TW201042076A - Surface preheating treatment of plastics substrate - Google Patents

Surface preheating treatment of plastics substrate Download PDF

Info

Publication number
TW201042076A
TW201042076A TW98116776A TW98116776A TW201042076A TW 201042076 A TW201042076 A TW 201042076A TW 98116776 A TW98116776 A TW 98116776A TW 98116776 A TW98116776 A TW 98116776A TW 201042076 A TW201042076 A TW 201042076A
Authority
TW
Taiwan
Prior art keywords
plastic substrate
substrate
heating method
radiation
plastic
Prior art date
Application number
TW98116776A
Other languages
Chinese (zh)
Inventor
Michael W Stowell
Nety Krishna
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW98116776A priority Critical patent/TW201042076A/en
Publication of TW201042076A publication Critical patent/TW201042076A/en

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

A source of IR radiation is used to heat a plastic substrate in a fast fashion inside a processing chamber, where the processing chamber is configured to preheat the plastic substrate and to perform thin film deposition, such as chemical vapor deposition(CVD) or physical vapor deposition(PVD), or plasma etching and cleaning. One aspect of using the source of IR radiation is to preheat only the surface of the plastic substrate while the core of the plastic substrate remains substantially unheated, so that the structure of the plastic substrate may remain unchanged. Meanwhile, the surface properties of the plastic substrate may be modified after the reheating treatment. The source of IR radiation may be provided at wavelength selected to substantially match the absorption wavelength of the plastic substrate. The plastic substrate moves through the heat flux zone generated by the source of IR radiation at a controllable speed.

