TW201105070A - Setting method and apparatus for a wireless communication system - Google Patents

Setting method and apparatus for a wireless communication system Download PDF

Info

Publication number
TW201105070A
TW201105070A TW98141061A TW98141061A TW201105070A TW 201105070 A TW201105070 A TW 201105070A TW 98141061 A TW98141061 A TW 98141061A TW 98141061 A TW98141061 A TW 98141061A TW 201105070 A TW201105070 A TW 201105070A
Authority
TW
Taiwan
Prior art keywords
wireless communication
setting
communication system
equal
packet
Prior art date
Application number
TW98141061A
Other languages
Chinese (zh)
Other versions
TWI405441B (en
Inventor
Cheng-Hsuan Wu
Yen-Chin Liao
Yung-Szu Tu
Original Assignee
Ralink Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralink Technology Corp filed Critical Ralink Technology Corp
Priority to US12/834,876 priority Critical patent/US8693356B2/en
Publication of TW201105070A publication Critical patent/TW201105070A/en
Application granted granted Critical
Publication of TWI405441B publication Critical patent/TWI405441B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A setting method for a wireless communication system, for determining a first amount of a plurality of high-throughput long training fields within a packet, includes determining a second amount of a plurality of space time streams needed by the wireless communication system transmitting the packet, and setting the first amount to be greater than or equal to 8 when the second amount is greater than 4.

Description

201105070 六、發明說明: 【發明所屬之技術領域】 本發明係指一種用於無線通訊系統之設定方法及設定裝置,尤 才曰一種可綠保超高呑吐量之無線區域網路通道估測運作的設定方法 及設定裝置。201105070 VI. Description of the Invention: [Technical Field] The present invention relates to a setting method and a setting device for a wireless communication system, and particularly a wireless area network channel estimation operation capable of green protection and ultra high throughput Setting method and setting device.

【先前技術】 無線區域網路(Wireless Local Area Network,WLAN)技術是 熱門的無線通訊技術之一,最早用於軍事用途,近年來廣泛應用於 各種消費性電子產品’如桌上型電腦、筆記型電腦或個人數位助理, 提供大眾更便利及快速的網際網路通訊功能。無線區域網路通訊協 定標準IEEE 802.11系列是由國際電機電子工程師學會(Institute〇f • Electrical and Electronics Engineers,IEffi)所制定,由早期的正EE 802.11a、IEEE 802.11b、IEEE 802,llg 等,演進至目前主流的正EE 802.11 η。IEEE 802.11 a/g/n 標準皆制正交分頻多工(Orthogonal[Prior Art] Wireless Local Area Network (WLAN) technology is one of the popular wireless communication technologies. It was first used in military applications and has been widely used in various consumer electronic products such as desktop computers and notes in recent years. A computer or personal digital assistant that provides the convenience and speed of Internet communication for the general public. The IEEE 802.11 series of wireless LAN protocols is developed by the Institute of Electrical and Electronics Engineers (IEffi), from the early EE 802.11a, IEEE 802.11b, IEEE 802, llg, etc. Evolved to the current mainstream EE 802.11 η. IEEE 802.11 a/g/n standard for orthogonal frequency division multiplexing (Orthogonal)

Frequency-Division Multiplexing , OFDM)調變技術,與 IEEE 802.11a/g標準不同的是,正EE8〇2 lln標準使用多輸入多輸出 (MultipleInputMultipleOutput,ΜΙΜΟ)技術及其它新功能,大幅 改善了 >料速率及傳輸吞吐量(Throughput),同時,通道頻寬由 20MHz 增加為 4〇MHz。 201105070 睛參考第1圖,第1圖為習知IEEE 802·11η標準之封包格式示 意圖。如第1圖所示’ ΙΕΕΕ802·11η標準之封包係由一前置資料 (Preamble)與待傳輸之資料組合而成’前置資料位於每一封包的 最前端,接續為待傳輸之資料。另外,前置資料為混合格式,可向 下相容於IEEE802.11a/g標準之無線區域網路裝置,所包含的攔位 依序為傳統短訓練攔位L-STF (Legacy Short Training Field)、傳統 長訓練攔位L-LTF (Legacy Long Training Field)、傳統訊號攔位 L-SIG (Legacy Signal Field)、高吞吐量訊號攔位 ht_sig (High-Throughput Signal Field)、高吞吐量短訓練欄位 ht-stf (High-Throughput Short Training Field)以及 N 個高吞吐量長訓練 攔位 HT-LTF ( High-Throughput Long Training Field )。傳統短訓練攔 位L-STF用於封包起始偵測(Start_0f_packet Detecti〇n)、自動增益 控制(Automatic Gain Control,AGC )、初始頻率偏移估測(Frequency Offset Estimation)及初始時間同步(TimeSynchr〇nizati〇n);傳統長 訓練欄位L-LTF用於精密之頻率偏移估測及時間同步;傳統訊號棚 位L-SIG攜帶資料速率及封包長度之資訊。高吞吐量訊號搁位 HT-弧卿資料速率之魏,並且驗自_·制於混合格式 或傳統格式;高吞吐量酬練嫌町·;^用於自動增益控制;以 及高呑吐量長訓練欄位町擔用於多輸入多輸出之通道估測,使 接收端可據以判斷通道狀態。 冋吞土里長δ川練欄位HT-LTF的態樣(pattem)係為業界所熟 201105070 知’在此不贅述’而根據其功能’高吞吐量長爾搁位咖叮可 進-步分為兩類。第i為龍高吞吐量長輯攔位,用來估測當 前(資料)所使用之通道的狀態,其數量1係由空間時間束 Time Stream)錄量Nsts所決定,如第2圖所示。第二類為延伸 (E麵ion)高吞吐量長訓練攔位,用來偵測未使用之通道的額外 空間維度(SpatialDimension),其數量仏咖係由待偵測之額外空 間維度的數量NESS所決^ ’且兩者關係相同於第2圖所示之數量 鲁NDLTF與數量NSTS之關係。此外,由於IEEE8〇2 Un標準至多支援 四個天線,因此,NDLTF、NELTF皆小於等於4。 另-方面,為了降低通道估測賴雜度,f知技術係將高吞吐 量長訓練襴位HT-LTF設計為由單一符元(Symb〇1)賦予不同之權 重與延遲而產生。因此,如第3圖所示,針對不同傳輸路徑(τχι 〜ΤΧ4) ’傳輸端會將高吞吐量長訓練攔位HT_LTF先經過一延伸碼 (SpreadingCode)矩陣’決定通道估測時適當的權重;接著經過循 籲環移位延遲(Cyclic Shift Delay,CSD)處理,加入循環前綴(Cyclic Prefix) ’以抵抗多路徑傳輸通道干擾;然後經過空間映射(邱此31 Mapping)處理,如波束形成(Beamforming),用以提升訊雜比; 最後’經過逆向離散傅利葉轉換(Inverse Discrete F〇urier Transform) ’實現正交分頻多工調變,將頻域(FrequencyD〇main) 輸入序列轉換為時域(Time Domain )正交分頻多工調變符元(OFDM Symbol)序列。其中’延伸碼矩陣為一 4χ4矩陣ρ4χ4,詳細内容為: 201105070 '1-11 1 ' 尸-1 1 -1 1 Ο 4x4 111-1 -1111 為了實現更高品質的無線區域網路傳輸,相關單位正在制定新 一代的無線區域網路標準,如IEEE802.11ac,其具有超高吞吐量 (Very High Throughput,VHT),且通道頻寬由 40MHz 提高至 80MHz,可支援四支以上的天線。換言之,空間時間束的數量 (或待偵測之額外空間維度的數量Ness)可能超過4,即超出了第 2圖所定義之情形’而無法決定資料高吞吐量長訓練攔位的數量 NDLTF (或延伸高吞吐量練欄位驢量Ν·),㈤時也無法決定 延伸碼矩陣。 有鑑於此,實有必要決定當空間時間束的 之額外空間維度的數量.)大於4時,資料高吞吐量 =:(或延伸高吞”長訓練欄位的_ 一,: 代的無線區域網路標準之實現。 【發明内容】 供用於無線通訊系統之設定 因此’本發明之主要目的即在於 方法及設定裝置。 、 用於. 本發明揭露一種設定方法, 無線通系統中決定一封包 201105070 所包含之複數個高吞吐量 •量設定為大於 含有判鳴物㈣—第―數㈣設定方法包 帛一va ,、,'傳适該封包所需之複數個空間時間束的一 以及於該第二數量大於4時,將該第一數. 或等於8。 勺所另揭路—種没定裝置’用於—無線通訊系統中決定一封 之複數個高吞吐量長繼攔位的—第一數量,該設定裝置 =-微處理器;以及—記憶體,用來儲存一程式,該程式用來 Γ雜處理器執行以下步驟:判斷該無線通訊线傳送該封包所 玲之複數個纠時間束的—第二數量;以及於該第二數量大於4 時將該第—數量設定為大於或等於8。 【實施方式】 明參考第4圖,第4圖為本發明實施例—設定流程初之示意 籲圖。設定流程4〇用於一無線通訊系統中決定一封包所包含之高吞吐 量長訓練欄位的數量,該無線通訊系統較佳地符合無線區域^路標 準IEEE 802.11。設定流程40包含以下步驟: 步驟400 :開始。 步驟402 :判斷無線通訊系統傳送一封包所需之空間時間束的 敫量Nsts。 步驟404 :於數量NSTS大於4時,將該封包所包含之高吞吐量 長訓練攔位的數量設定為大於或等於8。 201105070 步驟406 ·結束。 根據设定流程4G,當饰_的數量NSTS大於4時,本發明 係將而呑吐量長崎攔位雜量設定為8以上。更詳細來說,此處 所稱之南吞吐1長爾·係為㈣高吞吐量長訓練欄位,換言 之,前述關係可以下列式子表示: ^DLTF — 8, \/N> 4 ° 當資料高呑吐量長訓練欄位的數量NDLTF決定後,可進一步決 疋《申馬矩陣料定通道估測時適當的權重。需注意的是,延伸 碼矩陣係絲轉換高吞吐4長繼攔位,錢定通道估測時的權 重,,故,、詳、’·田内令可朗系統需求而有所不同。—般而言’為減少 運异複雜度,可較佳地將延伸碼矩陣的各絲(element)設為^或 -卜並將延伸碼矩_轉置轉設計為與反矩陣姆;如此一來, /、要將L伸碼矩陣的行列互換即可得其反矩陣,使整體運算複雜度 得以降低。藉此’可透過電_統強大的運算能力,得出上列式$ 之結果。 進-步地,第2圖中數量Ndltf與數量Nsts之關係可擴充為第 5圖之例,亦即當空間時間束的數量^為5、6、7、8時,資料高 吞吐量長麟獅的數量Ν·皆為8。除此之外,顧及技術延續呵 性’在設計適用於NDLT必之延伸碼矩陣時,可利用原本適用於 NDltf=4之延伸碼矩陣p4M。例如: 201105070Frequency-Division Multiplexing (OFDM) modulation technology, unlike the IEEE 802.11a/g standard, is the EE8〇2lln standard that uses Multiple Input Multiple Output (ΜΙΜΟ) technology and other new features to significantly improve the material. Rate and transmission throughput (Throughput), while the channel bandwidth is increased from 20MHz to 4〇MHz. 201105070 The eye refers to Figure 1, which is a schematic diagram of the packet format of the conventional IEEE 802.11n standard. As shown in Figure 1, the ΙΕΕΕ802·11η standard is composed of a pre-prepared data (Preamble) combined with the data to be transmitted. The pre-data is located at the forefront of each packet and continues to be the data to be transmitted. In addition, the pre-data is a mixed format, which can be compatible with the IEEE802.11a/g standard wireless local area network device. The included bits are in the traditional short training position L-STF (Legacy Short Training Field). Traditional long training field L-LTF (Legacy Long Training Field), traditional signal interception L-SIG (Legacy Signal Field), high-throughput signal interception ht_sig (High-Throughput Signal Field), high-throughput short training bar Bit ht-stf (High-Throughput Short Training Field) and N high-throughput training positions HT-LTF (High-Throughput Long Training Field). The traditional short training block L-STF is used for packet start detection (Start_0f_packet Detecti〇n), automatic gain control (AGC), initial frequency offset estimation (Frequency Offset Estimation) and initial time synchronization (TimeSynchr 〇nizati〇n); the traditional long training field L-LTF is used for precise frequency offset estimation and time synchronization; the traditional signal booth L-SIG carries information on data rate and packet length. The high-throughput signal is used to hold the HT-Arc data rate, and is tested from the mixed format or the traditional format; high-throughput rewards are used; automatic power control; and high-pitched long-distance training The field is used for channel estimation of multiple input and multiple output, so that the receiving end can judge the channel status. Pat 冋 里 δ δ 川 HT HT HT HT HT HT HT HT HT HT HT 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 050 Divided into two categories. The ith is the long high throughput long block, which is used to estimate the state of the channel used by the current (data), the number of which is determined by the space time beam Time Stream) Nsts, as shown in Figure 2 . The second type is the extended (E-face) high-throughput long training block, which is used to detect the additional spatial dimension of the unused channel (SpatialDimension), the number of which is the number of additional spatial dimensions to be detected NESS The decision is made and the relationship between the two is the same as the relationship between the number of Lu NDLTFs and the number of NSTSs shown in Figure 2. In addition, since the IEEE8〇2 Un standard supports up to four antennas, both NDLTF and NELTF are less than or equal to four. On the other hand, in order to reduce the channel estimation latitude, the HT-LTF is designed to assign different weights and delays to a single symbol (Symb〇1). Therefore, as shown in FIG. 3, for the different transmission paths (τχι 〜ΤΧ4), the transmission end will pass the high-throughput long training block HT_LTF through an extension code (SpreadingCode) matrix to determine the appropriate weight when estimating the channel; Then, through Cyclic Shift Delay (CSD) processing, Cyclic Prefix is added to resist multipath transmission channel interference; then spatial mapping (such as 31 Mapping) processing, such as beamforming (Beamforming) ), to improve the signal-to-noise ratio; finally 'transverse discrete Fourier transform (Inverse Discrete F〇urier Transform) 'to achieve orthogonal frequency division multiplexing modulation, the frequency domain (FrequencyD〇main) input sequence into the time domain ( Time Domain) Orthogonal Frequency Division Multiplexed OFDM Symbol (OFDM Symbol) sequence. The 'extension code matrix is a 4χ4 matrix ρ4χ4, the details are: 201105070 '1-11 1 ' corpse-1 1 -1 1 Ο 4x4 111-1 -1111 In order to achieve higher quality wireless area network transmission, related units A new generation of wireless local area network standards, such as IEEE 802.11ac, is being developed, which has a Very High Throughput (VHT), and the channel bandwidth is increased from 40 MHz to 80 MHz to support more than four antennas. In other words, the number of spatial time beams (or the number of additional spatial dimensions to be detected, Ness) may exceed 4, which is beyond the situation defined in Figure 2, and cannot determine the number of data high throughput long training blocks NDLTF ( Or extend the high-throughput practice field Ν·), (5) can not determine the extension code matrix. In view of this, it is necessary to determine the number of extra spatial dimensions when the space time beam is greater than 4), the data high throughput =: (or extend the high swallowing) _ one of the long training field, the generation of the wireless area Implementation of the network standard. SUMMARY OF THE INVENTION The present invention is directed to a method and a setting device. The present invention discloses a setting method, and a packet is determined in the wireless communication system. 201105070 The plurality of high throughput quantities included are set to be greater than the suffrage (four) - the first number (four) setting method package va, , 'the one of the plurality of spatial time beams required to pass the packet, and the first When the number is greater than 4, the first number is equal to or equal to 8. The scoop of the other road is used to determine the number of high-throughput long-term interceptors in the wireless communication system. a quantity, the setting device=-microprocessor; and a memory for storing a program for the noisy processor to perform the following steps: determining a plurality of the wireless communication lines transmitting the packet The second quantity of the time bundle; and the first quantity is set to be greater than or equal to 8 when the second quantity is greater than 4. [Embodiment] Referring to FIG. 4, FIG. 4 is an embodiment of the present invention. Initially, the setting process is used in a wireless communication system to determine the number of high-throughput long training fields included in a packet, and the wireless communication system preferably conforms to the wireless area standard IEEE 802.11. The process 40 includes the following steps: Step 400: Start Step 402: Determine the amount of space time bundle Nsts required by the wireless communication system to transmit a packet. Step 404: When the number of NSTS is greater than 4, the high throughput included in the packet The number of the length training blocks is set to be greater than or equal to 8. 201105070 Step 406 · End. According to the setting process 4G, when the number NSTS of the decoration _ is greater than 4, the present invention sets the amount of the sputum Nagasaki block to More specifically, the South Handling 1 Changer is referred to herein as the (IV) high throughput long training field. In other words, the foregoing relationship can be expressed by the following formula: ^DLTF — 8, \/N> 4 ° After the NDLTF is determined by the number of training fields with high data throughput, the appropriate weights can be further determined in the Shenma matrix. It should be noted that the extension code matrix is converted to high throughput and 4 long relay blocks. The weight of the money channel is estimated, and therefore, the details of the '········································································· Each element is set to ^ or -b and the extension code moment _ transpose is designed to be inverse matrix; thus, /, the row and column of the L code matrix are interchanged to obtain the inverse matrix, so that The overall computational complexity is reduced, so that the result of the above-mentioned $ can be obtained through the powerful computing power of the system. In the second step, the relationship between the number of Ndltf and the number of Nsts in Fig. 2 can be expanded to the example of Fig. 5, that is, when the number of spatial time beams is 5, 6, 7, and 8, the data throughput is long. The number of lions is 8. In addition, taking into account the technical continuity, when designing the extension code matrix for NDLT, the extension code matrix p4M originally applicable to NDltf=4 can be utilized. For example: 201105070

若將延伸碼矩陣Pa^8分割為四個4x4矩陣,如「pn P12l,可釦If the extension code matrix Pa^8 is divided into four 4x4 matrices, such as "pn P12l, deductible

[P21 P22\ J % 其左上4x4矩陣(P11)、右上4x4矩陣(户12)皆為延伸碼矩陣^ 4。進一步地,可以列為單位,對矩陣左下4χ4矩陣(户21)及右下 4x4矩陣(Ρ22)進行線性運算,可得:[P21 P22\ J % The upper left 4x4 matrix (P11) and the upper right 4x4 matrix (household 12) are all extension code matrices ^4. Further, it can be listed as a unit, and a linear operation is performed on the lower left 4 χ 4 matrix (household 21) and the lower right 4x4 matrix (Ρ22) of the matrix, and the following is obtained:

其中,延伸碼矩陣^的左上4χ4鱗、右上Μ矩陣及左下糾 矩陣皆為延伸碼矩陣p4M。 而〜的疋《申碼矩陣Pa㈣、pb㈣係Μ延伸碼矩陣的兩種 财靴練。同時,本㈣之精神在於蚊高吞 :搁位的數量。當高吞吐量長訓練攔位的數量決定後,對應之延 伸碼矩陣轉物可被決定,則本領域具财知識者可進-步依不 201105070 同需求,得出適當之延伸碼矩陣。 為了驗證前述方法,可透過適當模擬方式, >处,”- 件出如第6圖所示 之模擬、,果,用以表示一 6送2收系統之通道话、、丨The upper left 4χ4 scale, the upper right unitary matrix and the lower left correction matrix of the extension code matrix ^ are all the extension code matrix p4M. And ~ 疋 "Shenzhen code Pa (four), pb (four) system Μ extension code matrix of two kinds of money training. At the same time, the spirit of this (4) is that the mosquitoes are swallowed up: the number of seats. When the number of high-throughput long training blocks is determined, the corresponding extension code matrix can be determined, and those skilled in the field can further determine the appropriate extension code matrix according to the requirements of 201105070. In order to verify the above method, through the appropriate simulation mode, >, the simulation, as shown in Figure 6, is used to represent a channel of 6 to 2 receive system, 丨

_ 、、、σ果。其中,X 季由表示訊雜比(Signal to Noise Ratio) SNR,y車由表示均方、犯 (Mean Square Error )。 、 本發明係於空間咖束缝量Nsts切4時, 長訓練攔位的數量ndltf設定為8以上,其 '门 里 額外办門雜#為當待伯測之 額外工間維度的數量Ness大於4時,將 數詈N 甲门吞吐篁長訓練攔位的 數里NELTF设疋為8以上」,此種衍生 易完成。 ⑽顺料常知識者可輕 另方面,在硬體實現方面,可以軟體、韌體 流程4〇轉換_ 朝體專方式’將設定 锝換為^式,並儲存於無線通訊装置之一記憶體 不U處理執行設定流程4G之步驟。此轉 .、ε 程式以竇規拟、°又々丨L程40轉換為適當 藝。實鱗應之奴裝置,縣本領域騎常知識麵熟習之控 測之=:述’習知_僅定義了空間時間束的數量〜“咖 、 二間維度的數量NESS)小於或等於4時資 二, 練欄位的數| M ^ X營4時㈣兩吞吐量長创 間時_數量‘大於4時,習知技術即無法決定^ 201105070 吐量長崎攔位的數量,也無法延伸碼矩陣。相較之下,本發明係 束量Nsts大帽’„ _吐量長訓練搁位的 設定為8以上,或者更精確地,當空味]束的數量Is 、.、6、7、8時’將龍高吞吐量長訓練攔位的數4n_設定 為,如此一來,可進一步決定延伸碼矩陣。 综上所述’本發明係於空間時間束的數量大於4時將資料高 吞吐量長訓練欄㈣數量奴為8以上,以確保超高吞吐量之無線 區域網路的通道估測運作。 以上所述餘本發明之較佳實施例,凡依本翻申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為習知IEEE 802.11η標準之封包格式示意圖。 第2圖為習WEEE802.lln標準之高吞吐量長訓練搁位之數量 示意圖。 第3圖為習知正EE8〇2.lln標準高吞吐量長訓練爛位的處理流 程示意圖。 第4圖為本發明實施例一設定流程之示意圖。 第5圖為本發明實施例之高吞吐量長訓練欄位之數量示意圖。 第6圖為本發明實施例之通道估測結果示意圖。 201105070 【主要元件符號說明】 L-STF 傳統短訓練欄位 L-LTF 傳統長訓練攔位 L-SIG 傳統訊號欄位 HT-SIG 高吞吐量之訊號攔位 HT-STF 高吞吐量之短訓練欄位 HT-LTF 高吞吐量之長訓練攔位 Nsts 空間時間束的數量 N〇ltf 資料高吞吐量長訓練欄位的數量 TX1 〜TX4 傳輸路徑 40 設定流程 400、402、404、406 步驟 MSE 均方誤差 SNR 訊雜比_, ,, σ fruit. Among them, the X season is represented by the Signal to Noise Ratio SNR, and the y vehicle is represented by the Mean Square Error. The invention is based on the amount of space coffee sew Nsts cut 4, the number of long training blocks ndltf is set to 8 or more, and the number of additional work spaces in the door is Ness is greater than the number of additional work dimensions to be tested. At 4 o'clock, the number of NELTFs in the number of N-Men's long-range training blocks is set to 8 or more. This kind of derivative is easy to complete. (10) Those who are familiar with the knowledge can use other aspects. In terms of hardware implementation, the software and firmware processes can be converted into _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The process of setting flow 4G is performed without U processing. This turn, the ε program is converted to the appropriate art by the sinus formula, ° and 々丨L. The real scales of the slaves, the county's field of knowledge of the familiar knowledge of the control =: The description of the 'traditional _ only defines the number of spatial time bundles ~ "Caf, the number of dimensions of the two dimensions NESS" is less than or equal to 4资二, the number of training fields | M ^ X battalion 4 hours (four) two throughput long-term interval _ number 'greater than 4, the conventional technology can not be determined ^ 201105070 vomiting the number of Nagasaki block, can not extend the code In contrast, the hull amount Nsts big cap of the present invention is set to be 8 or more, or more precisely, when the number of bundles is Is, ., 6, 7, 8 At the time, the number 4n_ of the long high throughput training block is set to, so that the extension code matrix can be further determined. In summary, the present invention is based on the fact that when the number of spatial time beams is greater than 4, the data high throughput and long training column (4) number slaves are 8 or more to ensure the channel estimation operation of the ultra-high throughput wireless local area network. The above-described preferred embodiments of the present invention, all of which are equivalent to the scope of the present invention, are intended to be within the scope of the present invention. [Simple Description of the Drawing] Fig. 1 is a schematic diagram of a packet format of the conventional IEEE 802.11n standard. Figure 2 is a schematic diagram of the number of high throughput long training shelves for the WEEE802.lln standard. Figure 3 is a schematic diagram of the processing flow of the conventional high-throughput long-running rotten position of the EE8〇2.lln standard. FIG. 4 is a schematic diagram of a setting process according to an embodiment of the present invention. FIG. 5 is a schematic diagram showing the number of high throughput long training fields according to an embodiment of the present invention. FIG. 6 is a schematic diagram of channel estimation results according to an embodiment of the present invention. 201105070 [Key component symbol description] L-STF Traditional short training field L-LTF Traditional long training block L-SIG Traditional signal field HT-SIG High throughput signal block HT-STF High throughput short training bar Bit HT-LTF High throughput long training block Nsts Space time bundle number N〇ltf Data High throughput Long training field number TX1 ~ TX4 Transmission path 40 Setting flow 400, 402, 404, 406 Step MSE Mean square Error SNR

1212

Claims (1)

201105070 七、申請專利範園·· •種°又定方法,用於一無線通訊系統中決定一封包所包含之複 數"ί岗呑土量長訓練欄位的一第一數量,該設定方法包含有: 判斷邊無線通訊系統傳送該封包所需之複數個空間時間束的一 第一數量;以及 於該第二數量大於4時,將該第一數量設定為大於或等於8。 2·如二求項1所述之設定方法其中於該第二數量大於*時,將 該第一數量設定為大於或等於8之步驟,包含有於該第二數量 等於5至8之任—整數時,將該第一數量設定為8。 3. 尸11 Ρ12 Ρ2\ Ρ22 其中’州、PU、瓜及哎分別為―糾矩陣 《如請求項3所述之歧方法,其中外為該第二 於4時,該無線通訊系統用來轉換_數個高=二 位之一延伸碼矩$ ° 1長訓練攔 5.如請求項4所述之設定方法,其中 201105070 尸11 P12 P2\ P22 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 ' 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 1 1 Γ 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -Γ -1 1 -1 1 —1 -1 1 1 —1 1 1 -1 ;以及 6.如請求項4所述之設定方法,其中 P11 尸12 P21 P22 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 _ • 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 ' 1 1 -1 1 1 1 1 -1 -1 1 1 1 -1 1 -1 -1' -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 ;以及 14 201105070 7.如請求項4所述之設定方法,其中及朽2可同時以列為單 位,進行線性運算。 8· -種_裝Ϊ ’用於—無線通訊系統中決定—封包所包含之複 數個而吞吐量長訓練攔位的一第一數量,該設定裝置包含有: 一微處理器;以及 一δ己憶體’用來儲存一程式,該程式用來指示該微處理器執行 以下步驟: 判斷該無線通訊系統傳送該封包所需之複數個空間時間束 的一第二數量;以及 於該第二數量大於4時,將該第一數量設定為大於或等於 8 〇 9.如請求項1所述之設定裝置,其中於該第二數量大於4時,該 程式指示該微處理器執行將該第一數量設定為大於或等於8之 步驟,包含有於該第二數量等於5至8之任一整數時,該程式 指示該微處理器執行將該第一數量設定為8之步驟。 1〇‘如請求項9所述之設定裝置,其該程式另用來指示該微處理器 設定該無線通訊系統用來轉換該複數個高吞吐量長訓練欄位之 一延伸碼矩陣Ρ為: 201105070 其中’ P1卜/>12、P21及P22分別為一 4χ4糾車 11.如請求項H)所述之設定裝置,其中P11為該第二數量小於或等 於4時’該無線通訊系統用來轉換該複數個高吞吐量長訓練搁 位之一延伸碼矩陣。 12.如請求項η所述之設定裝置,其中 P11 P12 P21 111-1 — 1111 1 -1 1 1 1 1 -1 1 -1 1 1 -1201105070 VII. Application for Patent Fan Park···°°A method is used to determine the first quantity of the plural number of training fields included in a package in a wireless communication system. The method includes: determining a first quantity of a plurality of spatial time bundles required by the wireless communication system to transmit the packet; and setting the first quantity to be greater than or equal to 8 when the second quantity is greater than 4. 2. The setting method according to claim 1, wherein when the second quantity is greater than *, the step of setting the first quantity to be greater than or equal to 8, comprising the second quantity being equal to 5 to 8 - When the integer is an integer, the first quantity is set to 8. 3. Corpse 11 Ρ12 Ρ2\ Ρ22 where 'state, PU, melon and 哎 are respectively ―correction matrix', as described in claim 3, wherein the second is 4, the wireless communication system is used to convert _ A number of high=two-digit extension code moments $° 1 long training block 5. The setting method described in claim 4, wherein 201105070 corpse 11 P12 P2\ P22 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 ' 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 1 1 Γ 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -Γ -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 ; and 6. The setting method as described in claim 4, wherein P11 corpse 12 P21 P22 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 _ • 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 ' 1 1 -1 1 1 1 1 -1 -1 1 1 1 -1 1 -1 -1' -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 ; and 14 201105070 7. As requested in item 4 The setting method described above, in which the chrono 2 can be linearly operated in units of columns at the same time. 8· - _ Ϊ 用于 'Used in the wireless communication system to determine - a first number of packets and a long throughput training block included in the packet, the setting device comprises: a microprocessor; and a δ The memory element is used to store a program for instructing the microprocessor to perform the following steps: determining a second quantity of a plurality of spatial time bundles required by the wireless communication system to transmit the packet; and When the number is greater than 4, the first quantity is set to be greater than or equal to 8 〇 9. The setting device of claim 1, wherein when the second quantity is greater than 4, the program instructs the microprocessor to perform the The step of setting the number to be greater than or equal to 8, including the step of setting the first quantity to 8 when the second number is equal to any integer from 5 to 8. 1. The setting device of claim 9, wherein the program is further configured to instruct the microprocessor to set an extension code matrix of the wireless communication system for converting the plurality of high throughput long training fields: 201105070 wherein 'P1 Bu/> 12, P21 and P22 are respectively a 4χ4 car. 11. The setting device according to claim H), wherein P11 is when the second number is less than or equal to 4, 'for the wireless communication system To convert the extension code matrix of one of the plurality of high throughput long training shelves. 12. The setting device according to claim n, wherein P11 P12 P21 111-1 — 1111 1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 -11 -1 1 -1-1 —1 ** 1 1 ;以及 P22 -1 13‘如請求項11所述之設定襞置,其中 尸11-1 -11 -1 1 -1-1 -1 ** 1 1 ; and P22 -1 13 'As set forth in claim 11, the corpse 11 11-11 111-1 -1111 16 201105070 PI 2 P21 尸22 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 ;以及11-11 111-1 -1111 16 201105070 PI 2 P21 Corpse 22 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 ; 14.如請求項11所述之設定裝置,其中户21及P22可同時以列為 單位,進行線性運算。14. The setting device according to claim 11, wherein the households 21 and P22 can perform linear operations simultaneously in units of columns. 1717
TW98141061A 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system TWI405441B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/834,876 US8693356B2 (en) 2009-07-16 2010-07-12 Method for wireless communication system and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22593109P 2009-07-16 2009-07-16

Publications (2)

Publication Number Publication Date
TW201105070A true TW201105070A (en) 2011-02-01
TWI405441B TWI405441B (en) 2013-08-11

Family

ID=43485871

Family Applications (5)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141062A TWI441491B (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98141061A TWI405441B (en) 2009-07-16 2009-12-01 Setting method and apparatus for a wireless communication system
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98142476A TW201105071A (en) 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW98140123A TW201105057A (en) 2009-07-16 2009-11-25 Method and apparatus for generating training sequences in wireless communication system
TW98141062A TWI441491B (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW98141064A TW201105074A (en) 2009-07-16 2009-12-01 Method of generating preamble sequence for wireless local area network device
TW98142476A TW201105071A (en) 2009-07-16 2009-12-11 Method and apparatus of generating preamble sequence for wireless communication system

Country Status (2)

Country Link
CN (2) CN101958739B (en)
TW (5) TW201105057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470958B (en) * 2012-01-03 2015-01-21 Mstar Semiconductor Inc Method and associated apparatus applied to receiver of wireless network for determining a quantity of antennas of transmitter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693356B2 (en) 2009-07-16 2014-04-08 Ralink Technology Corp. Method for wireless communication system and device using the same
CN102201891B (en) * 2011-05-03 2015-07-22 中兴通讯股份有限公司 Wireless frame transmission method and device
US20150365257A1 (en) * 2014-06-12 2015-12-17 Huawei Technologies Co., Ltd. System and Method for OFDMA Resource Allocation
US9712217B2 (en) 2014-09-08 2017-07-18 Intel Corporation Parallel channel training in multi-user multiple-input and multiple-output system
US9998951B2 (en) * 2015-08-05 2018-06-12 Qualcomm Incorporated Training sequence generation for wireless communication networks
CN113612591A (en) 2015-08-26 2021-11-05 华为技术有限公司 Method and device for transmitting HE-LTF sequence
CN109462560B (en) * 2015-11-23 2020-07-07 华为技术有限公司 Wireless local area network data transmission method and device
WO2017088761A1 (en) * 2015-11-23 2017-06-01 华为技术有限公司 Wireless local area network data transmission method and device
CN108683482B (en) * 2017-04-01 2021-03-09 电信科学技术研究院 Method and device for estimating timing position
TWI773256B (en) 2021-04-20 2022-08-01 國立陽明交通大學 Method and architecture of synchronization of wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US8737189B2 (en) * 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
JP2009501493A (en) * 2005-07-15 2009-01-15 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Antenna selection for multi-input multi-output systems
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
JP4367422B2 (en) * 2006-02-14 2009-11-18 ソニー株式会社 Wireless communication apparatus and wireless communication method
US20070189412A1 (en) * 2006-02-15 2007-08-16 Samsung Electronics Co., Ltd. Method and system for sounding packet exchange in wireless communication systems
US7804800B2 (en) * 2006-03-31 2010-09-28 Intel Corporation Efficient training schemes for MIMO based wireless networks
JP4924106B2 (en) * 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
US8526351B2 (en) * 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470958B (en) * 2012-01-03 2015-01-21 Mstar Semiconductor Inc Method and associated apparatus applied to receiver of wireless network for determining a quantity of antennas of transmitter

Also Published As

Publication number Publication date
TW201105057A (en) 2011-02-01
CN101958739A (en) 2011-01-26
CN101958739B (en) 2013-09-11
CN103457898B (en) 2017-04-26
TW201105071A (en) 2011-02-01
TW201105074A (en) 2011-02-01
TWI405441B (en) 2013-08-11
CN103457898A (en) 2013-12-18
TW201105073A (en) 2011-02-01
TWI441491B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
TW201105070A (en) Setting method and apparatus for a wireless communication system
JP6513752B2 (en) Single stream phase tracking during channel estimation in ultra-high throughput wireless MIMO communication systems
CN102714815B (en) The method of transmission control and training symbol in multi-user wireless communication system
JP6599333B2 (en) Multi-user multiple-input multiple-output (MU-MIMO) feedback protocol
US8498245B2 (en) Method of arranging packets in a wireless communication system and related device
JP6014948B2 (en) Sounding packet format for long distance WLAN
US9001930B2 (en) Dual-stream signal (SIG) field encoding with higher order modulation
US8462863B1 (en) Midamble for WLAN PHY frames
JP5835594B2 (en) Cyclic shift delay in multi-user packets with resolvable very high throughput long training field (VHTLTF)
KR101507676B1 (en) Radio frame transmitting method and device
WO2011071300A2 (en) Method and apparatus of transmitting training signal in wireless local area network system
CN101729120B (en) Wireless communication apparatus and wireless communication method
CN107078880A (en) System, method and apparatus for the interference mitigation in wireless network
KR20110097727A (en) Method and apparatus for transmitting training sequence in multi user wireless communication system
US9490882B1 (en) Composite sounding for MIMO beamforming in a wireless home network
KR20170016979A (en) System and method for ofdma resource allocation
WO2021086263A1 (en) Communication apparatus and communication method for channel estimation
JP2023184728A (en) Communication device, communication method for the same, and program
US11539481B2 (en) Client station arranged to indicate a maximum number of long training field (LTF) symbol transmit or receive capabilities and methods
US9584278B2 (en) Uplink multi-user-MIMO without client assistance
JP2021078010A5 (en)
WO2022122025A1 (en) Signal processing method and apparatus
WO2022012297A1 (en) Ppdu transmission method and related apparatus
US20110013722A1 (en) Method for Generating Training Sequences and Transmitter Using the Same
WO2016095092A1 (en) Method, apparatus and system for sending and receiving information in wireless local area network