於感溫性胺基甲酸酯化觸媒4不會活化且熱膨脹性微膠囊 5不會膨脹的溫度’保溫鏈延長劑3、感溫性胺基甲酸酯化 觸媒4及熱膨脹性微膠囊5。然後將胺基甲酸酯預聚物2 與包含感溫性胺基甲酸酯化觸媒4、熱膨脹性微膠囊5及 鏈延長劑3的混合物供給至具備加熱器及攪拌裝置的容 器。然後,在該容器內,將胺基甲酸酯預聚物2、鏈延長 劑3、感溫性胺基甲酸酯化觸媒4及熱膨脹性微膠囊5在 比感溫性胺基甲酸酯化觸媒4的產熱尖峰溫度低10〜30 °C 範圍的溫度下進行加熱熔融混合。 在熔融混合步驟中,於比感溫性胺基甲酸酯化觸媒4會 活化的產熱尖峰溫度低 10〜30 °C範圍的溫度下,較佳低 10〜2 5 °C範圍的溫度下,使胺基甲酸酯預聚物2、鏈延長劑 3、感溫性胺基甲酸酯化觸媒4及熱膨脹性微膠囊5進行加 熱熔融混合。藉由在如此的溫度進行加熱熔融混合,可抑 制交聯反應的進行。基於此,可延長在混合室6c內所調製 的胺基甲酸酯樹脂組成物的適用期。又,在配入熱膨脹性 微膠囊5的情況,以選擇在熔融混合步驟中實質上不會膨 脹至目標膨脹倍率的熱膨脹性微膠囊爲較佳。 又,另一方面,如第1圖所示,從片材送出捲軸(在圖 中省略)連續地送出離型紙1,被連續送出的離型紙1由沿 著箭頭方向旋轉的送出輥Π送出後,由捲取捲軸14捲取, 而預先形成離型紙1的連續傳送帶(Hne)。 然後,如第1圖所示,在朝向被連續地搬送的離型紙1 •17· .201105509 下,將在混合室6c中所調製的胺基甲酸酯樹脂組成物ι〇 朝向在接觸輥9a與逆轉輥9b之間所形成的間隙(clearance) 流下’並藉由逆轉輥9b以均一厚度塗布在離型紙1表面, 形成胺基甲酸酯樹脂層10 (樹脂層形成步驟)。塗布厚度係 由在逆轉輥9b與接觸輥9a之間所形成間隙的間隔來控制。 就離型紙1而言,除了表面平滑的離型紙之外,當以賦 與表面設計爲目的時,可使用具有壓紋模樣的離型紙。再 者,在離型紙表面可預先形成以聚胺基甲酸酯系樹脂或丙 烯酸系樹脂等爲代表的公知高分子彈性體層。在離型紙表 面預先形成高分子彈性體層時,由於藉由胺基甲酸酯預聚 物(A)、鏈延長劑(B)及感溫性胺基甲酸酯化觸媒(C)進行加 熱熔融混合所得到的胺基甲酸酯樹脂組成物所構成之層的 表面被該高分子彈性體層所被覆,所以從表面物性的改質 .成爲可能的觀點而言爲較佳》尤其在以該高分子彈性體層 被覆的情況,可以防止:由該胺基甲酸酯樹脂組成物所構 成的表面因具有交聯構造而與其他樹脂層的接著性降低。 在由胺基甲酸酯樹脂組成物所構成之層的表面被高分 子彈性體層被覆之情形,由於由該胺基甲酸酯樹脂組成物 所構成之層係在未充分交聯的狀態被該高分子彈性體層被 覆,所以由該胺基甲酸酯樹脂組成物所構成之層與該高分 子彈性體層的接著性提高,並進一步提高表面的型押(賦與 凹凸模樣)性。 又,以該高分子彈性體層被覆,從可抑制表面黏性的觀 點言之爲較佳。[Technical Field] The present invention relates to a method for producing a polyurethane laminate and a polyurethane laminate obtained by the method. [Prior Art] Polyurethane laminates have been widely used as surface materials for shoes, clothing, leather bags, furniture, and the like since the prior art. The representative structure of the polyurethane laminate is a surface of a composite fiber base material obtained by impregnating a polyurethane substrate or the like with a fibrous base material such as a nonwoven fabric, a woven fabric, or a braided fabric. The composition of the laminated polyurethane layer. The polyurethane layer is formed by a method of drying a solvent-based polyurethane or an aqueous polyurethane on a surface of a composite fiber substrate, or A method in which a polyurethane film previously formed on the surface of the release paper is adhered to the surface of the composite fiber substrate by an adhesive. However, in recent years, in order to reduce the environmental load, in the production of a polyurethane laminate, a process using a solventless urethane prepolymer without using an organic solvent is required. For example, in the following Patent Document 1, it is disclosed that the component A, which is a semi-solid or solid isocyanate-containing urethane prepolymer at room temperature, and the B component can be reacted with an isocyanate group. A method in which a compound and/or a urethane curing catalyst is heated and melted, stirred and mixed, and mechanically foamed to produce a porous polyurethane body. Further, according to such a method, it is possible to produce a high-strength polyamine-based 201105509 formate porous body with good efficiency without using a solvent or a dryer. Further, in the past, the use of a polyurethane laminate has been used as a material for shoes, clothing, furniture, and the like. With respect to the representative structure of the polyurethane laminate, the porous polyurethane is impregnated on the surface of the fiber-optic sheet such as a nonwoven fabric, and a layer of polyurethane is formed. As a specific example of the production method, for example, as disclosed in Fig. 2, a method of forming a polyamine layer by pressing a thermoplastic resin film which has just been extruded by a T die onto the surface of the composite fiber sheet is known. Further, as for other methods, it is known that a polyurethane resin layer is formed by applying a dry solvent-type grease to the surface of a release paper, and the obtained polyamine group is bonded by using a solvent ester adhesive. A method of producing a leather-like sheet from a formate resin layer. In addition, as disclosed in Patent Document 4 below, the aqueous amine is applied to the surface of the release paper, dried to form a polyester layer, and the base is formed by using an aqueous urethane adhesive. A method in which an acid ester resin layer is bonded to a composite fiber sheet and a sheet is dried. Further, for example, it is also known that the following Patent 3 discloses a method of applying a molten hot-melt urethane resin to a surface thereof to form a polyurethane tree by cross-linking [Prior Art Document] [Patent [Textile] The surface of the leather-like sheet is the surface of the wide-skinned leather. The following is a patent document. Polyurethane resin. Patent Document 3 A method for producing a leather-like product by using a polyamine obtained from a urethane resin urethane tree, for example, by a method of drying an acid anhydride-based urethane, and a method for producing a composite fiber sheet . [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Japanese Patent Publication No. 264371 [Patent Document 5] International Publication No. WO2005/083173. According to the method for producing a polyurethane porous body described in Patent Document 1, it is possible to achieve solventlessness. However, according to the investigation by the inventors of the present invention, when the polyurethane laminate is continuously produced industrially by the method described above, the following problems are caused. The urethane prepolymer which is semi-solid or solid at normal temperature as described in Patent Document 1 has a low viscosity by heating at a relatively high temperature, and is adjusted to a mechanically foamable viscosity. When the urethane resin composition comprising the urethane prepolymer and the urethane curing catalyst is heated to a degree that can be mechanically foamed, it is activated by the urethane curing catalyst. A crosslinking reaction is carried out. In the case where the urethane resin composition is heated to such a temperature as to be mechanically foamable, the urethane is gradually increased due to the crosslinking reaction of the urethane prepolymer. The pot life of the resin composition becomes short, and there is a problem that it is difficult to continuously produce for a long time. In addition, when the porous polyurethane is produced by the method described in Patent Document 1, the pores obtained by mechanical foaming become communication pores, and so-called uniform pores are not obtained. The problem of porous bodies. The object of the present invention is to maintain a coated amine group by forming a polyurethane layer formed on a sheet of a urethane prepolymer having a semi-solid or 201105509 solid at room temperature for a long period of time. The pot life of the formate resin composition can continuously and stably form an uncrosslinked polyurethane layer, and further, by heat-treating the applied uncrosslinked polyurethane layer, Cross-linking to improve productivity. A method for producing a polyurethane laminate according to one aspect of the present invention, comprising: a urethane prepolymer (A) and a chain extender which are semi-solid or solid at normal temperature (B) and a temperature sensitive urethane catalyst (C) exhibiting a specified heat-generating peak temperature by differential scanning calorimetry, at a temperature lower than the heat-generating peak temperature by 1 〇 30 ° C Melt mixing by heating and melting at a temperature to form a urethane resin composition; forming a urethane on the surface of a sheet such as a release paper or a fibrous substrate using the urethane resin composition a resin layer forming step of the resin layer; and a heat treatment step of heat-treating the urethane resin layer at a temperature higher than the heat generating peak temperature. Further, according to the inventors of the present invention, as disclosed in the above Patent Document 2, it is formed by pressing a thermoplastic polyurethane film which has just been extruded by a T-die against the surface of the composite fiber sheet. In the method of the polyurethane resin layer, since the thermoplastic polyurethane film is quenched when it is attached to the surface of the composite fiber sheet, it is pressed in a state of being cured to some extent. Therefore, the interface between the composite fiber sheet and the thermoplastic urethane film becomes a two-dimensional planar interface. Based on this, when the polyurethane laminate is folded, 'the composite fiber sheet and the polyurethane film differ in the modulus of elasticity and the elongation.' Composite fiber sheet and thermoplastic polyamine base 201105509 The interface of the acid ester film is jagged or peeled. The unevenness or peeling between the layers at the interfaces causes the following problems. Specifically, for example, the bent wrinkles which are produced when the leather is bent, as shown in Fig. 7, are fine warps, and the polyurethane laminate obtained by the above method is, for example, Figure 8 shows the appearance of wrinkles as large as corrugated paper. Moreover, there is also a problem that wrinkles (folded wrinkles) remain after bending. Further, according to the inventors of the present invention, as disclosed in Patent Document 3, a method of forming a polyurethane resin layer by applying a dry solvent-type urethane resin to the surface of a release paper is disclosed. There is a problem that if the coating and drying are repeated a plurality of times, it is impossible to obtain a polyurethane resin layer having a smooth surface and a sufficient thickness. Further, the polyurethane resin layer formed on the release paper was bonded to the surface of the composite fiber sheet by using a solvent-based urethane adhesive. Thus, there is an adhesive layer between the polyurethane resin layer and the composite fiber sheet by the method of laminating. Therefore, the polyurethane resin layer is substantially incapable of permeating and filling the voids in the surface layer portion of the composite fiber sheet, so that the integral feeling of the polyurethane resin layer and the composite fiber sheet cannot be obtained. Therefore, there is a tendency for the leather-like feel and wrinkle feeling to deteriorate. Further, in other problems, there is also a problem that the pore walls of the porous polyurethane impregnated with the composite fiber sheet are dissolved by the solvent in the adhesive to break the pore structure, and the texture and surface smoothness are lowered. . According to the inventors of the present invention, as disclosed in the above Patent Document 4, after the aqueous urethane resin is applied onto the surface of the release paper, it is dried to form a polyurethane resin layer. In the method of 201105509, if the steps of coating and drying are repeated a plurality of times, the problem that the surface has a smooth and sufficient thickness of the polyurethane resin layer cannot be obtained. Further, such a polyurethane resin layer is laminated on the surface of the composite fiber sheet by using an aqueous urethane binder. Therefore, the integral feeling of the polyurethane resin layer and the composite fiber sheet cannot be obtained. Further, according to the inventors of the present invention, as disclosed in Patent Document 5, it is disclosed that the molten hot-melt urethane resin is applied to the surface of the composite fiber sheet to form a polymer. The method of the urethane resin layer is because the polyurethane resin layer is laminated only by coating the molten hot-melt urethane resin on the surface of the composite fiber sheet, so that the composite fiber is The problem of so-called jagged or peeling at the interface between the sheet and the polyurethane resin layer cannot be solved. In view of the above-mentioned problems, the present invention has an object of providing a polyurethane-like, a feeling of fullness, a wrinkle feeling at the time of bending, and a polyurethane laminate which is difficult to remain after buckling. In the method for producing a polyurethane laminate according to another aspect of the present invention, it is preferred to provide a cross-linking hot-melt urethane resin in a molten state. a coating film forming step of forming a release paper-coated film laminate body: a heat treatment step of partially crosslinking the crosslinkable hot melt type urethane resin; laminating the coating film on the composite fiber sheet under pressure a laminating step on the surface of the material, wherein the composite fiber sheet-based fibrous sheet and the polymeric elastomer are integrated by impregnation and have a plurality of voids in the surface layer, and the pressure system can laminate the release paper and the coating film. A part of the coating film of the body intrudes into the void of the composite fiber sheet; and a cooling step of cooling and solidifying the crosslinkable heat .201105509 molten urethane resin. Further, the coating film forming step preferably has a hot-soluble urethane prepolymer (A), a chain extender (B) having a melt viscosity of 100 ° C or less at 100 ° C, and by means of the difference Scanning calorimetry The temperature sensitive urethane catalyst (C) exhibiting a predetermined heat-generating peak temperature is heated and melted at a temperature lower than the above-mentioned heat-generating peak temperature by 10 to 30 ° C to form a mixture. a melt-mixing step of a crosslinkable hot-melt urethane resin; and a release paper-coated film laminate by applying a cross-linking hot-melt urethane resin in a molten state to a surface of a release paper The coating film forming step; the heat treatment step is preferably a step of heat-treating the release paper-coated film laminate at a temperature higher than the heat-generating peak temperature to partially crosslink the coating film. The polyurethane laminate system according to still another aspect of the present invention is a composite fiber sheet having a plurality of voids in a surface layer by impregnation of a fiber sheet and a polymer elastomer, and laminating the composite fiber sheet a laminate of the upper polyurethane resin layer; the laminate preferably has a mixed layer which invades the void by a part of the polyurethane resin layer to make the polyamine group A part of the formic acid ester resin layer is mixed with the surface layer of the composite fiber sheet in an incompatible state, and the mixed layer has a thickness of 1 μm or more, preferably 30 μm or more. The objects, features, aspects and advantages of the invention will be apparent from [Embodiment] [Method for Producing Polyurethane] The method for producing a polyurethane laminate according to Embodiment 1 is provided by: -10- 201105509 Prepolymerization of a urethane which is semi-solid or solid at normal temperature The substance (A), the chain extender (B), and the temperature sensitive urethane catalyst (C) exhibiting the specified heat-generating peak temperature by differential scanning calorimetry, are lower than the heat-generating peak temperature a melt-mixing step of forming a urethane resin composition by heat-melting mixing at a temperature in the range of 10 to 30 ° C; using a urethane resin composition in a sheet such as a release paper or a fiber substrate a resin layer forming step of forming a urethane resin layer on the surface; and a heat treatment step of heat-treating the urethane resin layer at a temperature higher than the heat generating peak temperature. First, the urethane prepolymer (A), the chain extender (B), and the temperature sensitive urethane catalyst which are semi-solid or solid at normal temperature used in the present embodiment will be described. C). The urethane prepolymer (A) used in the present embodiment is a urethane prepolymer having an isocyanate group obtained by reacting a polyol with a polyisocyanate, and is at room temperature. It is a semi-solid or solid substantially solvent-free polyurethane forming component. Such a urethane prepolymer is a semi-solid property which is solid at room temperature to a viscosity which is difficult to apply, but is low in viscosity to be coatable by heating. Examples thereof include high molecular weight polyols such as polyester polyols, polyether polyols, and polycarbonate polyols; ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, and 1,3-butylene. Glycol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8- Octanediol, 1,4-bis(hydroxyethoxy)benzene, 1,3-bis(hydroxyisopropyl)benzene, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexa-1 , 4-diol, cyclohexyl-1,4-dimethanol, glycerin, trimethylolpropane, trimethylolethyl-11 - 201105509 alkane, hexanetriol, neopentyl alcohol, sorbitol, methyl glucose A low amount of a polyhydric alcohol such as a glycoside. These may be used singly or in combination of two or more. Specific examples of the polyisocyanate include phenyl diisoester, toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, and diphenyl. Aromatic diisocyanate such as methane diisocyanate, naphthalene diisocyanate or xylene diisocyanate; hexamethylene diisocyanate 'isopened isocyanate, cyclohexane diisocyanate, isophorone diisocyanate cyclohexylmethane diisocyanate, four a diisocyanate such as methyl xylene diisocyanate or an alicyclic diisocyanate; a dimer or a trimer of 4,4'-diphenylmethane cyanate, such as diphenylmethane diisocyanide. These may be used alone or in combination of two or more. The production of the above urethane prepolymer can be usually carried out in an organic solvent, although it can be usually carried out without dissolution. It can be produced in an organic solvent, and it can be organically dissolved in ethyl acetate, n-butyl acetate, methyl ethyl ketone, toluene, etc. without hindering the reaction of the above chain extender and polyisocyanate, but must be borrowed during or after the reaction. The organic solvent is heated by a method such as heating under reduced pressure. Regarding the reaction ratio of the polyol to the polyisocyanate, the equivalent ratio of the polyisocyanate isocyanate group to the hydroxyl group in the polyol [NCO/OH] is preferably in the range of 1.1 to 5.0, and is in the range of 1.2 to 3.0. Further, in terms of the number average molecular weight of the urethane prepolymer, in the range of 30,000, further in the range of 1 000 〜1 〇, 〇〇〇, the melt viscosity is adjusted, and excellent softness can be formed, The viewpoint of the mechanical strength abrasion resistance and hydrolysis resistance of the polyurethane layer is more molecular. When the cyanic acid 2,4'-cyanic acid bis-disaccharide diisocyanate is used, the agent is preferably used. 500~ Easy and durable. -12- 201105509 In terms of the melt viscosity of the urethane prepolymer, the melt viscosity at 120 °C measured by a complete viscometer is in the range of 500 to 100,000 mPa_s, and the step is from 1 000 to 1 000. The range of mPa.s is preferable from the viewpoint of easily adjusting the film thickness. As a commercial item of such a urethane prepolymer, the trade name Task Force KMM-100, Tyforce NH-122A, NH-200, NH-300, H-1041 by DIC Corporation can be mentioned. Takeda Melt SC-13, SL- (H, SL-02, SL-03, SL-04, etc. manufactured by Takeda Pharmaceutical Co., Ltd.) thiol prepolymer (A) by amine The urethanization catalyst promotes the reaction of the isocyanate group in the urethane prepolymer (A) with a hydroxyl group or an amine group in the chain extender (B) described below, and is highly polymerized. The high molecular weight polymer further undergoes a crosslinking reaction by reacting an isocyanate group existing in the system. The chain extender (B) used in the present embodiment has two or more functional groups containing 'active hydrogen a compound such as a hydroxyl group and an amine group which can react with an isocyanate group of the urethane prepolymer (A). In the specific example of the chain extender, in addition to the above various polyols, Examples thereof include ethylenediamine, 1,3-propanediamine, 1,2,propylenediamine, hexamethylenediamine, norbornenediamine, hydrazine, pipe trap, and N,N'-diaminopiperazine. , 2·methylpiperidin, 4,4′-diaminodicyclohexylmethane, isophoronediamine, diaminobenzene, diphenylmethyldiamine, methylenebis(dichloroaniline), Tri-ethyldiamine, tetramethylhexamethylenediamine, triethylamine, tripropylamine, trimethylaminoethylpiperazine, N-methylmorpholine, N-ethylmorpholine And a polyamine such as bis(2,6-dimethyl-(N-morpholin-13-201105509-ethyl)ether. These may be used singly or in combination of two or more. The temperature sensitive urethane catalyst (C) exhibiting the specified heat-generating peak temperature by differential scanning calorimetry is under a nitrogen blanket at a temperature increase rate of 10 ° C / l minutes at 0 ° C A urethane-based catalyst exhibiting a predetermined heat-generating peak temperature when performing differential scanning calorimetry in the range of 200 ° C. In terms of heat-producing peak temperature, in the range of 50 to 160 ° C, In the range of 80 to 140 ° C, it is preferable from the viewpoint of excellent treatment efficiency and stability in the urethane formation. As a specific example of such a urethane catalyst, Column An organic acid salt of 1,8-diazabicyclo(5,4,0)-undecene-7 (DBU), specifically, a phenate of DBU (heat-producing peak temperature of 88 ° C), DBU Octanoic acid (heating peak temperature 99 ° C), DBU citrate (heating peak temperature 138t:), DBU oleate (heating peak temperature 110 ° C), etc. These urethanes The catalyst can be appropriately selected in consideration of the softening temperature of the urethane prepolymer (A) to be used. In the present embodiment, in order to make the obtained polyurethane layer porous In the applied urethane resin composition, it is preferred to blend a foaming agent as needed. The type of the foaming agent is not particularly limited, but from the viewpoint of easily controlling the uniformity of pores, It is preferred to use a heat-expandable microcapsule. Examples of the heat-expandable microcapsules include a temperature-sensitive foaming agent which is expanded by heating while being encapsulated, and the thermoplastic resin forming the outer shell is softened and starts to swell. The expansion ratio determined by the internal pressure and the external pressure of the capsule is equal to the expansion ratio (it is preferably expanded by 2 times -14 to 0.0505509) to form uniform independent bubbles. Specific examples of the heat-expandable microcapsules include a Matsumoto microsphere F series manufactured by Matsumoto Oil & Fat Pharmaceutical Co., Ltd., and the like. In the present embodiment, in addition to the above various components, additives such as a coloring agent such as a pigment, a tackifier, and an antioxidant may be added as needed. An example of a method for producing the polyurethane laminate of the present embodiment using the above various components will be described with reference to Fig. 1 . Fig. 1 is a schematic view showing the steps of a method for producing a polyurethane laminate of the present embodiment. In Fig. 1, 1 type release paper, 2 is a semi-solid or solid urethane prepolymer at room temperature, 3 series chain extender, 4 series has a temperature sensitivity of a predetermined heat-generating peak temperature. A urethane-catalyzed, 5-based heat-expandable microcapsule. Further, the first nozzle 6a for supplying the urethane prepolymer, the second nozzle 6b for supplying the chain extender, and the mixing chamber 6c constitute the mixing head 6. Further, each of 6a, 6b, and 6c is provided with a heater (omitted from the drawing). Further, a 7-series base material sheet, a delivery reel of the 8 series base material sheet 7, a 9a contact roll, a 9b type reverse roll, and a 10 type urethane resin composition (urethane resin layer) , 1 1 system delivery roller, 12 2 heating device '13 series polyurethane laminate, 14 series polyurethane laminate 13 winding reel, 16 series cooling roller, PR system pressure Roller. Further, in Fig. 1, a reverse roller coater is constituted by a combination of the contact roller 9a and the reverse roller 9b'. In the method for producing a polyurethane laminate of the present embodiment, 'the urethane prepolymer 2, the chain extender 3, the temperature sensitive urethane catalyst 4 and the thermal expansion are first introduced. The microcapsules 5 are subjected to heat-melt mixing (melt mixing step) at a temperature lower than the above-mentioned heat-generating peak temperature by the range of -15 to 201105509 10 to 30 °C. As a specific example of the heating and melt mixing method, the following method can be mentioned. In the mixing method, the following method can be employed: by adding the urethane prepolymer 2 at a temperature at which a predetermined viscosity can be obtained. On the other hand, after the chain extender 3, the temperature sensitive urethane catalyst 4 and the heat-expandable microcapsule 5 are kept warm, the high-pressure jets are jetted and mixed to be mixed as shown in FIG. A method of mixing or mixing after mixing using a mixing head; or a method of stirring and mixing simply in a molten state is known. In the method of mixing using a mixing head, as shown in Fig. 1, the urethane prepolymer 2 is sprayed by the first nozzle 6a in a heated and molten state to be atomized and supplied to the mixing chamber 6c: The temperature-sensitive urethane-catalyzed catalyst 4 and the heat-expandable microcapsules 5 are mixed with the chain extender 3, and are sprayed by pressure from the second nozzle 6b to be atomized and supplied to the mixing chamber 6c. Then, the atomized components are collided and mixed in the mixing chamber 6c. Further, in the case of forming a porous urethane layer, the heat-expandable microcapsules 5 may be blended as needed. In this case, in order to heat-melt and mix the temperature of the urethane resin composition formed by mixing at a temperature lower than the heat-generating peak temperature by 10 to 30 ° C, the first nozzle 6a of the mixing head is controlled, The temperature of the second nozzle 6b and the mixing chamber 6c. If such a mixing method using a mixing head is employed, it can be more uniformly mixed. Further, as a method of stirring and mixing in a molten state, the following method can be mentioned. First, the urethane prepolymer 2 is heated to a temperature of -16 to 201105509 which can be a predetermined viscosity and stored in a predetermined container. On the other hand, in another container, the temperature-sensitive urethane catalyst 4 does not activate and the heat-expandable microcapsule 5 does not swell at the temperature 'insulation chain extender 3, temperature-sensitive amine group A The acid-catalyzed catalyst 4 and the heat-expandable microcapsules 5. Then, the urethane prepolymer 2 and a mixture containing the temperature sensitive urethanization catalyst 4, the heat-expandable microcapsules 5, and the chain extender 3 are supplied to a container equipped with a heater and a stirring device. Then, in the container, the urethane prepolymer 2, the chain extender 3, the temperature sensitive urethane catalyst 4 and the heat-expandable microcapsule 5 are in a specific temperature sensitive uric acid. The heat-producing peak temperature of the esterification catalyst 4 is heated and melt-mixed at a temperature in the range of 10 to 30 °C. In the melt mixing step, at a temperature lower than the temperature of the heat generating peak at which the temperature sensitive urethane catalyst 4 is activated by 10 to 30 ° C, preferably in the range of 10 to 25 ° C. Next, the urethane prepolymer 2, the chain extender 3, the temperature sensitive urethanization catalyst 4, and the heat-expandable microcapsules 5 are heated and melted and mixed. By performing heat-melting and mixing at such a temperature, the progress of the crosslinking reaction can be suppressed. Based on this, the pot life of the urethane resin composition prepared in the mixing chamber 6c can be extended. Further, in the case of incorporating the heat-expandable microcapsules 5, it is preferred to select a heat-expandable microcapsule which does not substantially expand to a target expansion ratio in the melt-mixing step. On the other hand, as shown in Fig. 1, the release paper 1 is continuously fed from a sheet feeding reel (omitted from the drawing), and the release paper 1 that has been continuously fed is fed by a feeding roller that rotates in the direction of the arrow. The take-up reel 14 is taken up, and a continuous transfer belt (Hne) of the release paper 1 is formed in advance. Then, as shown in Fig. 1, the urethane resin composition 〇 prepared in the mixing chamber 6c is directed toward the contact roller 9a in the direction of the release paper 1 • 17· .201105509 which is continuously conveyed. The clearance formed between the reverse roller 9b and the reverse roller 9b are applied to the surface of the release paper 1 by a reverse thickness 9b to form a urethane resin layer 10 (resin layer forming step). The coating thickness is controlled by the interval between the reverse roller 9b and the contact roller 9a. In the case of the release paper 1, in addition to the surface-smooth release paper, a release paper having an embossed pattern can be used for the purpose of imparting a surface design. Further, a known polymer elastomer layer typified by a polyurethane resin or an acrylic resin may be formed in advance on the surface of the release paper. When the polymer elastomer layer is formed in advance on the surface of the release paper, it is heated by the urethane prepolymer (A), the chain extender (B), and the temperature sensitive urethane catalyst (C). The surface of the layer composed of the urethane resin composition obtained by melt-mixing is coated with the polymer elastomer layer, so that it is preferable from the viewpoint of improving the physical properties of the surface. When the polymer elastomer layer is coated, it is possible to prevent the surface of the urethane resin composition from having a crosslinked structure and having a lower adhesion to the other resin layer. In the case where the surface of the layer composed of the urethane resin composition is covered with the polymer elastomer layer, the layer composed of the urethane resin composition is not sufficiently crosslinked. Since the polymer elastomer layer is coated, the adhesion between the layer composed of the urethane resin composition and the polymer elastomer layer is improved, and the surface forming (concave-convex pattern) property is further improved. Further, it is preferable to coat the polymer elastomer layer from the viewpoint of suppressing surface stickiness.

18- 201105509 再者,藉著預先形成由公知的水分散系高分子彈性體或 無溶劑硬化高分子彈性體所構成的層作爲表面層,從可由 完全無溶劑的步驟製造聚胺基甲酸酯積層體的觀點而言爲 更佳。 又,就將加熱熔融狀態的胺基甲酸酯樹脂組成物1〇塗 布於離型紙1表面的塗布機構的具體例而言,可使用例如 刀式塗布機、輥式塗布機、反向塗布機、輥壓式塗布機(kiss roll coater)、噴霧式塗布機、T-模式塗布機或缺角輪式塗 布機(coma coater)等代替如第1圖所示的逆轉輥式塗布 機。又,在此等塗布機構中,從控制胺基甲酸酯樹脂組成 物的熔融黏度的觀點而言,以具備加熱機制的塗布機構爲 較佳。 就所形成的胺基甲酸酯樹脂層10的厚度而言’在 5〜800μηι的範圍,進一步在10〜500μιη的範圍者’從得到 在柔軟性及機械強度方面優異的聚胺基甲酸酯積層體的觀 點言之爲較佳。 然後,藉由將基材片材7貼合於在離型紙1的表面所形 成的胺基甲酸酯樹脂層1〇的表面,可形成在基材片材7表 面形成有胺基甲酸酯樹脂層10的聚胺基甲酸酯積層體13。 胺基甲酸酯樹脂層10與基材片材7的貼合,具體而言’ 例如,如第1圖所示,將基材片材7從送出捲軸8送出’ 藉由加壓輥PR與熔融或軟化狀態的胺基甲酸酯樹脂層10 貼合。 就在本實施態樣中所使用的基材片材7的具體例而言’ -19- 201105509 可列舉,例如’不織布或織布、編織布等一般皮革樣片材 所使用的纖維基材;於上述纖維基材上含浸溶劑系、水系、 乳液系或無溶劑系的聚胺基甲酸酯樹脂、丙烯酸系樹脂及 丁二烯系樹脂(SBR、NBR、MBR)等而成的複合纖維基材 等。此等之中’從可得到具有柔軟手感及較優異機械強度 的聚胺基甲酸酯積層體的觀點而言,以使用使聚胺基甲酸 酯含浸於由極細纖維所形成的不織布而成的複合纖維基材 爲特佳。就不織布而言,沒有特殊限定,可使用先前已知 的短纖維網、藉由防黏(spunbond)及熔噴法等公知的方法 所得到的網。又,視需要,可爲於形成網後,將複數片網 重疊並藉由針刺處理等使其絡合而得到者。就形成不織布 的纖維的具體例而言,可列舉如聚胺基甲酸酯纖維、聚酞 酸乙二酯(PET)纖維、各種聚醯胺系纖維、聚丙烯酸系纖 維、各種聚烯烴系纖維、聚乙烯醇系纖維等。形成不織布 的纖維,係以纖維徑爲0.1~50μϊη,進一步 1〜15μιη的極細 纖維爲較佳。此種極細纖維,由於剛性低、柔軟,所以從 得到具有柔軟手感的聚胺基甲酸酯積層體的觀點言之爲較 佳。不織布的單位面積重量,在50~2000g/m2的範圍,進 —步在10 0〜1000 g/m 2的範圍者,從得到具有柔軟手感的聚 胺基甲酸酯積層體的觀點言之爲較佳。 接著,將在基材片材7表面形成有胺基甲酸酯樹脂層10 的聚胺基甲酸酯積層體13於感溫性胺基甲酸酯化觸媒(C) 的產熱尖峰溫度以上的溫度進行熱處理(熱處理步驟)。如 此形成在離型紙1表面的胺基甲酸酯樹脂層10藉由在比感 -20- 201105509 溫性胺基甲酸酯化觸媒(c)的產熱尖峰溫度高的溫度進行 熱處理,可促進所塗布形成的胺基甲酸酯樹脂層10的交 聯。 就熱處理溫度而言,胺基甲酸酯樹脂層10的溫‘度,只 要成爲比感溫性胺基甲酸酯化觸媒(C)的產熱尖峰溫度高 的溫度,且不會使硬化形成的聚胺基甲酸酯層變差的溫 度,將無特殊限定。具體而言,以在比感溫性胺基甲酸酯 化觸媒(C)的產熱尖峰溫度高0~3 0°c的溫度範圍,進一步比 產熱尖峰溫度高0~15°c的溫度範圍進行熱處理爲較佳。 又,就熱處理時間的具體例而言,例如,爲約1 5秒〜1 0 分鐘,進一步爲約30秒~5分鐘者,從在不使生產性降低 下充份促進交聯反應的觀點言之爲較佳。 熱處理,例如,可藉由如熱風加熱乾燥機的加熱裝置12 來進行。 然後,使用冷卻輥1 6將如此得到的被離型紙1被覆狀 態的胺基甲酸酯樹脂層1 〇與基材片材7的貼合體強制冷卻 後,藉由捲取捲軸14進行捲取。然後,藉由將所捲取的聚 胺基甲酸酯積層體13熟成規定的時間,可進行胺基甲酸酯 樹脂層10的交聯反應及高分子量化。 就聚胺基甲酸酯積層體13的熟成條件而言,以在溫度 20〜40°C,相對濕度50〜80%的條件下,熟成約20〜50小時 爲較佳。藉此,可以得到機械強度及耐水性優異的聚胺基 甲酸酯積層體。 將藉由此等步驟所得到的聚胺基甲酸酯積層體13的剖 -21- 201105509 面模式圖示於第2圖中。 , 如第2圖所示的聚胺基甲酸酯積層體13,藉由將被覆於 表面的離型紙1剝離而完成。在此等聚胺基甲酸酯積層體 13中,於經交聯的聚胺基甲酸酯層20中可形成均一獨立 的氣泡2 1。 又’在本實施態樣中,雖係以「預先形成離型紙1的連 續傳送帶’在被連續送出的離型紙1的表面上形成胺基甲 酸酯樹脂層10,在所形成的胺基甲酸酯樹脂層10的表面 上貼合基材片材7的步驟」爲代表來說明,但可交換離型 紙1與基材片材7貼合的順序,而爲預先形成基材片材7 的連續傳送帶’在被連續送出的基材片材7的表面形成胺 基甲酸酯樹脂層1 0,並使離型紙1貼合於所形成的胺基甲 酸酯樹脂層10的表面的步驟。又,在本實施態樣中,雖係 以「在離型紙1的表面形成胺基甲酸酯樹脂層10,在所形 成的胺基甲酸酯樹脂層10的表面上貼合基材片材7後施行 熱處理的步驟」爲代表來說明,但也可在將基材片材7貼 合於胺基甲酸酯樹脂層10之前施行熱處理。 又’對於所得到的聚胺基甲酸酯積層體,爲了賦與表面 設計性、調整觸感、或施加顏色修正,可進一步藉由公知 慣用的方法’於表層部塗覆溶劑系、水系、乳液系或無溶 劑系的聚胺基甲酸酯樹脂或丙烯酸系樹脂,或者適當地進 行拋光加工或壓紋加工等後加工。 如此所得到的聚胺基甲酸酯積層體較佳以皮革樣片材 作爲鞋類、衣類、皮包、家具等的表面原料使用。 -22- 201105509 [實施態樣2] 本實施態樣2的聚胺基甲酸酯積層體的製造方法較佳具 備:藉由將熔融狀態的交聯性熱熔型胺基甲酸酯樹脂塗布 於離型紙表面而形成離型紙-塗膜積層體的塗膜形成步 驟;使該交聯性熱熔型胺基甲酸酯樹脂部分交聯的熱處理 步驟;在壓力下使該塗膜積層於複合纖維片材的表面上的 積層步驟,其中該複合纖維片材係纖維片材與高分子彈性 體經含浸一體化而在表層具有多個空隙者,該壓力係可使 該離型紙-塗膜積層體的塗膜的一部分侵入該複合纖維片 材的該空隙中者;以及使該交聯性熱熔型胺基甲酸酯樹脂 冷卻固化的冷卻步驟。 亦即,在本實施態樣2的聚胺基甲酸酯積層體的製造方 法中,以上述塗膜形成步驟相當於在上述實施態樣1的製 造方法中的樹脂層形成步驟;實施態樣2中的熱處理步驟 相當於實施態樣1中的熱處理步驟爲較佳。與此同時,在 實施態樣2的製造方法中,以新具備上述特定的積層步驟 及冷卻步驟爲較佳。 又,在上述實施態樣1中的熔融混合步驟,在本實施態 樣2中較佳爲:將於100°C熔融黏度爲lOOOOmPa.秒以下 0 的熱熔型胺基甲酸酯預聚物(A)、鏈延長劑(B)及藉由示差 掃描熱量測定展現所規定的產熱尖峰溫度的感溫性胺基甲 酸酯化觸媒(C),在比上述產熱尖峰溫度低1〇〜30°C範圍的 溫度下進行加熱熔融混合,形成上述交聯性熱熔型胺基甲 酸酯樹脂的熔融混合步驟。再者,在上述實施態樣1中的 -23- 201105509 樹脂層形成步驟’在本實施態樣2中較佳爲:將熔融狀態 的上述交聯性熱熔型胺基甲酸酯樹脂塗布於離型紙表面而 形成離型紙-塗膜積層體的塗膜形成步驟。又,在上述實施 態樣1中的熱處理步驟,在本實施態樣2中較佳爲:藉由 將上述離型紙-塗膜積層體在上述產熱尖峰溫度以上的溫 度進行熱處理而使上述塗膜部分交聯的熱處理步驟。 參照圖式’詳細地說明實施態樣2的聚胺基甲酸酯積層 體的較佳製造方法的一例。 首先,針對本實施態樣所使用的交聯性熱熔型胺基甲酸 酯樹脂加以說明。 本實施態樣所使用的交聯性熱熔型胺基甲酸酯樹脂,係 含有使多元醇與聚異氰酸酯反應所得到的具有異氰酸基的 胺基甲酸酯預聚物,以及視需要含有使該胺基甲酸酯預聚 物硬化及交聯用的鏈延長劑及觸媒的組成物,且爲於常溫 爲半固體狀或固體狀的無溶劑型聚胺基甲酸酯形成成分。 此種交聯性熱熔型胺基甲酸酯樹脂,雖然於常溫爲固體至 具有難以塗布程度的黏稠性的半固體狀性狀,但藉由加熱 成爲可塗布的黏度,塗布後藉由冷卻而再固化或增黏。 就多元醇的具體例而言,可列舉如在上述實施態樣1中 所說明的多元醇。此等可單獨使用,也可將2種以上組合 使用。 又,就聚異氰酸酯的具體例而言,可列舉如在上述實施 態樣1中所說明的聚異氰酸酯。此等可單獨使用,也可將 2種以上組合使用。 • 24 - 201105509 胺基甲酸酯預聚物的製造,雖然通常可在無溶劑下進 行’但也可在有機溶劑中製造。在有機溶劑中製造時,雖 可使用乙酸乙酯、乙酸正丁酯、甲基乙基酮、甲苯等有機 溶劑,但必須在反應途中或反應終了後藉由減壓加熱等方 法除去有機溶劑。 關於多元醇與聚異氰酸酯的反應比率,聚異氰酸酯中的 異氰酸基與多元醇中的羥基的當量比[NCO/OH]係以在 1.1~5的範圍內爲較佳,以在ι.2~3的範圍內爲更佳。 就胺基甲酸酯預聚物的數平均分子量而言,在500〜 30,000的範圍內,進一步在1〇〇〇〜1〇, 〇〇〇的範圍內者,從 可容易地調整熔融黏度,且可形成具有優異柔軟性、機械 強度、耐磨耗性、耐水解性的聚胺基甲酸酯樹脂層的觀點 言之爲較佳。 就此等胺基甲酸酯預聚物的市售品而言,可列舉DIC股 份有限公司製的商品名 Task Force KMM-100、 KMM-100LV、Tyforce NH-122A、NH-200、NH-300、H-1041, 及武田藥品工業股份有限公司製的Takeda Melt SC-13、 SL-01 、 SL-02 、 SL-03 ' SL-04 等。 鏈延長劑係具有2個以上含活性氫的官能基的化合物, 該官能基如可與胺基甲酸酯預聚物的異氰酸基反應的羥基 及胺基。胺基甲酸酯預聚物,藉由以胺基甲酸酯化觸媒促 進胺基甲酸酯預聚物中的異氰酸基與下述鏈延長劑中的羥 基或胺基等的反應而高分子量化。又,經高分子量化的聚 合物進一步與存在於系統內的異氰酸基反應而進行交聯反 -25- 201105509 應。 就鏈延長劑的具體例而言,除上述各種多元醇之外,可 列舉在上述實施態樣1中所說明的多元胺類等。此等可單 獨使用或將2種以上組合使用》 在交聯性熱熔型胺基甲酸酯樹脂之中,尤其以具有熱熔 融性及濕分硬化性的濕分硬化性熱熔型胺基甲酸酯樹脂爲 較佳。 又,濕分硬化性熱熔型胺基甲酸酯樹脂所具有的濕分 (溼氣)硬化性,係指胺基甲酸酯預聚物中的異氰酸基末端 與濕氣(水)反應形成胺基甲酸酯鍵結或尿素鍵結而硬化。 又,所形成的胺基甲酸酯鍵結或尿素鍵結藉由進一步與在 存於系統內的異氰酸基反應而進行交聯反應。經由此等硬 化反應及交聯反應,胺基甲酸酯預聚物可藉由高分子量化 而形成在機械特性及耐水性等方面優異的聚胺基甲酸酯樹 脂。 本實施態樣的交聯性熱熔型胺基甲酸酯樹脂以含有胺 基甲酸酯化觸媒,尤其是感溫性胺基甲酸醋化觸媒爲較 佳。感溫性胺基甲酸酯化觸媒係在氮氣罩下,以10°c/l分 鐘的升溫速度,在〇°C至200°c的範圍內進行示差掃描熱量 測定時,展現所規定的產熱尖峰溫度的胺基甲酸酯化觸 媒。就產熱尖峰溫度而言,在50〜160 °c的範圍,進一步在 8 0~140°C的範圍者,從胺基甲酸酯化的處理效率及安定化 方面優異的觀點言之爲較佳。 就此等感溫性胺基甲酸酯化觸媒的具體例而言,可列舉 -26- 201105509 1,8-二氮雜雙環(5,4,0)-十一烯- 7(DBU)的有機酸鹽,具體言 之,DBU的酚鹽(產熱尖峰溫度88°C)、DBU的辛酸鹽(產熱 尖峰溫度99°C)、DBU的酞酸鹽(產熱尖峰溫度138°C)、DBU 的油酸鹽(產熱尖峰溫度1 l〇°C)等。此等感溫性胺基甲酸酯 化觸媒,可在考量所使用的胺基甲酸酯預聚物的軟化溫度 下,予以適當選擇。 又,交聯性熱熔型胺基甲酸酯樹脂,爲了使所得到的聚 胺基甲酸酯樹脂層成爲多孔質,視需要,以含有發泡劑爲 較佳。發泡劑的種類雖無特殊限定,但從容易控制氣孔的 均一性的觀點而言,以使用熱膨脹性微膠囊爲較佳。就此 等熱膨脹性微膠囊而言,可列舉如感溫性發泡劑,該感溫 性發泡劑在被內包的烴藉由加熱而膨脹的同時,形成外殼 的熱可塑性樹脂軟化而開始膨脹,藉由微膠囊的內壓與外 壓達到均衡所決定的膨脹倍率(以膨脹成 2倍以上爲較 佳),形成均一的獨立氣泡。關於此等熱膨脹性微膠囊的具 體例,可列舉如松本油脂製藥股份有限公司製的松本微球 體 F(Matsumoto microsphere F)系列等。 本實施態樣的交聯性熱熔型胺基甲酸酯樹脂,除配入上 述各種成分之外,視需要可配入顏料等著色劑、增黏劑、 抗氧化劑等添加劑。 此等交聯性熱熔型胺基甲酸酯樹脂的熔融黏度,用完全 黏度計測得的於100 °C的熔融黏度在500〜12000 mPa· s的 範圍,進一步在1 000~ 1 0000 mPa· s的範圍者,從塗布性 優異的觀點及容易調整膜厚的觀點言之爲較佳。 ] -27- 201105509 參照第4圖,說明使用上述交聯性熱熔型胺基甲酸酯樹 脂所實施的本實施態樣的聚胺基甲酸酯積層體的製造方 法。 第4圖係用於說明本實施態樣之聚胺基甲酸酯積層體的 製造方法的模式說明圖。在第4圖中,120係交聯性熱熔 型胺基甲酸酯樹脂,1 2 1係離型紙,1 22係胺基甲酸酯預聚 物,123係鏈延長劑,124係具有所規定的產熱尖峰溫度的 感溫性胺基甲酸酯化觸媒,1 25係熱膨脹性微膠囊。又, 在鏈延長劑123中,視需要可含有賦與所期望色調用的顏 料,或爲了達成所期望的物性,可在不損及本發明的效果 下含有多元醇。又,由供給胺基甲酸酯預聚物122用的第 1噴嘴136a、供給鏈延長劑123用的第2噴嘴13 6b、以及 混合室136c構成混合頭136。再者,136a、136b、136c分 別具備加熱器(在圖中省略)。又,103係複合纖維片材,138 係複合纖維片材103的送出捲軸,139a係接觸輥,139b係 逆轉輥’ 140係離型紙·塗膜積層體,141係送出輥,142 係加熱裝置,143係聚胺基甲酸酯積層體前驅體,144係聚 胺基甲酸酯積層體前驅體143的捲取捲軸,146係冷卻輥, PR係加壓輥。再者,在第4圖中,藉由接觸輥139a與逆 轉輥13 9b的組合構成逆轉輥塗布器。 在本實施態樣的聚胺基甲酸酯積層镡的製造方法中,首 先將熔融狀態的交聯性熱熔型胺基甲酸酯樹脂120塗布在 離型紙121的表面’形成離型紙-塗膜積層體140(塗膜形成 步驟)。 -28 - 201105509 就交聯性熱熔型胺基甲酸酯樹脂120的調製(熔融混合 行程)的方法而言,可列舉,例如,將胺基甲酸酯預聚物 122、鏈延長劑123、感溫性胺基甲酸酯化觸媒124及熱膨 脹性微膠囊125在感溫性胺基甲酸酯化觸媒124不會活化 的溫度下進行加熱熔融混合的方法。 就加熱熔融混合的方法而言,可採用下述方法:例如藉 由將胺基甲酸酯預聚物122在可成爲規定黏度的溫度下加 溫,另一方面,將鏈延長劑123、感溫性胺基甲酸酯化觸 媒124及熱膨脹性微膠囊125保溫後,將該等高壓噴射並 衝撞而進行混合之如第4圖所示的使用混合頭進行混合或 混合後攪拌的方法;或考單純地於具備加熱裝置的容器內 以熔融狀態進行攪拌混合的方法。 使用混合頭進行混合的方法,如第4圖所示,將胺基甲 酸酯預聚物122於加熱熔融狀態從第1噴嘴136a加壓噴射 而霧化並供給至混合室13 6c;另一方面,將感溫性胺基甲 酸酯化觸媒124及熱膨脹性微膠囊125與鏈延長劑123混 合,並從第2噴嘴136b加壓噴射而霧化並供給至混合室 136c。然後,在混合室136c內使已霧化的各成分衝撞而進 行混合。又,熱膨脹性微膠囊1 25係在以形成多孔性胺基 甲酸酯樹脂層爲目的之情況視需要配入的成分。在該情 況,爲了使藉由混合所調製的交聯性熱熔型胺基甲酸酯樹 脂120的溫度成爲比感溫性胺基甲酸酯化觸媒124的活化 溫度低的溫度,控制混合頭的第1噴嘴136a、第2噴嘴 13 6b、及混合室136c的溫度。藉由此種使用混合頭的混合 -29- 201105509 方法,可更均一地混合。 又,就單純地於熔融狀態進行攪拌的方法而言,可列舉 如以下的方法。 首先,於規定的容器內將胺基甲酸酯預聚物122於熔融 溫度加溫並貯藏。另一方面,在另一容器內,於感溫性胺 基甲酸酯化觸媒124不會活化且熱膨脹性微膠囊125不會 膨脹的溫度,保溫鏈延長劑123、感溫性胺基甲酸酯化觸 媒124及熱膨脹性微膠囊125。然後將胺基甲酸酯預聚物 122與包含感溫性胺基甲酸酯化觸媒124、熱膨脹性微膠囊 125及鏈延長劑123的混合物供給至具備加熱器及攪拌裝 置的容器。然後/在該容器內,將胺基甲酸酯預聚物122、 鏈延長劑123、感溫性胺基甲酸酯化觸媒124及熱膨脹性 微膠囊125,於感溫性胺基甲酸酯化觸媒124不會活化的 溫度進行加熱熔融混合。 在熔融混合步驟中,以比感溫性胺基甲酸酯化觸媒1 24 活化的溫度即產熱尖峰溫度低10〜30 °C範圍的溫度下,較佳 低10~2 5 eC範圍的溫度下,使胺基甲酸酯預聚物122、鏈延 長劑123、感溫性胺基甲酸酯化觸媒124及熱膨脹性微膠 囊125進行加熱熔融混合爲較佳。藉由在如此的溫度進行 加熱熔融混合,可抑制交聯反應的進行。藉此,可提高在 混合室136c內所調製的交聯性熱熔型胺基甲酸酯樹脂120 的塗工安定性9又,在配入熱膨脹性微膠囊125的情況, 以選擇在熔融混合步驟中可開始膨脹的熱膨脹性微膠囊爲 較佳。 -30- 201105509 又,另一方面,如第4圖所示,將離型紙121從片材送 出捲軸(在圖中省略)連續地送出,被連續送出的離型紙121 由沿著箭頭方向旋轉的送出輥141送出後,由捲取捲軸144 捲取,預先形成離型紙121的連續傳送帶。 然後,如第4圖所示,在朝向被連續地搬送的離型紙121 下,將在混合室13 6c中所調製的交聯性熱熔型胺基甲酸酯 樹脂120朝向在接觸輥139a與逆轉輥139b之間所形成的 間隙流下,並藉由逆轉輥139b以均一厚度塗布在離型紙 121表面,形成離型紙-塗膜積層體140。塗膜厚度係由在 逆轉輥1 3 9b與接觸輥1 3 9a之間所形成間隙的間隔來控制。 就離型紙121而言,除了表面平滑的離型紙之外,當以 賦與表面設計爲目的時,可使用具有壓紋模樣的離型紙。 再者,又,就將加熱熔融狀態的交聯性熱熔型胺基甲酸 酯樹脂120塗布於離型紙121表面的塗布機構的具體例而 言,可使用例如刀式塗布機、輥式塗布機、反向塗布機、 輥壓式塗布機(kiss roll coater)、噴霧式塗布機、T-模式塗 布機或缺角輪式塗布機(coma coater)等代替如第4圖所示 的逆轉輥式塗布機。又,在此等塗布機構中,從控制交聯 性熱熔型胺基甲酸酯樹脂120的熔融狀態的觀點而言,以 具備加熱機制的塗布機構爲較佳。 離型紙-塗膜積層體140的塗膜 132的厚度,在 10〜ΙΟΟΟμηι的範圍,進一步在50~500μιη的範圍者,從得 到在柔軟性及機械強度方面優異的聚胺基甲酸酯積層體的 觀點言之爲較佳。 -31- 201105509 接著,將交聯性熱熔型胺基甲酸酯樹脂120予 聯(熱處理步驟)。具體而言,藉由將離型紙·塗膜積 於交聯性熱熔型胺基甲酸酯樹脂120中所含的感 甲酸酯化觸媒124會活化的溫度進行熱處理,可 塗膜132的交聯性熱熔型胺基甲酸酯樹脂120的 此,使塗膜132的黏度上升某一程度。在交聯性 基甲酸酯樹脂120中含有熱膨脹性微膠囊125等 情況,以在該熱處理步驟中使其發泡爲較佳。 就熱處理溫度而言,塗膜132的溫度,只要成爲 胺基甲酸酯化觸媒124的產熱尖峰溫度高的溫度 使硬化形成的聚胺基甲酸酯樹脂層變差的溫度, 限定。具體而言,以在比感溫性胺基甲酸酯化觸: 產熱尖峰溫度高〇〜30 °C的溫度範圍,進一步比產 度高0〜15 °C的溫度範圍進行熱處理爲較佳。 又,就熱處理時間的具體例,例如爲約1 5秒〜 進一步爲約30秒~5分鐘者,從在不使生產性降 促進交聯反應的觀點言之爲較佳。再者,在本實施 雖將熱處理步驟設定在離型紙-塗膜積層體形成之 可將熱處理步驟可設定在即將塗布交聯性熱熔型 酯樹脂之前,或設定在從塗布前開始部分交聯等 中〇 熱處理,例如,可用如熱風加熱乾燥機的加熱 來進行。 接著,在可使離型紙-塗膜積層體140的經部 以部分交 層體140 溫性胺基 促進形成 交聯。藉 熱熔型胺 發泡劑的 比感溫性 ,且不會 將無特殊 媒124的 熱尖峰溫 1 〇分鐘, 低下充份 丨態樣中, 後,但也 胺基甲酸 任一步驟 裝置142 分交聯塗 -32- 201105509 膜132的-*部分侵入上述複合纖維片材表層的多個空 隙中的壓力下,將塗膜132積層於複合纖維片材103的表 面(積層步驟)。 離型紙-塗膜積層體140與複合纖維片材103的貼合’ 具體而言,如第4圖所示’將複合纖維片材103從送出捲 軸138送出,藉由加壓輥PR使離型紙-塗膜積層體140表 面的塗膜1 3 2以雖然部分交聯但有些軟化的狀態貼合。 又,貼合之際,離型紙-塗膜積層體140與複合纖維片 材103貼合時所賦與的壓力,視輥壓時塗膜132的黏度等 而適當的設定。該壓力,可藉由調整由例如2個輥組合而 成的加壓輥的輥間間隙的間隔而調整。2個輥間間隙的間 隔雖係視離型紙-塗膜積層體140與複合纖維片材103的總 厚度等而調整,但以採用,例如,如以下的間隙間隔爲較 佳。2個輥間間隙的間隔以設定成被輥壓前的離型紙-塗膜 積層體140與複合纖維片材1〇3的總厚度的約70〜99 %,進 一步約80〜97%的厚度爲較佳。 再者’在本實施態樣中,雖係以「進行使交聯性熱熔型 胺基甲酸酯樹脂120部分交聯的熱處理步驟之後,進行離 型紙-塗膜積層體140與複合纖維片材103貼合的積層步驟 的製造方法」爲代表來說明,但上述積層步驟可在熱處理 步驟之前進行。 將如此得到的離型紙-塗膜積層體i 40與複合纖維片材 103的貼合體,即聚胺基甲酸酯積層體前驅體143,使用冷 卻輥1 4 6進行強制冷卻(冷卻步驟)。在冷卻步驟中,交聯 -33- 201105509 性熱熔型胺基甲酸酯樹脂120固化或增黏。 在冷卻步驟之後,藉由捲取卷軸144進行捲取。然後 取的聚胺基甲酸酯積層體前驅體143 ’視需要藉由進行 定時間的熟成,進一步進行聚胺基甲酸酯樹脂層的交聯 應而高分子量化、硬化。又’使用濕分硬化性熱熔型胺 甲酸酯樹脂作爲交聯性熱熔型胺基甲酸酯樹脂時,進行 分硬化。 就聚胺基甲酸酯積層體前驅體1 43的熟成條件而言, 在溫度20~40°C,相對濕度50〜80%的條件下,熟成約20〜 小時爲較佳。藉此,可以得到機械強度及耐水性優異的 胺基甲酸酯積層體。 熟成後,藉由將離型紙121從聚胺基甲酸酯積層體前 體1 43剝離,而得到聚胺基甲酸酯積層體。 又,對於所得到的聚胺基甲酸酯積層體,爲了賦與表 設計性,可進一步藉由公知慣用的方法,於表層部塗覆 劑系、水系、乳液系或無溶劑系的胺基甲酸酯樹脂或丙 酸系樹脂而設計表皮層,或者適當地進行拋光加工或壓 加工等後加工。 如此所得到的聚胺基甲酸酯積層體較佳以皮革樣片 用於皮包、鞋類、衣類、家具等方面。 [實施態樣3] 說明在實施態樣3中,藉由上述實施態樣2的聚胺基 @醋積層體的製造方法所得到的聚胺基甲酸酯積層體。 據本實施態樣3的聚胺基甲酸酯積層體,較佳係纖維片 捲 規 反 基 濕 以 50 聚 驅 面 溶 烯 紋 材 甲 根 材 -34- 201105509 與高分子彈性體經含浸一體化而在表層具有多個空隙的複 合纖維片材,與積層於複合纖維片材上的聚胺基甲酸酯樹 脂層的積層體,該積層體具有由該聚胺基甲酸酯樹脂層的 一部分侵入複合纖維片材表層的空隙而形成的具有10 μηι 以上厚度的混在層。 參照圖式,詳細地說明根據本實施態樣的聚胺基甲酸酯 積層體。第3圖爲聚胺基甲酸酯積層體Π0的模式剖面圖, 其中101係纖維片材,102係多孔質聚胺基甲酸酯(高分子 彈性體),藉由多孔質聚胺基甲酸酯102含浸於纖維片材 101中並一體化而形成複合纖維片材103。又,104係聚胺 基甲酸酯樹脂層,藉由聚胺基甲酸酯樹脂層104的下層侵 入複合纖維片材103上層的空隙106進行混在化,而形成 混在層1 05。 就纖維片材1 〇 1的具體例而言,可列舉,例如,不織布 或織布、編織布等皮革樣片材一般所使用的纖維基材。此 等之中,從可得到具有柔軟手感及優異機械強度的複合纖 維片材的觀點而言,較佳使用由極細纖維或極細纖維束所 形成的不織布。就此等不織布而言,沒有特殊限定,可使 用先前已知的短纖維網、藉由紐黏(spunbond)及熔噴法等 公知的方法所得到的網。又,視需要,可爲於形成網後, 將複數片網重疊並藉由針刺處理等使其絡合而得到者。就 形成不織布的纖維的具體例而言,例如可列舉聚胺基甲酸 酯系纖維、聚酞酸乙二酯(PET)纖維等聚酯系纖維、聚醯月安 系纖維 '聚丙烯酸系纖維、聚烯烴系纖維、聚乙烯醇系纖 201105509 維等。形成不織布的纖維,係以纖維徑爲0.1〜50μιη,進一 步 1〜15μιη的細纖維或極細纖維爲較佳。此種細纖維或極 細纖維,由於剛性低、柔軟,所以從得到具有柔軟手感的 複合纖維片材的觀點言之爲較佳。又,就纖維的剖面形狀 而言,除了通常的圓形或橢圓形剖面之外,可使用星型者; 又,從得到兼具輕量性及機械強度的複合纖維片材的觀點 而言,可使用中空或Rencon型的多空中空形狀者。 就不織布的單位面積重量而言,在 50〜2000g/m2的範 圍,進一步在100〜l〇〇〇g/m2的範圍者,從得到具有柔軟手 感的複.合纖維片材的觀點言之爲較佳。 又,使作爲高分子彈性體的多孔質聚胺基甲酸酯102含 浸於本實施態樣的纖維片材101。再者,就高分子彈性體 而言,不限於多孔質者。又,可使用丙烯腈-丁二烯共聚物、 苯乙烯-丁二烯共聚物、丙烯酸酯或甲基丙烯酸酯的共聚 物、聚矽氧橡膠等代替聚胺基甲酸酯。從得到具有良好手 感的觀點而言,以聚胺基甲酸酯爲特佳。 就多孔質聚胺基甲酸酯102的具體例而言,可列舉溶劑 系、水系、乳液系或無溶劑系的胺基甲酸酯樹脂凝固或固 化所得到的多孔質聚胺基甲酸酯樹脂。藉由將多孔質聚胺 基甲酸酯102含浸於纖維片材101進行一體化所形成的複 合纖維片材103,多孔質聚胺基甲酸酯102被含浸於構成 纖維片材101的纖維或纖維束間所形成的空隙中,而且具 有多個未含浸多孔質聚胺基甲酸酯102的空隙。而且,如 下述,聚胺基甲酸酯樹脂層104的下層侵入存在於表層的 -36- 201105509 多個空隙106,而形成混在層105。 複合纖維片材 1〇3的厚度雖無特殊限定,但在 100~2000μιη的範圍,進一步在200〜1500μιη的範圔者,從 手感柔軟且難以變成橡膠樣手感的觀點言之爲較佳。 又,於形成混在層105之前,複合纖維片材103的空隙 率爲20~85體積%,以35~80體積%爲較佳,以40〜80體積 %爲特佳。此等空隙率,從所得到的聚胺基甲酸酯積層體 的折曲皺褶變得特別細、手感平衡性優異及剝離強力優異 的觀點言之爲較佳》再者,空隙率可由下式求出。 空隙率(%) = [1-複合纖維片材的密度+ {構成複合纖維片 材的纖維的比重χ(纖維在複合纖維片材中所占的質量比 率)+構成複合纖維片材的高分子彈性體的比重χ(高分子彈 性體在複合纖維片材中所占的質量比率)Π χ 100 另一方面,就聚胺基甲酸酯樹脂層104的具體例而言, 可列舉使熱熔型胺基甲酸酯樹脂、熱可塑性聚胺基甲酸酯 樹脂、溶劑系胺基甲酸酯樹脂、水系胺基甲酸酯樹脂、或 乳液系胺基甲酸酯樹脂凝固或固化所得到的聚胺基甲酸酯 樹脂所構成的層。此等之中,從工業生產注優異的觀點而 言,以使用來自熱熔型胺基甲酸酯樹脂的聚胺基甲酸酯樹 脂層爲特佳。 就含有混在層105之厚度分的聚胺基甲酸酯樹脂層1〇4 的厚度而言,在30〜ΙΟΟΟμιη的範圍,進一步在100〜8 00 , 的範圍,尤其在150~700μηι的範圍者,從得到柔軟性及機 械強度優異的聚胺基甲酸酯積層體的觀點言之爲較佳。 -37- 201105509 聚胺基甲酸酯樹脂層1 04係以多孔質樹脂層 在聚胺基甲酸酯樹脂層104中所形成的多孔質 的平均直徑而言,爲10〜500μιη,進一步爲20~ 從加工安定性、樹脂層的平滑性及表面接觸感 言之爲較佳。又,就聚胺基甲酸酯樹脂層104 言,爲10〜90體積%,進一步爲2 0~ 80體積%,尤 體積%者,從表面折曲性、手感或表面接觸感 度、物性優異的觀點言之爲較佳。 如第3圖所示,聚胺基甲酸酯積層體110含 片材103、積層於複合纖維片材103表面的聚 樹脂層104,且具有藉由聚胺基甲酸酯樹脂層 分侵入及充塡於來自複合纖維片材103表面的 形成的混在層105。此等混在層105係藉由聚 樹脂層104的一部分侵入複合纖維片材103的赛 而形成的具有10 μιη以上厚度的層,亦爲聚胺 脂層104的一部分與複合纖維片材103的一部 狀態混在而形成的具有3次元厚度的層。又, 甲酸酯樹脂層104侵入複合纖維片材103的空 在距聚胺基甲酸酯積層體1 1 〇表層的深處部分 105的底面107。並且,藉由構成胺基甲酸酯樹 聚胺基甲酸酯侵入並充塡於複合纖維片材103 成複合纖維片材103的高分子彈性體與纖維片 狀態。由於藉此聚胺基甲酸酯樹脂層與複合纖 面不存在於表層附近,所以在胺基甲酸酯積層 爲較佳。就 造成的空隙 *2 0 0 μιη 者, 優異的觀點 的空隙率而 ;其爲30〜70 、折皺的細 有複合纖維 胺基甲酸酯 104的一部 空隙1 〇 6而 胺基甲酸酯 >個空隙106 基甲酸酯樹 分以非相溶 藉由聚胺基 隙106中, 存在混在層 脂層1 〇 4的 的空隙,構 材成爲混在 維片材的界 體110的表 -38- 201105509 層難以表現出界面的影響。 就混在層105的厚度而言,爲10~800μηι,進一步爲 3 0~5 00μιη者,從發揮高固定效果的觀點言之爲較佳。若混 在層105的厚度過薄,固定效果變弱,無法使胺基甲酸酯 樹脂層104與複合纖維片材103的密著力充分提高,折皺 感變差,折皺有殘留的傾向;若混在層105的厚度過厚, 手感有變硬的傾向。 又,相對於聚胺基甲酸酯樹脂層1 04全體的總厚度,混 在層105厚度的比率爲10〜80 %,進一步爲30~70 %者,從 發揮高固定效果的觀點言之爲較佳。混在層105的厚度的 比率若過低,則聚胺基甲酸酯樹脂層1 04與複合纖維片材 103的密著力有無法充分提高的傾向,而且混在層的界面 107有靠近表層的傾向。混在層105的厚度的比率若過高, 有手感硬成爲橡膠樣的傾向。 再者,在混在層105中,多孔質聚胺基甲酸酯102與聚 胺基甲酸酯樹脂層1 04實質上以非相溶的狀態存在。藉由 形成此等混在層105,可發揮較高的固定效果。又,由於 構成多孔質胺基甲酸酯102中所形成的多孔構造的間隔壁 維持其原狀,所以成爲混在層105的機械特性優異者。 對於聚胺基甲酸酯積層體110,爲了進一步藉由公知慣 用的方法賦與表面設計性,藉由於其表層塗覆溶劑系、水 系 '乳液系或無溶劑系的聚胺基甲酸酯樹脂或丙烯酸系樹 脂而積層表皮層,或者適當地進行拋光加工或壓紋加工等 後加工。 -39- 201105509 就聚胺基甲酸酯積層體110全體的厚度而言,在 100〜3000μηι的範圍,進一步在200〜2000μιη的範圍,尤其 在5 00〜15 ΟΟμηι的範圍者,從得到類似皮革的手感的觀點 言之爲較佳。 如此所得到的聚胺基甲酸酯積層體較佳以類似天然皮 革的皮革樣片材作爲鞋類、衣類、皮包、家具等的表面原 料使用。 [實施例] 以下,雖然藉由實施例具體地說明本發明,但本發明在 任何方面不限於實施例。 首先,說明相當於實施態樣1的實施例1-1〜1-5。 [在實施例1-1~1-5中所使用的原料] (胺基甲酸酯預聚物)18-201105509 Further, by previously forming a layer composed of a well-known water-dispersible polymer elastomer or a solvent-free hardening polymer elastomer as a surface layer, a polyurethane can be produced from a completely solvent-free step. It is better from the viewpoint of the laminate. Further, as a specific example of the coating means for applying the urethane resin composition in a heated molten state to the surface of the release paper 1, for example, a knife coater, a roll coater, or a reverse coater can be used. Instead of the reverse roll coater shown in Fig. 1, a kiss roll coater, a spray coater, a T-mode coater, or a coma coater. Further, in such a coating means, from the viewpoint of controlling the melt viscosity of the urethane resin composition, a coating means having a heating mechanism is preferable. The thickness of the urethane resin layer 10 to be formed is 'in the range of 5 to 800 μm, and further in the range of 10 to 500 μm' to obtain a polyurethane excellent in flexibility and mechanical strength. The view of the laminate is preferred. Then, by bonding the substrate sheet 7 to the surface of the urethane resin layer 1〇 formed on the surface of the release paper 1, a urethane formed on the surface of the substrate sheet 7 can be formed. Polyurethane laminate 13 of resin layer 10. The bonding of the urethane resin layer 10 and the substrate sheet 7 is specifically 'for example, as shown in Fig. 1, the substrate sheet 7 is fed out from the delivery reel 8' by the pressure roller PR and The urethane resin layer 10 in a molten or softened state is attached. In the specific example of the substrate sheet 7 used in the present embodiment, a fiber substrate used for a general leather-like sheet such as a non-woven fabric, a woven fabric, or a woven fabric can be cited, for example, -19-201105509; a composite fiber base obtained by impregnating a fiber substrate with a solvent system, an aqueous system, an emulsion system or a solventless polyurethane resin, an acrylic resin, and a butadiene resin (SBR, NBR, MBR). Materials and so on. Among these, 'from the viewpoint of obtaining a polyurethane laminate having a soft hand and superior mechanical strength, the use of impregnating a polyurethane with a non-woven fabric formed of ultrafine fibers is used. The composite fiber substrate is particularly preferred. The non-woven fabric is not particularly limited, and a previously known short fiber web, a web obtained by a known method such as a spunbond and a melt blow method can be used. Further, if necessary, it may be obtained by laminating a plurality of sheets after forming a net and by complexing them by a needle punching treatment or the like. Specific examples of the fibers forming the nonwoven fabric include, for example, polyurethane fibers, polyethylene terephthalate (PET) fibers, various polyamide fibers, polyacryl fibers, and various polyolefin fibers. , polyvinyl alcohol-based fibers, and the like. The non-woven fabric is formed with a fiber diameter of 0. 1 to 50 μϊη, further 1 to 15 μm of ultrafine fibers are preferred. Since such an ultrafine fiber has low rigidity and is soft, it is preferable from the viewpoint of obtaining a polyurethane laminate having a soft hand. The weight per unit area of the non-woven fabric is in the range of 50 to 2000 g/m 2 , and in the range of 10 0 to 1000 g/m 2 , from the viewpoint of obtaining a polyurethane laminate having a soft hand. Preferably. Next, the polyurethane laminate 13 having the urethane resin layer 10 formed on the surface of the substrate sheet 7 is subjected to a heat generating peak temperature of the temperature sensitive urethane catalyst (C). The above temperature is subjected to heat treatment (heat treatment step). The urethane resin layer 10 thus formed on the surface of the release paper 1 is heat-treated at a temperature higher than the heat-generating peak temperature of the -20-201105509 temperature-based urethane catalyst (c). The crosslinking of the urethane resin layer 10 formed by coating is promoted. In terms of the heat treatment temperature, the temperature of the urethane resin layer 10 is higher than the temperature at which the temperature of the temperature sensitive urethane catalyst (C) is high, and hardening is not caused. The temperature at which the formed polyurethane layer is deteriorated is not particularly limited. Specifically, it is further higher than the heat-generating peak temperature by 0 to 15 ° C in a temperature range of 0 to 30 ° C higher than the heat-producing peak temperature of the temperature sensitive urethane-based catalyst (C). It is preferred to carry out heat treatment in the temperature range. In addition, as a specific example of the heat treatment time, for example, it is about 15 seconds to 10 minutes, and further, about 30 seconds to 5 minutes, from the viewpoint of sufficiently promoting the crosslinking reaction without lowering the productivity. It is better. The heat treatment can be carried out, for example, by heating means 12 such as a hot air heating dryer. Then, the bonded body of the urethane resin layer 1 被 coated with the release paper 1 and the substrate sheet 7 thus obtained is forcibly cooled by the cooling roll 16 and then wound up by the take-up reel 14. Then, by subjecting the wound polyurethane laminate 13 to a predetermined period of time, the crosslinking reaction and the high molecular weight of the urethane resin layer 10 can be performed. The ripening conditions of the polyurethane laminate 13 are preferably 20 to 50 hours at a temperature of 20 to 40 ° C and a relative humidity of 50 to 80%. Thereby, a polyurethane laminate which is excellent in mechanical strength and water resistance can be obtained. The cross-sectional pattern of the polyurethane laminate 13 obtained by the above steps is shown in Fig. 2 . The polyurethane laminate 13 shown in Fig. 2 is completed by peeling off the release paper 1 coated on the surface. In these polyurethane laminates 13, uniform independent bubbles 21 can be formed in the crosslinked polyurethane layer 20. Further, in the present embodiment, the urethane resin layer 10 is formed on the surface of the release paper 1 which is continuously fed out by the "continuous conveyor belt of the release paper 1 previously formed", and the amine group formed thereon is formed. The step of bonding the base material sheet 7 on the surface of the acid ester resin layer 10 is generally described, but the order in which the release paper 1 and the base material sheet 7 are bonded to each other is exchanged, and the substrate sheet 7 is formed in advance. The continuous conveyor belt 'forms the urethane resin layer 10 on the surface of the substrate sheet 7 continuously fed, and bonds the release paper 1 to the surface of the formed urethane resin layer 10. Further, in the present embodiment, the urethane resin layer 10 is formed on the surface of the release paper 1, and the substrate sheet is bonded to the surface of the formed urethane resin layer 10. The step of performing the heat treatment after 7 is described as a representative, but the heat treatment may be performed before the base material sheet 7 is bonded to the urethane resin layer 10. Further, in order to impart surface design property, adjust touch feeling, or apply color correction to the obtained polyurethane laminate, it is possible to further apply a solvent system or a water system to the surface layer portion by a conventionally known method. The emulsion-based or solvent-free polyurethane resin or acrylic resin is suitably subjected to post-processing such as polishing or embossing. The polyurethane laminate thus obtained is preferably used as a surface material of footwear, clothing, leather bags, furniture, and the like in a leather-like sheet. -22-201105509 [Embodiment 2] The method for producing a polyurethane laminate of the second embodiment is preferably provided by coating a crosslinkable hot-melt urethane resin in a molten state. a coating film forming step of forming a release paper-coated film laminate on the surface of the release paper; a heat treatment step of partially crosslinking the crosslinkable hot melt type urethane resin; and laminating the coating film under pressure under pressure a laminating step on the surface of the fiber sheet, wherein the composite fiber sheet-based fibrous sheet and the polymeric elastomer are impregnated and integrated to have a plurality of voids in the surface layer, and the pressure system can laminate the release paper-coating film A part of the coating film of the body intrudes into the void of the composite fiber sheet; and a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin. In the method for producing a polyurethane laminate according to the second embodiment, the coating film forming step corresponds to the resin layer forming step in the manufacturing method of the first embodiment; The heat treatment step in 2 is equivalent to the heat treatment step in the embodiment 1. At the same time, in the manufacturing method of the second embodiment, it is preferable to newly have the above specific lamination step and cooling step. Further, in the melt mixing step in the above embodiment 1, in the second embodiment, it is preferred that the melt viscosity at 100 ° C is 100 ° mPa. A hot-melt urethane prepolymer (A), a chain extender (B) having a temperature of 0 or less and a temperature-sensitive urethane esterification exhibiting a prescribed heat-protection temperature by differential scanning calorimetry The catalyst (C) is heated and melt-mixed at a temperature lower than the heat-generating peak temperature by a temperature of from 1 Torr to 30 ° C to form a melt-mixing step of the above-mentioned crosslinkable hot-melt urethane resin. Further, in the second embodiment, the -23-201105509 resin layer forming step 'in the second embodiment is preferably: applying the above-mentioned crosslinkable hot-melt urethane resin in a molten state to A coating film forming step of forming a release paper-coating laminate by leaving the surface of the paper. Further, in the heat treatment step in the first embodiment, in the second embodiment, it is preferable that the release paper-coating layer laminate is heat-treated at a temperature equal to or higher than the heat-generating peak temperature to cause the coating. A heat treatment step in which the membrane portion is crosslinked. An example of a preferred method for producing the polyurethane laminate of the second embodiment will be described in detail with reference to the drawings. First, the crosslinkable hot melt type urethane resin used in the present embodiment will be described. The crosslinkable hot-melt urethane resin used in the present embodiment contains a urethane prepolymer having an isocyanate group obtained by reacting a polyhydric alcohol with a polyisocyanate, and if necessary A composition comprising a chain extender and a catalyst for curing and crosslinking the urethane prepolymer, and a solvent-free polyurethane forming component which is semi-solid or solid at normal temperature . Such a crosslinkable hot-melt urethane resin is a semi-solid property which is solid at room temperature to have a viscosity which is difficult to apply, but is a coatable viscosity by heating, and is cooled by application after application. Resolidify or thicken. Specific examples of the polyhydric alcohol include the polyols as described in the above embodiment 1. These may be used alone or in combination of two or more. Further, as a specific example of the polyisocyanate, a polyisocyanate as described in the above embodiment 1 can be mentioned. These may be used alone or in combination of two or more. • 24 - 201105509 The manufacture of urethane prepolymers, although usually carried out without solvent, can also be produced in organic solvents. When it is produced in an organic solvent, an organic solvent such as ethyl acetate, n-butyl acetate, methyl ethyl ketone or toluene may be used. However, it is necessary to remove the organic solvent by heating under reduced pressure during or after the reaction. Regarding the reaction ratio of the polyol to the polyisocyanate, the equivalent ratio of the isocyanato group in the polyisocyanate to the hydroxyl group in the polyol [NCO/OH] is as follows. It is better in the range of 1~5, in ι. It is better in the range of 2~3. In terms of the number average molecular weight of the urethane prepolymer, in the range of 500 to 30,000, and further in the range of 1 〇〇〇 to 1 〇, 〇〇〇, the melt viscosity can be easily adjusted. Further, it is preferable to form a polyurethane resin layer having excellent flexibility, mechanical strength, abrasion resistance, and hydrolysis resistance. As a commercial item of such a urethane prepolymer, the trade name of the DIC Corporation, Task Force KMM-100, KMM-100LV, Tyforce NH-122A, NH-200, NH-300, H-1041, Takeda Melt SC-13, SL-01, SL-02, SL-03 'SL-04, etc., manufactured by Takeda Pharmaceutical Co., Ltd. The chain extender is a compound having two or more active hydrogen-containing functional groups such as a hydroxyl group and an amine group reactive with an isocyanate group of the urethane prepolymer. The urethane prepolymer promotes the reaction of an isocyanato group in the urethane prepolymer with a hydroxyl group or an amine group in the chain extender described below by a urethane catalyst. And high molecular weight. Further, the polymerized polymer is further reacted with an isocyanate group present in the system to carry out crosslinking reaction. Specific examples of the chain extender include, in addition to the above various polyols, polyamines and the like described in the above embodiment 1. These may be used singly or in combination of two or more kinds. Among the crosslinkable hot-melt urethane resins, in particular, a moisture-hardening hot-melt type amine group having hot meltability and moisture hardenability. A formate resin is preferred. Further, the moisture (moisture) hardenability of the moisture-hardening hot-melt urethane resin means the isocyanate terminal and the moisture (water) in the urethane prepolymer. The reaction forms a urethane bond or a urea bond and hardens. Further, the formed urethane bond or urea bond is subjected to a crosslinking reaction by further reacting with an isocyanate group present in the system. By such a hardening reaction and a crosslinking reaction, the urethane prepolymer can be formed into a polyurethane resin excellent in mechanical properties and water resistance by high molecular weight. The crosslinkable hot-melt urethane resin of the present embodiment is preferably a urethane-containing catalyst, particularly a temperature-sensitive urethane catalyzed catalyst. The temperature-sensitive urethane-based catalyst exhibits a prescribed scanning calorimeter under a nitrogen blanket at a temperature elevation rate of 10 ° C / 1 minute in the range of 〇 ° C to 200 ° C. A urethane catalyst that produces a hot peak temperature. In terms of the heat-generating peak temperature, in the range of 50 to 160 ° C and further in the range of 80 to 140 ° C, it is superior from the viewpoint of excellent treatment efficiency and stability in the urethane formation. good. Specific examples of such a temperature sensitive urethanization catalyst include -26-201105509 1,8-diazabicyclo(5,4,0)-undecene-7 (DBU). Organic acid salt, specifically, DBU phenate (heating peak temperature 88 ° C), DBU octanoate (heating peak temperature 99 ° C), DBU citrate (heating peak temperature 138 ° C) , DBU oleate (heating peak temperature 1 l 〇 ° C) and so on. These temperature sensitive urethane catalysts can be appropriately selected in consideration of the softening temperature of the urethane prepolymer to be used. Further, in order to make the obtained polyurethane resin layer porous, the crosslinkable hot-melt urethane resin preferably contains a foaming agent. The type of the foaming agent is not particularly limited, but from the viewpoint of easily controlling the uniformity of the pores, it is preferred to use a heat-expandable microcapsule. Examples of the heat-expandable microcapsules include a temperature-sensitive foaming agent which is expanded by heating while being encapsulated, and the thermoplastic resin forming the outer shell is softened and starts to swell. The expansion ratio determined by the internal pressure and the external pressure of the capsule is equal to or more than 2 times the expansion, and a uniform independent bubble is formed. As a specific example of such a heat-expandable microcapsule, a Matsumoto microsphere F series manufactured by Matsumoto Oil & Fat Pharmaceutical Co., Ltd., and the like can be mentioned. In addition to the above various components, the crosslinkable hot-melt urethane resin of the present embodiment may be formulated with an additive such as a coloring agent such as a pigment, a thickener, or an antioxidant. The melt viscosity of the cross-linking hot-melt urethane resin is 50 to 12000 mPa·s in the range of 500 to 12,000 mPa·s, and further in the range of 1 000 to 1 0000 mPa, measured by a complete viscosity meter. The range of s is preferable from the viewpoint of excellent coatability and ease of film thickness adjustment. -27-201105509 A method for producing the polyurethane laminate of the present embodiment which is carried out using the above crosslinkable hot melt type urethane resin will be described with reference to Fig. 4 . Fig. 4 is a schematic explanatory view for explaining a method of producing a polyurethane laminate of the present embodiment. In Fig. 4, 120 series crosslinkable hot melt urethane resin, 1 2 1 release paper, 1 22 urethane prepolymer, 123 series chain extender, and 124 series have A temperature sensitive urethane-based catalyst having a predetermined heat-generating peak temperature, and a 125-degree heat-expandable microcapsule. Further, the chain extender 123 may contain a pigment for imparting a desired color tone as needed, or may contain a polyol without impairing the effects of the present invention in order to achieve desired physical properties. Further, the first nozzle 136a for supplying the urethane prepolymer 122, the second nozzle 136b for supplying the chain extender 123, and the mixing chamber 136c constitute the mixing head 136. Further, 136a, 136b, and 136c are provided with heaters (omitted from the drawing). Further, a 103-series composite fiber sheet, a feed reel of the 138-series composite fiber sheet 103, a 139a-type contact roll, a 139b-type reverse roll '140-series release paper/coating layer laminate, a 141-series transfer roll, and a 142-series heating device. 143 series polyurethane laminate precursor, 144 series polyurethane laminate precursor 143 winding reel, 146 series cooling roll, PR type pressure roll. Further, in Fig. 4, a reverse roller coater is constructed by a combination of the contact roller 139a and the reverse roller 13 9b. In the method for producing a polyurethane laminate of the present embodiment, first, a cross-linking hot-melt urethane resin 120 in a molten state is applied to the surface of the release paper 121 to form a release paper-coated. Membrane layer body 140 (coating film forming step). -28 - 201105509 For the method of preparing (melt mixing stroke) of the crosslinkable hot-melt urethane resin 120, for example, a urethane prepolymer 122 and a chain extender 123 may be mentioned. The temperature-sensitive urethane-forming catalyst 124 and the heat-expandable microcapsules 125 are heated and melt-mixed at a temperature at which the temperature-sensitive urethanization catalyst 124 is not activated. In the method of heating and melt mixing, a method may be employed, for example, by heating the urethane prepolymer 122 at a temperature at which a predetermined viscosity can be obtained, and on the other hand, the chain extender 123 and the feeling After the warm urethane catalyst 124 and the heat-expandable microcapsule 125 are kept warm, the high-pressure jet is sprayed and collided and mixed, and the method of mixing or mixing after mixing using a mixing head as shown in FIG. 4; Or a method of stirring and mixing in a molten state in a container having a heating device. A method of mixing using a mixing head, as shown in Fig. 4, the urethane prepolymer 122 is sprayed by pressure from the first nozzle 136a in a heated molten state to be atomized and supplied to the mixing chamber 13 6c; In the meantime, the temperature-sensitive urethane-forming catalyst 124 and the heat-expandable microcapsules 125 are mixed with the chain extender 123, and are sprayed by the second nozzle 136b to be atomized and supplied to the mixing chamber 136c. Then, the atomized components are collided and mixed in the mixing chamber 136c. In addition, the heat-expandable microcapsules 155 are components to be blended as needed for the purpose of forming a porous urethane resin layer. In this case, in order to make the temperature of the crosslinkable hot-melt urethane resin 120 prepared by mixing lower than the activation temperature of the temperature sensitive urethane catalyst 124, the mixing is controlled. The temperature of the first nozzle 136a, the second nozzle 136b, and the mixing chamber 136c of the head. By using the mixing method of the mixing head -29-201105509, it is possible to mix more uniformly. Further, as a method of stirring in a molten state, the following method can be mentioned. First, the urethane prepolymer 122 is heated and stored at a melting temperature in a prescribed container. On the other hand, in another container, the temperature-sensitive urethane catalyst 124 does not activate and the heat-expandable microcapsules 125 do not swell, the chain extender 123, the temperature-sensitive amine group A The acid-catalyzed catalyst 124 and the heat-expandable microcapsules 125. Then, the urethane prepolymer 122 and a mixture containing the temperature sensitive urethanization catalyst 124, the heat-expandable microcapsules 125, and the chain extender 123 are supplied to a container equipped with a heater and a stirring device. Then, in the container, the urethane prepolymer 122, the chain extender 123, the temperature sensitive urethane catalyst 124 and the heat-expandable microcapsule 125 are used in the temperature sensitive uric acid. The esterification catalyst 124 is heated and melted at a temperature at which it is not activated. In the melt mixing step, at a temperature lower than the temperature at which the temperature sensitive urethane catalyst 1 24 is activated, that is, the heat generating peak temperature is 10 to 30 ° C, preferably in the range of 10 to 25 eC. At a temperature, it is preferred to heat-melt and mix the urethane prepolymer 122, the chain extender 123, the temperature-sensitive urethane-forming catalyst 124, and the heat-expandable microcapsules 125. By performing heat-melting and mixing at such a temperature, the progress of the crosslinking reaction can be suppressed. Thereby, the coat stability of the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 136c can be improved, and in the case where the heat-expandable microcapsules 125 are blended, it is selected to be melt-mixed. The heat-expandable microcapsules which can be expanded in the step are preferred. -30-201105509 On the other hand, as shown in Fig. 4, the release paper 121 is continuously fed from a sheet feeding reel (omitted in the drawing), and the continuously fed release sheet 121 is rotated in the direction of the arrow. After the delivery roller 141 is sent out, it is taken up by the take-up reel 144, and a continuous conveyance belt of the release paper 121 is formed in advance. Then, as shown in Fig. 4, the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 13 6c is directed toward the contact roller 139a and toward the release paper 121 that is continuously conveyed. The gap formed between the reverse rollers 139b flows down, and is applied to the surface of the release paper 121 with a uniform thickness by the reverse roller 139b to form a release paper-coated film laminate 140. The thickness of the coating film is controlled by the interval between the reverse roller 139b and the contact roller 139a. As for the release paper 121, in addition to the surface-smooth release paper, a release paper having an embossed pattern can be used for the purpose of imparting a surface design. In addition, as a specific example of the coating means for applying the cross-linking hot-melt urethane resin 120 in a heated molten state to the surface of the release paper 121, for example, a knife coater or a roll coating can be used. Instead of the reverse roller as shown in Fig. 4, a machine, a reverse coater, a kiss roll coater, a spray coater, a T-mode coater or a coma coater Coating machine. Further, in the coating means, it is preferable to use a coating means having a heating mechanism from the viewpoint of controlling the molten state of the crosslinkable hot-melt urethane resin 120. The thickness of the coating film 132 of the release paper-coating layered product 140 is in the range of 10 to ΙΟΟΟμηι, and further in the range of 50 to 500 μm, a polyurethane laminate which is excellent in flexibility and mechanical strength is obtained. The point of view is better. -31-201105509 Next, the crosslinkable hot-melt urethane resin 120 is preliminarily (heat treatment step). Specifically, the coating film 132 can be heat-treated by heat-treating the temperature at which the release paper/coating film is accumulated in the crosslinkable hot-melt urethane resin 120. As a result of the crosslinkable hot-melt urethane resin 120, the viscosity of the coating film 132 is raised to some extent. In the case where the crosslinkable urethane resin 120 contains the heat-expandable microcapsules 125 and the like, it is preferred to foam them in the heat treatment step. In the heat treatment temperature, the temperature of the coating film 132 is limited as long as the temperature at which the heat-generating peak temperature of the urethane-based catalyst 124 is high deteriorates the cured polyurethane resin layer. Specifically, it is preferred to heat-treat at a temperature range of 0 to 15 ° C higher than the temperature of the temperature-sensitive urethane touch: the temperature of the heat-producing peak is higher than -30 ° C. . Further, as a specific example of the heat treatment time, for example, about 15 seconds to further 30 seconds to 5 minutes, it is preferable from the viewpoint of not promoting the productivity and promoting the crosslinking reaction. Further, in the present embodiment, although the heat treatment step is set in the release paper-coating film laminate, the heat treatment step may be set immediately before the application of the crosslinkable hot melt type ester resin, or may be set to be partially crosslinked from the time of coating. The heat treatment such as heat treatment can be carried out, for example, by heating such as a hot air heating dryer. Next, the cross section of the release paper-coated film laminate 140 can be promoted to form crosslinks by the hydrophilic amine group of the partial crosslinked body 140. By the specific temperature sensitivity of the hot-melt amine foaming agent, and the hot spike temperature without the special medium 124 is not 1 〇 minute, and the low-temperature sputum is in the smear-like state, but also the amino carboxylic acid any step device 142 Sub-crosslinking-coating-32-201105509 The -* portion of the film 132 is infiltrated into the surface of the composite fiber sheet 103 under pressure at a plurality of voids in the surface layer of the above-mentioned composite fiber sheet, and the coating film 132 is laminated on the surface of the composite fiber sheet 103 (layering step). The release paper-coating layer laminate 140 and the composite fiber sheet 103 are bonded together. Specifically, as shown in Fig. 4, the composite fiber sheet 103 is fed out from the delivery reel 138, and the release paper is pressed by the pressure roller PR. The coating film 133 on the surface of the coating layer laminate 140 is bonded in a partially softened state although partially crosslinked. In addition, the pressure applied when the release paper-coated film laminate 140 and the composite fiber sheet 103 are bonded together is appropriately set depending on the viscosity of the coating film 132 at the time of roll pressing. This pressure can be adjusted by adjusting the interval between the inter-roll gaps of the pressure roller formed by, for example, combining two rolls. The interval between the two inter-roll gaps is adjusted depending on the total thickness of the release paper-coated film laminate 140 and the composite fiber sheet 103, and the like, for example, the following gap interval is preferable. The interval between the two inter-roll gaps is set to be about 70 to 99% of the total thickness of the release paper-coating layer laminate 140 and the composite fiber sheet 1〇3 before being rolled, and further to a thickness of about 80 to 97%. Preferably. In the present embodiment, the release sheet-coating layer laminate 140 and the composite fiber sheet are subjected to a heat treatment step of partially crosslinking the crosslinkable hot melt type urethane resin 120. The manufacturing method of the lamination step of the material 103 is described as a representative, but the laminating step may be performed before the heat treatment step. The bonded body of the release paper-coated film laminate i 40 and the composite fiber sheet 103 thus obtained, i.e., the polyurethane laminate precursor 143, was subjected to forced cooling using a cooling roll 146 (cooling step). In the cooling step, the crosslinked -33-201105509 hot melt urethane resin 120 is cured or tackified. After the cooling step, the winding is performed by the take-up reel 144. Then, the polyurethane laminate precursor 143' is further subjected to aging for a predetermined period of time to further crosslink the polyurethane resin layer to be polymerized and hardened. Further, when a moisture-separating hot-melt urethane resin is used as the crosslinkable hot-melt urethane resin, the partial hardening is carried out. The ripening conditions of the polyurethane laminate precursor 143 are preferably 20 to 20 hours at a temperature of 20 to 40 ° C and a relative humidity of 50 to 80%. Thereby, a urethane laminate having excellent mechanical strength and water resistance can be obtained. After the aging, the release paper 121 is peeled off from the polyurethane laminate precursor 143 to obtain a polyurethane laminate. Further, in order to impart table design properties, the obtained polyurethane laminate may further be coated with an amine group in a surface layer coating agent, an aqueous system, an emulsion system or a solventless system by a conventionally known method. The skin layer is designed by a formate resin or a propionic acid resin, or post-processing such as polishing or press processing is appropriately performed. The polyurethane laminate thus obtained is preferably used in leather bags for shoes, shoes, clothing, furniture, and the like. [Embodiment 3] A polyurethane laminate obtained by the method for producing a polyamine-based vinegar layered product of the above embodiment 2 will be described. According to the embodiment 3 of the polyurethane laminate, it is preferred that the fiber sheet is squashed and the base is wet, and the polymer is immersed in the polymer. a composite fiber sheet having a plurality of voids in the surface layer, and a laminate of a polyurethane resin layer laminated on the composite fiber sheet, the laminate having a layer of the polyurethane resin layer A portion of the mixed layer having a thickness of 10 μη or more formed by invading the void of the surface layer of the composite fiber sheet. The polyurethane laminate according to the present embodiment will be described in detail with reference to the drawings. Figure 3 is a schematic cross-sectional view of a polyurethane laminate Π0, in which a 101-fiber sheet and a 102-series porous polyurethane (polymer elastomer) are made of a porous polyamine group. The acid ester 102 is impregnated into the fibrous sheet 101 and integrated to form a composite fiber sheet 103. Further, the 104-based polyurethane resin layer is mixed with the lower layer of the polyurethane resin layer 104 to be invaded into the voids 106 in the upper layer of the composite fiber sheet 103 to form a mixed layer 105. Specific examples of the fiber sheet 1 〇 1 include, for example, a fiber base material generally used for a leather-like sheet such as a nonwoven fabric or a woven fabric or a woven fabric. Among these, from the viewpoint of obtaining a composite fiber sheet having a soft hand and excellent mechanical strength, a nonwoven fabric formed of a very fine fiber or a very fine fiber bundle is preferably used. The nonwoven fabric is not particularly limited, and a web obtained by a conventionally known short fiber web or a known method such as a spunbond method or a melt blow method can be used. Further, if necessary, after the net is formed, a plurality of sheets may be overlapped and obtained by acupuncture treatment or the like. Specific examples of the fibers forming the nonwoven fabric include polyester fibers such as polyurethane fibers and polyethylene terephthalate (PET) fibers, and polyacrylonitrile fibers. Polyolefin fiber, polyvinyl alcohol fiber 201105509, etc. The fiber forming the non-woven fabric has a fiber diameter of 0. 1 to 50 μm, further 1 to 15 μm of fine fiber or ultrafine fiber is preferred. Such a fine fiber or an ultrafine fiber is preferred because it has low rigidity and is soft, and it is preferable from the viewpoint of obtaining a composite fiber sheet having a soft hand. Further, in terms of the cross-sectional shape of the fiber, in addition to the usual circular or elliptical cross-section, a star type can be used; and from the viewpoint of obtaining a composite fiber sheet having both lightweight and mechanical strength, A hollow or Rencon type multi-aircraft shape can be used. In terms of the basis weight of the non-woven fabric, in the range of 50 to 2000 g/m2, and further in the range of 100 to 1 g/m2, a complex having a soft hand is obtained. The viewpoint of the fiber-bonded sheet is preferred. Further, the porous polyurethane 102 as a polymeric elastomer is impregnated into the fibrous sheet 101 of the present embodiment. Further, the polymer elastomer is not limited to a porous one. Further, an acrylonitrile-butadiene copolymer, a styrene-butadiene copolymer, a copolymer of acrylate or methacrylate, a polyoxyxene rubber or the like may be used instead of the polyurethane. From the viewpoint of obtaining a good hand feeling, a polyurethane is particularly preferred. Specific examples of the porous polyurethane 102 include a porous polyurethane obtained by solidifying or solidifying a solvent-based, aqueous, emulsion-based or solvent-free urethane resin. Resin. The porous polyurethane 103 is impregnated into the fiber constituting the fiber sheet 101 by impregnating the porous sheet 101 with the fiber sheet 101 to form a composite fiber sheet 103. Among the voids formed between the fiber bundles, there are a plurality of voids which are not impregnated with the porous polyurethane 102. Further, as described below, the lower layer of the polyurethane resin layer 104 invades a plurality of voids 106 existing in the surface layer from -36 to 201105509 to form a mixed layer 105. The thickness of the composite fiber sheet 1〇3 is not particularly limited, but in the range of 100 to 2000 μm, and further in the range of 200 to 1500 μm, it is preferable from the viewpoint that the hand feeling is soft and it is difficult to change into a rubbery hand. Further, before the formation of the mixed layer 105, the void ratio of the composite fiber sheet 103 is 20 to 85% by volume, preferably 35 to 80% by volume, particularly preferably 40 to 80% by volume. These void ratios are particularly preferable from the viewpoint that the obtained folded pleats of the polyurethane laminate are particularly fine, excellent in handle balance, and excellent in peeling strength. Determined by the formula. Void ratio (%) = [1 - density of composite fiber sheet + {specific gravity of fiber constituting composite fiber sheet χ (mass ratio of fiber in composite fiber sheet) + polymer constituting composite fiber sheet Specific gravity 弹性 of the elastomer (mass ratio of the polymer elastomer in the composite fiber sheet) Π 100 On the other hand, as a specific example of the polyurethane resin layer 104, heat fusion can be cited. A urethane resin, a thermoplastic urethane resin, a solvent urethane resin, an aqueous urethane resin, or an emulsion urethane resin obtained by solidification or solidification. A layer composed of a polyurethane resin. Among these, from the viewpoint of excellent industrial production, it is particularly preferable to use a polyurethane resin layer derived from a hot-melt urethane resin. The thickness of the polyurethane resin layer 1〇4 containing the thickness of the layer 105 is in the range of 30 to ΙΟΟΟμη, further in the range of 100 to 800, especially in the range of 150 to 700 μm. It is preferable from the viewpoint of obtaining a polyurethane laminate having excellent flexibility and mechanical strength. -37- 201105509 The polyurethane resin layer 104 is 10 to 500 μm, and further 20 in terms of the average diameter of the porous resin layer formed in the polyurethane resin layer 104. ~ It is better from the stability of processing, the smoothness of the resin layer and the feeling of surface contact. In addition, in the case of the polyurethane resin layer 104, it is 10 to 90% by volume, and further preferably 20 to 80% by volume, and particularly 5% by volume, excellent in surface flexibility, texture, surface contact sensitivity, and physical properties. The point of view is better. As shown in FIG. 3, the polyurethane laminate 110 includes a sheet 103, a polyresin layer 104 laminated on the surface of the composite fiber sheet 103, and has a layer intrusion by a polyurethane resin layer. The mixed layer 105 formed from the surface of the composite fiber sheet 103 is filled. The mixed layer 105 is a layer having a thickness of 10 μm or more formed by intrusion of a part of the poly resin layer 104 into the composite fiber sheet 103, and is also a part of the polyurethane layer 104 and one of the composite fiber sheets 103. A layer having a thickness of 3 dimensions formed by mixing the states. Further, the formic acid ester resin layer 104 intrudes into the bottom surface 107 of the composite fiber sheet 103 which is located away from the deep portion 105 of the surface layer of the polyurethane laminate 1 1 . Further, the polymer elastic body and the fiber sheet state of the composite fiber sheet 103 are invaded by the urethane tree polyurethane and filled in the composite fiber sheet 103. Since the polyurethane resin layer and the composite fiber surface are not present in the vicinity of the surface layer, it is preferred to laminate the urethane layer. The resulting voids are *2 0 0 μηη, an excellent viewpoint of void ratio; it is 30 to 70, a wrinkled fine composite fiber urethane 104 having a void of 1 〇6 and a urethane > Voids 106 The urethane tree is incompatible by the polyamine sulcus 106, and there is a void mixed in the layer of the lipid layer 1 〇 4, and the material becomes a table of the boundary body 110 mixed in the dimension sheet - 38- 201105509 Layers are difficult to show the impact of the interface. The thickness of the layer 105 to be mixed is 10 to 800 μm, and further preferably 30 to 500 μm, which is preferable from the viewpoint of exhibiting a high fixing effect. When the thickness of the mixed layer 105 is too small, the fixing effect is weak, and the adhesion between the urethane resin layer 104 and the composite fiber sheet 103 cannot be sufficiently improved, and the wrinkle feeling is deteriorated, and the wrinkles tend to remain; if it is mixed in the layer The thickness of 105 is too thick, and the feel of the hand tends to be hard. Further, the ratio of the thickness of the layer 105 to the total thickness of the entire polyurethane resin layer 104 is 10 to 80%, and further 30 to 70%, from the viewpoint of exhibiting a high fixing effect. good. When the ratio of the thickness of the mixed layer 105 is too low, the adhesion between the polyurethane resin layer 104 and the composite fiber sheet 103 tends to be insufficiently improved, and the interface 107 mixed in the layer tends to be close to the surface layer. If the ratio of the thickness of the mixed layer 105 is too high, there is a tendency that the hand feels hard to be rubbery. Further, in the mixed layer 105, the porous polyurethane 102 and the polyurethane resin layer 104 are substantially in an incompatible state. By forming such a mixed layer 105, a high fixing effect can be exhibited. Further, since the partition wall constituting the porous structure formed in the porous urethane 102 is maintained in its original shape, it is excellent in mechanical properties of the mixed layer 105. For the polyurethane laminate 110, in order to further impart surface design by a conventionally known method, the surface layer is coated with a solvent system, a water-based emulsion or a solvent-free polyurethane resin. The skin layer is laminated with an acrylic resin, or post-processing such as polishing or embossing is appropriately performed. -39- 201105509 In terms of the thickness of the entire polyurethane laminate 110, in the range of 100 to 3000 μm, further in the range of 200 to 2000 μm, especially in the range of 500 to 15 μm, from similar leather The view of the hand feels better. The polyurethane laminate thus obtained is preferably used as a surface material of footwear, clothing, leather bags, furniture, and the like in a leather-like sheet similar to natural leather. [Examples] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples in any respect. First, Examples 1-1 to 1-5 corresponding to the first embodiment will be described. [Materials used in Examples 1-1 to 1-5] (urethane prepolymer)

Task Force KMM-100(DIC股份有限公司製的熱熔型胺 基甲酸酯預聚物,於120°C的熔融黏度爲3200mPa.s)。 (鏈延長劑) 多元醇(DIC股份有限公司製的顏料分散多元醇,Black Exp. 7457,多元醇70質量%,顏料30質量%) (感溫性胺基甲酸酯化觸媒) DBU的油酸鹽(SAN-APRO股份有限公司製,產熱尖峰 溫度1 1 〇 °C ) (熱膨脹性微膠囊) 松本微球體F-36(松本油脂製藥股份有限公司製,外殻 軟化溫度80〜90°C) 201105509 (基材片材) 使水溶性聚胺基甲酸酯(DIC股份有限公司製,Hidran WLI 612)含浸於由平均纖度〇.〇7DeStex的極細纖維所構成 的絡合不織布而成的厚度1 mm、單位面積重量5 5 Og/m2、 比重〇.55g/cm3的基布。 (離型紙) L intec股份有限公司製之加入皺摺的離型紙r_8 ^ [實施例1-1] 使用如第1圖所示的製程製造聚胺基甲酸酯積層體。 具體而言,首先,將保溫於100°C而呈加熱熔融狀態的 胺基甲酸酯預聚物2從第1噴嘴6a加壓噴射而霧化並供給 至混合室6c,另一方面,於保溫於50 °C的16.2質量份鏈延 長劑3中混入0.9質量份的感溫性胺基甲酸酯觸媒4及0.8 質量份的熱膨脹性微膠囊5,將所得到的混合物從第2噴 嘴6b加壓噴射而霧化並供給至保溫於1〇〇 °C的混合室6c。 然後,在混合室6c內使霧化的各成份衝撞而混合。再者, 就混合比率而言,相對於100質量份的胺基甲酸酯預聚物 2,鏈延長劑3、感溫性胺基甲酸酯化觸媒4與熱膨脹性微 膠囊5的混合物以15質量份的比率混合。將經由衝突混合 而調製的胺基甲酸酯樹脂組成物10進一步在混合室6c內 進行攪拌。再者,攪拌係使用混合室6c內所具備的攪拌機 (T.K· Homodisper Primix)於 4000rpm 進行 15 秒鐘。攪拌 後,胺基甲酸酯樹脂組成物10的表面溫度用非接觸型溫度 計測定時爲1 0 0 °c。 201105509 接著’如第1圖所示,從離型紙送出捲軸(圖略)連續送 出的離型紙1由沿著箭頭方向旋轉的送出輥11送出後,由 .捲取捲軸14捲取,預先形成離型紙1的連續傳送帶。 然後,如第1圖所示,朝向被連續地送出的離型紙1下, 將在混合室6c內的經熔融混合的胺基甲酸酯樹脂組成物 1〇朝向在被加熱至lOOt的逆轉輥9b與接觸輥9a之間所 形成的間隙流下,並藉由逆轉輥9b以500 g/m2的塗布量塗 布在離型紙1表面,形成胺基甲酸酯樹脂層10»此時基材 上的胺基甲酸酯樹脂層10的塗布厚度爲約300 μπι。 接著,朝向於離型紙1表面所形成的胺基甲酸酯樹脂層 10的表面,從送出捲軸8送出基材片材7,並藉由加壓輥 PR進行貼合。 接著,爲了在活化感溫性胺基甲酸酯化觸媒4的同時, 使熱膨脹性微膠囊5膨脹,用115°C的加熱裝置12進行60 秒處理。 然後,如此所得之被離型紙1被覆狀態的胺基甲酸醋樹 脂層10與基材片材7的貼合體藉由捲取捲軸14進行捲 取。然後,藉由於捲取的狀態,在40°C的熟成室熟成48 小時後,剝除離型紙1,得到黑色的聚胺基甲酸酯積層體 13 · 藉由上述方法連續生產聚胺基甲酸酯積層體13時’混 合室6c內的胺基甲酸酯樹脂組成物1〇維持可連續塗布至 少約3小時範圍的黏度,而爲適用期優良者。又’藉由掃 描型電子顯微鏡觀察所得到的聚胺基甲酸酯積層體13的 -42 - 201105509 剖面時,見到形成平均直徑約80μηι的均—獨立氣孔。 [實施例1-2] 將混合室6c內中的聚胺基甲酸酯樹脂組成物於8〇〇c保 溫,代替於100 °C保溫以外,與實施例l-i同樣地連續生產 聚胺基甲酸酯積層體13。 藉由上述方法連續生產聚胺基甲酸酯積層體13時,雖 然樹脂的黏度略高且塗布性比實施例1的情況低幾分,但 在連續生產方面沒有問題。又,混合容器中的胺基甲酸醋 樹脂組成物維持可連續塗布至少約4小時的黏度範圍,爲 在適用性方面優異者。 [實施例1-3] 代替進行「將基材片材7貼合於在離型紙1表面所形成 的胺基甲酸酯樹脂層10後於1 1 5°C的加熱裝置12進行60 秒處理」的熱處理步驟,而是在貼合基材片材7之前於相 同條件進行熱處理步驟之後,再貼合基材片材7,此外與 實施例1-1同樣地連續生產聚胺基甲酸酯積層體13。觀察 所得到的聚胺基甲酸酯積層體1 3的剖面時,可見到形成均 —獨立的氣孔。 [實施例1-4] 代替形成離型紙1的連續傳送帶,而是首先形成基材片 材7的傳送帶,然後在連續送出的基材片材7的表面形成 胺基甲酸酯樹脂層10,此外與實施例1-3同樣地形成胺基 甲酸酯樹脂層1 0 » 接著,朝向在基材片材7表面所形成的胺基甲酸酯樹脂Task Force KMM-100 (a hot-melt urethane prepolymer manufactured by DIC Corporation, having a melt viscosity of 3200 mPa·s at 120 ° C). (Chain extender) Polyol (Pigment Dispersion Polyol manufactured by DIC Corporation, Black Exp. 7457, 70% by mass of polyol, 30% by mass of pigment) (temperature sensitive urethane catalyst) DBU Oleate (manufactured by SAN-APRO Co., Ltd., heat-protruding temperature 1 1 〇 °C) (thermal expansion microcapsule) Matsumoto microsphere F-36 (made by Matsumoto Oil & Fat Pharmaceutical Co., Ltd., shell softening temperature 80 to 90 °C) 201105509 (Substrate sheet) A water-soluble polyurethane (Hidran WLI 612, manufactured by DIC Co., Ltd.) is impregnated with a composite nonwoven fabric composed of ultrafine fibers of an average fineness of De.7DeStex. A base fabric having a thickness of 1 mm, a basis weight of 5 5 Og/m 2 , and a specific gravity of 55 55 g/cm 3 . (Release paper) Release paper r_8 added by wrinkle fabric manufactured by Lintec Co., Ltd. [Example 1-1] A polyurethane laminate was produced by the process shown in Fig. 1. Specifically, first, the urethane prepolymer 2 which is heated and melted at 100 ° C in a heated and molten state is sprayed by the first nozzle 6a to be atomized and supplied to the mixing chamber 6c, and on the other hand, 0.9 parts by mass of the temperature-sensitive urethane catalyst 4 and 0.8 parts by mass of the heat-expandable microcapsules 5 were mixed with 16.2 parts by mass of the chain extender 3 kept at 50 ° C, and the obtained mixture was passed from the second nozzle. 6b is sprayed by a pressure jet and atomized and supplied to the mixing chamber 6c kept at 1 °C. Then, the atomized components are collided and mixed in the mixing chamber 6c. Further, with respect to the mixing ratio, a mixture of the chain extender 3, the temperature sensitive urethanization catalyst 4 and the heat-expandable microcapsule 5 with respect to 100 parts by mass of the urethane prepolymer 2 Mix at a ratio of 15 parts by mass. The urethane resin composition 10 prepared by mixing the conflicts is further stirred in the mixing chamber 6c. Further, the stirring was carried out at 4000 rpm for 15 seconds using a stirrer (T.K. Homodisper Primix) provided in the mixing chamber 6c. After the stirring, the surface temperature of the urethane resin composition 10 was 1,0 °C as measured by a non-contact type thermometer. 201105509 Next, as shown in Fig. 1, the release paper 1 continuously fed from the release paper take-up reel (not shown) is fed by the take-up roll 11 that rotates in the direction of the arrow, and then taken up by the take-up reel 14 to be formed in advance. Continuous belt of type paper 1. Then, as shown in Fig. 1, the melt-mixed urethane resin composition in the mixing chamber 6c is directed toward the reverse roll which is heated to 100t, toward the release paper 1 which is continuously fed. 9b flows down the gap formed between the contact roller 9a, and is applied to the surface of the release paper 1 by the reverse roller 9b at a coating amount of 500 g/m2 to form a urethane resin layer 10» at this time on the substrate. The coating thickness of the urethane resin layer 10 is about 300 μm. Then, the substrate sheet 7 is fed out from the delivery reel 8 toward the surface of the urethane resin layer 10 formed on the surface of the release paper 1, and bonded by a pressure roller PR. Next, in order to activate the temperature-sensitive urethane-catalyzed catalyst 4, the heat-expandable microcapsules 5 were inflated, and the heating apparatus 12 at 115 ° C was used for 60 seconds. Then, the thus obtained bonded body of the urethane resin layer 10 and the substrate sheet 7 in the state in which the release paper 1 is coated is taken up by the take-up reel 14. Then, by the state of coiling, after 48 hours of ripening in a 40 ° C ripening chamber, the release paper 1 is peeled off to obtain a black polyurethane laminate 13 · Continuous production of polyamine A by the above method In the acid ester laminate 13, the urethane resin composition 1 in the mixing chamber 6c is maintained to be continuously coatable for a viscosity in the range of at least about 3 hours, and is excellent in pot life. Further, when the -42 - 201105509 cross section of the obtained polyurethane laminate 13 was observed by a scanning electron microscope, uniform-independent pores having an average diameter of about 80 μm were formed. [Example 1-2] The polyurethane composition in the mixing chamber 6c was kept at 8 ° C, and the polyamine group was continuously produced in the same manner as in Example li except that the temperature was kept at 100 ° C. Acidate laminate 13 . When the polyurethane laminate 13 was continuously produced by the above method, although the viscosity of the resin was slightly higher and the coatability was somewhat lower than that of the case of Example 1, there was no problem in continuous production. Further, the urethane resin composition in the mixing container is maintained in a viscosity range which can be continuously applied for at least about 4 hours, and is excellent in applicability. [Example 1-3] Instead of performing the "coating of the base material sheet 7 on the urethane resin layer 10 formed on the surface of the release paper 1, the heating device 12 at 1 15 ° C was treated for 60 seconds. In the heat treatment step, the substrate sheet 7 is bonded to the substrate sheet 7 before the substrate sheet 7 is bonded to the same conditions, and the polyurethane is continuously produced in the same manner as in Example 1-1. Laminated body 13. When the cross section of the obtained polyurethane laminate 13 was observed, it was observed that uniform pores were formed. [Example 1-4] Instead of forming a continuous conveyor belt of the release paper 1, the conveyor belt of the substrate sheet 7 is first formed, and then the urethane resin layer 10 is formed on the surface of the continuously fed substrate sheet 7, Further, a urethane resin layer 10 was formed in the same manner as in Example 1-3. Next, the urethane resin formed on the surface of the substrate sheet 7 was formed.

• [ S -43- 201105509 層10的表面,從送出捲軸8送出離型紙1,藉由加壓輥PR 進行貼合。 然後,爲了在活化感溫性胺基甲酸酯化觸媒4的同時使 熱膨脹性微膠囊5膨脹,在115 °C的加熱裝置12中進行60 秒處理。 然後,使用冷卻輥16強制冷卻至常溫附近後進行捲取。 然後,以捲取狀態在40 °C的熟成室中進行48小時熟成後, 剝離離型紙1,得到黑色的聚胺基甲酸酯積層體1 3。觀察 所得到的聚胺基甲酸酯積層體1 3的剖面時,可見到形成均 一獨立的氣孔。 [實施例1-5] 在離型紙1表面,以使乾燥後的厚度成爲10 μιη的方式, 預先塗布以水分散型聚胺基甲酸酯樹脂D-6065(大日精化 製工業股份有限公司製)/增黏劑D-890(大日精化製工業股 份有限公司製)=10 0/2的比率配合的表皮用配合液,並於 120°C進行2分鐘乾燥;製備在離型紙表面形成由高分子彈 性體所構成之表皮層而成的附有表皮層的離型紙,並在該 附有表皮層的離型紙上形成胺基甲酸酯樹脂層10,此外與 實施例1-1同樣地連續生產多層聚胺基甲酸酯積層體。觀 察所得到的多層聚胺基甲酸酯積層體的剖面時,可見到在 胺基甲·酸酯樹脂層1〇內形成均一獨立的氣孔。而且,表皮 部分具有平滑的接觸感。 [比較例1 - 1 ] 使用如第1圖所示的製程製造聚胺基甲酸酯積層體。 -44- 201105509 具體而言’首先,將保溫於120°C的加熱熔融狀態的胺 基甲酸酯預聚物2從第1噴嘴6a加壓噴射而霧化並供給至 混合室6c,另一方面,在保溫於50 °C的16.2質量份鏈延長 劑3,混入0·9質量份的感溫性胺基甲酸酯觸媒4及0.8質 量份的熱膨脹性微膠囊5並將所得到的混合物從第2噴嘴 6b加壓噴射而霧化並供給至保溫於u〇°c的混合室6c。然 後,在混合室6c內使霧化的各成份衝撞而混合。再者,就 混合比率而言,相對於100質量份的胺基甲酸酯預聚物2, 從第2噴嘴6b供給的鏈延長劑3、感溫性胺基甲酸酯化觸 媒4與熱膨脹性微膠囊5的混合物以15質量份的比率混 合。經由衝突混合而調製的胺基甲酸酯樹脂組成物1 0,進 一步在混合室6c內進行攪拌》攪拌後,胺基甲酸酯樹脂組 成物1 0的表面溫度用非接觸型溫度計測定時,爲1 1 0°C。 又,此時,熱膨脹性微膠囊膨脹2倍以上。 以下的步驟,除進行熱處理以外,與實施例1 -1同樣地 形成聚胺基甲酸酯積層體。 藉由上述方法連續生產聚胺基甲酸酯積層體時,混合容 器中的胺基甲酸酯樹脂組成物,黏度上升至5分鐘以內塗 布即會變得困難那樣程度的黏度。 從以上實施例1 -1 ~ 1 - 5以及比較例1 -1的結果可以明白 下述事項。 在如根據本發明之實施例1-1〜1-4般於比感溫性胺基甲 酸酯化觸媒的產熱尖峰溫度低10〜30 °c的溫度調製所塗布 的聚胺基甲酸酯樹脂組成物之情況,所調製的聚胺基甲酸 -45- .201105509 酯樹脂組成物的適用期變得非常長,連續生產性優異。另 一方面,於感溫性胺基甲酸酯化觸媒的產熱尖峰溫度調製 聚胺基甲酸酯樹脂組成物之比較例I-1的情況,所調製的 聚胺基甲酸酯樹脂組成物的適用期變得非常短’缺乏連續 生產性。而且,藉著加入於上述產熱尖峰溫度以上的溫度 熱處理胺基甲酸酯樹脂層的熱處理步驟,可使樹脂層形成 速度最適化,且使生產性提高。 接著,說明相當於實施態樣2及3的實施例2-1 ~2-5。 [實施例2-1-~2-5中所用的原料] (胺基甲酸酯預聚物)• [S -43- 201105509 The surface of the layer 10, the release paper 1 is fed out from the take-up reel 8, and bonded by the pressure roller PR. Then, in order to expand the heat-expandable urethane catalyst 4 while activating the temperature-sensitive urethane catalyst 4, the heat-expandable microcapsules 5 were subjected to a treatment for 60 seconds in a heating device 12 at 115 °C. Then, it is forced to cool to near the normal temperature by using the cooling roll 16, and then taken up. Thereafter, the film was aged in a coiling state at 40 ° C for 48 hours, and then the release paper 1 was peeled off to obtain a black polyurethane laminate 1 3 . When the cross section of the obtained polyurethane laminate 13 was observed, it was observed that uniform pores were formed. [Example 1-5] The surface of the release paper 1 was previously coated with a water-dispersible polyurethane resin D-6065 so that the thickness after drying became 10 μm (Dai Ri Jing Chemical Co., Ltd.) ()) / tackifier D-890 (made by Daisei Seika Chemical Co., Ltd.) = 10 0 / 2 ratio of the skin mixture, and dried at 120 ° C for 2 minutes; preparation on the surface of the release paper A release paper with a skin layer formed of a skin layer composed of a polymeric elastomer, and a urethane resin layer 10 formed on the release paper with a skin layer, and the same manner as in Example 1-1 Continuously producing a multilayer polyurethane laminate. When the cross section of the obtained multilayered polyurethane laminate was observed, it was found that uniform pores were formed in the amine methyl ester resin layer. Moreover, the skin portion has a smooth contact feeling. [Comparative Example 1 - 1] A polyurethane laminate was produced using the process shown in Fig. 1. -44- 201105509 Specifically, first, the urethane prepolymer 2 heated and melted at 120 ° C is injected by pressure from the first nozzle 6a to be atomized and supplied to the mixing chamber 6c, and the other On the other hand, in 16.2 parts by mass of the chain extender 3 kept at 50 ° C, 0. 9 parts by mass of the temperature sensitive urethane catalyst 4 and 0.8 parts by mass of the heat-expandable microcapsule 5 were mixed and obtained. The mixture is injected by pressure from the second nozzle 6b to be atomized and supplied to the mixing chamber 6c which is kept at 〇°c. Then, the atomized components are collided and mixed in the mixing chamber 6c. In addition, the chain extender 3 and the temperature sensitive urethane catalyst 4 supplied from the second nozzle 6b are mixed with respect to 100 parts by mass of the urethane prepolymer 2 in terms of the mixing ratio. The mixture of the heat-expandable microcapsules 5 was mixed at a ratio of 15 parts by mass. The urethane resin composition 10 prepared by the conflict mixing is further stirred in the mixing chamber 6c. After stirring, the surface temperature of the urethane resin composition 10 is measured by a non-contact type thermometer. It is 1 1 0 °C. Moreover, at this time, the heat-expandable microcapsules are expanded by a factor of two or more. In the following procedure, a polyurethane laminate was formed in the same manner as in Example 1-1 except that the heat treatment was carried out. When the polyurethane laminate is continuously produced by the above method, the viscosity of the urethane resin composition in the container is increased to such a degree that the viscosity is increased to within 5 minutes. From the results of the above Examples 1 -1 to 1 - 5 and Comparative Example 1-1, the following matters were understood. The coated polyamine group was prepared at a temperature lower than the heat-generating peak temperature of the temperature-sensitive urethane catalyst by 10 to 30 ° C as in Examples 1-1 to 1-4 of the present invention. In the case of the acid ester resin composition, the prepared polyaminocarbamic acid-45-.201105509 ester resin composition has a very long pot life and is excellent in continuous productivity. On the other hand, in the case of Comparative Example I-1 of a heat-generating peak temperature-modulating polyurethane resin composition of a temperature sensitive urethane-based catalyst, the prepared polyurethane resin was prepared. The pot life of the composition becomes very short 'lack of continuous productivity. Further, by the heat treatment step of heat-treating the urethane resin layer at a temperature higher than the above-mentioned heat-generating peak temperature, the resin layer formation speed can be optimized and the productivity can be improved. Next, Examples 2-1 to 2-5 corresponding to Embodiments 2 and 3 will be described. [Materials used in Examples 2-1 to 2-5] (urethane prepolymer)

Task Force KMM-100LV(DIC股份有限公司製的濕分硬 化性熱熔型胺基甲酸酯預聚物,於 100 °C的熔融黏度爲 2500mPa · s)。 (鏈延長劑) 丁二醇(三菱化學股份有限公司製) (感溫性胺基甲酸酯化觸媒) DBU的油酸鹽(SAN-APRO股份有限公司製,u-CAT、 SA-106’產熱尖峰溫度11〇 (熱膨脹性微膠囊) 松本微球體F-36(松本油脂製藥股份有限公司製,外殼 軟化溫度80~90。〇 (顔料)Task Force KMM-100LV (a wet-hardening hot-melt urethane prepolymer manufactured by DIC Corporation, having a melt viscosity of 2500 mPa·s at 100 °C). (chain extender) butanediol (manufactured by Mitsubishi Chemical Corporation) (temperature sensitive urethane catalyst) oleate of DBU (manufactured by SAN-APRO Co., Ltd., u-CAT, SA-106) 'Hot heat peak temperature 11〇 (thermal expansion microcapsule) Matsumoto microsphere F-36 (made by Matsumoto Oil & Fat Pharmaceutical Co., Ltd., shell softening temperature 80~90. 〇 (pigment)

Dai Rack Black RHM-7944(DIC 股份有限公司製) (複合纖維片材)Dai Rack Black RHM-7944 (made by DIC Corporation) (composite fiber sheet)

] -46- 201105509 將由平均纖度2 Destex的Rencon型尼龍極細纖維(比 重:1_14)構成的絡合不織布與聚醚系多孔質聚胺塞甲酸酯 (比重:1.2)12以1: 1的重量比率複合化而成的厚度約 800μιη、單位面積的重量250 g/m2、密度0.315 g/cm3、空 隙率73體積%的複合纖維片材。 (離型紙)] -46- 201105509 A composite nonwoven fabric composed of a Renden-type nylon microfiber (specific gravity: 1_14) having an average fineness of 2 Destex and a polyether-based porous polyamine ester (specific gravity: 1.2) 12 in a weight of 1:1 A composite fiber sheet having a thickness of about 800 μm, a weight per unit area of 250 g/m 2 , a density of 0.315 g/cm 3 , and a void ratio of 73% by volume. (release paper)

