TW201104181A - Energy saver device and method for cooling and heating apparatus - Google Patents

Energy saver device and method for cooling and heating apparatus Download PDF

Info

Publication number
TW201104181A
TW201104181A TW099118356A TW99118356A TW201104181A TW 201104181 A TW201104181 A TW 201104181A TW 099118356 A TW099118356 A TW 099118356A TW 99118356 A TW99118356 A TW 99118356A TW 201104181 A TW201104181 A TW 201104181A
Authority
TW
Taiwan
Prior art keywords
temperature
compressor
supply air
cold supply
working medium
Prior art date
Application number
TW099118356A
Other languages
Chinese (zh)
Inventor
Kevin D M Moore
Original Assignee
Ace Action Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ace Action Internat Co Ltd filed Critical Ace Action Internat Co Ltd
Publication of TW201104181A publication Critical patent/TW201104181A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Temperature (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

An energy saver device, heating/cooling system and method for control of a heating/cooling system control the on/off state to an apparatus for heating or cooling a working medium. A timer has an adjustable timer value and provides a signal for controlling the on/off state to an apparatus. A temperature sensor measures temperature of the working medium. A controller adjusts the adjustable timer value in response to changes in temperature of the working medium.

Description

201104181 六、發明說明: 【發明所屬技術領域^ 發明領域 本發明係有關冷卻及加熱系統,諸如空調器、冷卻器/ 致冷系統及鍋爐。特別來說,本發明係有關一用於冷卻及 加熱裝置之節能設備且有關一用於控制冷卻及加熱裝置之 能源高效率方法。 C先前技術:! 發明背景 空調和致冷系統通常被設計為在預期的氣候條件的最 大需求下傳輸所要求的冷卻。作為一個示例,空調系統可 以被設計為在一年中最熱的日子裏將滿是人的房間維持在 所要求的最低溫度並且作為主要的能耗元件的壓縮機的尺 寸被設計為在這種極端條件下提供冷卻。顯然,當在這種 情況下並且在最大設計極限下工作時,很少有機會或者沒 有機會去降低能耗。然而’因為空調和致冷系統很少工作 在其最大設計極限’因此絕大部份時間裏對手邊的工作來 說它們的尺寸由此被過大地設計並且實際消耗了比所需能 量更多的能量。 第1圖疋典型的空a周或致冷糸統的示意圖。這裏,壓縮 機和關聯的冷凝器1用於在高壓電路上生成高壓液體致冷 劑的“儲藏室”’所述高壓電路包括接收器/乾燥器2和連接管 道機件3。壓縮機1將低壓致冷劑蒸汽轉換為可以用於致冷 的高壓液體致冷劑。在這種蒸汽的壓縮中,生成非常大的 201104181 熱置並且這種熱量消散到將被冷卻的外部空間,… ^ 致冷劑錢在高壓下壓縮為液體。高壓管道 ==承载到將被冷卻的所述空間中,在這裏= / 遗㈣針關5,該針賴5通常為室内交換器⑽ 二乃’但為了清楚而獨立顯示。經過針形閥5,高壓液體 :室内熱量交換器6中的低壓下***性地減壓恢復爲: :°在讀:L藝中,大量的熱量被從空氣中吸收經過熱量 交換器6’從而弓丨起非常寒冷的供應氣流進人相或被冷卻 的區域中°風扇7使空氣移動經過熱量交換如以提供寒冷 的供應氣流8。低壓致冷劑經由包括管道機件*的低壓電路 返回到壓縮機1 ,從而被壓縮並再次返回到高壓側。 當今的絕大多數空調和致冷系統使用具有自動調溫器 19的簡單的開/關(on/off)溫度控制,所述自動調溫器用於 控制占超過85%能耗的壓縮機1 ^在這種系統的操作中,自 動調溫器19將保持壓縮機的連續運轉,同時房間溫度高於 期望定點。達到了期望定點,自動調溫器19之後將關閉壓 縮機直至溫度少量回升,此時壓縮機重新起動。除了壓縮 機運行在其設計極限處或附近的情況外,這種控制方法為 能量降低提供了顯著機會。實際上,連續運轉曾成為高壓 致冷劑的全部“儲藏室”的壓縮機實際上浪費了能量。 最近,一系列新的空調和致冷系統引入了使用逆變器 驅動器的壓縮機。這些驅動器連續操作基於系統上的載入 而加速或減速的壓縮機。雖然這些單元明顯地節約了能 量,但能量降低的水平與由制動壓縮機操作智慧地獲得的 201104181 能量降低的水平相比並不顯著。 c發明内容3 發明概要 根據本發明的第一態樣,提供一節能設備,其意欲與 具有用於改變工作介質溫度的一裝置之加熱或冷卻系統配 合使用,該設備係包含用於提供一開/關信號至裝置之觸 點、一計時器,其具有一可調整式計時器數值且提供一用 於開啟或關閉觸點的信號、一溫度感測器,其用於測量工 作介質的溫度、及一控制器,其係配置成可回應於工作介 質的溫度變化來調整可調整式計時器數值。 較佳地,節能設備係意欲與一空調器或致冷系統配合 使用,其具有用於壓縮一致冷劑供應物之一壓縮機,及一 蒸發器,其中經壓縮致冷劑係膨脹以供冷卻一冷供應空氣 流,控制器係包含用於提供一開/關信號至壓縮機之觸點、 一計時器,其具有一可調整式計時器數值且提供一用於開 啟或關閉觸點之信號、一溫度感測器,其用於測量冷供應 空氣、及一控制器,其係配置成可回應於一經測量冷供應 空氣溫度來調整可調整式計時器數值。 較佳地,計時器係配置成可打開觸點,且控制器係配 置成可啟動時間及關閉觸點。 較佳地,控制器係包含一微處理器或電子電路,其適 可偵測來自温度感測器代表一最小值冷供應空氣溫度及一 高的冷供應空氣溫度之信號。 根據本發明的第二態樣,提供一加熱或冷卻系統,其 201104181 包含-用於改變-工作介質的溫度之裝置、一溫度感測 器,其被疋位為可測量工作介質的溫度、及一控制器,其 用於回應於工作介質的一經感測溫度來開啟及關閉該裝 置。 較佳地,加熱或冷卻系統係為一空調器或致冷系統, 其包含一用於壓縮一致冷劑的一供應物之壓縮機、一蒸發 器’其中經壓縮致冷劑係膨脹供冷卻一冷供應空氣流用、 一溫度感測器,纟被定位為可測量冷供應空氣的溫度、及 一控制器,其用於回應於冷供應空氣的一經感測溫度來開 啟及關閉壓縮機。 較佳地,控制器係包含具有一可調整式計時器數值之 一計時器,計時器可供在可調整式計時器數值的終點關閉 該裝置。 較佳地,控制器係包含一微處理器或電子電路,其適 可偵測來自溫度感測器代表一最大值溫度及一最小值溫度 之信號並適可計算一計時器數值。 較佳地,該系統進一步包含一第二溫度感测器,其被 定位為可測量一待加熱或冷卻的空間之環室溫度,使得該 裝置亦可回應於該空間的一經感測溫度而被開啟及關閉。 根據本發明的第三態樣’提供一用於控制一具有一用 於改變一工作介質溫度的裝置之加熱或冷卻系統的方法, 該方法係包含: k供一溫度感測器’其用於測量工作介質的一溫度, 判疋β玄溫度何時抵達一穩態數值並在一延遲時間τ之 201104181 後停止該裝置, 判定該溫度何時抵達一臨閾值數值並起動該裝置, 判定加熱或冷卻系統上之一負載,及 以°亥負载為基礎來計算一新的延遲時間τ。 較佳地,邊方法係控制一空調器或致冷系統的壓縮 機i其具有一用於壓縮一致冷劑的一供應物之壓縮機,及 瘵如器,其中經壓縮的致冷劑係膨脹以冷卻一冷供應空 氣流,該方法係包含: 提供-溫度感測器,其用於測量冷供應空氣流的一溫 度, 判定冷供應空氣流的溫度何時抵達一所需要的最小值 數值並在一延遲時間T之後停止壓縮機, 判疋冷供應空氣流的溫度何時抵達一所需要最大值數 值並並起動壓縮機, 判定空調器或致冷系統之一負栽’及 以°亥負載為基礎來計算一新的延遲時間τ。 較佳地,冷供衫氣起度的㈣辣小值數值係為 一最小值穩態溫度。 較佳地,冷供應空氣流溫度的所需要最大值數值係低 於一所需要環室房間溫度。 較佳地,判定系統上之一負載係 、 秋你包含測量超過臨閾值 數值之溫度的~超過量。 卞入丨土 w,Μ超過量為丞礎計算— 新延遲時間τ係包含若 超過I超過一所需要超過量數值則增大哕延遲時門Τ且— 201104181 超過量小於一所需要超過量數值則降低該延遲時間τ。 較佳地,判定系統上的一負載係包含測量溫度的一改 變速率。 本發明的其他態樣係界定於申請專利範圍中,或者將 經由僅提供例示用之下文描述得知。 圖式簡單說明 現在將參照圖式僅經由範例來描述本發明,其中: 第1圖是一典型的先前技術空調或致冷系統之示意圖, 第2圖是根據本發明的一實施例之一空調或致冷系統 的不意圖* 第3圖是由根據本發明的空調和致冷系統所使用之典 型房間溫度和供應空氣溫度輪廓以及“事件點”的示意圖, 第4圖是用於根據本發明的一實施例之空調及致冷系 統的操作之一微處理器或軟體控制方案的流程圖, 第5圖是節能設備的示意圖, 第6圖是根據本發明另一實施例之鍋爐系統的示意 圖,及 第7圖是典型熱供應水溫度輪廓之示意圖。 I:實施方式3 較佳實施例的描述 在詳細說明本發明的任何實施例之前,請瞭解本發明 的應用並不限於圖式所顯示或下文描述所見之組件的構造 及配置細節。本發明能夠具有其他實施例且由不同方式予 以實施或執行。並且,請瞭解此處的用辭與術語係為描述 201104181 用而不應視為限制用。例如將如同空調業中所使用來描述 本發明’但請瞭解其概括可應用於加熱及冷卻系統中。 一實施例中’本發明被用來通過控制壓縮機的開啓和 關閉狀態降低空調和致冷系統中的能耗以執行高壓致冷劑 的傳輸的“儲藏室,,的完全利用,或執行潛在冷卻,並且通 過將傳輪的冷卻與提供到空調或致冷系統的實際負載連續 地匹配而執行高麼致冷劑的傳輸的“儲藏室,,的完全利用, 或執行潛在冷卻。 一較佳實施例中,本發明提供空調或致冷系統以及用 於控制空調系統的方法’所述方法使用溫度感測器監控供 應的冷空氣溫度,該供應的冷空氣溫度在高壓液體致冷劑 被允許在蒸發器單元中***性地減壓時産生。通過壓縮機 工作,這種供應的冷空氣溫度繼續降低,同時被冷卻的房 間或圍繞物變涼。最小供應的冷空氣溫度的檢測表示已經 建立穩定的房間溫度條件以及高壓液體致冷劑(或潛在冷 卻)的完全“儲藏室”。最小的供應的冷空氣條件可以通過在 連續間隔上監控供應的冷空氣溫度而被檢測,直至其達到 表不其已達到最小的恒定或穩態溫度。這樣,並且接著動 態可變時間延遲,壓縮機被制動。當關閉壓縮機,溫度感 測器繼續監控供應的冷空氣溫度,直至當高壓液體致冷劑 被用完時,供應的空氣溫度將開始增大。為了維持舒適水 平,供應的空氣溫度之後被允許增大到低於最小預期房間 溫度設定的適當的點。當達到這點時,壓縮機被重新起動。 當重新起動壓縮機時,利用人工智慧設計的演算法可以用 !; 9 201104181 於通過監控溫㈣沖、應㈣氣溫度在重 機操作之後的即刻升高 13墾縮 種計算的結果之後被用於 、栽。這 長或減小在最小供應的处* 度點達到下一個壓縮棬 · 工氣溫 、 作迴圈後用於制動壓输# 可變時間延遲。這樣,所、+'4 ㈣機的動態 冷卻與提供敢__實 ;破傳輪的 統工作在與房間自動調溫器19相同的電路中=系 間自動調溫器19限定期望的房間溫度定點,同時2 = 量控制器工作以便最優化能耗。本發明的主要益處曰^ 持舒適水平的需要一致的空 保 可變而辟英…# ㈣致々糸,、充中的忐耗的連續 =如的減小。第二個益處是由於在重新起動墨 之刖貝耗π壓液體致冷劑而顯著減小壓縮機軸扭矩: 本發明現在將以實踐在家用類型的空調系統中之方 加以°兒明。34不意味著限制本發明的使用或功能的範圍 本領域技術人員將意識到本發明同樣適用於家用及商業用 空調和致冷系統並概括適用於加熱及冷卻系統。參考第2 圖,根據本發明的空調系統可以是分離型空調,其中空調 壓縮機和蒸發器單元1G(此後稱爲壓縮機單元1G)被定位在 通常在外部的第—空間A中並且空調蒸發器和風扇單元 11(此後稱為蒸發器單元u)被定位在通常在被冷卻的室内 的第二空間。所述兩個空間A和B由壁12分隔。高壓致 冷劑電路包括接收器/乾燥器! 3,該接收器/乾燥器】3定位為 鄰近壓縮機單元1〇和管道機件14以承載來自壓縮機單元⑺ 和接收器/乾燥器13的高壓液體致冷劑經過壁]2進入第二 201104181 空間B並到達定位在蒸發器單元11中的針形閥15。在第2圖 的不意圖中,為了清楚,針形閥15和蒸發器被顯示爲分離 和不同的元件。來自室内蒸發器單元U的低壓致冷劑電路 16經過壁12到達室外壓縮機單元1〇。在操作中,壓縮機單 元10將致冷劑氣體壓縮爲迴圈經過高壓電路14的高壓液 體。高壓致冷劑經過針形閥15,所述高壓致冷劑被允許在 蒸發器單元11中膨脹並且這樣做吸收了來自經過蒸發器單 元11的熱量。風扇17促使空氣經過蒸發器單元u ,從而產 生連續的冷氣流18。這種類型的空調/致冷劑電路在本領域 中是公知的並且可以被本領域技術人員容易地理解。 1 7¾助柙制動壓縮 機/冷凝器10的串聯連接的兩個壓縮機控制裝置。第一控制 裝置是典型的房間自動調溫器19,其可以是本領域公㈣ 機械或電子類型的。房間自動調溫㈣具有溫敏元件和一 對觸點,當關環境房間溫度進人和離開設定溫度閣值 時’所述觸點回應於來自溫敏元件的移動或信號而開啓和 關閉。在空調或致冷⑽、統的情況下,所述觸點被配置為 以在由溫敏⑽感測的房間溫度下降到低於房間溫度 疋點時制祕職。當相溫度升高_述定點之上時 力:〜差以避免觸點超量迴圈,所述觸點將關閉以再 次起動壓縮機。第二壓__| 能控制器2G具有第卩m2〇。郎 在装發、皿7卜該第二溫敏元件21定位 單二==器單元11附近以感測經過蒸發器 發師元11排㈣供應的氣流_溫度。節 201104181 能控=器亦具有—第二對的觸點22以及—包括—可變延遲 計=器24之電子電路或微處理㈣。計時㈣係可為微處 理為23的-整合式計時n或為由微處理㈣或電子電路所 控制(譬如起動,停止及重設)之—分離的離散計時器。電子 電路或微處理㈣係動態地調節計日巧_遲並回應於來 自。第二溫敏元件21的信號而操作觸點以停止及起動壓縮機 早凡10。ϋ過㈣的節能控制器20和房間自動調溫器19, 壓縮機在節能控制器20或房間中的觸點被開啓時制動,並 且壓縮機僅在節能控制㈣或房間自動調溫器附的觸點 被關閉時起動。因此’如以下說明書中所見,當周圍環境 房間溫度或冷氣流18溫度下降至低於各自的聽溫度時,壓 縮機的插作被制動。 節能控制器20的優選操作將參考第3圖說明,其中供應 的冷乳流18溫度被表示爲線C,房間溫度被表示爲線d並且 壓縮機開/關狀態被表示爲線Ε。能量控制㈣可以實施在 電子電路中或實施爲微處理器。第4圖中說明了微處理器控 制的流程圖。在時刻〇使空調系統上電,房間溫度高並且因 此房間自動凋溫器19觸點關閉。節能控制器2〇通過降低對 其繼電器的加壓而在1〇_15秒内起動壓縮機單元職且關 閉其與房間自動調溫器i 9觸點串聯的觸點組。跟隨壓縮機 單元_祕,“㈣㈣使料溫度制幻】監控供 應的冷氣流18的溫度並且回應於供應的冷氣流咐的變化 而開啓和關閉壓縮機。隨著周圍環境房間溫度D繼續向下的 軌跡,冷氣流溫度c將繼續降低。在時刻丨,冷氣流18的溫 12 201104181 度達到最小穩態溫度。當節能控制器檢測到供應的氣溫達 到穩態時,節能控制器觸發可變延遲計時器,該可變延遲 計時器反過來在延遲間隔T後在時刻2關閉壓縮機,所述可 變延遲計時器的觸發可以通過確定兩個連續間隔之間的溫 差而確定。在較佳實施例中,延遲間隔T被初始化爲2分鐘 並且該延遲間隔T回應於空調系統上確定的“負載,,在壓縮 機的連續開/關迴圈期間動態變化。在較佳實施例中,基於 檢測到的壓縮機被再次開啓後3〇秒的供應的空氣18的溫度 “過沖’’水平,延遲計時器設定增大例如三分鐘增量或減小 例如一分鐘增量。 通過壓縮機單元10的關閉’供應的空氣溫度18將保持 在其穩態最小值直至接收器/乾燥器13和高壓管道機件14 中的高壓液體致冷劑的“儲藏室”被用完。這發生在第3圖中 的時刻3。冷氣流18溫度c之後將開始以與空調系統上的負 載成比例的速度升高。這種冷氣流“溫度^^皮允許升高直至 其在時刻4達到限定的“開關點”,該“開關點,,在較佳實施例 中爲低於自動調溫器丨9限定的可能遇到的房間溫度的最小 值的2<t。作為示例,對於要求18°C的工作溫度的資料中心 操作,“開關溫度”將是16。(:並且對於一般為22<)(:的房間溫 度操作,“開關溫度,,將為20。(:等。在時刻4達到限定的“開 關溫度”時’節能控制器珊低對其内部繼電器的加壓以重 新起動壓縮機單元1G。賴壓縮機的起動,並且對於每個 開/關壓縮機迴圈’ 一種演算法被用於確定空調或致冷系統 上的貫際負載。在較佳實施例中,如第3圖中的F所示,一 13 201104181 旦壓匕機被重新起動,則所述負載從供應的空氣溫度“過 冲的里推斷。在較佳實施例中,冷氣流18溫度“過沖,,在時 刻5測量’時刻5在較佳實施例中為壓縮機在時刻4重新起動 & .心如果這種溫度“過沖”超過自動調溫器19限定的可 此遇到的房間溫度的最小值’在這種情況下爲高於開關溫 度H,則可變延遲計時器的值T增大。在較佳實施例中, 二分鐘延遲將被添加到計時器以使壓縮機在時㈣冷氣流 Μ再次達到最小溫度後㈣開啓更長的時間。如果這種溫 又k冲4超過自動調溫器19限定的可能遇到的房間溫度 的最]、值’在14種情況下爲高於開關溫度2。(:,則可變延遲 。十時益的值T減小。在較佳實施例中,7被減小丨秒以使壓縮 機在時刻6冷乳流i 8再:欠達到最小溫度後保持開啓的時間 更短。迴圈本身重複。實際上,隨著空調或致冷系統上的 負載的增大’額外的三分鐘延遲被添加到連續的壓縮機迴 圈中以維持舒適水平同時降低節能。延遲計時器設置基於 才欢測到的壓縮機被再次開啓後3 〇秒的溫度“過沖,,水平而增 大三分鐘增量或者減小-分鐘增量。以這㈣式並且基^ 個迴圈接-個糊’連續雜制祕叫蚊點和所要 求的舒適水平的方杨態卿能量降低水平。 在上述較佳實施例中,公知的空《統可以根據本發 明通過將節能控制器2 0與其所在的房間的自動調溫器i 9串 :佈線而被改型翻新。許多當代的空調系統具有m或無線 退端控制以設置相溫度定點和其他魏。在*要求通過 有資格的電X設置的可替換的實施例中,使用無線或紅外 201104181 通信以經由其遠端控制輸入端調節空調系統的定點的電池 供電的溫度感測器和能量控制系統。在這種實施例中,在 檢測到最小的供應的空氣溫度並跟隨適當的時間延遲,壓 縮機通過溫度感測器/控制系統的組合關閉,所述組合指示 遠端控制系統調節其定點到最大設定。在與之前實施例類 似的方式中,一旦高壓液體致冷劑的“儲藏室’’被用完,供 應的空氣溫度將增大到預定義的開關點,在該開關點,控 制系統將使用無線或紅外通信通過將遠端控制單元的定點 返回到其原始值而重新起動壓縮機操作。可替換地,根據 本發明製造的空調系統可以具有單個控制器,該控制器具 有兩個溫度感測元件,一個溫度感測元件用於周圍環境房 間溫度並且另一個溫度感測元件用於供應的蒸發冷氣溫 度。雖然上述較佳實施例是分離型的空調,但本發明可以 同等地應用到單個單元空調,例如窗式空調,並且應用到 致冷系統。 在較佳實施例中,如第3圖所示,一旦壓縮機重新起 動,則所述空調系統負載從供應的空氣溫度“過4沖”的量推 斷。在可替換的實施例中,一旦液體致冷劑被用完,則空 調系統負載可以從供應的空氣溫度升高速度推斷,或者從 供應的空氣溫度升高速度和供應的空氣溫度“過沖”的量的 組合推斷。如果使用了供應的空氣溫度的速度的升高,則 時間值T能在升高的速度超過第一閾值時增大並且在低於 第二閾值的情況下減小。 已經描述一用於空調及致冷系統中的能耗連續控制之 15 201104181 系統和方法的一實施例。所述實施例使用硬體和/或軟體元 件基於獨立的空調或致冷安裝而工作。基於即時系統負 載,所述控制系統用於顯著減小空調和致冷系統中的能 耗,同時以限定了定點的自動調溫器19維持舒適水平和溫 度。每個空調或致冷安裝將包括多個元件,所述元件包括 壓縮機/冷凝器和致冷介質,以及自動調溫器19和蒸發器、 風扇線圈或由所述的連續控制系統使用的空氣處理單元。 所述的控制系統和方法使用溫度感測器來連續監控由 空調或致冷系統的蒸發器、風扇線圈或空氣處理單元傳輸 的供應的冷氣流的性能。使用人工智慧設計的演算法和適 當的軟體,這種供應的空氣的分鐘的溫度被用於推斷空調 或致冷系統的主要能耗元件上的實際負載。所述的控制系 統與空調或致冷系統的自動調溫器19一起工作以開/關壓縮 機或開/閉水閥,由此最優化與實際系統負載一致的能耗。 第6圖顯示根據本發明的一節能器以及一鋼爐加熱系 統之一替代性使用技術。所顯示的系統係為一用於一家用 或商用物產之加熱系統,其包含一水加熱器或鍋爐30及一 房間輻射器。熱水係藉由一熱水迴路32從鍋爐30流通至輻 射器31並經由一返回水迴路33從輻射器返回至鍋爐。提供 一如該技藝所習知之壁自動調溫器34,其用於設定一被輻 射器31加熱的房間或空間之一所需要溫度。此實施例中, 節能設備35係經由熱水供應管線32中的一自動調溫器36來 測量所供應的熱水溫度。熱水供應溫度將在輻射器31處或 盡可能靠近輻射器31處作測量。參照第7圖的圖形,當水加 16 201104181 熱器或鍋爐30被開啟時,熱水供應管道32中的水溫開始上 升。當節能設備35偵測到熱水溫度已抵達一穩態最大值 時,其有可能典型為70至80°C,雖然水流通泵仍運轉以持 續流通熱水,鍋爐係在一時間延遲T之後被關閉。熱水溫度 開始下降且當其抵達一設定點臨閾值時,其譬如比標稱房 間溫度更高出幾度,則再度開啟鍋爐。水溫係開始上升且 當其抵達其穩態最大值溫度時,鍋爐被再度關閉並重覆該 循環。以臨閾值的一超過量F為基礎,如上述範例所描述來 調整時間延遲T。 本發明的態樣可被一般化表示為但不限於一預定配合 使用一具有一加熱或冷卻系統之節能設備,其中該加熱或 冷卻系統係具有一用於改變一工作介質的溫度之裝置,該 設備係包含用於提供一開/關信號至該裝置之觸點,一計時 器,其具有一可調整式計時器數值且提供一用於開啟或關 閉觸點之信號,一溫度感測器,其用於測量工作介質的溫 度,及一控制器,其配置成可回應於工作介質的溫度變化 來調整可調整式計時器數值。一加熱或冷卻系統,其包含 一用於改變一工作介質的溫度之裝置,一溫度感測器,其 被定位為可測量工作介質的溫度,及一控制器,其用於回 應於工作介質的一經感測溫度來開啟及關閉該裝置。並 且,一用於控制一加熱或冷卻系統之方法,包含提供一用 於測量工作介質的一溫度之溫度感測器,判定該溫度何時 抵達一穩態數值並在一延遲時間T之後停止該裝置,判定該 溫度何時抵達一臨閾值數值且起動該裝置,判定加熱或冷 17 201104181 卻系統上的一負載,及以該負載為基礎來計算一新延遲時 間τ。 【圖式簡單說明】 第1圖是一典型的先前技術空調或致冷系統之示意圖, 第2圖是根據本發明的一實施例之一空調或致冷系統 的示意圖, 第3圖是由根據本發明的空調和致冷系統所使用之典 型房間溫度和供應空氣溫度輪廓以及“事件點”的示意圖, 第4圖是用於根據本發明的一實施例之空調及致冷系 統的操作之一微處理器或軟體控制方案的流程圖, 第5圖是節能設備的示意圖, 第6圖是根據本發明另一實施例之鍋爐系統的示意 圖,及 第7圖是典型熱供應水溫度輪廓之示意圖。 【主要元件符號說明 1〜6...時刻 10.. .壓縮機單元 11…蒸發器單元 12···壁 13.. .接收器/乾燥器 14.. .管道機件 15.. .針形閥 16.. .低壓致冷劑電路 17.. .風扇 18.. .冷氣流 19.. .房間自動調溫器 20.. .節能控制器 21.. .第二溫敏元件 22.. .第二對的觸點 23.. .電子電路或微處理器 24.. .可變延遲計時器 30.. .水加熱器或鍋爐 31.. .輻射器 18 201104181 32.. .熱水迴路,熱水供應管 線,熱水供應管道 3 3...返回水迴路 34.. .壁自動調溫器 35.. .節能設備 36.. .自動調溫器 C,D,E···線 T...延遲間隔 19201104181 VI. Description of the Invention: FIELD OF THE INVENTION The present invention relates to cooling and heating systems, such as air conditioners, chillers/cooling systems, and boilers. In particular, the present invention relates to an energy saving apparatus for a cooling and heating apparatus and to an energy efficient method for controlling a cooling and heating apparatus. C prior art:! BACKGROUND OF THE INVENTION Air conditioning and refrigeration systems are typically designed to deliver the required cooling under the greatest demand for the desired climatic conditions. As an example, an air conditioning system can be designed to maintain a full human room at the required minimum temperature during the hottest days of the year and the size of the compressor as the primary energy consuming component is designed to be Cooling is provided under extreme conditions. Obviously, there are few opportunities or no opportunities to reduce energy consumption when working in this situation and at the maximum design limits. However, 'because air conditioning and refrigeration systems rarely work at their maximum design limits', their size is thus over-designed and mostly consumes more energy than needed for most of the time. energy. Figure 1 is a schematic diagram of a typical empty a week or a cryogenic system. Here, the compressor and associated condenser 1 are used to generate a "storage chamber" for the high pressure liquid refrigerant on the high voltage circuit. The high voltage circuit includes a receiver/dryer 2 and a connecting pipe member 3. The compressor 1 converts the low-pressure refrigerant vapor into a high-pressure liquid refrigerant which can be used for refrigeration. In the compression of this steam, a very large 201104181 heat is generated and this heat is dissipated to the external space to be cooled, ... ^ The refrigerant money is compressed into a liquid under high pressure. The high pressure pipe == is carried in the space to be cooled, where = / (4) pin 5, which is usually the indoor exchanger (10), but is shown separately for clarity. After the needle valve 5, the high pressure liquid: the explosive decompression under the low pressure in the indoor heat exchanger 6 is restored to: : ° In the reading: L art, a large amount of heat is absorbed from the air through the heat exchanger 6' and thus bowed The very cold supply airflow enters the human phase or the cooled area. The fan 7 moves the air through the heat exchange to provide a cold supply airflow 8. The low-pressure refrigerant is returned to the compressor 1 via a low-voltage circuit including a pipe member*, thereby being compressed and returned to the high-pressure side again. Most air conditioning and refrigeration systems today use simple on/off temperature control with thermostat 19 for controlling compressors that account for more than 85% of energy consumption. In operation of such a system, the thermostat 19 will maintain continuous operation of the compressor while the room temperature is above a desired set point. When the desired set point is reached, the thermostat 19 will then shut down the compressor until a small temperature rises, at which point the compressor restarts. This control method provides a significant opportunity for energy reduction, except where the compressor is operating at or near its design limits. In fact, the continuous operation of the compressors that have become the "storage chambers" of high-pressure refrigerant actually wastes energy. Recently, a series of new air conditioning and refrigeration systems have introduced compressors that use inverter drives. These drives continuously operate compressors that accelerate or decelerate based on loading on the system. While these units significantly save energy, the level of energy reduction is not significant compared to the level of energy reduction 201104181 that is intelligently obtained by brake compressor operation. c SUMMARY OF INVENTION Summary of the Invention In accordance with a first aspect of the present invention, an energy saving apparatus is provided that is intended for use with a heating or cooling system having a means for varying the temperature of a working medium, the apparatus being included for providing an opening / off signal to the contact of the device, a timer having an adjustable timer value and providing a signal for turning the contact on or off, a temperature sensor for measuring the temperature of the working medium, And a controller configured to adjust the adjustable timer value in response to a change in temperature of the working medium. Preferably, the energy saving device is intended to be used in conjunction with an air conditioner or refrigeration system having a compressor for compressing a refrigerant supply, and an evaporator wherein the compressed refrigerant is expanded for cooling a cold supply air flow, the controller includes a contact for providing an on/off signal to the compressor, a timer having an adjustable timer value and providing a signal for opening or closing the contact A temperature sensor for measuring cold supply air, and a controller configured to adjust the adjustable timer value in response to measuring the temperature of the cold supply air. Preferably, the timer is configured to open the contacts and the controller is configured to activate the time and close the contacts. Preferably, the controller includes a microprocessor or electronic circuit adapted to detect a signal from the temperature sensor representing a minimum cold supply air temperature and a high cold supply air temperature. According to a second aspect of the present invention, there is provided a heating or cooling system, the 201104181 comprising - means for changing the temperature of the working medium, a temperature sensor which is clamped to measure the temperature of the working medium, and A controller for turning the device on and off in response to a sensed temperature of the working medium. Preferably, the heating or cooling system is an air conditioner or a refrigeration system comprising a compressor for compressing a supply of a refrigerant, an evaporator, wherein the compressed refrigerant is expanded for cooling The cold supply air flow, a temperature sensor, is positioned to measure the temperature of the cold supply air, and a controller for turning the compressor on and off in response to a sensed temperature of the cold supply air. Preferably, the controller includes a timer having an adjustable timer value that is operative to turn off the device at the end of the adjustable timer value. Preferably, the controller includes a microprocessor or electronic circuit adapted to detect a signal from the temperature sensor representing a maximum temperature and a minimum temperature and to calculate a timer value. Preferably, the system further includes a second temperature sensor positioned to measure a ring chamber temperature of a space to be heated or cooled such that the device is also responsive to a sensed temperature of the space Turn it on and off. According to a third aspect of the invention, there is provided a method for controlling a heating or cooling system having a means for varying the temperature of a working medium, the method comprising: k for a temperature sensor 'for Measuring a temperature of the working medium, determining when the β-thin temperature reaches a steady state value and stopping the device after a delay time τ of 201104181, determining when the temperature reaches a threshold value and starting the device, determining the heating or cooling system One of the upper loads, and a new delay time τ based on the load of °H. Preferably, the side method is to control a compressor of an air conditioner or a refrigeration system, which has a compressor for compressing a supply of a refrigerant, and a compressor, wherein the compressed refrigerant is expanded. To cool a cold supply air stream, the method comprises: providing a temperature sensor for measuring a temperature of the cold supply air stream, determining when the temperature of the cold supply air stream reaches a desired minimum value and After a delay time T, the compressor is stopped, and when the temperature of the cold supply air flow reaches a required maximum value and the compressor is started, it is determined that one of the air conditioner or the refrigeration system is loaded and based on the load of °H To calculate a new delay time τ. Preferably, the (four) spicy small value of the cold supply air supply is a minimum steady state temperature. Preferably, the required maximum value for the temperature of the cold supply air stream is lower than the temperature of a desired room temperature. Preferably, one of the load systems on the system is determined, and you include a ~ excess amount that measures the temperature above the threshold value. The amount of Μ 丨 Μ Μ 新 — — — — — — — — — — — 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新Then the delay time τ is lowered. Preferably, a load on the system is determined to include a rate of change in measured temperature. Other aspects of the invention are defined in the claims, or will be apparent from the following description, which is provided by way of illustration only. BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described, by way of example only, with reference to the drawings in which: FIG. 1 is a schematic diagram of a typical prior art air conditioning or refrigeration system, and FIG. 2 is an air conditioner in accordance with an embodiment of the present invention. Or the intention of the refrigeration system* Figure 3 is a schematic diagram of typical room temperature and supply air temperature profiles and "event points" used by the air conditioning and refrigeration system according to the present invention, and Figure 4 is for use in accordance with the present invention. A flowchart of a microprocessor or software control scheme for operation of an air conditioning and refrigeration system of one embodiment, FIG. 5 is a schematic diagram of an energy saving apparatus, and FIG. 6 is a schematic diagram of a boiler system according to another embodiment of the present invention. And Figure 7 is a schematic diagram of a typical hot supply water temperature profile. I. Embodiment 3 Description of the Preferred Embodiments Before any embodiments of the present invention are described in detail, the application of the present invention is not limited to the construction and configuration details of the components as shown in the drawings or described below. The invention is capable of other embodiments and of various embodiments. Also, please understand that the terms and terms used herein are used to describe 201104181 and should not be considered as limiting. For example, the invention will be described as used in the air conditioning industry' but it is understood that its generalization can be applied to heating and cooling systems. In one embodiment, the present invention is used to reduce the energy consumption in an air conditioner and a refrigeration system by controlling the opening and closing states of the compressor to perform a "storage chamber, full utilization, or execution potential" of the transfer of the high pressure refrigerant. Cooling, and performing a "storage chamber, full utilization, or performing potential cooling" of the delivery of high refrigerants by continuously matching the cooling of the transfer wheel with the actual load provided to the air conditioning or refrigeration system. In a preferred embodiment, the present invention provides an air conditioning or refrigeration system and a method for controlling an air conditioning system. The method uses a temperature sensor to monitor a supply of cold air temperature, the supplied cold air temperature being cooled in a high pressure liquid The agent is allowed to be produced when explosively decompressed in the evaporator unit. Through the compressor operation, the supply of cold air temperature continues to decrease while the cooled room or enclosure cools. The detection of the minimum supply of cold air temperature indicates that a stable "room" with established room temperature conditions and high pressure liquid refrigerant (or potential cooling) has been established. The minimum supply of cold air conditions can be detected by monitoring the supply of cold air temperature over successive intervals until it reaches a constant or steady state temperature that has reached a minimum. Thus, and then dynamically variable time delay, the compressor is braked. When the compressor is turned off, the temperature sensor continues to monitor the supply of cold air temperature until the supplied air temperature begins to increase as the high pressure liquid refrigerant is used up. In order to maintain a comfortable level, the supplied air temperature is then allowed to increase to an appropriate point below the minimum expected room temperature setting. When this is reached, the compressor is restarted. When restarting the compressor, an algorithm designed with artificial intelligence can be used!; 9 201104181 After being used to monitor the temperature (four) rush, the (four) gas temperature is used after the heavy machine operation immediately after the result of the calculation of the 13 垦 reduction type is used ,plant. This is longer or decreases at the point where the minimum supply reaches the next compression 棬 · working temperature, and after the loop is used for the brake pressure # variable time delay. In this way, the dynamic cooling of the +'4 (four) machine and the provision of the dare __ real; breaking the wheel work in the same circuit as the room thermostat 19 = inter-system thermostat 19 defines the desired room temperature Fixed point and 2 = quantity controller work to optimize energy consumption. The main benefits of the present invention 持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持A second benefit is that the compressor shaft torque is significantly reduced due to the consumption of π pressure liquid refrigerant at the restart of the ink mussel: The present invention will now be practiced in a home type air conditioning system. 34 is not meant to limit the scope of use or functionality of the present invention. Those skilled in the art will appreciate that the present invention is equally applicable to both domestic and commercial air conditioning and refrigeration systems and is generally applicable to heating and cooling systems. Referring to Fig. 2, the air conditioning system according to the present invention may be a split type air conditioner in which an air conditioner compressor and an evaporator unit 1G (hereinafter referred to as a compressor unit 1G) are positioned in a first space A which is usually outside and the air conditioner evaporates. The fan and fan unit 11 (hereinafter referred to as the evaporator unit u) is positioned in a second space, typically within the room being cooled. The two spaces A and B are separated by a wall 12. The high pressure refrigerant circuit includes a receiver/dryer! 3. The receiver/dryer 3 is positioned adjacent to the compressor unit 1 and the pipework 14 to carry the high pressure liquid refrigerant from the compressor unit (7) and the receiver/dryer 13 through the wall 2 into the second Space 04B arrives at the needle valve 15 positioned in the evaporator unit 11. In the intent of Fig. 2, the needle valve 15 and the evaporator are shown as separate and distinct elements for clarity. The low pressure refrigerant circuit 16 from the indoor evaporator unit U passes through the wall 12 to the outdoor compressor unit 1A. In operation, compressor unit 10 compresses the refrigerant gas into a high pressure liquid that is looped through high pressure circuit 14. The high pressure refrigerant passes through the needle valve 15, which is allowed to expand in the evaporator unit 11 and absorbs heat from the evaporator unit 11 in doing so. Fan 17 causes air to pass through evaporator unit u to produce a continuous stream of cold gas 18. Air conditioner/refrigerant circuits of this type are well known in the art and can be readily understood by those skilled in the art. 1 73⁄4 Auxiliary brake compressor/condenser 10 is connected in series with two compressor control devices. The first control device is a typical room thermostat 19, which may be of the art (4) mechanical or electronic type. The room is automatically tempered (4) with a temperature sensitive element and a pair of contacts that open and close in response to movement or signals from the temperature sensitive element when the ambient room temperature enters and exits the set temperature threshold. In the case of air conditioning or refrigeration (10), the contacts are configured to perform a secret when the room temperature sensed by the temperature sensitive (10) drops below the room temperature. When the phase temperature rises above the stated point force: ~ difference to avoid contact excess loop, the contact will close to restart the compressor. The second voltage __| can have a controller 2m2〇. Lang is positioned in the vicinity of the second temperature unit 21 to sense the airflow_temperature supplied through the evaporator unit 11 (4). Section 201104181 The control unit also has a second pair of contacts 22 and an electronic circuit or microprocessor (4) including a variable delay meter=24. The timing (4) can be a micro-processed 23-integrated timing n or a discrete timer separated by micro-processing (4) or electronic circuitry (such as start, stop and reset). The electronic circuit or microprocessor (4) dynamically adjusts the meter to be late and responds to it. The signal of the second temperature sensitive element 21 operates the contact to stop and start the compressor. Passing (4) the energy-saving controller 20 and the room thermostat 19, the compressor is braked when the energy-saving controller 20 or the contact in the room is opened, and the compressor is only attached to the energy-saving control (4) or the room thermostat Start when the contact is closed. Thus, as seen in the following description, when the ambient room temperature or the temperature of the cold air stream 18 drops below the respective listening temperatures, the compressor is inserted and braked. The preferred operation of the energy saving controller 20 will be explained with reference to Fig. 3, in which the temperature of the supplied cold milk stream 18 is represented as line C, the room temperature is represented as line d and the compressor on/off state is represented as a line. The energy control (4) can be implemented in an electronic circuit or as a microprocessor. A flow chart of microprocessor control is illustrated in Figure 4. At the moment, the air conditioning system is powered up, the room temperature is high and the room's automatic chiller 19 contacts are closed. The energy saving controller 2 starts the compressor unit in 1 〇 15 seconds by reducing the pressure on its relay and turns off the contact group in series with the room thermostat i 9 contact. Follow the compressor unit _ secret, "(4) (four) make the temperature of the material illusion] monitor the temperature of the supplied cold air flow 18 and turn the compressor on and off in response to the change of the supplied cold air flow 。. With the ambient room temperature D continue down The trajectory, the cold air temperature c will continue to decrease. At the time 丨, the temperature of the cold air stream 18 reaches the minimum steady state temperature of 201104181. When the energy saving controller detects that the supplied temperature reaches a steady state, the energy saving controller triggers a variable delay. A timer, which in turn turns off the compressor at time 2 after the delay interval T, the triggering of which can be determined by determining the temperature difference between two consecutive intervals. In the example, the delay interval T is initialized to 2 minutes and the delay interval T is dynamically changed during the continuous on/off loop of the compressor in response to the "load" determined on the air conditioning system. In a preferred embodiment, the delay timer setting is increased by, for example, three minutes increments or decreases, for example, based on the detected "overshoot" level of the supplied air 18 for 3 seconds after the compressor is turned back on. Minute increments. The "storage chamber" of the high pressure liquid refrigerant that will remain at its steady state minimum through the shut down 'compressed air temperature 18 of the compressor unit 10 up to the receiver/dryer 13 and the high pressure conduit member 14 This occurs at time 3 in Figure 3. After the temperature c of the cold gas stream 18 will begin to increase at a rate proportional to the load on the air conditioning system. This cold air flow "temperature is allowed to rise until It reaches a defined "switching point" at time 4, which in the preferred embodiment is 2 <t below the minimum of the room temperature that may be encountered defined by the thermostat 丨9. For example, for data center operations requiring an operating temperature of 18 ° C, the "switching temperature" will be 16. (: and for a room temperature operation of typically 22), the "switching temperature," will be 20. (: Etc. At the time 4 reached the limit of "open When the temperature is "off", the energy-saving controller is low to pressurize its internal relay to restart the compressor unit 1G. The start of the compressor, and for each on/off compressor loop 'an algorithm is used to determine A continuous load on the air conditioning or refrigeration system. In the preferred embodiment, as indicated by F in Figure 3, a 13 201104181 denier is restarted, then the load is supplied from the supplied air temperature. In the preferred embodiment, the temperature of the cold gas stream 18 is "overshooted, measured at time 5". Time 5 is in the preferred embodiment the compressor is restarted at time 4 & The "overshoot" exceeds the minimum value of the room temperature that can be encountered by the thermostat 19, which in this case is higher than the switching temperature H, the value T of the variable delay timer is increased. In an embodiment, a two-minute delay will be added to the timer to allow the compressor to turn on for a longer period of time (4) after the cold air enthalpy reaches the minimum temperature again. If the temperature exceeds the thermostat 19 limit The most likely to encounter the room temperature, the value ' In 14 cases, it is higher than the switching temperature 2. (:, then variable delay. The value T of the ten-hour benefit is reduced. In the preferred embodiment, 7 is reduced by leap seconds to make the compressor cold at time 6 Milk flow i 8 again: the time to keep open after reaching the minimum temperature is shorter. The loop itself repeats. In fact, as the load on the air conditioner or the cooling system increases, an additional three minute delay is added to the continuous The compressor is circulated to maintain a comfortable level while reducing energy savings. The delay timer setting is based on the temperature of the 3 sec seconds after the compressor is turned back on, “overshoot, increase by three minutes or decrease in level. - Minute increments. In this (4) and base loops - a paste of 'continuously miscellaneous secrets" and the desired level of comfort level of the energy level. In the preferred embodiment described above, The well-known air system can be retrofitted according to the invention by arranging the energy-saving controller 20 with the thermostat i 9 of the room in which it is located: wiring. Many contemporary air conditioning systems have m or wireless back-end controls to set the phase temperature set point and other Wei. In an alternative embodiment where * is required to pass a qualified electrical X setting, wireless or infrared 201104181 communication is used to adjust the battery powered temperature sensor and energy control system of the air conditioning system via its remote control input. In such an embodiment, upon detecting the minimum supplied air temperature and following an appropriate time delay, the compressor is turned off by a combination of temperature sensors/control systems that instruct the remote control system to adjust its fixed point to maximum set up. In a similar manner to the previous embodiment, once the "storage chamber" of the high pressure liquid refrigerant is used up, the supplied air temperature will increase to a predefined switching point at which the control system will use wireless Or infrared communication restarts the compressor operation by returning the fixed point of the remote control unit to its original value. Alternatively, the air conditioning system made in accordance with the present invention may have a single controller having two temperature sensing elements One temperature sensing element is used for the ambient room temperature and the other temperature sensing element is used for the supplied evaporative cold air temperature. Although the above preferred embodiment is a separate type of air conditioner, the present invention can be equally applied to a single unit air conditioner. For example, a window air conditioner, and applied to a refrigeration system. In a preferred embodiment, as shown in Fig. 3, once the compressor is restarted, the air conditioning system load "over 4" from the supplied air temperature. Inferred. In an alternative embodiment, once the liquid refrigerant is used up, the air conditioning system load can rise from the supplied air temperature. High speed inference, or inferred from a combination of the supplied air temperature increase rate and the supplied air temperature "overshoot". If the speed of the supplied air temperature is increased, the time value T can be raised. The speed increases when the speed exceeds the first threshold and decreases below the second threshold. An embodiment of a system and method for continuous control of energy consumption in an air conditioning and refrigeration system has been described. Embodiments use hardware and/or software components to operate based on independent air conditioning or refrigeration installations. Based on immediate system loads, the control system is used to significantly reduce energy consumption in air conditioning and refrigeration systems while defining a fixed point The thermostat 19 maintains a comfortable level and temperature. Each air conditioning or refrigeration installation will include a plurality of components including a compressor/condenser and a refrigerant, as well as a thermostat 19 and an evaporator, fan a coil or an air handling unit used by the continuous control system. The control system and method use a temperature sensor to continuously monitor evaporation from an air conditioning or refrigeration system The performance of the supplied cold air flow transmitted by the fan, fan coil or air handling unit. Using an artificially intelligent design algorithm and appropriate software, the minute temperature of this supplied air is used to infer the main energy of the air conditioning or refrigeration system. The actual load on the component is consumed. The control system works with the thermostat 19 of the air conditioning or refrigeration system to turn the compressor on/off or open/close the water valve, thereby optimizing the energy in accordance with the actual system load. Fig. 6 shows an alternative use technique of an economizer and a steel furnace heating system according to the present invention. The system shown is a heating system for a commercial or commercial product, which comprises a water heater. Or a boiler 30 and a room radiator. The hot water is circulated from the boiler 30 to the radiator 31 via a hot water circuit 32 and returned from the radiator to the boiler via a return water circuit 33. A wall as is known in the art is provided. A thermostat 34 is provided for setting the temperature required for one of the rooms or spaces heated by the radiator 31. In this embodiment, the energy saving device 35 measures the supplied hot water temperature via a thermostat 36 in the hot water supply line 32. The hot water supply temperature will be measured at the radiator 31 or as close as possible to the radiator 31. Referring to the graph of Fig. 7, when the water heater 16 201104181 heat exchanger or boiler 30 is turned on, the water temperature in the hot water supply pipe 32 starts to rise. When the energy saving device 35 detects that the hot water temperature has reached a steady state maximum, it may be typically 70 to 80 ° C. Although the water circulation pump is still running to continuously circulate the hot water, the boiler is delayed after a time T is closed. The hot water temperature begins to drop and when it reaches a set point threshold, if it is a few degrees higher than the nominal room temperature, the boiler is turned on again. The water temperature begins to rise and when it reaches its steady state maximum temperature, the boiler is shut down again and the cycle is repeated. Based on an excess F of the threshold, the time delay T is adjusted as described in the above example. Aspects of the invention can be generally represented as, but not limited to, a predetermined fit using an energy saving device having a heating or cooling system, wherein the heating or cooling system has a means for varying the temperature of a working medium, The device includes a contact for providing an on/off signal to the device, a timer having an adjustable timer value and providing a signal for turning the contact on or off, a temperature sensor, It is used to measure the temperature of the working medium, and a controller configured to adjust the adjustable timer value in response to changes in temperature of the working medium. A heating or cooling system comprising a means for varying the temperature of a working medium, a temperature sensor positioned to measure the temperature of the working medium, and a controller responsive to the working medium The device is turned on and off as soon as the temperature is sensed. Also, a method for controlling a heating or cooling system includes providing a temperature sensor for measuring a temperature of the working medium, determining when the temperature reaches a steady state value and stopping the device after a delay time T Determine when the temperature reaches a threshold value and start the device, determine a load on the system that is heated or cold, and calculate a new delay time τ based on the load. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a typical prior art air conditioning or refrigeration system, and FIG. 2 is a schematic diagram of an air conditioning or refrigeration system according to an embodiment of the present invention, and FIG. 3 is based on A typical room temperature and supply air temperature profile and an "event point" schematic for use in the air conditioning and refrigeration system of the present invention, and FIG. 4 is one of the operations of the air conditioning and refrigeration system for use in accordance with an embodiment of the present invention. A flowchart of a microprocessor or software control scheme, FIG. 5 is a schematic diagram of an energy saving device, FIG. 6 is a schematic diagram of a boiler system according to another embodiment of the present invention, and FIG. 7 is a schematic diagram of a typical heat supply water temperature profile . [Main component symbol description 1 to 6...Time 10: Compressor unit 11...Evaporator unit 12··· Wall 13.... Receiver/dryer 14... Pipeline machine 15.. needle Shape valve 16. Low pressure refrigerant circuit 17. Fan.. Cool air flow 19.. Room thermostat 20. Energy saving controller 21.. Second temperature sensor 22.. The second pair of contacts 23.. Electronic circuit or microprocessor 24.. Variable delay timer 30.. Water heater or boiler 31.. Radiator 18 201104181 32.. . Hot water circuit , hot water supply pipeline, hot water supply pipeline 3 3... return water circuit 34.. wall thermostat 35.. . energy-saving equipment 36.. . thermostat C, D, E··· line T...delay interval 19

Claims (1)

201104181 七、申請專利範圍: 1,種節能设備,其意欲與具有用於改變一工作介質溫度 的裝置之-加熱或冷卻系統配合使用,該設備係包含 用於提供-開/關信號至該裝置之觸點…計時器,其 具有-可調整式計時器數值且提供一用於開啟或關閉 遠等觸點之信號、-溫度感測器,其用於測量該工作介 質的溫度、及-控制n ’其配置為回應於該工作介質的 溫度變化來調整該可調整式計時器數值。 2. 一種節能設備’其意欲與—空調器或致冷系統配合使 用H周益或致冷线係具有用於壓縮—致冷劑供應 物之-壓縮機,及-蒸發器,其中該㈣縮的致冷劑係 膨脹以供冷卻-冷供應空氣流,該設備係包含用於提供 —開/關信號至該壓縮機之觸點、一計時器,其具有一 可調整式計時器數值且提供一用於開啟或關閉該等觸 點的㈣、—溫度感測器,其用於測量該冷供應空氣、 及-控制器,其配置為回應於—經測量冷供應空氣溫度 來調整該可調整式計時器數值。 X 3 ·如申請專利範圍第i或2項之節能設備,其中該計時器係 配置為開啓該等觸點,且該控制器係配置為啟動該 及關閉該等觸點。 曰 4.如刖述申請專利範圍任一項之節能設備其中該控制器 係包含-微處理器或電子電路,該微處理器或電:電路 係適於偵測來自該溫度感測器代表—最小值冷供應空 氣溫度及一高的冷供應空氣溫度之信號。 二 20 201104181 5. —種加熱或冷卻系統,包含用於改變一工作介質的溫度 之一裝置、一溫度感測器,其被定位為可測量該工作介 質的溫度、及一控制器,其用於回應於該工作介質的一 經感測溫度來開啟及關閉該裝置。 6. —種空調器或致冷系統,包含一壓縮機裝置,其用於壓 縮一致冷劑的一供應物、一蒸發器,其中該經壓縮的致 冷劑係膨脹供冷卻一冷供應空氣流用、一溫度感測器, 其被定位為可測量該冷供應空氣的溫度、及一控制器, 其用於回應於該冷供應空氣的一經感測溫度來開啓及 關閉該壓縮機。 7. 如申請專利範圍第5或6項之系統,其中該控制器係包含 具有一可調整式計時器數值之一計時器,該計時器可供 在該可調整式計時器數值的終點關閉該裝置。 8. 如申請專利範圍第5至7項中任一項之系統,其中該控制 器係包含一微處理器或電子電路,該微處理器或電子電 路係適於偵測來自該溫度感測器代表一最大值溫度及 一最小值溫度的信號並計算一計時器數值。 9. 如申請專利範圍第5至7項中任一項之系統,進一步包含 一第二溫度感測器,其被定位為可測量一待加熱或冷卻 的空間之環室溫度,使得該裝置亦可回應於該空間的一 經感測溫度而被開啟及關閉。 10. —種用於控制具有用於改變工作介質溫度的裝置之加 熱或冷卻系統的方法,該方法係包含下列步驟: 提供一溫度感測器,其用於測量該工作介質的一溫 21 201104181 度, 判定該溫度何時抵達一穩態數值並在一延遲時間τ 之後停止該裝置, 判定該溫度何時抵達一臨閾值數值並起動該裝置, 判定該加熱或冷卻系統上之一負載,及 以該負載為基礎來計算一新的延遲時間τ。 11. 一種用於控制具有壓縮機及蒸發器之空調器或致冷系 統的壓縮機之方法,其中該壓縮機係用於壓縮一致冷劑 的一供應物,且該經壓縮的致冷劑係在該蒸發器中膨脹 以冷卻一冷供應空氣流,該方法係包含下列步驟: 提供一溫度感測器,其用於測量該冷供應空氣流的 一溫度, 判定該冷供應空氣流的溫度何時抵達一所需要的 最小值數值並在一延遲時間Τ之後停止該壓縮機, 判定該冷供應空氣流的溫度何時抵達一所需要的 最大值臨閾值數值並起動該壓縮機, 判定該空調器或致冷系統之一負載,及 以該負載為基礎來計算一新的延遲時間Τ。 12. 如申請專利範圍第11項之方法,其中該冷供應空氣流溫 度的所需要最小值數值係為一最小值穩態溫度。 13. 如申請專利範圍第11項之方法,其中該冷供應空氣流溫 度的所需要最大值數值係低於一所需要的環室房間溫 度。 14. 如申請專利範圍第10或11項之方法,其中該判定系統上 22 201104181 之一負載之步驟係包含測量超過該臨閾值數值之該溫 度的一超過量。 15. 如申請專利範圍第13項之方法,其中該以超過量為基礎 計算一新延遲時間T之步驟係包含若該超過量超過一所 需要超過量數值則增大該延遲時間T,且若該超過量小 於一所需要超過量數值則降低該延遲時間T。 16. 如申請專利範圍第10或11項之方法,其中該判定系統上 的一負載的步驟係包含測量該溫度的一改變速率。 23201104181 VII. Patent application scope: 1. An energy-saving device intended to be used in conjunction with a heating or cooling system having a device for changing the temperature of a working medium, the device comprising a signal for providing an on/off signal to the A contact of the device... a timer having an adjustable timer value and providing a signal for turning the remote contact on or off, a temperature sensor for measuring the temperature of the working medium, and - Control n' is configured to adjust the adjustable timer value in response to a change in temperature of the working medium. 2. An energy-saving device that is intended to be used in conjunction with an air conditioner or a refrigeration system, such as a compressor for a compression-refrigerant supply, and an evaporator, wherein the (four) is reduced Refrigerant is expanded for cooling-cold supply air flow, the apparatus includes contacts for providing an on/off signal to the compressor, a timer having an adjustable timer value and providing a (four), temperature sensor for turning on or off the contacts, for measuring the cold supply air, and a controller configured to adjust the adjustable in response to the measured cold supply air temperature Timer value. X 3 . The energy saving device of claim i or 2, wherein the timer is configured to open the contacts, and the controller is configured to activate and close the contacts.曰 4. An energy-saving device according to any one of the claims, wherein the controller comprises a microprocessor or an electronic circuit, the microprocessor or circuit being adapted to detect a representative from the temperature sensor. The minimum cold supply air temperature and a high cold supply air temperature signal. 2 20 201104181 5. A heating or cooling system comprising a device for changing the temperature of a working medium, a temperature sensor positioned to measure the temperature of the working medium, and a controller for use The device is turned on and off in response to a sensed temperature of the working medium. 6. An air conditioner or refrigeration system comprising a compressor device for compressing a supply of a refrigerant, an evaporator, wherein the compressed refrigerant is expanded for cooling a cold supply air stream a temperature sensor positioned to measure the temperature of the cold supply air and a controller for turning the compressor on and off in response to a sensed temperature of the cold supply air. 7. The system of claim 5, wherein the controller comprises a timer having an adjustable timer value, the timer being operative to close the end of the adjustable timer value Device. 8. The system of any one of claims 5 to 7, wherein the controller comprises a microprocessor or an electronic circuit adapted to detect from the temperature sensor A signal representing a maximum temperature and a minimum temperature and calculating a timer value. 9. The system of any one of claims 5 to 7 further comprising a second temperature sensor positioned to measure a temperature of the ring chamber of a space to be heated or cooled, such that the device is also It can be turned on and off in response to a sensed temperature of the space. 10. A method for controlling a heating or cooling system having means for varying the temperature of a working medium, the method comprising the steps of: providing a temperature sensor for measuring a temperature of the working medium 21 201104181 Degree, determining when the temperature reaches a steady state value and stopping the device after a delay time τ, determining when the temperature reaches a threshold value and starting the device, determining a load on the heating or cooling system, and A new delay time τ is calculated based on the load. 11. A method for controlling a compressor of an air conditioner or a refrigeration system having a compressor and an evaporator, wherein the compressor is for compressing a supply of a refrigerant, and the compressed refrigerant system Expanding in the evaporator to cool a cold supply air stream, the method comprising the steps of: providing a temperature sensor for measuring a temperature of the cold supply air stream, determining when the temperature of the cold supply air stream is Arriving a required minimum value and stopping the compressor after a delay time, determining when the temperature of the cold supply air stream reaches a desired maximum threshold value and starting the compressor, determining the air conditioner or A load on the cooling system and a new delay time based on the load. 12. The method of claim 11, wherein the minimum value required for the cold supply air flow temperature is a minimum steady state temperature. 13. The method of claim 11, wherein the required maximum value of the cold supply air flow temperature is lower than a desired ambient room temperature. 14. The method of claim 10, wherein the step of one of the loads on the decision system includes measuring an excess of the temperature that exceeds the threshold value. 15. The method of claim 13, wherein the step of calculating a new delay time T based on the excess amount comprises increasing the delay time T if the excess exceeds a required excess amount, and if The delay time T is reduced if the excess is less than a required excess amount. 16. The method of claim 10, wherein the step of determining a load on the system comprises measuring a rate of change of the temperature. twenty three
TW099118356A 2009-06-05 2010-06-07 Energy saver device and method for cooling and heating apparatus TW201104181A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HK09105077.6A HK1137899A2 (en) 2009-06-05 2009-06-05 Energy saver device, air-conditioning or refrigeration system and method for control of an air-conditioning or refrigeration system

