TW201100159A - Device and method for recovering gaseous hydrocarbon - Google Patents

Device and method for recovering gaseous hydrocarbon Download PDF

Info

Publication number
TW201100159A
TW201100159A TW098135364A TW98135364A TW201100159A TW 201100159 A TW201100159 A TW 201100159A TW 098135364 A TW098135364 A TW 098135364A TW 98135364 A TW98135364 A TW 98135364A TW 201100159 A TW201100159 A TW 201100159A
Authority
TW
Taiwan
Prior art keywords
gas
gaseous
adsorption
hydrocarbon
gaseous hydrocarbon
Prior art date
Application number
TW098135364A
Other languages
Chinese (zh)
Other versions
TWI413544B (en
Inventor
Yasuhiro Tanimura
Takeshi Sugimoto
Kunio Tojyo
Kazuyuki Karino
Katsuhiko Sekiya
Original Assignee
Mitsubishi Electric Corp
Tatsuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Tatsuno Corp filed Critical Mitsubishi Electric Corp
Publication of TW201100159A publication Critical patent/TW201100159A/en
Application granted granted Critical
Publication of TWI413544B publication Critical patent/TWI413544B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0075Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with heat exchanging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0093Removing and treatment of non condensable gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The present invention is to provide a device and a method for recovering gaseous hydrocarbon compound, which can remove gaseous hydrocarbon compounds in the air flow that contains intermittently generated gaseous hydrocarbon compounds in a highly efficient way, and which can enhances device operation efficiency. A gaseous hydrocarbon compound recovery device 100, wherein a plurality of absorption/desorption towers 14 is parallelly connected to a liquid/gas separator 8 when absorbing gaseous hydrocarbon compounds;, and when desorbing gaseous hydrocarbon compounds, two of the devices used for absorbing gaseous hydrocarbon compounds is serially connected through a gaseous hydrocarbon compound supply pump 5, a condensation device, and the liquid/gas separator 8.

Description

201100159 六、發明說明: 【發明所屬之技術領域】 氫化人物月疋關於一種大氣釋出氣體中所含有之氣體狀碳 :=之回收裝置及方法,特別是關於-種用來處理在 供油設施中所產生之汽油等富含揮發性之可燃性 心由療氣的氣體狀碳氫化合物之时裝置及方法。 【先前技術】 0 〃彳-種使科凝裝置及吸附解吸裝置之習知氣體狀碳 乳化口物去除方法為,藉由栗浦,將排出氣體產生來源所 -產生之氣體(含有約4〇v〇1%之汽油蒸氣的排出氣體)供給至 •、凝裝置以冷卻氣體狀碳氫化合物,然後,藉由將完成冷 凝工程而處理過之排出氣體供給至吸附解吸塔,吸附去除 氣體狀碳氫化合物之後,作為含有lv〇1%以下之氣體狀碳氫 化合物之清淨空氣(清潔空氣)被排放至大氣中。當使用此 〇 種方法時,吸附解吸裝置一邊交互切換上述之吸附工程與 解吸附工程,一邊進行運轉,不過,此種切換根據氣體狀 碳氫化合物之供給氣體流量之積分量來決定。 另一方面’在吸附工程結束後之吸附解吸裝置上,透 過清除用氣體送氣館運送清除用氣體,再解吸附真空栗所 吸引之氣體狀碳氫化合物。作為清除用氣體,當運作吸附 工程時,使用從吸附解吸裝置之頂部排出之氣體的一部 分,真空泵以20〜30kPa(Paskal)之壓力進行運轉。解吸附 後的含有氣體狀碳氫化合物之空氣被運送至泵浦之上游 3 201100159 侧’與排出氣體產生來 凝裝置及吸附解吸裝置 媒體’進行間接的冷卻 裝置内之吸著劑層,亦 置。 源所產生之氣體處合後,供給至冷 。冷凝裝置藉由冷束機所冷卻之熱 。又’該熱媒體為了冷卻吸附解吸 藉由液體泵浦被供給至吸附解吸裝 藉由此種結構,氣體狀碳氫化合物可作為近乎完全液 2汽油來回收。於是’藉由此種方法,從吸附解吸裝置 卜出之軋體狀碳氫化合物之濃度夠低 氣污染的水平(相關例子,請參照專利文二持在不引起大 _)[專利文獻u特開2__1 986()4號公報(第9〜16頁,第 【發明内容】 【發明所欲解決的課題】 然而,在使用專利文獻i所記載 挞班 秋义冷凝裝置及吸附解吸 回收氣體狀碳氫化合物的方法 # ^ ^ 乃忐中,當欲處理之氣體流 時,冷凝裝置及吸附解吸,I i ,, 肝次裝置中之壓力損失也變 大,伴隨而來的是,泵浦容量也 貝變大。又,所產生之 噪,也會變大’作為欲處理 虱體流量變大時的方法並不 切X際。 又,當欲處理之氣體流量增夫 ^ /L I s大時,被冷凝裝置冷卻且 液化之碳氫化合物與氣體狀碳氫 八狄風化合物在氣液分離器上之 刀離無法順利進行,霧狀之碳氫 L化5物破供給至吸附解吸 、置’產生了容易導致吸著劑之 心及附能力下降等課題。為 201100159 =免=情況,亦可增大吸附解吸裝置,使用大 著劑,不過,吸附解吸裝置之 必須進-步增大。 貝失會變大’系浦容量 再:’當用於從供油設施之地下貯藏槽浅漏之 碳氫化合物之回收時,需要庫 狀 段所大量產生之氣體狀碳氯化合 時201100159 VI. Description of the invention: [Technical field to which the invention belongs] Hydrogenated character 疋 疋 疋 疋 疋 疋 疋 疋 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收 回收The apparatus and method for the gas-like hydrocarbons which are rich in volatile flammable heart and gas generated by the gasoline produced in the process. [Prior Art] 0 A method for removing a conventional gas-like carbon emulsified mouth from a coagulation device and an adsorption desorption device is a gas generated by a source of exhaust gas generated by Lipu (containing about 4 〇) V〇1% of the exhaust gas of the gasoline vapor is supplied to the condensing device to cool the gaseous hydrocarbon, and then the exhaust gas treated by the completion of the condensation process is supplied to the adsorption desorption column to adsorb and remove the gaseous carbon After the hydrogen compound, the clean air (clean air) containing gaseous hydrocarbons of lv 〇 1% or less is discharged to the atmosphere. When such a method is used, the adsorption/desorption device operates while alternately switching the adsorption process and the desorption process described above, but the switching is determined by the integral amount of the gas flow rate of the gaseous hydrocarbon. On the other hand, in the adsorption/desorption apparatus after the completion of the adsorption process, the purge gas is transported through the purge gas supply hall, and the gaseous hydrocarbons attracted by the vacuum pump are desorbed. As the purge gas, when the adsorption process is operated, a part of the gas discharged from the top of the adsorption desorption device is used, and the vacuum pump is operated at a pressure of 20 to 30 kPa (Paskal). The desorbed air containing gaseous hydrocarbons is transported to the upstream of the pump 3 201100159 side 'with the exhaust gas generating condensing device and the adsorption desorbing device medium' for the sorbent layer in the indirect cooling device, also . After the gas generated by the source is combined, it is supplied to the cold. The heat of the condensing unit is cooled by the cold beam machine. Further, the heat medium is supplied to the adsorption desorption unit by liquid pumping for cooling adsorption desorption. The gaseous hydrocarbon can be recovered as near-liquid 2 gasoline. Thus, by this method, the concentration of the rolled hydrocarbons extracted from the adsorption desorption device is sufficiently low to the level of gas pollution (for related examples, please refer to Patent Document 2 for not causing large _) [Patent Literature U Japanese Patent Publication No. 2__1 986() No. 4 (page 9 to page 16) [Problems to be Solved by the Invention] However, the use of the banbanqiu condensing device described in Patent Document i and the adsorption and desorption to recover gaseous carbon Method of hydrogen compound # ^ ^ In the case of the gas stream to be treated, the pressure loss in the condensing device and the adsorption desorption, I i , and the liver device is also increased, accompanied by the pump capacity. The size of the shell becomes larger. In addition, the noise generated will also become larger. 'As a method to deal with the increase in the flow rate of the corpus callosum, it is not cut. In addition, when the gas flow rate to be processed is increased, ^ /LI s is large, The smelting of the hydrocarbons cooled and liquefied by the condensing device and the gas-like hydrocarbon octopus compound on the gas-liquid separator cannot be smoothly performed, and the misty hydrocarbons are supplied to the adsorption desorption and set. It is easy to cause the heart of the sorbent and the ability to attach For other topics, for 201100159 = free = case, you can also increase the adsorption desorption device, using a large dose of agent, however, the adsorption desorption device must be further increased. The loss of the shell will become larger - the capacity of the pump again: 'When used When recovering hydrocarbons that are shallowly leaking from the underground storage tank of the oil supply facility, it is necessary to produce a large amount of gaseous carbon chloride in the reservoir section.

At ,严 四此’必須根據產生 权備此力之氣體狀碳氫化合物之蜂值而進行設計,於^ 了需要將裝置增大而超過真正需 疋 具而要。再者’僅在對地下貯 藏槽供油之時段操作,設備使用率變得嚴重不良。' 為為了解決上述課題之發明’目的在提供-種 :體狀兔氫化合物之回收裝置及方法,其可從含有間歇性 =氣體狀碳氫化合物的空氣流中高效率去除氣體狀碳 風化5物,並且提高設備使用率。 【用以解決課題的手段】 Ο 本發明之氣體狀碳氫化合物回收裝置之特徵為,具有 從汽油貯藏槽吸引氣體狀碳氫化合物的系浦、冷卻並^凝 上述泵浦所吸引之氣體狀碳氳化合物的冷凝裝置、分離被 上述冷凝裝置冷凝後之液體狀碳氫化合物與無法被上述冷 凝裝置冷凝之氣體狀碳氫化合物的氣液分離器及複數個吸· 附並解吸從上述氣液分離器流出之氣體狀礙氫化合物的吸 附解吸塔’當吸附氣體狀碳氫化合物時’從上述氣液分離 器机出之氣體狀碳氫化合物流入上述複數個吸附解吸塔, 當解吸氣體狀碳氫化合物時,上述複數個吸附解吸塔中至 201100159At, strict must be designed according to the bee value of the gaseous hydrocarbons that generate this force, and it is necessary to increase the device beyond the real need. Furthermore, the operation rate of the equipment becomes severely bad only when the oil is supplied to the underground storage tank. In order to solve the above problems, the present invention provides a recovery apparatus and method for a rabbit hydrogen compound capable of efficiently removing gaseous carbon weathering 5 from an air stream containing intermittent = gaseous hydrocarbons. And increase device usage. [Means for Solving the Problem] The gas-like hydrocarbon recovery device of the present invention is characterized in that it has a gas which attracts a gaseous hydrocarbon from a gasoline storage tank, cools, and condenses the gas attracted by the pump. a condensing device for a carbon ruthenium compound, a gas-liquid hydrocarbon separated from a liquid hydrocarbon condensed by the condensing device, and a gas-like hydrocarbon condensed by the condensing device, and a plurality of suction and desorption and desorption from the gas liquid The gas effluent from the separator acts on the adsorption and desorption column of the hydrogen compound. When the gaseous hydrocarbon is adsorbed, the gaseous hydrocarbons from the gas-liquid separator flow into the plurality of adsorption desorption columns, and desorb the gaseous carbon. In the case of a hydrogen compound, the above plurality of adsorption desorption columns are up to 201100159

回收方法之特徵為,包 ^體狀碳氮化合物,冷卻 並冷凝所吸引之氣體狀碳氫化合物,使未冷凝完成之氣體 狀碳氫化合物分歧並流入複數個吸附解吸塔,在各個吸附 解吸塔中吸附氣體狀碳氫化合物;工程二,停止上述氣體 狀碳氫化合物之吸引;第一再生工程,吸附並解吸用來吸 附氣體狀碳氫化合物之2個吸附解吸塔中其中一個吸附解 吸塔所吸附之氣體狀碳氫化合物,藉由另一個吸附解吸塔 吸附將該氣體狀碳氫化合物液化後所殘留下來之氣體狀破 氳化合物;第二再生工程,上述另一個吸附解吸塔連接至 上游側’吸附並解吸上述另一個吸附解吸塔所吸附之氣體 狀碳氫化合物’藉由上述另一個吸附解吸塔吸附將該氣體 狀碳氫化合物液化後所殘留下來之氣體狀碳氫化合物;及 工程三,反覆上述第一再生工程與第二再生工程既定次數。 【發明效果】 根據本發明之氣體狀碳氳化合物回收裝置及方法,即 使處理氣體流量增大,也可藉由複數個吸附解吸塔吸附氣 體狀碳氫化合物,使排出氣體極為清淨(汽油濃度lvol%以 下之清淨程度)。 【實施方式】 以下根據圖面說明本發明之實施型態。 201100159 第1實施型態. 第1圖為表示本發明第1實施型態之氣體狀碳氫化合物 回收裝置100之電路結構的概略結構圖。在此根據第1圖, 說明第1實施型態之氣體狀碳氫化合物回收裝置100之電路 結構及氣體狀碳氫化合物之流動情況。此外,包含第1圖, 在以下圖面中’各結構元件之大小關係可能和實際之結構 元件不同。又,在第i圖中,表示氣體狀碳氫化合物回收裝 置100所進行之吸附工程中之氣體狀碳氫化合物之流動情 況。 氣體狀碳氫化合物回收裝置i 〇 〇設置於加油站等汽油 供油設施中,在所設置之汽油供油設施中吸附(回收)排放 至大氣中之氣體狀碳氫化合物,再進行解吸附(再利用)。 此氣體狀碳氳化合物回收裝置100使用於在一天之内的數 -人作業中所產生的氣體狀碳氫化合物(當從搬運汽油之油 罐車等對汽油貯藏槽1供給汽油時,從汽油貯藏槽丨壓出之 氣體狀碳氫化合物)的處理與.回收。 此氣體狀碳氫化合物回收裝置100具有汽油貯藏槽1、 供油管:2、三方切換閥3(三方切換閥3a、三方切換閥3b)、 壓力調整閥4、氣體狀碳氫化合物供給泵浦5、第一熱交換 器6、熱媒體貯留槽7、氣液分離器8、液體狀碳氫化合物貯 留槽9、液體狀碳氫化合物用電磁閥1〇、液體循環泵浦u、 冷珠㈣、第二熱交換器13、吸附解吸塔14(吸附解吸塔 14a、吸附解吸塔14b)、壓力控制器15]乍為流道切換閥之 4組二方闕(二卻6績二方闊%、二方閥歸 7 201100159 —方閾18a與二方閥19a、二方閥18b與二方闕i9b)、 流量控制器20及控制器50。 汽油貯藏槽1設置於供油設施之地下等,貯藏從油罐車 等所供給之汽油。供油管2使用於從油罐車等對汽油貯藏槽 1供給汽油時。三方切換閥3透過配管連接至汽油貯藏槽i, 切換從汽油貯藏槽1吸引之氣體狀碳氫化合物所含之空氣 之流動方向。在三方切換闕3a中,三方中之一方連接至汽 油貯藏槽1,—方連接至三方切換閥3b, —方連接至氣體狀 碳銳化合物排出至大氣的通道。在三方切換閥3b中,三方 中之方連接至三方切換閥3a,一方連接至氣體狀碳氫化 合物供給泵浦5’ 一方連接至吸附解吸塔14。 壓力調整閥4設置於三方切換閥3a所切換之氣體狀碳 氫化合物排出至大氣的通道上,調整排出至大氣之碳氫化 合物之壓力。氣體狀碳氫化合物供給泵浦5將在汽油貯藏槽 1中所產生之氣體狀碳氫化合物吸引至裝置内。第一熱交換 器6权置於氣體狀碳氫化合物供給泵浦5之下游侧,冷卻所 吸引之氣體狀碳氫化合物。此第一熱交換器6具有複數個氣 體狀破氫化合物之流道。熱媒體貯留槽7將第一熱交換器6 收納於内部,貯留用來冷卻此第一熱交換器6的熱媒體(例 如水、鹽水等)。 氣液分離器8設置於第一熱交換器6之下游側,分離和 第一熱交換器6所冷卻冷凝之液體狀碳氫化合物一起殘留 下來的氣體狀碳氫化合物。液體狀碳氫化合物貯留槽9暫時 貯留氣液分離器8所分離之液體狀碳氫化合物。液體狀碳氫 201100159 化合物電磁閥1 ο控制從氣液分離器8流至液體狀碳氫化合 物貯留槽9之液體狀碳氫化合物的流量。液體循環泵浦11 將貯留於熱媒體貯留槽7之熱媒體從熱媒體貯留槽7運送至 吸附解吸塔14。冷凍機12透過第二熱交換器13冷卻貯留於 熱媒體貯留槽7之熱媒體。The recovery method is characterized in that the carbon-nitrogen compound is encapsulated, and the gaseous hydrocarbons attracted are cooled and condensed, and the gaseous hydrocarbons which are not condensed are diverged and flowed into a plurality of adsorption desorption towers in each adsorption desorption tower. Adsorbing gaseous hydrocarbons; engineering 2, stopping the attraction of the gaseous hydrocarbons; the first regeneration project, adsorbing and desorbing one of the two adsorption desorption towers for adsorbing gaseous hydrocarbons The adsorbed gaseous hydrocarbon is adsorbed by another adsorption desorption column to adsorb the gaseous chopped compound remaining after liquefying the gaseous hydrocarbon; in the second regeneration project, the other adsorption desorption column is connected to the upstream side 'Adsorbing and desorbing the gaseous hydrocarbon adsorbed by the other adsorption desorption column' by adsorbing the gaseous hydrocarbon remaining after liquefying the gaseous hydrocarbon by the other adsorption desorption column; and Engineering III , repeating the above-mentioned first regeneration project and the second regeneration project a predetermined number of times. Advantageous Effects of Invention According to the gas-like carbon ruthenium compound recovery apparatus and method of the present invention, even if the flow rate of the treatment gas is increased, the gaseous hydrocarbons can be adsorbed by a plurality of adsorption desorption columns to make the exhaust gas extremely clean (gasoline concentration lvol) % cleanliness below). [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. 201100159 First Embodiment FIG. 1 is a schematic configuration diagram showing a circuit configuration of a gaseous hydrocarbon recovery device 100 according to a first embodiment of the present invention. Here, the circuit configuration of the gaseous hydrocarbon recovery device 100 of the first embodiment and the flow of gaseous hydrocarbons will be described based on Fig. 1 . Further, in addition to Fig. 1, in the following drawings, the size relationship of each structural element may be different from that of the actual structural element. Further, in Fig. i, the flow of gaseous hydrocarbons in the adsorption process performed by the gaseous hydrocarbon recovery device 100 is shown. The gaseous hydrocarbon recovery unit i is installed in a gasoline fuel supply facility such as a gas station, and adsorbs (recovers) gaseous hydrocarbons discharged into the atmosphere in the installed gasoline fuel supply facility, and then desorbs them ( Reuse). This gaseous carbon-carbon compound recovery apparatus 100 is used for gas-like hydrocarbons generated in a person-to-person operation in one day (when gasoline is supplied to the gasoline storage tank 1 from a tanker or the like for carrying gasoline, the gasoline is used. Treatment and recovery of gaseous hydrocarbons from the storage tank. This gaseous hydrocarbon recovery device 100 has a gasoline storage tank 1, a fuel supply pipe: 2, a three-way switching valve 3 (three-way switching valve 3a, three-way switching valve 3b), a pressure regulating valve 4, and a gaseous hydrocarbon supply pump. 5. The first heat exchanger 6, the heat medium storage tank 7, the gas-liquid separator 8, the liquid hydrocarbon storage tank 9, the liquid hydrocarbon solenoid valve 1〇, the liquid circulation pump u, the cold bead (4) The second heat exchanger 13, the adsorption/desorption column 14 (the adsorption/desorption column 14a, the adsorption/desorption column 14b), and the pressure controller 15] are four groups of two-way two-way enthalpy of the flow path switching valve. The two-way valve is 7 201100159 - square threshold 18a and two-way valve 19a, two-way valve 18b and two-way 阙i9b), flow controller 20 and controller 50. The gasoline storage tank 1 is installed in the underground of the oil supply facility, and stores the gasoline supplied from the tanker or the like. The oil supply pipe 2 is used when gasoline is supplied to the gasoline storage tank 1 from a tank car or the like. The three-way switching valve 3 is connected to the gasoline storage tank i through a pipe, and switches the flow direction of the air contained in the gaseous hydrocarbon attracted from the gasoline storage tank 1. In the three-way switching 阙3a, one of the three parties is connected to the gasoline storage tank 1, and is connected to the three-way switching valve 3b, which is connected to the passage through which the gaseous carbon sharp compound is discharged to the atmosphere. In the three-way switching valve 3b, one of the three sides is connected to the three-way switching valve 3a, and one of them is connected to the gas-like hydrocarbon supply pump 5' to be connected to the adsorption/desorption column 14. The pressure regulating valve 4 is provided in a passage through which the gaseous hydrocarbons switched by the three-way switching valve 3a are discharged to the atmosphere, and the pressure of the hydrocarbons discharged to the atmosphere is adjusted. The gaseous hydrocarbon supply pump 5 draws the gaseous hydrocarbons generated in the gasoline storage tank 1 into the apparatus. The first heat exchanger 6 is placed on the downstream side of the gaseous hydrocarbon supply pump 5 to cool the attracted gaseous hydrocarbons. This first heat exchanger 6 has a plurality of flow paths of gaseous hydrogen absorbing compounds. The heat medium storage tank 7 houses the first heat exchanger 6 therein, and stores a heat medium (e.g., water, brine, etc.) for cooling the first heat exchanger 6. The gas-liquid separator 8 is disposed on the downstream side of the first heat exchanger 6, and separates gaseous hydrocarbons remaining together with the liquid hydrocarbons cooled by the first heat exchanger 6 to be condensed. The liquid hydrocarbon storage tank 9 temporarily stores the liquid hydrocarbon separated by the gas-liquid separator 8. Liquid hydrocarbon 201100159 Compound solenoid valve 1 The flow rate of the liquid hydrocarbon flowing from the gas-liquid separator 8 to the liquid hydrocarbon storage tank 9 is controlled. The liquid circulation pump 11 transports the heat medium stored in the heat medium storage tank 7 from the heat medium storage tank 7 to the adsorption/desorption column 14. The refrigerator 12 cools the heat medium stored in the heat medium storage tank 7 through the second heat exchanger 13.

Ο 第二熱交換器13和第一熱交換器6—起被收納於熱媒 體貯留槽7,連接至冷凍機12,冷卻貯留於熱媒體貯留槽7 之熱媒體。吸附解吸塔14從氣液分離器8所分離出的含有氣 體狀碳氫化合物之空氣吸附去除氣體狀碳氫化合物,該氣 體狀碳氫化合物被解吸附並再利用。亦即,吸附解吸塔14 具有作為用來吸附氣體狀碳氫化合物之吸附塔的功能及作 為用來解吸附氣體狀碳氫化合物之解吸塔的功能。此外, 在吸附解吸塔14上’填充有用來吸附去除氣體狀碳氫化合 物的吸著劑(例如石夕膠、沸石、活性碳等)。壓力控制器15 將吸附解吸塔14内之壓力維持在既定之壓力。 方閥16a及二方閥l7a設置於氣體狀碳氫化合物之氣 流中之氣液分離器8與吸附解吸塔14之間,藉由開閉控制於 作為吸附塔來運作之吸附解吸塔14上導通氣體狀碳氫化合 物。在第謝,$黑二方閥16a及二方閥17&,以表示以可 導通氣體狀碳氫化合物之方式來進行控制的狀態。二方闕 16b及二方閥17b設置於連接三方切換閥儿與吸附解吸塔14 的部分,藉由開閉控制導通從作為解吸塔來運作之吸附解 吸塔U解吸附至三方切換閥3b的液體狀錢化合物。在第】 圖中,使二方㈣b及二方閥17b反白1表示以不能導通 201100159 氣體狀碳氫化合物之方式來進行控制的狀態。 崎8a及—方閱19a &置於連接至吸附解吸塔μ的 含有氣體狀碳氫化合物之空氣的排出通道,藉由開閉控制 將氣體(清淨空氣)排出至外面的大氣。在第ι圖中,塗累二 方議及二方閥19a ’表示以可導通氣體之方式來進行控 :的狀態。二方閥18b及二方闊m設置於連接至吸附解吸 塔14之解吸附用空氣之吸氣通道’藉由開閉控制在作為解 吸塔來運作之吸附解吸塔14中導通解吸附空氣。在第1 中’使二方閥18b及二方閥19b反白,表示以不能導通解吸 附工氣之方式來進行控制的狀態。流量控制器Μ控制供給 至吸附解吸塔14之解吸附空氣的流量。 控制裝置50可控制二方閥(二方閥16a、二方閥丨此、二 =閥Ha、二方閥17b、二方閥18a、二方閥i8b、二方閥丨^、 二方閥19b)之開閉、經由三方切換閥3之流道之切換、氣體 狀炭氫化σ物供給泵浦5之驅動/停止、液體循環泵浦1 j之 驅動/停止、壓力控制器15之調整、流量控制器2。之開度 等。此控制裝置50可由微電腦等來構成。此外,以下所示 之流程圖之處理步驟是藉由控制裝置5〇來控制並執行。 接著說明氣體狀碳氫化合物回收装置1〇〇之運轉動作。 氣體狀碳氫化合物回收裝置1〇〇之運轉通常藉由吸附 (回收)工程及再生(解吸附)工程這兩個步驟來進行。因 此在說明吸附工程之後,會再說明再生工程。通常.,在 氣體狀碳氫化合物回收装置100中,三方切換閥仏在大氣排 出那側切換流道,汽油貯藏槽〗之壓力藉由壓力調整閥4控 10 201100159 制在不會比既定之壓力高的狀態。此外,在本第1實施型離 中,說明具備氣體狀碳氫化合物时裝置m基本之兩㈣ 附解吸附塔14時的動作。 [吸附工程] δ仗油罐車等透過供油管2將汽油供給至汽油貯藏槽1 時,三方切換閥3a切換至回收裝置那側(三方切換閥扑那 側)並且,二方切換閥处進行切換,汽油貯藏槽1與氣體 ΟThe second heat exchanger 13 and the first heat exchanger 6 are housed in the heat medium storage tank 7, are connected to the refrigerator 12, and cool the heat medium stored in the heat medium storage tank 7. The adsorption/desorption column 14 adsorbs and removes gaseous hydrocarbons from the air containing gaseous hydrocarbons separated from the gas-liquid separator 8, and the gaseous hydrocarbons are desorbed and reused. That is, the adsorption/desorption column 14 has a function as an adsorption tower for adsorbing gaseous hydrocarbons and a function as a desorption column for desorbing gaseous hydrocarbons. Further, the adsorption/desorption column 14 is filled with a sorbent (e.g., lycopene, zeolite, activated carbon, etc.) for adsorbing and removing gaseous hydrocarbons. The pressure controller 15 maintains the pressure in the adsorption desorption column 14 at a predetermined pressure. The square valve 16a and the two-way valve 17a are disposed between the gas-liquid separator 8 and the adsorption/desorption column 14 in the gas stream of the gaseous hydrocarbon, and are controlled to open and close the gas on the adsorption/desorption column 14 operating as the adsorption tower. Hydrocarbons. In the first place, the black square valve 16a and the two-way valve 17& are shown in a state in which the gas hydrocarbon can be controlled to be conducted. The two-way 阙 16b and the two-way valve 17b are disposed in a portion connecting the three-way switching valve and the adsorption/desorption column 14, and are desorbed from the adsorption desorption column U operating as a desorption column to the liquid of the three-way switching valve 3b by opening and closing control conduction. Money compound. In the figure, the two (4) b and the two-way valve 17b are reversed by 1 to indicate that the control is not possible to conduct the 201100159 gaseous hydrocarbon. Saki 8a and - Fangyu 19a & are placed in a discharge passage of air containing gaseous hydrocarbons connected to the adsorption desorption column μ, and the gas (clean air) is discharged to the outside atmosphere by opening and closing control. In the figure ι, the coated two-party and two-way valve 19a' indicate a state in which the control can be performed by means of a conductive gas. The two-way valve 18b and the two-way wide m are disposed in the suction passage of the desorption air connected to the adsorption/desorption column 14 by the opening and closing control to conduct the desorbed air in the adsorption/desorption column 14 operating as a desorption column. In the first embodiment, the two-way valve 18b and the two-way valve 19b are reversed, indicating that the control is performed such that the desorption of the process gas cannot be performed. The flow controller controls the flow of desorbed air supplied to the adsorption desorption column 14. The control device 50 can control the two-way valve (two-party valve 16a, two-way valve 、, two = valve Ha, two-way valve 17b, two-way valve 18a, two-way valve i8b, two-way valve 丨^, two-way valve 19b Opening and closing, switching of the flow path via the three-way switching valve 3, driving/stopping of the gaseous carbon hydrogenation σ material supply pump 5, driving/stopping of the liquid circulation pump 1 j, adjustment of the pressure controller 15, flow control Device 2. The degree of opening, etc. This control device 50 can be constituted by a microcomputer or the like. Further, the processing steps of the flowchart shown below are controlled and executed by the control device 5A. Next, the operation of the gaseous hydrocarbon recovery device 1 will be described. The operation of the gaseous hydrocarbon recovery unit 1 is usually carried out by two steps of adsorption (recovery) and regeneration (desorption). Therefore, after explaining the adsorption process, the regeneration project will be explained. Generally, in the gaseous hydrocarbon recovery device 100, the three-way switching valve 切换 switches the flow path on the side of the atmospheric discharge, and the pressure of the gasoline storage tank is controlled by the pressure regulating valve 4 201100159, which is not higher than the predetermined pressure. High state. Further, in the first embodiment, the operation in the case where the gaseous hydrocarbon is contained is two (four) of the apparatus m, and the adsorption tower 14 is attached. [Adsorption Engineering] When the δ仗 tanker or the like supplies gasoline to the gasoline storage tank 1 through the oil supply pipe 2, the three-way switching valve 3a is switched to the side of the recovery device (the side of the three-way switching valve) and the two-way switching valve Switching, gasoline storage tank 1 and gas Ο

狀碳氫化合物供_5產生連接。此時,若開始將汽油供 給至汽油貯藏槽卜汽油貯藏槽!中充滿之氣體狀碳氫化合 物從汽油貯藏槽!排出。此時之氣體狀碳氫化合物之碳氫化 合物濃度在常溫下為30〜40v〇u。 從汽油貯藏槽1排出之氣體狀碳氫化合物與空氣一起 透過三方切換閥33及扑被氣體狀碳氳化合物供給泵浦5運 送至第熱交換器6。第一熱交換器6被冷凍機12及第二熱 交換器13所冷卻之熱媒體所冷卻。通常,第一熱交換器6 之内部保持在Ot〜5°C,氣體狀碳氫化合物之一部分及氣 體中所含有之水分產生冷凝作用。於是,流入第一熱交換 器6的含有氣體狀碳氫化合物之空氣作為狀態為液體狀碳 氩化合物、氣體狀碳氫化合物、水、空氣混合在一起之混 合物體,從第一熱交換器6流出。此混合物體流入氣液分離 器8。 流入氣液分離器8之混合物體藉由氣液分離器8分離為 氣體(氣體狀碳氫化合物及空氣)與液體(液體狀碳氫化合 物及水)。分離後之液體滯留在氣液分離器8之下側,透過 11 201100159 液體狀碳氫化合物用電磁閥ίο暫時貯留在液體狀碳氫化合 物貝τ留槽9。在此氣體狀碳氫化合物回收裝置ι〇〇中,如第1 圖所示’氣體狀碳氫化合物從第一熱交換器6之上側流通。 藉此’液體狀碳氫化合物及水分藉由重力及氣流有效率地 流至下方’使這些液化物之回收變得容易。 然而’當第一熱交換器6在壓力0· 5MPa(G)且冷卻溫度5 C之條件下運轉時,若氣體狀碳氫化合物為汽油蒸氣,第 一熱交換器6中之汽油蒸氣濃度將會是i Ovol%。在汽油蒸氣 中’通常含有丁烷、異丁烷等。當第一熱交換器6在壓力 〇.5MPa(G)且溫度5艺之條件下運轉時,若檢驗該汽油蒸氣 之飽和濃度’ 丁烷之飽和之蒸氣濃度約為20v〇1%,異丁烧 之餘和蒸氣濃度約為30 vol%。在此條件下,只要汽油蒸氣 中所含有之丁烷、異丁烷的量不減少,汽油蒸氣濃度理論 上不會在1 Ovol%以下。 又’藉由降低溫度(第一熱交換器6中之汽油蒸氣之冷 卻溫度),可減少第一熱交換器6之出口之汽油蒸氣濃度。 不過’若第一熱交換器6之設定溫度在冰點以下,氣體(含 有氣體狀碳氫化合物之空氣)中所含有的水會在第一熱交 換器6結冰。如此,增大了第一熱交換器6内部之壓力損失, 所以’第一熱交換器6之設定溫度宜為〇t〜5。(:。 接著’從氣液分離器8排出之氣體狀碳氫化合物被運送 至並聯連接之吸附解吸塔i 4並受到吸附處理。亦即,如第^ 圖所示’ 2個吸附解吸塔14中之兩者皆有從氣液分離器8排 出之氣體狀碳氫化合物流入。於是,二方閥16a、二 12 201100159 17a、二方閥I8a、二方閥19a開啟(塗黑),二方閥16b、二 方閥1 7b、二方閥1 8b、二方閥1 9b關閉(反白),流量控制器 2 0為關閉(反白)狀態。此外,從吸附解吸塔14排出之氣體 透過壓力控制器15排放至大氣中。 在吸附解吸塔14上,如上所述,有吸附氣體狀碳氫化 合物之吸著劑封入。在氣體狀碳氫化合物回收裝置1〇〇上, 氣體狀碳氳化合物之吸著劑主要使用矽膠。尤其,具有4 10埃之孔彳生的碎膠或合成沸石或兩者之混合物當作吸著 劑時頗為有效。換言之,藉由使氣體狀碳氫化合物通過此 種吸著劑’氣體狀碳氫化合物被吸附去除,變成汽油濃度 為lvo 1 %以下之清淨空氣,透過壓力控制器丨5排放至大氣 中。 吸附解吸塔14可在與氣體狀碳氫化合物之吸附解吸附 之功能無關的情況下,被液體循環泵浦丨丨所供給之熱媒體 冷部。換言之’第一熱交換器6之冷卻系統透過冷凍機ΜHydrocarbons provide a linkage for _5. At this time, if the gasoline is started to be supplied to the gasoline storage tank, the gas-like hydrocarbon is filled from the gasoline storage tank! The hydrocarbon hydrocarbon concentration of the gaseous hydrocarbon at this time is 30 to 40 v〇u at normal temperature. The gaseous hydrocarbon discharged from the gasoline storage tank 1 is sent to the first heat exchanger 6 through the three-way switching valve 33 and the gas-like carbonium compound supply pump 5 together with the air. The first heat exchanger 6 is cooled by the heat medium cooled by the refrigerator 12 and the second heat exchanger 13. Usually, the inside of the first heat exchanger 6 is maintained at Ot 〜 5 ° C, and a part of the gaseous hydrocarbon and the moisture contained in the gas cause condensation. Then, the air containing the gaseous hydrocarbon flowing into the first heat exchanger 6 is a mixture of the liquid argon compound, the gaseous hydrocarbon, the water, and the air mixed together, from the first heat exchanger 6 Flow out. This mixture flows into the gas-liquid separator 8. The mixture flowing into the gas-liquid separator 8 is separated into a gas (gas-like hydrocarbon and air) and a liquid (liquid hydrocarbon and water) by the gas-liquid separator 8. The separated liquid is retained on the lower side of the gas-liquid separator 8, and is temporarily stored in the liquid hydrocarbon chelating chamber 9 through the electromagnetic valve ίο. In the gaseous hydrocarbon recovery device ι, as shown in Fig. 1, the gaseous hydrocarbon flows from the upper side of the first heat exchanger 6. Thereby, the liquid hydrocarbons and the water are efficiently flowed downward by gravity and gas flow, and the recovery of these liquid crystals is facilitated. However, when the first heat exchanger 6 is operated under the conditions of a pressure of 0.5 MPa (G) and a cooling temperature of 5 C, if the gaseous hydrocarbon is gasoline vapor, the gasoline vapor concentration in the first heat exchanger 6 will be Will be i Ovol%. In gasoline vapor, 'usually contains butane, isobutane, and the like. When the first heat exchanger 6 is operated under the conditions of a pressure of 55 MPa (G) and a temperature of 5, if the saturation concentration of the gasoline vapor is checked, the saturated vapor concentration of butane is about 20 v 〇 1%, The burn and vapor concentration is approximately 30 vol%. Under these conditions, as long as the amount of butane or isobutane contained in the gasoline vapor does not decrease, the gasoline vapor concentration is theoretically not more than 1 Ovol%. Further, by lowering the temperature (the cooling temperature of the gasoline vapor in the first heat exchanger 6), the gasoline vapor concentration at the outlet of the first heat exchanger 6 can be reduced. However, if the set temperature of the first heat exchanger 6 is below the freezing point, water contained in the gas (air containing gaseous hydrocarbons) will freeze in the first heat exchanger 6. Thus, the pressure loss inside the first heat exchanger 6 is increased, so the set temperature of the first heat exchanger 6 is preferably 〇t 〜5. (: Then, the gaseous hydrocarbons discharged from the gas-liquid separator 8 are transported to the adsorption desorption column i 4 connected in parallel and subjected to adsorption treatment. That is, as shown in Fig. 2, 2 adsorption desorption columns 14 Both of them have a gaseous hydrocarbon inflow from the gas-liquid separator 8. Thus, the two-way valve 16a, the two 12 201100159 17a, the two-way valve I8a, and the two-way valve 19a are opened (blackened), two sides The valve 16b, the two-way valve 17b, the two-way valve 18b, and the two-way valve 19b are closed (reverse), and the flow controller 20 is in a closed (reverse) state. Further, the gas discharged from the adsorption/desorption column 14 is permeated. The pressure controller 15 is discharged to the atmosphere. On the adsorption/desorption column 14, as described above, a sorbent which adsorbs gaseous hydrocarbons is enclosed. On the gaseous hydrocarbon recovery unit 1 , gaseous carbon ruthenium The sorbent of the compound mainly uses silicone rubber. In particular, a gelatin or a synthetic zeolite having a pore size of 4 10 angstroms or a mixture of the two is effective as a sorbent. In other words, by passing a gaseous hydrocarbon through this Sorbent 'gasohydrocarbons' The adsorption is removed, and the clean air having a gasoline concentration of 1 vo or less is discharged to the atmosphere through the pressure controller 丨 5. The adsorption/desorption column 14 can be unrelated to the function of adsorption and desorption of gaseous hydrocarbons. The liquid circulation pump pumps the hot medium cold portion supplied. In other words, the cooling system of the first heat exchanger 6 passes through the freezer.

及第一熱交換器13維持在設定溫度為〇〜5它的狀態,受到 :態性之運轉控制。如此設置的原因$,填充至吸附解吸 塔W之吸著劑被來自鰭管熱交換器等熱交換器(未圖示)之 傳熱所冷卻H非有某種長m料間不T,瞬間之 運轉得不到支援。另—原因為,$了在短時間内冷卻而設 f冷部能力較大之冷;東機12會對設備成本帶來不良影響, 無法提供便宜之裝置。 附容 此外’藉由降低吸附解吸塔i 4内部 里並減少吸著劑之使用量。不過, 之溫度,可增大吸 若使吸附解吸塔14 13 201100159 之内部溫度在冰點以下’為了讓水在吸附解吸塔丨4内結 冰’需要在吸著劑上緩緩累積結冰,因而產生了吸著劑之 八/由吸附能力下降的問題。於是,宜使吸附解吸塔Μ之内 部溫度在冰點以上。由於以上之原因,在氣體狀碳氫化合 物回收裝置1〇〇中,藉由統一第—熱交換器6及吸附解吸塔 14之冷卻系統,可效率良好地回收氣體狀碳氫化合物。 為了使吸附解吸塔14之内部壓力在吸附時為〇. 5MPa(G) 而在解吸附時為〇· 〇2MPa,使吸附解吸塔14為圓筒結構。藉 由使吸附解吸塔14為圓筒結構,可使内壁面之磨力均一 0 化。於是,即使吸附解吸塔14内之壓力變為加壓狀態或負 壓狀態,可在不會產生形狀變形之狀態下實現安全性高之 吸附解吸塔14。又,在吸附解吸塔14之内部,考量對碎膠、 . 合成沸石等粒狀吸著劑之傳熱,配置鰭管熱交換器(藉由鋁 鰭片使溫度媒體在傳熱管中流動)。 另外,在吸附解吸塔14上,於鋁鰭片之間塞入吸著劑, 於上下方向設置吸著劑流出防止絲網,防止吸著劑流出配 管,並使氣體順利流動。在此情況下,為了使氣體狀碳氫❹ 化合物被吸附至吸著劑之吸附均一化,可設置由沖壓金屬 所製作成之整流板,以使氣體狀碳氫化合物在吸附解吸塔 14中均勾地流動。鰭管熱交換器之鰭片之方向宜舆氣體狀 碳氫化合物之流動方向平行而設置,以消除氣體狀碳氫化 合物流動時之壓力損失。又,為了效率良好地冷卻填充於 外壁附近之吸著劑,可在鰭管熱交換器與外壁之間設計為 沒有間隙。 14 201100159 在此情況下’針對具有通風孔之那側,設置與通風孔 部分接觸之格子狀或板狀之金屬(傳熱特性優良之鋁或銅 為最佳選擇),針對不具有通風孔之那側,藉由增長鰭管熱 父換器之鰭片本身之長度,有效地消除外壁與鰭管熱交換 器之間的間隙。又,為了消除外壁與鰭管熱交換器之間的 間隙部分,可***金屬棒、附有鰭片之導管等。再者,宜 在放入傳熱管之前使熱媒體流過之配管分歧,將鰭管熱交 換器分為複數個區塊’使熱媒體以並聯狀態流動。藉此, 可減少熱媒體流過之配管之壓力損失,且可減少將熱媒體 供給至吸附解吸塔14之液體循環泵浦i i之容量。 再者,在吸附解吸塔14上,氣體狀碳氫化合物從下朝 上流動,所以,宜連接鰭管熱交換器與下部之粒狀吸著劑 流出防止絲網而配置。藉此,可在粒狀吸著劑流出防止絲 網與鰭管熱交換器之間消除空間,亦即,僅填充有粒狀吸 著劑之空間,而且可在進行吸附時充分進行粒狀吸著劑之 〇 冷卻。其結果為,可防止在最高濃度之氣體狀碳氫化合物 進入之部分所存在的氣體狀碳氫化合物之溫度上升,且可 提供安全之吸附解吸塔14。此外,當氣體狀碳氳化合物從 上朝下流動時,連接上部之粒狀吸著劑流出防止絲網與鰭 管熱交換器此點自不待言。 在不設置第一熱交換器6之情況下,吸附解吸塔14有高 濃度之氣體狀碳氫化合物流入,並且,氣體狀碳氫化合物 中所含有之水分被吸附至吸著劑,氣體狀碳氫化合物之吸 附性能下降’所以,必須增多吸著劑之填充量。又,在使 15 201100159 吸附解吸塔14之溫度下降至冰點以下之情況下,吸著劑之 表面有水分結冰’有產生氣體堵塞等***煩之可能性。 因此’本第1實施型態之氣體狀碳氫化合物回收裝置 100在吸附解吸塔14之前段設置第一熱交換器及氣液分離 器8,於是’水分亦與氣體狀碳氫化合物一起被去除,所以, 可對吸附解吸塔14中之水分之不良影響防患未然。又,可 大幅減少供給至吸附解吸塔14之氣體狀碳氫化合物之供給 量’並且’可防止霧狀碳氫化合物進入(在第3圖中有詳細 說明)’所以,可縮小並便宜地製造吸附解吸塔丨4。 再者’在本第1實施型態之氣體狀碳氫化合物回收裝置 100中’使從汽油貯藏槽1排出之高濃度(40v〇1%)氣體狀碳 氫化合物在第一熱交換器6降低至10vol%,所以,將在吸附 解吸塔14進行處理之汽油量相對於整體吸附量可減少至 1/4(10%/40%)。換言之’藉由在吸附解吸塔14之前段設置 第一熱交換器6及氣液分離器8,可使吸附解吸塔14之容積 變為约1/4。 [再生工程] 吸附解吸塔14之再生工程之進行方式為,以串連方式 連接吸附氣體狀碳氫化合物時所使用之2個吸附解吸塔 14(用來吸附氣體狀碳氫化合物之物體中之2個吸附解吸塔 14)’在此2個塔之間,連接氣體狀碳氫化合物供給泵浦5、 第mm液分離n8。換言之’使用氣體狀碳氮 化合物供給泵浦5從其中一個吸附解吸塔14(例如吸附解吸 塔14b)吸引氣體,再解吸附被吸附至吸著劑上之氣體狀碳 16 201100159 氨化合物,、依序將其供給至第一熱交換器6、氣液分離器8, 將從现液力離③8排出之氣體供給至另—吸附解吸塔14(例 如吸附解吸塔i4a),進行氣體狀碳氫化合物之再生。The first heat exchanger 13 is maintained at a set temperature of 〇5 to 5, and is controlled by the operation of the state. The cause of the arrangement is such that the sorbent charged to the adsorption/desorption column W is cooled by heat transfer from a heat exchanger (not shown) such as a fin-tube heat exchanger, and H does not have a certain length of m. The operation is not supported. Another reason is that $ is cooled in a short period of time and the cold part has a large cold capacity; the East Machine 12 has a bad influence on the equipment cost and cannot provide a cheap device. Attachment Further by reducing the amount of sorbent used in the interior of the adsorption desorption column i4. However, the temperature can be increased if the internal temperature of the adsorption desorption column 14 13 201100159 is below the freezing point 'in order for the water to freeze in the adsorption desorption tower 4', it is necessary to slowly accumulate icing on the sorbent, thus There is a problem that the sorbent is eight/decreased by the adsorption capacity. Therefore, it is preferred that the internal temperature of the adsorption desorption column is above the freezing point. For the above reasons, in the gaseous hydrocarbon recovery unit 1 , the gaseous hydrocarbons can be efficiently recovered by unifying the cooling systems of the first heat exchanger 6 and the adsorption/desorption column 14 . In order to make the internal pressure of the adsorption/desorption column 14 〇. 5 MPa (G) at the time of adsorption and 〇· 〇 2 MPa at the time of desorption, the adsorption/desorption column 14 has a cylindrical structure. By making the adsorption/desorption column 14 a cylindrical structure, the grinding force of the inner wall surface can be made uniform. Then, even if the pressure in the adsorption/desorption column 14 is changed to the pressurized state or the negative pressure state, the adsorption/desorption column 14 having high safety can be realized without deforming the shape. Further, inside the adsorption/desorption column 14, heat transfer to a particulate sorbent such as crushed rubber or synthetic zeolite is considered, and a fin-tube heat exchanger is disposed (the temperature medium is allowed to flow in the heat transfer tube by the aluminum fin) . Further, in the adsorption/desorption column 14, a sorbent is inserted between the aluminum fins, and a sorbent outflow prevention screen is provided in the vertical direction to prevent the sorbent from flowing out of the pipe and allowing the gas to smoothly flow. In this case, in order to homogenize the adsorption of the gaseous hydrocarbon hydrazine compound to the sorbent, a rectifying plate made of a stamped metal may be provided to allow the gaseous hydrocarbon to be in the adsorption desorption column 14 Hook the flow. The fins of the fin heat exchanger are oriented such that the flow direction of the gaseous hydrocarbons is parallel to eliminate the pressure loss when the gaseous hydrocarbon flows. Further, in order to efficiently cool the sorbent filled in the vicinity of the outer wall, there is no gap between the fin heat exchanger and the outer wall. 14 201100159 In this case, 'for the side with vent holes, set the grid-like or plate-shaped metal that is in contact with the vent hole part (aluminum or copper with excellent heat transfer characteristics is the best choice), for those without venting holes On the other side, the gap between the outer wall and the fin heat exchanger is effectively eliminated by increasing the length of the fin fin heat exchanger itself. Further, in order to eliminate a gap portion between the outer wall and the fin tube heat exchanger, a metal bar, a fin-attached catheter, or the like can be inserted. Further, it is preferable to divide the pipes through which the heat medium flows before placing the heat transfer tubes, and divide the fin heat exchanger into a plurality of blocks to cause the heat medium to flow in a parallel state. Thereby, the pressure loss of the piping through which the heat medium flows can be reduced, and the capacity of the liquid circulation pump i i which supplies the heat medium to the adsorption/desorption column 14 can be reduced. Further, since the gaseous hydrocarbon flows from the bottom to the upper side of the adsorption/desorption column 14, it is preferable to arrange the fin-shaped heat exchanger and the lower granular sorbent to flow out of the screen. Thereby, the space between the screen and the fin heat exchanger can be eliminated in the granular sorbent outflow prevention, that is, only the space of the granular sorbent is filled, and the granular suction can be sufficiently performed during the adsorption. After the agent is cooled. As a result, it is possible to prevent the temperature of the gaseous hydrocarbon present in the portion where the gaseous hydrocarbon having the highest concentration from entering from rising, and to provide a safe adsorption/desorption column 14. Further, when the gaseous carbon ruthenium compound flows from the top to the bottom, it is self-evident that the granular sorbent connected to the upper portion flows out to prevent the wire mesh and the fin heat exchanger. In the case where the first heat exchanger 6 is not provided, the adsorption/desorption column 14 has a high concentration of gaseous hydrocarbons flowing therein, and the moisture contained in the gaseous hydrocarbons is adsorbed to the sorbent, gaseous carbon The adsorption performance of the hydrogen compound is lowered. Therefore, it is necessary to increase the amount of the sorbent to be filled. Further, when the temperature of the adsorption/desorption column 14 of 15 201100159 is lowered to below the freezing point, there is a possibility that water icing on the surface of the sorbent has a large trouble such as gas clogging. Therefore, the gas-like hydrocarbon recovery device 100 of the first embodiment is provided with the first heat exchanger and the gas-liquid separator 8 before the adsorption/desorption column 14, so that the moisture is also removed together with the gaseous hydrocarbon. Therefore, the adverse effects of moisture in the adsorption desorption column 14 can be prevented. Further, the supply amount of the gaseous hydrocarbons supplied to the adsorption/desorption column 14 can be greatly reduced and the formation of the misty hydrocarbons can be prevented (described in detail in Fig. 3). Therefore, it can be reduced and manufactured inexpensively. Adsorption desorption tower 丨4. In the gas-like hydrocarbon recovery device 100 of the first embodiment, the high-concentration (40 v〇1%) gaseous hydrocarbon discharged from the gasoline storage tank 1 is lowered in the first heat exchanger 6. Up to 10 vol%, the amount of gasoline to be treated in the adsorption/desorption column 14 can be reduced to 1/4 (10% / 40%) with respect to the total amount of adsorption. In other words, by providing the first heat exchanger 6 and the gas-liquid separator 8 in the stage before the adsorption/desorption column 14, the volume of the adsorption/desorption column 14 can be made to be about 1/4. [Recycling] The regeneration of the adsorption/desorption column 14 is carried out by connecting two adsorption desorption columns 14 for adsorbing gaseous hydrocarbons in series (in an object for adsorbing gaseous hydrocarbons). Two adsorption/desorption columns 14)' are connected between the two columns, a gaseous hydrocarbon supply pump 5, and a mm-th liquid separation n8. In other words, 'the gas is supplied from one of the adsorption/desorption columns 14 (for example, the adsorption/desorption column 14b) using the gaseous carbon-nitrogen compound-pumping pump 5, and then desorbs the gaseous carbon adsorbed onto the sorbent 16 201100159 ammonia compound, It is supplied to the first heat exchanger 6, the gas-liquid separator 8, and the gas discharged from the existing fluid force 38 is supplied to the other adsorption/desorption column 14 (for example, the adsorption desorption column i4a) to carry out gaseous hydrocarbons. Regeneration.

Ο 更進步地4,氣體狀碳氫化合物回收震置⑽在吸附 氣體狀礙氫化合物時(進行吸附工程時),對整個吸附解吸 塔14流入從氣液分離器8流出之氣體狀碳氫化合物,在解吸 附氣體狀碳氫化合物時(進行再生工程時),使複數個吸附 解吸塔14中至少其中—個吸附解吸塔14(例如吸附解吸塔 14b)連接至氣體狀碳氳化合物供給泵浦5之上游側。亦即, 藉由二方閥之使用,當吸附氣體狀碳氫化合物時,切換流 道以對整個吸附解吸塔丨4流入從氣液分離器8流出之氣體 狀碳氫化合物,當解吸附氣體狀碳氫化合物時,切換流道 以使複數個吸附解吸塔14中至少其中一個吸附解吸塔 14(例如吸附解吸塔14b)之氣體出口連接至氣體狀碳氫化 合物供給泵浦5之上游側。 經過既定時間之持續運轉後,切換二方閥之開閉,從 未進行解吸附之吸附解吸塔(例如吸附解吸塔14a)吸引並 解吸附氣體狀碳氫化合物。換言之,使用氣體狀碳氫化合 物供給泵浦5從另一吸附解吸塔14(例如吸附解吸塔丨4a)吸 引氣體’解吸附吸附至吸著劑上之氣體狀碳氫化合物,依 序將其供給至第一熱交換器6、氣液分離器8,將從氣液分 離器8排出之氣體供給至其中一吸附解吸塔14 (例如吸附解 吸塔14b),進行氣體狀碳氫化合物之再生。在本第1實施型 態之氣體狀碳氫化合物回收裝置1 〇〇中,反覆此種操作既定 17 201100159 次數以進行氣體狀碳氫化合物之再生。 第2圖為表示第一熱交換器6之結構的概略結構圖。在 此根據第2圖’說明氣體狀碳氫化合物回收裝置1〇〇之第一 熱交換器6、第二熱交換器13、冷凍機12及熱媒體貯留槽7。 第一熱父換器6具有氣體狀碳氫化合物流過之流道。第二熱 交換器13導通從冷凍機12供給之冷媒。冷凍機12具有冷凍 循環,對第二熱交換器13供給冷媒。熱媒體貯留槽7貯留用 來冷卻第一熱交換器6之熱媒體。第一熱交換器6、第二 父換器13、冷凍機12及熱媒體貯留槽7構成冷凝裝置。 第2圖所示第熱父換器6具有複數個氣體狀碳氫 化合物流過之流道。亦即,第一熱交換器6由用來分割所流 入之氣體狀碳氫化合物之氣流的分歧部(標頭)21、分歧部 2!所分歧出之複數個傳熱管所插人之鰭管熱交換器所構成 的熱交換部22、使從熱交換部22排出之氣體狀碳氲化人物 與液體狀碳氫化合物合流的合流部(標尾)23所構成。藉由 :第一㈣器6形成此種結構,可降低含有氣體狀錢化 δ物之空氣的流速,且可在 J 低熱交換效率之情況 低壓力損失。 月几卜降 此外,在不分歧大流量的含 .^ ^ ^ 含有氧體狀碳氫化合物之* 氣就在第一熱交換器6冷卻的愔 工 要增大熱交換部22之接觸面積。 、需 马了增大接觸面積,雲i 增長傳熱管之配管長度。於是, 檟需要 .^ 配管長度變長導致壓六浐 失進一步增大的問題發生。 壓力才貝 她 馮了應對此問題,在第一劫丄 換器6,將氣體狀碳氫化合物 弟熱父 物所流過之流道分歧為複數個, 18 201100159 藉此,可防止壓力損失協同性地增大,且可高效率地液化 氣體狀碳氫化合物。 接著’說明使用冷凝裝置所產生之冷卻之有效性。 通常,當進行熱交換時’不使用熱媒體等,使冷媒配 管與被冷卻物體(氣體狀碳氫化合物)配管一體化,使該一 體化部分為用來隔熱之結構是最有效率的作法。不過,當 冷卻含有水分之空氣時,為了使水分不結冰,需要使冷媒 之蒸發溫度在冰點以上❶在此情況下,熱交換效率下降, 〇 產生了無法在既定溫度冷卻被冷卻物體的問題。 在本第1實施型態之氣體狀碳氫化合物回收裝置1〇〇 中’具有一特徵,亦即,使用熱媒體,使熱媒體自然對流, 错此,可效率良好地進行冷卻。在第一熱交換器6中,藉由 重力及氣流之力量排出液體狀碳氫化合物,所以,氣體狀 碳氫化合物從第一熱交換器6之上部流入,氣體狀及液體狀 碳氫化合物從第一熱交換器6之下部流出。於是,對第一熱 〇 父換姦6之上部供給熱的氣體狀碳氫化合物,第一熱交換器 6之上°卩周圍之熱媒體之溫度上升。藉此,在第一熱交換器 6之周圍,熱媒體產生從下朝上之流動。 另一方面,在第二熱交換器13之周圍,熱媒體被冷卻, 所以,熱媒體產生從上朝下之流動。藉此,在熱媒體貯留 槽7中,產生第—熱交換器上部—第二熱交換器上部—第二 熱父換部下部〜第一熱交換器下部這樣的熱媒體之流動, 即使不進打攪拌,也可效率良好地冷卻被冷卻物體(第一熱 又換斋6)。於是,第一熱交換器6及第二熱交換器η宜以約 19 201100159 略位於水平位置之姿態設置於熱媒體貯留槽7内。 又,在氣體狀碳氫化合物回收裝置1〇〇中熱媒體藉由 液體循環泵浦11被供給至吸附解吸塔14,所以,使此熱媒 體之循環所產生之流動與熱媒體貯留槽?内之自然對流所 產生之流動同步,藉此,可進一步效率良好地進行被處理 物體之冷卻。換言之,作為一例,可從第二熱交換器此 下部拉出熱媒體,在第二熱交換器13之上部歸還熱媒體, 藉此,可在不妨礙第一熱交換器上部一第二熱交換器上部 -第二熱交換器下部_第一熱交換器下部這樣的熱媒體之 流動的情況下,效率良好地冷卻被處理物體。 基於以上之理由,在本第丨實施型態之氣體狀碳氫化合 物回收裝置100中,藉由第一熱交換器6、第二熱交換器 冷凍機12、熱媒體貯留槽7來構成冷凝裝置,並且,將第一 熱交換器6及第二熱交換器13配置於熱媒體貯留槽7以使熱 媒體沿著上下方向移動,藉此,可使熱媒體貯留槽7之内部 產生對流,且可效率良好地冷卻被冷卻物體。 第3圖為表示氣液分離器8之内部結構的概略圖。在此 根據第3圖,詳細說明氣液分離器8之碳氫化合物去除性能 效果。如第3圖所示,氣液分離器8具有氣體狀碳氫化合物 出口 24、離心分離部(氣液分離部)25、氣液混合物入口 ^、 液體狀碳氫化合物貯留部27、液體狀碳氫化合物出口 M、 錐狀絲網(霧氣去除部)2 9及隔熱材料3〇。亦即,氣液分離 器8具有用來分離氣體狀碳氫化合物與液化碳氫化合物的 部位(離心分離部25)以及用來分離氣體狀碳氫化合物與霧 20 201100159 狀碳氫化δ物的部位(錐狀絲網結構之錐狀絲網2 9 )。 氣液此合物入口 26為氣體狀碳氫化合物(含有空氣)及 液體狀碳氫化合物之流入口。離心分離部Μ用來離心分離 從氣液此合物入口 26流入之氣體狀碳氫化合物與液體狀碳 氫化。物。氣體狀碳氫化合物出口 24為離心分離部25所分 離之氣體之流出口。液體狀碳氫化合物貯留部27貯留離心 π離部25所分離之液體。液體狀碳氫化合物出口 28為貯留 於液體狀碳氫化合物貯留部27之液體之出口。錐狀絲網29 〇 Τ效率良好地去除霧狀碳氳化合物。隔熱材料別減少氣液 分離器8之内部與外部之間的熱交換。 從氣液混合物入口 26進來之氣體狀碳氫化合物及液體 狀碳氫化合物藉由離心分離部25進行離心分離,氣體和液 體被分離開來。不過,當處理流量變多時,對液體狀碳氫 化合物之離心分離部25之壁面的碰撞速度變快,所以,從 液體狀碳氫化合物產生霧狀碳氫化合物。由於霧狀碳氫化 〇 合物無法被離心分離部25離心分離,被供給至吸附解吸塔 14,產生了 k早使吸附解吸塔之吸著劑之性能下降的問 題。為了防止此種問題之發生,需要去除霧狀碳氫化合物。 若要去除霧狀碳氫化合物,設置具有到達霧氣碰撞程度之 孔徑的絲網可產生效果。 不過,在設置絲網之情況下,霧氣碰撞到絲網,若絲 網堵塞,壓力損失就會增大,於是,需要效率良好地去除 附著於絲網之霧氣。為此,在氣體狀碳氫化合物回收裝置 100之氣液分離器8上,設置剖面形狀為倒三角形之錐狀絲 21 201100159 網29。碰撞到錐狀絲網29之霧氣藉由重力移動至氣體幾乎 不會流過之中央部(倒三角形之下侧頂‘點),若—定量集 中就會往下滴。如此,藉由在離心分離部25内之上部設 置錐狀絲網29,可效率良好地去除與氣液分離器8之壁面之 碰撞所產生的霧氣,且可極力抑制吸附解吸塔14之性能下 降。 第4圖為方塊圖,表示霧量對吸附解吸塔14之氣體狀碳 氫化合物之出口濃度的影響得到檢驗後之結果。在此根據 第4圖,說明霧狀碳氫化合物的量對吸附解吸塔14之氣體狀 碳氫化合物之出口濃度的影響。在此第4圖中,在以 500L/min之速度使氣體狀碳氫化合物流入2〇分鐘的情況 下,檢驗霧量對吸附解吸塔14之氣體狀碳氳化合物之出口 濃度的影響。此外,在第4圖中,縱軸代表來自吸附解吸塔 14之洩漏、/辰度(vol%),橫軸代表流入吸附解吸塔η之霧量。 如第4圖所示,檢驗結果為,當流入吸附解吸塔η之霧 量為0時(第4圖所示之(a)),從吸附解吸塔14洩漏之洩漏濃 度為4vol,當流入吸附解吸塔14之霧量為i〇〇mL/min時(第4 圖所示之(b)) ’從吸附解吸塔14洩漏之洩漏濃度為6v〇1, Ϊ流入吸附解吸塔14之霧量為200 mL/min時(第4圖所示之 (c)),從吸附解吸塔14洩漏之洩漏濃度為8v〇1。 從第4圖可知,藉由防止霧氣流入吸附解吸塔μ,可抑 制既定量之氣體狀碳氫化合物被處理時從吸附解吸塔14排 出之氣體狀碳氫化合物之濃度。由於以上之原因,使氣液 分離器8具備用來分離氣體狀碳氫化合物與液化碳氫化合 22 201100159 物、χ及用來分離氣體狀碳氫化合物與霧狀碳氫化合 物的η立藉此,可減少供給至吸附解吸塔14之氣體狀碳 風化口物的! ’且可以高效率回收氣體狀碳氯化合物。 在此說明氣體狀碳氫化合物回收裝置⑽之運轉開始 方法。 ο Ρ氣體狀碳氫化合物回收裝置100可由油罐車等之駕歇 員在操作作動開關㈣始運轉。亦即,可在對汽油貯藏槽1 卸下(供給)汽油的油罐車等之駕駿員卸下汽油的同一時 點,使氣體狀碳氫化合物时裝置_之作動_受到操作 而開始運轉。藉此,可防止錯誤動作,且可以高效率回收 氣體狀兔風化合物。 _ +罐車具備用來防止油種弄錯之污染防止裝置(未 圖示),其與進行開始卸油時之油種判斷的按鍵裝置連動, 可使氣體狀碳氫化合物回收裝置1GG開始自動運轉。藉此, Ο 可減少人為操作’且可更穩定地回收氣體狀碳氫化合物。 再者’其與管理汽油貯藏槽1之在庫量(殘油量)的油面計 (未圖示)連動,可藉由油面位置之變動檢測出在庫量在短 時間内變化,使氣體狀碳氫化合物回收裝置1 0 0自動開始運 轉。再者’在從油罐車卸油至汽油貯藏槽k注油口設置用 來檢測液體之電子式感測器(掌握電1等之變化(未圖 不)),與本裝置連動,可使運轉自動開始與結束。藉此, 1免示人為操作’並且’可在不具傷新的高級測量裝置之 月况下,更穩定地回收氣體狀碳氫化合物。 第圖為電路圖,表示氣體狀碳氫化合物回收裝置】00 23 201100159 之再生工程中之氣體狀碳氫化合物之流動。第6圖為流程 圖’表示氣韹狀碳氫化合物回收裝置100之再生工程中之處 理步驟。在此根據第5圖及第6圖,詳細說明吸附至吸附解 吸塔14之氣體狀碳氫化合物之再生工程,亦即,氣體狀碳 氫化合物之解吸附處理。如上所述,吸附解吸塔14之再生 工程使吸附時所使用之2個吸附解吸塔丨4串聯,在該2個塔 之間連接氣體狀碳氫化合物供給泵浦5、第一熱交換器 氣液分離器8,然後開始。接著’經過既定時間後,更換串 聯連接之吸附解吸塔14之順序’從任一個吸附解吸塔η進 行氣體狀碳氫化合物之再生。反覆此操作既定次數以進行 氣體狀碳氫化合物之再生。 氣體狀碳氫化合物回收裝置1〇〇在吸附結束時完全關 閉所有的二方閥。氣體狀碳氫化合物回收裝置1〇〇開啟二方 閥16a、二方閥17b、二方閥18a、二方閥19b(步驟si〇i), 運作氣體狀碳氫化合物供給泵浦5(步驟sl〇2)。如此,開始 第一工程(步驟S101〜S1 〇5)。藉由運作氣體狀碳氫化合物 供給栗浦5既定時間’透過二方閥17b從吸附解吸塔14b吸引 氣體,再解吸附吸附至吸著劑上之氣體狀碳氫化合物(步驟 S103)。又’當吸附解吸塔Η内之壓力下降至既定之壓力 時’開啟二方閥19b及流量控制器2〇,固定流量之空氣從大 風* /瓜入至吸附解吸塔14中’使吸附解吸塔14b内部之壓力維 持在近乎固定。 π及附解吸塔14b在吸附時以〇5Mpa(G)之壓力動作,在 解吸附時萚+tM, 積由軋體狀碳氫化合物供給泵浦5減壓至大氣壓 24 201100159 力以下’所以,藉由此壓力差’吸附至吸著劑上之碳氫化 合物在濃縮至尚;農度之狀態被解吸附。在此情況下,雖然 會受到氣體狀碳氫化合物之氣體流量及吸附時之吸附量的 影響’但藉由使吸附解吸塔14b内之壓力控制在〇.〇2〜 0. 04MPa ’可使氣體狀碳氫化合物濃度為3〇〜6()v〇1%。 〇Ο More advanced 4, gaseous hydrocarbon recovery shock (10) in the adsorption of gaseous hydrogen compounds (when performing adsorption engineering), the entire adsorption desorption column 14 flows into the gaseous hydrocarbons flowing out of the gas-liquid separator 8 At the time of desorption of gaseous hydrocarbons (when performing regeneration engineering), at least one of the adsorption desorption columns 14 (for example, adsorption desorption column 14b) of the plurality of adsorption desorption columns 14 is connected to a gaseous carbonium compound supply pump. The upstream side of 5. That is, by the use of the two-way valve, when the gaseous hydrocarbon is adsorbed, the flow path is switched to flow the gaseous hydrocarbons flowing out of the gas-liquid separator 8 to the entire adsorption desorption column 4, when the gas is desorbed. In the case of a hydrocarbon, the flow path is switched to connect the gas outlet of at least one of the adsorption desorption columns 14 (for example, the adsorption desorption column 14b) to the upstream side of the gaseous hydrocarbon supply pump 5. After the continuous operation for a predetermined period of time, the opening and closing of the two-way valve is switched, and the gaseous hydrocarbon is sucked and desorbed from the adsorption desorption column (for example, the adsorption/desorption column 14a) which is not desorbed. In other words, the gas-like hydrocarbon supply pump 5 is used to suck the gas from the other adsorption/desorption column 14 (for example, the adsorption desorption column 4a) to desorb the gaseous hydrocarbon adsorbed onto the sorbent, and sequentially supply it. The first heat exchanger 6 and the gas-liquid separator 8 supply the gas discharged from the gas-liquid separator 8 to one of the adsorption/desorption columns 14 (for example, the adsorption/desorption column 14b) to carry out regeneration of gaseous hydrocarbons. In the gas-like hydrocarbon recovery device 1 of the first embodiment, the operation is repeated 17 201100159 times to regenerate gaseous hydrocarbons. Fig. 2 is a schematic configuration view showing the configuration of the first heat exchanger 6. Here, the first heat exchanger 6, the second heat exchanger 13, the refrigerator 12, and the heat medium storage tank 7 of the gaseous hydrocarbon recovery device 1 will be described with reference to Fig. 2'. The first hot parent exchanger 6 has a flow path through which gaseous hydrocarbons flow. The second heat exchanger 13 turns on the refrigerant supplied from the refrigerator 12. The refrigerator 12 has a refrigeration cycle and supplies the refrigerant to the second heat exchanger 13. The heat medium storage tank 7 is stored for cooling the heat medium of the first heat exchanger 6. The first heat exchanger 6, the second parent exchanger 13, the refrigerator 12, and the heat medium storage tank 7 constitute a condensing device. The first hot parent converter 6 shown in Fig. 2 has a flow path through which a plurality of gaseous hydrocarbons flow. That is, the first heat exchanger 6 is formed by a plurality of heat transfer tubes into which the diverging portion (header) 21 for dividing the gas flow of the gaseous hydrocarbon flowing therein and the branch portion 2! The heat exchange unit 22 composed of the tube heat exchanger and the merging portion (tail) 23 that merges the gaseous carbonized person discharged from the heat exchange unit 22 with the liquid hydrocarbon. By forming the structure of the first (fourth) device 6, the flow rate of the air containing the gaseous δ substance can be reduced, and the pressure loss can be low in the case of the low heat exchange efficiency of J. In addition, it is necessary to increase the contact area of the heat exchange portion 22 in the first heat exchanger 6 without the large flow rate of the gas containing the oxygen-like hydrocarbon. It is necessary to increase the contact area, and the cloud i increases the length of the heat transfer tube. Therefore, it is necessary to make a problem that the length of the piping becomes longer and the pressure is further increased. The pressure is only feng, she should have this problem, in the first robbery changer 6, the flow path of the gas-like hydrocarbon brother's hot parent is divided into multiple, 18 201100159 to prevent pressure loss synergy Sexually increased, and gaseous hydrocarbons can be liquefied with high efficiency. Next, the effectiveness of the cooling produced by using the condensing device will be described. In general, when heat exchange is performed, it is most efficient to integrate the refrigerant piping with the object to be cooled (gas-like hydrocarbon) without using a heat medium or the like, and to make the integrated portion a structure for heat insulation. . However, when cooling the air containing moisture, in order to prevent the moisture from freezing, it is necessary to make the evaporation temperature of the refrigerant above the freezing point. In this case, the heat exchange efficiency is lowered, and the problem that the object to be cooled cannot be cooled at a predetermined temperature is generated. . In the gas-like hydrocarbon recovery device 1 of the first embodiment, there is a feature that the heat medium is naturally convected by using a heat medium, and the heat can be efficiently cooled. In the first heat exchanger 6, the liquid hydrocarbon is discharged by the force of gravity and the gas flow, so that the gaseous hydrocarbon flows in from the upper portion of the first heat exchanger 6, and the gaseous and liquid hydrocarbons are discharged from the gas. The lower portion of the first heat exchanger 6 flows out. Thus, a hot gaseous hydrocarbon is supplied to the upper portion of the first heat exchanger, and the temperature of the heat medium around the first heat exchanger 6 rises. Thereby, around the first heat exchanger 6, the heat medium generates a flow from the bottom to the top. On the other hand, the heat medium is cooled around the second heat exchanger 13, so that the heat medium flows from the top to the bottom. Thereby, in the heat medium storage tank 7, the flow of the heat medium such as the first heat exchanger upper portion - the second heat exchanger upper portion - the second heat father replacement portion portion to the first heat exchanger lower portion is generated, even if it does not enter By stirring, the object to be cooled can also be cooled efficiently (the first heat is changed again). Therefore, the first heat exchanger 6 and the second heat exchanger η are preferably disposed in the heat medium storage tank 7 in a posture slightly at a horizontal position of about 19 201100159. Further, in the gaseous hydrocarbon recovery device 1A, the heat medium is supplied to the adsorption/desorption column 14 by the liquid circulation pump 11, so that the flow generated by the circulation of the heat medium and the heat medium storage tank are made. The flow generated by the natural convection is synchronized, whereby the cooling of the object to be processed can be performed more efficiently. In other words, as an example, the heat medium can be pulled out from the lower portion of the second heat exchanger, and the heat medium can be returned to the upper portion of the second heat exchanger 13, whereby a second heat exchange can be performed without hindering the upper portion of the first heat exchanger. In the case where the heat medium flows in the upper portion of the upper portion - the lower portion of the second heat exchanger - the lower portion of the first heat exchanger, the object to be processed is efficiently cooled. For the above reasons, in the gas-like hydrocarbon recovery device 100 of the present embodiment, the first heat exchanger 6, the second heat exchanger refrigerator 12, and the heat medium storage tank 7 constitute a condensing device. And the first heat exchanger 6 and the second heat exchanger 13 are disposed in the heat medium storage tank 7 to move the heat medium in the vertical direction, whereby the inside of the heat medium storage tank 7 can be convected, and The object to be cooled can be cooled efficiently. Fig. 3 is a schematic view showing the internal structure of the gas-liquid separator 8. Here, the effect of the hydrocarbon removal performance of the gas-liquid separator 8 will be described in detail based on Fig. 3. As shown in Fig. 3, the gas-liquid separator 8 has a gaseous hydrocarbon outlet 24, a centrifugal separation unit (gas-liquid separation unit) 25, a gas-liquid mixture inlet, a liquid hydrocarbon storage unit 27, and a liquid carbon. The hydrogen compound outlet M, the tapered wire mesh (mist removal unit) 29 and the heat insulating material 3〇. That is, the gas-liquid separator 8 has a portion for separating gaseous hydrocarbons and liquefied hydrocarbons (centrifugal separation portion 25) and a portion for separating gaseous hydrocarbons and mists 20 201100159 hydrocarbons (Conical mesh 2 9 of tapered wire mesh structure). The gas-liquid mixture inlet 26 is a gas-based hydrocarbon (containing air) and a liquid hydrocarbon inlet. The centrifugal separation section is used to centrifugally separate the gaseous hydrocarbons flowing from the gas-liquid mixture inlet 26 with the liquid hydrocarbon. Things. The gaseous hydrocarbon outlet 24 is an outlet for the gas separated by the centrifugal separation unit 25. The liquid hydrocarbon storage portion 27 stores the liquid separated by the centrifugal π separation portion 25. The liquid hydrocarbon outlet 28 is an outlet of the liquid stored in the liquid hydrocarbon storage portion 27. The tapered wire mesh 〇 Τ efficiently removes the misty carbon 氲 compound. The heat insulating material does not reduce the heat exchange between the inside and the outside of the gas-liquid separator 8. The gaseous hydrocarbons and the liquid hydrocarbons introduced from the gas-liquid mixture inlet 26 are centrifuged by the centrifugal separation unit 25, and the gas and the liquid are separated. However, when the treatment flow rate is increased, the collision speed with respect to the wall surface of the centrifugal portion 25 of the liquid hydrocarbon is increased, so that a misty hydrocarbon is generated from the liquid hydrocarbon. Since the misty hydroquinone compound cannot be centrifuged and separated by the centrifugal separation unit 25, it is supplied to the adsorption/desorption column 14, which causes a problem that the performance of the adsorbent of the adsorption/desorption column is lowered early. In order to prevent this from happening, it is necessary to remove the misty hydrocarbon. To remove misty hydrocarbons, a screen with an aperture that reaches the degree of fog collision can produce an effect. However, in the case where the screen is provided, the mist collides with the screen, and if the screen is clogged, the pressure loss increases, so that it is necessary to efficiently remove the mist attached to the screen. For this purpose, a gas-liquid separator 8 of the gaseous hydrocarbon recovery device 100 is provided with a tapered wire 21 201100159 mesh 29 having an inverted triangular shape. The mist colliding with the tapered wire mesh 29 is moved by gravity to a central portion where the gas hardly flows (the top point of the inverted triangle is 'point), and if it is - the quantitative concentration is dropped downward. By providing the tapered wire mesh 29 in the upper portion of the centrifugal separation portion 25, the mist generated by the collision with the wall surface of the gas-liquid separator 8 can be efficiently removed, and the performance of the adsorption/desorption column 14 can be suppressed as much as possible. . Fig. 4 is a block diagram showing the results of examining the influence of the amount of mist on the outlet concentration of the gaseous hydrocarbon of the adsorption desorption column 14. Here, the influence of the amount of the misty hydrocarbon on the outlet concentration of the gaseous hydrocarbon of the adsorption/desorption column 14 will be described based on Fig. 4 . In Fig. 4, the effect of the amount of mist on the outlet concentration of the gaseous carbonium compound of the adsorption desorption column 14 was examined while flowing a gaseous hydrocarbon at a rate of 500 L/min for 2 minutes. Further, in Fig. 4, the vertical axis represents the leakage/volume (vol%) from the adsorption/desorption column 14, and the horizontal axis represents the amount of mist flowing into the adsorption desorption column η. As shown in Fig. 4, the result of the test is that when the amount of mist flowing into the adsorption desorption column η is 0 ((a) shown in Fig. 4), the leakage concentration leaked from the adsorption desorption column 14 is 4 vol, when it flows into the adsorption. When the amount of mist in the desorption column 14 is i〇〇mL/min ((b) shown in Fig. 4), the leakage concentration from the adsorption desorption column 14 is 6v〇1, and the amount of mist flowing into the adsorption desorption column 14 is At 200 mL/min ((c) shown in Fig. 4), the leakage concentration from the adsorption/desorption column 14 was 8 v〇1. As is apparent from Fig. 4, by preventing the mist from flowing into the adsorption/desorption column μ, the concentration of gaseous hydrocarbons discharged from the adsorption/desorption column 14 when a predetermined amount of gaseous hydrocarbons are treated can be suppressed. For the above reasons, the gas-liquid separator 8 is provided with means for separating gaseous hydrocarbons from liquefied hydrocarbons, and for separating gaseous hydrocarbons and misty hydrocarbons. The gas-like carbon weathering port supplied to the adsorption desorption column 14 can be reduced! And it is possible to recover gaseous chlorocarbon compounds with high efficiency. Here, a method of starting the operation of the gaseous hydrocarbon recovery device (10) will be described. The gas-like hydrocarbon recovery device 100 can be operated by a driver of a tank truck or the like at the operation of the operation switch (4). In other words, at the same time that the driver of the tanker or the like who has unloaded (supplied) the gasoline in the gasoline storage tank 1 is unloaded of gasoline, the operation of the gaseous hydrocarbon-based apparatus is started. Thereby, malfunction can be prevented, and the gas-like rabbit wind compound can be recovered with high efficiency. _ + The tanker is equipped with a pollution prevention device (not shown) for preventing the oil from being mistaken, and interlocking with the button device for determining the type of oil at the time of starting the oil discharge, the gas-like hydrocarbon recovery device 1GG can be automatically operated. . Thereby, Ο can reduce the human operation' and the gas-like hydrocarbon can be recovered more stably. In addition, it is linked to a oil level gauge (not shown) that manages the amount of storage (residual oil) of the gasoline storage tank 1, and it is possible to detect that the amount of storage changes in a short time by the change in the position of the oil level, and to make a gas The hydrocarbon recovery unit 100 starts the operation automatically. In addition, 'the electronic sensor for detecting liquid (the change of electric 1 (not shown)) is set in the oil filling port from the tanker to the gasoline storage tank k, and it can be operated in conjunction with the device. Automatic start and end. Thereby, 1 free man-made operation 'and' can recover gaseous hydrocarbons more stably without damaging the new advanced measuring device. The figure is a circuit diagram showing the flow of gaseous hydrocarbons in the regeneration process of a gaseous hydrocarbon recovery unit 00 23 201100159. Fig. 6 is a flow chart showing the process steps in the regeneration of the gas-like hydrocarbon recovery unit 100. Here, the regeneration process of the gaseous hydrocarbon adsorbed to the adsorption/desorption column 14, that is, the desorption treatment of the gaseous hydrocarbon, will be described in detail based on Fig. 5 and Fig. 6. As described above, the regeneration of the adsorption/desorption column 14 causes the two adsorption desorption columns 4 used in the adsorption to be connected in series, and a gaseous hydrocarbon supply pump 5 and a first heat exchanger gas are connected between the two columns. The liquid separator 8 is then started. Then, after a predetermined period of time, the order of the cascade-connected adsorption/desorption column 14 is replaced, and the regeneration of gaseous hydrocarbons is carried out from any of the adsorption/desorption columns η. This operation is repeated a predetermined number of times for the regeneration of gaseous hydrocarbons. The gaseous hydrocarbon recovery unit 1 completely closes all the two-way valves at the end of the adsorption. The gaseous hydrocarbon recovery device 1 opens the two-way valve 16a, the two-way valve 17b, the two-way valve 18a, and the two-way valve 19b (step si〇i), and operates the gaseous hydrocarbon supply pump 5 (step sl1) 〇 2). Thus, the first project is started (steps S101 to S1 〇 5). The gas is supplied to the pumping desorption column 14b through the two-way valve 17b by the operation of the gaseous hydrocarbons, and the gaseous hydrocarbon adsorbed onto the sorbent is desorbed (step S103). 'When the pressure in the adsorption desorption tower drops to a predetermined pressure', the two-way valve 19b and the flow controller 2 are opened, and the fixed flow of air is taken from the high wind*/melt into the adsorption desorption column 14 to desorb the adsorption. The pressure inside the column 14b is maintained at approximately constant. The π and the desorbing tower 14b are operated at a pressure of M5 MPa (G) during adsorption, and 萚+tM at the time of desorption, and the product is supplied from the rolling body-like hydrocarbon pump 5 to a pressure of 24 201100159 or less. The hydrocarbon adsorbed onto the sorbent by this pressure difference is concentrated to the extent that it is desorbed in the state of agronomy. In this case, although it is affected by the gas flow rate of the gaseous hydrocarbon and the adsorption amount at the time of adsorption, 'the gas can be controlled by controlling the pressure in the adsorption desorption column 14b to 〇.〇2~0. 04MPa'. The hydrocarbon concentration is 3〇~6()v〇1%. 〇

解吸附後之氣體狀碳氳化合物藉由氣體狀碳氫化合物 供給泵浦5,供給至第一熱交換器6。換言之,對第一熱交 換器6,供給氣體狀碳氫化合物濃度為3〇v〇1%且壓力為 0· 5MPa(G)之高濃度高壓之氣體狀碳氫化合物。與吸附時相 同,第一熱交換器6藉由透過冷凍機12及第二熱交換器。 而冷卻之熱媒體被冷卻。通常,第一熱交換器6之内部保持 在〇°C〜5°C,氣體狀碳氫化合物之一部分產生冷凝及液化。 於是,對氣液分離器8,供給未被第一熱交換器6冷凝 之氣體狀碳氳化合物及被第一熱交換器6冷凝之液體狀碳 氫化合物的混合物體。此混合物體藉由氣液分離器8分離為 氣體(氣體狀碳氫化合物及空氣)與液體(液體狀碳氫化合 物)(參照第3圖)。/分離後之液體流至氣液分離器8之下侧 (液體狀碳1化合物貯留部27),透過液體狀碳氫化合物用 電磁閥10送回液體狀碳氫化合物貯留槽9。 、〜a1 π皿反冷3匕之 條件下使第-熱交換器6運轉時,若氣體狀碳氫化合物為气 油蒸氣,在第-熱交換器6中之汽油蒸氣濃度為ι〇ν〇ι%4 汽油蒸氣中’ϋ常含有丁烷、異丁烷等。當在壓力為 〇.5MPa(G)且溫度為5°c之條件下使第-熱交換H❻轉 25 201100159 時,若檢驗這些成份之飽和濃度,會發現丁烷之飽和蒸氣 濃度約為20vol% ’異丁烷之飽和蒸氣濃度為30v〇1%。在此 條件下,只要汽油蒸氣中所含有之丁烷及異丁烷的量不減 少’汽油蒸氣濃度理論上不會在1 〇 VO丨%以下。 又’藉由降低溫度(第一熱交換器6中之汽油蒸氣之冷 卻溫度)’可減少第一熱交換器6之出口之汽油蒸氣濃度。 不過’若第一熱交換器6之設定溫度在冰點以下,氣體(含 有氣體狀碳氫化合物之空氣)中所含有的水會在第二熱交 換器6結冰。如此’增大了第一熱交換器6内部之壓力損失, 所以’第一熱交換器6之設定溫度宜為〇»c〜ye。 接著,從氣液分離器8排出的濃度為10vol%之氣體狀碳 氫化合物被運送至吸附解吸塔14a並受到處理。吸附解吸塔 14a中封入吸著劑,含有氣體狀碳氫化合物之空氣通過此吸 著劑,藉此,吸附去除氣體狀碳氳化合物,變成汽油濃度 為lvol %以下之清淨空氣’再透過二方閥i8a及壓力控制器 15釋放至大氣中。經過既定時間後,停止氣體狀碳氫化合 物供給泵浦5(步驟S104),關閉二方閥i6a、二方閥17b、二 方閥18a、二方閥19b(步驟S105)。此外,即使在進行再生 工程時’也可在與氣體狀碳氫化合物之吸附解吸附功能無 關之情況下,正常地藉由液體循環泵浦丨丨所供給之熱媒體 冷部至一定溫度。換言之,與進行吸附時相同,在維持〇 〜5 C之狀態下受到正常之運轉控制。 如此,在第一工程(第一再生工程)中,於加壓狀態下 進行冷钟、吸附’藉此’可有效率地液化回收從吸附解吸 26 201100159 塔14b排出之氣體狀碳氫化合物。此外,當進行解吸附時, 使吸附解吸塔14b内部之溫度升高,藉此,可— 4 乃W加快解 吸附速度,一方面使氣體狀碳氫化合物之濃度變濃。不過, 擺盪溫度會導致消耗能力增大、無法在接下來之吸附工程 之前及時冷卻等問題,所以,在解吸附時不使溫度升高而 在與吸附時相同之溫度下進行解吸附可在能量消耗方面得 到良好效果。The gaseous carbon ruthenium compound after desorption is supplied to the first heat exchanger 6 by the gaseous hydrocarbon supply pump 5. In other words, the first heat exchanger 6 is supplied with a gaseous hydrogen hydrocarbon having a gas concentration of a hydrocarbon concentration of 3 〇 v 〇 1% and a pressure of 0.5 MPa (G). The first heat exchanger 6 passes through the refrigerator 12 and the second heat exchanger in the same manner as in the adsorption. The cooled heat medium is cooled. Usually, the inside of the first heat exchanger 6 is maintained at 〇 ° C to 5 ° C, and a part of the gaseous hydrocarbon is condensed and liquefied. Then, the gas-liquid separator 8 is supplied with a mixture of a gaseous carbonium compound not condensed by the first heat exchanger 6 and a liquid hydrocarbon condensed by the first heat exchanger 6. This mixture is separated into a gas (a gaseous hydrocarbon and air) and a liquid (a liquid hydrocarbon) by a gas-liquid separator 8 (refer to Fig. 3). The separated liquid flows to the lower side of the gas-liquid separator 8 (liquid-like carbon 1 compound storage portion 27), and is passed through the liquid hydrocarbon to return to the liquid hydrocarbon storage tank 9 by the electromagnetic valve 10. When the first heat exchanger 6 is operated under the condition that the a heat exchanger 6 is operated under the condition of the a1 π dish reverse cooling, if the gaseous hydrocarbon is the gas oil vapor, the gasoline vapor concentration in the first heat exchanger 6 is ι〇ν〇. In the gasoline vapor, ϋ%4 often contains butane, isobutane and the like. When the first heat exchange H❻ is transferred to 25 201100159 under the pressure of 〇5 MPa (G) and the temperature is 5 ° C, if the saturated concentration of these components is checked, the saturated vapor concentration of butane is found to be about 20 vol%. The saturated vapor concentration of isobutane was 30 v〇1%. Under these conditions, as long as the amount of butane and isobutane contained in the gasoline vapor is not reduced, the gasoline vapor concentration is theoretically not more than 1 丨 VO 丨 %. Further, the gasoline vapor concentration at the outlet of the first heat exchanger 6 can be reduced by lowering the temperature (the cooling temperature of the gasoline vapor in the first heat exchanger 6). However, if the set temperature of the first heat exchanger 6 is below the freezing point, water contained in the gas (air containing gaseous hydrocarbons) will freeze in the second heat exchanger 6. Thus, the pressure loss inside the first heat exchanger 6 is increased, so the set temperature of the first heat exchanger 6 is preferably 〇»c~ye. Next, a gaseous hydrocarbon having a concentration of 10 vol% discharged from the gas-liquid separator 8 is sent to the adsorption/desorption column 14a and treated. The adsorption/desorption column 14a is filled with a sorbent, and the air containing the gaseous hydrocarbon passes through the sorbent, whereby the gaseous carbon ruthenium compound is adsorbed and removed, and the clean air having a gasoline concentration of 1 vol % or less is re-transmitted. Valve i8a and pressure controller 15 are released to the atmosphere. After a predetermined period of time, the gaseous hydrocarbon supply pump 5 is stopped (step S104), and the two-way valve i6a, the two-way valve 17b, the two-way valve 18a, and the two-way valve 19b are closed (step S105). Further, even in the case of performing the regeneration process, the hot medium portion to be supplied by the liquid circulation pump can be normally circulated to a certain temperature without being in contact with the adsorption and desorption function of the gaseous hydrocarbon. In other words, as in the case of performing adsorption, normal operation control is performed while maintaining 〇 5 5 C. As described above, in the first project (first regeneration project), the cold bell is adsorbed under pressure, and the adsorption is "by", and the gaseous hydrocarbon discharged from the adsorption desorption 26 201100159 column 14b can be efficiently liquefied and recovered. Further, when the desorption is carried out, the temperature inside the adsorption/desorption column 14b is increased, whereby the desorption rate can be accelerated, and the concentration of the gaseous hydrocarbon can be made rich. However, the swing temperature causes problems such as increased consumption capacity and inability to cool in time before the next adsorption process. Therefore, desorption can be performed at the same temperature as that at the time of adsorption without desorbing the temperature during desorption. Good results in terms of consumption.

Ο 氣體狀碳氫化合物回收裝置1〇〇在結束第一工程時,開 始第二工程(步驟31〇6〜311〇)。氣體狀碳氫化合物1〇〇開啟 一方閥16b、二方閥na、二方閥i8b、二方閥19a(步驟 S106) ’使氣體狀碳氫化合物供給泵浦5運轉(步驟sl〇7)。 如此,開始第二工程(第二再生工程)。使氣體狀碳氫化合 物供給泵浦5運轉既定時間,藉此,透過二方閥17b從吸附 解吸塔14a吸引氣體,再解吸附吸附至吸著劑上之氣體狀碳 氫化合物(步驟S108)。又,若使吸附解吸塔i4a内之壓力下 降至既定之壓力,開啟二方閥18b及流量控制器20,一定流 量之空氣從大氣流入吸附解吸塔14a,使吸附解吸塔14a内 部之壓力維持在近乎固定之壓力。 吸附解吸塔14a在進行吸附時,於0_ 5MPa(G)之壓力下 動作’在解吸附時,藉由氣體狀碳氫化合物供給泵浦5減壓 至大氣壓力以下’所以,藉由此壓力差,吸附至吸著劑上 之碳氮化合物在濃縮至高濃度之狀態被解吸附。在此情況 下’雖然會受到氣體狀碳氫化合物之氣體流量及吸附時之 吸附量的影響’但藉由使吸附解吸塔14a内之壓力控制在 27 201100159 0.02 〇· 04MPa,可使氣體狀碳氫化合物濃度為3〇〜 6Ονο 1 %。 解吸附後之氣體狀碳氳化合物藉由氣體狀碳氫化合物 供給泵浦5,供給至第一熱交換器6。換言之,對第—熱交 換裔6,供給氣體狀碳氫化合物濃度為3〇ν〇ι%且壓力為 0· 5MPa(G)之高濃度高壓之氣體狀碳氫化合物。與吸附時相 同,第一熱交換器6藉由透過冷凍機12及第二熱交換器13 而冷卻之熱媒體被冷卻。通常,第一熱交換器6之内部保持 在0C〜5C,氣體狀碳氫化合物之一部分產生冷凝及液化。 於是,對氣液分離器8,供給未被第一熱交換器6冷凝 之氣體狀碳氫化合物及被第一熱交換器6冷凝之液體狀碳 氫化合物的混合物體。此混合物體藉由氣液分離器8分離為 氣體(氣體狀碳氫化合物及空氣)與液體(液體狀碳氫化合 物)(參照第3圖)。分離後之液體流至氣液分離器8之下側 (液體狀碳氫化合物貯留部27),透過液體狀碳氫化合物用 電磁閥10送回液體狀碳氫化合物貯留槽9。 如上所述,當在壓力為〇. 5MPa(G)且冷卻溫度為5°C之 條件下使第一熱交換器6運轉時,若氣體狀碳氫化合物為汽 油蒸氣,在第一熱交換器6中之汽油蒸氣濃度為丨〇vo 1 %。在 汽油蒸氣中,通常含有丁烷、異丁烷等。當在壓力為 〇.5MPa(G)且溫度為5°C之條件下使第一熱交換器6運轉 時,若檢驗這些成份之飽和濃度’會發現丁烷之飽和蒸氣 漢度約為20vol% ’異丁院之飽和蒸氣濃度為3〇vol%。在此 條件下’只要汽油蒸氣中所含有之丁烷及異丁烷的量不減 28 201100159 少’汽油蒸氣濃度理論上不會在1 〇 vo 1 %以下。 又’藉由降低溫度(第一熱交換器6中之汽油蒸氣之冷 卻温度)’可減少第一熱交換器6之出口之汽油蒸氣濃度。 不過,若第一熱交換器6之設定溫度在冰點以下,氣體(含 有氣體狀碳風化合物之空氣)中所含有的水會在第二熱交 換器6結冰《如此,增大了第一熱交換器6内部之壓力損失, 所以,第一熱交換器6之設定溫度宜為〇°c〜5〇c。 接者,伙氣液分離|§8排出的濃度為ιόν。〗%之氣體狀碳 〇 氫化合物被運送至吸附解吸塔14b並受到處理。吸附解吸塔 14b中封入吸著劑,含有氣體狀碳氳化合物之空氣通過此吸 著劑,藉此,吸附去除氣體狀碳氫化合物,變成汽油濃度 為lvol%以下之清淨空氣,再透過二方閥19a及壓力控制器 15釋放至大氣中。經過既定時間後,停止氣體狀碳氫化合 物供給泵浦5(步驟S10 9),關閉二方閥16b、二方閥17a、二 方閥18b、二方閥i9a(步驟su〇)。此外,即使在進行再生 〇 工程時’也可在與氣體狀碳氫化合物之吸附解吸附功能無 關之情況下,正常地藉由液體循環泵浦π所供給之熱媒體 冷部至一定溫度。換言之,與進行吸附時相同,在雉持0 〜5 C之狀態下受到正常之運轉控制。 束第—工知時,氣體狀碳氯化合物回收裝置1〇〇 再次開始第一工程(步驟Sl ll^在以設定次數進行此反覆 操作後,氣體狀碳氫化合物回收裝置1〇〇結束一連串之動作 (步驟Sill ; YES)。通常,每當對汽油貯藏槽i供油時,會 覆這連串之動作。藉由此動作,最多只有lv〇】%之氣體 29 201100159 、碳氫化5物排出至大氣中,可將環境負擔降低至非常小。 又,氣體狀碳氫化合物回收裝置100最多只排出lv〇l% 之氣體狀碳氫化合物,所以,從杨。1%之氣體狀碳氮化合 物中可回收達39vol%,回收效率有97.5%這樣之極高效率。 再者,在一個溫度帶進行冷凝操作之後再進行吸附操作’ 所以,也具有K幅將吸附解吸塔14小型化並可使整個裝 置緊緻化的效果。 此外’解吸附時吸引來自吸附解吸塔14之氣體狀碳氯 化合物的部位與吸附時將氣體狀碳氫化合物供'给至吸附解 吸塔U之部位設置於吸附解吸塔14之同一部分(在第(圖中 為吸附解吸塔U之下部)。運用吸附解吸塔14以使吸附解吸 塔Η出口之氣體狀碳氫化合物濃度在ΐν〇ι%以下,所以,當 進行吸附時,在吸附解吸塔14之氣體狀碳氫化合物蒸氣^ 入附近以回逸、度吸附氣體狀碳氫化合物,在吸附解吸塔 1/之氣體狀碳氳化合物排出π附近則為不太吸附氣體狀唉 氫化合物之狀態。 若要在解吸附時藉由冷凝從吸附解吸塔14排出之氣體 狀碳氫化合物有效率地對其進行回收,需要盡可能提高氣 體狀礙氫化合物之濃度H⑯高密度錢之部分排出 氣體狀碳氫化合物的作法可排出高濃度之氣體狀碳氫化合 物。因此,在氣體狀碳氫化合物回收裝置100中,以高密: 吸附氣體狀碳氫化合物之部分,亦即,從吸附解吸塔14; 之進行吸料之氣錄錢化合物U 口㈣,於進行解 吸附時吸附㈣氣體狀碳氫化合物,#此,提高氣體^ 30 201100159 氫化合物之回收效率。 對加油站等供油設施之汽油貯藏槽lit行之供油通常 多為定期進行-定時間長度。因此,從汽油貯藏槽!產生氣 體狀碳氫化合物僅限於一日之中的某個特定時段。於是, 從提高設備使用率之觀點來看’在產生氣體狀碳氫化合物 之時段不進行吸附解吸塔14之吸附操作,在不產生氣體狀 碳氫化合物之時段進行吸附解吸塔14之再生操作,才能得 到效果。气体 The gaseous hydrocarbon recovery unit 1 starts the second project (steps 31〇6 to 311〇) when the first project is completed. The gaseous hydrocarbon 1〇〇 opens the one valve 16b, the two-way valve na, the two-way valve i8b, and the two-way valve 19a (step S106)' to supply the gaseous hydrocarbon to the pump 5 (step sl7). In this way, the second project (second regeneration project) is started. When the gaseous hydrocarbon is supplied to the pump 5 for a predetermined period of time, the gas is sucked from the adsorption/desorption column 14a through the two-way valve 17b, and the gaseous hydrocarbon adsorbed onto the sorbent is desorbed (step S108). When the pressure in the adsorption/desorption column i4a is lowered to a predetermined pressure, the two-way valve 18b and the flow rate controller 20 are opened, and a certain flow of air flows from the atmosphere into the adsorption/desorption column 14a, and the pressure inside the adsorption/desorption column 14a is maintained at Nearly fixed pressure. When the adsorption/desorption column 14a is adsorbed, it operates at a pressure of 0 MPa (G). At the time of desorption, the gas is supplied to the pump 5 by the gaseous hydrocarbon supply to a pressure lower than the atmospheric pressure. The carbonitride adsorbed onto the sorbent is desorbed in a state of being concentrated to a high concentration. In this case, 'although it is affected by the gas flow rate of the gaseous hydrocarbon and the adsorption amount at the time of adsorption', the gas carbon can be made by controlling the pressure in the adsorption/desorption column 14a to 27 201100159 0.02 〇·04 MPa. The concentration of the hydrogen compound is 3 〇 6 6 ν ο 1 %. The gaseous carbon ruthenium compound after desorption is supplied to the first heat exchanger 6 by the gaseous hydrocarbon supply pump 5. In other words, for the first heat exchange group 6, a gaseous hydrocarbon having a high concentration of high pressure and a gaseous hydrocarbon concentration of 3 〇 ν% by mass and a pressure of 0.5 MPa (G) is supplied. Similarly to the adsorption, the first heat exchanger 6 is cooled by the heat medium cooled by the refrigerator 12 and the second heat exchanger 13. Usually, the inside of the first heat exchanger 6 is maintained at 0C to 5C, and a part of the gaseous hydrocarbon is condensed and liquefied. Then, the gas-liquid separator 8 is supplied with a mixture of gaseous hydrocarbons not condensed by the first heat exchanger 6 and liquid hydrocarbons condensed by the first heat exchanger 6. This mixture is separated into a gas (a gaseous hydrocarbon and air) and a liquid (a liquid hydrocarbon) by a gas-liquid separator 8 (refer to Fig. 3). The separated liquid flows to the lower side of the gas-liquid separator 8 (liquid hydrocarbon storage portion 27), and is passed through the liquid hydrocarbon pump solenoid valve 10 to return to the liquid hydrocarbon storage tank 9. As described above, when the first heat exchanger 6 is operated under the condition that the pressure is MPa 5 MPa (G) and the cooling temperature is 5 ° C, if the gaseous hydrocarbon is gasoline vapor, in the first heat exchanger The gasoline vapor concentration in 6 is 丨〇vo 1%. In gasoline vapor, it usually contains butane, isobutane and the like. When the first heat exchanger 6 is operated under the pressure of 〇5 MPa (G) and the temperature is 5 ° C, if the saturation concentration of these components is checked, the saturated vapor of butane is found to be about 20 vol%. 'The saturated vapor concentration of the Iddin is 3 vol%. Under these conditions, 'as long as the amount of butane and isobutane contained in the gasoline vapor does not decrease. 28 201100159 Less 'The gasoline vapor concentration is theoretically not below 1 〇 vo 1 %. Further, the gasoline vapor concentration at the outlet of the first heat exchanger 6 can be reduced by lowering the temperature (the cooling temperature of the gasoline vapor in the first heat exchanger 6). However, if the set temperature of the first heat exchanger 6 is below the freezing point, the water contained in the gas (the air containing the gaseous carbonaceous compound) will freeze in the second heat exchanger 6. "This increases the first The pressure inside the heat exchanger 6 is lost. Therefore, the set temperature of the first heat exchanger 6 is preferably 〇°c~5〇c. Receiver, the separation of the gas and liquid | § 8 discharge concentration is ιόν. 〗 〖% of the gaseous carbon 〇 The hydrogen compound is transported to the adsorption desorption column 14b and treated. The sorbent is sealed in the adsorption/desorption column 14b, and the air containing the gaseous carbon ruthenium compound passes through the sorbent, whereby the gaseous hydrocarbon is adsorbed and removed, and the clean air having a gasoline concentration of 1 vol% or less is passed through the two sides. The valve 19a and the pressure controller 15 are released to the atmosphere. After the lapse of a predetermined period of time, the gaseous hydrocarbon supply pump 5 is stopped (step S10 9), and the two-way valve 16b, the two-way valve 17a, the two-way valve 18b, and the two-way valve i9a are closed (step su〇). Further, even in the case of performing the regeneration 〇 engineering, the heat medium cold portion supplied by the π is normally circulated by the liquid to a certain temperature irrespective of the adsorption/desorption function of the gaseous hydrocarbon. In other words, as in the case of performing adsorption, normal operation control is performed while holding 0 to 5 C. At the time of the first step, the gaseous chlorocarbon recovery device 1 restarts the first process (step S11), after the repeated operation is performed for a set number of times, the gaseous hydrocarbon recovery device 1 ends a series of Action (step Sill; YES). Usually, every time the oil storage tank i is supplied with oil, the series of actions will be covered. By this action, at most only lv〇%% of the gas 29 201100159, the hydrocarbon 5 discharge In the air, the environmental burden can be reduced to a very small size. Further, the gaseous hydrocarbon recovery device 100 discharges at most lv〇1% of gaseous hydrocarbons, so that from Yang. 1% of gaseous carbonitrides It can recover up to 39 vol%, and the recovery efficiency is as high as 97.5%. In addition, the adsorption operation is carried out after the condensation operation in one temperature zone. Therefore, the K-size is also used to miniaturize the adsorption/desorption column 14 and The effect of the compaction of the entire apparatus. In addition, 'the site where the gaseous chlorocarbon compound from the adsorption desorption column 14 is attracted during desorption and the gaseous hydrocarbon is supplied to the adsorption desorption column U during adsorption. It is disposed in the same part of the adsorption desorption column 14 (in the figure (below the adsorption desorption column U). The adsorption desorption column 14 is used to make the concentration of gaseous hydrocarbons at the outlet of the adsorption desorption column below ΐν〇ι%, Therefore, when the adsorption is carried out, the gaseous hydrocarbon is adsorbed in the vicinity of the gaseous hydrocarbon vapor in the adsorption/desorption column 14, and the gaseous hydrocarbon is adsorbed in the vicinity of the adsorption desorption column 1 / It is a state in which the gaseous hydrogen compound is not adsorbed. To efficiently recover the gaseous hydrocarbon discharged from the adsorption/desorption column 14 by desorption at the time of desorption, it is necessary to increase the gas-like hindrance compound as much as possible. The concentration of H16 high-density money is a method of discharging gaseous hydrocarbons to discharge a high concentration of gaseous hydrocarbons. Therefore, in the gaseous hydrocarbon recovery device 100, high density: adsorption of gaseous hydrocarbons a portion, that is, a gas-recording compound U port (4) from which the adsorption desorption column 14 is sucked, and adsorbing (iv) gaseous hydrocarbons during desorption. #这,增气^30 201100159 Recovery efficiency of hydrogen compounds. The fuel supply to the petrol storage tanks of oil stations such as gas stations is usually carried out regularly for a fixed length of time. Therefore, gas is generated from the gasoline storage tank! Hydrocarbons are limited to a certain period of time in a day. Therefore, from the viewpoint of improving equipment utilization rate, 'the adsorption operation of the adsorption/desorption column 14 is not performed during the period in which gaseous hydrocarbons are generated, and no gas is generated. The regeneration operation of the adsorption/desorption column 14 is carried out during the period of the hydrocarbon to obtain an effect.

基於以上之理由,本第丨實施型態之氣體狀碳氫化合物 回收裝置1GG在進行吸附時,使吸附解吸㈣與氣液分離器 8相互並聯連接,減少流入丨個吸附解吸塔“之氣體量,供 給從氣液分離器8流出之氣體狀碳氫化合物,在進行解吸附 時使2個吸附解吸塔14串聯連接,反覆吸附解吸附操作以 再生吸著劑,藉此,實現設備使用率之提高。 換言之,氣體狀碳氫化合物回收裝置1〇〇在吸附氣體狀 碳氫化合物時(進行吸附工程時)_,可使從氣液分離器8流出 之氣體狀碳氫化合物流入至整個吸附解吸塔14中,增大處 理氣體之流量,當解吸附氣體狀碳氫化合物時(進行再生工 程時)’可使複數個吸附解吸塔14中至少其中一個吸附解吸 塔14(例如吸附解吸塔Ub)連接至氣體狀碳氫化合物供給 泵浦5之上游側’以進行氣體狀碳氫化合物之再生。 第7圖為圖表,表示再生工程中之氣體狀碳氫化合物供 給泵浦5之出口濃度、氣液分離器8之出口濃度及吸附解吸 塔14之出口濃度與時間變化之間的關係。第8圖為圖表,表 31 201100159 不再生工程中之切換時間與吸附解吸塔“之出口濃度之間 的關係在此根據第7圖及第8圖說明再生工程中之吸附 解吸蝽14之切換操作。在第7圖中,縱軸代表氣體狀碳氫化 合物之濃度(V〇1%),橫轴代表時間(min)。在第8圖中,縱 轴代表吸附解吸塔14出口之氣體狀碳氫化合物之濃度 (vol%),橫軸代表時間(min)。 #在f 7圖中,吸附解吸塔14b之再生工程中之氣體狀碳 氫化合物供給系浦5之出口濃度以反白圓形來表示,吸附解 吸=14b之再生工程中之氣體狀碳氫化合物供給泵浦&之出 口濃度以實心圓形來表示’吸附解吸塔Ub之再生工程中之 氣液分離器8之出σ濃度以反白三角形來表示,吸附解吸塔 14b之再生工程中之氣液分離器8之出口濃度以實心三角形 來表示,吸附解吸塔14之出口濃度以星號來表示。從此第了 圖中可知’於再生工程中,氣體狀碳氯化合物僅於初期從 吸附解吸塔14¾漏。因此,檢驗出了切換時間對吸附解吸 塔14之出口濃度的影響。 第8圖檢驗初次之切換時間對吸附解吸塔“出口濃度 的影響。在第8圖中’當在1分鐘内進行初次之第一工程與 第二工程之切換時之D及附解吸塔14出口之氣體狀碳氨化= 物之濃度以菱形來表示,當在3分鐘内進行初次之第—工程 與第二工程之切換時之吸附解吸塔14出口之氣體狀碳氫化 合物之濃度以叉號表示,當在6分鐘内進行初次之第一工 與第二工程之切料之吸附解吸塔14出口之氣體狀碳氨Z 合物之濃度以反白三角形表示。從第8圖可知,隨著切換時 32 201100159 間變長,氣體狀碳氳化合物 硌14出口排出之時 代/入n、j 間也跟著變長 基於以上之理由’可知初次從第—工程切換到第二工 之切換時間越短越好。同時也發現,若將初次從 程切換至第二工程之切換時間設定為〇. 5分鐘以# 碳氫化合物在第__欠+ ,軋體狀 人也會從吸附解吸塔_。從此結果可 知,藉由將初次從第—工 狂佚玍弟_工程之 〇 ❹ 定為。.5分鐘〜i分鐘,可將再生工程中 換❸“ 物之洩漏降低到最小程度。 、妷風化合 第9圖為圖表,表示再生工 给泵浦5之屮σ之氣體狀碳風化合物供 、:*5之出口浪度及氣液分離器8之出口濃度與時間變化 之間的關係。在此根據第9圖,說明再生 ^ ^ ± 丹生工程中之吸附解吸 之切換時間對氣體狀碳氫化合物之回收的影響。在第9 =,縱轴代表氣體狀碳氫化合物之濃度(vgU),橫抽代 表時間(miη)。又,第9〔a)圖志-„ 、 第9—矣_第9(a)圖表-間隔2分鐘切換時之特性, 第9(b)圖表不以2分鐘—6分 π n # 10刀鐘廷種方式將切換時 間kk加長時之特性,第9() ^圃衣不以2分鐘》j分鐘—〇 5 /刀鐘這種方式將切換時間慢慢縮短時之特性。此外 圖所示之圓形及三㈣與第⑶所示之圓形及For the above reasons, in the gas-type hydrocarbon recovery device 1GG of the present embodiment, the adsorption desorption (4) and the gas-liquid separator 8 are connected in parallel to each other to reduce the amount of gas flowing into the adsorption desorption column. The gaseous hydrocarbons flowing out of the gas-liquid separator 8 are supplied, and when the desorption is performed, the two adsorption/desorption columns 14 are connected in series, and the adsorption desorption operation is repeated to regenerate the sorbent, thereby realizing the equipment utilization rate. In other words, the gaseous hydrocarbon recovery device 1 can cause gaseous hydrocarbons flowing out of the gas-liquid separator 8 to flow into the entire adsorption desorption when adsorbing gaseous hydrocarbons (when performing adsorption engineering). In the column 14, the flow rate of the processing gas is increased, and when the gaseous hydrocarbon is desorbed (when the regeneration process is performed), at least one of the plurality of adsorption desorption columns 14 can be adsorbed and desorbed (for example, the adsorption desorption column Ub). Connected to the upstream side of the gaseous hydrocarbon supply pump 5 for regeneration of gaseous hydrocarbons. Figure 7 is a graph showing the regeneration process. The relationship between the outlet concentration of the gaseous hydrocarbon supply pump 5, the outlet concentration of the gas-liquid separator 8, and the outlet concentration of the adsorption/desorption column 14 with time changes. Fig. 8 is a graph, Table 31 201100159 No regeneration project The relationship between the switching time and the outlet concentration of the adsorption desorption column. Here, the switching operation of the adsorption desorption stack 14 in the regeneration process will be described based on Figs. 7 and 8. In Fig. 7, the vertical axis represents the concentration of gaseous hydrocarbons (V 〇 1%), and the horizontal axis represents time (min). In Fig. 8, the vertical axis represents the concentration (vol%) of gaseous hydrocarbons at the outlet of the adsorption desorption column 14, and the horizontal axis represents time (min). # In the figure of f7, the outlet concentration of the gaseous hydrocarbon supply unit 5 in the regeneration process of the adsorption desorption column 14b is represented by a reverse white circle, and the gaseous hydrocarbon in the regeneration project of adsorption desorption = 14b The outlet concentration of the supply pump & is indicated by a solid circle. The sigma concentration of the gas-liquid separator 8 in the regeneration process of the adsorption desorption column Ub is represented by a reverse triangle, and the gas in the regeneration process of the adsorption desorption column 14b. The outlet concentration of the liquid separator 8 is indicated by a solid triangle, and the outlet concentration of the adsorption desorption column 14 is indicated by an asterisk. As can be seen from the figure, in the regeneration process, the gaseous chlorocarbon compound leaks from the adsorption/desorption column 142⁄4 only at the initial stage. Therefore, the influence of the switching time on the outlet concentration of the adsorption desorption column 14 was examined. Figure 8 shows the effect of the initial switching time on the "export concentration of the adsorption desorption column. In Figure 8, the D and the desorption tower 14 exit when the first first and second works are switched in 1 minute. The gas-like carbon ammoniation = the concentration of the substance is represented by a diamond shape, and the concentration of the gaseous hydrocarbon at the outlet of the adsorption desorption column 14 at the time of switching between the first and the second engineering in 3 minutes is performed as a cross. It is indicated that the concentration of the gaseous carbon ammonia Z compound at the outlet of the adsorption desorption column 14 of the first and second engineering cuts in the first 6 minutes is indicated by a reverse white triangle. As can be seen from Fig. 8, At the time of switching 32 201100159, the time between the discharge of the gas-like carbon 氲 compound 硌14 and the exit of n and j are also lengthened. Based on the above reasons, the shorter the switching time from the first engineering to the second work is known. The better, it is also found that if the switching time from the initial switch to the second project is set to 〇. 5 minutes to # hydrocarbon in the __ 欠+, the rolling body will also be from the adsorption desorption tower _. From this result, we know that by Times from - Great work brother _ Yi Ga works as the square ❹ ..5 minutes ~i minutes, engineering change can be regenerated ❸ "of leakage minimized. Fig. 9 is a graph showing the relationship between the gas flow of the gaseous carbonaceous compound supplied by the regenerator to the pump 5, the outlet wave of *5, and the outlet concentration of the gas-liquid separator 8 and the time change. relationship. Here, according to Fig. 9, the effect of the switching time of the adsorption desorption in the regeneration ^ ^ ± Dansheng project on the recovery of gaseous hydrocarbons will be described. At ninth =, the vertical axis represents the concentration of gaseous hydrocarbons (vgU) and the lateral pumping time (miη). Also, the 9th [a] map - „, 9th 矣 _ 9 (a) chart - the characteristics when switching at intervals of 2 minutes, the 9th (b) chart does not take 2 minutes - 6 minutes π n # 10 knives The mode of the clock will change the characteristic when the switching time kk is lengthened, and the 9th ()^ 圃 不 不 2 2 》 》 j j / / / / / / / / / / / / / / / / / / / / / / / / / / / The circle and the circle shown in (3) and (3)

如第9(b)圖所示,可知藓“一士 J j *藉由將切換時間慢慢加長,氣 體狀碳氫化合物供給泵浦5之出口 二 礙氫化合物沒有在第一執交換器6^下施降°这表示氣體狀 ”,'換器6液化。換言之,從吸附解 吸瘩14b排出之氣體狀碳氫化 塔1.能量被浪費。另一方面僅直接移動至吸附解吸 方面’如第9(c)圖所示,可知藉 33 201100159 由將切換時間慢慢縮短’抑制了氣體狀碳氫化合物供給泵 浦5之出口濃度下降。於是可知,藉此,氣體狀碳氫化合物 供給泵浦5之出口濃度與氣液分離器8之出口濃度之間的差 分被液化,藉由切換,可效率良好地液化氣體狀碳氫化合 物。 基於以上之理由,可知藉由將吸附解吸塔14之切換時 間慢慢加快(縮短),可有效率地液化氣體狀碳氫化合物。 因此,在本第1實施型態之氣體狀碳氫化合物回收裴置丄⑽ 中’藉由將吸附解吸塔14之切換時間慢慢加快,得到能量 效率之提昇。 第10圖為圖表,表示氣體流量與氣體狀碳氫化合物供 給泵浦5之入口壓力及出口壓力之間的關係。第丨丨圖為圖 表,表示氣體流量與氣體溫度之間的關係。在此根據第1〇 圖及第11圖,說明氣體流量對氣體狀碳氫化合物供給泵浦5 之入口壓力及出口壓力的影響。在第1〇圖及第u圖中僅 使用氣體狀碳氫化合物供給泵浦5說明進行吸附解吸附操 作時之氣體流量之影響。 在第10圖中,左侧縱轴代表氣體狀碳氫化合物供給泵 浦5之出口壓力(kpa[abs]) ’右侧縱轴代表氣體狀碳氫化合 物供給泵浦5之入口壓力(kPa[abs]) ’橫轴代表氣體流量 (L/min)。又,在第1〇圖中,三角形表示氣體狀碳氫化合物 供給泵浦5之出口壓力,圓形表示氣體狀碳氫化合物供給泵 。之入壓力。在第11圖中,左側縱軸代表氣體溫度 (°C),右側縱軸代表壓縮比(一),橫軸代表氣體流量 34 201100159 α/πηη)。又,在第11圖中,三角形表示氣體溫度,圓形表 示壓縮比。 如第10圖所示,可知隨著氣體流量增大,出口壓力下 降,又’隨著氣體流量增加,入口壓力增加。在再生工程 中,需要提高氣體狀碳氫化合物濃度,所以,需要降低吸 附解吸塔14b内之壓力。換言之,若要氣體狀碳氫化合物濃 度為40vol%,必須使入口壓力在4〇kPa以下。於是,氣體流 量變為在200L/min以下。又,當含有難以液化之丁烷及異 丁烷等時,需要使氣體狀碳氫化合物濃度為6〇v〇1%,於是 必須使入口壓力在30kPa以下。於是,氣體流量變為在 1 OOL/min以下。 如第11圖所示,可知當氣體流量減少時,氣體所持有 的熱減少,所以,氣體溫度上升。當把汽油蒸氣作為氣體 狀碳氫化合物時,汽油蒸氣之自然著火溫度為25〇艺,所 以,氣體溫度需要下降至2〇〇t以下。換言之,若要氣體溫 Q 度為200°c以下’就必須使氣體流量在40L/min以上。基於 這些理由’可知若要僅使用氣體狀碳氫化合物供給泵浦5 進行吸附解吸附操作,宜使氣體流量在4〇〜2〇〇L/min之範 圍内’最好在40〜l〇〇L/min之範圍内。 基於以上之理由’在本第1實施型態之氣體狀碳氫化合 物回收裝置100中’僅使用1個氣體狀碳氫化合物供給泵浦5 進行吸附解吸附操作.,藉由使流入氣體狀碳氫化合物供給 栗浦5之氣體之流量在4〇〜20 〇L/mi η之範圍内,甚至最好在 40〜100L/min之範圍内可效率良好地回收氣體狀碳氫化 35 201100159 合物,進而實現設備使用率之提昇。 在本第1實施型態之乳體狀碳氫化合物回收襞置1〇〇 中’於再生工程中’併用吸附作用與清除氣體所產生之氣 體置換,藉此,進行吸附解吸塔14之再生。不過,當在短 時間内進行吸附解吸塔14之切換時,可盡量減少清除氣體 供、、·〇至吸附解吸塔14之供給動作,亦可停止清除氣體之導 入。藉此’吸附解吸塔14出口之氣體狀碳氫化合物濃度不 會因清除氣體而變得稀薄,於是可在第一熱交換器6以高效 率進行液化’且可以更高效率液化回收氣體狀碳氫化合物。❹ 如上所述,根據本第丨實施型態之氣體狀碳氫化合物回 收裝置100,使複數個吸附解吸塔14在進行吸附時並聯連 接’在進行解吸附時串聯連接,藉此,可僅使用m氣體狀 碳氫化合物供給泵浦5進行吸附解吸附動作。於是,可藉由 複數個吸附解吸塔14進行吸附工程,所以,即使處理氣體 之流量增大,也可使排出氣體極為乾淨(汽油濃度在ΐν〇ι% 以下)。又,即使處理氣體之流量增大,也可在複數個吸附 解吸塔14吸附氣體狀碳氫化合物,且可抑制流入吸附解吸 ◎ 塔14之氣體之速度’進而可以高效率回收氣體狀碳氫化合 物。 根據此氣體狀碳氫化合物回收裝置1〇〇,具備由第一熱 交換器6、第二熱交換器13及熱媒體貯留槽7所組成之冷凝 裝置,所以,可在不降低氣體狀碳氫化合物之液化效率之 情況下’使嚷音不會發生。又’氣體狀碳氣化合物回收裝 置100精心設計所搭載之氣液分離器8之結構,所以,可在 36 201100159 不增大在吸附解吸塔14所使用之吸著劑的情況下,以高效 率液化氣體狀碳氫化合物。 根據此氣體狀碳氫化合物回收裝置100,反覆第一再生 工程與第二再生工程既定次數以回收氣體狀碳氫化合物, 所以,可在不將吸附至吸附解吸塔丨4之碳氫化合物釋放至 外部的情況下進行液化,於是可以高效率回收氣體狀碳氫 化合物。又,可縮小設置於吸附解吸塔丨4上之解吸附相關 設備(氣體狀碳氫化合物供給泵浦5 )之容量,並且,可以高 〇 效率回收氣體狀碳氫化合物。 第2實施型態. 第12圖為概略結構圖,表示本發明第2實施型態之氣體 狀碳氫化合物回收裝置1〇〇 a之電路結構。在此根據第12 圖,說明氣體狀碳氫化合物回收裝置1〇〇3之結構及氣體狀 破氛化合物之流動。此氣體狀碳氫化合物回收裝置丨〇〇a也 和第1貫施型態之氣體狀碳氫化合物回收裝置相同,在 Q 所設置之汽油供油設施中吸附釋放至大氣中之氣體狀碳氫 化合物,再進行解吸附。此外,在第2實施型態中,主要說 明與第1實施型態之不同點,在與第丨實施型態相同之部 分,附加相同符號。 本第2實施型態之氣體狀碳氫化合物回收裝置1〇〇&與 第1實施型態之氣體狀碳氫化合物回收裝置1〇〇之不同點 為,氣體狀碳氫化合物供給泵浦5之下游側具備氣體狀碳氫 化合物濃度測量器31a,氣液分離器8之下游侧具備氣體狀 碳氫化合物濃度測量器31b。氣體狀碳氫化合物濃度測量器 37 201100159 31a及氣體狀碳氫化合物濃度測量器31b用來測量於欲設置 之配管中導通的氣體狀碳氫化合物之濃度。此外,氣體狀 碳氫化合物回收裝置l〇〇a之其他結構與氣體狀碳氫化合物 回收裝置100相同。 第13圖為流程圖,表示氣體狀碳氫化合物回收裝置 100a之再生工程中之處理步驟。在此根據第13圖詳細說明 吸附至吸附解吸塔14的氣體狀碳氫化合物之再生工程。如 在第1實施型態中所說明,在吸附解吸塔丨4之再生工程中, 進行吸附時所使用之2個吸附解吸塔14作串聯連接,在該2 個塔之間連接氣體狀碳氫化合物供給泵浦5、第—熱交換器 6、氣液分離器8 ,然後開始運轉。經過既定時間後,更換 串聯連接之吸附解吸塔14之順序,從任一吸附解吸塔14進 行氣體狀碳氫化合物之再生。反覆此操.作既定次數以進行 氧體狀碳氯化合物之再生。 氣體狀碳氳化合物回收裝置l〇〇a在吸附結束時完全關 閉所有二方閥。氣體狀碳氫化合物回收裝置100&開啟二方 閥16a、二方閥17b、二方閥18a、二方閥19b (步驟S201), 使氣體狀碳氫化合物供給泵浦5運轉(步驟s2〇2),開妒再生 工程(第一工程)。然後,氣體狀碳氫化合物回收裝置 根據氣體狀碳氫化合物濃度測量器31a及氣體狀碳氯化八 物濃度測量器31b所測量出之濃度訊號,進行濃度條件評估 (步驟S203)。亦即,氣體狀碳氫化合物回收裝置1〇仏將氣 體狀碳氫化合物濃度測量器31a及氣體狀碳氫化合物濃产 測量器31b所測量出之濃度訊號傳送至控制裝置5〇,當接收 38 201100159 到既定濃度之訊號時,進行吸附解吸塔14之切換。 當到達用來設定吸附解吸塔14之切換的既定濃度時 (步驟S203,YES) ’氣體狀碳氫化合物回收裝置1〇〇a停止氣 體狀碳氫化合物供給泵浦5(步驟S204),關閉二方閥i6a、 二方閥17b、二方閥18a、二方閥19b(步驟S2〇5)。 當氣體狀碳氫化合物回收裝置1〇〇a結束第一工程(步 驟S201〜步驟S205)時,開始第二工程(步驟sl〇6〜步驟 siio)。氣體狀碳氫化合物回收裝置100開啟二方閥16b、二 方閥17a、二方閥18b、二方閥19a(步驟S2〇6),使氣體狀碳 氫化合物供給泵浦5運轉(步驟S207)。然後,氣體狀碳氫化 合物回收裝置l〇〇a根據氣體狀碳氫化合物濃度測量器31a 及氣體狀碳氫化合物濃度測量器31b所測量出之濃度訊 號’進行濃度條件評估(步驟S208)。 當到達用來設定吸附解吸塔14之切換的既定濃度時 (步驟S2 08,YES) ’氣體狀碳氫化合物回收裝置a停止氣 Ο 體狀碳氫化合物供給泵浦5(步驟S209),關閉二方閥16b、 二方閥17a、二方閥i8b'二方閥19a(步驟S21〇)。當第二工 程、*·〇束時,氣體狀碳氫化合物回收裝置丨再次開始第一 工程(步驟S211)。以設定次數進行此反覆操作後,氣體狀 破氳化合物回收裝置l〇〇a結束一連串之動作(步驟Μ。; YES)。 如此,氣體狀碳氫化合物回收裝置丨〇〇a根據所測量出 之氣體狀碳氫化合物濃度來進行吸附解吸塔14之切換,所 , °效率良好地進行吸附解吸塔14之切換,且可減少用 39 201100159 於液化氣體狀碳氫化合物時所需要之能量。於是,氣體狀 反氫化。物回收装置100a具有第丄實施型態之效果,而且即 使貯藏於吸附解吸塔14之氣體狀碳氫化合物的量產生變 化’也可以冑效率液化回收氣體狀碳氯化合物。 第3實施型態. 第14圖為流程圖’表示本發明第3實施型態之氣體狀碳 氮化口物回收裝置之再生工程中之處理步雜。在此根據第 14圖’詳細說明吸附至本第3實施型態之氣體狀碳氫化合物 回收裝置之吸附解吸塔14的氣體狀碳氫化合物之再生工 程第3實施型態之氣體狀碳氮化合物回收裝置也和第1實 施型態之氣體狀碳氫化合物回收裝置i 〇〇相同,在所設置之 汽油供油設施中吸附釋放至大氣中之氣體狀碳氫化合物, 再進行解吸附。此外,在第3實施型態中,主要說明與第! 實施型態及第2實施型態之不同點,在舆们實施型態及第2 實施型態相同之部分,附加相同符號。 在上述第1實施型態之氣體狀碳氫化合物回收裝置1〇〇 中4於再生工程中動作既定時間時,吸附解吸塔Μ進行 切換’當以既^次數進行該反覆動作時,解吸附動作結束, 再生帛也跟著結束。相對於此,在本第3實施型態之氣體 狀碳氫化合物回收裝晉., W叹发直I以下嚙略圖不,但在說明時將其稱 為氣體狀碳氫化合物回收裝置100b)中,進行再生運轉,亦 即’當吸附解吸塔14進行切換之反覆動作進行既定次數 後’降低氣體流量,吸附解吸塔14進行切換之反覆動作進 行既定次數,再降低流量並進行動作,在既定值慢慢降低 40 201100159 氣體流量。 換言之,在氣體狀碳氫化合物回收裝置1〇〇13中,將要 進行之步驟S301〜步驟S311與第丨實施型態之氣體狀碳氫 化合物回收裝置丨川之將要進行之步驟sl〇1〜步驟“。相 同,只有新增步驟S312這一點不同。在步驟別12中,氣體 狀碳氫化合物回收裝置l〇0b在以設定次數進行第一工程與 第二工程之反覆操作後,進行使氣體流量下降之動作。氣 體流量下降至既定值之後(步驟S312; YES),氣體狀碳氫化 合物回收裝置100b結束一連串之動作。此外,當氣體流量 未下降至既定值時(步驟S312; N0),再度進行第一工程(步 驟S301)。 藉此,氣體狀碳氫化合物回收装置1〇〇1)具有第i實施型 態及第2實施型態之效果,而且,即使貯藏於吸附解吸塔工4 之氣體狀碳氫化合物的量產生變化,也能以高效率液化回 收氣體狀碳氫化合無。又,氣體狀碳氫化合物回收裝置1〇〇七 〇 可減少第一工程與第二工程之反覆次數,所以,具有可在 插時間内再生氣體狀碳氫化合物的效果。 第4實施型態. 第15圖為概略結構圖,用來說明搭載於本發明第4實施 型態之氣體狀碳氩化合物回收裝置的第一熱交換器犯。在 此根據第15圖,詳細說明作為第4實施型態之特徵的第一熱 交換器32。第4實施型態之氣體狀碳氫化合物回收裝置也和 第1貫施型態之氣體狀碳氫化合物回收裝置相同,在所 設置之汽油供油設施中吸附釋放至大氣中之氣體狀碳氯化 41 201100159 合物’再進行解吸附。此外’在第4實施型態中,主要說明 與第1實施型態至第3實施型態之不同點,在與第^實施型態 至第3實施型態相同之部分,附加相同符號。 在本第4實施型態之氣體狀碳氫化合物回收裝置中,第 一熱交換器32之結構舆上述實施型態之氣體狀碳氫化合物 回收裝置不同。第-熱交換器32之基本結構與第一熱交換 器6相同,但是在熱交換部22與合流部“之間的流道(各分 j管35(各傳熱管))上設置氣液分離器(第二氣液分離 器)33。藉由使第一熱交換器犯形成此種結構,可以低流量 分離氣體狀碳氫化合物與液體狀礙氨化合物,進而提高分 離效率。 又,可在合流部23混合氣體狀碳氫化合物與液體狀碳 氫化合物,以抑制壓力損失增加,另外,可使用低容量之 氣體狀碳氩化合物供給泵浦5,於是可獲得能量效率之進一 步提昇基於以上之理由,第4實施型態之氣體狀碳氣化合 物回收裝置具有第1實施型態至第3實施型態的效果,並 旦,藉由在第一熱交換器32之每一個分流管35上設置氣液 分離器33,具有可提高能量效率的效果。 此外,本發明之氣體狀碳氫化合物回收裴置及方法分 別在第1實施型態至第4實施型態中得到說明,然而,理所 當然地,本發明亦可為適當組合各實施型態之特徵的發明。 【圖式簡單說明】 第1圖為表示本發明第1實施型態之氣體狀碳氫化合物 42 201100159 回收裝置之電路結構的概略結構圖。 第2圖為概略結構圖,表千杖 衣不搭載於本發明第1實施型態 之氣體狀碳氫化合物回收裝詈夕楚 衣置之第—熱交換器的結構。 第3圖為概略圖,表元拨人丄# 衣不搭載於本發明第1實施型態之氣 體狀碳氫化合物回收裝詈之查、、六八& 装置之虱液分離器的内部結構。 第4(a)〜(c)圖為圖表,表干f異4ki 衣不霧量對搭載本發明第1實施 型態之氣體狀碳氫化合物时裝置之吸附解吸塔之氣體狀As shown in Fig. 9(b), it can be seen that "the one J J * is slowly lengthened by the switching time, the gaseous hydrocarbon is supplied to the outlet of the pump 5, and the hydrogen compound is not in the first exchanger 6 ^ Lower drop ° This means gas-like", 'Changer 6 liquefaction. In other words, the gas-like hydrocarbon column discharged from the adsorption desorption 瘩 14b is wasted. On the other hand, only the direct movement to the adsorption desorption aspect is as shown in Fig. 9(c), and it is understood that the switching time is gradually shortened by 33 201100159, and the decrease in the outlet concentration of the gaseous hydrocarbon supply pump 5 is suppressed. Thus, it is understood that the difference between the outlet concentration of the gaseous hydrocarbon supply pump 5 and the outlet concentration of the gas-liquid separator 8 is liquefied, and by switching, the gaseous hydrocarbon can be efficiently liquefied. For the above reasons, it is understood that the gaseous hydrocarbon can be efficiently liquefied by gradually increasing (shortening) the switching time of the adsorption/desorption column 14. Therefore, in the gas-like hydrocarbon recovery unit (10) of the first embodiment, the energy-efficiency is improved by gradually increasing the switching time of the adsorption/desorption column 14. Figure 10 is a graph showing the relationship between the gas flow rate and the inlet pressure and outlet pressure of the gaseous hydrocarbon feed pump 5. The second diagram is a graph showing the relationship between gas flow and gas temperature. Here, the influence of the gas flow rate on the inlet pressure and the outlet pressure of the gaseous hydrocarbon supply pump 5 will be described based on Figs. 1 and 11 . The use of the gaseous hydrocarbon supply pump 5 in the first and second figures illustrates the effect of the gas flow rate during the adsorption desorption operation. In Fig. 10, the left vertical axis represents the outlet pressure of the gaseous hydrocarbon supply pump 5 (kpa[abs]). The right vertical axis represents the inlet pressure of the gaseous hydrocarbon supply pump 5 (kPa [ Abs]) 'The horizontal axis represents the gas flow rate (L/min). Further, in the first diagram, the triangle indicates the outlet pressure of the gaseous hydrocarbon supply pump 5, and the circle indicates the gaseous hydrocarbon supply pump. Into the pressure. In Fig. 11, the left vertical axis represents the gas temperature (°C), the right vertical axis represents the compression ratio (1), and the horizontal axis represents the gas flow rate 34 201100159 α/πηη). Further, in Fig. 11, a triangle indicates a gas temperature, and a circle indicates a compression ratio. As shown in Fig. 10, it can be seen that as the gas flow rate increases, the outlet pressure drops, and as the gas flow rate increases, the inlet pressure increases. In the regeneration process, it is necessary to increase the concentration of gaseous hydrocarbons, so it is necessary to lower the pressure in the adsorption/desorption column 14b. In other words, if the concentration of the gaseous hydrocarbon is 40 vol%, the inlet pressure must be 4 kPa or less. Thus, the gas flow rate becomes 200 L/min or less. Further, when a butane or an isobutane which is difficult to be liquefied is contained, it is necessary to set the gaseous hydrocarbon concentration to 6 〇 v 〇 1%, so that the inlet pressure must be 30 kPa or less. Thus, the gas flow rate becomes below 1 OOL/min. As shown in Fig. 11, it is understood that when the gas flow rate is decreased, the heat held by the gas is reduced, so that the gas temperature rises. When gasoline vapor is used as a gaseous hydrocarbon, the natural ignition temperature of gasoline vapor is 25 ,, so the gas temperature needs to drop below 2 〇〇t. In other words, if the gas temperature Q degree is 200 ° C or less, the gas flow rate must be 40 L/min or more. For these reasons, it is known that if only the gaseous hydrocarbon is supplied to the pump 5 for the adsorption desorption operation, the gas flow rate should be in the range of 4 〇 2 〇〇 L/min 'preferably 40 〇〇 l 〇〇 Within the range of L/min. For the above reasons, 'in the gaseous hydrocarbon recovery device 100 of the first embodiment', only one gaseous hydrocarbon is supplied to the pump 5 for adsorption desorption operation. The flow rate of the hydrogen compound to the Lipu 5 gas is in the range of 4 〇 20 20 L / mi η, and it is even better to recover the gaseous hydrocarbon hydride 35 201100159 compound even in the range of 40 〜 100 L / min. In turn, the device usage rate is improved. In the emulsion-type hydrocarbon recovery device of the first embodiment, the gas is displaced by the adsorption and the gas generated by the purge gas, and the regeneration of the adsorption/desorption column 14 is performed. However, when the switching of the adsorption/desorption column 14 is performed in a short period of time, the supply operation of the purge gas supply, the helium to the adsorption/desorption column 14 can be minimized, and the introduction of the purge gas can be stopped. Thereby, the concentration of the gaseous hydrocarbon at the outlet of the adsorption desorption column 14 is not thinned by the purge gas, so that the first heat exchanger 6 can be liquefied with high efficiency, and the gaseous carbon can be recovered by liquefaction with higher efficiency. Hydrogen compound. ❹ As described above, according to the gas-like hydrocarbon recovery device 100 of the present embodiment, the plurality of adsorption/desorption columns 14 are connected in parallel when performing adsorption, and are connected in series when desorption is performed, whereby only a single connection can be used. The m gaseous hydrocarbon is supplied to the pump 5 for adsorption desorption. Therefore, the adsorption process can be performed by a plurality of adsorption/desorption columns 14, so that even if the flow rate of the processing gas is increased, the exhaust gas can be extremely clean (the gasoline concentration is ΐν〇% or less). Further, even if the flow rate of the processing gas is increased, the gaseous hydrocarbons can be adsorbed in the plurality of adsorption/desorption columns 14, and the velocity of the gas flowing into the adsorption desorption column 14 can be suppressed, and the gaseous hydrocarbons can be recovered with high efficiency. . According to the gas-like hydrocarbon recovery device 1 〇〇, the condensing device comprising the first heat exchanger 6, the second heat exchanger 13, and the heat medium storage tank 7 is provided, so that the gaseous hydrocarbon can be prevented from being lowered. In the case of the liquefaction efficiency of the compound, 'the arpeggio does not occur. Further, the gas-carbon gas compound recovery device 100 is designed to have a structure of the gas-liquid separator 8 mounted thereon. Therefore, it is possible to increase the efficiency of the adsorbent used in the adsorption/desorption column 14 at 36 201100159 without increasing the efficiency. Liquefied gaseous hydrocarbons. According to the gaseous hydrocarbon recovery device 100, the first regeneration process and the second regeneration process are repeated a predetermined number of times to recover gaseous hydrocarbons, so that hydrocarbons adsorbed to the adsorption desorption column 4 are not released to Liquefaction is carried out in the external case, so that gaseous hydrocarbons can be recovered with high efficiency. Further, the capacity of the desorption-related equipment (gas-like hydrocarbon supply pump 5) provided on the adsorption-desorption column 4 can be reduced, and the gaseous hydrocarbon can be recovered with high efficiency. (Second Embodiment) Fig. 12 is a schematic configuration view showing a circuit configuration of a gaseous hydrocarbon recovery device 1A according to a second embodiment of the present invention. Here, the structure of the gaseous hydrocarbon recovery device 1〇〇3 and the flow of the gaseous aerosol compound will be described based on Fig. 12 . This gaseous hydrocarbon recovery unit 丨〇〇a is also the same as the gaseous hydrocarbon recovery unit of the first embodiment, and adsorbs gaseous hydrocarbons released into the atmosphere in the gasoline supply facility provided by Q. The compound is further desorbed. In the second embodiment, the differences from the first embodiment will be mainly described, and the same portions as those in the third embodiment will be denoted by the same reference numerals. The gas-like hydrocarbon recovery device 1 of the second embodiment is different from the gas-like hydrocarbon recovery device 1 of the first embodiment in that a gaseous hydrocarbon is supplied to the pump 5 The downstream side is provided with a gaseous hydrocarbon concentration measuring device 31a, and the downstream side of the gas-liquid separator 8 is provided with a gaseous hydrocarbon concentration measuring device 31b. The gaseous hydrocarbon concentration measuring device 37 201100159 31a and the gaseous hydrocarbon concentration measuring device 31b are used to measure the concentration of the gaseous hydrocarbon which is turned on in the pipe to be set. Further, the other structure of the gaseous hydrocarbon recovery device 10a is the same as that of the gaseous hydrocarbon recovery device 100. Figure 13 is a flow chart showing the processing steps in the regeneration process of the gaseous hydrocarbon recovery unit 100a. Here, the regeneration of the gaseous hydrocarbon adsorbed to the adsorption/desorption column 14 will be described in detail based on Fig. 13. As described in the first embodiment, in the regeneration process of the adsorption/desorption column 4, two adsorption/desorption columns 14 used for adsorption are connected in series, and gaseous hydrocarbons are connected between the two columns. The compound is supplied to the pump 5, the first heat exchanger 6, and the gas-liquid separator 8, and then starts to operate. After a predetermined period of time, the order of the adsorption desorption columns 14 connected in series is replaced, and the regeneration of the gaseous hydrocarbons is carried out from any of the adsorption desorption columns 14. Repeat this operation for a predetermined number of times to carry out the regeneration of oxygenated chlorocarbons. The gaseous carbonium compound recovery unit 10a completely closes all the two square valves at the end of the adsorption. The gaseous hydrocarbon recovery device 100& opens the two-way valve 16a, the two-way valve 17b, the two-way valve 18a, and the two-way valve 19b (step S201), and supplies the gaseous hydrocarbon to the pump 5 (step s2〇2) ), reclamation regeneration project (first project). Then, the gaseous hydrocarbon recovery device performs concentration condition evaluation based on the concentration signal measured by the gaseous hydrocarbon concentration measuring device 31a and the gaseous carbon chloride concentration measuring device 31b (step S203). That is, the gaseous hydrocarbon recovery device 1 transmits the concentration signal measured by the gaseous hydrocarbon concentration measuring device 31a and the gaseous hydrocarbon rich measuring device 31b to the control device 5, when receiving 38 201100159 When the signal to the given concentration is reached, the switching of the adsorption desorption column 14 is performed. When the predetermined concentration for setting the switching of the adsorption/desorption column 14 is reached (step S203, YES), the gaseous hydrocarbon recovery device 1A stops the gaseous hydrocarbon supply pump 5 (step S204), and the second is turned off. The square valve i6a, the two-way valve 17b, the two-way valve 18a, and the two-way valve 19b (step S2〇5). When the gaseous hydrocarbon recovery device 1a ends the first process (steps S201 to S205), the second process is started (steps sl6 to step siio). The gaseous hydrocarbon recovery device 100 opens the two-way valve 16b, the two-way valve 17a, the two-way valve 18b, and the two-way valve 19a (step S2〇6), and supplies the gaseous hydrocarbon supply pump 5 (step S207). . Then, the gaseous hydrocarbon recovery device 10a performs concentration condition evaluation based on the concentration signal measured by the gaseous hydrocarbon concentration measuring device 31a and the gaseous hydrocarbon concentration measuring device 31b (step S208). When the predetermined concentration for setting the switching of the adsorption/desorption column 14 is reached (step S2 08, YES), the gaseous hydrocarbon recovery device a stops the gas-like hydrocarbon supply pump 5 (step S209), and the second is turned off. The square valve 16b, the two-way valve 17a, and the two-way valve i8b' two-way valve 19a (step S21A). When the second process is completed, the gaseous hydrocarbon recovery unit 丨 starts the first project again (step S211). After the repeated operation is performed for the set number of times, the gas-like breaking compound recovery device 10a ends a series of actions (step Μ; YES). In this manner, the gaseous hydrocarbon recovery unit 丨〇〇a performs the switching of the adsorption/desorption column 14 based on the measured gaseous hydrocarbon concentration, so that the adsorption/desorption column 14 is efficiently switched, and the reduction can be reduced. Use 39 201100159 for the energy required to liquefy gaseous hydrocarbons. Thus, the gas is reversely hydrogenated. The material recovery device 100a has the effect of the second embodiment, and even if the amount of gaseous hydrocarbons stored in the adsorption/desorption column 14 is changed, the gaseous chlorocarbon compound can be recovered by liquefaction. Third Embodiment FIG. 14 is a flowchart showing the processing steps in the regeneration process of the gaseous carbonitride battery recovery apparatus according to the third embodiment of the present invention. Here, the gas-like carbon-nitrogen compound of the third embodiment of the regeneration process of the gaseous hydrocarbon adsorbed to the adsorption/desorption column 14 of the gaseous hydrocarbon recovery device of the third embodiment will be described in detail with reference to FIG. Similarly to the gaseous hydrocarbon recovery device i of the first embodiment, the recovery device adsorbs gaseous hydrocarbons released into the atmosphere in the installed gasoline fuel supply facility, and desorbs them. In the third embodiment, differences from the second embodiment and the second embodiment will be mainly described, and the same reference numerals will be given to the same portions as those of the second embodiment. When the gas-like hydrocarbon recovery device 1 of the first embodiment is operated for a predetermined period of time in the regeneration process, the adsorption/desorption column is switched "when the reverse operation is performed for the number of times, the desorption operation is performed. At the end, the regeneration 帛 also ends. On the other hand, in the third embodiment, the gaseous hydrocarbon recovery device is not shown in the following description, but it is referred to as a gaseous hydrocarbon recovery device 100b in the description. In the regenerative operation, that is, when the adsorption/desorption column 14 performs the switching operation for a predetermined number of times, the gas flow rate is decreased, and the adsorption/desorption column 14 performs the switching operation for a predetermined number of times, and then the flow rate is decreased and operated at a predetermined value. Slowly reduce the gas flow rate by 40 201100159. In other words, in the gaseous hydrocarbon recovery device 1〇〇13, the steps S301 to S311 to be performed and the gas-like hydrocarbon recovery device of the third embodiment are carried out, steps s1 to 1 "The same, only the new step S312 is different. In the step 12, the gaseous hydrocarbon recovery device 10b is subjected to the reverse operation of the first and second works at the set number of times, and then the gas flow is performed. After the gas flow rate drops to a predetermined value (step S312; YES), the gaseous hydrocarbon recovery device 100b ends the series of operations. Further, when the gas flow rate has not decreased to a predetermined value (step S312; N0), again The first process is performed (step S301). Thereby, the gaseous hydrocarbon recovery device 1〇〇1) has the effects of the i-th embodiment and the second embodiment, and is stored in the adsorption desorption tower 4 The amount of gaseous hydrocarbons is changed, and it is also possible to liquefy and recover hydrocarbons with high efficiency. In addition, the gaseous hydrocarbon recovery device can be used. Since the number of times of repetition of the first process and the second process is reduced, the effect of regenerating gaseous hydrocarbons during the insertion time is obtained. Fourth embodiment. FIG. 15 is a schematic structural view for explaining the present invention. The first heat exchanger of the gaseous carbon argon compound recovery apparatus of the fourth embodiment is exemplified. Here, the first heat exchanger 32 which is a feature of the fourth embodiment will be described in detail based on Fig. 15. The gas-like hydrocarbon recovery device of the state is also the same as the gas-like hydrocarbon recovery device of the first embodiment, and is adsorbed and released into the atmosphere in the gas supply facility of the gasoline supply. Further, in the fourth embodiment, the difference from the first embodiment to the third embodiment will be mainly described, and the same as the third to third embodiments. In the gas-like hydrocarbon recovery device of the fourth embodiment, the structure of the first heat exchanger 32 is different from that of the gaseous hydrocarbon recovery device of the above-described embodiment. The first heat exchange 3 The basic structure of 2 is the same as that of the first heat exchanger 6, but a gas-liquid separator is provided on the flow path between the heat exchange portion 22 and the merging portion (each sub-tube 35 (each heat transfer tube)) (second Gas-liquid separator) 33. By forming the first heat exchanger into such a structure, it is possible to separate the gaseous hydrocarbon and the liquid ammonia compound at a low flow rate, thereby improving the separation efficiency. Further, a gaseous hydrocarbon and a liquid hydrocarbon can be mixed in the merging portion 23 to suppress an increase in pressure loss, and a pump 5 can be supplied using a low-volume gaseous argon compound, so that further energy efficiency can be obtained. For the above reasons, the gas-like carbon-gas compound recovery device of the fourth embodiment has the effects of the first embodiment to the third embodiment, and is shunted by each of the first heat exchangers 32. The gas-liquid separator 33 is provided on the tube 35, and has an effect of improving energy efficiency. Further, the gaseous hydrocarbon recovery device and method of the present invention are described in the first embodiment to the fourth embodiment, respectively, but it is a matter of course that the present invention can also appropriately combine the features of the respective embodiments. Invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic block diagram showing a circuit configuration of a gas-based hydrocarbon compound 42 201100159 recovery apparatus according to a first embodiment of the present invention. Fig. 2 is a schematic view showing the structure of a heat exchanger in which the gas-shaped hydrocarbon recovery device of the first embodiment of the present invention is not mounted on the first heat exchanger of the first embodiment of the present invention. Fig. 3 is a schematic view showing the internal structure of a liquid separator which is not mounted on the gas-like hydrocarbon recovery device of the first embodiment of the present invention and the liquid separation device of the six-eighth & . 4(a) to (c) are graphs showing the gas content of the adsorption desorption column of the apparatus when the gas-like hydrocarbon of the first embodiment of the present invention is mounted.

碳氫化合物之出口濃度的影響受到檢驗之後的結果。 第5圖為電路圖’表示本發明筮1音故系 f月第1實施型態之氣體狀碳 氫化合物回收裝置之再生工 〒之氣體狀碳氮化合物之流 動情況。 第6圖為流程圖,表示本發明第1實施型態之氣體狀碳 氫化合物回收裝置之再生工程中之處理步驟。 第7圓為圖表,表示本發明第1實施型態之氣體狀碳氫 化合物回收裝置之+ 私中之氟體狀碳氫化合物供給泵 浦之出H氣液分離器之出口濃度及吸附解吸塔之出 口濃度與時間變化之間的關係。 第8圖為圖表’表示本發明第1實施型態之氣體狀碳氫 化合物回收裝置之再生工程中之切換時間與吸附解吸塔之 出口濃度之間的關係。 *第9(a)〜⑷圖為圖表,表示本發明第^實施型態之氣體 狀叙氫化合物回收裝置之再生工程中之氣體狀錢化合物 供給栗浦之出σ濃度及氣液分離器之出口濃度與時間變化 之間的關係。 43 201100159 第10圖為圖表,表示本發明第1實施型態之氣體狀碳氫 化合物回收裝置之氣體流量與氣體狀碳氫化合物供給泵浦 之入口壓力及出口壓力之間的關係。 第11圖為圖表,表示本發明第丨實施型態之氣體狀碳氫 化合物回收裝置之氣體流量與氣體溫度之間的關係。 第12圖為概略結構圖,表示本發明第2實施型態之氣體 狀碳氫化合物回收裝置之電路結構。 第13圖為流程圖,表示本發明楚9杳—&执 ^ I明第2實施型態之氣體狀碳 氮化合物回收裝置之再生工程中之處理步驟。 第14圖為流程圖,表示本發明^ , + 1明第3實施型態之氣體狀碳 氫化合物回收裝置之再生工程中之處理步驟。 第15圖為概略結構圖,用來說 剂能# 月搭載於本發明第4實施 i態之氣體狀碳氫化合物回收事番 瑕置的第—熱交換器。 【主要元件符號說明】 1汽油貯藏槽 2供油管路 3三方切換閥 3a三方切換閥 3b三方切換閥 4壓力調整閥 5氣體狀碳氫化合物供給栗潘(i甫 6第一熱交換器 7熱媒體貯留槽 44 201100159 8氣液分離器 9液體狀碳氫化合物貯留槽 10液體狀碳氫化合物用電磁閥 11液體循環泵浦 12冷凍機 1 3第二熱交換器 14吸附解吸塔 14a吸附解吸塔 〇 14b吸附解吸塔 15壓力控制器 1 6 a二方閥 16b二方閥 17a二方閥 17b二方閥 18a二方閥 18b二方閥 〇 19a二方閥 19b二方閥 20流量控制器 21分歧部 22熱交換部 23合流部 24氣體狀碳氫化合物出口 2 5離心分離部 45 201100159 2 6氣液混合物入口 27液體狀碳氫化合物貯留部 28液體狀碳氫化合物出口 2 9錐狀絲網 3 0隔熱材料 31 a氣體狀碳氫化合物濃度測量器 31b氣體狀碳氫化合物濃度測量器 32第一熱交換器 33氣液分離器 35分流管 50控制裝置 100氣體狀碳氫化合物回收裝置 100a氣體狀碳氫化合物回收裝置 y 46The effect of the export concentration of hydrocarbons is the result of the test. Fig. 5 is a circuit diagram showing the flow of gaseous carbon-nitrogen compounds in the regeneration process of the gas-like hydrocarbon recovery device of the first embodiment of the present invention. Fig. 6 is a flow chart showing the processing steps in the regeneration of the gaseous hydrocarbon recovery apparatus of the first embodiment of the present invention. The seventh circle is a graph showing the outlet concentration of the gas-liquid hydrocarbon recovery device of the first embodiment of the present invention, the fluorine-like hydrocarbon supply pump of the private gas, and the adsorption and desorption column of the H gas-liquid separator. The relationship between the concentration of the outlet and the change in time. Fig. 8 is a graph showing the relationship between the switching time in the regeneration process of the gaseous hydrocarbon recovery device according to the first embodiment of the present invention and the outlet concentration of the adsorption/desorption column. * Figures 9(a) to (4) are graphs showing the sigma concentration of the gas-like money compound supplied to the Lipu and the gas-liquid separator in the regeneration process of the gas-like hydrogen compound recovery device of the first embodiment of the present invention. The relationship between outlet concentration and time changes. 43 201100159 Fig. 10 is a graph showing the relationship between the gas flow rate of the gaseous hydrocarbon recovery device of the first embodiment of the present invention and the inlet pressure and outlet pressure of the gaseous hydrocarbon supply pump. Fig. 11 is a graph showing the relationship between the gas flow rate and the gas temperature of the gas-like hydrocarbon recovery device of the third embodiment of the present invention. Fig. 12 is a schematic structural view showing the circuit configuration of a gaseous hydrocarbon recovery device according to a second embodiment of the present invention. Fig. 13 is a flow chart showing the processing steps in the regeneration of the gaseous carbon-nitrogen compound recovery apparatus of the second embodiment of the present invention. Fig. 14 is a flow chart showing the processing steps in the regeneration process of the gas-like hydrocarbon recovery apparatus of the third embodiment of the present invention. Fig. 15 is a schematic structural view showing a first heat exchanger in which a gaseous hydrocarbon recovery device of the fourth embodiment of the present invention is installed. [Main component symbol description] 1 gasoline storage tank 2 oil supply pipeline 3 three-way switching valve 3a three-way switching valve 3b three-way switching valve 4 pressure regulating valve 5 gas-like hydrocarbon supply chestnut (i甫6 first heat exchanger 7 Heat medium storage tank 44 201100159 8 gas-liquid separator 9 liquid hydrocarbon storage tank 10 liquid hydrocarbon solenoid valve 11 liquid circulation pump 12 refrigerator 1 3 second heat exchanger 14 adsorption desorption tower 14a adsorption desorption Tower 14b adsorption desorption tower 15 pressure controller 1 6 a two-way valve 16b two-way valve 17a two-party valve 17b two-party valve 18a two-party valve 18b two-party valve 〇 19a two-way valve 19b two-party valve 20 flow controller 21 Divergence portion 22 Heat exchange portion 23 Confluence portion 24 Gas-like hydrocarbon outlet 2 5 Centrifugal separation portion 45 201100159 2 6 Gas-liquid mixture inlet 27 Liquid hydrocarbon storage portion 28 Liquid hydrocarbon outlet 2 9 Conical wire mesh 30 0 heat insulating material 31 a gas hydrocarbon concentration measuring device 31 b gas hydrocarbon concentration measuring device 32 first heat exchanger 33 gas liquid separator 35 shunt tube 50 control device 100 gaseous hydrocarbon recovery Counter 100a gaseous hydrocarbon recovery y 46

Claims (1)

201100159 七、申請專利範圍: 1. 一種氣體狀碳氫化合物回收裝置,其特徵在於具有: 泵浦,從汽油貯藏槽吸引氣體狀碳氫化合物; 冷凝裝置’冷卻並冷凝上述泵浦所吸引之氣體狀碳氫 化合物; 氣液分離器,分離被上述冷凝裝置冷凝後之液體狀碳 氫化合物與無法被上述冷凝裝置冷凝之氣體狀碳氫化合 物;及 〇 複數個吸附解吸塔’吸附並解吸從上述氣液分離器流 出之氣體狀碳氨化合物; 當吸附氣體狀碳氫化合物時,從上述氣液分離器流出 之氣體狀碳氫化合物流入上述複數個吸附解吸塔,當解吸 氣體狀碳氫化合物時’上述複數個吸附解吸塔中至少其中 一個吸附解吸塔連接至上述泵浦之上游側。 2. 如申請專利範圍第1項之氣體狀碳氫化合物回收裝 〇 置’其中’具備用來切換從上述氣液分離器流出之氣髏狀 石反氫化合物之流道及上述複數個吸附解吸塔之氣體出口的 流道切換閥’藉由上述流道切換闊,當吸附氣體狀碳氳化 σ物時使從上述氣液分離器流出之氣體狀碳氫化合物流 入上述複數個吸附解吸塔以切換流道,當解吸氣體狀碳氫 化合物時,使上述複數個吸附解吸塔中至少其中—個吸附 解吸塔之氣體出口連接至上述泵浦之上游侧以切換流道。 3·如申請專利範圍第1或2項之氣體狀碳氫化合物餌收 裝置,其中,上述冷凝裝置至少具有: 47 201100159 第一熱交換器,可進行氣體狀碳氫化合物之熱傳導; ^ ’、、父換,可進行從冷凍機供給之冷媒之熱傳 導;及 熱媒體貯留槽’可貯留藉由上述第一熱交換器及上述 第二熱交換器進行熱交換之熱媒體。 4. 如申請專利範圍第1或2項之氣體狀碳氳化合物回收 、’、中_L述第―熱父換器及上述第二熱交換器以約 略水平位置。又置於上述熱媒體貯留槽内,上述第一熱交換 ,之氣體狀碳氫化合物人σ設置於上部,上述第二熱交換 器之冷媒入口設置於下部。 5. 如申請專利範圍第1或2項之氣體狀碳氫化合物回收 裝置,其中’上述第-熱交換器具有: 分:部,分割已流入之氣體狀碳氫化合物之氣流; 了交換郤,***由上述分歧部所分歧之複數個傳熱管; 合流部,合流從上述熱交換部排出之氣體狀碳氫化合 物與液體狀碳氫化合物;及 氧液分離器,設置於上述熱交換部與上述合流部之間 之流道上。 6. 如申請專利範圍第丨或2項之氣體狀碳氫化合物回收 裝置,其中’上述氣液分離器具有: 氣液刀離部’分離氣體狀碳氫化合物與液體狀碳氫化 合物; 霧氣去除部,分離上述氣液分離部所產生之霧狀碳氫 化合物與氣體狀碳氫化合物。 48 201100159 7·如申請專利範圍第1或2項之氣體狀碳氫化合物回收 裝置’其中’上述霧氣去除部為錐狀絲網結構。 8. —種氣體狀碳氫化合物回收方法,其特徵在於包含·· 工程’吸引氣體狀碳氫化合物,冷卻並冷凝所吸引 之氣體狀碳氫化合物,使未冷凝完成之氣體狀碳氫化合物 分歧並流入複數個吸附解吸塔,在各個吸附解吸塔中吸附 氣體狀碳虱化合物; 工程二’停止上述氣體狀碳氫化合物之吸引; 第一再生工程’吸附並解吸用來吸附氣體狀碳氫化合 物之2個吸附解吸塔中其中一個吸附解吸塔所吸附之氣體 狀碳氫化合物,藉由另一個吸附解吸塔吸附將該氣體狀碳 氫化合物液化後所殘留下來之氣體狀碳氳化合物; 第二再生工程_,上述另一個吸附解吸塔連接至上游 側,吸附並解吸上述另一個吸附解吸塔所吸附之氣體狀碳 氫化合物,藉由上述另一個吸附解吸塔吸附將該氣體狀碳 〇 氫化合物液化後所殘留下來之氣體狀碳氫化合物;及 工程二’反覆上述第一再生工程與第二再生工程既定 次數。 9. 如申請專利範圍第8項之氣體狀碳氫化合物回收方 法,其中,從勒次之上述第一再生工程切換至上述第二再 生工程之切換時間設定得比從後來之上述第一再生工程切 換至上述第二再生工程之切換時間短。 1 〇.如申請專利範圍第9項之氣體狀碳氩化合物回收方 法,其中,從上述初次之上述第一再生工程切換至上述第 49 201100159 —再生工程之切換時間設定為0.5〜2分鐘。 、、如申咕專利範圍第9或項之氣體狀碳氫化合物回 法/、中,上述第一再生工程與上述第二再生工程之 反覆時間設定為隨著時間變短。 12. 如_請專利範圍第9或_之氣體狀碳氫化合物回 =其中,在上述第一再生工程及上述第二再生工程 ’氣體狀碳氫化合物之氣體流量設定為4(M00L/min。 13. 如申料利範圍第9或1()項之氣體狀碳氫化合物回 收方法,其中,設置: 泉浦吸引氣體狀碳氫化合物;及 氣液刀離器,刀離氣體狀碳氯化合物與液體狀碳氣化 上述第一再生工 出口及上述氣液分離 既定次數。 程與上述第二再生工程根據上述泵浦 器出口之氣體狀碳氫化合物濃度反覆 14.如申請專利範圍第9或1()項之氣體狀碳氫化合物回 法/、中在上述栗浦出口及上述氣液分離器出口設 有用來測4㈣狀碳氫^物之濃度的氣體狀錢化合物 濃度測量器,在上料浦出口及上述氣液分離器出口測量 氣體狀碳氫化合物之濃度。 收 工 再 15.如申請專利範圍第9或1〇項 方法,其中,在反覆上述第一再 程既定次數之工程結東後 之氣體狀碳氣化合物回 生工程與上述第二再生 度反覆上述第一再生工程與 減少將要吸引之氣體流量 上述第二再生工程既定次 50 201100159 數0201100159 VII. Patent application scope: 1. A gaseous hydrocarbon recovery device characterized by: pumping to attract gaseous hydrocarbons from a gasoline storage tank; condensing device 'cooling and condensing gas attracted by the pump a gas-liquid separator, separating a liquid hydrocarbon condensed by the condensing device and a gaseous hydrocarbon which cannot be condensed by the condensing device; and 〇 a plurality of adsorption desorption columns 'adsorbing and desorbing from the above a gas-like carbon ammonia compound flowing out of the gas-liquid separator; when adsorbing gaseous hydrocarbons, gaseous hydrocarbons flowing out from the gas-liquid separator flow into the plurality of adsorption desorption columns, when desorbing gaseous hydrocarbons At least one of the adsorption desorption columns in the plurality of adsorption desorption columns is connected to the upstream side of the pump. 2. The gas-like hydrocarbon recovery device of the first aspect of the patent application includes 'the flow path for switching the gas-like stone antihydrogen compound flowing out from the gas-liquid separator and the plurality of adsorption desorptions The flow path switching valve of the gas outlet of the tower is widened by the above-mentioned flow passage, and when gaseous gas carbonized σ is adsorbed, the gaseous hydrocarbon flowing out from the gas-liquid separator flows into the plurality of adsorption desorption towers. The flow path is switched, and when the gaseous hydrocarbon is desorbed, at least one of the plurality of adsorption desorption columns is connected to the upstream side of the pump to switch the flow path. 3. The gas-like hydrocarbon bait receiving device according to claim 1 or 2, wherein the condensing device has at least: 47 201100159 The first heat exchanger can perform heat conduction of gaseous hydrocarbons; ^ ', The father exchanges heat transfer from the refrigerant supplied from the freezer; and the heat medium storage tank' stores a heat medium for heat exchange by the first heat exchanger and the second heat exchanger. 4. The gas-like carbon ruthenium compound of claim 1 or 2 is recovered, and the middle heat exchanger and the second heat exchanger are approximately horizontally positioned. Further, in the heat medium storage tank, the first heat exchange, the gaseous hydrocarbon σ is provided on the upper portion, and the refrigerant inlet of the second heat exchanger is disposed on the lower portion. 5. The gas-like hydrocarbon recovery device according to claim 1 or 2, wherein the first heat exchanger has: a portion: a gas stream that divides a gaseous hydrocarbon that has flowed in; Inserting a plurality of heat transfer tubes that are branched by the branching portion; a merging portion that merges gaseous hydrocarbons and liquid hydrocarbons discharged from the heat exchange unit; and an oxygen liquid separator that is disposed in the heat exchange unit Above the flow path between the junctions. 6. For the gas-like hydrocarbon recovery device of claim 丨 or 2, wherein the above-mentioned gas-liquid separator has: a gas-liquid knife away from the separation of gaseous hydrocarbons and liquid hydrocarbons; The mist-like hydrocarbon and the gaseous hydrocarbon generated by the gas-liquid separation unit are separated. 48 201100159 7. The gas-like hydrocarbon recovery device according to claim 1 or 2, wherein the mist removal portion has a tapered mesh structure. 8. A method for recovering gaseous hydrocarbons, comprising: engineering 'attracting gaseous hydrocarbons, cooling and condensing the gaseous hydrocarbons attracted, so that the gaseous hydrocarbons that are not condensed are divergent And flowing into a plurality of adsorption desorption towers, adsorbing gaseous carbonium compounds in each adsorption desorption tower; Engineering 2 'stopping the attraction of the gaseous hydrocarbons; First regeneration engineering 'adsorption and desorption' for adsorbing gaseous hydrocarbons a gas-like hydrocarbon adsorbed by one of the adsorption and desorption columns of the two adsorption and desorption columns, and a gaseous carbon-carbon compound remaining after liquefying the gaseous hydrocarbon by another adsorption desorption column; Regeneration project_, the other adsorption desorption column is connected to the upstream side, adsorbs and desorbs the gaseous hydrocarbon adsorbed by the other adsorption desorption column, and adsorbs the gaseous carbon hydrogen compound by the other adsorption desorption column Gas-like hydrocarbons remaining after liquefaction; and Engineering II' repeating the above first Health regeneration project engineering and the second predetermined number of times. 9. The method for recovering a gaseous hydrocarbon according to claim 8 wherein the switching time from the first regeneration of the first to the second regeneration is set to be higher than the first regeneration from the later The switching time to switch to the above second regeneration project is short. 1 . The method for recovering a gaseous carbon argon compound according to claim 9 wherein the switching time from the first first regeneration project to the 49th 201100159 - regeneration project is set to 0.5 to 2 minutes. For example, in the gaseous hydrocarbon recovery method of claim 9 or the above, the repetition time of the first regeneration project and the second regeneration project is set to be shorter as time passes. 12. The gas flow rate of the gas-like hydrocarbon in the first regeneration process and the second regeneration process is set to 4 (M00L/min). 13. For the recovery of gaseous hydrocarbons in the scope of claim 9 or 1 (), where: set: Quanpu attracts gaseous hydrocarbons; and gas-liquid knife remover, knife-off gas-like chlorocarbons Gasifying the first regenerant outlet with the liquid carbon and the gas-liquid separation for a predetermined number of times. The second regeneration process is repeated according to the gaseous hydrocarbon concentration of the pump outlet. 14. In the gaseous hydrocarbon recovery method of the item 1 (), a gas-like money compound concentration measuring device for measuring the concentration of the 4 (tetra) hydrocarbon is provided at the above-mentioned pump outlet and the gas-liquid separator outlet. The concentration of gaseous hydrocarbons is measured at the outlet of the slurry and the outlet of the gas-liquid separator. The work is repeated. 15. If the method of claim 9 or 1 is applied, the work of repeating the first number of times is repeated. Cheng Jiedong's gas-like carbon-gas compound retrogradation project and the above-mentioned second regeneration degree repeat the above-mentioned first regeneration project and reduce the gas flow rate to be attracted. The second regeneration project is determined to be 50 201100159 number 0
TW098135364A 2009-06-18 2009-10-20 Gas - like hydrocarbon recovery device and method TWI413544B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145490A JP5044764B2 (en) 2009-06-18 2009-06-18 Gaseous hydrocarbon recovery apparatus and method

Publications (2)

Publication Number Publication Date
TW201100159A true TW201100159A (en) 2011-01-01
TWI413544B TWI413544B (en) 2013-11-01

Family

ID=43366688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098135364A TWI413544B (en) 2009-06-18 2009-10-20 Gas - like hydrocarbon recovery device and method

Country Status (4)

Country Link
JP (1) JP5044764B2 (en)
KR (1) KR101103228B1 (en)
CN (1) CN101927099A (en)
TW (1) TWI413544B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795411B2 (en) * 2011-02-07 2014-08-05 Air Products And Chemicals, Inc. Method for recovering high-value components from waste gas streams
CN103100233A (en) * 2011-11-10 2013-05-15 浙江大江山泵阀制造有限公司 Comprehensive treatment method for organic solvent recovery and tail gas absorption during bulk drug drying process, and treatment system for achieving the same
CN102553288B (en) * 2012-02-17 2014-04-16 核工业理化工程研究院华核新技术开发公司 Energy-saving air pretreatment system for separate type heat pipe
JP5980051B2 (en) * 2012-08-29 2016-08-31 日立オートモティブシステムズメジャメント株式会社 Vapor collection device
JP5648668B2 (en) * 2012-10-11 2015-01-07 株式会社タツノ Vapor collection device
JP6093201B2 (en) * 2013-02-08 2017-03-08 日立オートモティブシステムズメジャメント株式会社 Vapor collection device
CN103566707A (en) * 2013-10-17 2014-02-12 中国石油化工股份有限公司 Oil gas recovery device
CN106697659A (en) * 2017-01-05 2017-05-24 成都凯圣捷科技有限公司 Oil gas recovering system
CN113041771A (en) * 2021-03-19 2021-06-29 周静怡 Efficient oil gas recovery method for low-temperature adsorption and high-temperature desorption
CN113858576B (en) * 2021-11-04 2024-06-25 辽宁北方华锦五洲化工工程设计有限公司 Devolatilization recovery method and recovery system for ABS extruder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813203B2 (en) * 1980-01-12 1983-03-12 大陽酸素株式会社 Method and equipment for recovering hydrocarbons in gas
JPS5755525U (en) * 1980-09-16 1982-04-01
JPS5755525A (en) 1980-09-22 1982-04-02 Matsushita Electric Ind Co Ltd Production of magnetic head
US4462811A (en) * 1983-07-26 1984-07-31 John Zink Company Process and apparatus for removing hydrocarbons from air-hydrocarbon vapor mixtures
CN100408657C (en) * 2003-04-17 2008-08-06 三菱电机株式会社 Gasification gasoline reclaiming device and reclaiming method
JP4671772B2 (en) * 2004-12-22 2011-04-20 三菱電機株式会社 Apparatus and method for treating and recovering gaseous hydrocarbons
JP4671940B2 (en) * 2006-10-12 2011-04-20 三菱電機株式会社 Gaseous hydrocarbon treatment and recovery apparatus and method
JP2009000646A (en) * 2007-06-22 2009-01-08 Mitsubishi Electric Corp Gasoline vapor recovery vessel

Also Published As

Publication number Publication date
TWI413544B (en) 2013-11-01
KR101103228B1 (en) 2012-01-05
JP5044764B2 (en) 2012-10-10
JP2011000538A (en) 2011-01-06
KR20100136392A (en) 2010-12-28
CN101927099A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
TW201100159A (en) Device and method for recovering gaseous hydrocarbon
TWI310785B (en)
TWI327164B (en)
JP4671940B2 (en) Gaseous hydrocarbon treatment and recovery apparatus and method
JP5289427B2 (en) Apparatus and method for treating and recovering gaseous hydrocarbons
JP2008086989A (en) Water supply apparatus
JP2010094640A (en) Vapor recovery device
KR101086817B1 (en) Hybrid vapor recovery unit including condensation method and absorption method
CN107456839A (en) Utilize the device for recovering oil and gas of condensation-adsorption method and absorption and the switching device of desorption
JP2009028723A (en) Method for treating and recovering gaseous hydrocarbon
KR101247456B1 (en) Gasoline vapor recovery apparatus
CN102441309A (en) Method for recovering oil gas and device
JP2009000646A (en) Gasoline vapor recovery vessel
JP2008238171A (en) Method for treating/recovering gaseous hydrocarbon
JP2007319730A (en) Recovery apparatus for solvent
TWI403354B (en) Recovery device and method for gas - like hydrocarbon
CA2894486C (en) Co2 recovery system and method for operating same
JP2005291564A (en) Hydrogen gas discharge device
JP2005169227A (en) Solvent recovery apparatus
JP3069100B1 (en) Adsorption cooling method and apparatus using ozone
JP4244343B2 (en) Solvent recovery device
JP2002154808A (en) Concentrated ozone producing apparatus
DE19509712A1 (en) Device for cooling and freezing water and other materials, e.g. to block a water line,
JP2006314961A (en) Deodorization apparatus of oil vapor
JPS5964506A (en) Ozonizer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees