TW201101557A - Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc - Google Patents

Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc Download PDF

Info

Publication number
TW201101557A
TW201101557A TW098120711A TW98120711A TW201101557A TW 201101557 A TW201101557 A TW 201101557A TW 098120711 A TW098120711 A TW 098120711A TW 98120711 A TW98120711 A TW 98120711A TW 201101557 A TW201101557 A TW 201101557A
Authority
TW
Taiwan
Prior art keywords
layer
particles
multilayer film
plastic
plastic layer
Prior art date
Application number
TW098120711A
Other languages
Chinese (zh)
Inventor
Chien-Lung Chang
Chien-Lung Wei
Original Assignee
Sunny General Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunny General Internat Co Ltd filed Critical Sunny General Internat Co Ltd
Priority to TW098120711A priority Critical patent/TW201101557A/en
Publication of TW201101557A publication Critical patent/TW201101557A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention is especially directed for providing the thermal management multi-layer film/sheet and hollow articles for the use with secondary battery, supercapacitor and battery pack as thermal management casings or sleeves to achieve effective control of the temperature of the operating batteries/supercapacitors. The thermal management multi-layer film/sheet and hollow article structure of present invention comprises a laminate of a plurality of alternative metal, plastic, and adhesive layers. And the plastic and adhesive layers comprise of parent phase resin, heat conductive particles, and microencapsule-phase-change-material (MCPCM). The heat conductive particles enhances the thermal conductivity, the MCPCMs absorb heat while the batteries/supercapacitors are in discharging mode.

Description

201101557 、發明說明: 【發明所屬之技術領域】 本發明係關於一種使用在單顆二次電池與超級電容以 及多顆二次電池與超級電容Ψ並聯組成之電池包之外殼、 套管之具有熱傳導、隔絕與吸收之熱處理功能的多層膜、 薄片及中空物件。前述之多層膜、薄片及中空物件係由分 散有微粒包覆相變化材料(MCPCM)粒子及熱傳導粒子,以 吸收及分散二次電池及超級電容在充電與放電間所產生的 熱。前述之多層膜、薄片及中空物件可作為相變化形式的 散熱體及/或隔絕體’以保護二次電池及超級電容不受高溫 環境的熱影響。在多層膜、薄片及中空物件中,塑膠層可 用黏著層置換,或是對塑膠層進行化學改質,以提供各層 間足夠的黏著強度。 【先前技術】 一種習知的微粒包覆相變化熱吸收材料揭露於美國專 利第5224356號公告案,其中揭露了使用包含熱能吸收材 料的基材,以冷卻如積體電路及電阻的電子元件,<有效 地減少約65-80%的表面溫度。烷烴與共熔金屬可被瘗為相 變化材料,以獲得不同操作溫度下的最佳熱性質。 參照美國專利第7270910號公告案則揭露了另/種習 知用於具有複數個二次電池的熱管理系統,其中一耩用於 冷卻無線動力工具之二次電池的熱管理系統,包含了具有 微粒包覆相變化材料(MCPCM)的膠體包覆層,參照粪國專 201101557 利第727〇910遽的第十二圖,前述之熱管理系統使用膠體 包覆層所包覆之相變化材料的祕潛熱,來吸收二次電池 所散出的熱。膠體包覆層包含了塑膠載體與MCPCM。該 系統的優點在於’無彡貞移動的频零件來進行冷卻,且分 散相完全地包覆於二次電池包,因此不需任何額外的空氣 流或散熱體將熱量傳遞到至二次電池的外面,可被循環地 使用數千-人以上。但該系統的缺點在於’不具有可將熱分 散至壞境中的充分熱傳導性,且由於膠體包覆層_的生產,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-conducting casing and a casing of a battery pack which is used in a single secondary battery and a super capacitor and a plurality of secondary batteries and a super capacitor Ψ in parallel. Multilayer film, sheet and hollow article for heat treatment function of insulation and absorption. The multilayer film, sheet and hollow article described above are dispersed with particulate coated phase change material (MCPCM) particles and heat conductive particles to absorb and disperse heat generated between the secondary battery and the super capacitor between charge and discharge. The aforementioned multilayer film, sheet and hollow article can be used as a phase change heat sink and/or insulator to protect the secondary battery and the super capacitor from the heat of the high temperature environment. In multilayer films, sheets, and hollow articles, the plastic layer can be replaced with an adhesive layer or the plastic layer can be chemically modified to provide sufficient adhesion between the layers. [Prior Art] A conventional microparticle-coated phase-change heat-absorbing material is disclosed in U.S. Patent No. 5,224,356, which discloses the use of a substrate comprising a thermal energy absorbing material to cool electronic components such as integrated circuits and resistors. < effectively reducing the surface temperature by about 65-80%. Alkanes and eutectic metals can be decomposed into phase change materials to achieve optimum thermal properties at different operating temperatures. Another thermal management system for a plurality of secondary batteries is disclosed in the U.S. Patent No. 7,270,910, in which a thermal management system for cooling a secondary battery of a wireless power tool includes The colloidal coating of the microparticle-coated phase change material (MCPCM) is described in the twelfth figure of the corp. 201101557, lt. 727 〇 910, which uses the phase change material coated by the colloidal coating. The secret heat is used to absorb the heat from the secondary battery. The colloidal coating comprises a plastic carrier and MCPCM. The advantage of this system is that 'no moving parts are cooled to cool, and the dispersed phase is completely covered in the secondary battery pack, so no additional air flow or heat sink is needed to transfer heat to the secondary battery. Outside, it can be used cyclically for thousands of people or more. However, the disadvantage of this system is that it does not have sufficient thermal conductivity to dissipate heat into the environment, and due to the production of colloidal coatings,

必別木用塑膠射出成形的方式,因此無法有效地達到高效 率的生產,造成成本昂責及人力浪費。為了改善前述二次 電池膠體包覆層的缺點,本發明提出了—種具有熱傳導顆 粒的金屬層及/或塑膠層的多層膜、薄片及中空物件,立中 熱傳導顆粒可充分地改善熱分散至環境的熱傳導性 ,並且 I將在熱吸收於分散其巾的MCPCM物質。根據本發明所 多層膜、薄片及中空物件,是使用共擠出及擠出塗 主程/、有可連續生產的特性,可以提高生產的效率, 用雖然已在前述管理多層膜及MCPCM物質之應 之内容中均未有彳 術内容中#職示’但先前技術 ^ n ^ . 壬何對其利用共擠出及擠出塗佈製程以改 善及=在二次電池與超級電容的教示。 在 Journal p 中,揭露了鍾離子二0ris〇urces 99 (2001) 70·77的内容 過程中熱的產生。::电池與鎳氩二次電池在充電與放電 命,是受到~電與放電的效率就如同二次電池的壽 人電池溫度的影響。因此,對於二次電池而 5 201101557 §溫度控制是很重要的’提供二次電池及超級電容的具有 熱管理功能之外殼或套管因而具有實益。本發明提供一種 新穎的具有熱管理功能之多層膜、薄片及中空物件,其具 有如下列的性質.有效且1¾效率地在充電與放電時將熱從 二次電池或超級電容吸收或移除,良好的多層膜、薄片及 中空物件的不同材質間的黏著性,以及可連續生產的製程。 二次電池包與超級電容包是由複數的二次電池與超級 電容所串並聯構成,其中係由具有熱管理功能之多層膜、 薄片及中空物件製成外殼且/或套管,其可有效地延長二次 電池與超級電容的壽命,提供較佳的充電與放電效率與穩 定性,並且有效且經濟地生產二次電池、超級電容與二次 電池包、超級電容包。 【發明内容】 本發明藉由提供二次電池與超級電容一種改良的熱管 理多層膜、薄片及中空物件,可以有效地克服先前技術中 使用膠體包覆層方法的缺點,並且具有較佳的散熱性,同 時簡化了二次電池包與超級電容包的製程。 本發明特別是關於一種使用於二次電池與超級電容作 為熱管理外殼與套管,藉由提供具有金屬層、塑膠層與黏 著層之多層膜、薄片及中空物件,可達成前述之效果。 根據本發明所述之熱管理多層膜、薄片及中空物件的 結構包含了複數層可選擇之金屬層、塑膠層與黏著層的層 狀體。且多層膜、薄片及中空物件的製造方法可為共擠出、 201101557 鑄造共擠出以及將塑膠/黏著層擠出塗佈至另一金屬層。因 此金屬層可包含鎳、銅、鶴、銦、銘、鋼、銀、金或其他 可能的金屬與金屬合金。 塑膝層與黏著層係由母相樹脂、熱傳導粒子及微粒包 覆相變化材料(MCPCM)粒子所構成。MCpCM粒子與熱傳 導粒子係藉由複合材料製程分散在塑膠層與黏著層的母相 樹脂之中,且塑膠層與黏著層的母相樹脂可為擠出級的丙 烯腈一丁二烯—苯二烯共聚物(ABS)、玻璃紙(CEL)、硝酸纖 〇 維素(CN)、醋酸纖維素(CA)、低密度聚乙烯(LDPE)、高密 度聚乙烯(HDPE)、定向聚丙烯(opp)、離子聚合物(1〇)_、聚 對本一曱酸乙二醇酯(PET)、聚對苯二甲酸丁二醇酯 (PBT)、聚苯乙烯(PS)、聚碳酸酯(pC)、聚砜(PS)、聚醚 (PESU)、聚醯亞胺(PI)、聚鍵醯亞胺(p〇iyetherimides)、聚 曱基丙烯酸曱酯(PMMA)、聚醯胺(尼龍4、尼龍6、尼龍7、 尼龍11、尼龍12、尼龍(4,6)、尼龍(6,6)、尼龍(6,8)、尼龍 D (6,1〇)、尼龍(6,12)、四氟化聚乙烯(PTFE)和其他含氟聚合 物、EV0H共聚物、EVA共聚物。黏著層的典型之母相樹 脂為常見的黏著層,其商品名稱為PLEXAR、BYNEL、 ADMER、N0VATEC、CXA 〇黏著層母相樹脂的特徵在於 在金屬層與塑膠層之間有絕佳的黏著性。 本發明使用擠出級的黏著層母相樹脂,利用共擠出與 擠出塗佈的製程,以結合兩個彼此黏著性不佳的不同材 質。因此使得本發明的熱管理多層膜、薄片及中空物件可 對每一種的材料具有獨特的黏著特性。 7 201101557 例如’高密度聚乙烯對於乙烯-乙烯醇共聚物的黏著性 很差。藉由使用Plexar (例如Plexar® 1000)作為上述的黏 著層材料,可創造結合EVOH的低透氧性與高密度聚乙稀 的剛度之多層結構。且塑膠層的母相樹脂也具有足夠的抗 穿透性,以抵擋外部水分、氧氣和内部電解質。 對於分布在上述塑膠層與黏著層母相樹脂中的熱傳導 粒子,其材質主要由金屬元素或陶瓷所構成。熱傳導粒子 係均勻地分布在前述的塑膠層中,其主要的功效為有效地 將熱由二次電池或超級電容的内部傳導至外部的環境。換 言之’熱傳導粒子增加塑膠層與黏著層的熱傳導性。為了 有效地增進熱傳導的有效性與效率,在選擇熱傳導粒子時 必須考量熱傳導粒子的大小、型態以及使用多種熱傳導粒 子之互相影響的功效。 理想的熱傳導粒子的材料可選自金屬或是含碳材料, 例如包覆有銀的銅粉、銀、鎳、鋁、銅、錫粉、合金金屬 粉末、氫化物-脫氫鈦粉、不銹鋼粉、石墨粉末、碳黑粉、 奈米石炭管(CNTs)、鑽石粉末、奈米金屬粉末、球形氧化鋁 粉末、超細緻球形氧化鋁粉末,或是非氧化物粉體,如氮 化鋁粉末、六面體氮化硼粉末、碳化硼(B4C)、磷化鎵(GaP)、 磷化銦(InP)、硼化鑭(LaB6)、二硫化鉬(M0S2)、氮化矽 (SySU)、氮化組(TaN)、碳化鈦(Tic)、氮化鈦(TiN)、碳化 鎢(WC)、碳化鎢/鈷(wC/c〇)、氟化镱(YbF3)及前述粒子任 意混合物的燒結體。 亦可選擇氧化物粉末例如氧化鋁(Al2〇3)、氫氡化鋁 201101557 (A1(0H)3)、三氧化二硼(b203)、碳酸鋇(BaC〇3)、硫酸鋇 (BaS04),鈦酸鋇(BaTi03)、氧化鈽(Ce〇2)、鐵酸鈷 (CoFe204)、鐵酸鈷鋅(c〇〇.5Zn〇.5Fe204,)、氧化鈷(c〇〇)、四 氧化二鈷(Co3〇4)、三氧化鉻(Cr03)、磷酸鉋(Csii2p〇4)、 氧化銅(C11O)、氧化鏑((DyA3)、氧化铒(Er2〇3)、氧化銪 (Ειΐ2〇3)、氧化鐵(FqO3)、四氧化三鐵(Fe3〇4)、氧化亂 (Gd203)、氧化給(Hf〇2)、氧化銦(In2〇3)、氫氧化錮 (In(0H)3)、氧化錫(Sn〇2)、氧化鑭(La2〇3,)、氧化鋰鈦 (LUTi^2)、氧化鎂|g(]y[gAl2〇4)、氧化鎮(Mg〇)、氫氧化鎂 (Mg(OH)2)、氫氧化猛(Μη203)、氧化翻(M〇〇3)、氧化麵 (叫〇3)、氧化鎳鐵(NiFe2〇4)、氧化鎳鋅鐵 (Ni0,5ZnG.5Fe2〇4)、氧化鎳(Ni0)、三氧化二錄(Ni2〇3)、氧化 镨(PhOii)、二氧化二銻(Sb2〇3)、二氧化矽(si〇2)、三氧化 一釤(Sm203)、二氧化錫(Sn〇2)、氧化鋰鋁⑼从从。、碳 酸锶(SrC03)、氧化鋰鋁(SrFei2〇i9)、氧化錫(Tb4〇7)、二氧 Ο 化鈦(Tl〇2)、氧化叙(vo)、三氧化二釩(v2o3)、五氧化二 釩(V2〇5)、二氧化鎢(w〇3)、釔鋁石榴石(YAG)、釔鋁石榴 石/鈽(YAG/Ce)、釔鋁石榴石/鈽(YAG/Ce)、釔鋁石榴石/鈦 (YAG/Nd)、氧化釔(Υ2〇3)、氧化鐵辞(ZnFe2〇4)、氧化辞 (ZnO)、氧化錯(Zr02)、氧化鍅/氧化釔(Zr〇2/Y2〇3)、氧化錘 /氧化鈣(ZrCVCaO)、氧化鍅/氧化鈽(Zr〇2/Ca〇)及其他奈米 級的金屬粉末’如奈来級氧化鋅、奈来級銀、奈米級金、 奈米級磁性粉末及前述顆粒任意混合之燒結體。 月il述導熱性粒子的平均粒子直徑為5〇〇微米至1微 201101557 米,且又以250微米至5微米為較佳。 關於散佈於母相樹脂中的MCPCM粒子,MCPCM粒 子利用’、中相、I化材料之融炫的潛熱來儲存二次電地與超 級電容所產生的熱,並於之後加以散出 。例如自放電的二 次電池與高電容所產生的熱由McpCM粒子内之相變化材 料所吸收並轉化為融熔的潛熱,且使MCpCM在融熔狀態 中保持在融熔溫度的定溫,並由固態轉變為液態。且根據 使用本發明之熱管理多層膜、薄片及中空物件的放電中的 二次電池與超級電容,其溫度相較於未使用本發明熱管理 多層膜、薄片及中空物件之二次電池與超級電容可保持在 較低的穩定溫度。MCPCM粒子的熱儲存主要是靠核心的 相變化材料,例如烴類碳氫化合物。當相變化發生於 MCPCM粒子中時,需要相當高的能量。 在本發明中,在特定運作條件下McpcM粒子的選 擇,疋根據一-人電池及超級電容的加熱或冷卻循環的溫度 而決定。但MCPCM粒子的相變化溫度有其限制。例如, 某些純烯烴的相變化溫度發生自低於室溫溫度至高於 60°C。相變化溫度的變動係根據烷烴碳鏈的長度與其純度 而決定。若鏈中的碳的數量為奇數且/或鏈長大於2〇個碳, 部份的潛熱係與固態中所產生的第二過渡有關。本發明所 使用的MCPCM粒子採用微包覆,如此可將相變化材料與 其周邊分離。 μ 微包覆防止所選擇的相變化材料溶化時與周圍產生混 合。MCPCM粒子的直徑在0.5微米至1〇〇〇微米的範圍。 201101557 適合的相變化材料(PCM)係由熱傳導包覆壁所進行包 覆,可為有機或無機之相變化材料。如烴烷的有機PCM通 常具有很寬範圍的熔點。無機PCM通常為含水鹽類的物 質,具有含水及無水的形式。 根據本發明之不同實施方式,具有穩定優點的PCM包 含了許多的有機物質。例如,碳氫化合物的PCM包含如直 鏈烷烴、烷烴碳氳化合物、支鏈烷烴、不飽和烴、_化烷 烴、脂環烷烴、蠟、油、脂肪酸、脂肪酸酯、二元酸、二 元酸S旨、1-鹵化物、一級醇、芳香族化合物,以及無水物, 如碳酸伸乙酯、多元醇、2,2-二曱基-1,3-丙二醇、二羥甲基 -2-曱基-1,3-丙二醇、乙二醇、聚乙二醇、季戊四醇、二異 戊四醇、五丙三醇、四羥甲基乙烷、新戊二醇、四羥曱基 丙烷、胺基新戊四醇、二胺基新戊四醇、三羥曱基乙酸, 以及聚合物如聚乙烯、聚乙二醇、聚丙烯、聚丙二醇,聚 四亞曱基二醇,及共聚物。適合作為PCM的烷烴碳氫化合 物中,其中烷烴碳氫化合物可為正二十八烷、正二十七烷、 正二十六烧、正二十五烧、正二十四烧、正二十三烧、正 二十二烧、正二十一烧、正二十烧、正十九烧、正十八烧、 正十七烧、正十六烧、正十五院、正十四烧、正十三烧及 其混合物。無機PCM通常為含水鹽類的物質,其中包含選 自 Te、Se、Ge、Sb、Bi、Pb、Sn、As、S、Si、P、O — 種或一種以上的元素及其混合物或合金。 PCM可為兩種或兩種以上物質的混合物,藉由選擇兩 種或更多的物質並形成其混合物,溫度穩定範圍可調整至 π 201101557 任何所需應㈣廣泛範圍。根據本發_部分實施方式, PCM可包含前述的兩種或兩種以上的物質。 根據本發明之具有熱管理魏的多層膜、料及中空 物件,包含—到二十層的可替換的金屬層、塑膠層或黏^ 層的任意合。且在需要㈣層的情況下,可將黏著層置於 金屬層-塑膠層或塑膠層_塑膠層之間。 典型的多層臈、薄月及中空物件包含了五層的結構, 其:包含了第-塑膠層、第—黏著層、中央金屬層、第二 塑膠層,其中黏著層係置於前述金屬層與 4層之間。另—典型的結構為九層的結構,1中包含 :二金屬層與塑膠層,以及分別黏著於前述五層結構外 側兩端的黏著層。 卜 及厚产nr的金屬層' 塑膠層以及黏著層的層數變化以 及厚度k化射以依使时的設計而加以達成。 、雖」夕層膜物件結構的每―層都可以由不同 =在!層膜物件結構的每一層的厚度較佳的情況;:是 在小於2_微細圍内。黏著 =:::r在1微米至5°微米之間,較佳= 將枯考層的厚度控制在5微米至20微米之間。 將熱傳導粒子與McpcM粒子加 ;:::'製程可藉由複合材料製程來完成:複::: 機二組以上的重力進料、-水浴槽《及 機朿進仃。典型的情況下,擠出機具有五至十五區 12 201101557 的共同旋轉之雙螺桿融溶區。經烘箱乾燥的塑膠層咬黏著 層之母相樹脂/聚合物被導入播出機的前段區域,並且夢由 共同旋轉之雙螺桿加以融熔。位於擠出機中間區域的兩側 面進料機則用來將熱傳導粒子與MCPCM粒子導入至母相 树脂/聚合物的融溶流中。 重力進料用來準確地控制加入至擠出機的熱傳導粒子 及MCPCM粒子的數量。在樹脂/聚合物的融熔後,其中分 ❹ 散有熱傳導粒子及MCPCM粒子,融熔流將穿過擠出機的 後I又區域後’樹脂/聚合物條進入水浴中且固化。固化的樹 月曰σ物條接者穿過造粒機並產生約2至4mm的顆粒。 、 在複合材料製程後’複合物樹脂(塑膠層或黏著層的母相 ; 樹脂散佈有熱傳導粒子及MCPCM粒子)被乾燥並儲存於 防潮袋中’以待後續的共擠出或擠出塗佈製程。 根據本發明之具有熱管理功能的多層膜、薄片及中空 物件根據其製造方法可分為四類:l.ppp (塑膠層_塑膠層_ 〇 塑膠層)及PAP(塑膠層-黏著層-塑膠層)之多層膜、薄片。 2· PPP (塑膠層-塑膠層_塑膠層)及pAp (塑膠層_黏著層_ 塑膠層)之多層膜中空物件β 3.PMP (塑膠層_金屬層_塑膠 ' 層)及PAMAP (塑膠層-黏著層-金屬層、黏著層_塑膠層)Wood must be molded by plastic, so it is impossible to effectively achieve high-efficiency production, resulting in cost and labor waste. In order to improve the disadvantages of the foregoing secondary battery colloid coating layer, the present invention proposes a multilayer film, a sheet and a hollow article of a metal layer and/or a plastic layer having heat conductive particles, and the heat conduction particles can sufficiently improve heat dispersion to The thermal conductivity of the environment, and I will be absorbed by heat in the MCPCM material that disperses its towels. The multilayer film, sheet and hollow article according to the present invention are characterized by continuous extrusion and extrusion coating, and have continuous production characteristics, which can improve the production efficiency, although the above-mentioned management multilayer film and MCPCM substance are used. In the content of the content, there is no such thing as "suggestions" but the prior art ^ n ^ . Why use the co-extrusion and extrusion coating process to improve and = in the teaching of secondary batteries and super capacitors. In Journal p, the generation of heat in the process of the plasma ion 2 0ris〇urces 99 (2001) 70·77 was revealed. :: The battery and the nickel-argon secondary battery are charged and discharged, and the efficiency of the electricity and discharge is affected by the temperature of the battery of the secondary battery. Therefore, for secondary batteries, 5 201101557 § Temperature control is very important. It is therefore beneficial to provide a housing or sleeve with a thermal management function for secondary batteries and super capacitors. The present invention provides a novel multilayer film, sheet and hollow article having a thermal management function having the following properties. Effectively and efficiently absorbing or removing heat from a secondary battery or a super capacitor during charging and discharging, Adhesion between different materials of good multilayer films, sheets and hollow articles, as well as processes that can be continuously produced. The secondary battery pack and the super capacitor pack are composed of a plurality of secondary batteries and a super capacitor connected in series and in parallel, wherein the outer casing and the casing are made of a multilayer film, a sheet and a hollow member having a heat management function, which is effective. Extend the life of the secondary battery and the super capacitor, provide better charging and discharging efficiency and stability, and efficiently and economically produce secondary batteries, super capacitors and secondary battery packs, and super capacitor packs. SUMMARY OF THE INVENTION The present invention can effectively overcome the disadvantages of the prior art method of using a colloidal coating layer by providing an improved thermal management multilayer film, sheet and hollow article for a secondary battery and a super capacitor, and has better heat dissipation. Sex, while simplifying the process of secondary battery packs and super capacitor packs. More particularly, the present invention relates to a secondary battery and a supercapacitor as a thermal management casing and sleeve, and the above effects can be attained by providing a multilayer film, a sheet, and a hollow member having a metal layer, a plastic layer, and an adhesive layer. The structure of the thermally managed multilayer film, sheet and hollow article according to the present invention comprises a plurality of layers of selectable metal layers, plastic layers and adhesive layers. The multilayer film, sheet and hollow article can be manufactured by coextrusion, 201101557 casting coextrusion, and extrusion coating of the plastic/adhesive layer to another metal layer. Thus the metal layer may comprise nickel, copper, crane, indium, indium, steel, silver, gold or other possible metal to metal alloys. The plastic knee layer and the adhesive layer are composed of a matrix phase resin, heat conductive particles, and particulate coated phase change material (MCPCM) particles. The MCpCM particles and the heat conductive particles are dispersed in the mother phase resin of the plastic layer and the adhesive layer by a composite material process, and the mother phase resin of the plastic layer and the adhesive layer can be an extrusion grade acrylonitrile-butadiene-benzene. Arene copolymer (ABS), cellophane (CEL), cellulose nitrite (CN), cellulose acetate (CA), low density polyethylene (LDPE), high density polyethylene (HDPE), oriented polypropylene (opp) , ionic polymer (1 〇) _, poly-p-ethylene phthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS), polycarbonate (pC), Polysulfone (PS), polyether (PESU), polyimine (PI), polyethylenimine (p〇iyetherimides), polydecyl methacrylate (PMMA), polyamine (nylon 4, nylon 6) , nylon 7, nylon 11, nylon 12, nylon (4,6), nylon (6,6), nylon (6,8), nylon D (6,1 〇), nylon (6,12), tetrafluoride Polyethylene (PTFE) and other fluoropolymers, EVOH copolymers, EVA copolymers. The typical mother phase resin of the adhesive layer is a common adhesive layer, which is traded under the trade names PLEXAR, BYNEL, ADMER, N0VATEC, CXA 〇 adhesive layer. Mother phase resin It is characterized by excellent adhesion between the metal layer and the plastic layer. The present invention uses an extrusion-grade adhesive layer mother phase resin, which utilizes a coextrusion and extrusion coating process to combine two adhesives without each other. The different materials are preferred. Therefore, the thermal management multilayer film, sheet and hollow article of the present invention can have unique adhesive properties for each material. 7 201101557 For example, 'high density polyethylene has good adhesion to ethylene-vinyl alcohol copolymer. Poor. By using Plexar (such as Plexar® 1000) as the above-mentioned adhesive layer material, a multilayer structure combining the low oxygen permeability of EVOH and the rigidity of high-density polyethylene can be created, and the mother phase resin of the plastic layer is also sufficient. Permeation resistance to external moisture, oxygen and internal electrolytes. The heat-conducting particles distributed in the above-mentioned plastic layer and adhesive layer mother-phase resin are mainly composed of metal elements or ceramics. The heat-conducting particles are evenly distributed. In the aforementioned plastic layer, the main function is to effectively transfer heat from the inside of the secondary battery or the super capacitor to the external environment. In other words, the heat-conducting particles increase the thermal conductivity of the plastic layer and the adhesive layer. In order to effectively improve the effectiveness and efficiency of heat conduction, the size and shape of the heat-conducting particles and the mutual influence of using a plurality of heat-conducting particles must be considered when selecting the heat-conducting particles. The material of the ideal thermally conductive particles may be selected from metal or carbonaceous materials, such as copper powder coated with silver, silver, nickel, aluminum, copper, tin powder, alloy metal powder, hydride-dehydrogenated titanium powder, stainless steel. Powder, graphite powder, carbon black powder, carbon nanotubes (CNTs), diamond powder, nano metal powder, spherical alumina powder, ultrafine spherical alumina powder, or non-oxide powder, such as aluminum nitride powder, Hexahedral boron nitride powder, boron carbide (B4C), gallium phosphide (GaP), indium phosphide (InP), lanthanum boride (LaB6), molybdenum disulfide (M0S2), tantalum nitride (SySU), nitrogen Sintered body of TaN, Titanium, TiN, WC, WC/Co (WC/c), YbF3, and any mixture of the foregoing particles . Oxide powders such as alumina (Al2〇3), aluminum aluminide 201101557 (A1(0H)3), boron trioxide (b203), barium carbonate (BaC〇3), barium sulfate (BaS04), may also be selected. Barium titanate (BaTi03), cerium oxide (Ce〇2), cobalt ferrite (CoFe204), cobalt ferrite zinc (c〇〇.5Zn〇.5Fe204,), cobalt oxide (c〇〇), cobalt pentoxide (Co3〇4), chromium trioxide (Cr03), phosphoric acid planer (Csii2p〇4), copper oxide (C11O), yttrium oxide ((DyA3), yttrium oxide (Er2〇3), yttrium oxide (Ειΐ2〇3), Iron oxide (FqO3), ferroferric oxide (Fe3〇4), oxidized chaos (Gd203), oxidized (Hf〇2), indium oxide (In2〇3), barium hydroxide (In(0H)3), oxidation Tin (Sn〇2), yttrium oxide (La2〇3,), lithium titanium oxide (LUTi^2), magnesium oxide|g(]y[gAl2〇4), oxidized town (Mg〇), magnesium hydroxide (Mg (OH)2), hydrogen peroxide (Μη203), oxidized turn (M〇〇3), oxidation surface (called 〇3), nickel iron oxide (NiFe2〇4), nickel oxide zinc iron (Ni0,5ZnG.5Fe2〇 4), nickel oxide (Ni0), aluminum oxide (Ni2〇3), cerium oxide (PhOii), cerium dioxide (Sb2〇3), cerium oxide (si〇2), trioxide One (Sm203), tin dioxide (Sn〇2), lithium aluminum oxide (9), strontium carbonate (SrC03), lithium aluminum oxide (SrFei2〇i9), tin oxide (Tb4〇7), dioxinization Titanium (Tl〇2), oxidized (vo), vanadium pentoxide (v2o3), vanadium pentoxide (V2〇5), tungsten dioxide (w〇3), yttrium aluminum garnet (YAG), yttrium aluminum Garnet/钸 (YAG/Ce), yttrium aluminum garnet/yttrium (YAG/Ce), yttrium aluminum garnet/titanium (YAG/Nd), yttrium oxide (Υ2〇3), iron oxide (ZnFe2〇4) , oxidized (ZnO), oxidized (Zr02), cerium oxide / cerium oxide (Zr 〇 2 / Y2 〇 3), oxidized hammer / calcium oxide (ZrCVCaO), cerium oxide / cerium oxide (Zr 〇 2 / Ca 〇) And other nano-grade metal powders such as Neil-grade zinc oxide, Neil-grade silver, nano-gold, nano-sized magnetic powder and sintered body of any combination of the foregoing particles. Monthly average particle diameter of thermally conductive particles It is preferably from 5 μm to 1 micro 201101557 m, and further preferably from 250 μm to 5 μm. Regarding the MCPCM particles dispersed in the matrix resin, the MCPCM particles utilize the latent heat of the melting of the ', medium phase, and I-materials. To store secondary electricity and super capacitors The generated heat is then dissipated. For example, the heat generated by the self-discharged secondary battery and the high capacitance is absorbed by the phase change material in the MgcCM particles and converted into the latent heat of melting, and the MCpCM is melted. It maintains a constant temperature at the melting temperature and changes from a solid to a liquid. And according to the secondary battery and the super capacitor in the discharge of the thermal management multilayer film, the sheet and the hollow article using the present invention, the temperature is compared with the secondary battery and the super battery which do not use the thermal management multilayer film, the sheet and the hollow object of the present invention. The capacitor can be kept at a lower stable temperature. The thermal storage of MCPCM particles is primarily dependent on the core phase change material, such as hydrocarbon hydrocarbons. When phase changes occur in MCPCM particles, a relatively high amount of energy is required. In the present invention, the selection of McpcM particles under specific operating conditions is determined by the temperature of the heating or cooling cycle of the one-man battery and the supercapacitor. However, the phase change temperature of MCPCM particles has its limitations. For example, the phase change temperature of some pure olefins occurs from below room temperature to above 60 °C. The change in phase change temperature is determined by the length of the alkane carbon chain and its purity. If the amount of carbon in the chain is odd and/or the chain length is greater than 2 carbons, part of the latent heat is related to the second transition produced in the solid state. The MCPCM particles used in the present invention are microcoated so that the phase change material can be separated from its periphery. μ Micro-coating prevents mixing of the selected phase change material with the surrounding. The diameter of the MCPCM particles ranges from 0.5 microns to 1 micron. 201101557 A suitable phase change material (PCM) is coated with a thermally conductive cladding wall and can be an organic or inorganic phase change material. Organic PCMs such as alkane typically have a wide range of melting points. Inorganic PCM is typically an aqueous saltaceous material having both aqueous and anhydrous forms. According to various embodiments of the present invention, a PCM having a stable advantage contains a large amount of organic matter. For example, PCM of hydrocarbons includes, for example, linear alkanes, alkane carbonium compounds, branched alkanes, unsaturated hydrocarbons, alkanes, alicyclic alkanes, waxes, oils, fatty acids, fatty acid esters, dibasic acids, binary Acid S, 1-halide, primary alcohol, aromatic compound, and anhydrate such as ethyl carbonate, polyol, 2,2-dimercapto-1,3-propanediol, dimethylol-2- Mercapto-1,3-propanediol, ethylene glycol, polyethylene glycol, pentaerythritol, diisopentaerythritol, pentaglycerol, tetramethylolethane, neopentyl glycol, tetrahydrocarbyl propane, amine Neopentyltetraol, diaminopentaerythritol, trihydroxymercaptoacetic acid, and polymers such as polyethylene, polyethylene glycol, polypropylene, polypropylene glycol, polytetramethylene glycol, and copolymers. Suitable as alkane hydrocarbons for PCM, wherein the alkane hydrocarbons may be n-octacosane, n-heptadecane, n-hexadecane, ortho-half-figure, or twenty-four, and twenty Three-burning, the second twenty-two burning, the twenty-one burning, the positive twenty burning, the positive nineteen burning, the eighteen burning, the positive seventeen burning, the positive sixteen burning, the fifteenth courtyard, the fourteen burning, Zheng XIII and its mixture. The inorganic PCM is generally an aqueous salt-containing material comprising selected from Te, Se, Ge, Sb, Bi, Pb, Sn, As, S, Si, P, O or more than one element and mixtures or alloys thereof. The PCM can be a mixture of two or more substances. By selecting two or more substances and forming a mixture thereof, the temperature stability range can be adjusted to π 201101557. Any desired (four) wide range. According to this embodiment, the PCM may comprise two or more of the foregoing substances. The multilayer film, material and hollow article having thermal management according to the present invention comprises any combination of - to twenty layers of replaceable metal layers, plastic layers or adhesive layers. And in the case where the (four) layer is required, the adhesive layer may be placed between the metal layer-plastic layer or the plastic layer_plastic layer. A typical multi-layer crucible, thin moon and hollow article comprises a five-layer structure comprising: a first plastic layer, a first adhesive layer, a central metal layer, and a second plastic layer, wherein the adhesive layer is placed on the metal layer and Between 4 floors. In addition, the typical structure is a nine-layer structure, and the first layer comprises: a two-metal layer and a plastic layer, and an adhesive layer adhered to the outer ends of the five-layer structure, respectively. The metal layer of the thick nr and the change in the number of layers of the plastic layer and the adhesive layer and the thickness k are formed in accordance with the design of the time. However, each layer of the "layer film structure" may be different from the thickness of each layer of the layered film structure; it is less than 2_fine. Adhesion =:::r is between 1 micrometer and 5 micrometers, preferably = the thickness of the test layer is controlled between 5 micrometers and 20 micrometers. Adding heat-conducting particles and McpcM particles to the ;:::' process can be accomplished by a composite process: complex::: two or more sets of gravity feeds, - water baths, and machine inlets. Typically, the extruder has a co-rotating twin screw melt zone of five to fifteen zones 12 201101557. The mother phase resin/polymer of the oven-dried plastic layer bite layer is introduced into the front section of the broadcaster and the dream is melted by a co-rotating twin screw. The two side feeders located in the middle of the extruder are used to introduce the thermally conductive particles and MCPCM particles into the melt stream of the parent phase resin/polymer. Gravity feed is used to accurately control the amount of thermally conductive particles and MCPCM particles that are added to the extruder. After the resin/polymer is melted, the heat-conducting particles and MCPCM particles are dispersed, and the melt stream will pass through the post-I-region of the extruder and the resin/polymer strip enters the water bath and solidifies. The solidified tree 曰 曰 物 接 穿过 穿过 穿过 穿过 穿过 穿过 穿过 穿过 穿过 并 并 并 并 并 并 并 并 并 并After the composite process, the composite resin (the mother layer of the plastic layer or the adhesive layer; the resin is dispersed with the heat conductive particles and the MCPCM particles) is dried and stored in a moisture-proof bag for subsequent co-extrusion or extrusion coating Process. The multilayer film, sheet and hollow article having thermal management function according to the present invention can be classified into four types according to the manufacturing method thereof: l.ppp (plastic layer_plastic layer_〇plastic layer) and PAP (plastic layer-adhesive layer-plastic) Layer) multilayer film, sheet. 2· PPP (plastic layer - plastic layer _ plastic layer) and pAp (plastic layer _ adhesive layer _ plastic layer) multilayer film hollow object β 3.PMP (plastic layer _ metal layer _ plastic layer) and PAMAP (plastic layer -Adhesive layer - metal layer, adhesive layer _ plastic layer)

’ 之多層膜、薄片。4.PMP(塑膠層-金屬層-塑膠層)及PAMAP (塑膠層-黏著層-金屬層_黏著層_塑膠層)之多層膜中空物 件。 製造PPP (塑膠層-塑膠層-塑膠層)及pAP (塑膠層_ 黏著層-塑膠層)之多層膜、薄片之方法係採用習知技術中 13 201101557 所常見的裝置與製程。PPP(塑膠層-塑膠層-塑膠層)及pap (塑膠層-黏著層-塑膠層)之多層膜、薄片的製造係採用如 同習知技術所教示的共擠出製程。擠出機包含了主擠出機 及共擠出機,用來提供複合材料製程的聚合物融熔流,透 過如齒輪泵的進料裝置做為控制融熔流流量,以加入複合 材料製程的聚合物融熔流至進料區塊。在透過輸入口自熱 塑擠出機接受融熔流後,進料區塊將融熔流傳送至其中的 機械性操作區段,其中將原來的融熔流結合至依所需數量 與排列而形成的多層流結構。該多層流係經由一多層歧管 擠出模具而形成,其中選擇性地自外加的擠出機結合來自 進料區塊的多層流。而最後模具結合了所有的融熔流而形 成最終的多層流。最終多層流的延長與形變由環狀截面所 形成,其係來自於進料區塊,同時模具内亦可以產生均一 厚度的平坦截面。因此,最終的多層流可被擠出模具狹缝。 每一層所需的厚度可由每一相對應融熔流的流量與模具内 軸心與套管之間流道的間隙來加以控制而得。離開模具狹 縫的多層流可藉由冷卻滾筒進一步冷卻至固態,並形成 PPP或PAP的多層膜與多層薄片。根據模具狹縫區域及截 面形狀的變化設計,任何所需的多層膜與多層薄片結構可 依照寬度、厚度加以形成,或形成平坦表面及延伸表面, 如鰭片的構造。同時熱傳導粒子與MCPCM粒子可均勻地 散佈於每一層中。 製造PPP (塑膠層-塑膠層-塑膠層)及PAP (塑膠層-黏著層-塑膠層)之多層環狀管之方法係採用習知技術中所 14 201101557 常見的共擠出裝置與製程。共擠出製程包含了主擠出機及 共擠出機,用來加熱並塑化複合材料製程塑膠顆粒至融熔 流中,透過如齒輪泵的進料裝置將加入複合材料製程的聚 合物融熔流至模具,並做為控制流入模具本體内的融熔流 流量。模具本身包含了一中空的模具體,其中具有内膛、 置於内腔的軸心、形成環狀進料搶的流道、流量限制裝置 則用來重新結合由蛛網裝置分開的融熔流,並平衡流道與 環徑孔中提供形成内側層的額外融熔流之流量,且壓力平 衡儲槽用來平衡融溶流的流動。在模具的内部,來自主擠 出機及共擠出機的融熔流穿過流量限制裝置及流道裝置以 形成環狀多層融炫流。該環狀多層流接著流入環狀排放套 管中。排放套管的外型可根據所要製成的多層膜中空物件 的外型而加以決定,若排放套管為環狀,則最終所製成的 多層膜中空物件的外型即為管狀。若排放套管的外型為長 方形,則最終所製成的多層膜中空物件的外型即為長方型 柱狀。在通過排放套管後,多層融溶流進入一尺寸模具, 其連接於一真空尺寸調整器,以調整所擠出的多層膜管或 中空物件至所要的尺寸。在真空尺寸調整器的内部具有一 冷卻室,該冷卻室用來固化多層融炫流。固化的多層膜管 或中空物件進一步通過一拉伸裝置。該拉伸裝置將多層膜 管或中空物件自排放套管透過真空尺寸調整器拉伸出來。 PPP或PAP型態的多層膜中空物件可指定其截面形狀、尺 寸、層數、個別層的厚度以及總厚度,黏著強度不夠時, 必要的話加入中介的黏著層,且每一層包含有熱傳導粒子 15 201101557 與MCPCM粒子。 製造PMP (塑膠層-金屬層-塑膠層)及pAMAp (塑膠 層-黏著層-金屬層_黏著層-塑膠層)之多層膜、薄片之方法 係採用習知技術中所常見的裝置與製程。該製程首先對金 屬表面進行預處理,以確保金屬表面與塗佈的塑膠層之間 有充分的黏著性。一些選擇性的預處理也在習知技術中有 所揭露。在習知技術所教示的預處理包含了清潔、浸酸、 噴砂及研磨,伴隨著清洗與乾燥。在預處理的程序之後, 金屬層被成捲使得塑膠層得以進行連續的擠出塗佈。捲曲 的金屬層隨後被釋放並由懸吊滚輪移動以進行線上製程的 連續供應。在進行塑膠層的擠出之前,移動的金屬層可選 擇性地進m放倾擊或電t放電,錢到所要的表面活 化程度,並產生塑膠層與金屬層之間的較佳黏著性。ppp 或型的乡層融熔流接著透過模具狹縫被塗佈至移動中 面。先前所敘述之ppp或PAP型的共擠出融 表面形狀二所要的寬度、厚度、層數、平面形狀或延伸 表面形狀。在擠出塗佈的程序後,所 Γ輪以使塑膠層穩固地與金屬薄片進行接合 塗佈的轉祕㈣透過—冷㈣或冷卻水浴u =或PAP、型的多層膜或薄片,其模具的截面形狀或面 積决疋所要的塗佈多層塑膠層之寬声、 3 形狀或延伸表面形狀。不同塑膠層^ 層數、平面 :與共擠出的進料區塊所決定。由模 層與塑膠層之間的接合性不佳時則—著層層塑:層塑: 16 201101557 粘著層母相樹脂中所需熱傳導粒子與MCPCM粒子數量的 複合材料可由主擠出機及共擠出機所達成。a multilayer film or sheet. 4. PMP (plastic layer - metal layer - plastic layer) and PAMAP (plastic layer - adhesive layer - metal layer - adhesive layer - plastic layer) multilayer film hollow object. The method for manufacturing a multilayer film and sheet of PPP (plastic layer-plastic layer-plastic layer) and pAP (plastic layer_adhesive layer-plastic layer) is a device and a process commonly used in the prior art 13 201101557. The multilayer film and sheet of PPP (plastic layer - plastic layer - plastic layer) and pap (plastic layer - adhesive layer - plastic layer) are manufactured by a coextrusion process as taught by the prior art. The extruder comprises a main extruder and a co-extruder for providing a polymer melt flow of the composite process, which is controlled by a feed device such as a gear pump to control the flow of the melt flow to join the composite process. The polymer melts and flows to the feed block. After receiving the melt stream from the thermoplastic extruder through the input port, the feed block delivers the melt stream to the mechanical operating section therein, wherein the original melt stream is combined to the desired amount and arrangement. A multilayer flow structure formed. The multilayer flow is formed by a multi-layer manifold extrusion die wherein the multi-layer flow from the feedblock is selectively combined from an external extruder. Finally, the mold combines all of the melt flow to form the final multilayer flow. The extension and deformation of the final multilayer flow is formed by an annular section that is derived from the feedblock and also produces a flat section of uniform thickness within the mold. Thus, the final multilayer flow can be extruded through the die slit. The required thickness of each layer can be controlled by the flow rate of each corresponding melt stream and the gap between the axial center of the mold and the flow path between the sleeves. The multilayer flow exiting the die slit can be further cooled to a solid state by a cooling drum and form a multilayer film and a multilayer sheet of PPP or PAP. Depending on the variation of the slit area of the mold and the shape of the cross-section, any desired multilayer film and multilayer sheet structure can be formed in accordance with the width and thickness, or a flat surface and an extended surface such as a fin structure. At the same time, the thermally conductive particles and the MCPCM particles are uniformly dispersed in each layer. The method of manufacturing a multi-layered annular tube of PPP (plastic layer-plastic layer-plastic layer) and PAP (plastic layer-adhesive layer-plastic layer) adopts the common co-extrusion device and process of the conventional technology. The co-extrusion process comprises a main extruder and a co-extruder for heating and plasticizing the composite process plastic particles into the melt stream, and melting the polymer added to the composite process through a feed device such as a gear pump. Melt flow to the mold and act as a flow to control the flow of molten material into the mold body. The mold itself comprises a hollow mold body having an inner bore, an axial center placed in the inner chamber, a flow passage forming an annular feed, and a flow restricting device for recombining the melt flow separated by the spider web. The balance flow channel and the annular hole provide a flow rate of the additional melt flow forming the inner layer, and the pressure balance storage tank is used to balance the flow of the melt flow. Inside the mold, the melt stream from the main extruder and the co-extruder passes through the flow restricting device and the flow path device to form an annular multilayer melting stream. The annular multilayer flow then flows into the annular discharge jacket. The shape of the discharge sleeve can be determined according to the shape of the hollow film of the multilayer film to be produced. If the discharge sleeve is annular, the final shape of the hollow film of the multilayer film is tubular. If the shape of the discharge sleeve is a square shape, the shape of the hollow film of the multilayer film finally produced is a rectangular column shape. After passing through the discharge sleeve, the multi-layer melt stream enters a size die that is coupled to a vacuum size adjuster to adjust the extruded multilayer film tube or hollow article to a desired size. Inside the vacuum size adjuster is a cooling chamber for solidifying the multi-layered swell flow. The cured multilayer film tube or hollow article is further passed through a stretching device. The stretching device stretches the multilayer film tube or hollow article from the discharge sleeve through a vacuum size adjuster. PPP or PAP type multilayer film hollow articles can specify the cross-sectional shape, size, number of layers, thickness of individual layers, and total thickness. When the adhesion strength is insufficient, if necessary, an intervening adhesive layer is added, and each layer contains heat-conducting particles 15 201101557 with MCPCM particles. The method of manufacturing a multilayer film or sheet of PMP (Plastic Layer - Metal Layer - Plastic Layer) and pAMAp (Plastic Layer - Adhesive Layer - Metal Layer - Adhesive Layer - Plastic Layer) is a device and process commonly used in the prior art. The process first pretreats the metal surface to ensure adequate adhesion between the metal surface and the coated plastic layer. Some selective pretreatments are also disclosed in the prior art. The pretreatments taught in the prior art include cleaning, pickling, sand blasting, and grinding, with cleaning and drying. After the pretreatment process, the metal layer is rolled so that the plastic layer is subjected to continuous extrusion coating. The curled metal layer is then released and moved by the suspension rollers for continuous supply of the inline process. Prior to extrusion of the plastic layer, the moving metal layer is selectively placed into a pour or an electrical t-discharge to achieve the desired degree of surface activation and to provide better adhesion between the plastic layer and the metal layer. The ppp or type of township melt stream is then applied to the moving surface through the die slit. The previously described ppp or PAP type coextruded surface shape has the desired width, thickness, number of layers, planar shape or extended surface shape. After the extrusion coating process, the winding wheel is used to make the plastic layer firmly bonded to the metal foil. (4) Transmitting-cooling (4) or cooling water bath u= or PAP, type multilayer film or sheet, the mold The cross-sectional shape or area is determined by the desired wide, 3-shaped or extended surface shape of the coated multilayer plastic layer. Different plastic layers ^ number of layers, plane: determined by the co-extruded feed block. When the bond between the mold layer and the plastic layer is not good - the layer layer plastic: layer plastic: 16 201101557 The composite material of the number of heat conductive particles and MCPCM particles in the adhesive layer mother phase resin can be used by the main extruder and Co-extruder reached.

製造PMP (塑膠層-金屬層-塑膠層)及PAMAP (塑膠 層-黏著層-金屬層•黏著層-塑膠層)之多層複合管之方法係 採用習知技術中所常見的裝置與製程。該製程首先對金屬 表面進行去污與預處理,就如同前述在PMP與PAMAP多 層獏或多層薄片中所描述的預處理程序。接著,PPP或PAPThe method of manufacturing a multilayer composite pipe of PMP (Plastic Layer - Metal Layer - Plastic Layer) and PAMAP (Plastic Layer - Adhesive Layer - Metal Layer - Adhesive Layer - Plastic Layer) is a device and process commonly used in the prior art. The process first decontaminates and pretreats the metal surface, as previously described in the PMP and PAMAP multilayer or multilayer sheets. Then, PPP or PAP

Ο 型的内層被擠出或共擠出出,其方法如同前述關於PPP與 PAP多層膜管的擠出製程。表面預處理金屬帶隨後通過一 系列的成形滾輪,如同習知技術所教示的成形方式。金屬 帶係連續地在PPP或PAP多層膜管的周圍成形。接著,金 屬帶的密封可藉由任何的焊接運作而加以完成,例如雷射 焊接、電弧焊接或電阻焊接,藉此形成封閉的金屬管。封 閉金屬管的直徑可藉由一道抽降的程序減少,使得封閉金 屬,的内表面與PPP或PAP多賴管❸卜表面進行接合。 接著,再藉由加熱m戈pAP多層膜管的溶點使表面之 :產生接合。在此階段,可⑽到具有外部金制及内部 谬層或塑膠層-黏著層的MP (金屬層-塑膠層)或歸 (金屬層-黏著層塑膠層)型態的多相管。接著,如同習 °技術所使用的擠出塗佈製程將欲塗佈 =層塗饰至前述MP或碰塑態的多層 塗^嫩P型態的多層膜㈣通過—系_模具以連續地 型,並利用液壓裝置來移動或MAP 層膜管。最後的冷卻步驟係用來固化塑膠層或黏 17 201101557 著層。若有需要,額外的金屬層、塑膠層及黏著層可以用 相同的方式加以添加。最後,可得到PMP或PAMAP的多 層膜管。PMP或PAMAP型態多層膜中空物件的製造方法 同於PMP或PAMAP型態多層膜管的製造方法,差別僅在 於採用不同的金屬管成形滾輪,以形成所需要的截面形 狀,如長方形或三角形。且用於擠出或共擠出以形成塑膠 層或黏著層的模具亦根據所需的截面形狀而調整模具。 PMP或PAMAP型態多層膜中空物件可以特定其截面形 狀、尺寸與各金屬層、塑膠層與粘著層的數量,同時亦可 特定個別層的厚度、整體厚度以及平面或延伸表面的形 狀,同時可特定個別塑膠層與粘著層的熱傳導粒子與 MCPCM粒子種類與數量。 【實施方式】 為瞭解本發明之目的、特徵及功效,茲藉由下述具體 之實施方式,並配合所附之圖式,對本發明做一詳細說明, 說明如後: 參照第一圖,顯示了習知技術中所使用的圓柱形鋰二 次電池/超級電容。習知技術中的圓柱形鋰二次電池/超級電 容包含了陰極層101、陽極層102以及陰極層101與陽極層 102之間的隔離層103等複數層。陰極層101與陽極層102 的末端連接至陰極導線104與陽極導線105,且二次電池的 其他部分包含習知圓柱形鋰二次電池/超級電容元件,如使 氣體溢出的安全閥106、正溫度係數電阻器107 (PTC)、頂 18 201101557 蓋108、氣封墊片109、絕緣層110及防止電解液流出與外 物大入之外设111。如同弟1圖所示,在二次電池/超 級電容模充電與放電的過程中,產生自整體二次電池/超級 電容模的熱能被傳導至絕緣層110及外殼ln的表面。 參照第二圖,顯示了習知技術中所使用的方形鋰二 次電池/超級電容。方形鋰二次電池/超級電容通常包含複數 層包含了陰極層201、陽極層202以及陰極層201與陽極層 〇 202之間的隔離層203等複數層。當電極層與隔離層2〇3 依照陰極層201、隔離層203、陽極層202、隔離層203的 順序重疊至所須的二次電池/超級電容數量時。陰極層2〇1 , 及陽極層202的末端連接至至陰極導線2〇4與陽極導線 205 ’且二次電池的其他部分包含習知方形裡二次電池/超 級電容元件,如使氣體溢出的安全閥206、陰極蓋207、氣 封墊片208、絕緣層209及防止電解液流出與外部異物突入 之外殼210。如同第2圖所示,在二次電池/超級電容模充 〇 電與放電的過程中,產生自整體二次電池/超級電容模的熱 能被傳導至絕緣層209及外殼210的表面。 第三圖顯示微粒包覆相變化材料(MCPCM)粒子中相變 化材料302(PCM)由熱傳導層301所包覆顯示的截面結構。 相變化材料302可使熱被儲存並於之後進行散熱。由放電 的二次電池/超級電容所釋放的熱會由MCPCM粒子所吸 收,並使得PCM 302產生由固態至液態的相變化結果。儲 存在PCM 302中的熱在散熱的期間可以適當地散逸至週圍 環境中。PCM 302的熱儲存主要是來自於熔融的潛熱。本 19 201101557 發明的PCM 302採用微包覆利用外殼的熱傳導層301作為 將所選擇材料與外部環境分離的材質。做為外殼包覆層應 用的熱傳導層301藉由對PCM 302進行包覆可以有效地延 長其使用壽命。熱傳導粒子的尺寸可為0.5至1000微米。 且外殼的熱傳導層301是由金屬、陶瓷或聚合物所構成。 參照本發明第四圖及第五圖之内容,第四圖及第五圖 顯示本發明的兩種較佳實施方式。第四圖顯示根據本發明 一種具有五層結構的熱管理多層膜/薄片之較佳實施方 式,其中包含了一層金屬層401、兩層塑膠層403及兩層黏 著層402。且黏著層置於金屬層401與塑膠層403之間。本 發明之多層膜/薄片藉由塑膠層之間黏著層的接合,可具有 各種不同的結構。典型的多層膜/薄片結構就如同第四圖之 較佳實施方式所示。中間金屬層401提供必要的強度及熱 傳導性於熱管理多層膜/薄片。且金屬層可包含鎳、銅、鎢、 翻、铭、鋼、銀、金及其他可用之金屬羯。根據本發明黏 著層402之成份可為烷基酯共聚物及混合物、改質之聚烯 烴及其任意的混合物。如同MCPCM粒子的熱傳導粒子亦 均勻地分散於黏著層402中,以吸收產生自二次電池/超級 電容中的熱。多層膜結構雙面外側的塑膠層403之材料可 為聚乙烯、聚乙烯共聚物、聚醯胺、乙烯和乙烯醇共聚物 (EVOH)、乙烯-醋酸乙烯共聚物(EVA)、聚丙烯、高密度聚 乙烯、低密度聚乙烯、線性低密度聚乙烯或其他可應用的 材料。多層膜/薄片結構的每一層的厚度較佳為〇·〇5微米至 250微米的範圍内。且更佳的情況為多層膜結構的任一層之 20 201101557 0 οΓ微米至^黏著層402的厚度可以變化,但通常在 是介㈣〇5i的範圍内。較佳的情況該黏著層的厚度 ϋ ·顯示了根據本發明另—種具有五層处 的:、、、官理多層臈/薄片之較佳實施方式,其中包含了一声 間塑膠層5(Π、兩層外側塑膠層5 曰 Ο Ο :明之五層結構的熱管理多層膜,薄片的每—層可具有: 種不同的結構。且黏著層地 混合物、改曾夕取心 心風伪Ύ為烷基酉曰共聚物及 粒子的敎值道、(1及其任意的混合物。如同MCPCM …暖專導粒子亦均勻地分散於兩層黏著層502、一層中 :讀層5〇1以及兩層外側_層503中,以吸收產生自 5:人超級電容中的熱。多層膜結構雙面外側的塑膠層 Hi為聚乙稀、聚乙料聚物、聚醯胺、乙烯和乙 :醇j物(EV0H)、乙稀,酸乙烯共聚物(eva)、聚丙 1扯τί度聚乙稀、低密度聚乙烯、線性低密度聚乙烤或 f用的材料。多層臈/薄片結構的每一層可為不同的 私二样Γ厚度較佳為0.05微米至250微米的範圍内。且更 、月况為夕層膜結構的任—層之厚度小於5G微米。黏著 二的厚度可以變化,但通常在㈣微米至I〗微米的 1内車乂佳的情況該黏著層的厚度是介於0.05至1.0微 ;、之間:且最佳的情況為介於G.25至G.8微米之間。 第〜圖顯不根據本發明具有雙層、三層及五層结構的 …、官理多層膜/薄片之較佳實施方式。根據本發明的熱管理 21 201101557 多層膜/薄片’至少包含一爲a 包含-層 塑膠層602之間。如同第 糸至置於中間金屬層或 有與金屬層或塑膠層6〇2結合層膜/薄片結構可具 黏著層601兩面之兩金屬層層601或具有結合至 X 2膠層602。且多層膜/Μ片 結構可延伸至五層的結構,复由 、 其中包含了兩層黏著層6〇1黏 :至:層金屬層或塑膠層602’且黏著層601係至於今屬層 或塑膠層002之間。前述雙^^ — 芰層二層及五層結構的熱管理 i% 夕層膜/薄片亦可以附加置其他的中間層之雙面或任意 面,如第五圖所示之中間塑膠層5〇1,藉此形成本發明中不 同多層結構的熱管理多層膜/薄片。 參照本發明第七A圖、第七B圖以及第七〇圖,第七-A圖第七B圖以及第七c圖顯示熱傳導粒子別、·* 粒子702及其混合物7〇3在多層膜結構中塑膠層與枯著層 部分的分布狀態。在第七A圖與第七B圖,熱傳導粒子7〇1 及MCPCM粒子702係由前述之物質所成,且均勻地分散 於多層膜結構的内部。第七C圖顯示熱傳導粒子701及 MCPCM粒子702的均勻混合物。如同第7C圖所示,混合 物703顯示隨機的分布,使得熱可以由所有的方向被均勻 地吸收及傳導。熱傳導粒子701及MCPCM粒子702的均 勻混合物以及塑膠層與粘著層的母相樹脂可以藉由本發明 所揭露的複合材料製程來充分地達成。The inner layer of the Ο type is extruded or coextruded in the same manner as described above for the extrusion process of the PPP and PAP multilayer film tubes. The surface pretreated metal strip is then passed through a series of forming rolls, as is known in the art. The metal strip is continuously formed around the PPP or PAP multilayer film tube. The sealing of the metal strip can then be accomplished by any welding operation, such as laser welding, arc welding or electric resistance welding, thereby forming a closed metal tube. The diameter of the closed metal tube can be reduced by a process of pumping down so that the inner surface of the closed metal is joined to the surface of the PPP or PAP manifold. Next, the surface is made to be joined by heating the melting point of the mGo pAP multilayer film tube. At this stage, it is possible to (10) a multi-phase tube of MP (metal layer-plastic layer) or return (metal layer-adhesive layer plastic layer) type with external gold and inner layer or plastic layer-adhesive layer. Then, as in the extrusion coating process used in the conventional technology, the multilayer film (4) which is coated with the layer to the MP or the plasticized state, and the multilayered film of the P-type state is passed through the system to form a continuous type. And use hydraulics to move or MAP layer membrane tubes. The final cooling step is used to cure the plastic layer or the layer. Additional metal, plastic and adhesive layers can be added in the same way if needed. Finally, a multi-layer film tube of PMP or PAMAP can be obtained. Method of manufacturing a PMP or PAMAP type multilayer film hollow article The same as the PMP or PAMAP type multilayer film tube manufacturing method, the difference is only in the use of different metal tube forming rollers to form the desired cross-sectional shape, such as a rectangle or a triangle. The mold used for extrusion or co-extrusion to form a plastic or adhesive layer also adjusts the mold according to the desired cross-sectional shape. The PMP or PAMAP type multilayer film hollow article can specify the cross-sectional shape, the size and the number of each metal layer, the plastic layer and the adhesive layer, and can also specify the thickness of the individual layers, the overall thickness, and the shape of the plane or the extended surface. The types and quantities of thermally conductive particles and MCPCM particles of a particular individual plastic layer and adhesive layer can be specified. [Embodiment] In order to understand the object, features and effects of the present invention, the present invention will be described in detail by the following specific embodiments, and with the accompanying drawings. A cylindrical lithium secondary battery/super capacitor used in the prior art. The cylindrical lithium secondary battery/supercapacitor in the prior art comprises a plurality of layers such as a cathode layer 101, an anode layer 102, and an isolation layer 103 between the cathode layer 101 and the anode layer 102. The ends of the cathode layer 101 and the anode layer 102 are connected to the cathode lead 104 and the anode lead 105, and other portions of the secondary battery include a conventional cylindrical lithium secondary battery/super capacitor element, such as a safety valve 106 for overflowing gas, positive The temperature coefficient resistor 107 (PTC), the top 18 201101557 cover 108, the gas seal gasket 109, the insulating layer 110, and the electrolyte 111 are prevented from flowing out and the foreign matter is enlarged. As shown in Fig. 1, in the process of charging and discharging the secondary battery/supercapacitor mode, thermal energy generated from the entire secondary battery/supercapacitor mode is conducted to the surfaces of the insulating layer 110 and the outer casing ln. Referring to the second figure, a prismatic lithium secondary battery/supercapacitor used in the prior art is shown. The prismatic lithium secondary battery/supercapacitor generally comprises a plurality of layers including a cathode layer 201, an anode layer 202, and an isolation layer 203 between the cathode layer 201 and the anode layer 202. When the electrode layer and the spacer layer 2〇3 are overlapped in the order of the cathode layer 201, the spacer layer 203, the anode layer 202, and the isolation layer 203 to the required number of secondary batteries/supercapacitors. The cathode layer 2〇1, and the end of the anode layer 202 are connected to the cathode lead 2〇4 and the anode lead 205' and the other part of the secondary battery contains a conventional square secondary battery/supercapacitor element, such as a gas overflowing The safety valve 206, the cathode cover 207, the gas seal gasket 208, the insulating layer 209, and the outer casing 210 for preventing the electrolyte from flowing out and the foreign matter projecting into the outside. As shown in Fig. 2, in the process of charging and discharging the secondary battery/supercapacitor, heat generated from the entire secondary battery/supercapacitor is conducted to the surfaces of the insulating layer 209 and the outer casing 210. The third figure shows the cross-sectional structure of the phase change material 302 (PCM) in the particle-coated phase change material (MCPCM) particles which is covered by the heat conductive layer 301. The phase change material 302 allows heat to be stored and then dissipated. The heat released by the discharged secondary battery/supercapacitor is absorbed by the MCPCM particles and causes the PCM 302 to produce a phase change result from solid to liquid. The heat stored in the PCM 302 can be properly dissipated into the surrounding environment during heat dissipation. The thermal storage of PCM 302 is primarily due to the latent heat of melting. The PCM 302 of the invention of this invention uses a heat-conducting layer 301 of the outer casing as a material for separating the selected material from the external environment. The heat conductive layer 301 used as the outer cover coating can effectively extend the service life by coating the PCM 302. The thermally conductive particles may range in size from 0.5 to 1000 microns. And the heat conducting layer 301 of the outer casing is made of metal, ceramic or polymer. Referring to the contents of the fourth and fifth figures of the present invention, the fourth and fifth figures show two preferred embodiments of the present invention. The fourth figure shows a preferred embodiment of a thermally managed multilayer film/sheet having a five layer structure comprising a metal layer 401, two plastic layers 403 and two adhesive layers 402 in accordance with the present invention. And the adhesive layer is placed between the metal layer 401 and the plastic layer 403. The multilayer film/sheet of the present invention can have a variety of different configurations by bonding the adhesive layers between the plastic layers. A typical multilayer film/sheet structure is as shown in the preferred embodiment of the fourth figure. The intermediate metal layer 401 provides the necessary strength and thermal conductivity to the thermally managed multilayer film/sheet. And the metal layer may comprise nickel, copper, tungsten, turn, inscription, steel, silver, gold and other useful metal tantalum. The composition of the adhesive layer 402 in accordance with the present invention may be an alkyl ester copolymer and mixture, a modified polyolefin, and any mixture thereof. The thermally conductive particles like MCPCM particles are also uniformly dispersed in the adhesive layer 402 to absorb heat generated from the secondary battery/supercapacitor. The material of the plastic layer 403 on the outer side of the double-sided film structure may be polyethylene, polyethylene copolymer, polyamine, ethylene and vinyl alcohol copolymer (EVOH), ethylene-vinyl acetate copolymer (EVA), polypropylene, high. Density polyethylene, low density polyethylene, linear low density polyethylene or other applicable materials. The thickness of each of the layers of the multilayer film/sheet structure is preferably in the range of from 5 μm to 250 μm. More preferably, the thickness of any layer of the multilayer film structure may vary, but is usually in the range of (4) 〇 5i. Preferably, the thickness of the adhesive layer ϋ shows a preferred embodiment of the multi-layered ruthenium/sheet having five layers according to the present invention, which comprises a plastic layer 5 (Π) Two layers of outer plastic layer 5 曰Ο Ο: A five-layer thermal management multilayer film, each layer of the sheet may have: a different structure, and the mixture of the layers of the layer is changed to the core of the heart. Based on the enthalpy of copolymers and particles, (1 and any mixture thereof. Like MCPCM ... warm-conductive particles are also uniformly dispersed in two layers of adhesive layer 502, one layer: read layer 5〇1 and two layers outside In layer 503, the heat generated in the 5: human supercapacitor is absorbed. The plastic layer Hi on the outer side of the multilayer film structure is polyethylene, polyglycol, polyamine, ethylene and B: alcohol (EV0H), Ethylene, Ethylene Ethylene Copolymer (eva), Polypropylene 1 Polyethylene, Low Density Polyethylene, Linear Low Density Polyethylene Bake or F. Each layer of multilayer bismuth/sheet structure can be The thickness of the different ridges is preferably in the range of 0.05 μm to 250 μm. The thickness of any layer of the film structure is less than 5G micrometers. The thickness of the adhesive layer can vary, but usually the thickness of the adhesive layer is between 0.05 and 1 in the case of (4) micrometers to 1 micrometer. 1.0 micro;, between: and the best case is between G.25 and G.8 microns. The first figure shows that there are two-layer, three-layer and five-layer structures according to the invention... A preferred embodiment of the film/sheet. Thermal management 21 201101557 in accordance with the present invention The multilayer film/sheet' includes at least one a-containing layer of plastic layer 602. Like the first to the intermediate metal layer or with the metal layer Or the plastic layer 6〇2 bonding film/sheet structure may have two metal layer 601 on both sides of the adhesive layer 601 or have a structure bonded to the X 2 glue layer 602. The multilayer film/slice structure may extend to five layers, The two layers of adhesive layer 6 〇 1 are bonded to: a metal layer or a plastic layer 602 ′ and the adhesive layer 601 is between the current layer or the plastic layer 002. The foregoing double layer and the second layer of the layer Thermal management of the five-layer structure i% eve film/sheet can also be attached with other intermediate layers on both sides or The intermediate plastic layer 5〇1 as shown in the fifth figure, thereby forming a thermal management multilayer film/sheet of different multilayer structures in the present invention. Referring to the seventh, seventh and seventh drawings of the present invention 7-A and 7c of the seventh-A graph show the distribution state of the heat-conducting particles, the *-particles 702, and the mixture 7〇3 in the plastic film layer and the dry layer portion in the multilayer film structure. In Fig. 7 and Fig. B, the thermally conductive particles 7〇1 and MCPCM particles 702 are formed of the foregoing substances and uniformly dispersed inside the multilayer film structure. The seventh C chart shows a homogeneous mixture of the thermally conductive particles 701 and the MCPCM particles 702. . As shown in Fig. 7C, the mixture 703 shows a random distribution so that heat can be uniformly absorbed and conducted from all directions. A homogeneous mixture of thermally conductive particles 701 and MCPCM particles 702 and a mother phase resin of the plastic layer and the adhesive layer can be sufficiently achieved by the composite material process disclosed in the present invention.

參照本發明第八A圖及第八B圖,第八A圖及第八B 圖顯示PPP、PAP、PMP及PAMAP型態多層膜結構的五層 22 201101557 結構。五層結構的表面801顯示了包含有熱傳導粒子以及 MCPCM粒子的塑膠層。且第二至第四層可分別為金屬層、 塑膠層或黏著層’其係全部由前述的製造程序所製造而 成,其中底層可與表層或其他中間層為相同的材質。第八 A圖及第人B圖顯示膜和薄片結構,其為本發明兩種可能 的實施態樣。第八B圖顯示了在五層結構的表面額外添加 之複數延伸鰭片802。鰭片802的形狀可具有不同外型與尺 寸的設計,且該外型亦可施加於複數多層膜及薄片結構的 内部各層。 參照本發明第九A圖及第九B圖,第九A圖及第九B 、 圖顯示了 PPP、PAP、PMP及PAMAP菱柱形多層膜管狀結 構901之五層結構。如同上述’菱柱形多層膜管狀結構9〇1 的母一層可用不同的材料加以置換,且可加入延伸鰭片902 以回應不同的需求,特別是可達成增加延伸表面的熱傳流 傳輸的目的。在菱柱形多層膜管狀結構9〇1的中央,具有 〇 一個中空孔’使得如第一圖或第二圖所示具有適當尺寸及 外型的圓柱形或方形二次電池或超級電容可以直接被置入 其中。菱枚形多層膜管狀結構901的底部可為開口狀或是 封口狀。當二次電池或高電容被置入菱柱形多層膜管狀結 構901時’二次電池或高電容的溫度上升可被良好地控制。 第十A圖及第十b圖顯示了根據本發明另一種圓柱形 多層膜管狀結構的實施例。第十A圖及第十B圖顯示了 PPP、PAP、PMP及PAMAP圓柱形多層膜管狀結構1001 之五層結構。如同前述,圓柱形多層膜管狀結構1001的每 23 201101557 一層可用不同的材料加以替代,且延伸鰭片1002可被加 入,以回應不同需求,特別是可達成增加延伸表面的熱傳 流傳輸的目的。使得如第一圖或第二圖所示具有適當尺寸 及外.型的圓柱形或方形二次電池或超級電容可以直接被置 入其中’且圓柱形多層膜管狀結構1001之内部孔洞亦可以 採取與外部不同的形狀。而延伸鰭片1〇〇2的外型可根據不 同的需求而加以修改’圓柱形多層膜管狀結構1〇〇1中間的 内σΡ孔可被δΧ 3十為方裂或其他所需的形狀。同時藉由本發 明所採用的共擠出製造程序可以任意地調整延伸鰭片1〇〇2❹ 的尺寸以及外型。 第十一Α圖及第十一Β圖為任意形狀的多層膜中空物 . 件結構。在第十一 A圖中,中間的中空孔部份11〇1可被置"· 入與其尺寸符合的二次電池/高電容而不需任何複雜的程·, 序。第十一 A圖亦顯示多層膜結構可具有不同的外型及由 内層至外層的延伸鰭片11〇2。在第十一 B圖,如二次電池 或超級電谷之所需物件可被置入中空孔11〇1中。該 多層膜中空物件所形成的套管在中空孔的數量、外型、尺❹ 寸以及多層膜的成份具有很充分的彈性。根據第十一 b 圖’其中顯不了多㈣套管結構的—種較佳的實施方式, 其中可置入三個二次電池或超級電容。如同第十一 b圖所, 示,該結構包含了三個中空孔,使得所需物件11〇4可被置 入中空孔1101中’多層膜套管完全地包覆各別的二次電池 或超級電容’且由放電/充電中的二次電池或超級電容所產 生的熱此可有效地被错存或者是被散出。因此,運作中的 24 201101557 二次電池或高電容可被保持在穩定真適當的低溫。 參照第十二A圖及第十二B圖,第十二A圖顯示單一 的二次電池/高電容而不具有本發明之多層膜結構外殼或 套管之溫度圖形,很明顯地在第十二_ A圖中,在時間/總放 電時間=1的最大溫度時高於第十二B圖中在時間/總放電 時間=1時的最大溫度。結果使得,如同本發明伴有外部多 層結構外殼或套管的單一二次電池/超級電容或複數二次 電池/超級電容可以保持在一個較低的最大運作溫度。 參照第十三A圖、第十三B圖以及第十三C圖,揭露 了整體的PPP及pAP多層膜結構製造程序。第十三A圖顯 示了複合材料製程,其係用來製造母相樹脂中具有顆粒的 塑膠層或黏著層、熱傳導粒子、以及MCPCM粒子。在此 使用了雙螺桿擠出機進行多層膜結構製造程序’且所屬領 威中具有通常知識者可輕易的知悉這樣的製造方式,因此 在此省略細部的敘述。母相樹脂的聚合物熔融流、熱傳導 粒子以及MCPCM粒子被擠出至一冷卻裝置’且接著透過 造粒機形成塑膠粒子。參照第十三B圖’混合物粒子被加 入主擠出機中及複數的共擠出機中。主擠出機及複數共擠 出機的排列係根據所需的PPP及PAP結構的層數。例如, 在五層PAPAP結構的製造程序中’所設計的塑膠層顆粒被 加入主擠出機、第三及第五共擠出機中,所設計的塑膠層 顆粒被加入主擠出機、第三及第五共擠出機中’所設計的 粘著層顆粒被加入第二及第四共擠出機中。藉由主擠出機 及四台共擠出機的共擠出,五層膜/薄片的結構可以依照習 25 201101557 知技射的高分子共擠出程序而加以完成, 序在不再贅述。參照第十三c圖 ^知作程 數的擠出機所製造,_排放套管、財尺中=;可由複 置’所有的共擠出製程之細部操作與震置 I 裝 不再贅述。# 了场易的進订,細部的操作程序將 參照第十四A圖、十四B圖、第十四c圖,览命 造PMP及PAMAP多声膜&"揭露了製 c , J;7;* p ° + " Α 造程序之方Μρ&ραμαρ中金屬層的製 方塊流_。金屬^薄片/帶透過表面處理、研 y 广潔淨及乾燥製程。在表面預處理步驟後,經處 二片/帶將被卷曲以形成捲曲的金屬娜/ =在後續的早元運作中’如同第十四Β圖以及第十四D :’所捲曲的金屬箱/薄片/帶將藉由共擠出及/或擠出 f布與塑膠層與枯著層結合或形成層狀物。例如,如同第 圖所不’捲曲的金屬箱/薄片/帶透過懸吊滚輪、電暈 以及加熱器以魏後續的擠出塗佈。所設計的塑膠層 與^者層被分別塗佈在金屬_片的兩侧,並形成所需的 薄片。前述的製程為通常的高分子 ’且為所屬技術領域中具有通常知識者可以輕易 地進仃,細部的操作程序將不再贅述。 實施例1 ’該圖揭露了一種較佳的多層膜套管 參照第十~ A圖 26 201101557 之貫把例。用於18650鐘離子二次電池/超級電容之MAp 環狀管套管包含了三種不同的層。内層包含了鋁_鎂(入1_|^幻 金屬合金且其層的厚度為〇.3mm。延伸鰭片長度為2 5mm 且寬度為1.0mm。且延伸鰭片邊緣的距離為2 〇mm。金屬 合金層的熱傳導係數為200 W.m'K·1,且金屬層的内部直 徑(中空孔直徑)為21mm。中間的黏著層是由ADMER QF551E(40〇/。)、氮化|呂(59.9。/。)以及奈米碳管(〇1%)所構 成。中間黏著層的厚度為50微米,熱傳導係數為1〇 W.m'K·1。外部塑膠層是由聚乙烯(PE)⑽%)、氮化紹(1〇%) 以及MCPCM43D所構成。其中膜厚為3mm,且延伸鰭片 、· 的長度為2.0mm,且寬度為l.〇mm。在每一鰭片之間的距 離為2.0mm。外部塑膠層的熱傳導係數為丨〇 (ASTM F433所採用的熱流量測方法),且在、皮融的 潛熱為70 KJ.Kg-i (由微分掃描卡計per^2 DSC-7(USA)所測定,安裝DSC_7動態軟體)。所樹上的導 〇 電膠層則是由DX2_樹脂(40%)、氮化鋁(59.9%)以及奈 米破管(0.1%) 4AMAP多層膜管是由共擠出塗佈製程所 製作。且套管製作製程係根據下列步驟:第一步是切割所 製造的多層膜管至所要的尺寸(在此例中為圓柱形 鋰離子二次電池/超級電容,所需的長度為65mm)。第二步 為塗佈上導電膠層至圓柱形18650鋰離子二次電池/超級電 容的表面,第三步為將圓柱形1865〇鋰離子_ 電容置入套管的中空孔中。在前述的製程後:::= 級電谷可藉由本發明之多層膜套管控制在較佳的溫度範 27 201101557 圍。 實施例2 參照第九B圖,實施例2揭露了一種較佳的ppp多層 膜方形套管之實施例,其係用於作為具有後述層狀構造與 成之方形鋰離子二次電池/超級電容的熱管理套管。母相樹 脂是EVA共聚合物(DuPontTM Elvax® CM555),佔全部重 量的35 %。分散相包含10%的氮化鋁(氮化鋁平均粒徑為 10至20微米)以及55%的MPCM43D(平均粒徑為10〜20 微米且相變化溫度為43°C )。内部中空孔的尺寸的寬度為 10mm,長度為100mm。層的厚度為8mm。外表面包含了 數個延長鰭片的矩陣,其中鰭片延伸表面的長度為 2.5mm ’鰭片寬度為1.0mm,且在相鄰鰭片邊緣間的距離 為2.0mm。所量測到的熱傳導係數為(MW.m'K—KASTM F433所採用的熱流量測方法),且在43°C熔融的潛熱為90 KJ.Kg·1 (由微分掃描卡計 Perkin-Elmer DSC-7(USA)所測 定,安裝DSC-7動態軟體)。 實施例3 參照第八A圖,實施例3揭露了一種較佳的PPP多層 膜平面薄片之實施例,其係用於作為具有後述層狀構造與 成之方形鋰離子二次電池/超級電容的熱管理套管。内層 (或第一層)為一塑膠層,由聚乙烯(PE)(35%)、六面體氮 化爛(h-BN)(64.9%)(由 Momentive Performance Materials 28 201101557Referring to the eighth and eighth panels of the present invention, the eighth and eighth panels show the five-layer 22 201101557 structure of the PPP, PAP, PMP and PAMAP type multilayer film structures. The surface 801 of the five-layer structure shows a plastic layer containing thermally conductive particles and MCPCM particles. And the second to fourth layers may be respectively a metal layer, a plastic layer or an adhesive layer, which are all manufactured by the aforementioned manufacturing process, wherein the underlayer may be the same material as the surface layer or other intermediate layers. The eighth and fourth panels show the film and sheet structure, which are two possible embodiments of the invention. Figure 8B shows a plurality of extended fins 802 additionally added to the surface of the five-layer structure. The shape of the fins 802 can have different shapes and sizes, and the profile can also be applied to the various layers of the multilayer film and sheet structure. Referring to the ninth and fifth linings of the present invention, the ninth and fifth ribs, the five-layer structure of the PPP, PAP, PMP and PAMAP prismatic multilayer film structure 901 is shown. As the above-mentioned 'matrix-shaped multilayer film tubular structure 9〇1, the mother layer can be replaced with different materials, and the extension fins 902 can be added to respond to different needs, in particular, the purpose of increasing the heat transfer of the extended surface can be achieved. . In the center of the cylindrical multi-layer tubular tubular structure 〇1, there is a hollow hole ' such that a cylindrical or square secondary battery or super capacitor having an appropriate size and shape as shown in the first or second figure can be Directly placed in it. The bottom of the rhomboid multilayer film tubular structure 901 may be open or closed. When the secondary battery or the high capacitance is placed in the prismatic multilayer film tubular structure 901, the temperature rise of the secondary battery or the high capacitance can be well controlled. Figures 10A and 10b show an embodiment of another cylindrical multilayer film tubular structure in accordance with the present invention. Fig. 10A and Fig. 10B show the five-layer structure of the cylindrical multilayer film structure 1001 of PPP, PAP, PMP and PAMAP. As mentioned above, each layer of 23 201101557 of the cylindrical multilayer film tubular structure 1001 can be replaced with a different material, and the extension fins 1002 can be added in response to different needs, in particular for the purpose of increasing the heat transfer of the extended surface. . So that a cylindrical or square secondary battery or super capacitor having an appropriate size and shape as shown in the first or second figure can be directly placed therein' and the internal hole of the cylindrical multilayer film tubular structure 1001 can also be taken Different shapes from the outside. The shape of the extended fins 1 〇〇 2 can be modified according to different requirements. The inner σ pupil in the middle of the cylindrical multilayer tubular structure 1 〇〇 1 can be squarely cracked or other desired shape by δ Χ 3 . At the same time, the size and shape of the extending fins 1〇〇2❹ can be arbitrarily adjusted by the co-extrusion manufacturing process employed in the present invention. The eleventh and eleventh figures are hollow films of any shape and shape. In the eleventh A picture, the intermediate hollow hole portion 11〇1 can be set to a secondary battery/high capacitance conforming to its size without any complicated procedure. The eleventh A also shows that the multilayer film structure can have different shapes and extended fins 11 〇 2 from the inner layer to the outer layer. In the eleventh B-picture, a desired item such as a secondary battery or a super electric valley can be placed in the hollow hole 11〇1. The sleeve formed by the multi-layered hollow material has sufficient elasticity in terms of the number, shape, size of the hollow holes and the composition of the multilayer film. According to the eleventh b-th embodiment, a preferred embodiment of the multi-fourth casing structure is shown in which three secondary batteries or supercapacitors can be placed. As shown in Fig. 11b, the structure includes three hollow holes, so that the desired object 11〇4 can be placed in the hollow hole 1101. The multilayer film sleeve completely covers the respective secondary batteries or The supercapacitor's heat generated by the secondary battery or supercapacitor in the discharge/charging can be effectively staggered or dissipated. Therefore, the 24 201101557 secondary battery or high capacitance in operation can be kept at a stable and proper low temperature. Referring to Figures 12A and 12B, Figure 12A shows a single secondary battery/high capacitance without the temperature pattern of the multilayer film structure casing or casing of the present invention, apparently in the tenth In the second graph, the maximum temperature at time/total discharge time=1 is higher than the maximum temperature at time/total discharge time=1 in the twelfth B-picture. As a result, a single secondary battery/supercapacitor or a plurality of secondary batteries/supercapacitors as with the present invention having an outer multi-layered outer casing or sleeve can be maintained at a lower maximum operating temperature. Referring to Figures 13A, 13B, and 13C, the overall PPP and pAP multilayer film structure fabrication process is disclosed. Figure 13A shows a composite process for making plastic or adhesive layers of particles in the matrix resin, thermally conductive particles, and MCPCM particles. Here, a twin-screw extruder is used to carry out a multilayer film structure manufacturing process, and those skilled in the art can easily understand such a manufacturing method, and thus the description of the details is omitted here. The polymer melt stream of the mother phase resin, the heat conductive particles, and the MCPCM particles are extruded to a cooling device' and then formed into plastic particles by a granulator. Referring to Figure 13B, the mixture particles are added to the main extruder and to a plurality of co-extruders. The arrangement of the main extruder and the plurality of coextrusion machines is based on the number of layers of PPP and PAP structures required. For example, in the manufacturing process of the five-layer PAPAP structure, the designed plastic layer particles are added to the main extruder, the third and fifth co-extruders, and the designed plastic layer particles are added to the main extruder, The adhesive layer particles designed in the third and fifth co-extruders were added to the second and fourth co-extruders. By the co-extrusion of the main extruder and the four co-extruders, the structure of the five-layer film/sheet can be completed according to the polymer co-extrusion process of the known technology, which will not be described again. Refer to the thirteenth c-c diagram of the extruder, which is known as the number of passes, _ discharge casing, treasury =; can be replaced by 'all the co-extrusion process details and the shock I installed will not repeat. # 了易的订订, detailed operation procedures will refer to the fourteenth A picture, fourteenth B picture, the fourteenth c picture, view the life of PMP and PAMAP multi-sound film &" expose the system c, J ;7;* p ° + " Α The square of the metal layer in the square Μ ρ & ραμαρ. Metal foil / strip through surface treatment, research y wide clean and dry process. After the surface pretreatment step, the two sheets/tapes will be crimped to form a curled metal Na / = in the subsequent early element operation 'like the fourteenth and fourteenth D: 'curled metal box The sheet/tape will be combined or formed into a layer by coextrusion and/or extrusion of the f cloth with the plastic layer and the dry layer. For example, a metal box/sheet/tape that is not 'curled as shown in the figure is coated with a suspension roller, a corona, and a heater followed by extrusion. The designed plastic layer and the layer are coated on both sides of the metal sheet to form the desired sheet. The foregoing process is a general polymer' and can be easily carried out by those having ordinary knowledge in the art, and detailed operation procedures will not be described again. Embodiment 1 This figure discloses a preferred multilayer film casing. Referring to the tenth to the right of Fig. 26 201101557. The MAP ring sleeve for the 18650 ion secondary battery/supercapacitor contains three different layers. The inner layer contains aluminum-magnesium (into 1_|^ phantom metal alloy and its layer thickness is 〇.3mm. The length of the extension fin is 25 mm and the width is 1.0 mm. The distance from the edge of the extended fin is 2 〇mm. The thermal conductivity of the alloy layer is 200 W.m'K·1, and the inner diameter of the metal layer (the diameter of the hollow hole) is 21 mm. The middle adhesive layer is composed of ADMER QF551E (40 〇/.), nitride|Lu (59.9 . /.) and carbon nanotubes (〇1%). The thickness of the intermediate adhesive layer is 50 microns, the thermal conductivity is 1〇W.m'K·1. The outer plastic layer is made of polyethylene (PE) (10) %), nitrided (1〇%) and MCPCM43D. The film thickness is 3 mm, and the length of the extending fins is 2.0 mm, and the width is l.〇mm. The distance between each fin is 2.0 mm. The thermal conductivity of the outer plastic layer is 丨〇 (the thermal flow measurement method used by ASTM F433), and the latent heat in the skin is 70 KJ.Kg-i (by differential scanning card per^2 DSC-7 (USA) As determined, install DSC_7 dynamic software). The conductive layer on the tree is made of DX2_resin (40%), aluminum nitride (59.9%) and nano tube (0.1%). The 4AMAP multilayer film tube is made by co-extrusion coating process. . The casing manufacturing process is based on the following steps: The first step is to cut the manufactured multilayer film tube to the desired size (in this case, a cylindrical lithium ion secondary battery/super capacitor, the required length is 65 mm). The second step is to apply a conductive adhesive layer to the surface of a cylindrical 18650 lithium ion secondary battery/super capacitor. The third step is to place a cylindrical 1865 〇 lithium ion _ capacitor into the hollow hole of the sleeve. After the foregoing process:::= The graded valley can be controlled by the multilayer film casing of the present invention at a preferred temperature range of 27 201101557. Embodiment 2 Referring to FIG. BB, Embodiment 2 discloses an embodiment of a preferred ppp multilayer film square sleeve which is used as a square lithium ion secondary battery/super capacitor having a layered structure and a layer structure which will be described later. Thermal management casing. The parent phase resin is an EVA copolymer (DuPontTM Elvax® CM555), which accounts for 35% of the total weight. The dispersed phase contained 10% of aluminum nitride (average particle diameter of aluminum nitride of 10 to 20 μm) and 55% of MPCM43D (having an average particle diameter of 10 to 20 μm and a phase change temperature of 43 ° C). The inner hollow hole has a width of 10 mm and a length of 100 mm. The thickness of the layer is 8 mm. The outer surface contains a matrix of several elongated fins, wherein the fin extension surface has a length of 2.5 mm' fin width of 1.0 mm and a distance between adjacent fin edges of 2.0 mm. The measured thermal conductivity is (the thermal flow measurement method used in MW.m'K-KASTM F433), and the latent heat of melting at 43 °C is 90 KJ.Kg·1 (by differential scanning card, Perkin-Elmer) DSC-7 dynamic software was installed as determined by DSC-7 (USA). Embodiment 3 Referring to FIG. 8A, Embodiment 3 discloses an embodiment of a preferred PPP multilayer film planar sheet which is used as a square lithium ion secondary battery/super capacitor having a layered structure and a layer structure which will be described later. Thermal management casing. The inner layer (or first layer) is a plastic layer consisting of polyethylene (PE) (35%) and hexahedral nitriding (h-BN) (64.9%) (by Momentive Performance Materials 28 201101557)

Inc.所取得)以及CNT(0,1%)所構成。且其層的平均的厚度 為50微米。夾層(中間層)為黏著層,是由BYNEL21E533 (40%)、六面體氮化硼(h-BN)(64.9%)(由]VIomentive Performance Materials Inc.所取得)以及奈米碳管(〇1%)所 構成。其中外層膜厚為30微来。外層(或第三層)是由塑 膠層所構成’具有35%的聚對苯二曱酸二丁醋(pbt)、15% 的六面體氮化硼(h-BN)以及40%的MPCM 43D。其平均膜 厚為2.5mm。三層薄片的平均熱傳導度為10 w,m、K-i。 在43°C的熔融潛熱為85 KJ.Kg·1。 實施例4 參照第十A圖’實施例4揭露了一種較佳的PAMAP 五層膜之中空管的實施例,其係用於作為具有後述層狀構 造與成之18650圓柱形链離子二次電池/超級電容的熱管理 套管。内層(或第一層)為一塑膠層,由聚對苯二甲酸二 丁酯(PBT)(40%)、氮化铭(60%)所構成,且其層的平均的厚 度為50微米。夾層(中間層)為黏著層,是由BYNEL21E533 (40%)、氮化鋁(59.9%)以及奈米碳管(0.1%)所構成。其中外 層膜厚為30微米。第三層是由鋼層所構成,且其層的平均 的厚度為100微米。第四層為黏著層,具有40%的ADMER NF408E、59.9%的氮化鋁以及0.1%的奈米碳管,且其厚度 為30微米。第五層為一塑膠層,其中由聚乙烯(pE)(4〇%)、 氮化鋁(10%)以及MCPCM43D(50%)所構成,其層的平均的 厚度為3mm。中空管的内部直徑為18mm。且五層膜之中 29 201101557 空管的平均熱傳導度為1.0 Wm'K-1。在43°C的熔融潛熱 為 85 KJ.Kg·1。 實施例5 實施例5揭露了一種較佳的MAP三層膜之方型中空管 的實施例’其係用於作為具有後述層狀構造與成之18650 方形鋰離子二次電池/超級電容的熱管理套管。内層(或第 一層)為一鋼層,該層的平均厚度為100微米。第二層(中 間層)為黏著層,是由ADMER NF408E (40%)、氮化鋁 (59.9%)以及奈米碳管(0.1%)所構成。其中膜厚為50微米。 第三層為一塑膠層,其中由聚乙烯(PE)(40%)、氮化鋁(10%) 以及MCPCM43D(50%)所構成,其層的平均的厚度為 3mm,且在第三層的外表面形成延伸的鰭片。 實施例6 實施例6揭露了一種較佳的PAMAP環狀中空管的實施 例,其係用於作為具有後述層狀構造與成之18650圓柱形 鋰離子二次電池/超級電容的熱管理套管。内層(第一層) 包含了鋁鎂(Al-Mg)金屬合金且其層的厚度為〇.3mm。第 二層(中間層)為黏著層,是由ADMER NF408E (40%)、 氮化鋁(59.9%)以及奈米碳管(0.1%)所構成。其中膜厚為50 微米。第三層為一塑膠層,其中由聚乙烯(PE)(40%)、氮化 鋁(10%)以及MCPCM43D(50°/〇)所構成,其層的平均的厚度 為3mm,且在内部第一層形成延伸的鰭片。 30 201101557 當某些實施例以如同上述方法描述時,應可理解的是 該些實施例僅作為說明本發明的例示。因此,在此所描述 的裝置與方法並非僅受限於上述之實施例所揭露之内容。 又,在此所描述的裝置與方法應僅可參照上述發明說明及 相關圖式内容來加以對申請專利範圍予以界定。 【圖式簡單說明】 第一圖為習知技術中所使用的圓柱形鋰二次電池/超級 電容之示意圖。 第二圖為習知技術中所使用的方形鋰二次電池/超級電 容之不意圖。 第三圖為微粒包覆相變化材料粒子的放大截面結構示意 圖。 第四圖顯示根據本發明一種具有五層結構的熱管理多層 膜/薄片之放大剖面示意圖。 第五圖顯示根據本發明另一種具有多層膜結構的熱管理 多層膜/薄片之放大剖面示意圖。 弟六A圖、弟六B圖以及弟六C圖顯不根據本發明具有 雙層、三層及五層結構的熱管理多層膜/薄片較佳 貫施方式的不意圖。 第七A圖、第七B圖以及第七C圖為熱傳導粒子、 MCPCM粒子及其混合物在多層膜結構中塑膠層 與粘著層部分的分布狀態示意圖。Acquired by Inc.) and CNT (0,1%). And the average thickness of the layers was 50 μm. The interlayer (intermediate layer) is an adhesive layer composed of BYNEL21E533 (40%), hexahedral boron nitride (h-BN) (64.9%) (obtained by VIomentive Performance Materials Inc.), and carbon nanotubes (〇). 1%). The outer film thickness is 30 micro. The outer layer (or the third layer) is composed of a plastic layer 'with 35% polybutylene terephthalate dibutyl vinegar (pbt), 15% hexahedral boron nitride (h-BN) and 40% MPCM 43D. The average film thickness is 2.5 mm. The average thermal conductivity of the three-layer sheet is 10 w, m, K-i. The latent heat of fusion at 43 ° C was 85 KJ.Kg·1. Embodiment 4 Referring to FIG. 10A, Embodiment 4 discloses an embodiment of a preferred PAMAP five-layer film hollow tube, which is used as a layered structure having a layered structure and a 18650 cylindrical chain ion which will be described later. Thermal management sleeve for battery/super capacitor. The inner layer (or the first layer) is a plastic layer composed of polybutylene terephthalate (PBT) (40%) and nitriding (60%), and the layer has an average thickness of 50 μm. The interlayer (intermediate layer) is an adhesive layer composed of BYNEL 21E533 (40%), aluminum nitride (59.9%), and carbon nanotubes (0.1%). The outer film thickness is 30 microns. The third layer is composed of a steel layer, and its layer has an average thickness of 100 μm. The fourth layer is an adhesive layer with 40% ADMER NF408E, 59.9% aluminum nitride, and 0.1% carbon nanotubes, and has a thickness of 30 microns. The fifth layer is a plastic layer composed of polyethylene (pE) (4%), aluminum nitride (10%), and MCPCM43D (50%), and the layer has an average thickness of 3 mm. The inner diameter of the hollow tube is 18 mm. And the five-layer film 29 201101557 The average thermal conductivity of the empty tube is 1.0 Wm'K-1. The latent heat of fusion at 43 ° C is 85 KJ.Kg·1. Embodiment 5 Embodiment 5 discloses a preferred embodiment of a square hollow tube of a MAP three-layer film, which is used as a 18650 square lithium ion secondary battery/super capacitor having a layered structure described later. Thermal management casing. The inner layer (or first layer) is a steel layer having an average thickness of 100 microns. The second layer (intermediate layer) is an adhesive layer composed of ADMER NF408E (40%), aluminum nitride (59.9%), and carbon nanotubes (0.1%). The film thickness is 50 microns. The third layer is a plastic layer composed of polyethylene (40), aluminum nitride (10%) and MCPCM43D (50%), the average thickness of the layer is 3mm, and the third layer The outer surface forms an extended fin. Embodiment 6 Embodiment 6 discloses an embodiment of a preferred PAMAP annular hollow tube which is used as a thermal management sleeve having a layered structure and a 18650 cylindrical lithium ion secondary battery/super capacitor which will be described later. tube. The inner layer (first layer) contains an aluminum-magnesium (Al-Mg) metal alloy and the thickness of the layer is 〇.3 mm. The second layer (intermediate layer) is an adhesive layer composed of ADMER NF408E (40%), aluminum nitride (59.9%), and carbon nanotubes (0.1%). The film thickness is 50 microns. The third layer is a plastic layer composed of polyethylene (PE) (40%), aluminum nitride (10%) and MCPCM43D (50 ° / 〇), the layer of which has an average thickness of 3 mm and is internally The first layer forms an extended fin. 30 201101557 When certain embodiments are described as described above, it is to be understood that these embodiments are merely illustrative of the invention. Therefore, the devices and methods described herein are not limited to the disclosure of the embodiments described above. Further, the apparatus and method described herein should be limited only by reference to the above description of the invention and the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of a cylindrical lithium secondary battery/super capacitor used in the prior art. The second figure is a schematic illustration of a prismatic lithium secondary battery/super capacitor used in the prior art. The third figure is a schematic diagram showing the enlarged cross-sectional structure of the particle-coated phase change material particles. The fourth figure shows an enlarged schematic cross-sectional view of a thermally managed multilayer film/sheet having a five-layer structure in accordance with the present invention. Figure 5 is a schematic cross-sectional view showing another thermally managed multilayer film/sheet having a multilayer film structure in accordance with the present invention. The sixth embodiment of the invention, the sixth diagram of the sixth diagram, and the sixth diagram of the sixth embodiment of the invention are not intended to have a two-layer, three-layer and five-layer structure of the heat management multilayer film/sheet. Fig. 7A, Fig. 7B, and Fig. 7C are schematic views showing the distribution state of the plastic layer and the adhesive layer portion of the heat conductive particles, the MCPCM particles, and the mixture thereof in the multilayer film structure.

第八A圖及第八B圖顯示PPP、PAP、PMP及PAMAP 31 201101557 型態多層膜結構的五層結構示意圖。 第九A圖及第九B圖顯示了 PPP、PAP、PMP及PAMAP 菱柱形多層膜管狀結構之五層結構示意圖。 第十A圖及第十B圖顯示了 PPP、PAP、PMP及PAMAP 圓柱形多層膜管狀結構之五層結構示意圖。 第十一 A圖及第十一 B圖顯示了 PPP、PAP、PMP及 PAMAP任意形狀多層膜中空管狀結構之五層結 構示意圖。 第十二A圖及第十二B圖顯示單一的二次電池/高電容具 有或不具有本發明之多層膜結構外殼或套管的溫 度圖形。 第十三A圖、第十三B圖以及第十三C圖揭露了 PPP及 PAP多層膜結構製造程序之方塊流程圖。 第十四A圖、第十四B圖、第十四C圖以及第十四D圖 揭露了 PMP及PAMAP多層膜結構製造程序之方 塊流程圖。 【主要元件符號說明】 101 陰極層 102 陽極層 103 隔離層 104 陰極導線 105 陽極導線 106 安全閥 32 201101557 107 正溫度係數電阻器 108 頂蓋 109 氣封墊片 110 絕緣層 111 外殼 201 陰極層 202 陽極層 203 隔離層 Ο 204 陰極導線 205 陽極導線 206 安全閥 207 陰極蓋 1 208 氣封墊片 209 絕緣層 210 外殼 Ο 301 熱傳導層 302 相變化材料 401 金屬層 β 402 塑膠層 ν 403 黏著層 501 塑膠層 502 黏著層 503 外側塑膠層 601 黏著層 33 201101557 602 金屬層或塑膠層 701 熱傳導粒子 702 MCPCM粒子 703 熱傳導粒子與MCPCM粒子混合物 801 表面 802 縛片 901 表面 902 縛片 1001 表面 1002 鰭片 1101 表面 1102 縛片 1103 套管 1104 所需物件 34Fig. 8A and Fig. 8B show a five-layer structure diagram of the PPP, PAP, PMP and PAMAP 31 201101557 type multilayer film structures. The ninth A and ninth B diagrams show the five-layer structure of the PPP, PAP, PMP and PAMAP rhomboid multilayer tubular structures. Fig. 10A and Fig. 10B show a five-layer structure diagram of a tubular multilayer structure of PPP, PAP, PMP and PAMAP. Fig. 11A and Fig. 11B show a five-layer structure diagram of a hollow tubular structure of a PPP, PAP, PMP and PAMAP multilayer film of any shape. Figures 12A and 12B show a single secondary battery/high capacitance with or without the temperature pattern of the multilayer film structure casing or casing of the present invention. Thirteenth A, Thirteenth and Fth C charts disclose block flow diagrams of the PPP and PAP multilayer film structure manufacturing procedures. The fourteenth A, fourteenth, fourteenth, and fourteenth D diagrams disclose block diagrams of the PMP and PAMAP multilayer film structure fabrication procedures. [Main component symbol description] 101 Cathode layer 102 Anode layer 103 Isolation layer 104 Cathode wire 105 Anode wire 106 Safety valve 32 201101557 107 Positive temperature coefficient resistor 108 Top cover 109 Gas seal gasket 110 Insulation layer 111 Case 201 Cathode layer 202 Anode Layer 203 Isolation layer Ο 204 Cathode wire 205 Anode wire 206 Safety valve 207 Cathode cover 1 208 Gas seal gasket 209 Insulation layer 210 Shell 301 Heat conduction layer 302 Phase change material 401 Metal layer β 402 Plastic layer ν 403 Adhesive layer 501 Plastic layer 502 Adhesive layer 503 Outer plastic layer 601 Adhesive layer 33 201101557 602 Metal layer or plastic layer 701 Heat conductive particles 702 MCPCM particles 703 Heat conductive particles and MCPCM particle mixture 801 Surface 802 Baffle 901 Surface 902 Binder 1001 Surface 1002 Fin 1101 Surface 1102 Binding Sheet 1103 Casing 1104 Required Object 34

Claims (1)

201101557 七、申請專利範圍: 1. 一種用於二次雷、冰纺 ? & / /、超級包容之熱管理多層膜/薄片,包含: 稷數的熱傳導粒子; 複t微粒包覆相變化材料粒子;以及 至乂層的塑膠層,其中前述的複數熱傳導粒子及複數 微粒1覆相變化材料粒子係均勻地分散於該塑膠層中; 1其中°亥塑膠層形成層狀體多層膜/薄片結構,且在該塑 膠層超過—層的情㈣,該塑膠層彼此依序重疊。 2.t申:t利範圍第1項所述之熱管理多層膜/薄片,其中塑 =層包含聚乙稀、聚乙稀共聚物、聚醯胺、乙稀和乙烯醇共 ,取乙烯-醋酸乙烯共聚物、聚丙烯、高密度聚乙烯、低 密度水乙烯、線性低密度聚乙烯或前述聚合物之任意混合 物。 士丨申明專#】範11|第丨項所述之熱管理多層膜/薄片,其中至 V金屬層選擇性地積層於該塑膠層的任一面,並形成層狀 〇 體多層膜/薄片結構。 鶴、鉬、鋁、鋼、銀、金或其他前述金 如申明專利範圍第3項所述之熱管理多層膜/薄片’其中該 金屬層包含錄、鋼 屬之合金。 丨申明士利範圍第2項所述之熱管理多層膜/薄片’其中至 黏著層選擇性地積層於該塑膠層的任一面,並形成層狀 _多層膜/薄片結構,且前述的複數熱傳導粒子及複數微粒 匕覆相變化材料粒子係均勻地分散於該黏著層中。 .如申明專魏圍第4項所述之熱管理多層膜/薄片,其中至 35 201101557 少一黏著層選擇性地積層於該塑膠層或金屬層的任一面,並 开/成層狀體多層膜/薄片結構’且前述的複數熱傳導粒子及 複數微粒包覆相變化材料粒子係均勻地分散於該黏著層中。 7·如申請專利範圍第5項或第6項所述之熱管理多層膜/薄 片’其中該黏著層包含烧基g旨共聚物、絲g旨或煙 任意混合物。 /、 如申請專利㈣第6項所述之歸理多層膜/薄片,其中熱 傳導粒子包含包覆有銀的銅粉、銀、錄、銘、銅、锡粉、Z 金金屬♦刀末、氫化物-脫氫鈦粉、不錄鋼粉、石墨粉末、碳 黑粉、奈米碳管、鑽石粉末、奈米金屬粉末、球形氧化^ s 末超細敏球形氧化銘粉末或是如六面體氮化爛粉末之非 化物粉體’以及前述粒子的任纽合物的燒結體。 9. 如申料利範圍第8項所述之熱管理多制/薄#, 變化材料為含水鹽類、石蠟或烯烴。 10. 如申請專利範圍第9項所述之熱管理多層膜/薄片,其中兮 熱傳導粒子及微粒包覆相變化材料粒子的直徑為、= 至1微米。 木υ 請專利範圍第5項或第6項所述之熱管理多層膜J ,其中任一層之厚度為25〇微米至〇 〇5微米之間。、 2·如申請專利範圍第】項所述之熱管理多層膜/㈣, 、 層膜/薄片結構是制共擠出或塗佈共擠出之方法㈣。: •如申凊專利範圍第5項或第6項所、·ρ夕勒々々 片,…_項所述之熱官理多層膜/薄 ,、中㈣狀體夕層膜/薄片結構的表面可進—步 數與外表面塑膠層材質相同之延伸鰭片。 设 36 201101557 14. 一種用於二次電池與超級電容之熱管理多層中空物件,包 含: 複數的熱傳導粒子; 複數的微粒包覆相變化材料粒子;以及 至少一層的塑膠層,其中前述的複數熱傳導粒子及複 數微粒包覆相變化材料粒子係均勻地分散於該塑膠層中; 其中該塑膠層形成至少一層之圓柱形、方形或其他形 狀之立體結構,其中至少一中空孔穿過該立體結構之中央 ® 部位之兩端,且該圓柱形、方形或其他形狀之立體結構之 主體係由至少一層之塑膠層所成。 15. 如申請專利範圍第14項所述之熱管理多層中空物件,其中 至少一金屬層選擇性地積層於該塑膠層的任一面,並形成 ' 層狀體多層中空物件。 16. 如申請專利範圍第14項所述之熱管理多層中空物件,其中 至少一黏著層選擇性地積層於該塑膠層的任一面,並形成 Q 層狀體多層中空物件,且前述的複數熱傳導粒子及複數微 粒包覆相變化材料粒子係均句地分散於該黏著層中。 17. 如申請專利範圍第15項所述之熱管理多層中空物件,其中 至少一黏著層選擇性地塗佈於該塑膠層的任一面,並形成 層狀體多層中空物件,且前述的複數熱傳導粒子及複數微 粒包覆相變化材料粒子係均勻地分散於該黏著層中。 18. 如申請專利範圍第17項所述之熱管理多層中空物件,其中 該層狀體多層中空物件之任一層可進一步包含複數廷伸鰭 片。 37 201101557 J9.如申明專利範圚第ί7項所述之熱管 該中空孔係用來***圓柱形链離子二次n勿件,其中 二次電池或超級電容。 4池、方形鐘離子 20.如申請專利範圍第14項所述之熱管理多層中空物件,其中 該層狀體多層中空物件是使用共擠出或塗佈共擠出之^ 形成。 38201101557 VII. Patent application scope: 1. A thermal management multilayer film/sheet for secondary lightning and ice spinning? & / /, super containment, including: 稷 number of heat conduction particles; complex t particle coating phase change material a particle; and a plastic layer to the enamel layer, wherein the plurality of heat conductive particles and the plurality of particles 1 of the phase change material are uniformly dispersed in the plastic layer; 1 wherein the plastic layer forms a layered film/sheet structure And in the case where the plastic layer exceeds the layer (4), the plastic layers overlap each other sequentially. 2.t application: The thermal management multilayer film/sheet according to item 1 of the profit range, wherein the plastic=layer comprises polyethylene, polyethylene copolymer, polyamine, ethylene and vinyl alcohol, and ethylene is taken. Vinyl acetate copolymer, polypropylene, high density polyethylene, low density water ethylene, linear low density polyethylene or any mixture of the foregoing polymers. The heat management multilayer film/sheet according to the above-mentioned item, wherein the V metal layer is selectively laminated on either side of the plastic layer, and a layered scorpion multilayer film/sheet structure is formed. . Crane, molybdenum, aluminum, steel, silver, gold or other gold as described in claim 3, wherein the metal layer comprises an alloy of the record or steel. The heat management multilayer film/sheet of the second aspect of the invention, wherein the adhesive layer is selectively laminated on either side of the plastic layer, and forms a layered_multilayer film/sheet structure, and the foregoing plurality of heat conduction The particles and the plurality of particles of the coating phase change material particles are uniformly dispersed in the adhesive layer. For example, a thermal management multilayer film/sheet as described in Item 4 of Weiwei, wherein up to 35 201101557, an adhesive layer is selectively laminated on either side of the plastic layer or the metal layer, and is opened/layered in multiple layers. The film/sheet structure 'and the plurality of heat conductive particles and the plurality of fine particle coated phase change material particles are uniformly dispersed in the adhesive layer. The thermal management multilayer film/sheet described in claim 5 or claim 6, wherein the adhesive layer comprises a base of a copolymer, a yarn, or a mixture of smoke. /, as claimed in the patent (4) item 6 of the multi-layer film / sheet, wherein the heat-conducting particles contain silver coated copper powder, silver, recorded, Ming, copper, tin powder, Z gold metal ♦ knife, hydrogenation - Dehydrogenated titanium powder, non-recorded steel powder, graphite powder, carbon black powder, carbon nanotubes, diamond powder, nano metal powder, spherical oxidation, ultra-fine spherical oxide powder or hexahedron A sintered body of the nitrided powder of the nitrided powder and a sintered body of any of the foregoing particles. 9. The thermal management multi-system/thin #, as described in item 8 of the scope of claims, is a water-containing salt, paraffin or olefin. 10. The thermally managed multilayer film/sheet of claim 9, wherein the heat conductive particles and the particle coated phase change material particles have a diameter of from = 1 to 1 micrometer. The raft is a heat management multilayer film J according to item 5 or item 6, wherein the thickness of any one layer is between 25 Å and 〇 5 μm. 2. The thermal management multilayer film/(4) as described in the scope of the patent application, the film/sheet structure is a method of co-extrusion or co-extrusion (4). : • For example, in the fifth or sixth paragraph of the patent application scope, the 官 々々 々々 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The surface can be advanced—the number of steps is the same as that of the outer surface plastic layer.设置 36 201101557 14. A thermal management multilayer hollow object for a secondary battery and a supercapacitor, comprising: a plurality of thermally conductive particles; a plurality of particles coated with phase change material particles; and at least one plastic layer, wherein said plurality of thermal conduction The particles and the plurality of microparticle-coated phase change material particles are uniformly dispersed in the plastic layer; wherein the plastic layer forms at least one layer of a cylindrical, square or other shaped three-dimensional structure, wherein at least one hollow hole passes through the three-dimensional structure The main system of the central portion, and the cylindrical, square or other shaped three-dimensional structure is formed by at least one plastic layer. 15. The thermally managed multilayer hollow article of claim 14, wherein at least one metal layer is selectively laminated on either side of the plastic layer and forms a 'lamellar multilayer hollow article. 16. The thermally managed multilayer hollow article of claim 14, wherein at least one adhesive layer is selectively laminated on either side of the plastic layer and forms a Q-layered multilayer hollow article, and the aforementioned plurality of thermal conduction The particles and the plurality of microparticle-coated phase change material particles are uniformly dispersed in the adhesive layer. 17. The thermally managed multilayer hollow article of claim 15, wherein at least one adhesive layer is selectively applied to either side of the plastic layer and forms a layered body multilayer hollow article, and the foregoing plurality of heat conduction The particles and the plurality of microparticle-coated phase change material particles are uniformly dispersed in the adhesive layer. 18. The thermally managed multilayer hollow article of claim 17, wherein any one of the layered multilayer hollow articles further comprises a plurality of fins. 37 201101557 J9. The heat pipe according to the patent specification ί7, the hollow hole is used for inserting a cylindrical chain ion secondary device, wherein a secondary battery or a super capacitor. 4. A pool, square clock ion. The thermal management multilayer hollow article of claim 14, wherein the layered multilayer hollow article is formed using coextrusion or coextrusion. 38
TW098120711A 2009-06-19 2009-06-19 Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc TW201101557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098120711A TW201101557A (en) 2009-06-19 2009-06-19 Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098120711A TW201101557A (en) 2009-06-19 2009-06-19 Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc

Publications (1)

Publication Number Publication Date
TW201101557A true TW201101557A (en) 2011-01-01

Family

ID=44837045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120711A TW201101557A (en) 2009-06-19 2009-06-19 Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc

Country Status (1)

Country Link
TW (1) TW201101557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643298B (en) * 2016-08-02 2018-12-01 美商高通公司 Multi-layer heat dissipating device and apparatuses
TWI658633B (en) * 2017-06-05 2019-05-01 鴻海精密工業股份有限公司 Method for making lithium-sulfur batterie separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643298B (en) * 2016-08-02 2018-12-01 美商高通公司 Multi-layer heat dissipating device and apparatuses
TWI658633B (en) * 2017-06-05 2019-05-01 鴻海精密工業股份有限公司 Method for making lithium-sulfur batterie separator

Similar Documents

Publication Publication Date Title
US20100316821A1 (en) Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary batteries and supercapacitors, and sleeves of secondary battery and supercapacitor packs
CN101958438A (en) Thermal management multilayer film, sheet and hollow piece for secondary battery and super capacitor
US9573312B2 (en) Exfoliation of graphene by multilayer coextrusion
JP4936960B2 (en) Composite microporous membrane, battery separator, and method of manufacturing composite microporous membrane
JP6436306B2 (en) Coating film manufacturing apparatus and coating film manufacturing method using the same
US7820292B2 (en) Nanostructured coating for a carrying base
CN103153811B (en) Cover film
WO2013080701A1 (en) Laminate porous film roll and manufacturing method thereof
JP2008207404A (en) Conducting film and composite film having conducting film
JP2008255202A (en) Composite microporous membrane, separator for battery, and method for producing composite microporous membrane
JP2018513523A (en) Battery module including thermal radiation coating layer
JP2005191423A (en) Electrode for capacitor
JP6446950B2 (en) Battery packaging materials
JP2015131888A (en) Polyester film, complex of the film and metal foil, and formation made by putting sealant layer on the complex
JP2006332035A (en) Separator for fuel cell, its manufacturing method, and fuel cell using it
CN117458079A (en) Material field: nano/micron sub-layered microporous membranes, applications, and related methods
EP1762587A1 (en) Conductive thermoplastic resin film and layered conductive thermoplastic resin film
JP2006236647A (en) Separator electrode integral power storage member
TW201101557A (en) Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary battery, supercapacitor, and sleeves of secondary battery and supercapacitor packs composed of series/parallel secondary batteries and superc
JP6439293B2 (en) Laminated porous film, separator for electricity storage device, and electricity storage device
CN102152578A (en) Method for preparing highly conductive multi-layered composite plate
JP2006100477A (en) Electric double layer capacitor electrode member, its manufacturing method and electric double layer capacitor using same
CN110039864A (en) It is a kind of at 40 DEG C~100 DEG C with the polymeric foamable materials of thermal shock absorbent properties, preparation method and application
US20220243998A1 (en) Phase change material core thermoplastic shell filament
JP2014220187A (en) Biaxially oriented polyester film for power storage element electrode