Publications (1)

Publication Number Publication Date
TW201104181A true TW201104181A (en) 2011-02-01

Family

ID=42538183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118356A TW201104181A (en) 2009-06-05 2010-06-07 Energy saver device and method for cooling and heating apparatus

Country Status (12)

Country Link
US (1) US20120117995A1 (en)
EP (1) EP2438369A4 (en)
CN (1) CN102762937A (en)
AP (1) AP2012006055A0 (en)
AU (1) AU2010255465A1 (en)
CO (1) CO6480998A2 (en)
EA (1) EA201270007A1 (en)
HK (1) HK1137899A2 (en)
SG (1) SG177510A1 (en)
TW (1) TW201104181A (en)
WO (1) WO2010140056A1 (en)
ZA (1) ZA201200097B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030083A2 (en) 2012-08-20 2014-02-27 Agile 8 Consulting Limited A system and method for improving efficiency of a refrigerant based system
US10174977B2 (en) * 2012-11-21 2019-01-08 Vertiv Corporation Apparatus and method for subcooling control based on superheat setpoint control
US10145589B2 (en) * 2013-03-15 2018-12-04 Whirlpool Corporation Net heat load compensation control method and appliance for temperature stability
CN107427137B (en) * 2015-03-20 2022-02-25 百事可乐公司 Cooling system and method
CA2958388A1 (en) * 2016-04-27 2017-10-27 Rolls-Royce Corporation Supercritical transient storage of refrigerant
JP6776858B2 (en) * 2016-12-09 2020-10-28 富士通株式会社 Air conditioning control programs, equipment, and methods
US11199336B2 (en) * 2019-07-26 2021-12-14 Johnson Controls Tyco IP Holdings LLP HVAC system with on-off control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311748A (en) * 1992-08-12 1994-05-17 Copeland Corporation Control system for heat pump having decoupled sensor arrangement
US6047557A (en) * 1995-06-07 2000-04-11 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US5918474A (en) * 1996-07-30 1999-07-06 Whirlpool Corporation Fan motor on/off control system for a refrigeration appliance
KR100396849B1 (en) * 2001-03-26 2003-09-03 엘지전자 주식회사 Method to control air conditioner with multi-compressor
CN1209592C (en) * 2003-07-10 2005-07-06 上海交通大学 Car air-conditioning air-supplying temp, control system
US7207183B2 (en) * 2004-04-12 2007-04-24 York International Corp. System and method for capacity control in a multiple compressor chiller system
BRPI0518114A (en) * 2005-01-03 2008-11-04 Arcelik As a cooling device and control method
WO2008033123A1 (en) * 2006-09-12 2008-03-20 Carrier Corporation Off-season startups to improve reliability of refrigerant system
US20080289347A1 (en) * 2007-05-22 2008-11-27 Kadle Prasad S Control method for a variable displacement refrigerant compressor in a high-efficiency AC system
EP2000758B1 (en) * 2007-06-04 2011-01-19 RHOSS S.p.A. Control device for a refrigerating machine

Also Published As

Publication number Publication date
CN102762937A (en) 2012-10-31
EA201270007A1 (en) 2012-07-30
EP2438369A1 (en) 2012-04-11
ZA201200097B (en) 2012-09-26
EP2438369A4 (en) 2014-02-26
CO6480998A2 (en) 2012-07-16
SG177510A1 (en) 2012-02-28
WO2010140056A1 (en) 2010-12-09
AP2012006055A0 (en) 2012-02-29
US20120117995A1 (en) 2012-05-17
HK1137899A2 (en) 2010-08-06
AU2010255465A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
CA2639405C (en) Air conditioning system for low ambient cooling
TW201104181A (en) Energy saver device and method for cooling and heating apparatus
JP5405076B2 (en) Air conditioning refrigeration system
KR20110028180A (en) Air conditioner and control method thereof
WO2019011095A1 (en) Operation control method for air conditioner
JP6618609B2 (en) Refrigeration equipment
CN105180348A (en) Machine room air conditioner system and control method thereof
KR20140108576A (en) Heat source system, device for controlling same, and method for controlling same
CN115095955B (en) Air conditioner and defrosting control method thereof
JP4290480B2 (en) Temperature control method
JP6022291B2 (en) Air conditioner
WO2021223530A1 (en) Control method for inverter air conditioner
KR20060124960A (en) Cool mode control method of air conditioner
KR101611315B1 (en) Air conditioner and operating method thereof
JP6890706B1 (en) Air conditioning system and control method
JP2000018671A (en) Heat pump type heating apparatus
JP3481076B2 (en) Operation control device for air conditioner
EP3754269A1 (en) Method and associated computer readable medium for controlling the defrost cycle of a vapor compression system
JP2014098547A (en) Heat-pump air conditioner and heat-pump air conditioner control method
JP2000097479A (en) Air conditioner
WO2024001320A1 (en) Air conditioner and defrosting control method therefor
WO2024001373A1 (en) Air conditioner and defrosting control method therefor
KR100487779B1 (en) A control method of air conditioner
KR101152527B1 (en) Multi-type air conditioner and the compressor control method of it
CN118076069A (en) Multi-modular fluorine pump air conditioning system of data center and control method