Lintec股份有限公司製的離型紙R-70N(厚度200μιη) [實施例2-1] 使用如第4圖所示的製程製造聚胺基甲酸酯積層體。 具體而言,首先,使用混合頭(九加化工機股份有限公 司製,MEG-HK-55S型)調製交聯性熱熔型胺基甲酸酯樹脂 120。具體而言,將保溫於115°C的胺基甲酸酯預聚物1〇〇 份(質量份,以下同樣)從第1噴嘴136a加壓噴射而霧化並 供給至混合室136c,另一方面,將15.7份的顏料、〇.8份 的熱膨脹性微膠囊、〇·25份的感溫性胺基甲酸酯觸媒及 〇·25份鏈延長劑於50 °C混合而得的混合物從第2噴嘴13 6b 加壓噴射而霧化,然後使霧化的各成份衝撞而混合。再者, 就混合比率而言,相對於胺基甲酸酯聚合物1〇〇質量份, 上述混合物以17質量份的比率混合。 接著,從離型紙送出捲軸(圖略)以5公尺/分鐘的傳送帶 速度送出的離型紙121,由沿著箭頭方向旋轉的送出輥ι41 送出後,由捲取捲軸144捲取,形成離型紙〗21的連續傳 送帶。 然後,朝向被連續地送出的離型紙121,將在混合室Η 6c -47- 201105509 內經熔融混合的交聯性熱熔型胺基甲酸酯樹脂120,朝向 在被加熱至1〇〇°C、以12公尺/分鐘旋轉的逆轉輥139b與 接觸輥1 3 9a之間所形成的間隙流下,並藉由逆轉輥1 3 9b 以2 80g/m2的塗布量塗布在離型紙121表面形成塗膜132, 而形成在離型紙表面形成有塗膜132的離型紙-塗膜積層體 140。此時塗膜132的厚度爲約450μιη。 接著,爲了使活化感溫性胺基甲酸酯化觸媒124並且使 胺基甲酸酯預聚物部分交聯的同時,熱膨脹性微膠囊125 的膨脹結束,將離型紙-塗膜積層體140在125 °C的加熱裝 置142中進行90秒處理。 接著朝向於離型紙-塗膜積層體140所形成的塗膜132 的表面,從送出捲軸138送出複合纖維片材103,並藉著 由2個輥所構成的加壓輥PR進行貼合。此時,2個輥間的 間隙間隔爲1410μπι。 如此所得之被離型紙1 2 1被覆狀態的離型紙-塗膜積層 體140與複合纖維片材103的貼合體,即聚胺基甲酸酯積 層體前軀體143,使用冷卻輥146進行強制冷卻後,藉由 捲取卷軸144進行捲取。然後,以捲取的狀態,在溫度40 °C 的熟成室中進行熟成4 8小時後,藉由剝除離型紙1 2 1而得 到黑色的聚胺基甲酸酯積層體。 在如此得到的聚胺基甲酸酯積層體的表面,用胺基甲酸 酯系接著劑(大日精化工業股份有限公司製ME 811 6)接著 以碳酸酯系無黃變系胺基甲酸酯(大日精化工業股份有限 公司製NES9950)爲主成分之厚20μιη的表皮層,得到科爾 201105509 多(Codovan)調的皮革樣片材117。然後,藉由掃描型電子 顯微鏡(SEM)觀察皮革樣片材117的剖面(參照第5圖)。 從所得到的S E Μ照片可以見到,皮革樣片材1 1 7係由從 表層被依次積層的,厚度約20 μιη的表皮層1〇9、厚度約 650 μιη的聚胺基甲酸酯樹脂層114、及厚度約800 μηι的複 合纖維片材113所構成,且聚胺基甲酸酯樹脂層114的下 層侵入充塡於複合纖維片材Π3上層的空隙116而形成厚 度約300μιη的混在層115。又,在聚胺基甲酸酯樹脂層Π4 中,形成平均直徑約180 μηι的均一獨立氣孔。再者,在混 在層115中,多孔質聚胺基甲酸酯與聚胺基甲酸酯樹脂層 1 1 4係以非相溶的狀態存在。又,上述各厚度係從任意選 擇1 〇個所得皮革樣片材1 1 7的剖面的SEM照片測得之値 的平均値。將此時的代表性顯微鏡照片示於第5圖中。 又,評價折曲如此所得的皮革樣片材時的手感。具體而 言,於將裁切成每邊200 mm的正方形狀的皮革樣片材對 折時觀察產生的折曲皺摺。此時,產生如第7圖所示之與 皮革同樣的細皺紋。又,藉由折曲並用手指強力壓住而賦 與折皺後,放開時折皴完全不會殘留,而維持平滑的表面。 [實施例2-2] 除了將加壓輥PR的2個輥間的間隙間隔從1 4 1 Ομιη改 變爲1310 μιη之外,與實施例2-1同樣地製造及評價皮革樣 片材。而且藉由掃描型電子顯微鏡(SEM)觀察皮革樣片材的 剖面。所得皮革樣片材係由從表層被依次積層的,厚度約 20 μιη的表皮層、厚度約6 5 Ομιη的聚胺基甲酸酯樹脂層、及 -49- 201105509 厚度約800 μιη的複合纖維片材所構成,且聚胺基甲酸酯樹 脂層的下層侵入充塡於複合纖維片材上層的空隙而形成厚 度約400μιη的混在層。又,評價折曲如此所得的皮革樣片 材時的手感,結果產生如第7圖所示的細皴紋。又,藉由 折曲並用手指強力壓住而賦與折皺後,放開時折皺完全不 會殘留,而維持平滑的表面。 [實施例2-3] 除了將加壓輥PR的2個輥間的間隙間隔從1 4 1 Ομιη改 變爲1450 μηι之外,與實施例2-1同樣地製造及評價皮革樣 片材。而且藉由掃描型電子顯微鏡(SEM)觀察皮革樣片材的 剖面。所得皮革樣片材係由從表層被依次積層的,厚度約 20 μιη的表皮層、厚度約650 μηι的聚胺基甲酸酯樹脂層、及 厚度約800 μηι的複合纖維片材所構成,且聚胺基甲酸酯樹 脂層的下層侵入充塡於複合纖維片材上層的空隙而形成厚 度約40 μιη的混在層。又,評價折曲如此所得的皮革樣片 材時的手感,結果產生如第7圖所示的細皺紋。又,藉由 折曲並用手指強力壓住而賦與折皺後,放開時雖然折皺不 會殘留,而維持平滑的表面,但手感的平衡性比實施例2-1 的皮革樣片材117略差。 [實施例2-4] 除了將加壓輥PR的2個輥間的間隙間隔從1 4 1 Ομιη改 變爲1200 μηι之外,與實施例2-1同樣地製造及評價皮革樣 片材。而且藉由掃描型電子顯微鏡(SEM)觀察皮革樣片材的 剖面。所得皮革樣片材係由從表層被依次積層的,厚度約 -50- 201105509 20 μιη的表皮層、厚度約650 μιη的聚胺基甲酸酯樹脂層 厚度約800μιη的複合纖維片材所構成,且聚胺基甲酸 脂層的下層侵入充塡於複合纖維片材上層的空隙而形 度約600 μιη的混在層。又,評價折曲如此所得的皮革 材時的手感,結果產生如第7圖所示的細皺紋。又, 折曲並用手指強力壓住而賦與折皺後,放開時雖然折 會殘留,而維持平滑的表面,但與實施例2-1相比手 硬。 [實施例2-5] 在離型紙121表·面,以使乾燥後的厚度成爲ΙΟμιη 式,預先塗布以水分散型聚胺基甲酸酯樹脂D-6065(大 化製工業股份有限公司製)/增黏劑D-890 (大日精化製 股份有限公司製)=100/2的比率配合的表皮用配合液, 120 °C進行2分鐘乾燥;製備在離型紙表面形成由高分 性體所構成之表皮層的附有表皮層的離型紙。而且, 在該附有表皮層的離型紙上形成交聯性熱熔型胺基甲 樹脂1 20所構成的層以外,與實施例2-1同樣地連續 多層聚胺基甲酸酯積層體。所得到的多層聚胺基甲酸 層體,可如實施例2-1般隨後不形成表皮層,並在無 下連續生產皮革樣片材。觀察所得到的皮革樣片材 面,可知其係由從表層被依次積層的表皮層、聚胺基 酯樹脂層及複合纖維片材所構成,且聚胺基甲酸酯樹 的下層侵入充塡於複合纖維片材上層的空隙而形成厚 300μιη的混在層。又,在聚胺基甲酸酯樹脂層中,形 、及 酯樹 成厚 樣片 藉由 皺不 感較 的方 曰精 工業 並於 子彈 除了 酸酯 生產 酯積 溶劑 的剖 甲酸 脂層 度約 成平 -51- 201105509 均直徑爲約180 μηι的均一獨立氣孔。再者,在混在層中, 多孔質聚胺基甲酸酯與聚胺基甲酸酯樹脂層以非相溶狀態 存在。又,折曲時的手感、折皺、折皺感及平滑性亦爲與 實施例2-1同樣的評價。 [比較例2 -1 ] 將100份的熱可塑性聚胺基甲酸酯樹脂(Kuraray股份有 限公司製的Kuramilon U3 1 1 9-000)與3份的黑色顏料乾摻 合後’從筒溫設定成23 0 °C之具備T模的押出機押出熱可塑 性聚胺基甲酸酯膜,其後藉由立即壓著於複合纖維片材的 表面而製造聚胺基甲酸酯樹脂層。又,壓著係使用具有與 實施例2- 1所用者同樣的間隙間隔的加壓輥PR進行。與實 施例2-1同樣地在如此所得的聚胺基甲酸酯樹脂層的表面 形成表皮層而製造皮革樣片材。然後,與實施例2-1同樣 地進行評價。將所得的皮革樣片材1 1 8的剖面的SEM照片 示於第6圖中。皮革樣片材118雖係由從表層被依次積層 的,厚度約20 μηι的表皮層10 9、厚度約350 μιη的聚胺基甲 酸酯樹脂層111、及厚度約800 μηι的複合纖維片材113所 構成,但沒有形成如在實施例2-1-~2· 5的聚胺基甲酸酯積 層體中所形成的混在層。又,評價折曲如此所得的皮革樣 片材時的手感,結果產生如第8圖所示的大皺紋。又,藉 由折曲並用手指強力壓住而賦與折皴後,放開時多個細折 皺殘留。 [比較例2-2] 藉由將含黑色顏料的溶劑型聚胺基甲酸酯液(固形份15 -52- 201105509 質量%)塗布於上述離型紙上後,重複進行乾燥3次而形成 厚度約300μιη的聚胺基甲酸酯樹脂層。然後,在複合纖維 片材的表面使用溶劑系2液型聚胺基甲酸酯接著劑貼合所 得到的聚胺基甲酸酯樹脂層。然後,藉由熟成得到聚胺基 甲酸酯積層體。在所得到的聚胺基甲酸酯積層體的聚胺基 甲酸酯樹脂層中,雖然見到如侵入複合纖維片材約10μιη 長度般的伸展部分,但進入部分非爲具有厚度般的連續 層。又,沒有充塡於複合纖維片材的空隙中者》再者,於 進入部分,複合纖維片材所含有的多孔質聚胺基甲酸酯的 多孔構造被溶劑型聚胺基甲酸酯液中的溶劑溶解、破壞, 而成爲構成聚胺基甲酸酯樹脂層的聚胺基甲酸酯與多孔質 聚胺基甲酸酯彼此未形成界面的相溶狀態》 [比較例2-3] 藉由以水系聚胺基甲酸酯分散液(固形分濃度45%)代替 比較例2-2的溶劑系聚胺基甲酸酯溶液,且以成爲與比較 例2-2同樣厚度的方式在離型紙上重複塗布乾燥,形成厚 度3 50μιη的聚胺基甲酸酯樹脂層。然後,將所得到的聚胺 基甲酸酯樹脂層經由水系聚胺基甲酸酯接著劑貼合在複合 纖維片材3上。然後藉由熟成得到聚胺基甲酸酯積層體。 雖然可見到所得到的聚胺基甲酸酯積層體的聚胺基甲酸酯 樹脂層,與比較例2-2同樣地侵入距複合纖維片材表面僅 約ΙΟμιη深處的伸展部分,但未充塡於複合纖維片材的空 隙,且進入部分非爲具有厚度般的連續層。 從以上實施例2-1〜2-5以及比較例2-1〜2-3的結果可以 -53- 201105509 明白下述事項。 將以在根據本實施態樣之實施例2-1 ~2-5中所得到的聚 胺基甲酸酯積層體作爲主體的皮革樣片材折曲時,任一者 產生類似皮革的細折曲皺褶,而且賦與折曲型後放開時折 皴不會殘留。此被認爲係由於複合纖維片材的上層與聚胺 基甲酸酯樹脂層的下層一體化而形成具某一厚度的混在 層,所以複合纖維片材與聚胺基甲酸酯樹脂層具有高度的 密著性,形成具有充實感的積層構造的緣故》 另一方面,以於比較例2-1中得到的聚胺基甲酸酯積層 體(即從具備T模的押出機押出熱可塑性聚胺基甲酸酯 膜,且該熱可塑性聚胺基甲酸酯膜壓著於複合纖維片材而 得到)作爲主體的皮革樣片材,當熱可塑性聚胺基甲酸酯膜 接觸於複合纖維片材的表面時,該表面急速地增黏。又, 由於固化,縱使用某種程度的高壓力使其壓著,但熱可塑 性聚胺基甲酸酯膜仍未侵入複合纖維片材的空隙,未形成 如在實施例的聚胺基甲酸酯積層體中所形成的混在層。 又,縱使在比較例2-2及2-3中所得到的聚胺基甲酸酯積 層體中,亦未形成如在實施例的聚胺基甲酸酯積層體中所 形成的混在層。因此,在比較例2-1〜2-3中,無法得到複 合纖維片材與胺基甲酸酯樹脂層的高度密著性或一體感’ 折曲時亦無法得到類似皮革之具有充實感的手感。 如上述的說明,本發明的一面向係聚胺基甲酸酯積層體 的製造方法,其具備:藉由將於常溫爲半固體或固體的胺 基甲酸酯預聚物(A)、鏈延長劑(B)及藉由示差掃描熱量測 -54- 201105509 定展現所規定的產熱尖峰溫度的感溫性胺基甲酸酯化觸媒 (C) ’在比該產熱尖峰溫度低10〜3 0°C範圍的溫度下進行加 熱熔融混合,而形成胺基甲酸酯樹脂組成物的熔融混合步 驟;使用該胺基甲酸酯樹脂組成物在如離型紙或纖維基材 之片材表面形成胺基甲酸酯樹脂層的樹脂層形成步驟;以 及將該胺基甲酸酯樹脂層在該產熱尖峰溫度以上的溫度進 行熱處理的熱處理步驟。 根據此等製造方法,由於將胺基甲酸酯預聚物(A)、鏈 延長劑(B)及感溫性胺基甲酸酯化觸媒(C),在比感溫性胺 基.甲酸酯化觸媒(C)會活化的產熱尖峰溫度低10〜30 °C範圍 的溫度下進行加熱熔融混合,調製胺基甲酸酯樹脂組成 物,所以可抑制供塗布的胺基甲酸酯樹脂組成物的交聯反 應的進行。因此,供塗布的胺基甲酸酯樹脂組成物的適用 期變長。而且,在基材表面所形成的胺基甲酸酯樹脂層, 之後藉由在比感溫性胺基甲酸酯化觸媒(C)會活化的產熱 尖峰溫度高的溫度下進行熱處理,可快速地交聯,藉此提 高生產性。 又,在上述感溫性胺基甲酸酯化觸媒爲1,8-二氮雜 (5,4,0)-十一烯-7的有機酸鹽之情形,藉由示差掃描熱量測 定所展現的規定產熱尖峰溫度變得陡峭(sharp),從容易控 制交聯反應的觀點而言爲較佳。 又,在上述熔融混和步驟中,在胺基甲酸酯樹脂組成物 中進一步混入熱膨脹性微膠囊,該熱膨脹性微膠囊係以在 上述熱處理步驟中以2倍以上的膨脹倍率膨脹爲較佳。藉 ] -55- 201105509 由將此等熱膨脹性微膠囊混入胺基甲酸酯樹脂組成物中, 可形成具有均一的獨立氣泡的聚胺基甲酸酯層。 又’上述熔融混合步驟係以藉由使來自混合頭的第〗噴 嘴加壓噴射而霧化之加熱熔融狀態的上述胺基甲酸酯預聚 物(A)’與來自第2噴嘴加壓噴射而霧化之包含該鏈延長劑 (B)及感溫性胺基甲酸酯化觸媒(C)的混合物衝撞,而在比 該產熱尖峰溫度低10〜3 0 °C範圍的溫度下進行加熱熔融混 合的步驟爲較佳。若藉由此方法,可更均一地混合。 又,本發明的聚胺基甲酸酯積層體係以藉由上述任何製 造方法所得到的聚胺基甲酸酯積層體爲較佳。 又,本發明的另一面向爲聚胺基甲酸酯積層體的製造方 法,其具備:藉由將熔融狀態的交聯性熱熔型胺基甲酸酯 樹脂塗布於離型紙表面而形成離型紙-塗膜積層體的塗膜 形成步驟;使該交聯性熱熔型胺基甲酸酯樹脂部分交聯的 熱處理步驟;在壓力下使該塗膜積層於複合纖維片材的表 面上的積層步驟,其中該複合纖維片材係纖維片材與高分 子彈性體經含浸一體化而在表層具有多個空隙者’該壓力 係可使該離型紙-塗膜積層體的塗膜的一部分侵入該複合 纖維片材的該空隙中者;以及使該交聯性熱熔型胺基甲酸 酯樹脂冷卻固化的冷卻步驟。 根據如此的製造方法,可容易地製造具有如上述的混在 層的聚胺基甲酸酯積層體。 又,塗膜形成步驟較佳具有:將於100 °c熔融黏度爲 10000 mPa.秒以下的熱熔型胺基甲酸酯預聚物(A)' t -56- 201105509 長劑(B)及藉由示差掃描熱量測定展現規定的產熱尖峰溫 度的感溫性胺基甲酸酯化觸媒(C),在比上述產熱尖峰溫度 低10~30°C範圍的溫度下進行加熱熔融混合,形成該交聯性 熱熔型胺基甲酸酯樹脂的熔融混合步驟;以及藉由將熔融 狀態的交聯性熱熔型胺基甲酸酯樹脂塗布於離型紙表面而 形成離型紙-塗膜積層體的塗膜形成步驟;熱處理步驟較佳 爲將離型紙-塗膜積層體在上述產熱尖峰溫度以上的溫度 進行熱處理而使塗膜部分交聯的步驟。 若根據此製造方法,由於將胺基甲酸酯聚合物(A)、鏈 延長劑(B)及感溫性胺基甲酸酯化觸媒(C),在比感溫性胺 基甲酸酯化觸媒(C)會活化的產熱尖峰溫度低10~3(TC範圍 的溫度下進行加熱熔融混合,調製交聯性熱熔型胺基甲酸 酯樹脂,所以可抑制供塗布的交聯性熱熔型胺基甲酸酯樹 脂組成物的交聯反應的進行。因此,維持塗布所要求的黏 度》而且,在離型紙表面所形成的塗膜,藉由在比感溫性 胺基甲酸酯化觸媒(C)會活化的產熱尖峰溫度高的溫度下 進行熱處理,使塗膜部分交聯及調整黏度。而且,藉由加 壓調整成適度黏度的塗膜,可容易地調整侵入複合纖維片 材的表層部空隙的塗膜的量》 就感溫性胺基甲酸酯化觸媒而言,以使用,例如,1,8-二氮雜(5,4,0)-十一烯-7的有機酸鹽等爲較佳。 又,在熔融混合步驟中,在交聯性熱熔型胺基甲酸酯樹 脂中進一步混入熱膨脹性微膠囊,該熱膨脹性微膠囊係以 在熔融混合步驟及/或熱處理步驟中以2倍以上的膨脹倍率 -57- 201105509 膨脹爲較佳。藉由將此等熱膨脹性微膠囊混入交聯性熱熔 型胺基甲酸酯樹脂中,可形成具有均一的獨立氣泡的聚胺 基甲酸酯樹脂層。 又,上述熔融混合步驟係以係藉由使來自混合頭的第1 噴嘴加壓噴射而霧化之加熱熔融狀態的熱熔型胺基甲酸醋 預聚物(A),與來自第2噴嘴加壓噴射而霧化之包含鏈延長 劑(B)及感溫性胺基甲酸酯化觸媒(C)的混合物衝撞,而在 比該產熱尖峰溫度低10~3 0°C範圍的溫度下進行加熱熔融 混合的步驟爲較佳。若藉由此方法,可更均一地混合。 又,本發明之再一面向爲聚胺基甲酸酯積層體,其係纖 維片材與高分子彈性體經含浸一體化而在表層具有多個空 隙的複合纖維片材,與積層於該複合纖維片材上的聚胺基 甲酸酯樹脂層的積層體;該積層體具有混在層,該混在層 係藉由上述聚胺基甲酸酯樹脂層的·一部分侵入上述空隙, 而使上述聚胺基甲酸酯樹脂層的一部分與上述複合纖維片 材的表層以非相溶狀態混在,且該混在層具有ΙΟμπι以上, 較佳30μιη以上的厚度。 若依照此等聚胺基甲酸酯積層體,複合纖維片材與聚胺 基甲酸酯樹脂層的界面,非爲如藉由先前.方法所得的聚胺 基甲酸酯積層體般的2次元結構,而係如第3圖所示,可 以混在層105存在,該混在層105係由構成聚胺基甲酸酯 樹脂層的聚胺基甲酸酯於複合纖維片材的厚度方向浸透任 意深度並具有充份厚度而3次元地形成。又,此等混在層, 由於聚胺基甲酸酯樹脂層的一部分侵入複合纖維片材的空 -58- 201105509 隙且充塡於該空隙而形成,所以聚胺基甲酸酯樹脂層被複 合纖維片材以較高固定效果支持。再者,藉由聚胺基甲酸 酯樹脂層侵入複合纖維片材,混在層的底面位於距聚胺基 甲酸酯積層體表層的深處部分(例如,第3圖的底面10 7)。 藉此,爲先前以來問題的聚胺基甲酸酯樹脂層與複合纖維 片材的界面不匹配的影響,難以在聚胺基甲酸酯積層體的 表層表現出來。藉由在聚胺基甲酸酯積層體中,設置如此 的混在層提高複合纖維片材與聚胺基甲酸酯樹脂層的密著 性,可以得到具有類似皮革的充實感的手感、折曲時的折 皺感良好、折曲後折皺難以殘留的聚胺基甲酸酯積層體。 又,在混在層中,高分子彈性體與聚胺基甲酸酯樹脂層實 質上以非相溶的狀態存在。在本文中,所謂的非相溶狀態 係指構成複合纖維片材的高分子彈性體與構成聚胺基甲酸 酯樹脂層的聚胺基甲酸酯樹脂非爲彼此相溶且實質上混合 的狀態。又,高分子彈性體與聚胺基甲酸酯樹脂層可密著 或交聯,不僅可充塡於高分子彈性體的空隙,亦可以被覆 高分子彈性體的方式存在。相對於此,在複合纖維片材的 表面塗布溶劑型胺基甲酸酯接著劑的情形,複合纖維片材 中的高分子彈性體被溶劑溶解,被塗布的聚胺基甲酸酯與 複合纖維片材中的高分子彈性體容易混合成爲相溶狀態。 而且,在成爲相溶狀態的情況,尤其是複合纖維片材中的 高分子彈性體爲多孔質狀態的情況,有多孔質狀態崩毀, 手感與折皺感變差的傾向。 又,混在層的厚度在聚胺基甲酸酯樹脂層之總厚度中所 -59- .201105509 佔的比率係以1〇~80%爲較佳;在形成如上述厚度在聚胺基 甲酸酯樹脂層的總厚度中所佔的比率較高的混在層時,聚 胺基甲酸酯樹脂層與複合纖維片材的一體感變得較高。 又,聚胺基甲酸酯樹脂層的總厚度,若參照第3圖,用掃 描型電子顯微鏡觀察與聚胺基甲酸酯積體層的厚度方向平 行的剖面時,係從聚胺基甲酸酯樹脂層104的表面聚胺基 甲酸酯樹脂層104至最深進入複合纖維片材103內部處所 的厚度:混在層的厚度係從複合纖維片材103的表面至聚 胺基甲酸酯樹脂層104進入複合纖維片材103內部最深處 所的厚度。 又,聚胺基甲酸酯樹脂層雖係由交聯性熱熔型胺基甲酸 酯樹脂所形成的層,但混在層的進入及充塡性優異。又, 從容易得到與構成複合纖維片材的高分子彈性體成爲非相 溶狀態的觀點而言爲較佳。 又,聚胺基甲酸酯樹脂層及高分子彈性體的至少一者爲 多孔質,從柔軟的手感或天然皮革樣的折皺感以及可抑制 提起時粗糙的發生的觀點而言爲較佳。 又,複合纖維片材的空隙率在3 0~85體積%範圍的情 況,從所得到的聚胺基甲酸酯積層體的折曲皺褶變得較細 之點、手感平衡性優異之點、剝離強力優異之點而言爲較 佳。 [產業上的可利用性] 若根、據本發明的聚胺基甲酸酯積層體的製造方法,在無 溶劑下於基材表面形成聚胺基甲酸酯層時,藉由供塗布的 -60- 201105509 胺基甲酸酯樹脂組成物的適用期維持長時間,可連續安定 地進行處理;又,藉由熱處理所塗布的未交聯聚胺基甲酸 酯層交聯,可快速地交聯而使聚胺基甲酸酯積層體的生產 性提高。 又,若根據本發明的聚胺基甲酸酯積層體的製造方法, 可以得到折曲時展現類似皮革手感的聚胺基甲酸酯積層 體。尤其,可得到類似皮革的細折曲皺褶,同時折曲後折 皺不易殘留的聚胺基甲酸酯積層體。 【圖式簡單說明】 [第1圖]第1圖係說明本發明實施態樣1之聚胺基甲酸 酯積層體的製造方法的模式步驟圖。 [第2圖]第2圖係藉由本發明實施態樣1之製造方法所 得到的聚胺基甲酸酯積層體的剖面模式圖。 [第3圖]第3圖係藉由本發明實施態樣2之聚胺基甲酸 酯積層體的製造方法所得到的聚胺基甲酸酯積層體的模式 剖面圖。 [第4圖]第4圖係說明本發明實施態樣2之聚胺基甲酸 酯積層體的製程的一例的說明圖。 [第5圖]第5圖係在實施例2- 1中所得到之皮革樣片材 的剖面的SEM照片。 [第6圖]第6圖係在比較例2-1中所得到之皮革樣片材 的剖面的SEM照片。 [第7圖]第7圖係用於說明折曲皮革時所產生的折曲皺 摺樣子的模式圖。 -61 - 201105509 [第8圖]第8圖係用於說明折曲先前皮革樣片材時所產 生的折曲皺摺樣子的模式圖。 【主要元件符號說明】 1 離 型 紙 2 胺 基 甲 酸 酯 預 聚 物 3 鏈 延 長 劑 4 感 溫 性 胺 基 甲 酸 酯 化 觸 媒 5 熱 膨 脹 性 微 膠 囊 6 混 合 頭 6 a 第 1 噴 嘴 6b 第 2 噴 嘴 6 c 混 合 室 7 基 材 片 材 8 基 材 片 材 的 送 出 捲 軸 9a 接 觸 輥 9b 逆 轉 輥 10 胺 基 甲 酸 酯 樹 脂 組 成 物 (胺基甲酸酯樹脂層) 11 送 出 輥 12 加 熱 裝 置 13 聚 胺 基 甲 酸 酯 積 層 體 14 捲 取 捲 軸 16 冷 卻 輥 20 交 聯 的 聚 胺 基 甲 酸 酯 層 2 1 氣 泡 -62- 201105509 PR 加 壓 輥 10 1 纖 維 片 材 102 多 孔 質 聚 胺 基 甲 酸 酯 (高分子彈 性 體) 1 03 複 合 纖 維 片 材 104 聚 胺 基 甲 酸 酯 樹 脂 層 105 混 在 層 106 空 隙 107 混 合 暦 1 ( 〕5 的 底 面 109 表 皮 層 110 聚 胺 基 甲 酸 酯 積 層 體 111 聚 胺 基 甲 酸 酯 樹 脂 層 113 複 合 纖 維 片 材 112 多 孔 質 聚 胺 基 甲 酸 酯 (高分子彈 性 體) 114 聚 胺 基 甲 酸 酯 樹 脂 層 115 混 在 暦 116 空 隙 117 皮 革 樣 片 材 118 皮 革 樣 片 材 120 交 聯 性 熱 熔 型 胺 基 甲 酸酯樹脂 12 1 離 型 紙 122 胺 基 甲 酸 酯 預 聚 物 123 鏈 延 長 劑 124 感 溫 性 胺 基 甲 酸 酯 化 觸媒 125 熱 a±y 膨 脹 性 微 膠 囊 -63- 201105509 132 離型紙-塗膜積層體140的塗膜 136 混合頭 136a 第1噴嘴 1 3 6b 第2噴嘴 136c 混合室136c構成 138 複合纖維片材103的送出捲軸 139a 接觸輥 139b 逆轉輥 140 離型紙-塗膜積層體 141 送出輥 142 加熱裝置 143 聚胺基甲酸酯積層體前驅體 144 聚胺基甲酸酯積層體前驅體143的捲取捲軸 146 冷卻輥 -64-Release paper R-70N (thickness 200 μm) manufactured by Lintec Co., Ltd. [Example 2-1] A polyurethane laminate was produced using the process shown in Fig. 4. Specifically, first, a cross-linking hot-melt urethane resin 120 is prepared using a mixing head (MEG-HK-55S type manufactured by Jiuga Chemical Machinery Co., Ltd.). Specifically, one part (parts by mass) of the urethane prepolymer which is kept at 115 ° C is pressurized and sprayed from the first nozzle 136 a to be atomized and supplied to the mixing chamber 136 c, and the other In the aspect, a mixture of 15.7 parts of a pigment, 8 parts of a heat-expandable microcapsule, 25 parts of a temperature sensitive urethane catalyst, and 25 parts of a chain extender at 50 ° C is mixed. The second nozzle 13 6b is pressurized and sprayed to atomize, and then the atomized components are collided and mixed. Further, in the mixing ratio, the above mixture was mixed at a ratio of 17 parts by mass based on 1 part by mass of the urethane polymer. Next, the release paper 121 fed from the release paper take-up reel (not shown) at a conveyor speed of 5 m/min is fed by the take-up roll 141 of the rotation in the direction of the arrow, and then taken up by the take-up reel 144 to form a release paper. 〗 21 continuous conveyor belt. Then, toward the release paper 121 which is continuously fed, the crosslinkable hot-melt urethane resin 120 which is melt-mixed in the mixing chamber Η 6c - 47 - 201105509 is heated to 1 ° ° C. , a gap formed between the reverse roller 139b rotating at 12 meters/min and the contact roller 139a, and coated on the surface of the release paper 121 by the reverse roller 1 3 9b at a coating amount of 2 80 g/m 2 . The film 132 forms a release paper-coating layer laminate 140 in which a coating film 132 is formed on the surface of the release paper. At this time, the thickness of the coating film 132 is about 450 μm. Next, in order to activate the temperature sensitive urethane-forming catalyst 124 and partially crosslink the urethane prepolymer, the expansion of the heat-expandable microcapsules 125 is completed, and the release paper-coated film laminate is formed. 140 was processed in a heating device 142 at 125 ° C for 90 seconds. Then, the composite fiber sheet 103 is fed out from the delivery reel 138 toward the surface of the coating film 132 formed by the release paper-coating layer laminate 140, and bonded by a pressure roller PR composed of two rolls. At this time, the gap interval between the two rolls was 1410 μm. The bonded body of the release paper-coated film laminate 140 and the composite fiber sheet 103 in the state of being coated with the release paper 1 2 1 thus obtained, that is, the polyurethane laminate precursor 143, is forcibly cooled by using the cooling roll 146. Thereafter, the winding is performed by the take-up reel 144. Then, in the coiled state, after aging for 48 hours in a ripening chamber at a temperature of 40 ° C, a black polyurethane laminate was obtained by peeling off the release paper 1 2 1 . On the surface of the thus obtained polyurethane laminate, a urethane-based adhesive (ME 811 6 manufactured by Dairi Seiki Co., Ltd.) is followed by a carbonate-free yellow-based uric acid. The ester (NE9950 manufactured by Dairi Seiki Co., Ltd.) was a skin layer of 20 μm thick as a main component, and a leather-like sheet 117 of Cole 201105509 Codovan was obtained. Then, the cross section of the leather-like sheet 117 was observed by a scanning electron microscope (SEM) (see Fig. 5). As can be seen from the obtained SE Μ photograph, the leather-like sheet 1 1 7 is a polyurethane resin having a thickness of about 20 μm, a skin layer of about 20 μm, and a thickness of about 650 μm, which are sequentially laminated from the surface layer. The layer 114 and the composite fiber sheet 113 having a thickness of about 800 μm are formed, and the lower layer of the polyurethane resin layer 114 intrudes into the void 116 filled in the upper layer of the composite fiber sheet 3 to form a mixed layer having a thickness of about 300 μm. 115. Further, in the polyurethane resin layer 4, uniform independent pores having an average diameter of about 180 μm are formed. Further, in the mixed layer 115, the porous polyurethane and the polyurethane resin layer 1 14 are present in an incompatible state. Further, each of the above thicknesses is an average enthalpy of enthalpy measured from an SEM photograph of a cross section of one of the obtained leather-like sheets 1 1 7 which is arbitrarily selected. A representative micrograph at this time is shown in Fig. 5. Further, the feeling when the leather-like sheet thus obtained was bent was evaluated. Specifically, the folded wrinkles observed when the square-shaped leather-like sheet cut into 200 mm on each side was folded in half. At this time, fine wrinkles similar to those of leather as shown in Fig. 7 are produced. Further, by folding and pressing with a finger to make a wrinkle, the crease does not remain at all when released, and a smooth surface is maintained. [Example 2-2] A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the gap interval between the two rolls of the pressure roll PR was changed from 1 4 1 Ομηη to 1310 μm. Further, the cross section of the leather-like sheet was observed by a scanning electron microscope (SEM). The obtained leather-like sheet is a skin layer having a thickness of about 20 μm, a polyurethane resin layer having a thickness of about 65 μm, and a composite fiber sheet having a thickness of about 800 μm, which is laminated in a layer from the surface layer. The material is composed of a material, and the lower layer of the polyurethane resin layer invades the voids which are filled in the upper layer of the composite fiber sheet to form a mixed layer having a thickness of about 400 μm. Further, the hand feeling when the leather-like sheet thus obtained was bent was evaluated, and as a result, a fine crepe as shown in Fig. 7 was produced. Further, by folding and pressing with a finger to impart wrinkles, the wrinkles do not remain at all when released, and a smooth surface is maintained. [Example 2-3] A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the gap interval between the two rolls of the pressure roller PR was changed from 1 4 1 Ομηη to 1450 μη. Further, the cross section of the leather-like sheet was observed by a scanning electron microscope (SEM). The obtained leather-like sheet is composed of a skin layer having a thickness of about 20 μm, a polyurethane resin layer having a thickness of about 650 μm, and a composite fiber sheet having a thickness of about 800 μm, which are laminated in this order from the surface layer, and The lower layer of the polyurethane resin layer invades the voids which are filled in the upper layer of the composite fiber sheet to form a mixed layer having a thickness of about 40 μm. Further, the hand feeling when the leather-like sheet thus obtained was bent was evaluated, and as a result, fine wrinkles as shown in Fig. 7 were produced. Further, after being folded and strongly pressed by a finger to impart wrinkles, the wrinkles do not remain when released, and a smooth surface is maintained, but the balance of the feel is slightly lower than that of the leather-like sheet 117 of Example 2-1. difference. [Example 2-4] A leather-like sheet was produced and evaluated in the same manner as in Example 2-1 except that the gap interval between the two rolls of the pressure roll PR was changed from 1 4 1 Ομηη to 1200 μη. Further, the cross section of the leather-like sheet was observed by a scanning electron microscope (SEM). The obtained leather-like sheet is composed of a composite fiber sheet having a thickness of about -50 to 201105509 20 μm and a thickness of about 650 μm of a polyurethane resin layer having a thickness of about 800 μm. And the lower layer of the polyurethane layer invades the mixed layer which is filled with the void of the upper layer of the composite fiber sheet and has a shape of about 600 μm. Further, the hand feeling when the leather material thus obtained was bent was evaluated, and as a result, fine wrinkles as shown in Fig. 7 were produced. Further, after bending and pressing with a finger and giving a wrinkle, the fold remained, and the smooth surface was maintained, but it was harder than Example 2-1. [Example 2-5] The water-dispersed polyurethane resin D-6065 (manufactured by Daisei Kogyo Co., Ltd.) was applied to the surface of the release paper 121 so that the thickness after drying was ΙΟμηη. ) / tackifier D-890 (made by Dairi Seiki Co., Ltd.) = 100 / 2 ratio of the skin for the skin, 120 ° C for 2 minutes to dry; preparation of the surface of the release paper by the high-divided body A release paper with a skin layer attached to the skin layer. Further, a multilayered polyurethane laminate was continuously laminated in the same manner as in Example 2-1, except that a layer composed of the crosslinkable hot-melt type amino resin 100 was formed on the release paper with the skin layer. The resulting multilayered polyurethane layer was subsequently formed into a skin layer as in Example 2-1, and the leather-like sheet was continuously produced without any. The surface of the obtained leather-like sheet was observed, and it was found that the skin layer, the polyurethane resin layer and the composite fiber sheet which were sequentially laminated from the surface layer were formed, and the lower layer of the polyurethane tree was invaded. A mixed layer having a thickness of 300 μm was formed in the void of the upper layer of the composite fiber sheet. Further, in the polyurethane resin layer, the shape and the ester tree are formed into a thick sample by the wrinkle-inferior alloy and the layer of the formic acid ester of the ester-producing solvent in the bullet is formed to be flat. 51- 201105509 Uniform independent pores with a diameter of approximately 180 μηι. Further, in the mixed layer, the porous polyurethane and the polyurethane resin layer are present in an incompatible state. Further, the feel, wrinkles, wrinkles, and smoothness at the time of bending were also evaluated in the same manner as in Example 2-1. [Comparative Example 2 -1] After 100 parts of thermoplastic polyurethane resin (Kuramilon U3 1 19-000 manufactured by Kuraray Co., Ltd.) and 3 parts of black pigment were dry blended, 'from the barrel temperature setting The T-die extruder at 23 ° C was forced out of the thermoplastic polyurethane film, and then the polyurethane resin layer was produced by immediately pressing against the surface of the composite fiber sheet. Further, the pressing was performed using a pressure roller PR having the same gap interval as that used in Example 2-1. In the same manner as in Example 2-1, a skin layer was formed on the surface of the thus obtained polyurethane resin layer to produce a leather-like sheet. Then, evaluation was carried out in the same manner as in Example 2-1. A SEM photograph of a cross section of the obtained leather-like sheet 1 18 is shown in Fig. 6. The leather-like sheet 118 is composed of a skin layer 10 having a thickness of about 20 μm, a polyurethane resin layer 111 having a thickness of about 350 μm, and a composite fiber sheet having a thickness of about 800 μm. 113 was formed, but the mixed layer formed in the polyurethane laminate of Examples 2-1 to 2.5 was not formed. Further, the hand feeling when the leather-like sheet thus obtained was bent was evaluated, and as a result, large wrinkles as shown in Fig. 8 were produced. Further, after being bent and pressed with a finger, the crease is imparted, and a plurality of fine creases remain after being released. [Comparative Example 2-2] After applying a solvent-type polyurethane solution containing a black pigment (solid content 15-52 to 201105509 mass%) onto the release paper, the drying was repeated three times to form a thickness. A layer of polyurethane resin of about 300 μm. Then, the obtained polyurethane resin layer was bonded to the surface of the composite fiber sheet by using a solvent-based two-liquid polyurethane adhesive. Then, a polyurethane laminate was obtained by aging. In the polyurethane resin layer of the obtained polyurethane laminate, although the stretched portion such as the length of the intrusive composite fiber sheet is about 10 μm, the entry portion is not continuous in thickness. Floor. Further, in the voids of the composite fiber sheet, in the entry portion, the porous structure of the porous polyurethane contained in the composite fiber sheet is a solvent-type polyurethane solution. The solvent in the solvent is dissolved and destroyed, and the polyurethane and the porous polyurethane constituting the polyurethane resin layer do not form an interface with each other. [Comparative Example 2-3] The solvent-based polyurethane solution of Comparative Example 2-2 was replaced with an aqueous polyurethane dispersion (solid content concentration: 45%), and was formed to have the same thickness as Comparative Example 2-2. The coating paper was repeatedly coated and dried to form a polyurethane resin layer having a thickness of 3 50 μm. Then, the obtained polyurethane resin layer was bonded to the composite fiber sheet 3 via an aqueous polyurethane adhesive. The polyurethane laminate is then obtained by aging. Although the polyurethane resin layer of the obtained polyurethane laminate was observed, as in Comparative Example 2-2, the stretch portion which was only about ΙΟμηη from the surface of the composite fiber sheet was invaded, but not Filling the voids of the composite fiber sheet, and the entry portion is not a continuous layer having a thickness. From the results of the above Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-3, the following items can be understood from -53 to 201105509. When the leather-like sheet mainly composed of the polyurethane laminate obtained in Examples 2-1 to 2-5 according to the present embodiment is bent, either of them produces a leather-like fine fold. The pleats are creased, and the creases do not remain when they are folded and released. This is considered to be because the upper layer of the composite fiber sheet is integrated with the lower layer of the polyurethane resin layer to form a mixed layer having a certain thickness, so that the composite fiber sheet and the polyurethane resin layer have On the other hand, the polyurethane laminate obtained in Comparative Example 2-1 (i.e., extruded from a extruder having a T-die) has a high degree of adhesion. a polyurethane film, and the thermoplastic polyurethane film is pressed against the composite fiber sheet to obtain a leather-like sheet as a main body, when the thermoplastic polyurethane film is in contact with the composite The surface of the fiber sheet is rapidly viscous when it is on the surface of the fiber sheet. Further, since it was cured, it was pressed with a certain degree of high pressure, but the thermoplastic polyurethane film did not intrude into the voids of the composite fiber sheet, and the polyaminocarboxylic acid as in the example was not formed. A mixed layer formed in the ester laminate. Further, even in the polyurethane laminate obtained in Comparative Examples 2-2 and 2-3, the mixed layer formed in the polyurethane laminate of the example was not formed. Therefore, in Comparative Examples 2-1 to 2-3, the high-adhesiveness or the integral feeling of the conjugated fiber sheet and the urethane resin layer could not be obtained, and it was impossible to obtain a feeling of fullness similar to leather in the case of bending. Feel. As described above, the method for producing a polyurethane-based laminate according to the present invention comprises: a urethane prepolymer (A) and a chain which are semi-solid or solid at normal temperature. The extender (B) and the temperature sensitive urethane catalyst (C) which exhibits the specified heat-protection temperature by differential scanning calorimetry - 54-201105509 are lower than the heat-producing peak temperature a melt-mixing step of forming a urethane resin composition by heating and melt mixing at a temperature in the range of 10 to 30 ° C; using a sheet of the urethane resin composition such as a release paper or a fibrous substrate a resin layer forming step of forming a urethane resin layer on the surface of the material; and a heat treatment step of heat-treating the urethane resin layer at a temperature higher than the heat generating peak temperature. According to these manufacturing methods, due to the urethane prepolymer (A), chain extender (B) and temperature sensitive urethane catalyst (C), in the temperature sensitive amine group. The formate ester catalyst (C) is heated and melted at a temperature lower than the temperature range of 10 to 30 ° C, and the urethane resin composition is prepared, so that the coated amine group can be suppressed. The crosslinking reaction of the acid ester resin composition proceeds. Therefore, the pot life of the coated urethane resin composition becomes long. Further, the urethane resin layer formed on the surface of the substrate is then subjected to heat treatment at a temperature higher than the temperature of the heat generating peak which is activated by the temperature sensitive urethane catalyst (C). It can be crosslinked quickly to increase productivity. Further, in the case where the temperature sensitive urethane-catalyzed catalyst is an organic acid salt of 1,8-diaza(5,4,0)-undecene-7, the differential scanning calorimetry is used. The prescribed heat-producing peak temperature is sharp, and it is preferable from the viewpoint of easily controlling the crosslinking reaction. In the above-mentioned melt-mixing step, the heat-expandable microcapsules are further mixed with the urethane resin composition, and the heat-expandable microcapsules are preferably expanded by expansion ratio of 2 times or more in the heat treatment step. By -55- 201105509 By mixing these heat-expandable microcapsules into the urethane resin composition, a polyurethane layer having uniform closed cells can be formed. Further, the above-mentioned melt-mixing step is a urethane prepolymer (A)' in a heated and molten state atomized by pressure-spraying from a nozzle of the mixing head, and a pressurized injection from the second nozzle. And the atomized mixture comprising the chain extender (B) and the temperature sensitive urethane catalyst (C) collides, and at a temperature lower than the heat generating peak temperature by 10 to 30 ° C The step of performing heat-melting mixing is preferred. If this method is used, it can be more uniformly mixed. Further, the polyurethane laminate system of the present invention is preferably a polyurethane laminate obtained by any of the above-described production methods. Further, another aspect of the present invention provides a method for producing a polyurethane laminate comprising: applying a crosslinkable hot-melt urethane resin in a molten state to a surface of a release paper to form a separation a coating film forming step of a paper-coated layer; a heat treatment step of partially crosslinking the crosslinkable hot-melt urethane resin; laminating the coating film on the surface of the composite fiber sheet under pressure a laminating step in which the composite fiber sheet-based fibrous sheet and the polymeric elastomer are integrated by impregnation and have a plurality of voids in the surface layer. The pressure system can invade a part of the coating film of the release paper-coated film laminate. The void of the composite fiber sheet; and a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin. According to such a production method, a polyurethane laminate having the above-described mixed layer as described above can be easily produced. Further, the coating film forming step preferably has a hot-melt urethane prepolymer (A)'t-56-201105509 long agent (B) having a melt viscosity of 100 ° C or less at 10000 mPa. The temperature-sensitive urethane catalyst (C) exhibiting a predetermined heat-generating peak temperature by differential scanning calorimetry is heated and melt-mixed at a temperature lower than the above-mentioned heat-generating peak temperature by 10 to 30 ° C. a melt-mixing step of forming the crosslinkable hot-melt urethane resin; and forming a release paper-coating by applying a cross-linking hot-melt urethane resin in a molten state to the surface of the release paper The coating film forming step of the film laminate; the heat treatment step is preferably a step of heat-treating the release paper-coating layer laminate at a temperature equal to or higher than the heat generating peak temperature to partially crosslink the coating film. According to this manufacturing method, since the urethane polymer (A), the chain extender (B), and the temperature sensitive urethane catalyst (C) are used, the temperature sensitive ureic acid is used. The esterification catalyst (C) activates a heat-generating spike temperature of 10 to 3 (heat-melt mixing at a temperature of TC range to prepare a cross-linking hot-melt urethane resin, so that the coating for coating can be suppressed. The crosslinking reaction of the composition of the heat-fusible urethane resin is carried out. Therefore, the viscosity required for coating is maintained, and the coating film formed on the surface of the release paper is made of a temperature-sensitive amine group. The formic acidification catalyst (C) is heat-treated at a temperature at which the heat-generating peak temperature is activated to partially crosslink the coating film and adjust the viscosity. Moreover, it is easy to adjust the viscosity to a film having a moderate viscosity by pressurization. Adjusting the amount of the coating film which invades the surface layer void of the composite fiber sheet" For the temperature sensitive urethane catalyst, for example, 1,8-diaza (5,4,0) is used. - an organic acid salt of undecene-7 or the like is preferred. Further, in the melt mixing step, the crosslinkable hot melt type urethane tree Further, the heat-expandable microcapsules are further mixed, and the heat-expandable microcapsules are preferably expanded by a swelling ratio of -57 to 201105509 of 2 times or more in the melt mixing step and/or the heat treatment step. By such heat-expandable microcapsules The polyurethane resin layer having uniform closed cells can be formed by mixing into the crosslinkable hot-melt urethane resin. Further, the melt mixing step is performed by the first step from the mixing head. The hot-melt urethane methacrylate prepolymer (A) in a heated and molten state in which the nozzle is pressurized and sprayed, and the chain extender (B) and the temperature sensitive amine which are atomized by pressure injection from the second nozzle Preferably, the mixture of the carboxylic acid esterification catalyst (C) collides, and the step of heat-melting mixing at a temperature lower than the heat-generating peak temperature by 10 to 30 ° C is preferred. Further, the other aspect of the present invention is a polyurethane laminate which is a composite fiber sheet in which a fiber sheet and a polymer elastomer are integrated by impregnation and have a plurality of voids in a surface layer. And laminated on the composite fiber sheet a laminate of a polyurethane resin layer; the laminate has a mixed layer which is infiltrated into the void by a part of the polyurethane resin layer to cause the polyaminocarboxylic acid A part of the ester resin layer is mixed with the surface layer of the composite fiber sheet in an incompatible state, and the mixed layer has a thickness of ΙΟμπι or more, preferably 30 μm or more. According to the polyurethane laminate, the composite fiber The interface between the sheet and the polyurethane resin layer is not a 2-dimensional structure like the polyurethane laminate obtained by the prior method, but as shown in FIG. 3, it can be mixed in the layer. In the presence of 105, the mixed layer 105 is formed by impregnating the polyurethane sheet constituting the polyurethane resin layer in the thickness direction of the composite fiber sheet at an arbitrary depth and having a sufficient thickness to form a third dimension. Further, in the mixed layer, since a part of the polyurethane resin layer intrudes into the void of the composite fiber sheet and is formed by filling the void, the polyurethane resin layer is compounded. The fiber sheet is supported by a higher fixing effect. Further, the composite fiber sheet is invaded by the polyurethane resin layer, and the bottom surface of the mixed layer is located at a portion deep from the surface layer of the polyurethane laminate (for example, the bottom surface 10 7 of Fig. 3). As a result, the influence of the interface mismatch between the polyurethane resin layer and the composite fiber sheet which has been previously problematic is difficult to exhibit in the surface layer of the polyurethane laminate. By providing such a mixed layer in the polyurethane laminate to improve the adhesion of the composite fiber sheet and the polyurethane resin layer, it is possible to obtain a feeling of fullness similar to leather, and to bend When the wrinkle feeling is good, the polyurethane laminate which is difficult to remain after the buckling is formed. Further, in the mixed layer, the polymeric elastomer and the polyurethane resin layer are substantially in an incompatible state. Herein, the term "incompatible state" means that the polymeric elastomer constituting the composite fiber sheet and the polyurethane resin constituting the polyurethane resin layer are not mutually compatible and substantially mixed. status. Further, the polymer elastomer and the polyurethane resin layer may be adhered or crosslinked, and may be filled not only in the voids of the polymeric elastomer but also in the form of a polymeric elastomer. On the other hand, in the case where a solvent-type urethane adhesive is applied to the surface of the composite fiber sheet, the polymer elastomer in the composite fiber sheet is dissolved in a solvent, and the coated polyurethane and composite fiber are coated. The polymer elastomer in the sheet is easily mixed to be in a compatible state. In the case where the polymer elastomer in the composite fiber sheet is in a porous state, the porous state is collapsed, and the texture and the wrinkle tend to be deteriorated. Further, the thickness of the mixed layer in the total thickness of the polyurethane resin layer is -59 to .201105509, and the ratio is preferably from 1 to 80%; in the formation of the above-mentioned thickness in the polyaminocarboxylic acid When the ratio of the total thickness of the ester resin layer is high, the integral feeling of the polyurethane resin layer and the composite fiber sheet becomes high. In addition, when the total thickness of the polyurethane resin layer is observed in a cross section parallel to the thickness direction of the polyurethane layer by a scanning electron microscope, the polyurethane is used. The thickness of the surface of the ester resin layer 104 from the surface of the polyurethane resin layer 104 to the innermost portion of the composite fiber sheet 103: the thickness of the layer is mixed from the surface of the composite fiber sheet 103 to the polyurethane resin layer. 104 enters the thickness of the innermost portion of the composite fiber sheet 103. Further, the polyurethane resin layer is a layer formed of a crosslinkable hot-melt type urethane resin, but is excellent in the incorporation and the chargeability of the mixed layer. Moreover, it is preferable from the viewpoint of easily obtaining a non-compatible state with the polymeric elastomer constituting the composite fiber sheet. Further, at least one of the polyurethane resin layer and the polymeric elastomer is preferably porous, and is preferably from the viewpoint of a soft hand feeling or a natural leather-like wrinkle feeling and suppression of occurrence of roughness during lifting. In the case where the porosity of the conjugated fiber sheet is in the range of 30 to 85% by volume, the bent pleats of the obtained polyurethane laminate are finer and the balance of the handle is excellent. It is preferable in terms of excellent peeling strength. [Industrial Applicability] The method for producing a polyurethane laminate according to the present invention, when a polyurethane layer is formed on the surface of a substrate without a solvent, by coating -60- 201105509 The urethane resin composition has a long pot life and can be treated continuously and stably; in addition, it can be quickly crosslinked by heat treatment of the uncrosslinked polyurethane layer. Crosslinking improves the productivity of the polyurethane laminate. Further, according to the method for producing a polyurethane laminate according to the present invention, a polyurethane laminate which exhibits a leather-like feel when bent can be obtained. In particular, it is possible to obtain a polyurethane-like laminate which is similar to the finely folded wrinkles of leather and which is not easily retained after being bent. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] Fig. 1 is a schematic view showing a method of producing a polyurethane laminate according to a first embodiment of the present invention. [Fig. 2] Fig. 2 is a schematic cross-sectional view showing a polyurethane laminate obtained by the production method of the embodiment 1 of the present invention. [Fig. 3] Fig. 3 is a schematic cross-sectional view showing a polyurethane laminate obtained by a method for producing a polyurethane laminate according to a second embodiment of the present invention. [Fig. 4] Fig. 4 is an explanatory view showing an example of a process for producing a polyurethane laminate according to a second embodiment of the present invention. [Fig. 5] Fig. 5 is a SEM photograph of a cross section of the leather-like sheet obtained in Example 2-1. [Fig. 6] Fig. 6 is a SEM photograph of a cross section of the leather-like sheet obtained in Comparative Example 2-1. [Fig. 7] Fig. 7 is a schematic view for explaining a folded wrinkle pattern which is produced when the leather is bent. -61 - 201105509 [Fig. 8] Fig. 8 is a schematic view for explaining a bent wrinkle pattern which is produced when the prior leather-like sheet is bent. [Main component symbol description] 1 release paper 2 urethane prepolymer 3 chain extender 4 temperature sensitive urethane catalyst 5 thermal expansion microcapsule 6 mixing head 6 a first nozzle 6b second Nozzle 6 c mixing chamber 7 substrate sheet 8 delivery sheet 9a of substrate sheet contact roller 9b reverse roller 10 urethane resin composition (urethane resin layer) 11 delivery roller 12 heating device 13 Urethane laminate 14 Winding reel 16 Cooling roller 20 Crosslinked polyurethane layer 2 1 Bubble-62- 201105509 PR Pressure roller 10 1 Fiber sheet 102 Porous polyurethane (Polymer Elastomer) 1 03 Composite fiber sheet 104 Polyurethane resin layer 105 Mixed in layer 106 Void 107 Mixed bottom surface 109 of 暦1 ( ]5 Cortex 110 Polyurethane laminate 111 Polyurethane resin layer 113 Composite fiber sheet 112 Porous polyurethane (polymer elastomer) 114 Polyurethane resin layer 115 Mixed in暦116 void 117 leather-like sheet 118 leather-like sheet 120 cross-linking hot-melt urethane resin 12 1 release paper 122 urethane prepolymer 123 chain extender 124 temperature sensitive amine Acidification Catalyst 125 Heat a±y Expandable Microcapsule-63- 201105509 132 Release film-coating film of coating layer laminate 140 136 Mixing head 136a First nozzle 1 3 6b Second nozzle 136c Mixing chamber 136c constitutes 138 compound Feeding reel 139a of fiber sheet 103 Contact roller 139b Reversing roller 140 Release paper-coating layer laminate 141 Feeding roller 142 Heating device 143 Polyurethane laminate precursor 144 Polyurethane laminate precursor 143 Rolling reel 146 cooling roller -64-

Claims (1)

201105509 七、申請專利範圍: 1. 一種聚胺基甲酸酯積層體的製造方法,其特徵爲具備: 藉由將於常溫爲半固體或固體的胺基甲酸酯預聚 物(A)、鏈延長劑(B)及藉由示差掃描熱量測定展現所規 定的產熱尖峰溫度的感溫性胺基甲酸酯化觸媒(C),在比 該產熱尖峰溫度低10~30°C範圍的溫度下進行加熱熔融 混合,而形成胺基甲酸酯樹脂組成物的熔融混合步驟; 使用該胺基甲酸酯樹脂組成物在片材表面形成胺 基甲酸酯樹脂層的樹脂層形成步驟;以及 將該胺基甲酸酯樹脂層在該產熱尖峰溫度以上的 溫度進行熱處理的熱處理步驟。 2. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中該片材爲離型紙》 3. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中該片材係由離型紙與預先形成在該離型紙之表 面上的高分子彈性體層所構成的片材,且在該高分子彈 性體層的表面上形成胺基甲酸酯樹脂層。 4. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中該片材爲纖維基材。 5. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中該感溫性胺基甲酸酯化觸媒爲1,8-二氮雜雙環 (5,4,0)-十一烯-7的有機酸鹽。 6. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中 -65- 201105509 在該熔融混合步驟中,進一步將熱膨脹性微膠囊混 合於胺基甲酸酯樹脂組成物中; 該熱膨脹性微膠囊係在該熱處理步驟中以2倍以上 的膨脹倍率膨脹者。 7. 如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法’其中該熔融混合步驟係藉由使來自混合頭的第1噴 嘴加壓噴射而霧化之加熱熔融狀態的該胺基甲酸酯預 聚物(A),與來自第2噴嘴加壓噴射而霧化之包含該鏈 延長劑(B)及感溫性胺基甲酸酯化觸媒(C)的混合物衝撞 ,而在比該產熱尖峰溫度低10〜30 °C範圍的溫度下進行 加熱熔融混合的步驟。 8. —種聚胺基甲酸酯積層體,其係藉由如申請專利範圍第 1至7項中任一項之製造方法而得到。 9. 一種聚胺基甲酸酯積層體的製造方法,其中在申請專利 範圍第1項中記載之片材爲離型紙,且該方法包含在所 得到的該胺基甲酸酯樹脂層的表面上進一步貼合纖維 基材的步驟。 10·如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其具備: 藉由將熔融狀態的交聯性熱熔型胺基甲酸酯樹脂 塗布於離型紙表面而形成離型紙-塗膜積層體的塗膜形 成步驟; 使該交聯性熱熔型胺基甲酸酯樹脂部分交聯的熱 處理步驟: -66- 201105509 在壓力下使該塗膜積層於複合纖維片材的表面上 的積層步驟,其中該複合纖維片材係纖維片材與高分子 彈性體經含浸一體化而在表層具有多個空隙者,該壓力 係可使該離型紙-塗膜積層體的塗膜的一部分侵入該複 合纖維片材的該空隙中者;以及 使該交聯性熱熔型胺基甲酸酯樹脂冷卻固化的冷 卻步驟。 11.如申請專利範圍第10項之聚胺基甲酸酯積層體的製造 方法,其中該離型紙爲在其表面預先形成有高分子彈性 體層者,且在該高分子彈性體層的表面塗布熔融狀態的 交聯性熱熔型胺基甲酸酯樹脂。 -12.如申請專利範圍第1項之聚胺基甲酸酯積層體的製造方 法,其中 該熔融混合步驟係將於100°C熔融黏度爲1 0000 mPa ·秒以下的熱熔型胺基甲酸酯預聚物(A)、鏈延長劑 (B)及藉由示差掃描熱量測定展現所規定的產熱尖峰溫 度的感溫性胺基甲酸酯化觸媒(C),在比上述產熱尖峰溫 度低10〜3 0 °C範圍的溫度下進行加熱熔融混合,形成該 交聯性熱熔型胺基甲酸酯樹脂的熔融混合步驟; 該樹脂層形成步驟係藉由將溶融狀態的該交聯性 熱熔型胺基甲酸酯樹脂塗布於離型紙表面而形成離型 紙-塗膜積層體的塗膜形成步驟; 該熱處理步驟係藉由將該離型紙-塗膜積層體在該 產熱尖峰溫度以上的溫度進行熱處理而使該塗膜部分 -67- 201105509 交聯的熱處理步驟。 13. 如申請專利範圍第12項之聚胺基甲酸酯積層體的製造 方法,於該熱處理步驟之後,具備: 在壓力下使該塗膜積層於複合纖維片材的表面上 的積層步驟’其中該複合纖維片材係纖維片材與局分子 彈性體經含瀠一體化而在表層具有多個空隙者,該壓力 係可使該離型紙·塗膜積層體的塗膜的—部分侵入該複 合纖維片材的該空隙中者·,以及 $ @交聯性熱熔型胺基甲酸酯樹脂冷卻固化的冷 卻步驟。 14. 如申請專利範圍第12項之聚胺基甲酸酯積層體的製造 方法,其中該感溫性胺基甲酸酯化觸媒爲1,8-二氮雜雙 環(5,4,0)-H--烯-7的有機酸鹽。 15. 如申請專利範圍第12項之聚胺基甲酸酯積層體的製造 方法,其中 在該熔融混合步驟中,進一步將熱膨脹性微膠囊混 合於該交聯性熱熔型胺基甲酸酯樹脂中; 該熱膨脹性微膠囊係在該熔融混合步驟及/或熱處 理步驟中以2倍以上的膨脹倍率膨脹者。 16. 如申請專利範圍第12項之聚胺基甲酸酯積層體的製造 方法,其中該熔融混合步驟係藉由使來自混合頭的第1 噴嘴加壓噴射而霧化之加熱熔融狀態的該熱熔型胺基 甲酸酯預聚物(A),與來自第2噴嘴加壓噴射而霧化之 包含該鏈延長劑(B)及該感溫性胺基甲酸酯化觸媒(C)的 混合物衝撞,而在比該產熱尖峰溫度低1〇〜30 °C範圍的 1 -68 - 201105509 溫度下進行加熱熔融混合的步驟。 17. —種聚胺基甲酸酯積層體,.其係藉由如申請專利範圍第 10至16項中任一項之製造方法所得到的聚胺基甲酸酯 積層體; 該積層體係··纖維片材與高分子彈性體經含浸一體 化而在表層具有多個空隙的複合纖維片材,與積層於該 複合纖維片材上的聚胺基甲酸酯樹脂層的積層體; 該積層體具有混在層,該混在層係藉由該聚胺基甲 酸酯樹脂層的一部分侵入該空隙,而使該聚胺基甲酸酯 樹脂層的一部分與該複合纖維片材的表層以非相溶狀 態混在,且該混在層具有ίο μιη以上的厚度。 18. 如申請專利範圍第17項之聚胺基甲酸酯積層體,其中 該混在層的厚度爲30μιη以上。 19. 如申請專利範圍第17項之聚胺基甲酸酯積層體,其中 該混在層的厚度在該聚胺基甲酸酯樹脂層的總厚度中 所佔的比率爲1〇~80%。 20. 如申請專利範圍第17項之聚胺基甲酸酯積層體’其中 該聚胺基甲酸酯樹脂層係藉由交聯性熱熔型胺基甲酸 酯樹脂所形成的層° 21. 如申請專利範圍第I?項之聚胺基甲酸酯積層體’其中 該聚胺基甲酸酯樹脂層及該高分子彈性體的至少—者 爲多孔質。 2 2.如申請專利範圔第17項之聚胺基甲酸酯積層體’其中 該複合纖維片材的空隙率係在30〜85體積%的範圍內。201105509 VII. Patent Application Range: 1. A method for producing a polyurethane laminate, characterized by comprising: a urethane prepolymer (A) which is semi-solid or solid at normal temperature, The chain extender (B) and the temperature sensitive urethane catalyst (C) exhibiting the specified heat-generating peak temperature by differential scanning calorimetry are 10 to 30 ° C lower than the heat-generating peak temperature. a melt-mixing step of forming a urethane resin composition by heating and melt mixing at a range of temperatures; forming a resin layer forming a urethane resin layer on the surface of the sheet using the urethane resin composition a step of heat-treating the urethane resin layer at a temperature above the heat-generating peak temperature. 2. The method for producing a polyurethane laminate according to claim 1, wherein the sheet is a release paper. 3. The manufacture of a polyurethane laminate according to claim 1 In the method, the sheet is a sheet composed of a release paper and a polymer elastomer layer previously formed on the surface of the release paper, and a urethane resin layer is formed on the surface of the polymer elastomer layer. 4. A method of producing a polyurethane laminate according to claim 1, wherein the sheet is a fibrous substrate. 5. The method for producing a polyurethane laminate according to claim 1, wherein the temperature sensitive urethane catalyst is 1,8-diazabicyclo (5, 4, 0) An organic acid salt of undecene-7. 6. The method for producing a polyurethane laminate according to claim 1, wherein -65 to 201105509, in the melt mixing step, further mixing the heat-expandable microcapsules with the urethane resin composition The heat-expandable microcapsules are expanded by a expansion ratio of 2 times or more in the heat treatment step. 7. The method for producing a polyurethane laminate according to claim 1, wherein the melt mixing step is performed by subjecting the first nozzle from the mixing head to a sprayed spray to atomize the heated molten state. The urethane prepolymer (A) collides with a mixture containing the chain extender (B) and the temperature sensitive urethane catalyst (C) atomized by pressure injection from the second nozzle. And the step of heating and melting mixing is carried out at a temperature lower than the heat-generating peak temperature by 10 to 30 °C. 8. A polyurethane laminate obtained by the production method according to any one of claims 1 to 7. A method for producing a polyurethane laminate, wherein the sheet according to claim 1 is a release paper, and the method is included on the surface of the obtained urethane resin layer. The step of further bonding the fibrous substrate. 10. The method for producing a polyurethane laminate according to the first aspect of the invention, comprising: forming a crosslinked hot melt type urethane resin in a molten state on a surface of a release paper; Coating film forming step of release paper-coated layer; heat treatment step of partially crosslinking the crosslinkable hot melt type urethane resin: -66- 201105509 The coating film is laminated on the composite fiber sheet under pressure a laminating step on the surface of the material, wherein the composite fiber sheet-based fibrous sheet and the polymeric elastomer are impregnated and integrated to have a plurality of voids in the surface layer, and the pressure system can make the release paper-coated film laminated body A portion of the coating film invading the void of the composite fiber sheet; and a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin. 11. The method for producing a polyurethane laminate according to claim 10, wherein the release paper is a polymer elastomer layer formed on a surface thereof, and the surface of the polymer elastomer layer is coated and melted. A crosslinkable hot melt urethane resin in a state. -12. The method for producing a polyurethane laminate according to claim 1, wherein the melt-mixing step is a hot-melt amine group having a melt viscosity at 100 ° C of 1 0000 mPa·s or less. The acid ester prepolymer (A), the chain extender (B), and the temperature sensitive urethane catalyst (C) exhibiting the specified heat-generating peak temperature by differential scanning calorimetry, are produced in comparison with the above The hot peak temperature is lowered by heating and melt mixing at a temperature in the range of 10 to 30 ° C to form a melt-mixing step of the crosslinkable hot-melt urethane resin; the resin layer forming step is performed by melting the state a coating film forming step of applying the crosslinkable hot-melt urethane resin to the surface of the release paper to form a release paper-coated film laminate; the heat treatment step is performed by the release paper-coated film laminate The heat treatment step of heat-treating the temperature above the heat-generating peak temperature to cross-link the coating film portion -67-201105509. 13. The method for producing a polyurethane laminate according to claim 12, after the heat treatment step, comprising: a lamination step of laminating the coating film on the surface of the composite fiber sheet under pressure Wherein the composite fiber sheet-based fiber sheet and the local molecular elastomer are integrated with the ruthenium and have a plurality of voids in the surface layer, and the pressure system can partially infiltrate the coating film of the release paper and the coating film laminate The cooling step of cooling and solidifying the voids of the composite fiber sheet and the cross-linking hot melt urethane resin. 14. The method for producing a polyurethane laminate according to claim 12, wherein the temperature sensitive urethane catalyst is 1,8-diazabicyclo (5, 4, 0) An organic acid salt of -H--ene-7. 15. The method for producing a polyurethane laminate according to claim 12, wherein in the melt mixing step, the heat-expandable microcapsules are further mixed with the crosslinkable hot melt urethane In the resin, the heat-expandable microcapsules are expanded at a expansion ratio of 2 times or more in the melt mixing step and/or the heat treatment step. 16. The method for producing a polyurethane laminate according to claim 12, wherein the melt mixing step is performed by subjecting the first nozzle from the mixing head to a sprayed spray to atomize the heated molten state. The hot-melt urethane prepolymer (A) and the chain extender (B) and the temperature sensitive urethane catalyst (C) which are atomized by pressure injection from the second nozzle The mixture is collided and heated and melt mixed at a temperature of 1 - 68 - 201105509 which is lower than the temperature of the heat generating peak by 1 〇 30 ° C. A polyurethane laminate, which is a polyurethane laminate obtained by the production method according to any one of claims 10 to 16; a composite fiber sheet in which a fibrous sheet and a polymeric elastomer are integrated by impregnation and having a plurality of voids in a surface layer, and a laminate of a polyurethane resin layer laminated on the composite fiber sheet; The body has a mixed layer which intrudes into the void by a part of the polyurethane resin layer, so that a part of the polyurethane resin layer and the surface layer of the composite fiber sheet are non-phase The dissolved state is mixed, and the mixed layer has a thickness of ίο μηη or more. 18. The polyurethane laminate according to claim 17, wherein the mixed layer has a thickness of 30 μm or more. 19. The polyurethane laminate according to claim 17, wherein the thickness of the mixed layer accounts for 1 to 80% of the total thickness of the polyurethane resin layer. 20. The polyurethane laminate according to claim 17 wherein the polyurethane resin layer is formed by a crosslinkable hot melt urethane resin. The polyurethane laminate according to the first aspect of the patent application, wherein at least one of the polyurethane resin layer and the polymeric elastomer is porous. 2 2. The polyurethane laminate according to claim 17, wherein the composite fiber sheet has a void ratio in the range of 30 to 85% by volume.
TW99117174A 2009-05-29 2010-05-28 Method for preparing polyurethane laminate and polyurethane laminate obtained from the said method TWI466778B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009130704 2009-05-29
JP2009292852 2009-12-24

Publications (2)

Publication Number Publication Date
TW201105509A true TW201105509A (en) 2011-02-16
TWI466778B TWI466778B (en) 2015-01-01

Family

ID=43222392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99117174A TWI466778B (en) 2009-05-29 2010-05-28 Method for preparing polyurethane laminate and polyurethane laminate obtained from the said method

Country Status (4)

Country Link
JP (1) JP5622724B2 (en)
CN (1) CN102448695B (en)
TW (1) TWI466778B (en)
WO (1) WO2010137264A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018162519A1 (en) * 2017-03-09 2018-09-13 Basf Se Polyurethane formulations for the production of composite elements
TWI754091B (en) * 2018-08-08 2022-02-01 三芳化學工業股份有限公司 Artificial leather and manufacturing method thereof
AU2018437948A1 (en) * 2018-08-23 2021-03-18 Russell Bryan MORGAN Polymeric composition, method for producing a polymeric composition, substrates coated with a polymeric composition and apparatus for coating substrates with a polymeric composition
JP7303042B2 (en) * 2019-06-24 2023-07-04 セーレン株式会社 Synthetic leather
US20240109999A1 (en) * 2019-10-28 2024-04-04 Dic Corporation Fiber base material and artificial leather
CN115416325A (en) * 2022-09-01 2022-12-02 马栋才 Continuous production line for automobile foot pads

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243430A (en) * 1985-08-21 1987-02-25 Achilles Corp Production of sheetlike material
JP2000303368A (en) * 1999-04-26 2000-10-31 Kuraray Co Ltd Suede finish leather-like sheet
JP2003220670A (en) * 2002-01-29 2003-08-05 Kuraray Co Ltd Laminate
JP4038608B2 (en) * 2002-02-25 2008-01-30 大日本インキ化学工業株式会社 Solvent-free, moisture-curable hot-melt urethane resin composition excellent in durability, foam, and sheet structure using the same
JP4522313B2 (en) * 2005-04-26 2010-08-11 株式会社クラレ Laminate for synthetic leather
JP2007092195A (en) * 2005-09-27 2007-04-12 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous resin composition for fiber laminate skin, method for producing fiber laminate, and synthetic leather
EP2007825B1 (en) * 2006-04-07 2009-11-18 Dow Global Technologies Inc. Hot processing of polyurethane carpet backing systems using dual delayed action catalyst
CN101092061A (en) * 2006-06-20 2007-12-26 三芳化学工业股份有限公司 Artificial leather with even emboss, and fabricating method
CN101209613A (en) * 2006-12-29 2008-07-02 厚生股份有限公司 Method of preparing slip surface waterproof membrane and its applying cloth

Also Published As

Publication number Publication date
CN102448695A (en) 2012-05-09
JP5622724B2 (en) 2014-11-12
CN102448695B (en) 2015-03-25
JPWO2010137264A1 (en) 2012-11-12
WO2010137264A1 (en) 2010-12-02
TWI466778B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
TW201105509A (en) Method for preparing polyurethane laminate and polyurethane laminate obtained from the said method
JP5635414B2 (en) Leather-like sheet manufacturing method
TW201542635A (en) Sheet-like material and method for producing same
CN108350646B (en) Artificial leather using polyester and method for preparing the same
TW200415188A (en) Polyurethane foam sheet and method for producing laminated sheet using the same
KR20100130221A (en) Split leather product and manufacturing method therefor
CN102099184A (en) Method for continuously producing multi-layered composite bodies
WO2015017531A1 (en) Polyurethane adhesive film
CN102056737A (en) Multilayer composite materials which comprise a plastics foil permeable to water vapour, method for production of the same and use of the same
WO2010024249A1 (en) Leather-like sheet and manufacturing method thereof
CN111378270A (en) Composition for forming foam, method for producing foam, and material for leather
JP5374299B2 (en) Manufacturing method of silvered leather-like sheet
JP2013208814A (en) Polyurethane laminated body, and method for producing the same
JP2014129622A (en) Synthetic leather
KR101705176B1 (en) A polyurethane artificial leather and a method for manufacturing the same
WO2021056229A1 (en) Non-solvent 2k polyurethane artificial leather composition, artificial leather prepared with same and preparation method thereof
JP5779424B2 (en) Silvered leather-like sheet
KR20110002321A (en) Method for laminating functional fabric having by using aqueous polyurethane resin adhesive
TW202243869A (en) Porous layer structure, and method for producing porous layer structure
JP2012017541A (en) Grained artificial leather
JP3967486B2 (en) Artificial leather suitable for school bags
JP2011069018A (en) Leather-like sheet and method for producing the same
JP3946494B2 (en) Artificial leather with silver and method for producing the same
JP2013194336A (en) Grained artificial leather and method for producing the same
TWI801668B (en) Porous layer structure and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees