TW201104909A - Apparatus for inspecting photovoltaic power generating element - Google Patents

Apparatus for inspecting photovoltaic power generating element Download PDF

Info

Publication number
TW201104909A
TW201104909A TW99118099A TW99118099A TW201104909A TW 201104909 A TW201104909 A TW 201104909A TW 99118099 A TW99118099 A TW 99118099A TW 99118099 A TW99118099 A TW 99118099A TW 201104909 A TW201104909 A TW 201104909A
Authority
TW
Taiwan
Prior art keywords
solar power
power generation
light
filter
less
Prior art date
Application number
TW99118099A
Other languages
Chinese (zh)
Inventor
Kazumi Takano
Tadaomi Taniguchi
Original Assignee
Internat Test & Engineering Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Internat Test & Engineering Services Co Ltd filed Critical Internat Test & Engineering Services Co Ltd
Publication of TW201104909A publication Critical patent/TW201104909A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Disclosed is a low-cost apparatus for inspecting a photovoltaic power generating element, by which a clear captured image can be easily obtained in the inspection of the photovoltaic power generating element, said inspection using an EL method. The apparatus (10) for inspecting the photovoltaic power generating element is provided with: a holding table (14) for the photovoltaic power generating element (12); a power supply (16) which applies a forward bias to the photovoltaic power generating element (12); a camera (18) which captures an image of EL of the photovoltaic power generating element (12); a filter (20) for passing through light having a predetermined wavelength; and a light source (26) which irradiates the photovoltaic power generating element (12) with light that includes light in the near infrared region.

Description

201104909 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種利用EL(Electro-Luminescence,電 致發光)之太陽電池之檢查裝置。 【先前技術】 近年來,為促進利用綠色能源,太陽能發電元件的開 發、普及正蓬勃發展。目前,就最普及之太陽能發電元件 而言,可擧例如矽結晶型太陽電池。矽結晶型太陽電池, 係於約0_3mm t P型矽晶圓之受光面側,依序積層形成n 層(約l"m)、反射防止膜。進而,以印刷法形成表面電極 與背面電極。 太陽能發電元件,於製造時容易產生各種缺陷。例如, ⑴由於石夕晶圓容易破裂及簡,因此,製造時容易產生微 細之龜裂。(2)由於以印刷法形成電極圖案,於燒成時電極 圖案貫穿反射防止膜而接人Μ ^ a 、叫接口於η層,因此,容易產生電極 圖案之斷線。 因此’於製造時必須淮耔 貝進仃缺檢查。就缺陷檢查方法 而言,一般係使用EL法,肱τ:伯旷 — 將正偏壓施加於太陽能發電元件 (參,.,、下述專利文獻、非專 r. . j又馱)。藉由施加正偏壓,若是 夕系太陽能發電元件,則會 ^ .. , t T發出根據矽之能帶隙(band gap) 雷六m L '則對於斷線部位以後無法供應 電力’因此,從斷線部位 察出暗部。 灸…、法射出近紅外線,而可觀 201104909 ,在此用以檢測出無法以外觀檢查來檢測之微細龜 乂 <、、頁取付河解析度且鮮明之影像。X,為識別斷線部 位而要求成拍攝細表面電極⑽〇〆m)之解析度。 對裝載有50〜60片太陽能發電元件之太陽電池 板(x2m)進仃缺陷檢查。在此情形,對各太陽能發電元 件施加與開放電壓同等之順偏壓,從太陽電池板進行近紅 ^之發A α攝影機拍攝此發光後之太陽能發電元件, 進行有無缺陷及缺陷部位之識別。 { 於上述缺陷檢查所使用之冷卻CCD(Charge Coupled DeVlce ’電荷耦合元件)攝影機,並未裝載自動對焦 (autofocus)機構。因此,必須一邊改變透鏡之焦點距離、Γ 邊進订數片之攝影,此時,必須確認影像並找出對隹之 位置。若發生被攝影體之大小或欲攝影之部位變更,則此 時必須進行焦點調整,實乃既耗時亦費力之作業。 考慮到一邊觀察以一般的攝影機所進行之尋像器 ()邊進仃對焦之方法。但,由於矽系太陽電池之 EL為近紅外線,因此無法以肉眼看見。如圖2所示,於近 :工外線與可見光’當使用相同透鏡34時,焦點距離不同, 近紅外線之焦點距離妨真 離較長。因此,若以可見光進行對焦後, 進行近紅料之攝料,㈣成焦賴糊之影像。 又’就算利用裝載於攝影機之自動對焦機構, 以可見光之攝影為前裎,、、 知因此,以可見光攝影條件進行對 焦。最多被用來測定與被攝影體之距離之方法雖可測定 太陽電池板與攝影機問夕触 . 賤間之距離,但,會變成將透鏡調整於 4 201104909 可見光之焦點位置。由於進行以可見光攝影條件之對焦, 使得近紅外線之影像變得焦點模糊。 … 使用於單眼反光攝影機之TTL (Through the Lens,透 過鏡頭)相位差方式,基本上亦以可見光攝影條件進行驅 動°如上述’會形成焦點模糊之影像。 進而,常用於數位相機之對比或利用模糊程度之對比 式自動對焦(contrast autof〇cus),亦能以近紅外線動作。但, 由於太陽能發電元件之EL之光量微弱,故自動對焦無法動 作。又,因EL之光量微弱,使用一般的攝影機(非冷卻攝 影元件)進行攝影所需之曝光時間為丨〇〜3〇秒長。若使用特 殊之攝影元件(具放大功能之冷卻型),雖具有可滿足可使自 動對焦機構動作之檢測感度,但卻非常昂貴。 專利文獻1 :國際公開號碼W02006/059615。 專利文獻2 :國際公開號碼WO2007/129585。 非專利文獻:“ Observation of Electroluminescence from Amorphous Silicon Solar Cells at room” Koeng Su Lim et al,Japanese Journal of Applied Physics, Vol. 21,No 8,August, 1982 pp. L473-14759。 【發明内容】 本發明之目的在於’提供一種於使用太陽能發電元件 之EL法之檢查而可容易獲得鮮明之攝影影像之低成本之太 陽能發電元件之檢查裝置。 太陽能發電元件之檢查裝置,具備:電源,將正偏壓 201104909 施加於太陽能發電元件;非冷卻攝影元件攝影機,藉由自 動對焦機構對該太陽能發電元件進行自動對隹,使; 元件拍攝太陽能發電元件;遽鏡,配置於該太陽能發電: 件與攝影元件之間,將未達太陽能發電元件之肛之波長之 光遽除,而使近紅外線帶之光穿彡;及光源,於該自動對 焦時,對太陽能發電元件照射包含近紅外線帶之光。 電源將正偏壓施加於太陽能發電元件,攝影機進行自 動對焦及攝影。設置濾鏡,消除可見光等之影響,以接收 EL之光。λ ’光源係照射包含近紅外線之光,以能充分驅 動攝影機之自動對焦。 具備至少供太陽能發電元件、非冷卻攝影元件攝影 機、渡鏡、及光源配置之暗房。使用暗房以消除外部之光 之影響。 該濾鏡,係將950nm以下之波長濾至25%以下、且將 900nm以下之波長濾至5%以下之短濾型濾鏡。此濾鏡,係 該太陽能發電元件為晶碎型太陽電池或黃銅礦系太陽電池 之濾鏡。 該濾鏡,係將750nm以下之波長濾至25%以下、且將 700nm以下之波長濾至5 %以下之短濾型濾鏡。濾鏡,係該 太陽能發電元件為非晶矽型太陽電池或有機太陽電池用之 渡鏡。 該光源係函素燈。於對焦時,使鹵素燈發光。 [發明效果] 根據本發明’以濾鏡將未達太陽能發電元件之EL之波 6 201104909 長之光濾除,藉此,能以近紅外線來驅動自動對焦❶可快 速進行對焦。由於以近紅外線進行對焦,所攝影之影像亦 以近紅外線具有焦點,使得EL之光成為鮮明之影像。容易 檢測出太陽能發電元件之不良部位。 【實施方式】 使用圖式說明本發明之太陽能發電元件。 待檢查之太陽能發電元件,由於使用上述el法,因此, 以正偏壓發出近紅外線。例如,可舉如晶矽型或非晶矽型 等之太陽電池。太陽能發電元件可為單片、或將複數個太 陽能發電元件縱橫排列而成者。 如圖1所示,太陽能發電元件之檢查裝置1〇,具備太 陽能發電元件12之保持台14、用以將正偏壓施加於太陽能 發電元件12之電源16、用以拍攝太陽能發電元件1 2之EL 之攝影機1 8、及用以使既定波長之光穿透之濾鏡2〇。 保持台14,配置有太陽能發電元件12,使太陽能發電 元件12與攝影機18相對向。可適當設置用以調節高度與 角度之機構。又,配合太陽能發電元件12之大小,可適當 設計保持台14之大小。 電源1 6 ’係用以將正偏壓施加於太陽能發電元件12之 直流電源。於將複數個太陽能發電元件12縱橫排列之情 形,係設成使正偏壓施加於全部太陽能發電元件1 2。正偏 壓之一例’係每一片晶矽型之太陽能發電元件約〇 5〜l 〇V 薄膜型非晶矽型或化合物型之黃銅礦系太陽電池(CIS、 201104909 CIGS等)為每一段長片約〇 5〜1〇v,串接(tandem)型則配 合其階層數來調節電壓。將正偏壓施加於太陽能發電元件 12,藉此,從太陽能發電元件12射出近紅外線帶之光。例 如,出射光之波長約700〜1300nm。又,峰值(peak)波長, 係晶矽型約1150nm '非晶矽型約95〇nm、CIS約125〇nm、 CIGS則因組成比而異。 攝影機1 8,係具備自動對焦機構,且使用具備非冷卻 攝影元件22之數位相機(Digital stm Camera)。作為自動對 焦機構,可使用對比式自動對焦方式之機構。對焦可採用 透鏡移動之方式或保持台14移動之方式。又攝影元件22, 係使用W之CCD或⑽8之2維影㈣測器。配合太陽 能發電元件12之大小,以適當選擇像素數。例如使用約 麵萬像素之攝影元件22卜攝影機18設置於三腳架Μ 以調節高度與角度。 遽鏡20,係將未这女陆, 聊衣運太陽忐發電疋件12之EL所產生 光波長之光渡除’使近紅外線帶之光穿透。渡鏡2〇為片狀 設於太陽能發電元件12與攝影機18之攝影元件22之間 因此’攝影元件22不接收可見光等未達EL波長之光, 接收近紅外線。攝影機18可攝影太陽能《元件12之別 亦可進行使㈣影元件22之對比式自㈣卜就具體之 鏡20之3又置部位而言,可舉例如攝影元件η前面或透 刖面又在圖卜據鏡2〇係設於攝影機Μ内部且在攝 元件22前面。 在太陽能發電元件 12為晶石夕型太陽電池或黃銅礦系太 8 201104909 陽電池之情形’據鏡2〇係使用將950nm以下之波長滤至 25%以下、且將900nm以下之波長濾至5%以下之短渡型濾 鏡(short cut filter) »又,在太陽能發電元件12為非晶矽型 太陽電池或有機薄膜太陽電池之情形,濾鏡2〇係使用將 750nm以下之波長濾至25%以下、且將7〇〇nm以下之波長 ;慮至5 /◦以下之短濾型濾鏡(sh〇rt cut mter)。 濾鏡20’亦可為使藉上述EL所產生之光之波長以上之 長波長光通過之高通濾鏡。由於攝影元件22之Ccd等為矽 系元件,因此,就算比近紅外線長之波長之光到達攝影元 件22,因在矽本身之透明區域,而不吸收長波長之光。進 而’若成為長波長,則會被攝影元件22之周邊構件吸收, 而無法到達攝影元件22。因此,其與將可見光等之未達π 波長之光濾除,而使近紅外線帶之光穿透之情況相等。 如上述,藉由使用濾鏡20’使得以攝影元件22接收之 二=:外線。自動對焦使用近紅外線。由於與待攝影之 帶之光’故經攝影之影像具有焦點。攝影影像鮮明, 合易檢測出太陽能發電元件12之缺陷。 又檢查裝置10’具備對太陽能發電元 :紅外線帶之光之光源%。光源 動對焦機構進行對焦時發光。光使以自 機構驅動之光量。攝影機18可確:出::自動對焦 先!之近紅外線。當對太陽能發電元件動:之足夠 光源26係消燈。此係因E EL攝影時, 單色且難以產生對比之情 小。又,當被拍攝體為 障形,可將對焦用之標記貼於表 201104909 。作為光源26 面、或將幾何學圖案投影於光源26亦有效用 可擧例如_素燈。 ^ ’作為錢26,亦考慮到制—般的或白熱 :經由用以遮斷可見光之濾鏡而照射於太陽能發電 疋件12°但…般的營光燈或白熱燈泡之可見光之光量較 大,近紅外線之光量較小。由於若使近紅外線之光量增大, I1 I見光之光量變得非常大’而使白熱燈泡或濾鏡於短期 間造成損傷,故不佳。 圖1之光源26雖設於離開攝影機18之位置,但亦可 如利用-般的攝影機之内設光之自動輔助光,内設於攝影 機 1 8 〇 ' ,進而,檢查裝置10,至少具備太陽能發電元件12、攝 影機:8、濾鏡20、及配置光源%之暗房28。由於太陽能 發電το件12之EL較微弱,故利用暗房28以排除來自外部 之光的影響。 此外,具備用以控制攝影機丨8、電源丨6、光源%之 電腦30〇電腦30,具備將攝影機18、電源16、光源%之 狀態、攝影之資料予以顯示之監視器32及進行電腦3〇之 操作之鍵盤。藉由電腦3G進行攝影機18、電源Μ、光源 26之整體控制。可容易獲得自動對焦機構之驅動與光源% 之發光同步,以及電源16之正偏壓之施加與攝影機8之攝 影同步。又’可將取得之攝影資料儲存於電腦3〇之硬碟等 儲存裝置。此等各裝置以USB(Universai SerUl⑽,通用 串列匯流排)彼此連接^圖i巾,雖電腦3G與光源“連 10 201104909 接’但亦可將攝影機18與光源26直接連接,以使攝影機 18與光源26同步。 本案之檢查裝置1〇能容易進行對焦,以下說明用以確 認太陽能發電元件12之影像取得之實施例與比較例。 實施例(1) 陽月b發電元件12使用多晶石夕型之京都陶究公司製太 陽電池模組R150-0卜光源26使用作為iR(inf^ed紅外線) 燈之東芝光科技公司製紅外線家畜用燈泡1〇紹v 150WRE(#素燈)’濾鏡2〇使用富士軟片公司製光學遽鏡 IR-96(95Gnm之透射率25%以下、9⑽⑽之透射率5%以下 之域型)’暗房28使用山研得克斯^⑽謂⑺公司製大 型簡易暗房B-L3_CU’攝影_ 18使用索尼(s〇n”公司製數 位相機DSC-H50。又,卸下裝載於攝影機18之紅外線遽鏡, 而將上述缝20裝配於攝影元件22前面。進行遮光以避 免使從攝影機18之自動對焦辅助光源之光射出。於暗房28 内設置攝影機18與太陽能發電元件12。 於光源26點燈後,將攝影機18設成夜間拍攝模 比式自動對焦起動狀態),進行自動對焦,然後,切 動模式。以使8A之電流流通於太陽能發電元件12之方 施加正偏壓而使虹發光’將曝光時間設為川 乂 影。將攝影所得之影像以龄雜哭1 〇 订 于之景“象以-視益32確認,判斷對焦性 質。利用自動對焦,使得焦點正確、且可確 *晝 之細I 主表面電極 .實施例(2) 11 201104909 除了將實施例(1)之太陽能發電元件12變更為索拉雷 克斯(Solar Rex)公司製之非晶薄膜型、濾鏡20變更為富士 軟片公司製光學濾鏡IR-76(750nm之透射率25%以下、 700nm之透射率5%以下之短濾型)之外,以與實施例(1)相 同條件下進行攝影》焦點正確、攝影影像亦良好。 實施例(3) 除了將實施例(2)之太陽能發電元件12變更為串接型 (非晶與微結晶之2層)之外,以與實施例(2)相同條件下進行 攝影。與實施例(2)同樣’焦點正確、攝影影像亦良好。 實施例(4) 除了將實施例(1)之太陽能發電元件1 2變更為化合物 型CIS(銅、銦、硒)之外,以與實施例(1)相同條件下進行攝 影。焦點正確、攝影影像亦良好。 實施例(5) 除了將實施例(2)之太陽能發電元件12變更為有機薄 膜型之 P3HT : PCBM poly(3-hexylthiophehe : [6 6]-phenylC61 -butyric acid methyl ester)之外,以與實施例(2) 相同條件下進行攝影。焦點正確、攝影影像亦良好。 比較例(1) 未設置實施例(2)之光源26,僅以太陽能發電元件j2 之EL之光進行自動對焦。但,自動對焦未啟動。僅太陽能 發電兀件12之EL之光,因光量少,故無法獲得自動對焦 機構動作所需之亮度。無法使用對焦、亦無法進行攝影。 比較例(2) 12 201104909 未設置實施例(1)之光源 之EL之光進行自動對焦。與 動。 26,僅以太陽能發電元件12 比較例⑴同樣,自動對焦未啟 比較例(3) 之光源26變更為NEC公司製 謂隱-臟-HG(3波㈣),使其進行自 , 自動對焦未啟動。就螢光燈而言, “、、仁 田於紅外線成分之来署 >、,故無法獲得自動對焦機構動作所需之亮产。 比較例(4) ~又 例⑴之光源26變更為與比較例(3)同樣,使 …對焦。但’與比較例(3)同樣,自動 、 比較例(5) 勁 未設置實施例⑴之濾、鏡2〇,進行自動對焦之結果 動對焦未啟動。但,由於停留在可 ^ 兄尤之對焦位置,故攝 衫所得之影像並無焦點’攝影影像不鮮明。 比較例(6) 以測距方式進行實㈣⑴之對焦,未進行自動對隹輔 光之遮光,進行自動對焦。自動 停留在可見光之對隹位置, ·‘… ,但,由於 不鮮明。 L位置’故料所得之影像無焦點 '且 比較例(7) 將實施例⑴之暗房28除去,以營光燈下 自動對焦之結果,自動對焦 《件’進行 可捕捉到焦點位置,: 。焦點位置並無問題, 仁,局部拍攝到來自勞光燈之微弱紅 13 201104909 外線之反射像。就EL之影像而言,雖有雜訊,但可進行 影。 比較例(8) 除了將實施例(1)之濾鏡20變更為富士軟片公司製光 學濾鏡IR-76(750nm之透射率25%以下、7〇〇nm之透射率 5%以下之短濾型)之外,以與實施例(1)相同條件下進行攝 影。細微部分雖覺得不鮮明,但可確認出EL。 比較例(9) 除了將實施例(1)之太陽能發電元件12變更為索拉雷 克斯(Solar Rex)公司製之非晶薄膜型之外,以與實施例〇) 相同條件下進行攝影。焦點雖正確,但攝影影像較暗。 比較例(10) 除了將實施例(1)之太陽能發電元件12變更為串接型 (非晶與微結晶之2層)之外,以與實施例(1)相同條件下進行 攝影。與比較例(9)同樣,焦點雖正確,但攝影影像較暗。 比較例(11) 除了將實施例(2)之太陽能發電元件1 2變更為化八物 型CIS(銅、銦、硒)之外,以與實施例(1)相同條件下進行攝 影。雖有焦點不正確之情況、雷射劃線圖案不鮮明,但可 確認出EL。 比較例(12) 除了將實施例(1)之太陽能發電元件12變更為有機薄 膜型之 P3HT : PCBM poly(3-hexylthiophehe : [6 6]-phenylC6 1 -butyric acid methyl ester)之外,以與實施例(1) 201104909 相同條件下進行攝影。與比較例(9)同樣,焦點雖正確,但 攝影影像較暗。 將上述實施例與比較例加以整合而如以下表1所示。 根據本發明,可進行自動對焦、且攝影影像之晝質亦佳。 使用EL法之太陽能發電元件1 2之檢查能順利進行。由於 攝影影像之晝質佳,故容易進行太陽能發電元件12之不良 檢測。 [表1] 對焦性 晝質 太陽能發電元件 光源 濾鏡 對焦方法 環境 實施例(1) 〇 〇 晶碎 IR燈 IR-96 對比式 暗房 實施例(2) 〇 〇 非晶矽 IR燈 IR-76 對比式 暗房 實施例(3) 〇 〇 串接(a_Si + c_Si) IR燈 IR-76 對比式 暗房 實施例(4) 〇 〇 CIS IR燈 IR-96 對比式 暗房 實施例(5) 〇 〇 有機薄膜 IR燈 IR-76 對比式 暗房 比較例(1) X — 晶碎 無(僅EL) IR-76 對比式 暗房 比較例(2) X — 晶矽 無(僅EL) IR-96 對比式 暗房 比較例(3) X — 晶碎 螢光燈 IR-76 對比式 暗房 比較例(4) X — 晶石夕 螢光燈 IR-96 對比式 暗房 比較例(5) X — 晶矽 IR燈 無 對比式 暗房 比較例⑹ X — 晶碎 IR燈 IR-96 測距 暗房 比較例(7) 〇 Δ 晶碎 IR燈 IR-96 對比式 螢光燈下 比較例(8) Δ Δ 晶矽 IR燈 IR-76 對比式 暗房 比較例(9) 〇 Δ 非晶矽 IR燈 IR-96 對比式 暗房 比較例(10) 〇 Δ 串接(a_Si + cTSi) IR燈 IR-96 對比式 暗房 比較例(11) Δ Δ CIS IR燈 IR-76 對比式 暗房 比較例(12) 〇 Δ 有機薄膜 IR燈 IR-96 對比式 暗房 〇:良 △:可 X:不可一:無資料 15 201104909 此外,本發明,能在未脫離其主旨之範圍以根據熟悉 匕技藝人士之知識進行各種改良 '修正、變更之態樣來加 以實施。 【圖式簡單說明】 圖1係表示太陽能發電元件之檢查裝置之構成圖。 圖2係表示因波長所致之焦點差異。 【主要元件符號說明】 10 檢查裝置 12 太陽能發電元件 14 保持台 16 電源 18 攝影機 20 渡鏡 22 攝影元件 24 三腳架 26 光源 28 暗房 30 電腦 32 監視器 16BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for a solar cell using EL (Electro-Luminescence). [Prior Art] In recent years, in order to promote the use of green energy, the development and popularization of solar power generation components are booming. At present, the most popular solar power generation element is, for example, a germanium crystal solar cell. The 矽 crystal solar cell is formed on the light-receiving side of a 0-3 mm t-P-type wafer, and sequentially forms an n-layer (about l"m) and an anti-reflection film. Further, the surface electrode and the back surface electrode are formed by a printing method. Solar power generation components are prone to various defects during manufacturing. For example, (1) Since the Shixi wafer is easily broken and simplified, it is easy to produce fine cracks during manufacture. (2) Since the electrode pattern is formed by the printing method, the electrode pattern penetrates the anti-reflection film during firing and is connected to the η layer, so that the electrode pattern is easily broken. Therefore, it is necessary to make inspections at the time of manufacture. As far as the defect inspection method is concerned, the EL method is generally used, and 肱τ: 旷 旷 - a positive bias is applied to the solar power generation element (see, for example, the following patent documents, non-specialized r.. j and 驮). By applying a positive bias voltage, if it is a solar power generation element, ^.., t T emits a band gap according to 矽, and the lightning can not supply power after the disconnection portion. Therefore, Observe the dark part from the broken line. Moxibustion..., the method of injecting near-infrared rays, and the 201104909, is used to detect the micro-turtles that cannot be detected by visual inspection, and the images of the rivers that are clear and clear. X is required to capture the resolution of the thin surface electrode (10) 〇〆m) in order to identify the broken portion. The solar panel (x2m) loaded with 50 to 60 solar photovoltaic elements is inspected for defects. In this case, a bias voltage equivalent to the open voltage is applied to each of the solar power generation elements, and the solar power generation element is photographed by the A? camera from the solar panel to detect the presence or absence of defects and defective portions. {The cooled CCD (Charge Coupled DeVlce ' Charge Coupled Device) camera used for the above defect inspection is not equipped with an autofocus mechanism. Therefore, it is necessary to change the focal length of the lens and to feed the images of the slices. At this time, it is necessary to confirm the image and find the position of the confrontation. If the size of the subject or the part to be photographed changes, the focus adjustment must be performed at this time, which is a time-consuming and laborious task. Consider the method of observing the focus of the viewfinder () while performing the normal camera. However, since the EL of the lanthanide solar cell is near-infrared, it cannot be seen by the naked eye. As shown in Fig. 2, in the vicinity of the outer line and the visible light, when the same lens 34 is used, the focal length is different, and the focal length of the near infrared ray is relatively long. Therefore, if the focus is on visible light, the near red material is taken, and (4) the image is made into a focus. Further, even with the autofocus mechanism mounted on the camera, the photography of visible light is used as the front, and it is known that the focus is captured under visible light imaging conditions. The method used to measure the distance from the subject at most can measure the distance between the solar panel and the camera. However, it will become the focus of the visible light at 4 201104909. The focus of the near-infrared image becomes blurred due to focusing under visible light photography conditions. ... The TTL (Through the Lens) phase difference method used in monocular reflex cameras is basically driven by visible light photography conditions as described above. Furthermore, it is often used for comparison of digital cameras or contrast autofocus (contrast autof〇cus), which can also operate in near-infrared light. However, since the amount of light of the EL of the solar power generation element is weak, the auto focus cannot be operated. Further, since the amount of light of the EL is weak, the exposure time required for photographing using a general camera (non-cooling camera element) is 丨〇~3〇 second. If a special photographic element (cooling type with amplification function) is used, it has a detection sensitivity that can satisfy the action of the auto focus mechanism, but it is very expensive. Patent Document 1: International Publication No. WO2006/059615. Patent Document 2: International Publication No. WO2007/129585. Non-patent literature: "View of Electroluminescence from Amorphous Silicon Solar Cells at room" Koeng Su Lim et al, Japanese Journal of Applied Physics, Vol. 21, No 8, August, 1982 pp. L473-14759. SUMMARY OF THE INVENTION An object of the present invention is to provide an inspection apparatus for a low-cost solar power generation element which can easily obtain a clear photographic image using an EL method of a solar power generation element. The solar power generation element inspection device includes: a power source that applies a positive bias voltage 201104909 to the solar power generation element; and an uncooled imaging element camera that automatically collates the solar power generation element by an autofocus mechanism; The 遽 mirror is disposed in the solar power generation: between the piece and the photographic element, the light of the wavelength of the anus that does not reach the solar power generation element is removed, and the light of the near infrared ray band is passed through; and the light source is used for the autofocus The solar power generation element is irradiated with light including a near-infrared band. The power supply applies a positive bias to the solar power generation components, and the camera performs autofocus and photography. Set the filter to remove the effects of visible light, etc. to receive the EL light. The λ 'light source illuminates light containing near-infrared light to fully drive the autofocus of the camera. A darkroom with at least a solar power generation element, a non-cooling photographic element camera, a mirror, and a light source. Use a darkroom to eliminate the effects of external light. This filter is a short filter type filter that filters a wavelength of 950 nm or less to 25% or less and filters a wavelength of 900 nm or less to 5% or less. In the filter, the solar power generation element is a filter of a crystal-type solar cell or a chalcopyrite-type solar cell. This filter is a short filter type filter that filters a wavelength of 750 nm or less to 25% or less and filters a wavelength of 700 nm or less to 5% or less. The filter is a ferroelectric element for an amorphous germanium solar cell or an organic solar cell. The light source is a light element. When focusing, the halogen lamp is illuminated. [Effect of the Invention] According to the present invention, the light of the EL wave 6 201104909 that does not reach the solar power generation element is filtered by the filter, whereby the auto focus can be driven by the near infrared ray, and the focus can be quickly performed. Since the focus is focused by near-infrared rays, the captured image also has a focus in the near-infrared light, making the EL light a vivid image. It is easy to detect defective parts of solar power generation components. [Embodiment] A solar power generation element of the present invention will be described using a schematic diagram. Since the solar power generation element to be inspected uses the above-described el method, near-infrared rays are emitted with a positive bias. For example, a solar cell such as a crystalline germanium type or an amorphous germanium type may be used. The solar power generation element may be a single piece or a plurality of solar power generation elements arranged vertically and horizontally. As shown in FIG. 1, the inspection device 1 of the solar power generation element includes a holding stage 14 for the solar power generation element 12, a power source 16 for applying a positive bias voltage to the solar power generation element 12, and a solar power generation element 12 for photographing. The EL camera 18 and the filter 2 for penetrating light of a predetermined wavelength. The holding stage 14 is provided with a solar power generating element 12, and the solar power generating element 12 is opposed to the camera 18. A mechanism for adjusting the height and angle can be set as appropriate. Further, the size of the holding stage 14 can be appropriately designed in accordance with the size of the solar power generating element 12. The power source 16' is used to apply a positive bias voltage to the DC power source of the solar power generating element 12. The arrangement of the plurality of solar power generation elements 12 in the vertical and horizontal directions is such that a positive bias voltage is applied to all of the solar power generation elements 12. One example of positive bias is 'each solar cell type of about 〜5~l 〇V thin film type amorphous 或 type or compound type of chalcopyrite solar cell (CIS, 201104909 CIGS, etc.) for each length The chip is about 5~1〇v, and the tandem type adjusts the voltage according to the number of layers. A positive bias is applied to the solar power generating element 12, whereby the light of the near-infrared band is emitted from the solar power generating element 12. For example, the wavelength of the emitted light is about 700 to 1300 nm. Further, the peak wavelength is about 1150 nm. The amorphous 矽 type is about 95 〇 nm, the CIS is about 125 〇 nm, and the CIGS is different depending on the composition ratio. The camera 18 has an autofocus mechanism and uses a digital camera (Digital Stm Camera) having a non-cooling imaging element 22. As an autofocus mechanism, a contrast autofocus mechanism can be used. Focusing can be done by moving the lens or by keeping the stage 14 moving. Further, the photographic element 22 is a CCD of W or a 2-dimensional (four) detector of (10)8. The size of the solar power generation element 12 is matched to appropriately select the number of pixels. For example, a photographic element 22 with a megapixel is used to mount the camera 18 on a tripod Μ to adjust the height and angle. The frog mirror 20 will not pass the light of the wavelength of the light produced by the EL of the solar raft generating element 12, so that the light of the near-infrared band penetrates. The mirror 2 is provided in a sheet shape between the solar power generation element 12 and the imaging element 22 of the camera 18. Therefore, the imaging element 22 does not receive light of a wavelength such as visible light that does not reach the EL wavelength, and receives near infrared rays. The camera 18 can photograph the solar energy. The component 12 can also be used to make the contrast of the (4) shadow element 22 from (4). For the specific part of the mirror 20, for example, the front side of the photographing element n or the front side of the photographing element can be According to the mirror 2, it is disposed inside the camera casing and in front of the camera element 22. In the case where the solar power generation element 12 is a spar-type solar cell or a chalcopyrite-based solar cell, the case of the cation battery is filtered to a wavelength of 950 nm or less to 25% or less, and a wavelength of 900 nm or less is filtered. Short cut filter of 5% or less » In the case where the solar power generation element 12 is an amorphous germanium solar cell or an organic thin film solar cell, the filter 2 is used to filter a wavelength below 750 nm to 25% or less, and a wavelength of 7 〇〇 nm or less; a short filter type filter (sh〇rt cut mter) of 5 / ◦ or less is considered. The filter 20' may also be a high-pass filter that passes long-wavelength light of a wavelength of light generated by the EL. Since the Ccd or the like of the photographic element 22 is a lanthanoid element, even if light of a wavelength longer than the near-infrared rays reaches the photographic element 22, light of a long wavelength is not absorbed in the transparent region of the ruthenium itself. Further, if it becomes a long wavelength, it will be absorbed by the peripheral members of the imaging element 22, and will not reach the imaging element 22. Therefore, it filters out light having a wavelength of less than π such as visible light, and the light of the near-infrared band is equally transmitted. As described above, by using the filter 20', the photographic element 22 receives the second =: outer line. Autofocus uses near infrared rays. The image that has been photographed has a focus because of the light of the band to be photographed. The photographic image is clear, and Heyiyi detects the defects of the solar power generation component 12. Further, the inspection device 10' is provided with a light source % for the solar power generation element: the infrared band light. Light source The light-focusing mechanism emits light when focusing. Light makes the amount of light driven by the mechanism. Camera 18 can be sure: Out:: Auto Focus First! Near infrared. When the solar power generation component is moving: the light source 26 is sufficient to eliminate the light. This is because of the E EL photography, it is monochrome and it is difficult to produce contrast. Also, when the subject is obstructed, the mark for focusing can be attached to the table 201104909. It is also effective to use the surface of the light source 26 or to project a geometric pattern onto the light source 26. For example, a lamp can be used. ^ 'As money 26, it is also considered to be a system-like or white heat: a large amount of visible light of a camping light or a white heat bulb that is irradiated to a solar power generating element by a filter for blocking visible light. The amount of light in the near infrared ray is small. If the amount of light in the near-infrared rays is increased, the amount of light of the I1 I sees light becomes very large, and the incandescent bulb or the filter is damaged in the short term, which is not preferable. Although the light source 26 of FIG. 1 is disposed at a position away from the camera 18, it may be provided with an automatic auxiliary light provided by a camera in the like, and is provided in the camera 18 〇', and further, the inspection device 10 has at least solar energy. The power generation element 12, the camera: 8, the filter 20, and the darkroom 28 in which the light source % is arranged. Since the EL of the solar power generation 12 is weak, the darkroom 28 is utilized to exclude the influence of light from the outside. Further, a computer 30 for controlling the camera 丨8, the power source 丨6, and the light source% 30 is provided with a monitor 32 for displaying the state of the camera 18, the power source 16, the light source %, and the photographing data, and the computer 3〇 The keyboard of the operation. The overall control of the camera 18, the power supply port, and the light source 26 is performed by the computer 3G. The driving of the autofocus mechanism can be easily synchronized with the illumination of the light source %, and the application of the positive bias of the power source 16 is synchronized with the imaging of the camera 8. In addition, the obtained photographic materials can be stored in a storage device such as a hard disk of a computer. These devices are connected to each other by USB (Universai SerUl (10), universal serial bus bar). Although the computer 3G is connected to the light source "connected 10 201104909", the camera 18 can be directly connected to the light source 26 to make the camera 18 In synchronization with the light source 26, the inspection apparatus 1 of the present invention can easily perform focusing, and an embodiment and a comparative example for confirming image acquisition of the solar power generation element 12 will be described below. Embodiment (1) The solar photovoltaic element 12 is made of polycrystalline stone. The solar cell module R150-0, which is made by Kyoto Ceramic Research Co., Ltd., is used as the iR (inf^ed infrared) lamp. The Toshiba Light Technology Co., Ltd. made the infrared livestock bulb 1〇绍v 150WRE(#素灯)' Mirror 2 〇 遽 IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR IR 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士 富士The simple darkroom B-L3_CU' photography _18 uses a Sony digital camera DSC-H50. Further, the infrared frog mirror mounted on the camera 18 is removed, and the slit 20 is attached to the front surface of the photographic element 22. Shading to avoid making The light of the autofocus auxiliary light source of the camera 18 is emitted. The camera 18 and the solar power generating element 12 are disposed in the darkroom 28. After the light source 26 is turned on, the camera 18 is set to the nighttime analog mode auto-start state, and the automatic operation is performed. Focus, then, the cut mode. A current of 8 A is applied to the solar power generating element 12, and a positive bias voltage is applied to cause the rainbow light to set the exposure time to a shadow. The image obtained by photography is set to the scene of the age of crying 1 “ 象 象 象 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视 视(2) 11 201104909 In addition to changing the solar power generation element 12 of the embodiment (1) to an amorphous film type manufactured by Solar Rex Co., Ltd., the filter 20 is changed to an optical filter IR-made by Fujifilm Co., Ltd. In the case of 76 (short filter type having a transmittance of 750 nm of 25% or less and a transmittance of 5% or less of 700 nm), the focus was made under the same conditions as in the example (1), and the focus was correct, and the photographic image was also good. The photographing was carried out under the same conditions as in the example (2) except that the solar power generating element 12 of the example (2) was changed to a tandem type (two layers of amorphous and microcrystalline). Similarly, the 'focus is correct and the photographic image is also good. Example (4) In addition to changing the solar power generation element 1 2 of the embodiment (1) to the compound type CIS (copper, indium, selenium), and the embodiment (1) Photography under the same conditions. The focus is correct and the photographic image is good. Example (5) In addition to changing the solar power generation element 12 of the embodiment (2) to the organic thin film type P3HT: PCBM poly(3-hexylthiophehe: [6 6]-phenylC61 - butyric acid methyl ester), Example (2) Photography was carried out under the same conditions, and the focus was correct and the photographic image was also good. Comparative Example (1) The light source 26 of the embodiment (2) was not provided, and only the light of the EL of the solar power generation element j2 was used for autofocusing. The auto focus is not activated. Only the EL light of the solar power generation element 12 cannot obtain the brightness required for the operation of the auto focus mechanism due to the small amount of light. It is impossible to use the focus or the photography. Comparative example (2) 12 201104909 The EL light of the light source of the embodiment (1) is not provided for autofocusing. The operation is performed. 26, only the solar power generation element 12 is similar to the comparative example (1), and the light source 26 of the automatic focusless comparison example (3) is changed to NEC Corporation. It is hidden-dirty-HG (3 waves (four)), so that it does not start automatically. In the case of fluorescent lamps, ", and Renta in the infrared component", it is impossible to obtain the autofocus mechanism action. Required Bright production. The light source 26 of Comparative Example (4) to Example (1) was changed to be in focus as in Comparative Example (3). However, as in the case of the comparative example (3), the automatic filter and the comparative example (5) were not provided with the filter and the mirror 2 of the embodiment (1), and the result of the autofocus was not started. However, since the image is in the focus position of the brother, the image obtained by the camera has no focus. The photographic image is not clear. Comparative example (6) The focus of the (4) (1) is performed by the distance measurement method, and the automatic shading of the auxiliary light is not performed, and the autofocus is performed. Automatically stay in the opposite position of visible light, · ‘... but, because it is not clear. The L position 'the resulting image has no focus' and the comparative example (7) removes the darkroom 28 of the embodiment (1), and as a result of the autofocus under the camplight, the autofocus "piece" can capture the focus position, . There is no problem with the focus position. Ren, a partial shot of the faint red image from the Lantern 13 201104909. As far as the image of EL is concerned, although there is noise, it can be made. Comparative Example (8) The filter 20 of the example (1) was changed to an optical filter IR-76 manufactured by Fujifilm Co., Ltd. (short filter having a transmittance of 750 nm or less and a transmittance of 5% or less at 7 〇〇 nm or less) The photographing was performed under the same conditions as in the example (1) except for the type). Although the subtle part is not clear, EL can be confirmed. Comparative Example (9) The photographing was carried out under the same conditions as in Example 除了 except that the solar power generating element 12 of Example (1) was changed to the amorphous film type manufactured by Solar Rex. The focus is correct, but the photographic image is darker. Comparative Example (10) The photographing was carried out under the same conditions as in the example (1) except that the solar power generating element 12 of the example (1) was changed to a tandem type (two layers of amorphous and microcrystalline). As in the comparative example (9), although the focus is correct, the photographic image is dark. Comparative Example (11) A photographing was carried out under the same conditions as in the example (1) except that the solar power generating element 1 2 of the example (2) was changed to the eight-type CIS (copper, indium, or selenium). Although the focus is not correct and the laser marking pattern is not clear, EL can be confirmed. Comparative Example (12) In addition to changing the solar power generation element 12 of the embodiment (1) to an organic thin film type P3HT: PCBM poly(3-hexylthiophehe: [6 6]-phenylC6 1 -butyric acid methyl ester) Example (1) 201104909 Photography was performed under the same conditions. As in the comparative example (9), although the focus is correct, the photographic image is dark. The above examples were combined with the comparative examples as shown in Table 1 below. According to the present invention, autofocus can be performed, and the quality of the photographic image is also good. The inspection of the solar power generation element 12 using the EL method can be smoothly performed. Since the quality of the photographic image is good, it is easy to perform the failure detection of the solar power generation element 12. [Table 1] Focusing enamel solar power generation element light source filter focusing method Environment example (1) Twin crystal IR lamp IR-96 Comparative darkroom embodiment (2) 〇〇Amorphous 矽IR lamp IR-76 Comparison Darkroom embodiment (3) 〇〇 series connection (a_Si + c_Si) IR lamp IR-76 contrast darkroom example (4) 〇〇CIS IR lamp IR-96 contrast darkroom example (5) 〇〇organic film IR Light IR-76 Comparative Darkroom Comparative Example (1) X - Crystallized No (EL only) IR-76 Comparative Darkroom Comparative Example (2) X - Crystalline None (EL only) IR-96 Comparative Darkroom Comparative Example ( 3) X — Crystal Framing Fluorescent IR-76 Contrast Darkroom Comparative Example (4) X — Crystal Shift Fluorescent IR-96 Contrast Darkroom Comparative Example (5) X — Crystalline IR Lamp No Contrast Darkroom Comparison Example (6) X — Crystalline IR Lamp IR-96 Range Darkroom Comparative Example (7) 〇Δ Crystal Break IR Lamp IR-96 Comparative Fluorescent Lamp Comparative Example (8) Δ Δ Crystal 矽 IR Lamp IR-76 Contrast Darkroom comparison example (9) 〇Δ Amorphous 矽IR lamp IR-96 Comparative darkroom comparison example (10) 〇Δ Cascade (a_Si + cTSi) IR lamp IR-96 Contrast type darkroom comparison (11) Δ Δ CIS IR lamp IR-76 Comparative darkroom comparison example (12) 〇Δ Organic film IR lamp IR-96 Contrast type darkroom 〇: good △: X: not one: no data 15 201104909 In addition, the present invention It can be implemented without any departure from the scope of the subject matter by making various improvements and corrections based on the knowledge of those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of an inspection apparatus for a solar power generation element. Figure 2 shows the difference in focus due to the wavelength. [Explanation of main component symbols] 10 Inspection device 12 Solar power generation components 14 Holding table 16 Power supply 18 Camera 20 Ferro mirror 22 Photographic components 24 Tripod 26 Light source 28 Darkroom 30 Computer 32 Monitor 16

Claims (1)

201104909 七、申請專利範圍: h一種太陽能發電元件之檢查裝置,具備: 電源’將正偏壓施加於太陽能發電元件; 非冷卻攝影元件攝影機,藉由自動對焦機構對該太陽 能發電元件進行自動對焦,纟用攝影元件拍攝太陽能發電 元件; 渡鏡’配置於該太陽能發電元件與攝影元件之間,將 未達太陽能發電元件之EL之波長之光濾除,而使近紅外線 帶之光穿透;及 光源’於該自動對焦時對太陽能發電元件照射包含近 紅外線帶之光。 2.如申請專利範圍第1項之太陽能發電元件之檢查裝 置其具備至少供該太陽能發電元件、非冷卻攝影元件攝 影機、濾鏡、及光源配置之暗房。 3·如申請專利範圍第1或2項之太陽能發電元件之檢查 裝置’其中,該濾鏡’係將950nm以下之波長濾至25%以 下、且將900nm以下之波長濾至5%以下之短濾型濾、鏡; 該太陽能發電元件,係晶矽型太陽電池或黃銅礦系太 陽電池。 4.如申請專利範圍第1或2項之太陽能發電元件之檢查 裝置’其中’該渡鏡’係將750nm以下之波長渡至25%以 下、且將700nm以下之波長濾至5%以下之短濾型濾鏡; 該太陽能發電元件’係非晶矽型太陽電池或有機太陽 電池。 17 201104909 5.如申請專利範圍第1至4項中任一項之太陽能發電元 件之檢查裝置,其中,該光源係鹵素燈。 八、圖式: (如次頁) 18201104909 VII. Patent application scope: h An inspection device for solar power generation components, comprising: a power supply 'applying a positive bias voltage to a solar power generation component; a non-cooling photographic component camera that automatically focuses the solar power generation component by an autofocus mechanism,拍摄 capturing a solar power generating element with a photographic element; the ferry mirror ' disposed between the solar power generating element and the photographic element, filtering light of a wavelength of the EL that does not reach the solar power generating element, and causing light of the near infrared ray band to penetrate; The light source 'illuminates the solar power generating element with light including a near-infrared band at the time of the autofocus. 2. The inspection device for a solar power generation element according to the first aspect of the invention is provided with a darkroom for at least the solar power generation element, the non-cooling imaging element camera, the filter, and the light source. 3. The inspection device for solar power generation element according to claim 1 or 2, wherein the filter filters the wavelength of 950 nm or less to 25% or less, and filters the wavelength of 900 nm or less to 5% or less. Filter type filter, mirror; The solar power generation element is a wafer type solar cell or a chalcopyrite type solar cell. 4. The inspection apparatus for a solar power generation element according to the first or second aspect of the patent application, wherein the 'the mirror' is to pass a wavelength of 750 nm or less to 25% or less, and to filter a wavelength of 700 nm or less to a length of 5% or less. Filter type filter; the solar power generation element 'is an amorphous tantalum type solar cell or an organic solar cell. The apparatus for inspecting a solar power generation element according to any one of claims 1 to 4, wherein the light source is a halogen lamp. Eight, the pattern: (such as the next page) 18
TW99118099A 2009-07-28 2010-06-04 Apparatus for inspecting photovoltaic power generating element TW201104909A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175086A JP5271185B2 (en) 2009-07-28 2009-07-28 Solar power generation device inspection system

Publications (1)

Publication Number Publication Date
TW201104909A true TW201104909A (en) 2011-02-01

Family

ID=43529108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99118099A TW201104909A (en) 2009-07-28 2010-06-04 Apparatus for inspecting photovoltaic power generating element

Country Status (3)

Country Link
JP (1) JP5271185B2 (en)
TW (1) TW201104909A (en)
WO (1) WO2011013444A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096766A2 (en) * 2011-12-21 2013-06-27 Shachaf Catherine M System for imaging lesions aligning tissue surfaces
GB2502311A (en) 2012-05-24 2013-11-27 Ibm Photovoltaic device with band-stop filter
KR101256810B1 (en) * 2012-07-06 2013-04-23 주식회사 한국테크놀로지 Inspection apparatus and method of solar cell using electro luminescense
KR101588212B1 (en) * 2014-06-03 2016-01-25 한국에너지기술연구원 Apparatus for testing solar cell module at sandy condition and method thereof
JP6671798B2 (en) * 2016-06-09 2020-03-25 株式会社アイテス Solar cell inspection equipment
JP6411683B1 (en) * 2017-10-16 2018-10-24 株式会社デンケン Solar cell inspection device and solar simulator with camera
JP2020129858A (en) * 2019-02-07 2020-08-27 株式会社トーエネック Camera apparatus for abnormality diagnosis of solar battery and abnormality diagnosis device for solar battery with the same
CN115266754A (en) * 2022-07-28 2022-11-01 浙江晶科能源有限公司 Visual inspection method for photovoltaic module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005023A (en) * 2001-06-25 2003-01-08 Sony Corp Image pickup device
JP2009512198A (en) * 2005-10-11 2009-03-19 ビーティー イメージング ピーティーワイ リミテッド Method and system for inspecting indirect bandgap semiconductor structures
JP4921802B2 (en) * 2006-02-02 2012-04-25 オリンパス株式会社 Objective lens and optical apparatus provided with the same
JP5051854B2 (en) * 2006-05-02 2012-10-17 国立大学法人 奈良先端科学技術大学院大学 Solar cell evaluation method, evaluation apparatus and use thereof
JP4850014B2 (en) * 2006-09-28 2012-01-11 オリンパス株式会社 Spectrophotometric system and method for correcting illumination light source position of the system

Also Published As

Publication number Publication date
WO2011013444A1 (en) 2011-02-03
JP2011029477A (en) 2011-02-10
JP5271185B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
TW201104909A (en) Apparatus for inspecting photovoltaic power generating element
US8629916B2 (en) Camera with imaging unit and imaging unit for camera
JP5513326B2 (en) Imaging device and imaging apparatus
CN105359505B (en) Solid-state imaging device and its driving method and electronic equipment
JP3803673B2 (en) Measuring method and measuring device
JP2010078856A (en) Imaging apparatus
TW201143076A (en) Solid-state imaging device and electronic equipment
TW200539489A (en) Method and apparatus for imaging and inspection of semiconductor devices using solid state illumination
JP2009217074A (en) Focus detecting device
JP5956718B2 (en) Imaging device and imaging apparatus
CN103917906B (en) Focus-regulating device and photographic device
TW201024771A (en) Inspecting apparatus for photovoltaic devices
JP2011029932A (en) Imaging element and imaging apparatus
JP2009049525A (en) Imaging apparatus and method for processing signal
Zhang et al. Ultrasensitive Perovskite Photodetector for Filter‐Free Color Single‐Pixel Imaging
US7423684B2 (en) Image pickup apparatus and image pickup system
TW201216393A (en) Detecting method and device of poly-silicon film
Petraglia et al. Electroluminescence in photovoltaic cell
CN103379273A (en) Imaging device
JP2007082004A (en) Image input device and image input method
JP2018142838A (en) Imaging element, imaging device, and photograph device
JP5961208B2 (en) Imaging device and imaging apparatus
JP6142655B2 (en) Appearance inspection apparatus and appearance inspection method
JP2009049524A (en) Imaging apparatus and method for processing signal
TWI839580B (en) Multi-cell pixel array for high dynamic range image sensors