Description

201042076 六、發明說明: 【先前技術】 基板預熱處理可用多種技術及加熱器配置來完成。利 用一直接加熱器(例如,電阻加熱板)在薄膜沉積製程(諸 如’物理氣相沉積(PVD)或化學氣相沉積(CVD)製程)中 . 加熱基板是很常見的。藉由使用一直接加熱板,可將基 板溫度加熱至高達約700°C。在微波輔助CVD或PVD製 0 程中,基板溫度可降至低於2〇〇。〇:。在較低基板溫度的 情況中’可使用非直接加熱源,例如電阻加熱源、燈、 或急速加熱器(flash heater)。急速加熱器係經研發以大幅 縮短快速熱處理的週期時間並增加產量。在許多應用中 使用急速加熱器,例如修復損壞及退火表面及諸如此類。 塑膠基板上之薄膜沉積的挑戰之一是維持塑膠基板的 結構完整性之困難度。塑膠擁有比玻璃或陶瓷低很多的 軟化溫度’例如熔點或玻璃轉換溫度。當塑膠基板在薄 〇 膜沉積或蝕刻之前先被加熱至接近軟化溫度時,塑膠基 板常會因為薄膜沉積製程所產生的額外熱量而達到溶點 或玻璃轉換溫度。因此’塑膠基板會由於薄膜沉積或姓 刻製程期間過熱而經歷結構扭曲。 近來引進一種調整電漿源(例如,微波離子源)功率的 先進脈衝技術’以減少薄膜沉積處理所產生的熱負载。 此技術在於塑膠基板上沉積塗層時是有用的。 仍存有一種調整塑膠基板的表面性質,同時使塑狀美 4 201042076 板維持結構完整性的需要。此調整可制薄媒沉積、電 漿蝕刻、或電漿清潔製程。 【發明内容】 本發明實施例使用一種例如紅外線加熱器的IR輻射 源在-處理室内快速加熱一塑膠基板,纟中該處理室係 經配置來預熱該塑膠基板並執行薄膜沉積(諸如化學氣 相沉積(CVD)或物理氣相沉積(pVD))、或是電漿蝕刻及 〇 π潔。使用該1R輻射源之一優勢係僅預熱該塑膠基板表 面,而該塑膠基板的核心實質上維持未加熱,因此該塑 膠基板的結構可維持不變。同時,可在該預熱處理後調 ' 整該塑膠基板的表面性質。本發明實施例使用波長經選 擇的IR輻射源,其實質上匹配該塑膠基板的吸收波長。 此方式可最佳化塑膠基板表面的能量吸收。本發明之快 速預熱處理的另一態樣在於該IR輻射源在該塑膠基板 以一可控制速度移動通過該IR輻射源所產生的熱流區 域時係經持續開啟。此種預熱處理容許該塑膠基板在數 秒内實質上平均加熱。該塑膠基板可被預熱至接近容許 表面形態或表面結構發生改變的臨界溫度。 在本發明之一組實施例中,該JR輻射源能擁有一可變 紅外線波長以進行能量輻射。一塑膠基板吸收一波長範 圍内的能量。峰値吸收波長取決於塑膠基板的分子結 構°每一種塑膠擁有一獨特的能量吸收光譜。藉由選擇 IR輕射源的波長以實質上匹配塑膠基板的獨特吸收光 201042076 譜’可增強塑膠基板表面的能量吸收。因此,與習知預 熱處理比較時’藉由選擇IR輻射源的波長而顯著增加塑 膠基板表面和塑膠基板核心之間的溫度差異。IR輻射源 可擁有範圍從1.5微米至3微米的峰値波長,以實質上 最大化塑膠基板的熱吸收。 . 在本發明之另一組實施例中,該塑膠基板係經配置而 以相▲快的速度移動’例如,範圍從1公尺/分鐘至 〇 30公尺/分鐘’以容許實質上均勻的快速表面加熱,例 如,在數秒内。藉由使用具有選擇的能量吸收波長之快 速預熱處理以及塑膠基板相對於IR輻射源之相當快速 的移動’在本發明之一特定實施例中,約95%的熱在該 塑膠基板表面上被吸收,該表面具有小於例如聚碳酸酯 -的塑膠基板厚度的25%之集膚深度。集膚深度係藉由改 變基板移動的速度,或汉輻射源的波長及功率來控制, 取決於特定應用的具體要求。與聚酯樹脂薄膜(Mylar 〇 fllm)相比’塑膠基板的厚度通常超過4毫米並且是相對 厚的。 在本發明之一不同組實施例中,可用一加熱器將整個 塑膠基板預熱至一高溫,以符合特定需求。然後利用IR 輻射源來進一步快速預熱塑膠基板,當塑膠基板以一受 控制速度移動通過IR輻射源所產生的熱流區域時。使用 IR輻射源的此種預熱主要加熱塑膠基板的表面,因此塑 膠基板的核心維持相對冰冷。預熱整個塑膠基板的加熱 器包含電阻加熱板、燈或急速加熱器。 6 201042076 本發明貫施例更包含一單铜箱勒老_ 早側預熱處理以及一雙側預熱 處理。在單侧預熱處理的具體督 m貫施例中,IR輻射源僅設 置在塑膠基板的一側。在雙側箱细由 你笑側預熱處理的另一實施例 中,塑膠基板的每一侧均擁有 穷頂熱處理用的IR輻射源。 IR輻射源相對於塑膠基板的位置是可調整的。當瓜輻 射源較靠近塑膠基板時,達到特定表面溫度所:的預熱 時間通常比IR輻射源遠離塑膠基板時短。 Ο 在另一實施例中,可在塑膠基板移入處理室前用另一 種熱源預熱。此預熱與表面的快速預熱處理不同,因為 整個基板被預熱至一高溫。該熱源可以是一非直接來 源,其中包括,例如電阻加熱器、燈、或急速加熱器。 本發明可用於>*L車工業’例如調整聚碳酸醋窗戶、塑 膠天窗、及諸如此類者的表面性質。本發明也可用來在 真空或大氣條件下沉積塗層,以及蝕刻表面處理。此外, 本發明可與微波輔助薄膜沉積製程並用,例如物理氣相 沉積(PVD)或化學氣相沉積(CVD),其中可用同軸線性電 漿源或同軸電漿線光源陣列來辅助PVD或CVD,以提高 電漿密度.並增加沉積速率。例如,本發明可與電黎系統 並用,如在多個相關專利申請案中所述者:Michael W.201042076 VI. Description of the Invention: [Prior Art] Substrate preheat treatment can be accomplished by various techniques and heater configurations. A direct heater (e.g., a resistive heating plate) is used in a thin film deposition process such as a 'physical vapor deposition (PVD) or chemical vapor deposition (CVD) process. Heating a substrate is common. The substrate temperature can be heated up to about 700 ° C by using a direct heating plate. In the microwave assisted CVD or PVD process, the substrate temperature can be reduced to less than 2 〇〇. Hey: In the case of lower substrate temperatures, an indirect heating source such as a resistive heating source, a lamp, or a flash heater may be used. Rapid heaters have been developed to significantly reduce the cycle time of rapid heat treatment and increase production. Rapid heaters are used in many applications, such as repairing damaged and annealed surfaces and the like. One of the challenges of thin film deposition on plastic substrates is the difficulty of maintaining the structural integrity of the plastic substrate. Plastics have a much lower softening temperature than glass or ceramics such as melting point or glass transition temperature. When the plastic substrate is heated to near softening temperature before deposition or etching of the thin film, the plastic substrate often reaches the melting point or glass transition temperature due to the extra heat generated by the thin film deposition process. Therefore, the plastic substrate may undergo structural distortion due to film deposition or overheating during the process of the last name. Recently, an advanced pulse technique has been introduced to adjust the power of a plasma source (e.g., a microwave ion source) to reduce the thermal load generated by the thin film deposition process. This technique is useful when depositing a coating on a plastic substrate. There is still a need to adjust the surface properties of the plastic substrate while maintaining the structural integrity of the plastic. This adjustment can be done by thin film deposition, plasma etching, or plasma cleaning processes. SUMMARY OF THE INVENTION Embodiments of the present invention rapidly heat a plastic substrate in a processing chamber using an IR radiation source such as an infrared heater. The processing chamber is configured to preheat the plastic substrate and perform thin film deposition (such as chemical gas). Phase deposition (CVD) or physical vapor deposition (pVD), or plasma etching and 〇 π cleaning. One advantage of using the 1R radiation source is that only the surface of the plastic substrate is preheated, and the core of the plastic substrate remains substantially unheated, so that the structure of the plastic substrate can be maintained. At the same time, the surface properties of the plastic substrate can be adjusted after the preheat treatment. Embodiments of the invention use wavelength selective IR radiation sources that substantially match the absorption wavelength of the plastic substrate. This method optimizes the energy absorption of the surface of the plastic substrate. Another aspect of the rapid pre-heat treatment of the present invention is that the source of IR radiation is continuously turned on as the plastic substrate moves through the heat flow region generated by the IR radiation source at a controllable speed. This pre-heat treatment allows the plastic substrate to be heated substantially evenly over a few seconds. The plastic substrate can be preheated to a critical temperature close to the allowable surface morphology or surface structure. In a set of embodiments of the invention, the JR radiation source can have a variable infrared wavelength for energy radiation. A plastic substrate absorbs energy in a range of wavelengths. The peak absorption wavelength depends on the molecular structure of the plastic substrate. Each plastic has a unique energy absorption spectrum. By selecting the wavelength of the IR light source to substantially match the unique absorption of the plastic substrate 201042076 spectrum 'enhance the energy absorption of the plastic substrate surface. Therefore, the temperature difference between the surface of the plastic substrate and the core of the plastic substrate is significantly increased by selecting the wavelength of the IR radiation source when compared with the conventional preheat treatment. The IR radiation source can have a peak-to-peak wavelength ranging from 1.5 microns to 3 microns to substantially maximize the heat absorption of the plastic substrate. In another set of embodiments of the present invention, the plastic substrate is configured to move at a speed of ▲, for example, ranging from 1 meter/minute to 〇30 meters/minute to allow for substantially uniform Fast surface heating, for example, in seconds. By using a rapid pre-heat treatment with a selected energy absorption wavelength and a relatively rapid movement of the plastic substrate relative to the IR radiation source, in a particular embodiment of the invention, about 95% of the heat is on the surface of the plastic substrate Absorbed, the surface has a skin depth of less than 25% of the thickness of a polycarbonate-like plastic substrate. Skin depth is controlled by changing the speed at which the substrate moves, or the wavelength and power of the Han radiation source, depending on the specific requirements of the particular application. Compared to polyester resin film (Mylar 〇 fllm), the thickness of the plastic substrate is usually more than 4 mm and is relatively thick. In a different set of embodiments of the invention, the entire plastic substrate can be preheated to a high temperature by a heater to meet specific needs. The IR radiation source is then used to further rapidly preheat the plastic substrate as it moves through the heat flow region created by the IR radiation source at a controlled rate. This preheating using an IR radiation source primarily heats the surface of the plastic substrate, so that the core of the plastic substrate remains relatively cold. The heater that preheats the entire plastic substrate contains a resistive heating plate, a lamp or a rapid heater. 6 201042076 The embodiment of the present invention further comprises a single copper box Le _ early side preheat treatment and a double side preheating treatment. In the specific embodiment of the one-side preheat treatment, the IR radiation source is only disposed on one side of the plastic substrate. In another embodiment in which the double side box is preheated by your laughing side, each side of the plastic substrate has an IR radiation source for the poor top heat treatment. The position of the IR radiation source relative to the plastic substrate is adjustable. When the melon source is closer to the plastic substrate, the specific surface temperature is reached: the preheating time is usually shorter than when the IR source is away from the plastic substrate.另一 In another embodiment, the plastic substrate can be preheated with another heat source before being moved into the processing chamber. This preheating is different from the rapid preheating of the surface because the entire substrate is preheated to a high temperature. The heat source can be an indirect source including, for example, a resistive heater, a lamp, or a rapid heater. The invention can be used in >*L vehicle industry' for example to adjust the surface properties of polycarbonate windows, plastic sunroofs, and the like. The invention can also be used to deposit coatings under vacuum or atmospheric conditions, as well as to etch surface treatments. In addition, the present invention can be used in conjunction with a microwave assisted thin film deposition process, such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), in which a coaxial linear plasma source or a coaxial plasma line source array can be used to assist PVD or CVD. To increase the plasma density and increase the deposition rate. For example, the present invention can be used in conjunction with an electric system, as described in a number of related patent applications: Michael W.

Stowell 及 Manuel D. Campo 於 2008 年 2 月 20 號提出申 請之標題為「聚合物基板上之係數調整塗層(Index Modified Coating on Polymer Substrate)」的美國專利申 請案第12/070660號(代理人案號A11896/T083800);US Patent Application Serial No. 12/070660, entitled "Index Modified Coating on Polymer Substrate", filed on February 20, 2008 by Stowell and Manuel D. Campo (Attorney) Case No. A11896/T083800);

Michael W. Stowell,Net Krishna, Ralf Hofman,及 Joe 201042076Michael W. Stowell, Net Krishna, Ralf Hofman, and Joe 201042076

Griffith於2008年3月18號提出申請之標題為「同軸微 波輔助沉積及蝕刻系統j的美國專利申請案第12/050373 號(代理人案號 A12659/T83600); Michael W· Stowell, Net Krishna於2008年5月6號提出申請之標題為「微波可 旋轉濺射沉積」的美國專利申請案第12/115717號(代理 人案號 A012144/T82800); Michael W. Stowell 及 Richard Newcomb於2008年9月26號提出申請之標題為「微帶 天線辅助IPVD」的美國專利申請案第12/238685號(代 理人案號 A011899/T082700); Michael W. Stowell,Net Krishna於2008年5月14號提出申請之標題為「微波輔 助可旋轉PVD」的美國專利申請案第12/120391號(代理 人案號 A012151/T86000);以及 Michael W. Stowell 於 2008年9月26號提出申請之標題為「微波電漿抑制遮 蔽(Microwave Plasma Containment Shielding)」的美國專 利申請案第 12/238664 號(代理人案號 A011869/T082600) »上述每一個專利申請案的完整内容 在此為所有目的藉由引用的方式併入本文中。 其他實施例及特徵結構一部分在如下描述中提出,並 且一部分對於熟知技藝者而言會在檢視說明書後變得顯 而易見,或是可由本發明之實施習得。對於本發明之本 質和優勢的進一步了解可藉由參考說明書的其餘部分和 圖式取得。 【實施方式】 8 201042076 1.A塑膠的能量吸收光譜 傅立葉轉換紅外線(FTIR)光譜係經用來識別各種未知Griffith, filed on March 18, 2008, entitled "Coaxial Microwave-Assisted Deposition and Etching System, US Patent Application Serial No. 12/050,373 (Attorney Docket No. A12659/T83600); Michael W. Stowell, Net Krishna US Patent Application No. 12/115717 (Attorney Docket No. A012144/T82800), filed on May 6, 2008, entitled "Microwave Rotary Sputter Deposition"; Michael W. Stowell and Richard Newcomb, 2008 U.S. Patent Application Serial No. 12/238,685, entitled "Microstrip Antenna Assisted IPVD" (Attorney Docket No. A011899/T082700); Michael W. Stowell, Net Krishna, filed on May 14, 2008 U.S. Patent Application Serial No. 12/120,391, entitled "Microwave-Assisted Rotatable PVD" (Attorney Docket No. A012151/T86000); and Michael W. Stowell, filed on September 26, 2008, entitled "Microwave" U.S. Patent Application Serial No. 12/238,664, the entire disclosure of which is hereby incorporated by reference. All objects are incorporated herein by reference. The other embodiments and features are set forth in the description which follows, and in part, may be apparent to those skilled in the art of the invention. Further understanding of the nature and advantages of the present invention can be obtained by reference to the remainder of the specification and the drawings. [Embodiment] 8 201042076 1.A energy absorption spectrum of plastics Fourier transform infrared (FTIR) spectroscopy is used to identify various unknowns

有機材料,例如塑膠、膠黏劑、潤滑劑、及軸承脂。FTIR 藉由以紅外光激發化學鍵來逮作。不同化學鍵吸收獨特 '頻率的光能。此活動係表現為該材料的光譜。光譜基本 - 上是化合物的「指紋」,其可用來與資料庫的參考光譜比 對以進行識別。有時可用特定峰高比來量化簡單混合物 0 的比例、氧化或分解程度、純度等。FTIR輔助識別化學 鍵’以及材料的化學組成。FTIR的每一個波峰係與一官 能基或一化學鍵有關,取決於塑膠或有機化合物的分子 結構。 在本發明實施例中,使用吸收光譜的目的與一般用來 進行識別的目的不同。取代使用「指紋」來辨別有機材 料’塑膠之能量吸收的大多數大型波峰之波長範圍係用 來輔助選擇例如紅外線加熱器之IR輻射源的波長,以實 〇 質上匹配峰値能量吸收。在本發明之一特定實施例中, 藉由選擇IR輻射源的波長以匹配塑膠基板的吸收峰,配 合表面集膚深度小於塑膠基板厚度的25%,例如聚碳酸 酯的塑膠基板表面的能量吸收大約是95%。因此,在某 些實施例中表面溫度可達到200〇c或更低,而塑膠基板 的中心仍維持接近室溫。塑膠基板的表面和中心之間如 此大的溫差之特徵容許薄膜沉積製程期間塑膠基板的表 面改性而不會失去結構完整性,薄膜沉積製程例如,其 中包括,物理氣相沉積(PVD)或化學氣相沉積(CVD)、電 9 201042076 漿蝕刻、電漿清潔、及諸如此類。 第1圖示出兩種不同厚度,u毫米和4.8毫米,的聚 碳酸酯的FTIR吸收光譜。注意到波長在16〇〇奈来和 2500奈米之間有大的吸收峰。光譜1〇2和ι〇4分別是較 薄及較厚的聚碳酸酯膜。在FTIR分析中,隨著樣品變 厚,吸收會開始飽和,如光譜1〇4在波長22〇〇奈米和 2500奈米之間所示者。此外,隨著厚度增加光譜ι〇4 顯示出比光譜102高的波峰。這表示吸收隨著較厚的塑 膠基板變得更強。 本發明實施例包含具有範圍從〇 75微米至1毫米之可 變波長的任何IR輻射源。為了說明,第2圖示出一紅外 線加熱器的發射光譜^主意到該紅外線加熱器有五種波 長選擇,例如短波長(例如波峰波長在丨微米左右的齒素 202及波峰波長在約1 25微米的短波204),以及中波長 (例如波峰波長在約1.5微米的快速響應中波2〇6、波峰 波長接近2微米的碳208、以及波峰波長在2·5微米左右 的中波210)。 2.範例預熱系統 第3Α圖示出用於塑膠基板表面處理之簡化單側預熱 系統300Α。該系統300Α包含一 IR輻射源3〇2、一基板j 一控制盒308、及一基板支撐件(未示出)。該控制盒3〇8 控制該塑膠基板306沿著方向312通過該熱流區域3〇4 的移動。該控制盒308也選擇該IR輻射源3〇2的開啟時 間和波長。該塑膠基板3 〇6係經配置而以範圍從!米 10 201042076 分鐘至30米/分鐘的相當快的速度移動。該iR輻射源 302擁有可變功率密度和可變波長’例如,其可提供峰 值在1微米、1.25微米、1.5微米、2微米和2 5微米左 右的五種不同波長,如第2圖所示者。由於表面加熱, 頂表面314可擁有比底表面16者高許多的溫度。 第3B圖示出用於塑膠基板表面處理之簡化雙側預熱 系統300B。該系統3〇〇B包含兩個IR輻射源3〇2、一塑 ❹ 膠基板、一控制盒308、及一基板支撐件(未示出)。該等 IR輻射源302係對稱設置在該塑膠基板3〇6的中線31〇 周圍。該控制盒308控制該塑膠基板306沿著方向312 通過該熱流區域304的移動。該控制盒308也選擇該IR 輻射源302的開啟時間和波長。該塑膠基板3〇6係經配 置而以範圍從1公尺/分鐘至30公尺/分鐘的相當快的 速度移動。該IR輻射源3〇2擁有可變功率密度和可變波 長,例如,其可提供峰值在1微米、1.25微米、1.5微米、 〇 2微米和2.5微米左右的五種不同波長,如第2圖所示 者由於表面加熱,該頂表面314和該底表面316擁有 比中線310者高許多的溫度。 在本發明之一特定實施例中,塑膠基板係利用與該IR 輕射源不同的熱源完全預熱至一高溫(未在帛3A和3B 圖中示出)。該熱源可以是非直接來源,例如電阻加熱源 或燈該預熱的基板再進一步利用該ir輕射源加熱。 在本發明之另一實施例中,基板支撐件可用於單側或 雙側預熱系統,以容許該塑膠基板快速移動且不會妨礙 201042076 該基板表面接收來自該iR輻射源的熱流β 3.範例預熱製程 為了說明’第4圖提供可用來預熱一塑膠基板的製程 之流程圖。該製程在方塊408以載入一基板支撐件至一 處理室内開始。該基板支撐件係經配置來支撐基板,並 容許基板快速移動,因此基板能夠在該塑膠基板表面上 均勻加熱。基板可沿著基板支撐件以1公尺/分鐘和3〇 0 公尺/分鐘之間的速度移動。以此種速度,基板可在短 時間内被加熱’而IR輻射源係持續開啟。此預熱方法與 習知急速加熱不同,在於IR加熱源被開啟及關閉,同時 基板並不相對於IR輻射源移動。 該1R輻射源相對於該基板支撐件的位置在方塊412調 整。可藉由調整該IR輻射源和該基板或基板支撐件之間 的距離來控制進入一塑膠基板表面的熱輻射。例如,當 談IR輻射源較靠近該基板時,基板會得到比其遠離該基 〇 板時多的熱能。此位置調整辅助控制該塑膠基板的預熱。 該IR輻射源的波長也在方塊416做調整。這是用來控 制該塑膠基板的預熱之處理參數。下個部分的範例會示 出選擇一紅外線加熱器的波長以實質匹配該塑膠基板的 吸收波長對於該塑膠基板的表面和中心間之溫差的衝 擊。具備此種波長選擇,該塑膠基板的表面和中心間之 溫差相當大,而使該表面能夠被加熱及調整,同時該塑 膠基板的核心維持冰冷並保持該塑膠基板的結構完整 性。 12 201042076 一旦選擇了該塑膠基板的IR輻射源波長,可在方塊 420開啟該IR輻射源。該IR輻射源可擁有可變功率密 度。取決於預熱要求,可調整功率密度以符合預熱需求。 在預熱整個基板至一高溫的特殊情況中,可使用一不 同熱源來預熱該塑膠基板。這是一個選擇性步驟(未在第 4圖所示之流程中示出)。 在將該IR輻射源載入、定位、選擇波長、開啟並調整 〇 至一功率密度後’該塑膠基板已準備好在方塊424移入 該處理室中。該塑膠基板沿著該基板支撐件的移動係控 制在一可變速度。例如,該塑膠基板的移動可以慢慢開 -始’然後變快以通過該熱流區域,並在方塊428離開該 處理室至其他製程。 4.模擬及實驗結果 在此解釋一些術語,因為其係用在ANSYS模擬中。 ANSYS係以有限元素法進行模擬的商用套裝軟體。該等 Q 模擬係基於一些理論,其中包含,熱傳輸及熱力學,包 含靜態及暫態分析,固體力學,包含靜態及動態應力分 析,以及流體力學等。 熱傳導率係由傅立葉定律定義:Organic materials such as plastics, adhesives, lubricants, and bearing greases. FTIR is caught by exciting chemical bonds with infrared light. Different chemical bonds absorb the unique 'frequency of light energy. This activity is represented by the spectrum of the material. Basic Spectrum - The upper is the "fingerprint" of the compound that can be used to identify the reference spectrum of the library for identification. The specific peak-to-height ratio can sometimes be used to quantify the ratio of simple mixture 0, the degree of oxidation or decomposition, purity, and the like. FTIR assists in the identification of chemical bonds and the chemical composition of the material. Each peak of FTIR is related to a functional group or a chemical bond, depending on the molecular structure of the plastic or organic compound. In the embodiment of the present invention, the purpose of using the absorption spectrum is different from the purpose generally used for identification. Instead of using "fingerprints" to discern the organic material, the wavelength range of most large peaks of the energy absorption of the plastic is used to assist in the selection of the wavelength of the IR source, such as an infrared heater, to match the peak energy absorption. In a specific embodiment of the present invention, by selecting the wavelength of the IR radiation source to match the absorption peak of the plastic substrate, the surface skin depth is less than 25% of the thickness of the plastic substrate, such as the energy absorption of the plastic substrate surface of the polycarbonate. It is about 95%. Thus, in some embodiments the surface temperature can reach 200 〇 c or less while the center of the plastic substrate remains near room temperature. The large temperature difference between the surface and the center of the plastic substrate allows the surface modification of the plastic substrate during the film deposition process without losing structural integrity, such as physical vapor deposition (PVD) or chemistry. Vapor deposition (CVD), electricity 9 201042076 slurry etching, plasma cleaning, and the like. Figure 1 shows the FTIR absorption spectra of polycarbonates of two different thicknesses, u mm and 4.8 mm. Note that the wavelength has a large absorption peak between 16 〇〇Nai and 2500 nm. The spectra 1〇2 and ι〇4 are thinner and thicker polycarbonate films, respectively. In the FTIR analysis, as the sample thickens, the absorption begins to saturate, as shown by the spectrum 1〇4 between the wavelengths of 22 nanometers and 2,500 nanometers. In addition, the spectrum ι 4 shows a higher peak than the spectrum 102 as the thickness increases. This means that the absorption becomes stronger as the thicker plastic substrate becomes. Embodiments of the invention include any source of IR radiation having a variable wavelength ranging from 〇75 microns to 1 mm. For purposes of illustration, Figure 2 shows the emission spectrum of an infrared heater. The infrared heater has five wavelength choices, such as short wavelengths (e.g., pulsar 202 with a peak wavelength of about 丨 microns and a peak wavelength of about 1 25). Micron short wave 204), and medium wavelength (for example, a fast response medium wave peak with a peak wavelength of about 1.5 microns, a carbon 208 with a peak wavelength close to 2 microns, and a medium wave 210 with a peak wavelength of about 2. 5 microns). 2. Example Preheating System Figure 3 shows a simplified one-sided preheating system 300Α for the surface treatment of plastic substrates. The system 300 includes an IR radiation source 3, a substrate j, a control box 308, and a substrate support (not shown). The control box 3〇8 controls the movement of the plastic substrate 306 through the heat flow region 3〇4 along the direction 312. The control box 308 also selects the turn-on time and wavelength of the IR radiation source 3〇2. The plastic substrate 3 〇6 is configured to range from! Meter 10 201042076 minutes to 30 meters / minute to move at a fairly fast speed. The iR radiation source 302 has a variable power density and a variable wavelength 'for example, it can provide five different wavelengths with peaks at about 1 micron, 1.25 micron, 1.5 micron, 2 micron, and 25 micron, as shown in FIG. By. Due to the surface heating, the top surface 314 can have a much higher temperature than the bottom surface 16. Figure 3B shows a simplified double side preheating system 300B for surface treatment of a plastic substrate. The system 3A includes two IR radiation sources 3, a plastic substrate, a control box 308, and a substrate support (not shown). The IR radiation sources 302 are symmetrically disposed around the center line 31〇 of the plastic substrate 3〇6. The control box 308 controls the movement of the plastic substrate 306 through the heat flow region 304 along the direction 312. The control box 308 also selects the turn-on time and wavelength of the IR radiation source 302. The plastic substrate 3〇6 is configured to move at a relatively fast speed ranging from 1 m/min to 30 m/min. The IR radiation source 3〇2 has variable power density and variable wavelength, for example, it can provide five different wavelengths with peaks at 1 micron, 1.25 micron, 1.5 micron, 〇2 micron, and 2.5 micron, as shown in FIG. The top surface 314 and the bottom surface 316 have a much higher temperature than the centerline 310 due to surface heating. In a particular embodiment of the invention, the plastic substrate is fully preheated to a high temperature (not shown in Figures 3A and 3B) using a different heat source than the IR light source. The heat source can be an indirect source, such as a resistive heat source or lamp. The preheated substrate is further heated by the ir light source. In another embodiment of the invention, the substrate support can be used in a single-sided or double-sided preheating system to allow the plastic substrate to move quickly without interfering with the 201042076 substrate surface receiving heat flow from the iR radiation source. An example preheating process is provided to illustrate a flow chart of a process that can be used to preheat a plastic substrate. The process begins at block 408 by loading a substrate support into a processing chamber. The substrate support is configured to support the substrate and permit rapid movement of the substrate so that the substrate can be uniformly heated on the surface of the plastic substrate. The substrate can be moved along the substrate support at a speed between 1 meter/minute and 3 〇 0 meters/minute. At this speed, the substrate can be heated in a short period of time while the IR radiation source is continuously turned on. This preheating method differs from conventional rapid heating in that the IR heating source is turned on and off while the substrate does not move relative to the IR radiation source. The position of the 1R radiation source relative to the substrate support is adjusted at block 412. The heat radiation entering the surface of a plastic substrate can be controlled by adjusting the distance between the IR radiation source and the substrate or substrate support. For example, when the IR radiation source is closer to the substrate, the substrate will have more thermal energy than it is away from the substrate. This position adjustment assists in controlling the preheating of the plastic substrate. The wavelength of the IR radiation source is also adjusted at block 416. This is the processing parameter used to control the preheating of the plastic substrate. An example of the next section will show the selection of an infrared heater wavelength to substantially match the absorption wavelength of the plastic substrate against the temperature difference between the surface and the center of the plastic substrate. With such a wavelength selection, the temperature difference between the surface and the center of the plastic substrate is relatively large, so that the surface can be heated and adjusted, while the core of the plastic substrate is kept cold and maintains the structural integrity of the plastic substrate. 12 201042076 Once the IR radiation source wavelength of the plastic substrate is selected, the IR radiation source can be turned on at block 420. The IR radiation source can have a variable power density. Depending on the preheating requirements, the power density can be adjusted to meet the preheating requirements. In the special case of preheating the entire substrate to a high temperature, a different heat source can be used to preheat the plastic substrate. This is an optional step (not shown in the flow shown in Figure 4). After the IR radiation source is loaded, positioned, wavelength selected, turned on, and adjusted to a power density, the plastic substrate is ready to be moved into the processing chamber at block 424. The plastic substrate is controlled at a variable speed along the movement of the substrate support. For example, the movement of the plastic substrate can be slowly opened and then turned faster to pass the heat flow region and exit the processing chamber at block 428 to other processes. 4. Simulation and Experimental Results Some terms are explained here because they are used in ANSYS simulations. ANSYS is a commercial package software that simulates with the finite element method. These Q simulations are based on a number of theories including heat transfer and thermodynamics, including static and transient analysis, solid mechanics, including static and dynamic stress analysis, and fluid mechanics. Thermal conductivity is defined by Fourier's law:

qx,,=A: dT/dX 其中qx”是x方向的熱流’ T是溫度,dT/dX是x方向 的溫度梯度’而&是熱傳導率《熱傳導率表示出一材料 導熱通過該材料主體的效率如何,並且隨材料大幅改 變’例如塑膠、金屬、半導體、陶瓷、玻璃等。例如, 13 201042076 塑膠的熱傳導率通常比金屬低,除非該塑膠為了減少靜 電放電(細)而填充導電填料,例如碳。常用塑膠做為絕 熱體。也常用多種玻璃和陶瓷做為絕熱體,例如氧化鋁 (ΑΙΛ)、二氧化梦、及諸如此類。另一方面,金屬,例 如銅Is、金、和銀、及諸如此類者,係經用做導熱體。 放射率係由斯提凡波兹曼定律(stefa卜Boh—、 定義: 其中q”是熱流,ε是放射率,σ是斯提凡波.兹曼常數, 而Τ是主體溫度。放射率£表示出與例如黑體的理想輻 射體相比 表面放射熱能的效率如何。放射率隨材料 大幅改變,例如塑膠、金屬、及陶瓷。例如,金屬表面 的放射率通常很小’在—特定實施例中高度拋光的金和 銀低至0.02 »但是,非導體的放射率比較大,通常超過 〇.6。例如,碳或石墨的放射率在〇 8至〇 95範圍内。放 〇 射率也受到波長的強大影響。在某些波長下,放射率係 高於某些其他波長。 比熱是增加一物質單位量的溫度一特定溫度區間所需 的熱能之度量。一般而言,塑膠、玻璃或陶瓷的比熱大 於金屬。因此,當材料吸收相同的熱量時,照理說改變 塑膠、玻璃、陶瓷、磚、混凝土的溫度比金屬難,例如, 銅的比熱範圍在350-450 J/Kg/K内,取決於純度或合金 組成。但是’就聚碳酸酯而言,比熱是13〇〇 J/Kg/K,其 顯著高於銅。 201042076 當然’密度是影響加熱時一基板之溫度改變的另一個 因素。密度表示每單位體積的質量。基板密度越高,基 板在溫度改變上就有更大的慣量。 在最普遍的情況中’當入射輻射抵達一表面時,此輻 射可為一半透明媒介反射、吸收、及透射,例如玻璃或 水。照射度G係定義為波長λ的輻射入射在一表面上的 速率’每單位表面積及關於λ之每單位波長區間d λ。 總照射度G(w/m2)包含所有光譜貢獻。來自一半透明表 面上的輻射平衡,其遵循 G Λ = G λ,ref+ G λ,abs + G λ,tr 其中Ga,ref表示反射照射度,Ga⑷表示吸收照射度而 G λ,tr表示透射照射度。照射度也稱為功率密度,其可在 • 本說明書中使用。 從上面的平衡式,就一半透明基板而言,其遵循 P + a + τ =1 〇 其中口是反射率是吸收率,^是透射率。就不 透明表面而言,透射率等於Ρ反射率取決於該反射是 例如從一似鏡表面的鏡面反射,或是例如在粗糙表面上 的擴散反射,其可以是大部分工程應用的合理假設。在 理想情況中,若其吸收所有的人射可見光韓射表面顯得 「黑暗」’且若其反射此輻射其係「白色」。反射率和吸 收率兩者皆受到波長的強大影響。具備上面提供的背景 資訊,熟知技藝者可了解模擬一塑膠基板的暫態溫度: 理論模擬的基本概念,當該塑膠基板吸收來自一 IR輻射 15 201042076 源的熱流時。 發明人執行了 -些模擬及實驗測試,以利用本發明加 熱法確認1膠基板的表面及核心之間溫差很大,並且 顯現本發明方法和f知加熱法之間的實質差異。此種模 擬或測試的結果在下面的第5A、5B、6A、6B和6C圓 中呈現。 第5A圖示出取自ANSYS之塑膠基板的單侧預熱之模 ❹ 擬結果為了模擬,使用厚度4毫米的聚碳酸酯(PC)基 板PC的熱傳導率為0.2 W/m/K,密度為1200 Kg/m3, 比熱為1300 J/Kg/K’放射率為〇·9,並且功率密度為18〇〇 W/m。第1圖所示之聚碳酸酯的吸收也用在模 擬中。如第5A圖所示,當使用具有所選波長的紅外線加 &器時(例如第2圖所示的碳加熱器),3秒後該聚碳酸酯 基板的表面大約是190。〇,而該聚碳酸酯基板的中心約 是20 C。該塑膠基板的表面和中心之間的大溫差容許該 Ο 塑膠基板的表面性質被調整,同時該塑膠基板在表面加 熱下維持不扭曲。 第5B圖係不出在與第5A圖所示者相同的模擬中該聚 碳酸酯基板的頂及底表面之暫態溫度的圖形。注意到在 該加熱製程期間,該頂表面在低於3秒内被加熱,然後 冷卻下來,而該底表面維持相當冰冷。 現在參見第6A囷’其示出使用短波(第2圖所示之曲 線204)的習知加熱器’就厚度4毫米的聚碳酸酯基板的 單侧預熱而§,表面溫度大約是丨65,而中心溫度約 201042076 是149°C。因此,該範例顯現出在不可能選擇波長以匹 配該塑膠基板之吸收光譜的習知加熱下,該塑膠基板的 中心被加熱至接近該塑膠基板的軟化溫度,例如玻璃轉 換溫度或熔化溫度,因此該塑膠基板可能會變形或在加 熱下扭曲。 第6B圖示出該聚碳酸酯基板的頂及底表面的暫態溫 度’其係利用不可能選擇波長以匹配該塑膠基板之吸收 光譜的習知加熱器從單側預熱。注意到該頂表面達到165 〇 。 C (也在第6A圖中示出)’而該底表面達到137。〇。第6C 圖示出相同的聚碳酸酯基板之實驗結果。注意到頂表面 溫度約是1621,而底部溫度約是135。(:。此範例示出此 實驗結果與第6B圖所示的模擬結果一致,因此證實該模 擬。 該等結果清楚示出一塑膠基板的快速預熱處理。該快 速預熱法使用來自一紅外線加熱器的波長選擇而可能匹 〇 配塑膠的吸收波峰,其容許實質上比該波長並未最佳化 之習知加熱更高的熱吸收。此外,本發明加熱法之另一 態樣係在預熱期間快速移動該基板,同時該紅外線加熱 器持續開啟。此方法與習知急速加熱不同,其中該紅外 線加熱器被開啟及關閉,而該基板不移動。本發明之此 快速預熱法與習知急速加熱法有區別。一差別在於在該 塑膠基板的表面和中心間造成較大的溫差。由於溫差 大’表面性質可以被調整,而該塑膠基板的整體結;維 持原封不動。所呈現的結果僅欲藉由提供相對比較來示 17 201042076 出在此所述增加溫差之技術的效果。纟發明&這些結果 預’月到對於種類多樣的應用而言,可利用在此所述技術 以一快速方式最佳化表面的熱吸收。 現在參見第7圖,示出水的吸收光譜。注意到水的吸 收光°曰有靠近3微米的波峰,其與範圍從1.7微米至 2.5微米的聚碳酸酯峰値吸收不同。用水的吸收光譜做參 考來選擇IR輻射源的波長,該紅外線加熱器可利用本發 明在沉積前從塑膠基板表層上快速除去水分。透過從塑 膠表面上除去水分,可改善沉積膜的性質,例如塗層附 著性。 熟知技藝者會了解可為不同處理室和不同處理條件改 變特定參數,而不會背離本發明精神。例如IR輻射源的 類型、預熱系統中IR輻射源的配置、在快速預熱之前預 熱該基板的方法、沿著該基板支撐件移動該基板的方 法、基板支撐件配合該基板在該預熱系統内的移動之配 置、塑膠的材料變異(熱塑性、熱固性、彈性等)之其他 變異對熟知技藝者而言也會是顯而易見的。該等等效物 及選擇方案意欲包含在本發明範圍内。因此,本發明之 範圍不應限於所述實施例,反之應由如下申請專利範圍 界定。 【圖式簡單說明】 本專利檔案包含至少一個彩色圖式。本專利具備彩色 圖式的副本可在要求並付費後由智慧財產局提供》 18 201042076 第1圖示出厚度1.0微米和4.8微米之聚碳酸酯的吸收 光譜。 - 第2圖示出紅外線加熱器的發射光譜。 第3A圖示出使用具有可變波長之IR輻射源的簡化單 側預熱系統。 第3B圖示出使用具有可變波長之1尺輻射源的簡化雙 侧預熱系統。 第4圖示出說明預熱塑膠基板表面之步驟的流程圖。 〇 第5A圖(彩色)示出模擬利用所選波長加熱聚碳酸酯基 板3秒鐘後之溫度分佈的結果。 第5B圖示出模擬利用所選波長加熱聚碳酸酯基板的 頂及底表面上的暫態溫度之溫度分佈的結果。 第6A圖(彩色)示出模擬利用短波長的習知加熱之溫度 分佈的結果(第2圖之曲線204) » 第6B圖示出模擬利用短波長的習知加熱之聚碳酸酯 〇 基板的頂及底表面上之暫態溫度的結果(第2圖所示之曲 線 204) 〇 第6C圖示出利用短波長的習知加熱之聚碳酸酯基板 的實驗結果(第2圖所示之曲線204)。 第7圖不出水吸收光譜。 【主要元件符號說明】 102、104 光譜 202 鹵素 201042076 204 短波 206 快速響應中波 208 碳 210 中波 300A 單側預熱系統 300B 雙側預熱系統 302 IR輻射源 304 熱流區域 306 基板 308 控制盒 310 中線 312 方向 314 頂表面 316 底表面 ❹ 20Qx,, =A: dT/dX where qx" is the heat flow in the x direction 'T is the temperature, dT/dX is the temperature gradient in the x direction' and & is the thermal conductivity "thermal conductivity indicates that a material conducts heat through the material body The efficiency of the material changes greatly with materials [eg plastics, metals, semiconductors, ceramics, glass, etc. For example, 13 201042076 plastics usually have a lower thermal conductivity than metals, unless the plastic is filled with conductive fillers in order to reduce electrostatic discharge (fine), For example, carbon. Commonly used plastics are used as thermal insulators. A variety of glass and ceramics are also commonly used as thermal insulators, such as alumina (ΑΙΛ), dioxide dreams, and the like. On the other hand, metals such as copper Is, gold, and silver, And the like, used as a heat conductor. The emissivity is determined by Stefan Bozeman's law (stefa Boh—, definition: where q is the heat flow, ε is the emissivity, and σ is Stefan Bozman Constant, and Τ is the bulk temperature. The emissivity shows how efficient the surface radiates thermal energy compared to an ideal radiator such as a black body. The emissivity varies greatly with materials such as plastics, metals, and Ceramics. For example, the emissivity of metal surfaces is usually small 'in the particular embodiment - highly polished gold and silver as low as 0.02 » However, the non-conductor emissivity is relatively large, usually exceeding 〇.6. For example, carbon or graphite The emissivity ranges from 〇8 to 〇95. The radiance is also strongly influenced by the wavelength. At some wavelengths, the emissivity is higher than some other wavelengths. Specific heat is a temperature that increases the amount of a unit of matter. The measurement of the thermal energy required for the temperature range. Generally speaking, the specific heat of plastic, glass or ceramic is greater than that of metal. Therefore, when the material absorbs the same heat, it is reasonable to change the temperature of plastic, glass, ceramic, brick and concrete than metal. For example, the specific heat range of copper is in the range of 350-450 J/Kg/K, depending on the purity or alloy composition. But in the case of polycarbonate, the specific heat is 13 〇〇J/Kg/K, which is significantly higher than copper. 201042076 Of course 'density is another factor that affects the temperature change of a substrate during heating. Density means the mass per unit volume. The higher the substrate density, the greater the inertia of the substrate in temperature change. In the most general case, 'when incident radiation reaches a surface, this radiation can be reflected, absorbed, and transmitted by half of the transparent medium, such as glass or water. Irradiance G is defined as the radiation of wavelength λ incident on a surface. Rate 'per unit surface area and interval λ per unit wavelength with respect to λ. Total irradiance G (w/m2) contains all spectral contributions. Radiation balance from half of the transparent surface, which follows G Λ = G λ, ref + G λ , abs + G λ, tr where Ga, ref represents the reflected illuminance, Ga (4) represents the absorbed illuminance and G λ, tr represents the transmitted illuminance. The illuminance is also called the power density, which can be used in this specification. The balance type, in the case of a half transparent substrate, follows P + a + τ =1 〇 where the mouth is the reflectance is the absorbance and ^ is the transmittance. In the case of an opaque surface, the transmittance is equal to the Ρ reflectivity depending on whether the reflection is, for example, a specular reflection from a mirror-like surface, or a diffuse reflection such as on a rough surface, which can be a reasonable assumption for most engineering applications. In an ideal situation, if it absorbs all of the human visible light, the surface appears "dark" and if it reflects the radiation it is "white." Both reflectivity and absorption are strongly influenced by wavelength. With the background information provided above, those skilled in the art can understand the transient temperature of a plastic substrate: the basic concept of theoretical simulation when the plastic substrate absorbs heat from an IR radiation source. The inventors performed some simulations and experimental tests to confirm that the temperature difference between the surface and the core of the 1-glue substrate was large by the heating method of the present invention, and the substantial difference between the method of the present invention and the heating method was revealed. The results of such simulations or tests are presented in circles 5A, 5B, 6A, 6B and 6C below. Figure 5A shows a one-sided preheating simulation of a plastic substrate taken from ANSYS. For simulation, a polycarbonate (PC) substrate PC having a thickness of 4 mm has a thermal conductivity of 0.2 W/m/K and a density of 1200 Kg/m3, specific heat 1300 J/Kg/K' emissivity 〇·9, and power density 18 〇〇 W/m. The absorption of the polycarbonate shown in Figure 1 is also used in the simulation. As shown in Fig. 5A, when an infrared ray heater having a selected wavelength (e.g., the carbon heater shown in Fig. 2) is used, the surface of the polycarbonate substrate is about 190 after 3 seconds. Oh, and the center of the polycarbonate substrate is about 20 C. The large temperature difference between the surface and the center of the plastic substrate allows the surface properties of the plastic substrate to be adjusted while the plastic substrate remains undistorted under surface heating. Fig. 5B is a graph showing the transient temperature of the top and bottom surfaces of the polycarbonate substrate in the same simulation as that shown in Fig. 5A. It is noted that during the heating process, the top surface is heated in less than 3 seconds and then cooled down while the bottom surface remains relatively ice cold. Referring now to Section 6A', it shows a conventional heater using a short wave (curve 204 shown in Fig. 2) for one-side preheating of a polycarbonate substrate having a thickness of 4 mm, §, the surface temperature is about 丨65 , while the center temperature is about 149 ° C at about 201042076. Therefore, this example shows that under the conventional heating in which it is impossible to select a wavelength to match the absorption spectrum of the plastic substrate, the center of the plastic substrate is heated to be close to the softening temperature of the plastic substrate, such as the glass transition temperature or the melting temperature, The plastic substrate may be deformed or twisted under heat. Figure 6B shows the transient temperature of the top and bottom surfaces of the polycarbonate substrate's preheating from one side using conventional heaters that are not capable of selecting wavelengths to match the absorption spectrum of the plastic substrate. Notice that the top surface reaches 165 〇. C (also shown in Figure 6A)' and the bottom surface reaches 137. Hey. Figure 6C shows the experimental results of the same polycarbonate substrate. Note that the top surface temperature is about 1621 and the bottom temperature is about 135. (: This example shows that the experimental results are consistent with the simulation results shown in Figure 6B, thus confirming the simulation. The results clearly show a rapid preheat treatment of a plastic substrate. The fast preheating method uses an infrared ray. The wavelength of the heater is selected to match the absorption peak of the plastic, which allows for substantially higher heat absorption than conventional heating that is not optimized for this wavelength. Furthermore, another aspect of the heating method of the present invention is The substrate is rapidly moved during preheating while the infrared heater is continuously turned on. This method is different from the conventional rapid heating in which the infrared heater is turned on and off, and the substrate does not move. This rapid preheating method of the present invention There is a difference between the conventional rapid heating method. One difference is that a large temperature difference is caused between the surface and the center of the plastic substrate. The surface property can be adjusted due to the large temperature difference, and the integral structure of the plastic substrate is maintained intact. The results are intended only by providing a relative comparison to show the effect of the technique of increasing the temperature difference described herein by 17 201042076. 纟 Invention & For a wide variety of applications, the techniques described herein can be used to optimize the heat absorption of the surface in a rapid manner. Referring now to Figure 7, the absorption spectrum of water is shown. Near the 3 micron peak, which is different from the absorption of polycarbonate peaks ranging from 1.7 micrometers to 2.5 micrometers. The absorption spectrum of water is used as a reference to select the wavelength of the IR radiation source, which can be used prior to deposition by the present invention. Quickly remove moisture from the surface of the plastic substrate. By removing moisture from the plastic surface, the properties of the deposited film, such as coating adhesion, can be improved. Those skilled in the art will appreciate that specific parameters can be changed for different processing chambers and different processing conditions without Deviating from the spirit of the invention, such as the type of IR radiation source, the configuration of the IR radiation source in the preheating system, the method of preheating the substrate prior to rapid warming up, the method of moving the substrate along the substrate support, the substrate support fit The configuration of the substrate in the preheating system, the variation of the material of the plastic (thermoplastic, thermosetting, elastic, etc.) It is also apparent to those skilled in the art that such equivalents and alternatives are intended to be included within the scope of the invention. Therefore, the scope of the invention should not be construed as limited [Simplified illustration] This patent file contains at least one color pattern. A copy of this patent with a color pattern can be provided by the Intellectual Property Office upon request and payment. 18 201042076 Figure 1 shows the thickness of 1.0 micron and 4.8 micron. Absorption spectrum of polycarbonate - Figure 2 shows the emission spectrum of the infrared heater. Figure 3A shows a simplified one-sided preheating system using an IR radiation source with variable wavelengths. Figure 3B shows the use of A simplified double-sided preheating system with a variable-wavelength 1-foot radiation source. Figure 4 shows a flow chart illustrating the steps of preheating the surface of a plastic substrate. 〇 Figure 5A (color) shows the simulation of heating polycarbonate with a selected wavelength The result of the temperature distribution of the substrate after 3 seconds. Fig. 5B shows the results of simulating the temperature distribution of the transient temperature on the top and bottom surfaces of the polycarbonate substrate heated by the selected wavelength. Fig. 6A (color) shows the result of simulating the temperature distribution of the conventional heating using a short wavelength (curve 204 of Fig. 2) » Fig. 6B shows the simulation of a conventionally heated polycarbonate crucible substrate using a short wavelength. The result of the transient temperature on the top and bottom surfaces (curve 204 shown in Fig. 2) 〇 Figure 6C shows the experimental results of the conventionally heated polycarbonate substrate using a short wavelength (the curve shown in Fig. 2) 204). Figure 7 shows no water absorption spectrum. [Main component symbol description] 102, 104 spectrum 202 halogen 201042076 204 short wave 206 fast response medium wave 208 carbon 210 medium wave 300A single side preheating system 300B double side preheating system 302 IR radiation source 304 heat flow area 306 substrate 308 control box 310 Centerline 312 direction 314 top surface 316 bottom surface ❹ 20

Claims (1)

201042076 七、申請專利範圍: 1.一種用於預處理一塑膠基板的加熱方法,該方法至少 包含: 將一塑膠基板載入一處理室中; 調整一 IR輻射源相對於該塑膠基板的位置; 利用該IR輻射源以複數種紅外線波長的至少一者產 生輻射,該複數種紅外線波長的至少一者實質上匹配該 》 塑膠基板之一紅外線波長以利能量吸收; 調整所產生輻射的功率;以及 以可控制速度將該基板移動通過由該所產生的輻 射界定之一熱流區域,以提供該塑膠基板表面達到一第 一暫態溫度’並且該塑膠基板中心達到一第二暫態溫度。 2, 如申請專利範圍第1項所述之用於預處理一塑膠基板 的加熱方法,其中上述之塑膠基板包含聚碳酸酯。 3, 如申請專利範圍第1項所述之用於預處理一塑膠基板 的加熱方法’其中上述之基板的厚度超過4毫米。 4, 如申請專利範圍第丨項所述之用於預處理一塑膠基板 的加熱方法’其中靠近該基板的頂表面在一集膚深产内 的能量吸收係大於95。/^ 21 201042076 5的如加利範圍第4項所述之用於預處理-歸基板 ==其中上述之基板的頂表面之集膚深度係小 於該基板厚度的25%。 6.如申研專利範圍第J 用於預處理一塑膠基板 的加熱方法,其中上述之利 低於】。秒鐘。 〃 &射源的預熱時間係 〇 〇 7的1Γ:專利範圍第1項所述之用於預處理-塑膠基板 =熱方法’其中上述之移動該塑膠基板包含以!公尺 刀鐘和30公尺/分鐘之間的速度移動。 8. 如申請專利範圍第彳 的加熱方法i由項所权詩預處理-塑膠基板 二塹:、、w 、、中上述之第-暫態溫度實質上高於該第 厂―L "W恶)益度。 9. 如申請專利範圍第8項 的加執方、 處理—塑膠基板 ·、,、、,,、中上述之第一暫態溫度的尖峰值約是200 ,而該第二暫態溫度係低於4(TC。 的如申睛專利範圍第1項所述之用於預處理-塑膠基板 的加熱方法,盆中 態 /、 迷之第一溫度大約等於發生表面形 ‘、s表面結構改變的臨界溫度。 22 201042076 11. 如申請專利範圍第1項所述之用於預處理一塑膠基板 的加熱方法,其中上述之IR輻射源具有範圍從0.75微 米至1毫米的波長。 12. 如申請專利範圍第η項所述之用於預處理一塑膠基 板的加熱方法,其中上述之IR輻射源具有範圍從15微 米至3微米的峰値波長。 13·如申請專利範圍第1項所述之用於預處理一塑膠基板 的加熱方法’其中上述之塑膠基板整體係利用一熱源預 熱至一 _高溫。 14.如申請專利範圍第13項所述之用於預處理一塑膠基 板的加熱方法,其令上述之熱源包含一非直接加熱器。 〇 15·如申請專利範圍第14項所述之用於預處理一塑膠基 板的加熱方法, 板或燈。 其中上述之非直接加熱器包含電阻加熱 16,如申請專利範圍第 圍第1項所述之用於預處理一塑膠基板201042076 VII. Patent application scope: 1. A heating method for pretreating a plastic substrate, the method comprising: loading a plastic substrate into a processing chamber; adjusting a position of an IR radiation source relative to the plastic substrate; Using the IR radiation source to generate radiation at least one of a plurality of infrared wavelengths, at least one of the plurality of infrared wavelengths substantially matching an infrared wavelength of the plastic substrate to facilitate energy absorption; adjusting a power of the generated radiation; The substrate is moved at a controllable speed through a heat flow region defined by the generated radiation to provide a surface of the plastic substrate to a first transient temperature and a center of the plastic substrate reaches a second transient temperature. 2. The heating method for pretreating a plastic substrate according to claim 1, wherein the plastic substrate comprises polycarbonate. 3. The heating method for pretreating a plastic substrate according to claim 1, wherein the substrate has a thickness exceeding 4 mm. 4. The heating method for pretreating a plastic substrate as described in the scope of the patent application, wherein the top surface of the substrate is greater than 95 in a deep production of the skin. /^ 21 201042076 5, as described in the fourth paragraph of the Gary range for pre-processing - returning the substrate == wherein the top surface of the substrate has a skin depth of less than 25% of the thickness of the substrate. 6. For example, the patent application scope J is used for preheating a plastic substrate heating method, wherein the above benefits are lower than]. Seconds.预 & source preheating time 〇 的 7 of 1 Γ: the patent range mentioned in item 1 for pretreatment - plastic substrate = thermal method] wherein the above movement of the plastic substrate contains! The speed of the knife between the knife and 30 meters / minute. 8. If the heating method i of the scope of the patent application is pre-processed by the item, the first-transient temperature of the plastic substrate II:, w, and is substantially higher than the first factory-L "W Evil) benefits. 9. If the application of the scope of the patent scope 8 of the add-on, processing - plastic substrate ·,,,,,,,, the first transient temperature peak peak is about 200, and the second transient temperature is low In the heating method for pretreatment-plastic substrate described in Item 1 of the PCT patent, the first temperature in the basin is approximately equal to the surface shape of the surface, and the surface structure of the s is changed. The heating method for pretreating a plastic substrate as described in claim 1, wherein the IR radiation source has a wavelength ranging from 0.75 micrometers to 1 millimeter. The heating method for pretreating a plastic substrate according to the item n, wherein the above-mentioned IR radiation source has a peak-to-peak wavelength ranging from 15 μm to 3 μm. 13 · Use as described in claim 1 The method for preheating a plastic substrate, wherein the plastic substrate is preheated to a high temperature by a heat source. 14. The heating method for pretreating a plastic substrate according to claim 13 of the patent application, The heat source includes an indirect heater. The heating method for pretreating a plastic substrate, the plate or the lamp, as described in claim 14, wherein the indirect heater comprises a resistance heating 16 For pretreatment of a plastic substrate as described in item 1 of the scope of the patent application 在該塑膠基板的單側上。 17.如申請專利範圍第i項所述之用於預處理一塑谬基板 23 201042076 的加熱方法,其中上述之IR韓射源所產生的輻射係入射 在該塑膠基板的雙側上,該塑膠基板係從該塑膠基板的 頂及底表面兩者上被加熱。On one side of the plastic substrate. 17. The heating method for pretreating a plastic substrate 23 201042076 according to claim i, wherein the radiation generated by the IR source is incident on both sides of the plastic substrate, the plastic The substrate is heated from both the top and bottom surfaces of the plastic substrate. 〇 24〇 24
TW98116776A 2009-05-20 2009-05-20 Surface preheating treatment of plastics substrate TW201042076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98116776A TW201042076A (en) 2009-05-20 2009-05-20 Surface preheating treatment of plastics substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98116776A TW201042076A (en) 2009-05-20 2009-05-20 Surface preheating treatment of plastics substrate

Publications (1)

Publication Number Publication Date
TW201042076A true TW201042076A (en) 2010-12-01

Family

ID=45000382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98116776A TW201042076A (en) 2009-05-20 2009-05-20 Surface preheating treatment of plastics substrate

Country Status (1)

Country Link
TW (1) TW201042076A (en)

Similar Documents

Publication Publication Date Title
US20090238993A1 (en) Surface preheating treatment of plastics substrate
Barshilia et al. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering
Boehme et al. Properties of ITO on PET film in dependence on the coating conditions and thermal processing
US6408649B1 (en) Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
Farag Optical absorption studies of copper phthalocyanine thin films
US20070131671A1 (en) Selective reflectivity process chamber with customized wavelength response and method
LU84911A1 (en) METHOD AND INSTALLATION FOR COOKING AN ORGANIC COATING APPLIED TO A SUPPORT
US9314811B1 (en) Coating and curing apparatus and methods
Bilokur et al. High temperature optically stable spectrally-selective Ti1-xAlxN-based multilayer coating for concentrated solar thermal applications
Bilokur et al. High temperature spectrally selective solar absorbers using plasmonic AuAl2: AlN nanoparticle composites
KR20010032164A (en) Reflector with a resistant surface
WO2014163009A1 (en) Gas barrier film and method for producing same
JPH0234772A (en) Method for manufacturing a plastics molding having an improved weatherability
Kim et al. Laser‐induced tuning and spatial control of the emissivity of phase‐changing Ge2Sb2Te5 emitter for thermal camouflage
Wu et al. Enhanced thermal stability of the metal/dielectric multilayer solar selective absorber by an atomic-layer-deposited Al2O3 barrier layer
Mabbett et al. Effects of highly absorbing pigments on near infrared cured polyester/melamine coil coatings
Lei et al. The effect of laser sintering on the microstructure, relative density, and cracking of sol‐gel–derived silica thin films
TW201042076A (en) Surface preheating treatment of plastics substrate
Cristescu et al. New results in pulsed laser deposition of poly-methyl-methacrylate thin films
US20180111157A1 (en) Method for thermal treatment of a surface coating on a metal part by microwaves
Choi et al. Experimental studies on a combined near infrared (NIR) curing system with a convective oven
Rani et al. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films
Ben Jemaa et al. Investigation into the optoelectrical properties of TiO2 thin films, deposited by RF magnetron sputtering using powder target
US20050221017A1 (en) Method of heat treating coatings by using microwave
CN1738494A (en) Infrared heating element and vacuum chamber of substrate heating device