TW201043943A - System and method for determining surface recombination velocity - Google Patents

System and method for determining surface recombination velocity Download PDF

Info

Publication number
TW201043943A
TW201043943A TW99109127A TW99109127A TW201043943A TW 201043943 A TW201043943 A TW 201043943A TW 99109127 A TW99109127 A TW 99109127A TW 99109127 A TW99109127 A TW 99109127A TW 201043943 A TW201043943 A TW 201043943A
Authority
TW
Taiwan
Prior art keywords
front surface
sample
determining
minority carrier
carrier density
Prior art date
Application number
TW99109127A
Other languages
Chinese (zh)
Inventor
Peter Wurfel
Bram Hoex
Joachim Luther
Original Assignee
Univ Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Singapore filed Critical Univ Singapore
Publication of TW201043943A publication Critical patent/TW201043943A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof

Abstract

System and method of determining a front surface recombination velocity of a semiconductor sample, the method including the steps of: measuring an experimental photoluminescence of the sample; calculating a corresponding theoretical photoluminescence of the sample using a diffusion length distribution of the sample and for an arbitrary constant front surface minority carrier density; determining an actual front surface minority carrier density as a function of the experimental and the theoretical photoluminescence; and determining the front surface recombination velocity using the determined actual front surface minority carrier density.

Description

201043943 六、發明說明: 【發明所屬之技術領域】 發明領域 本發明之具體實施例提供用以判定半導體樣品 (semiconductor sample)之表面復合速度的系統及方法,於 較佳具體貫施例中,特別是針對太陽能電池應用,使用外 部照射用以量化半導體材料之表面鈍化。 發明背景 全世界現廣泛地使用矽太陽能電池用以產生電力。該 等電池可由單晶石夕或是多晶石夕晶圓構成。該等晶圓通常係 為P-摻雜,在該晶圓之該前侧上執行n型摻雜劑之表面擴散 用以在該表面下構成數百奈米的—ρ_η接面。高性能太陽能 電池之該製程需要高品質的原材料(starting maters,以及 一可#、持續性能的製造設備。為達此高性能目標,必需 在製程的不同階段期間監測晶圓的品質。 用以獲得一矽晶圓太陽能電池之高能量轉換效率的一 重要步驟,係為二晶圓表面的正確鈍化,否則導致由光生 電子洞對(ph〇t〇-generated electron-h〇le pair)之表面復合所 造成不能接受之電損失。為了判定是否完成正確鈍化,需 要在製程㈣職該域能電池。*幸地,g卩使表面純化 係為用以達财晶圓太陽能電池之高能量轉換效率之其中 之一最不可或缺的步驟,目前仍無適用的系統或方法容許 以一直接方式提取此重要資料以及對研究或工業上充分地 3 201043943 提供可靠性或堅固性。 目如用以測量該表面復合速度的技術,其中一低或較 佳為零表面復合速度係等同於良好的鈍化,係為費時的。 此外,其係限制在小的、點狀區域或是涵蓋一大區域的平 均值並品假设特定的邊界條件。於―實驗室中,僅在一選 定的樣品上執行測量涵蓋一大太陽能電池之該表面的該復 合速度之分佈。該等技術並不適合用於在一實際生產線上 β亥專製程之快速直接控制(in_iine contr〇i)。 因此,假若能夠發展解決上述其中之一或更多問題的 '"""糸統及方法’則為一大的改良。 【明内 發明概要 本發明之一觀點提供判定一半導體樣品之一前表面復 合速度的一方法,該方法包括該等步驟:測量該樣品之一 實驗性光激發光(photoluminescence);使用該樣品之一擴散 長度分佈以及針對一任意固定的前表面少數載子密度 (minority carrier density)計算該樣品之一對應的理論性光 激發光;判定一實際前表面少數載子密度,其為該實驗性 及該理論性光激發光的函數;以及使用該經判定的實際前 表面少數載子密度判定該前表面復合速度。 於可任擇的具體實施例中,該判定前表面復合速度的 步驟可包括針對一穩態照明狀況平衡該等電子洞對的產生 與復合。 於進一步的具體實施例中,該方法可進一步地包括根 201043943 據該樣A之該擴散長度分佈㈣-整體復合(bulk recombination)。平衡該等電子㈣的產生與復合的步驟可 包括忽略-背部表面復合。該判定實際前表面少數載子密 度的步驟可包括忽略在該樣品上的一入射光之穿透深度。 平衡該等電子洞對的產生與復合以及判定該實際前表面少 - 數載子密度的步驟,可包括在分別作為邊界條件的該前表面 與-後表Φ處解隨著表面復合速度變化的—職方程式。 〇 料他的具體實施射,判找復合速度之步 驟可包括考篁針對一 g寺變照明狀況該等電子洞對的產生與 復合。該方法可進一步地包括判定該樣品之該擴散長度分 佈。4判疋擴散長度分佈的步驟可包括發光成像 (luminescence imaging)。 於進一步的具體實施例中,該方法可進一步地包括藉 採用用以產生判定該擴散長度所用的一發光影像的二光譜 部件的一比例,去除由於該樣品之該實際前表面少數載子濃 〇 冑之變化所產生的該發光成像中發光強度的變化的影響。 本發明之一可任擇的觀點提供一系統用以判定—半導 體樣品的-前表面復合速度,該系統包括:用以測量該樣 °°之—實驗性光激發光的構件;用以使用該樣品的一擴散 長度分佈以及針對一任意固定前表面少數載子密度計算該 樣品之一對應的理論性光激發光的構件;用以判定—實際 前表面少數載子密度的構件,該實際前表面少數載子密度 為該實驗性及該理論性光激發光的函數;以及使用該經判 疋的實際前表面少數載子密度用以判定該前表面復合速度 5 201043943 的構件。 本發明之另一觀點提供具有電腦編碼構件儲存於其上 的一資料儲存媒體,用以指示一計算裝置執行測量一半導 體樣品之一表面復合速度的一方法,該方法包括該等步 驟:測量該樣品之一實驗性光激發光;使用該樣品的一擴 散長度分佈以及針對一任意固定前表面少數載子密度計算 該樣品之一對應的理論性光激發光;判定一實際前表面少 數載子密度,其為該實驗性及該理論性光譜的函數;以及 使用該經判定的實際前表面少數載子密度用以判定該前表 面復合速度。 圖式簡單說明 熟知此技藝之人士由以下說明,僅經由實例,以及結 合該等圖式將對本發明之具體實施例有較佳的瞭解且為立 即顯而易見的,其中: 第1圖係為一系統之一具體實施例的一方塊圖,該系統 用以計算一半導體的一表面復合速度; 第2圖係為圖示一方法之一具體實施例的一流程圖,該 方法使用第1圖之該系統用以計算一半導體的一表面復合 速度; 第3圖係為圖示一方法之模擬結果的一圖表,該方法用 以根據一示範具體實施例計算一表面復合速度; 第4圖係為一圖表圖示源自於一石夕樣品的該發光強 度,其係根據一示範具體實施例由所示隨著該表面復合速 度^變化的該擴散方程式計算; 201043943 弟 彡、為〜流程圖,圖示一方法的一可任擇具體實施 例’該方法使用第1圖之該系統計算-半導體之-表面復合 速度;以及 第6圖係為〜方塊圖,顯示一電腦系統其可根據—示範 具體實施例用以執行一系統及方法。 【實施冷式】 較佳實施例之詳細說明 本發明之具體實施例提供系統與方法用於使用—利用 外部照射的非接觸法,將半導體材料,特別是太陽能電池 半導體’之該表面純化加以量化。 本發明之具體實施例利用發光,例如其係以一電荷搞 合元件(CCD)或互補性氧化金屬半導體(CMOS)相機加以探 測。如此’ ϋ由以_相機探測該放射影像有利地在—大樣 时區域之複數位置處同時地執行—測量。倘若該擴散長度 之分佈或疋该少數载子的整體壽命加化脱_)已藉由一 互補方法加以判^,如此能夠在短時間内完成,例如於一 示範具體實施例中少於1秒。本發明之具體實施例容許以- 直接方式測量該經空間分辨表面復合速度,從而以及該表 面鈍化,因此’不需實驗上不可達的邊界條件。如此,於 一測量當中,有觀㈣達觀對錢的表面鈍化及其之 空間均辑,在研缺發展叹製造方面能夠提供極大的 利益。 就示範具體實施例之測量技術㈣,樣品1整體中出 現的復合損失係與在樣品的前錢表面處出賴復合損失 7 201043943 为開。該等總復合損失影響在樣品的前表面處少數載子的 濃度。該I體復合率能夠&該整體少數載子擴散長度導 出’其能夠藉由-互補方法判定。有助於源自該樣品之該 發光的该總少數載子濃度,係來自於該發光強度。一較佳 的具體實施例使用一不變的照明強度,利用在平衡/穩定狀 悲條件下该復合率係等於該產生率。該產生率能夠由入射 光強度以及在調查中該樣品的該光學性質加以計算。然 而’應察知的是,如有需要,藉由該時間相依性之適合的 數學考量本發明亦能夠在時變條件下加以應用,造成更為 複雜的計算’但不致背離本發明之精神或範疇。該前表面 復合率係有利地藉由該總復合率與總體復合率及該後表面 復合率之該總和之間的差異加以判定。 第1圖提供一系統100的一方塊圖,其用以根據本發明 之一示範具體實施例計算一樣品之該復合速度。該系統100 包括一光源110在一樣品上放射光線112,該樣品於此係為 一半導體120之形式。由於半導體120中吸收光線112以及半 導體120中合成電子洞對的自發輻射性復合,自該半導體 120放射發光’如以元件符號122標示。該發光122可通過一 或更多爐、光片130。接著於一相機140處接收此經過渡光線 132,計算一發光強度並經由資料路徑142提供此經計算資 料至一資料處理單元700。 於此具體實施例中,該光源110產生適於在矽中引起發 光(亦即,光激發光)的光線,並係用以照射該半導體表面 120。於一較佳具體實施例中’該光源110係為一雷射能夠 201043943 提供相干的單色光線112至該表面12〇。所選定該雷射光112 之該波長儘可能遠離該發光122之波長。於一進一步較佳具 體實施例中,針對一矽樣品該波長可介於約200至9〇〇奈米 之間。應瞭解的是亦可使用其他型式的光源丨丨〇及波長。 該半導體樣品120可為一裸晶圓的形式,例如一未經加 工的矽樣品,一部分加工或組裝的半導體裝置,或是一完 全加工或組裝的半導體裝置。 於此示範具體實施例中,對該產生的發光122施以濾光 作業,用以降低該發光122位在特定波長之上或以下或是二 者的光譜含量(spectral content)(例如分別地藉由使用一短 通濾光片、一長通濾光片或是一帶通濾光片)。可分別地應 用該(等);慮光片130 ’或是作為該相機丨的一部分。該(等) 濾光片130可包含,經由實例但非限定,介電堆疊(dielectric stack) ° 源自於該半導體120的該發光122係以該相機14〇加以 捕捉。如此,本發明之該等具體實施例可應用在任意尺寸 的影像部分上。於一較佳具體實施例中,該相機14〇係為一 成像裝置,包含一陣列具有多於一的個別感應器,諸如一 CCD相機或任何其他像素探測器。每一像素自該半導體上 的一限定區域收集該發光,從而針對該整個半導體12〇產生 一影像。該相機可為一數位相機其具有一矽CCD陣列,並 能夠配置具有一數位界面(例如,USB或Firewire)或儲存媒 體(例如,一數位攝影機帶(DV tape)a記憶條(mem〇ry stick)),供記錄影像之連通所用。於可任擇的具體實施例 9 201043943 中,該相機140可為一互補性氧化金屬半導體(CM〇s)成像 裝置,或疋熟知此技藝之人士所知曉的其他成像裝置。 該相機140將該接收光線轉換成一發光測量,其接著經 數位化並傳送至該資料單元7〇〇加以處理。 第2圖顯不一流程圖2〇〇圖示一方法,用以根據一示範 具體實施例使用第1圖中所示該系統計算一樣品之該復合 速度。s亥方法200係以一均勻摻雜p型矽晶圓之簡單例子呈 現’其具有-整體擴散長度遠小於該晶圓厚度。該晶圓之 表面係藉由該光源均勻地照明,其係藉由該晶圓強烈地吸收 並引致光激發光,如第2圖中步驟2〇2所示。該等產生的少數 載子本身藉由自έ絲面擴散進人該晶圓之内部而分佈。 於此不範例子中,當該整體擴散長度係遠小於該晶圓 厚度時’在該晶IB之該後表面處,電洞及電子之復合並未 影響該晶圓之該表面處的少數栽子濃度。此外,於此示範 具體實施例中,為了圖示的目的,假設該碎晶圓12()之該整 體擴散長度巾的不均勻性係橫向地出現在遠大於__擴散長 度的-長度尺度上。於範具體實關巾,該等假設容 許該少數載子分佈之一維分析。 於步驟204,利用該相機使用不同波長通過渡光片取得 二發光影像’以及於步驟m ’使用p Wtirfel等人於L Appl Phys· 101(2007) 123110中所說明之技術由該發光測量判 定橫越該日日日圓之該表面區域的該擴散長度以及該擴散長度 的杈向變化,該技術内容於此併入本案作為交叉參考資 料。大體上,於該放射的發光強度之該頻率光譜中二不同 10 201043943 部件係使用適當的濾光鏡加以捕捉。藉由採用針對每一影 像像素該發光之二光譜部件的比例,能夠消除該晶圓表面 120處由於該少數載子濃度之變化所造成的影響。儘管於此 示範具體實施例中使用P. Wtlrfel等人文章中所說明的方 法,但應察知的是業界所瞭解的其他技術能夠於不同具體 實施例中使用,用以判定該擴散長度及該擴散長度之橫向 變化,諸如光譜光束誘導電流(LBIC)。於此示範具體實施 例中,使用P. Wtirfel等人文章中所說明該方法的優點包括 使用上述相關於第1圖說明的一示範具體實施例之該相同 系統應用與執行。 於步驟208,藉由在步驟206所獲得的擴散長度分佈計 算每一影像像素之強度值而建構一發光影像,並假設一任 意但為固定的表面復合數值,亦即,一任意但為固定的表 面濃度《re/<〇)。 更特定言之,利用該y及z軸(二軸係相互垂直並位在該 晶圓表面的該平面上)以及與該晶圓平面垂直(與第1圖比較) 的該X轴計算自一矽晶圓放射具有能量ftco的光子之發光強 度。強烈吸收的入射光線顯著地在該X方向上,由該等少數 載子擴散進入該晶圓之該整體處產生接近該表面的電子洞 對。該等少數載子之分佈(位於一 P摻雜晶圓中的電 子),具有一擴散長度4係為 ne (x, y, z) = ne (0, y, z) exp (-^/Le (>, z)) (工) 其中係為在該晶圓表面處的少數載子分佈。 於該光子能量範圍dhco中藉由發光效應放射的該光子 11 201043943201043943 VI. OBJECTS OF THE INVENTION: FIELD OF THE INVENTION The present invention provides a system and method for determining the surface recombination velocity of a semiconductor sample, in a preferred embodiment, particularly For solar cell applications, external illumination is used to quantify surface passivation of semiconductor materials. BACKGROUND OF THE INVENTION Silicon solar cells are widely used throughout the world to generate electricity. The cells may be composed of single crystal or polycrystalline wafers. The wafers are typically P-doped, and surface diffusion of the n-type dopant is performed on the front side of the wafer to form a hundreds-nano-n-n junction below the surface. This process of high-performance solar cells requires high-quality raw materials (starting maters, as well as continuous performance manufacturing equipment. To achieve this high-performance goal, wafer quality must be monitored during different stages of the process. An important step in the high energy conversion efficiency of a wafer solar cell is the correct passivation of the surface of the two wafers, otherwise the surface composite of the ph〇t〇-generated electron-h〇le pair Unacceptable electrical loss caused. In order to determine whether the correct passivation is completed, it is necessary to use the battery in the process (4). Fortunately, the surface purification is used to achieve high energy conversion efficiency of the wafer solar cell. One of the most indispensable steps, there is currently no applicable system or method that allows for the extraction of this important material in a straightforward manner and provides reliability or robustness to research or industrially sufficient 3 201043943. The technique of compound speed, in which a low or preferably zero surface recombination velocity is equivalent to good passivation, is time consuming. , which is limited to small, point-like areas or averages covering a large area, and assumes specific boundary conditions. In the laboratory, the measurement is performed on only one selected sample covering a large solar cell. The distribution of the composite speed of the surface. These techniques are not suitable for rapid direct control (in_iine contr〇i) of the β Hai process on an actual production line. Therefore, if one or more of the above problems can be developed, '"""Systems and Methods' is a major improvement. [Inventive Summary] One aspect of the present invention provides a method of determining the composite speed of a front surface of a semiconductor sample, the method comprising the steps : measuring one of the sample photoluminescence; using a diffusion length distribution of the sample and calculating a theoretical light corresponding to one of the samples for an arbitrarily fixed front surface minority carrier density Excitation light; determining an actual front surface minority carrier density as a function of the experimental and theoretical light excitation; and using the Determining the actual front surface minority carrier density determines the front surface recombination velocity. In an optional embodiment, the step of determining the front surface recombination velocity may include balancing the generation of the electron hole pairs for a steady state illumination condition And in a further embodiment, the method may further comprise root 201043943 according to the diffusion length distribution (four)-bulk recombination of the sample A. The step of balancing the generation and recombination of the electrons (4) may include Ignore - back surface recombination. The step of determining the actual front surface minority carrier density may include ignoring the penetration depth of an incident light on the sample. The step of balancing the generation and recombination of the pair of electron holes and the determination of the actual front surface with a small-number carrier density may include the solution of the front surface and the back table Φ as boundary conditions respectively. - Position equation. In view of his specific implementation, the step of finding the compound speed may include the generation and compounding of the pair of electron holes for the lighting condition of a g temple. The method can further include determining the diffusion length distribution of the sample. The step of determining the diffusion length distribution may include luminescence imaging. In a further embodiment, the method can further include removing a minority carrier concentration due to the actual front surface of the sample by using a ratio of two spectral components for generating a luminescent image used to determine the diffusion length The effect of changes in luminescence intensity in the luminescence image produced by the change in enthalpy. An optional aspect of the present invention provides a system for determining a - front surface recombination velocity of a semiconductor sample, the system comprising: means for measuring the sample - experimental photoexcitation light; a diffusion length distribution of the sample and a member for calculating a theoretical photoexcitation light corresponding to one of the samples for an arbitrary fixed front surface minority carrier density; a member for determining the actual front surface minority carrier density, the actual front surface The minority carrier density is a function of the experimental and theoretical photoexcitation light; and the member using the determined actual front surface minority carrier density to determine the front surface recombination velocity 5 201043943. Another aspect of the present invention provides a data storage medium having a computer encoding component stored thereon for instructing a computing device to perform a method of measuring a surface recombination velocity of a semiconductor sample, the method comprising the steps of: measuring the One of the samples is an experimental photoexcitation light; a diffusion length distribution of the sample is used; and a theoretical photoexcitation light corresponding to one of the samples is calculated for an arbitrary fixed front surface minority carrier density; determining an actual front surface minority carrier density , which is a function of the experimental and the theoretical spectrum; and the determined actual front surface minority carrier density is used to determine the front surface recombination velocity. BRIEF DESCRIPTION OF THE DRAWINGS The following is a description of the embodiments of the present invention, A block diagram of a specific embodiment for calculating a surface recombination velocity of a semiconductor; and FIG. 2 is a flow chart illustrating a specific embodiment of a method using the method of FIG. The system is used to calculate a surface recombination velocity of a semiconductor; FIG. 3 is a graph illustrating the simulation results of a method for calculating a surface recombination velocity according to an exemplary embodiment; FIG. 4 is a The graph diagram is derived from the luminescence intensity of a zea sample, which is calculated from the diffusion equation as shown by an exemplary embodiment according to the surface recombination velocity ^; 201043943 An optional embodiment of a method of calculating the semiconductor-surface recombination velocity using the system of Figure 1; and Figure 6 is a block diagram showing The computer system which may be - for performing a specific embodiment of an exemplary system and method. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention provide systems and methods for quantifying the surface of a semiconductor material, particularly a solar cell semiconductor, using a non-contact method using external illumination. . Embodiments of the invention utilize illumination, for example, which is detected by a charge engaging component (CCD) or a complementary metal oxide semiconductor (CMOS) camera. Thus, the detection of the radiographic image by the camera is advantageously performed simultaneously at the plural positions of the large sample area. If the distribution of the diffusion length or the overall life of the minority carrier is removed, it can be done in a short time, for example in less than 1 second in an exemplary embodiment. . Embodiments of the present invention allow for the measurement of the spatially resolved surface recombination velocity in a direct manner, and thus the surface passivation, so that no experimentally unreachable boundary conditions are required. In this way, in a measurement, there is a view of (4) the surface passivation of money and its spatial uniformity, which can provide great benefits in the development of research and development. With respect to the measurement technique (IV) of the exemplary embodiment, the composite loss occurring in the entirety of the sample 1 is dependent on the composite loss at the front surface of the sample 7 201043943. These total composite losses affect the concentration of minority carriers at the front surface of the sample. The I complex ratio can & the overall minority carrier diffusion length derivative' can be determined by a complementary method. The total minority carrier concentration that contributes to the luminescence originating from the sample is derived from the luminescence intensity. A preferred embodiment uses a constant illumination intensity that is equal to the rate of production under equilibrium/stability conditions. This rate of production can be calculated from the intensity of the incident light and the optical properties of the sample under investigation. However, it should be appreciated that, if desired, the present invention can be applied under time-varying conditions by suitable mathematical considerations of the time dependence, resulting in more complex calculations, but without departing from the spirit or scope of the invention. . The front surface recombination rate is advantageously determined by the difference between the total recombination rate and the sum of the overall recombination rate and the back surface recombination rate. Figure 1 provides a block diagram of a system 100 for calculating the recombination velocity of a sample in accordance with an exemplary embodiment of the present invention. The system 100 includes a light source 110 that emits light 112 on a sample, which sample is in the form of a semiconductor 120. Due to the spontaneous radiant recombination of the absorbed light 112 in the semiconductor 120 and the pair of synthetic electrons in the semiconductor 120, the luminescence from the semiconductor 120 is indicated by the symbol 122. The illuminating light 122 can pass through one or more furnaces, light sheets 130. The transition ray 132 is then received at a camera 140, a luminescence intensity is calculated and the calculated data is provided via data path 142 to a data processing unit 700. In this embodiment, the source 110 produces light suitable for causing luminescence (i.e., photoexcitation) in the crucible and is used to illuminate the semiconductor surface 120. In a preferred embodiment, the light source 110 is a laser capable of providing a coherent monochromatic light 112 to the surface 12A. The wavelength of the laser light 112 selected is as far as possible from the wavelength of the illuminating light 122. In a further preferred embodiment, the wavelength can be between about 200 and 9 nanometers for a sample. It should be understood that other types of light sources and wavelengths can be used. The semiconductor sample 120 can be in the form of a bare wafer, such as an unprocessed tantalum sample, a partially processed or assembled semiconductor device, or a fully processed or assembled semiconductor device. In the exemplary embodiment, the generated illuminating light 122 is subjected to a filtering operation for reducing the spectral content of the luminescent light 122 above or below a specific wavelength or both (eg, separately borrowing Use a short pass filter, a long pass filter or a band pass filter). The (etc.); the light sheet 130' may be applied separately or as part of the camera cassette. The (and other) filter 130 can include, by way of example and not limitation, a dielectric stack of the semiconductor 120 that is captured by the camera 14A. Thus, the specific embodiments of the present invention can be applied to image portions of any size. In a preferred embodiment, the camera 14 is an imaging device that includes an array of more than one individual sensors, such as a CCD camera or any other pixel detector. Each pixel collects the illumination from a defined area on the semiconductor to produce an image for the entire semiconductor 12". The camera can be a digital camera with a CCD array and can be configured with a digital interface (eg USB or Firewire) or storage media (eg, a digital camera tape (DV tape) a memory stick (mem〇ry stick )), for the connection of recorded images. In an alternative embodiment 9 201043943, the camera 140 can be a complementary metal oxide semiconductor (CM〇s) imaging device, or other imaging device known to those skilled in the art. The camera 140 converts the received light into a luminescence measurement, which is then digitized and transmitted to the data unit 7 for processing. Figure 2 is a flow chart showing a method for calculating the composite velocity of a sample using the system shown in Figure 1 in accordance with an exemplary embodiment. The sho method 200 is presented as a simple example of a uniformly doped p-type germanium wafer. It has an overall diffusion length much smaller than the wafer thickness. The surface of the wafer is uniformly illuminated by the source, which is strongly absorbed by the wafer and causes photoexcitation light, as shown in step 2-2 of Figure 2. The minority carriers produced by themselves are distributed by diffusing into the interior of the wafer from the surface of the filament. In this example, when the overall diffusion length is much smaller than the thickness of the wafer, 'at the rear surface of the crystal IB, the combination of holes and electrons does not affect the minority of the surface of the wafer. Subconcentration. Moreover, in this exemplary embodiment, for purposes of illustration, it is assumed that the non-uniformity of the overall diffusion length of the shredded wafer 12() occurs laterally on a length scale that is much larger than the __diffusion length. . In the case of Yu Fan, the assumptions allow one-dimensional analysis of the minority carrier distribution. In step 204, the camera is used to obtain the two-emission image by using the different wavelengths, and in step m', the luminescence measurement is used to determine the cross-section using the technique described in p Wtirfel et al., L Appl Phys. 101 (2007) 123110. The diffusion length of the surface area of the Japanese yen and the change in the direction of the diffusion length are incorporated herein by reference. In general, the frequency spectrum of the emission intensity of the radiation is different. 10 201043943 The components are captured using an appropriate filter. By employing a ratio of the two spectral components of the illumination for each image pixel, the effect at the wafer surface 120 due to variations in the minority carrier concentration can be eliminated. Although the method illustrated in the P. Wtlrfel et al. article is used in this exemplary embodiment, it should be appreciated that other techniques known in the art can be used in different embodiments to determine the diffusion length and the diffusion. Lateral variations in length, such as spectral beam induced current (LBIC). In this exemplary embodiment, the advantages of the method described in the P. Wtirfel et al. article include the application and execution of the same system described above with respect to an exemplary embodiment illustrated in Figure 1. In step 208, a luminescence image is constructed by calculating the intensity value of each image pixel by the diffusion length distribution obtained in step 206, and an arbitrary but fixed surface composite value is assumed, that is, an arbitrary but fixed Surface concentration "re/<〇). More specifically, the y and z axes (the two axes are perpendicular to each other on the plane of the wafer surface) and the X axis perpendicular to the wafer plane (compared to FIG. 1) are calculated from one The germanium wafer emits the luminous intensity of photons with energy ftco. The strongly absorbed incident light is significantly in the X direction, and the minority carriers are diffused into the entirety of the wafer to create an electron hole pair close to the surface. The distribution of these minority carriers (electrons in a P-doped wafer) has a diffusion length of 4 as ne (x, y, z) = ne (0, y, z) exp (-^/Le (>, z)) (Work) where is the minority carrier distribution at the surface of the wafer. The photon emitted by the luminescence effect in the photon energy range dhco 11 201043943

電流密度八,係藉由卜朗克放射定律(Planck emission law)(例如’見P. Wtirfel,Physics of Solar Cells, Wiley-VCH 2005,其之内容於此併入本案作為交叉參考資料)加以推 斷,其可藉由 = «J[exp(-^eXp(Current density eight is inferred by Planck emission law (eg 'see P. Wtirfel, Physics of Solar Cells, Wiley-VCH 2005, the content of which is incorporated herein by reference) , which can be by = «J[exp(-^eXp(

L dx ne(0,y,z)nh dh〇) aLe nf Ak2%3c2 exp(/jffl/^r) 1 + 〇rLe 1-expi-—+^g d (2) 加以模擬,其中•係為本質載子濃度,α係為該波長相依吸 收係數,%,6係分別為該電洞及電子密度,6係為該波茲曼 常數(Boltzmann constant)以及Γ係為該溫度。 於方程式(2)中,該放射光子電流密度因而視該表面濃 度及該擴散長度4而定,二者可沿著該y及z方向變化。藉 由相機探測的一合成信號強度能夠在導入一校準因素C後 在方程式(2)中藉由該放射光子電流而得出,校準因素包含 該光學系統之穿透率,諸如該等滤光片及透鏡,以及該相 機之靈敏度。為了示範具體實施例之圖示的簡單性,將C選 疋為1。然而,應瞭解的是,例如,藉由一已知樣品經由該 系統之校準所得之實際數值可使用在不同的具體實施例中。 另一方面,就一已知/測量Le(y,z)而言,針對一固定前 表面復合的該放射光子電流人re/以及因而前表面濃度 係等於 W㈣口) = Μ2άηω nf 4π2η^ο2 e\p[fiM/kT) \ + aLeL dx ne(0,y,z)nh dh〇) aLe nf Ak2%3c2 exp(/jffl/^r) 1 + 〇rLe 1-expi-—+^gd (2) Simulate, where • is the essence The carrier concentration, α is the wavelength-dependent absorption coefficient, %, 6 is the hole and electron density, respectively, 6 is the Boltzmann constant and the lanthanide is the temperature. In equation (2), the emitted photon current density is thus dependent on the surface concentration and the diffusion length 4, which may vary along the y and z directions. A composite signal intensity detected by the camera can be derived from the emitted photon current in equation (2) after introduction of a calibration factor C, the calibration factor including the transmittance of the optical system, such as the filter And the lens, as well as the sensitivity of the camera. To demonstrate the simplicity of the illustration of a particular embodiment, C is chosen to be one. However, it will be appreciated that, for example, the actual values obtained by calibration of a known sample via the system can be used in different embodiments. On the other hand, as far as a known/measured Le(y,z) is concerned, the photon current re//and thus the front surface concentration of a fixed front surface is equal to W(four)port) = Μ2άηω nf 4π2η^ο2 e \p[fiM/kT) \ + aLe

1-exp ί-1+1 1 ^ JJ (3) 已由發明人確認的是於此示範具體實施例中藉由除一 12 201043943 測量的光子電流密度,以方程式(2)在導入該校準因數後表 示,藉由方程式(3)中該經計算的參考光子電流因而有利地 能夠獲得該實際的表面濃度ne(〇,y,z): ίΧΗω,γ,ζ) (4)1-exp ί-1+1 1 ^ JJ (3) It has been confirmed by the inventors that in this exemplary embodiment, the photon current density measured by one of 12 201043943 is introduced, and the calibration factor is introduced by equation (2). It is later shown that the actual surface concentration ne(〇, y, z) can advantageously be obtained by the calculated reference photon current in equation (3): ίΧΗω, γ, ζ) (4)

因此,於步驟210,在此示範具體實施例中,在穩定的 條件下由該晶圓中該等電子洞對的產生及復合的 一平衡而獲得該“真實的”前表面復合,亦即,前表面速度 *SUy,z)。更特定言之’此平衡能夠表示為: . d【 d d h,a»s = J Geh dx = dx = ne (〇, y,z)S0(y,z)+ (Λϊ y,z)dx + ne(d,y,z)Sb(y, z) ° ^,Z)〇 ,(5a) 其中Λ,咖係為該吸收的光子電流密度,其係藉由以下方程式 表示: d jY,abs = « - R)jYMcident exp_at dx 0 其中人’⑻⑷⑴係為該入射光子通量,R係為在該入射光波長下 該樣品之反射,以及(X係為在該入射光波長下該樣品之吸收 係數。 該總產生係藉由源自於該外部照明的該吸收光子電流 密度加以控制。該總復合係由該晶圓之前表面處的復合、 藉由一整體壽命%加以特性化的該整體中之復合以及該晶 圓之後表面處的復合(於此示範具體實施例中,當該整體擴 散長度係遠大於該晶圓厚度時能夠加以忽略)所組成。因 此’方程式(5)有利地能夠加以簡化為: 13 201043943 jy,— ~ n“〇’ 夕,邮。(y,之)+~^·〇’zW = ne(0,夕,之)so(y,z) + ~ 、 L 4J, ⑹ 其中已使用A = At,其中仄係為該整體擴散係數。 最後’如下地獲得該晶圓之該前表面處的復合速度:Therefore, in step 210, in the exemplary embodiment, the "true" front surface recombination is obtained by the balance of the generation and recombination of the pairs of electron holes in the wafer under stable conditions, that is, Front surface speed * SUy, z). More specifically, 'this balance can be expressed as: . d[ ddh, a»s = J Geh dx = dx = ne (〇, y, z)S0(y,z)+ (Λϊ y,z)dx + ne (d, y, z) Sb(y, z) ° ^, Z) 〇, (5a) where Λ, 咖 is the photon current density of the absorption, which is expressed by the following equation: d jY, abs = « - R) jYMcident exp_at dx 0 where person '(8)(4)(1) is the incident photon flux, R is the reflection of the sample at the incident light wavelength, and (X is the absorption coefficient of the sample at the incident light wavelength). The total generation is controlled by the absorbed photon current density derived from the external illumination. The total composite is compounded by the composite at the front surface of the wafer, characterized by an overall lifetime % And the recombination at the surface behind the wafer (which in this exemplary embodiment can be ignored when the overall diffusion length is much larger than the thickness of the wafer). Thus equation '5 can advantageously be simplified to : 13 201043943 jy, — ~ n〇〇 夕, 邮.(y,之)+~^·〇'zW = ne(0, 夕,之)so(y,z) + ~ , L 4J, (6) Where A = At has been used, where the lanthanide is the overall diffusion coefficient. Finally, the recombination velocity at the front surface of the wafer is obtained as follows:

Sn(y,z)^-J^i——De ne(°>y^z) Le(y,z) (7)Sn(y,z)^-J^i——De ne(°>y^z) Le(y,z) (7)

於不同的具體實施例中,其中該入射光線之穿透以及 在該後表面處之該復合並不是可以忽略的,該分析係為更 加複雜。就該入射光線之已知穿透深度與該等少數載子之 擴散長度而言,其之分佈顯示在該前與後表面作為邊界條 件下解答隨著該等表面復合速度變化的該擴散方程式。(此 係為“完整計算”’利用其於以下比較上述相關於方程式(7) 的該簡化分析)該等表面復合速度因而加以調整,致使由該 計算載子分佈所計算而得的放射強度等於該實驗觀察的強 度。由於在該等不同的具體實施例中必需已知二復合速 度’所以使用一重複的程序步驟,將該樣品轉動並使該後 表面為所照明的前表面以及由之測量發光。 第3圖係為圖示一方法之模擬結果的一圖表,該方法用 以根據一示範具體實施例計算一表面復合速度。於此示範 具體貫施例中該簡化模型的“性能,,係於一單一點處,亦 即’根據--維模型藉由使用作為針對一完整計算的輸入 模31並接著上述該簡化模型(方程式6及7)而加以測試。 典型的妙樣品係用於此模擬,並藉由解該隨著知變 化之精確K方程心儘可能準確地導出該少數載子密度 14 201043943 其之空間分佈。由該載子密度分佈,該發光強度係如p Wtirfel等人文件中所說明般加以計算。 此經計算發光強度使用作為針對該模擬的一實驗結 果,並接著用以使用該簡化的方程式7導出該前表面復合速 度知。清楚的是由於該簡化模型中該等近似值,特別是針 - 對極低(<5公分/秒)或高(> 104公分/秒),306的知之選取值係 與308之實際^數值不同。然而,該簡化模型在大部分針對 0 光伏應用(10-1〇4公分/秒)的相關範圍中具有極佳的效果。 就第3圖中所示該等模擬結果而言,一矽樣品係以波長 為700奈米的1〇〇 mW/cm2的光線加以照射(吸收係數22〇〇 cm—、。該矽樣本係為p摻雜([B]=1〇16cm-3)並且厚度為3〇〇微 米。該電子擴散長度係為Le=100微米,以及在後面處該表 面復合速度係為心=100 cm/s。藉由解該擴散方程式計算該 少數載子分佈,充分地造成該入射光之非零穿透,在該前 表面及後表面處的復合,以及整體中輻射與非輻射復合。 〇 由該少數載子分佈,因而可計算該發光強度係為隨著該前 表面復合速度^變化。 如以上提及,利用該擴散長度(或該整體壽命Te)的知 識,但非該前及後表面復合速度,因而在該簡化的模型中 使用此發光強度(由該精確模型導出)用以導出該前表面復 合速度,知-結果,其係於第3圖中表示為隨著該“實際,,前表 面復合速度知變化。就所使用的參數而言,其係典型地針 對用以製造太陽能電池的矽所用,該等簡化模型之結果係 與位在自10公分/秒至1〇4公分/秒的表面復合速度之重要範 15 201043943 圍中該“實際,,值一致。 由於忽略該簡化模型中該後側復合,所以針對小^值 由s亥等“實際,,值導出的簡化模型之該等結果係為可信的。 □為4貫際載子分佈由於該入射光線之該非零穿透深度而 不再自該表面向内地以指數方式降低,所以可料想在大知 值下之誤差。 假若在計算該前表面復合速度當中亦使用該精確模型 以取代該簡化模型(亦即,該擴散方程式之解法),亦即,不 僅針對計算該“實驗結果” ,則能夠獲得“實驗”與模擬之間 的較佳一致性。在該等具體實施例中該入射光之該穿透深 度的必要知識有利地並未產生一問題,由於其等於該吸收 係數的倒數’其對於矽係為一已為大家接受的量。在該後 表面處該復合速度之了解咸信為較不迫切,因為就前側照 明而έ在後表面處復合係遠小於該前表面處。此外,其藉由 自5亥後表面照明該樣品以及接續上述程序步驟重複地完成。 第4圖係為一圖表,一般地以元件符號400標示,圖示 源自於該碎樣品的該發光強度(軸402),其係由所示隨著該 表面復合速度^(軸404)變化的該擴散方程式計算。該等強 度值係針對零表面復合經標準化為發光強度。如能夠於第4 圖中曲線406可見’在該表面復合速度的小與大數值處,該 發光強度之變化係相當小。因而在任何情況下難以判定該 表面復合迷度之確實的數值。 因此’對於使用該簡化模型的一具體實施例而言’於 本毛月之具體實施例中致力於由一精確模变獲得準禮值並 16 201043943 非總是為較佳的。考量實驗總是會受到儀器及其他測量誤 差的影響’當其無論是小或大時,在小及大的知值處,該 發光強度中該小變化不足以獲得確實的^值。再者,針對 貫務應用,例如於半導體樣品之品質測試作業當中,於該 等範圍中不需精確的了解。假若該發光強度係可與零表面 復合之例子比較,則針對其之典型應用,例如矽晶圓太陽 旎電池,顯示表面鈍化可視為足夠的。假若該發光強度係In various embodiments, wherein the penetration of the incident ray and the recombination at the back surface are not negligible, the analysis is more complicated. With respect to the known penetration depth of the incident ray and the diffusion length of the minority carriers, the distribution shows the diffusion equation as a function of the surface recombination velocity under the boundary conditions of the front and back surfaces. (This is a "complete calculation" 'Using it to compare the simplified analysis described above with respect to equation (7)) the surface recombination velocity is thus adjusted such that the radiation intensity calculated from the calculated carrier distribution is equal to The intensity observed in this experiment. Since the two composite speeds must be known in these various embodiments, a repeated procedure is used to rotate the sample and cause the back surface to be illuminated and to measure illumination. Figure 3 is a graph illustrating the results of a simulation of a method for calculating a surface recombination velocity in accordance with an exemplary embodiment. Here, the "performance" of the simplified model in the specific embodiment is shown at a single point, that is, the 'based-dimensional model is used as the input modulo 31 for a complete calculation and then the simplified model described above ( Equations 6 and 7) were tested. A typical sample was used for this simulation, and the spatial distribution of the minority carrier density 14 201043943 was derived as accurately as possible by solving the exact K-law of the known change. From the carrier density distribution, the luminescence intensity is calculated as described in the file by P Wtirfel et al. This calculated luminescence intensity is used as an experimental result for the simulation and is then used to derive using the simplified equation 7. The front surface recombination speed is known. It is clear that due to the approximation in the simplified model, especially the needle-to-pole low (<5 cm/sec) or high (> 104 cm/sec), the value of 306 is known. This is different from the actual value of 308. However, this simplified model has excellent results in most of the relevant ranges for 0 PV applications (10-1〇4 cm/s). As shown in Figure 3 Simulation knot For example, a sample was irradiated with a light of 1 〇〇mW/cm 2 having a wavelength of 700 nm (absorption coefficient 22 〇〇 cm -, and the sample was p-doped ([B] = 1 〇). 16 cm-3) and having a thickness of 3 μm. The electron diffusion length is Le = 100 μm, and the surface recombination velocity is a heart = 100 cm/s at the back. The minority load is calculated by solving the diffusion equation. The sub-distribution sufficiently causes the non-zero penetration of the incident light, the recombination at the front and back surfaces, and the combination of radiation and non-radiation in the whole. 〇 The distribution of the minority carriers allows the luminous intensity system to be calculated To vary with the front surface recombination velocity. As mentioned above, the knowledge of the diffusion length (or the overall lifetime Te) is utilized, but not the front and back surface recombination velocities, thus using this luminescence in the simplified model The intensity (derived from the exact model) is used to derive the front surface recombination velocity, known as the result, which is represented in Figure 3 as the "actual, front surface recombination velocity is known to vary. In other words, it is typically used to manufacture For the use of the solar cell, the results of these simplified models are in the important range of the surface recombination speed from 10 cm/sec to 1〇4 cm/sec. 15 Actually, the values are consistent. Due to ignorance The back side is compounded in the simplified model, so the results of the simplified model derived from the value of the small value are sacred. □ is a 4-segment carrier distribution due to the incident ray. The non-zero penetration depth is no longer exponentially reduced from the surface inward, so it is expected to be an error at a large value. This accurate model is also used in the calculation of the front surface recombination speed to replace the simplified model (also That is, the solution of the diffusion equation, that is, not only for calculating the "experimental result", but also obtaining a better consistency between "experiment" and simulation. The necessary knowledge of the penetration depth of the incident light in these particular embodiments advantageously does not create a problem since it is equal to the reciprocal of the absorption coefficient, which is an acceptable amount for the tether. The knowledge of the composite velocity at the back surface is less critical because the composite is much smaller at the back surface than at the front surface with respect to the front side illumination. In addition, it is repeatedly performed by illuminating the sample from the surface after 5 liters and following the above procedure. Figure 4 is a diagram generally indicated by the symbol 400 indicating the intensity of the illumination (axis 402) derived from the fragmented sample as a function of the surface recombination velocity ^ (axis 404) as shown The diffusion equation is calculated. These intensity values are normalized to zero intensity for zero surface composites. As can be seen in curve 406 in Fig. 4, the change in luminous intensity is relatively small at the small and large values of the surface recombination velocity. Therefore, it is difficult to determine the exact value of the surface complexity in any case. Thus, it is not always preferred to obtain a value for a precise mode change in a particular embodiment of the present invention for a particular embodiment of the present invention. Considerations are always affected by instrument and other measurement errors. 'When it is small or large, at small and large values, this small change in luminous intensity is not sufficient to obtain a true value. Furthermore, for cross-service applications, such as in the quality testing of semiconductor samples, no precise knowledge is needed in these ranges. If the luminous intensity is comparable to a zero surface composite, then for typical applications such as tantalum wafer solar cells, surface passivation can be considered sufficient. If the luminous intensity is

為較小的數量級(order of magnitude),則該表面鈍化可視 為無法接受的。該中間範圍,其中該簡化模型提供良好的 靈敏性(與第3及4圖比較),係為針對該等實務應用係為較佳 研究的該範圍。 ^ ^ 的一可任擇且體 實施例,該方法使用第!圖之該系統計算—半導體之一㈣ ::速度。該方法,包括一第一步驟測量該樣品的一實驗 著=發二如相關於代表符號5〇2所標示。該方法駕接 二二Τ使用該樣品的一擴散長度分佈並針對-任 :的固◎表面少數載子密度計算—對 二如^㈣表符㈣4所標示。該方法5轉== =*少數載子密度,如相關於代表符:5== 裁接讀供—最終步驟,细該判定 二 载子掛度判定該前表面復合速度 ^表面乂數 標示。料步财如前述相騎第如符號所 上述說明的-些部分係〜般加以執仃。 ' 電腦記憶體内資料運算 17 201043943 的運算法及函數或是符號表示法所明破地或是暗示地加以 呈現y亥專運算說明及函數或是符號表示法是在該資料處 理技藝方面熟知之人士所使用的方法用以最有效地將其 之作業的實質傳輸至其他熟知此技藝之人士。於此—運算 法,一般地,係想像為產生—所需結果的該等步驟之一自 相一致的順序。該等步驟係為需要物理量之操縱的該等步 驟,諸如電氣、磁性或光學信號能夠加以儲存、轉移、結 合、比較以及以其他方式操作。 除非另有具體敘述,否則如以下說明將為顯而易見 的,應察知的是整個說明書中,使用諸如“掃描”、“計算”、 判疋更換、產生”、“初始化,,、“輸出”、或是相似者 之用語的說明係有關於一電腦系統或是相似電子裝置的動 作及處理,操作並將電腦系統内表示為物理量的資料轉換 成在該電_助或是其他資贿存、傳輸或是顯示裝置 内同樣地表示為物理量的其他資料。 本說明書亦揭示用以執行該等方法之作業。該等裝置 可針對所需目的特別地加以建構,或可包含一般用途的電 腦或是藉由儲存在該電腦中的一電腦程式選擇性地啟動或 再構形的其他裝置。於此提出的該等運算法及顯示器並非 固有地與任何特別的電腦或是其他裝置相關。不同的一般 用途機器可根據於此的講授内容搭配程式使用。可任擇 地’適當地使用更為專門的裝置之構造用以執行該等所需 方法步驟。傳統式-般用途電腦的構造於以下說明中顯示。 此外,本說明書亦暗示地揭示一電腦程式其對於熟 18 201043943 知此技藝之人士係為顯而易見的,於此說明_方法之該 等個別步驟可藉由喊魏行。該電難式並不意欲限定 在任何特錢㈣化語口X及其之制。應察㈣是複數 之程式語言及其之編碼可用以執行於此包含的該揭示内容 之該等講_容。此外,該電腦程式並不意欲限定在任何 特定的控職程。《難以有魏的變數,其能 夠使用不同的控制流料致背離本發明之精神或範缚。For a smaller order of magnitude, this surface passivation can be considered unacceptable. The intermediate range, wherein the simplified model provides good sensitivity (compared to Figures 3 and 4), is a range that is better studied for such practical applications. ^ ^ An optional and physical embodiment, the method uses the first! Figure of the system calculation - one of the semiconductors (four) :: speed. The method comprises a first step of measuring an experimental of the sample = the second is as indicated in relation to the representative symbol 5〇2. The method drives a diffusion length distribution of the sample and is calculated for the minority carrier density of the surface of the solid surface, as indicated by the sign of (4). The method 5 turns == = * minority carrier density, such as related to the representative: 5 == cut read supply - final step, the decision is made to determine the front surface composite speed ^ surface number indication. The material steps are as described above. 'Computer memory data manipulation 17 201043943 algorithm and function or symbolic representation is clearly or implicitly presented y Hai special operation description and function or symbolic representation is well known in the data processing technology The methods used by persons are used to most effectively transfer the substance of their work to other persons skilled in the art. Here, the algorithm, in general, is intended to be a self-consistent sequence of one of the steps to produce the desired result. These steps are those that require manipulation of physical quantities, such as electrical, magnetic or optical signals that can be stored, transferred, combined, compared, and otherwise manipulated. Unless otherwise specifically stated, as will be apparent from the following description, it should be understood that throughout the specification, such as "scanning," "calculating," terminating replacement, generating, "initializing,", "outputting", or The description of the similarity is related to the action and processing of a computer system or similar electronic device, and the operation and conversion of the data expressed in the computer system as physical quantity into the electricity or other bribes, transmission or It is another material that is similarly indicated as a physical quantity in the display device. This specification also discloses operations for performing such methods. Such devices may be specially constructed for the desired purpose, or may comprise a general purpose computer or other device selectively activated or reconfigured by a computer program stored in the computer. The algorithms and displays presented herein are not inherently related to any particular computer or other device. Different general purpose machines can be used according to the teaching content of the program. Optionally, the construction of a more specialized apparatus can be used as appropriate to perform the required method steps. The construction of a conventional general purpose computer is shown in the following description. In addition, the present description also implicitly discloses a computer program that is apparent to those skilled in the art, and that the individual steps of the method can be invoked by shouting. This electric hardship is not intended to be limited to any special money (4). It should be noted that (4) is a plural programming language and its encoding may be used to perform the disclosure of the disclosure contained herein. In addition, the computer program is not intended to be limited to any particular control. It is difficult to have a variable of Wei, which can use different control flow materials to deviate from the spirit or the norm of the present invention.

再者,該電腦程式之-或更多的該等步驟可並列地執 行而非相繼地執行。該-電腦程式可儲存在任何電腦可讀 取媒體上。該《可魏賴可包括料裝置諸如磁碟或 光碟、記憶或是適於與—般用途電難合的直他儲 存裝置。《腦可神雜村包料如於網際網路系統 中所例示的-硬接線的(hard_wired)媒體,或是諸如於㈣ 行動電話純巾所例㈣-無線媒體。該電難式當負載 ^在該-般用途電腦上執行時,有效地產生―裝置執行該 較佳方法之該等步驟。 本發明亦可經應用作為硬體模組。更特定言之,就硬 ^言’-模組係為-功祕硬體單元聽設計搭配其他 二件或是模組使用。例如…模組可使用個別的電子組件 =以應用,或是其可構成1個電子電路諸如-特殊應用 t體電路(ASIC)的—科。存在著複數之其他潛在價值。 =此技藝之人士應察知的是該系統亦能夠經應用作為硬 體與軟體模組的一結合體。 該示範具體實施例之該方法與系統能夠在一電腦系統 19 201043943 700上加以應用’於第6圖中概略地顯示。其可使用作為軟 體,諸如在該電腦系統7〇〇中執行的一電腦程式,以及指示 該電腦系統700執行該示範具體實施例之該方法。 該電腦系統700可包括一電腦模組7〇2,諸如一鍵盤7〇4 及滑鼠706以及複數之輸出裝置諸如一顯示器7〇8以及印表 機710。該電腦膜組7〇2能夠經由一適合的收發器裝置714連 接至一電腦網路712,使能夠使用,例如,網際網路或是其 他的網路系統諸如局部區域網路(LAN)或廣域網路(wAN)。 於此貫例中,該電腦膜組7〇2包括一處理器718、一隨 機存取§己憶體(RAM)720以及一唯讀記憶體(R〇M)722。該 電腦膜組702亦包括複數之輸入/輸出(1/〇)界面 ,例如I/O界 面724連接至该顯示器7〇8,以及1/〇界面726連接至該鍵盤 704。該電腦膜組702之該等組件典型地經由一互連匯流排 728並以熟知此技藝之人士所熟知的-方式連通。 月t*夠將该應用程式供給至該電腦系統7〇〇的使用者其 I扁碼在一賁料儲存媒體上,諸如CD—或是快閃記憶 體載具並使用—資料儲存I置頂的—對應資料儲存媒體 °動裝置4取。該應用程式係藉由該處理器718讀取並控制 其之執行動作。可使wRam 72G完成程式資料的中間儲存。 於—些具體實施例中,言亥f腦系統700亦可用以控制該 光源110、4晶BJ12G之移動、該等滤光片13()之移動以及該 相機140之作動(與第1圖比較)。 所說明的該等示範具體實施例容許在太陽能電池製造 乍業的不同階段使用在該太陽能電池中藉由外部幅射感應 20 201043943 的發光監控表面鈍化程度,作為一非接觸方法使該表面鈍 化量化並且較佳地適於太陽能電池加工作業的所有階段。 熟知此技藝之人士應察知的是如該等特定具體實施例 中所示可對本發明作複數變化及/或修改,不致背離如廣泛 地說明的本發明之精神及範疇。因此,本發明具體實施例 在所有觀點方面係視為具說明性而不具限制性。 【圖式簡單說明3 第1圖係為一系統之一具體實施例的一方塊圖,該系統 用以計算一半導體的一表面復合速度; 第2圖係為圖示一方法之一具體實施例的一流程圖,該 方法使用第1圖之該系統用以計算一半導體的一表面復合 速度; 第3圖係為圖示一方法之模擬結果的一圖表,該方法用 以根據一示範具體實施例計算一表面復合速度; 第4圖係為一圖表圖示源自於一矽樣品的該發光強 度,其係根據一示範具體實施例由所示隨著該表面復合速 度知變化的該擴散方程式計算; 第5圖係為一流程圖,圖示一方法的一可任擇具體實施 例,該方法使用第1圖之該系統計算一半導體之一表面復合 速度;以及 第6圖係為一方塊圖,顯示一電腦系統其可根據一示範 具體實施例用以執行一系統及方法。 21 201043943 【主要元件符號說明】 100...系統 700...資料處理單元/電腦系統 110...光源 702...電腦模組 112...光線 704...鍵盤 120...半導體/石夕晶圓 706...滑鼠 122…發光 708...顯示器 130...濾光片 710…印表機 132...經過濾光線 712...電腦網路 140...相機 714...收發器裝置 142...資料路徑 718...處理器 200...流程圖 720...隨機存取記憶體 202-210, 502-506...步驟 722…唯讀記憶體 400...圖表 724, 726...I/O界面 402,404...轴 728...互連匯流排 406.. .曲線 500.. .方法 730...資料儲存裝置 22Furthermore, the steps of the computer program - or more may be performed in parallel rather than sequentially. The computer program can be stored on any computer readable medium. The "Wei Lai can include a device such as a disk or a disc, a memory or a straight storage device suitable for electrical use." The brain can be packaged as hard-wired media as exemplified in the Internet system, or in the case of (4) mobile phone pure towels (4) - wireless media. The electrically difficult type effectively generates the steps of the apparatus performing the preferred method when the load is executed on the general purpose computer. The invention can also be applied as a hardware module. More specifically, the hard-words-modules are designed to be used in conjunction with two other modules or modules. For example, the module can use individual electronic components = to apply, or it can constitute an electronic circuit such as - special application t body circuit (ASIC). There are other potential values for the plural. = The person skilled in the art should be aware that the system can also be applied as a combination of hardware and software modules. The method and system of the exemplary embodiment can be applied to a computer system 19 201043943 700, which is shown diagrammatically in FIG. It can be used as a software, such as a computer program executed in the computer system 7A, and the method instructing the computer system 700 to perform the exemplary embodiment. The computer system 700 can include a computer module 7〇2, such as a keyboard 7〇4 and a mouse 706, and a plurality of output devices such as a display 7〇8 and a printer 710. The computer film set 7.2 can be coupled to a computer network 712 via a suitable transceiver device 714 to enable use, for example, the Internet or other network systems such as local area networks (LANs) or wide area networks. Road (wAN). In this example, the computer film set 7〇2 includes a processor 718, a random access memory (RAM) 720, and a read only memory (R〇M) 722. The computer film set 702 also includes a plurality of input/output (1/〇) interfaces, such as an I/O interface 724 connected to the display 7〇8, and a 1/〇 interface 726 connected to the keyboard 704. The components of the computer film set 702 are typically connected via an interconnecting busbar 728 and in a manner well known to those skilled in the art. The month t* is sufficient for the user to supply the application to the computer system 7 user's flat code on a storage medium, such as CD- or flash memory carrier and use - data storage I top - Corresponding data storage medium ° move device 4 take. The application reads and controls its execution by the processor 718. The wRam 72G can be used to store the intermediate data of the program. In some embodiments, the speech system 700 can also be used to control the movement of the light source 110, the 4 crystal BJ12G, the movement of the filters 13 (), and the operation of the camera 140 (compared with the first image) ). The exemplary embodiments described herein allow the degree of passivation of the illuminating surface in the solar cell to be monitored by external radiation sensing 20 201043943 at different stages of the solar cell manufacturing industry, as a non-contact method to quantify the surface passivation And it is preferably suitable for all stages of solar cell processing operations. It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Therefore, the specific embodiments of the present invention are intended to be illustrative and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a specific embodiment of a system for calculating a surface recombination velocity of a semiconductor; FIG. 2 is a diagram illustrating a method of a specific embodiment. A flow chart using the system of FIG. 1 for calculating a surface recombination velocity of a semiconductor; FIG. 3 is a diagram illustrating a simulation result of a method for performing according to an exemplary embodiment For example, a surface recombination velocity is calculated; FIG. 4 is a graph illustrating the luminescence intensity derived from a sample, which is a diffusion equation as seen from the surface recombination velocity according to an exemplary embodiment. Figure 5 is a flow chart illustrating an alternative embodiment of a method for calculating a surface recombination velocity of a semiconductor using the system of Figure 1; and Figure 6 is a block The figure shows a computer system that can be used to implement a system and method in accordance with an exemplary embodiment. 21 201043943 [Description of main component symbols] 100...System 700...Data processing unit/Computer system 110...Light source 702...Computer module 112...Light 704...Keyboard 120...Semiconductor /石夕 wafer 706...mouse 122...lighting 708...display 130...filter 710...printer 132...filtered light 712...computer network 140...camera 714...transceiver device 142...data path 718...processor 200...flowchart 720...random access memory 202-210, 502-506...step 722...read only memory Body 400... Chart 724, 726... I/O interface 402, 404... Axis 728... Interconnect bus 406.. Curve 500.. Method 730... Data storage device 22

Claims (1)

201043943 七、申請專利範圍: 1. 一種判定一半導體樣品之一前表面復合速度的方法,該 方法包含以下步驟: 測量該樣品之一實驗性光激發光; 使用該樣品之一擴散長度分佈以及針對一任意固 • 定的前表面少數載子密度計算該樣品之一對應的理論 性光激發光; 九 判定一實際前表面少數載子密度,其為該實驗性及 Ο 該理論性光激發光的函數;以及 使用該經判定的實際前表面少數載子密度判定該 前表面復合速度。 2. 如申請專利範圍第1項之方法,其中該判定前表面復合 • 速度的步驟可包括針對一穩態照明狀況平衡該等電子 洞對的產生與復合。 3. 如申請專利範圍第1項之方法,其進一步地包含根據該 Q 樣品之該擴散長度分佈判定一整體復合。 4. 如申請專利範圍第2項之方法,其中該平衡該等電子洞 對的產生與復合的步驟可包括忽略一背部表面復合。 5. 如前述申請專利範圍中任一項之方法,其中該判定實際 前表面少數載子密度的步驟可包括忽略在該樣品上的 一入射光之穿透深度。 6. 如申請專利範圍第2至3項中任一項之方法,其中該平衡 該等電子洞對的產生與復合以及判定該實際前表面少 數載子密度的步驟,包含在分別作為邊界條件的該前表 23 201043943 面與一後表面處重復解算一為表面復合速度之函數的 一擴散方程式。 7. 如申請專利範圍第1項之方法,其中該判定該前表面復 合速度之步驟包含考量針對一時變照明狀況該等電子 洞對的產生與復合。 8. 如前述申請專利範圍中任一項之方法,其進一步地包含 判定該樣品之該擴散長度分佈。 9. 如申請專利範圍第8項之方法,其中該判定擴散長度分 佈的步驟包含發光成像。 10. 如申請專利範圍第9項之方法,其進一步地包含藉採用 用以產生判定該擴散長度所用的一發光影像的二光譜 部件的一比例,去除由於該樣品之該實際前表面少數載 子濃度之變化所產生的該發光成像中發光強度的變化 的影響。 11. 一種用以判定一半導體樣品的一前表面復合速度的系 統,該系統包含: 用以測量該樣品之一實驗性光激發光的構件; 用以使用該樣品的一擴散長度分佈以及針對一任 意固定前表面少數載子密度計算該樣品之一對應的理 論性光激發光的構件; 用以判定一實際前表面少數載子密度的構件,該實 際前表面少數載子密度為該實驗性及該理論性光激發 光的函數;以及 使用該經判定的實際前表面少數載子密度用以判 24 201043943 定該前表面復合速度的構件。 12. —種具有電腦編碼構件儲存於其上的一資料儲存媒 體,用以指示一計算裝置執行測量一半導體樣品之一表 面復合速度的一方法,該方法包含以下該等步驟: 測量該樣品之一實驗性光激發光; 使用該樣品的一擴散長度分佈以及針對一任意固 定前表面少數載子密度計算該樣品之一對應的理論性 光激發光; 判定一實際前表面少數載子密度,其為該實驗性及 該理論性光譜的函數;以及 使用該經判定的實際前表面少數載子密度用以判 定該前表面復合速度。 ❹ 25201043943 VII. Patent application scope: 1. A method for determining the composite speed of a front surface of a semiconductor sample, the method comprising the steps of: measuring one of the experimental photoexcitation light of the sample; using a diffusion length distribution of the sample and An arbitrary fixed front surface minority carrier density is calculated for one of the samples corresponding to the theoretical photoexcitation light; nine determines an actual front surface minority carrier density, which is the experimental and Ο the theoretical photoexcitation light a function; and determining the front surface recombination velocity using the determined actual front surface minority carrier density. 2. The method of claim 1, wherein the step of determining the front surface composite speed comprises balancing the generation and recombination of the pair of electron holes for a steady state illumination condition. 3. The method of claim 1, further comprising determining an overall composite based on the diffusion length distribution of the Q sample. 4. The method of claim 2, wherein the step of balancing the generation and recombination of the pairs of electrons comprises ignoring a back surface recombination. 5. The method of any of the preceding claims, wherein the step of determining the actual front surface minority carrier density can comprise ignoring the penetration depth of an incident light on the sample. 6. The method of any one of claims 2 to 3, wherein the step of balancing the generation and recombination of the pairs of electron holes and determining the minority carrier density of the actual front surface is included as a boundary condition, respectively. The front table 23 201043943 surface and a rear surface are repeatedly solved as a diffusion equation as a function of surface recombination velocity. 7. The method of claim 1, wherein the step of determining the speed of the front surface is to include the generation and recombination of the pair of electron holes for a time varying illumination condition. 8. The method of any of the preceding claims, further comprising determining the diffusion length distribution of the sample. 9. The method of claim 8, wherein the step of determining the diffusion length distribution comprises luminescence imaging. 10. The method of claim 9, further comprising removing a minority carrier of the actual front surface due to the sample by using a ratio of a two-spectrum component for generating a luminescence image used to determine the diffusion length The effect of changes in concentration on the change in luminescence intensity in the luminescence image. 11. A system for determining a front surface recombination velocity of a semiconductor sample, the system comprising: means for measuring an experimental photoexcitation light of the sample; a diffusion length distribution for using the sample and a member for calculating a theoretical photoexcitation light corresponding to one of the samples; or a member for determining a minority carrier density of the actual front surface, the actual front surface minority carrier density is the experimental and a function of the theoretical photoexcited light; and means for determining the composite speed of the front surface using the determined actual front surface minority carrier density. 12. A method of storing a data storage medium having a computer coded component thereon for instructing a computing device to perform a method of measuring a surface recombination velocity of a semiconductor sample, the method comprising the steps of: measuring the sample An experimental photoexcitation light; using a diffusion length distribution of the sample and calculating a theoretical photoexcitation light corresponding to one of the samples for an arbitrary fixed front surface minority carrier density; determining an actual front surface minority carrier density, For this experimental and a function of the theoretical spectrum; and using the determined actual front surface minority carrier density to determine the front surface recombination velocity. ❹ 25
TW99109127A 2009-03-26 2010-03-26 System and method for determining surface recombination velocity TW201043943A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16349809P 2009-03-26 2009-03-26

Publications (1)

Publication Number Publication Date
TW201043943A true TW201043943A (en) 2010-12-16

Family

ID=42781271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109127A TW201043943A (en) 2009-03-26 2010-03-26 System and method for determining surface recombination velocity

Country Status (2)

Country Link
TW (1) TW201043943A (en)
WO (1) WO2010110751A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282593A (en) * 2013-07-03 2015-01-14 塞米拉布Sdi有限责任公司 Photoluminescence mapping of passivation defects for silicon photovoltaics
US10012593B2 (en) 2015-05-04 2018-07-03 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging
US10018565B2 (en) 2015-05-04 2018-07-10 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging with optical filtering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080731B (en) 2010-07-30 2016-08-17 第一太阳能有限公司 Photoluminescence measurement tool and correlation technique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237811A1 (en) * 2004-11-10 2006-10-26 Boone Thomas Non-destructive, in-line characterization of semiconductor materials
US7919762B2 (en) * 2006-08-01 2011-04-05 Bt Imaging Pty Ltd Determining diffusion length of minority carriers using luminescence

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282593A (en) * 2013-07-03 2015-01-14 塞米拉布Sdi有限责任公司 Photoluminescence mapping of passivation defects for silicon photovoltaics
US9685906B2 (en) 2013-07-03 2017-06-20 Semilab SDI LLC Photoluminescence mapping of passivation defects for silicon photovoltaics
CN104282593B (en) * 2013-07-03 2018-04-17 塞米拉布Sdi有限责任公司 The luminescence generated by light of the passivation defect of Silicon photrouics is drawn
US10012593B2 (en) 2015-05-04 2018-07-03 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging
US10018565B2 (en) 2015-05-04 2018-07-10 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging with optical filtering
US10209190B2 (en) 2015-05-04 2019-02-19 Semilab Semiconductor Physics Laboratory Co., Ltd. Micro photoluminescence imaging with optical filtering

Also Published As

Publication number Publication date
WO2010110751A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
Giesecke et al. Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images
Tremsin et al. Neutron radiography with sub-15 μm resolution through event centroiding
Würfel et al. Diffusion lengths of silicon solar cells from luminescence images
Hopper et al. Real-time charge initialization of diamond nitrogen-vacancy centers for enhanced spin readout
Chushkin et al. A novel event correlation scheme for X-ray photon correlation spectroscopy
Phang et al. Carrier de-smearing of photoluminescence images on silicon wafers using the continuity equation
JP5659632B2 (en) Boron-doped p-type silicon wafer iron concentration analysis method and analyzer, silicon wafer, and silicon wafer manufacturing method
Sio et al. Quantifying carrier recombination at grain boundaries in multicrystalline silicon wafers through photoluminescence imaging
Glatthaar et al. Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images
Inoue et al. The cosmic MeV gamma-ray background and hard X-Ray spectra of active galactic nuclei: implications for the origin of hot AGN coronae
TW201043943A (en) System and method for determining surface recombination velocity
US10302574B2 (en) Method for analysing the crystal structure of a polycrystalline semiconductor
Sio et al. An accurate method for calibrating photoluminescence-based lifetime images on multi-crystalline silicon wafers
Vespucci et al. Robust energy calibration technique for photon counting spectral detectors
Hinken et al. Determination of the effective diffusion length of silicon solar cells from photoluminescence
Olleros et al. On the performance of large monolithic LaCl3 (Ce) crystals coupled to pixelated silicon photosensors
Höffler et al. Review and recent development in combining photoluminescence-and electroluminescence-imaging with carrier lifetime measurements via modulated photoluminescence at variable temperatures
Taheri et al. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector
Haug et al. Modulating the field-effect passivation at the SiO2/c-Si interface: Analysis and verification of the photoluminescence imaging under applied bias method
Dodt et al. Reconstruction of an electron energy distribution function using integrated data analysis
Kück Single photon sources for absolute radiometry–a review about the current state of the art
Wang et al. Separation algorithm for bulk lifetime and surface recombination velocity of thick silicon wafers and bricks via time-resolved photoluminescence decay
JP2013135170A (en) Lifetime image acquisition system and method of solar cell
Schubert et al. Influence of heterogeneous profiles in carrier density measurements with respect to iron concentration measurements in silicon
Wang et al. H+ ion-implantation energy dependence of electronic transport properties in the MeV range in n-type silicon wafers using frequency-domain photocarrier radiometry