TW201038477A - Processing CO2 utilizing a recirculating solution - Google Patents

Processing CO2 utilizing a recirculating solution Download PDF

Info

Publication number
TW201038477A
TW201038477A TW098142892A TW98142892A TW201038477A TW 201038477 A TW201038477 A TW 201038477A TW 098142892 A TW098142892 A TW 098142892A TW 98142892 A TW98142892 A TW 98142892A TW 201038477 A TW201038477 A TW 201038477A
Authority
TW
Taiwan
Prior art keywords
produce
unit
carbonate
designed
supernatant
Prior art date
Application number
TW098142892A
Other languages
Chinese (zh)
Inventor
Ryan J Gilliam
Valentin Decker
Michael Kostowskyj
Brent R Constantz
Kasra Farsad
Miguel Fernandez
Sidney Omelon
Original Assignee
Calera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calera Corp filed Critical Calera Corp
Publication of TW201038477A publication Critical patent/TW201038477A/en

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

In some embodiments, the invention provides, a method comprising (a) contacting a solution with an industrial source of carbon dioxide to produce a CO2-charged solution; (b) subjecting the CO2-charged solution to conditions sufficient to produce a composition, wherein the composition comprises carbonates, bicarbonates, or carbonates and bicarbonates; (c) separating a supernatant from the composition; and (d) recirculating at least a portion of the supernatant for contact with the industrial source of carbon dioxide. In some embodiments, the invention provides a system comprising (a) a processor configured to produce a composition from an industrial source of carbon dioxide, wherein the composition comprises precipitation material comprising carbonates, bicarbonates, or carbonates and bicarbonates and a treatment system configured to separate a supernatant from the composition, wherein the processor and the treatment system are operably connected for recirculation of at least a portion of the supernatant.

Description

201038477 六、發明說明: 【相關申請案之交互參照】 相關文獻 本申請案主張2008年12月11日申請名 為”Sequestering C〇2 Utilizing a Circulating Liquid”之美 國臨時專利申請案第61/121,872號;2009年4月16曰 申請名為”Apparatus, Systems, and Methods for Treating Industrial Waste”之美國臨時專利申請案第61/170,086 號;2009 年5 月 14 日申請名為”Apparatus, Systems, and Methods for Treating Industrial Waste”之美國臨時專利申 請案第61/178,475號;2009年9月2日申請名 為 ’’Apparatus,Systems, and Methods for Treating Industrial Waste”之美國臨時專利申請案第61/239,429 號,2009 年 10 月 23 日申請名為”Apparatus,Systems, and Methods for Treating Industrial Waste”之美國臨時專利申 請案第61/254,640號,將該等之全文各以引用方式併入 本文中。 【發明所屬之技術領域】 在某些具體實例中,本發明提供一種方法,其包括 a)使一溶液與二氧化碳之工業來源接觸以產生一帶c〇2 溶液;b)使該帶C〇2溶液處於足以產生一組成物之條 件,其中該組成物包含碳酸鹽、碳酸氫鹽或碳酸鹽及碳 201038477 •虱鹽,c)自該组成物中分離出上澄液·’並d)循ί哀至少 一部分上澄液以與二氧化碳之工業來源接觸。在某些具 體實例中,本發明提供一種系統,其包含a)—設計用於 由二氧化碳之工業來源製造組成物之處理器,其中該組 成物包含含有碳酸鹽、碳酸氮鹽或碳酸鹽及碳酸氫鹽之 沉澱物;及一設計用於自該組成物中分離出上澄液之處 理系統’其中該處理器及該處理系統係連接操作以循環 0 至少一部分上澄液。 【先前技術】 背景 二氡化碳(C 〇2)排放已被指為地球暖化現象之主要促 成因素。C〇2係燃燒副產物且其產生操作、經濟和環境 問題。預期較高C〇2及其他溫室氣體之大氣濃度將促使 Q 較多熱儲存在大氣内而導致較高表面溫度及快速氣候變 遷。此外,亦預期大氣中較高之c〇2含量因c〇2溶解及 形成碳酸而進一步酸化世界海洋。氣候變遷及海洋酸化 的衝擊若未獲及時控制將可能係經濟代價昂貴且對環境 有害。降低氣候變遷之潛在風險將需螯合或螯合並避免 各種人為程序之co2。 文獻併入 如同具體並個別指示將各個別公告、專利或專利申請 5 201038477 案以引用方式併入本文中般,將在此專利說明書中所提 之所有公告、專利及專利申請案以引用方式併入本文 中。照此,下列各者係以引用方式併入本文中·· 2008年 5 月 23 曰申請名為 ’’Hydraulic Cements Comprising Carbonate Compound Compositions”之美國專利申請案第 12/126,776 號;2008 年 6 月 27 日中請名為’’Desalination Methods and Systems that Include Carbonate Compound Precipitation”之美國專利申請案第12/163,205號;2007 年 12 月 28 日申請名為”Method of Sequestering C〇2”之美 國臨時專利申請案第61/017,405號;2008年7月16曰 申請名為”Low Energy Ph Modulation For Carbon Sequestration Using Hydrogen Absorptive Metal Catalysts” 之美國臨時專利申請案第61/081,299號;2007年8月13 曰申請名為”High Yield C02 Sequestration product Production”之美國臨時專利申請案第61/088,347號;2008 年 8 月 25 曰申請名為” Low Energy Absolution of Hydrogen Ion from an Electrolyte Solution into a Solid Material”之美國臨時專利申請案第61/091,729號;及 2008 年 12 月 24 日申請名為”Methods of Sequestering C02”之美國專利申請案第12/344,019號。 【發明内容】 摘述 在某些具體實例中,本發明提供一種方法,其包括 201038477 a)使一溶液與二氧化碳之工業來源接觸以產生一帶c〇2 溶液;b)使該帶c〇2溶液處於足以產生一組成物之條 件三其中該組成物包含碳酸鹽、碳酸氫鹽或碳酸鹽及碳 酸氫鹽;e)處理該組成物以產生—滚縮組成物,其中處 理该組成物包括丨)使該組成物脫水以增加所得濃縮組成 物中碳酸鹽、碳酸氳鹽或碳酸鹽及碳酸氫鹽之濃度並同 時產生一上澄液及2)過濾該上澄液以產生一過濾流;並 d)將至少一部分過遽流供應至電化學程序中以製造質子 去除劑。 在某些具體實例中,本發明提供一種系統,其包含 a)—設計用於由二氧化碳之工業來源製造組成物之處理 益,其中該組成物包含碳酸鹽、破酸氫鹽或碳酸鹽及碳 酸氫鹽;b) —設計用於濃縮該組成物之處理系統,其中 該處理系統包含a) —設計用於濃縮所得濃縮組成物中之 碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽並同時產生一上 澄液之脫水系統及2)—設計用於由該上澄液產生一過濾 SlL之過;慮系統;及(J) 一設計用於接收至少一部分過滤流 之電化學系統。 在某些具體實例中,本發明提供一種方法,其包括 a)使一溶液與二氧化碳之工業來源接觸以產生一帶C〇2 溶液;b)使該帶c〇2溶液處於足以產生一含沉澱物之漿 液之條件,其中該沉澱物包含碳酸鹽、碳酸氫鹽或碳酸 鹽及板酸氫鹽;c)由漿液中分離出上澄液;d)循環至少一 部分上澄液以與二氧化碳之工業來源接觸。在某些具體 7 201038477 實例中,該沉澱物包含鹼土金屬之碳酸鹽、碳酸氫鹽或 碳酸鹽及碳酸氫鹽。在某些具體實例中’該等驗土金屬 係選自鈣、鎂或鈣與鎂之組合組成之群。在某些具體實 例中,該沉澱物另外包含鳃。在某些具體實例中,該沉 澱物另外包含3至10,000ppm锶。在某些具體實例中, 由漿液中分離出上澄液包括使該漿液脫水以產生一脫水 上澄液。在某些具體實例中,使該漿液脫水包括一級脫 水及二級脫水。在某些具體實例中,一級脫水產生含 5-40%固體及一級脫水上澄液之一級脫水產物。在某些具 體實例中’將一級脫水上澄液供應至與二氧化碳之工業 來源接觸之溶液。在某些具體實例中,與二氧化碳之工 業來源接觸之溶液包含至少50%之一級脫水上澄液。在 某些具體實例中,二級脫水產生含35-99%固體及二級脫 水上澄液之二級脫水產物。在某些具體實例中,將二級 脫水上澄液供應至與二氧化碳之工業來源接觸之溶液。 在某些具體實例中,與二氧化碳之工業來源接觸之溶液 包含至少25%之二級脫水上澄液。在某些具體實例中, 與二氧化碳之工業來源接觸之溶液包含至少75%之脫水 上澄液。在某些具體實例中,該方法另外包括在一包含 至少一個過濾單兀之過濾系統中過濾該脫水上澄液。在 某些具體實例中,過濾單元產生一過濾單元阻留物及一 過滤單元滲歧。在某些㈣實财,職純包含一 超過滤單元、-奈米過滤單^、—逆渗透單元或上述過 濾單元之組合。在某些具體實例中,該脫水上澄液係經 201038477 奈米過濾單元處理以產生一奈米過濾阻留物及一奈米過 濾滲透液。在某些具體實例中,至少一部分奈米過濾單 元滲透液係經電化學程序加工以製造質子去除劑。在某 些具體實例中,該奈米過濾單元阻留物包含大於脫水上 澄液至少50%之鹼土金屬濃度。在某些具體實例中,該 脫水上澄液係經逆滲透單元處理以產生一逆滲透阻留物 及一逆滲透滲透液。在某些具體實例中,至少一部分逆 滲透單元滲透液係經電化學程序加工以製造質子去除 劑。在某些具體實例中,該逆滲透單元阻留物包含大於 上澄液至少50%之鹼土金屬濃度。在某些具體實例中, 與二氧化碳之工業來源接觸之溶液包含過濾單元阻留 物。在某些具體實例中,該方法另外包括使至少一部分 過濾單元阻留物去礦質以產生一已去礦質之過濾單元阻 留物並以電化學程序加工該已去礦質之過濾單元阻留物 以製造質子去除劑。在某些具體實例中,該方法另外包 括使至少一部分過濾單元阻留物去礦質並濃縮之以產生 一已去礦質及濃縮之過濾單元阻留物並以電化學程序加 工該已去礦質及濃縮之過濾單元阻留物以製造質子去除 劑。在某些具體實例中,循環該上澄液以與二氧化碳之 工業來源接觸而使總寄生負荷相較於單流操作程序 (once-through process)時降低至少4%。在某些具體實例 中,循環該上澄液以與二氧化碳之工業來源接觸而使總 寄生負荷相較於單流操作程序時降低至少8%。 在某些具體實例中,本發明提供一種方法,其包括 9 201038477 a)使一含驗土金屬溶液與二氧化碳之工業來源接觸以產 生一帶C02溶液;b)使該帶C02溶液處於足以產生一含 有沉澱物之漿液之條件,其中該沉澱物包含鹼土金屬之 碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽,且其中足以產 生漿液之條件包括利用源自天然來源、工業廢物來源、 電化學程序中所製得者或其組合之質子去除劑;c)由漿 液中分離出上澄液;d)經由過濾系統過濾上澄液以產生 一過濾流並e)循環至少一部分該過濾流以與二氧化碳之 工業來源接觸或以電化學程序製造質子去除劑。 在某些具體實例中’本發明提供一種系統,其包含 a)—設計用於由二氧化碳之工業來源產生一漿液之處理 器’其中該漿液包含含有碳酸鹽、碳酸氫鹽或碳酸鹽及 碳酸氳鹽之沉澱物;及一設計用於由該漿液中分離出上 澄液之處理系統,其中該處理器及該處理系統係連接操 作以循環至少一部分上澄液。在某些具體實例中,該處 理系統包含一設計用於由漿液中分離出上澄液之脫水系 統。在某些具體實例中,該脫水系統係經設計以產生一 脫水上澄液。在某些具體實例中,該脫水系統包含一級 脫水系統及二級脫水系統。在某些具體實例中,該一級 脫水系統係經設计以產生含有5-40%固體及一級脫水上 澄液之一級脫水產物。在某些具體實例中,該二級脫水 系統係經設计以產生含有35-99%固體及二級脫水上澄 液之二級脫水產物。在某些具體實例中,該處理系統另 外包含-祕該脫水上澄液之過㈣統,其中該過遽系 201038477 統包含至少一個過濾單元。在某些具體實例中,該脫水 系統係經設計以將5亥脫水上澄液供應至該過濾系統中。 在某些具體實例中’該該過濾系統係經設計以產生過渡 單元阻留物及一過濾單元滲透液。在某些具體實例中, 該過滤系統包含一超過滤單元、一奈米過滤單元、一逆 滲透單元或上述過濾單元之組合。在某些具體實例中, 該脫水系統係經設計以將該脫水上澄液供應至奈米過渡 單元。在某些具體實例中,該奈米過濾單元係經設計以 產生一奈米過濾單元阻留物,其包含大於脫水上澄液至 少50%之鹼土金屬濃度。在某些具體實例中,該脫水系 統係經設計以將該脫水上澄液供應至逆滲透單元。在某 些具體實例中’該逆滲透單元係經設計以產生一逆滲透 單元阻留物,其包含大於脫水上澄液至少50%之鹼土金 屬濃度。在某些具體實例中,該處理器包含一選自氣-液 接觸器及氣-液-固接觸器組成之群之接觸器。在某些具體 實例中’該接觸器係一多階段接觸器。在某些具體實例 中,該接觸器係經設計以利用過濾單元所供應之過濾單 元阻留物。在某些具體實例中,該接觸器另外經設計成 利用補充水。在某些具體實例中,該系統另外包含一經 設計以製造質子去除劑之電化學系統。在某些具體實例 中,該電化學系統係經設計以產生氫氧化物、碳酸氫鹽、 碳酸鹽或其組合。在某些具體實例中,該電化學系統係 經設計以利用源自至少一個過濾單元之過濾單元滲透 液。在某些具體實例中,該電化學系統係經設計以利用 11 201038477 源自至少一個過濾單元之過濾單元阻留物。在某些具體 實例中,該過濾單元係一奈米過濾單元。在某些具體實 例中,該過濾單元係一逆滲透單元。在某些具體實例中, 該系統另外包含一使過濾單元滲透液去礦質之去礦質單 元。在某些具體實例中,該系統另外包含一使過濾單元 阻留物去礦質之去礦質單元。在某些具體實例中,該系 統另外包含一可與去礦質單元連接操作之濃縮單元。在 某些具體實例中,該系統提供相較於為單流操作程序所 設計之系統至少4%之總寄生負荷降低量。 在某些具體實例中,本發明提供一種系統,其包含 a)—設計用於使含鹼土金屬溶液與二氧化碳之工業來源 接觸並產生一含有沉澱物之漿液之處理器,其中該沉澱 物包括驗土金屬之碳酸鹽、碳酸氫鹽或礙酸鹽及端酸氫 鹽,且其中該處理器另外經設計成利用源自天然來源、 工業廢物來源、電化學程序中所製得者或其任何組合之 質子去除劑;b)—設計用於由該漿液中分離出上澄液之 脫水系統;及c)一設計用於過濾上澄液並產生過濾流之 過濾系統,其中該處理器、該脫水系統及該過濾系統係 連接操作以循環至少一部分過濾流。在某些具體實例 中,該系統另外包含一經設計以製造質子去除劑之電化 學系統。在某些具體實例中,該處理器、該脫水系統、 該過遽系統及該電化學系統係連接操作以循環至少一部 分上澄液。 在某些具體實例中,本發明提供一種方法,其包括 12 201038477 a)使一溶液與二氧化碳之工業來源接觸以產生一帶C Ο 2 溶液;b)使該帶C02溶液處於足以產生一含有碳酸鹽、 碳酸氫鹽或碳酸鹽及碳酸氳鹽之組成物之條件;c)處理 該組成物以產生一上澄液;及d)將至少一部分上澄液供 應至電化學程序以製造質子去除劑,其中該電化學程序 於陽極產生氯、於陽極產生氧或於陽極無產生氣體。 在某些具體實例中,本發明提供一種系統,其包含 a)—設計用於由二氧化碳之工業來源產生一組成物之處 理器,其中該組成物包括碳酸鹽、碳酸氫鹽或碳酸鹽及 碳酸氳鹽;b)—設計用於由該組成物產生上澄液之處理 系統;及c) 一包含陽極之電化學系統,其中該電化學系 統係經設計以由至少一部分上澄液製造質子去除劑,且 其中該電化學系統係經設計以於陽極產生氯、於陽極產 生氧或於陽極無產生氣體。 在某些具體實例中,本發明提供一種處理二氧化碳之 方法,其包括使二氧化碳與一循環溶液接觸。在某些具 體實例中,該循環溶液包含一鹼性溶液。在某些具體實 例中,該循環溶液包含一耗乏驗土金屬離子之溶液。在 某些具體實例中,該方法另外包括藉使鹼土金屬之碳酸 鹽及/或碳酸氳鹽由一含有鹽水、淡水、涵水、淡鹽水或 一含有鹼土金屬之富含礦物溶液中沉澱而產生循環溶 液。在某些具體實例中,該方法包括由該鹼土金屬之沉 澱碳酸鹽及/或碳酸氫鹽中分離出循環液體。在某些具體 實例中,該方法另外包括藉由奈米過濾、、水軟化、逆滲 13 201038477 、貝析或電透析由該循環溶液 離子。在某些具體實Μ 陽離子及陰 液至該楯環溶液中。在某此且俨睿另外匕括添加鹼性溶 含氫氣化納或氫氧化鎮溶;體 澱。在某些具體實财,財切酸氫鹽沉 水、淡水、财錢m該循 2添加鹽水、海 實例中,該方法另外包括將該循環 Τ' ' 調整至約pH 14。在某此且體實例φ / Ρ ΡΗ 8 八體貫例中,該循環溶液包含一 約ΡΗ 10.5之ρΗ。在某些具體實例令,該方法另外包括 將碳酸鹽及/或碳酸氫鹽摻人建築材料或產物中。在某些 具體實例巾’該方法料包括將—部分該循環溶液泉抽 至溫度及壓力足以將c〇2保留於溶液中之海洋深度或儲 液槽深度處。 在某些具體實例中’本發明提供一種淡化一溶液之方 法,其包括使二氧化碳與一循環溶液接觸。在某些具體 實例中,該方法另外包括藉使鹼土金屬之碳酸鹽及/或碳 酸氫鹽由一含有循環溶液之溶液中沉澱。 在某些具體實例中’本發明提供一種製造建築材料或 產物之方法’其包括藉由二氧化碳與一循環溶液接觸而 使碳酸鹽及/或碳酸氫鹽沉澱。在某些具體實例中,該方 法另外包括將該沉澱物加工成建築材料或產物。 在某些具體實例中,本發明提供一種加工二氧化碳之 系統,其包含二氧化碳氣體來源;適合用於吸收二氧化 201038477 石反之循環溶液及鹼土金屬離子來源’其中藉使二氧化碳 與5亥循環溶液及鹼土金屬離子接觸,碳酸鹽及/或碳酸氳 係由循環碳螯合(carbon-sequestrating)液體中沉澱出。 在某些具體實例中,該系統另外包含一由沉澱物中分離 =猶環溶液之脫水系統。在某些具體實例中,該系統另 八包含一處理器,其中該循環溶液係與二氧化碳及鹼土 金屬離子來源接觸。 Ο201038477 VI. Description of Invention: [Reciprocal Reference of Related Applications] Related Documents This application claims US Provisional Patent Application No. 61/121,872 entitled "Sequestering C〇2 Utilizing a Circulating Liquid" on December 11, 2008 U.S. Provisional Patent Application No. 61/170,086, entitled "Apparatus, Systems, and Methods for Treating Industrial Waste," April 16, 2009; "Apparatus, Systems, and Methods", May 14, 2009 U.S. Provisional Patent Application No. 61/178,475, filed on Sep. 2, 2009, entitled U.S. Provisional Patent Application No. 61/239,429 entitled "Apparatus, Systems, and Methods for Treating Industrial Waste" , U.S. Provisional Patent Application Serial No. 61/254,640, entitled,,,,,,,,,,,,,,,,,,,, TECHNICAL FIELD OF THE INVENTION In certain embodiments, the present invention provides a method comprising a) dissolving a solution The liquid is contacted with an industrial source of carbon dioxide to produce a c〇2 solution; b) the C〇2 solution is subjected to a condition sufficient to produce a composition comprising carbonate, bicarbonate or carbonate and carbon 201038477 • strontium salt, c) separating the supernatant from the composition and 'and d' at least a portion of the supernatant to contact the industrial source of carbon dioxide. In certain embodiments, the present invention provides a system, It comprises a) a processor designed to manufacture a composition from an industrial source of carbon dioxide, wherein the composition comprises a precipitate comprising carbonate, carbonate or carbonate and bicarbonate; and a design for A treatment system for separating the supernatant from the composition, wherein the processor and the treatment system are connected to operate to recycle at least a portion of the supernatant. [Prior Art] Background Dicarbonated carbon (C 〇 2) emissions have been referred to It is the main contributor to the global warming phenomenon. C〇2 is a by-product of combustion and it produces operational, economic and environmental problems. It is expected that higher concentrations of C〇2 and other greenhouse gases will cause more Q. Heat is stored in the atmosphere resulting in higher surface temperatures and rapid climate changes. In addition, it is expected that the higher c〇2 content in the atmosphere will further acidify the world's oceans due to the dissolution of c〇2 and the formation of carbonic acid. The impact of climate change and ocean acidification, if not controlled in a timely manner, can be costly and environmentally harmful. Reducing the potential risks of climate change will require sequestration or sequestration to avoid co2 of various human processes. The disclosure of the documents is hereby incorporated by reference in its entirety in its entirety, the entire disclosure of the entire disclosure of the entire disclosure of the entire disclosure of the entire disclosure of Into this article. As such, the following are incorporated herein by reference. US Patent Application Serial No. 12/126,776, entitled ''Hydraulic Cements Comprising Carbonate Compound Compositions', May 27, 2008; June 27, 2008 US Patent Application No. 12/163,205 entitled "Desalination Methods and Systems that Include Carbonate Compound Precipitation"; and US Provisional Patent Application entitled "Method of Sequestering C〇2" on December 28, 2007 Case No. 61/017,405; July 16, 2008, application for "Low Energy Ph Modulation For Carbon Sequestration Using Hydrogen Absorptive Metal Catalysts" US Provisional Patent Application No. 61/081,299; August 13, 2007 U.S. Provisional Patent Application No. 61/088, 347 to "High Yield C02 Sequestration Product Production"; August 25, 2008 曰 Application for a US Provisional Patent entitled "Low Energy Absolution of Hydrogen Ion from an Electrolyte Solution into a Solid Material" Application No. 61/091,729; and application on December 24, 2008 U.S. Patent Application Serial No. 12/344,019, the entire disclosure of which is incorporated herein by reference. SUMMARY OF THE INVENTION In some embodiments, the present invention provides a method comprising 201038477 a) contacting a solution with an industrial source of carbon dioxide to produce a c〇2 solution; b) bringing the c〇2 solution In a condition sufficient to produce a composition wherein the composition comprises carbonate, bicarbonate or carbonate and bicarbonate; e) treating the composition to produce a tumbling composition, wherein treating the composition comprises hydrazine) Dehydrating the composition to increase the concentration of carbonate, barium carbonate or carbonate and bicarbonate in the resulting concentrated composition and simultaneously producing a supernatant and 2) filtering the supernatant to produce a filtered stream; At least a portion of the turbulent flow is supplied to the electrochemical process to produce a proton-removing agent. In certain embodiments, the present invention provides a system comprising a) - a treatment benefit designed to produce a composition from an industrial source of carbon dioxide, wherein the composition comprises a carbonate, a hydrogen sulphate or carbonate, and a carbonate Hydrogen salt; b) - a treatment system designed to concentrate the composition, wherein the treatment system comprises a) - designed to concentrate the carbonate, bicarbonate or carbonate and bicarbonate in the resulting concentrated composition while Producing a dehydration system for the supernatant and 2) - designed to produce a filtered SlL from the supernatant; a system; and (J) an electrochemical system designed to receive at least a portion of the filtered stream. In certain embodiments, the present invention provides a method comprising: a) contacting a solution with an industrial source of carbon dioxide to produce a C〇2 solution; b) causing the c〇2 solution to be sufficient to produce a precipitate The condition of the slurry, wherein the precipitate comprises carbonate, hydrogencarbonate or carbonate and hydrogen sulphate; c) separating the supernatant from the slurry; d) recycling at least a portion of the supernatant to the industrial source of carbon dioxide contact. In some specific examples of 201038477, the precipitate comprises an alkaline earth metal carbonate, bicarbonate or carbonate and bicarbonate. In some embodiments, the soils are selected from the group consisting of calcium, magnesium, or a combination of calcium and magnesium. In some specific examples, the precipitate additionally comprises hydrazine. In some embodiments, the precipitate additionally comprises from 3 to 10,000 ppm hydrazine. In some embodiments, separating the supernatant from the slurry comprises dewatering the slurry to produce a dewatered supernatant. In some embodiments, dewatering the slurry includes primary dewatering and secondary dewatering. In some embodiments, the primary dehydration produces a one-grade dehydration product comprising 5-40% solids and a primary dehydration solution. In some specific examples, the primary dewatering supernatant is supplied to a solution in contact with an industrial source of carbon dioxide. In some embodiments, the solution in contact with the industrial source of carbon dioxide comprises at least 50% of the dehydrated supernatant. In some embodiments, secondary dehydration produces a secondary dehydration product comprising 35-99% solids and a secondary dewatering liquid. In some embodiments, the secondary dewatering supernatant is supplied to a solution in contact with an industrial source of carbon dioxide. In some embodiments, the solution in contact with the industrial source of carbon dioxide comprises at least 25% secondary dewatering supernatant. In some embodiments, the solution in contact with the industrial source of carbon dioxide comprises at least 75% dehydrated supernatant. In some embodiments, the method additionally comprises filtering the dewatered supernatant in a filtration system comprising at least one filtration unit. In some embodiments, the filtration unit produces a filtration unit retentate and a filtration unit permeability. In some (four) real money, the job pure contains an ultrafiltration unit, a nanofiltration unit, a reverse osmosis unit or a combination of the above filtration units. In some embodiments, the dehydrated supernatant is treated with a 201038477 nanofiltration unit to produce a nanofiltration retentate and a nanofiltration permeate. In some embodiments, at least a portion of the nanofiltration unit permeate is electrochemically processed to produce a proton-removing agent. In some embodiments, the nanofiltration unit retentate comprises an alkaline earth metal concentration greater than at least 50% of the dewatering supernatant. In some embodiments, the dehydrated supernatant is treated by a reverse osmosis unit to produce a reverse osmosis retentate and a reverse osmosis permeate. In some embodiments, at least a portion of the reverse osmosis unit permeate is electrochemically processed to produce a proton-removing agent. In some embodiments, the reverse osmosis unit retentate comprises an alkaline earth metal concentration greater than at least 50% of the supernatant. In some embodiments, the solution in contact with the industrial source of carbon dioxide comprises a filter unit retentate. In certain embodiments, the method additionally includes demineralizing at least a portion of the filtration unit retentate to produce a demineralized filtration unit retentate and electrochemically processing the demineralized filtration unit retentate Produce a proton remover. In some embodiments, the method additionally comprises demineralizing and concentrating at least a portion of the filtration unit retentate to produce a demineralized and concentrated filtration unit retentate and electrochemically processing the demineralized and concentrated The filter unit is retentive to make a proton-removing agent. In some embodiments, the supernatant is recycled to contact an industrial source of carbon dioxide to reduce the total parasitic load by at least 4% compared to an on-through process. In some embodiments, the supernatant is recycled to contact an industrial source of carbon dioxide to reduce the total parasitic load by at least 8% compared to a single stream operating procedure. In certain embodiments, the present invention provides a method comprising 9 201038477 a) contacting an earth-containing metal solution with an industrial source of carbon dioxide to produce a CO 2 solution; b) placing the CO 2 solution at a level sufficient to produce a a condition of a slurry of a precipitate, wherein the precipitate comprises an alkaline earth metal carbonate, a hydrogencarbonate or a carbonate and a hydrogencarbonate, and wherein conditions sufficient to produce a slurry include utilization from natural sources, industrial waste sources, electrochemical procedures a proton-removing agent prepared by the combination or a combination thereof; c) separating the supernatant from the slurry; d) filtering the supernatant via a filtration system to produce a filtration stream and e) recycling at least a portion of the filtration stream to carbon dioxide The industrial source contacts or electrochemically processes the proton-removing agent. In certain embodiments, the invention provides a system comprising a) a processor designed to produce a slurry from an industrial source of carbon dioxide, wherein the slurry comprises carbonate, bicarbonate or carbonate and cesium carbonate a salt precipitate; and a treatment system designed to separate the supernatant from the slurry, wherein the processor and the processing system are coupled to operate to circulate at least a portion of the supernatant. In some embodiments, the treatment system includes a dewatering system designed to separate the supernatant from the slurry. In some embodiments, the dewatering system is designed to produce a dewatering supernatant. In some embodiments, the dewatering system comprises a primary dewatering system and a secondary dewatering system. In some embodiments, the primary dewatering system is designed to produce a one-stage dewatered product containing 5-40% solids and a primary dewatering supernatant. In some embodiments, the secondary dewatering system is designed to produce a secondary dehydration product comprising 35-99% solids and a secondary dewatering supernatant. In some embodiments, the processing system additionally includes a system of at least one filtration unit. In some embodiments, the dewatering system is designed to supply a 5 liter dewatering solution to the filtration system. In some embodiments, the filtration system is designed to produce a transition unit retentate and a filtration unit permeate. In some embodiments, the filtration system comprises an ultrafiltration unit, a nanofiltration unit, a reverse osmosis unit, or a combination of the above filtration units. In some embodiments, the dewatering system is designed to supply the dewatering supernatant to a nano-transition unit. In some embodiments, the nanofiltration unit is designed to produce a nanofiltration unit retentate comprising at least 50% alkaline earth metal concentration of the dehydrated liquid. In some embodiments, the dewatering system is designed to supply the dewatering supernatant to a reverse osmosis unit. In some embodiments, the reverse osmosis unit is designed to produce a reverse osmosis unit retentate comprising an alkaline earth metal concentration greater than at least 50% of the dehydrated supernatant. In some embodiments, the processor includes a contactor selected from the group consisting of a gas-liquid contactor and a gas-liquid-solid contactor. In some embodiments, the contactor is a multi-stage contactor. In some embodiments, the contactor is designed to utilize a filtration unit retentate supplied by the filtration unit. In some embodiments, the contactor is additionally designed to utilize makeup water. In some embodiments, the system additionally includes an electrochemical system designed to produce a proton-removing agent. In certain embodiments, the electrochemical system is designed to produce hydroxides, bicarbonates, carbonates, or combinations thereof. In some embodiments, the electrochemical system is designed to utilize a filtration unit permeate derived from at least one filtration unit. In some embodiments, the electrochemical system is designed to utilize 11 201038477 filter unit retentate from at least one filtration unit. In some embodiments, the filtration unit is a nanofiltration unit. In some embodiments, the filtration unit is a reverse osmosis unit. In some embodiments, the system additionally includes a demineralization unit that demineralizes the filtration unit permeate. In some embodiments, the system additionally includes a demineralization unit that demineralizes the filtration unit retentate. In some embodiments, the system additionally includes a concentration unit operable to interface with the demineralization unit. In some embodiments, the system provides a total parasitic load reduction of at least 4% compared to a system designed for a single flow operating procedure. In certain embodiments, the present invention provides a system comprising a) a processor designed to contact an alkaline earth metal solution with an industrial source of carbon dioxide and to produce a slurry containing a precipitate, wherein the precipitate comprises a test a metal carbonate, a bicarbonate or a sulphate and a hydrogen sulphate, and wherein the processor is additionally designed to utilize a source derived from natural sources, an industrial waste source, an electrochemical process, or any combination thereof a proton-removing agent; b) a dewatering system designed to separate the supernatant from the slurry; and c) a filtration system designed to filter the supernatant and produce a filtration stream, wherein the processor, the dehydration The system and the filtration system are connected to operate to cycle at least a portion of the filtered stream. In some embodiments, the system additionally includes an electrochemical system designed to produce a proton-removing agent. In some embodiments, the processor, the dewatering system, the enthalpy system, and the electrochemical system are coupled to operate to circulate at least a portion of the liquid. In certain embodiments, the present invention provides a method comprising 12 201038477 a) contacting a solution with an industrial source of carbon dioxide to produce a C Ο 2 solution; b) bringing the CO 2 solution to a level sufficient to produce a carbonate-containing solution The conditions of the composition of the bicarbonate or carbonate and the cesium carbonate salt; c) treating the composition to produce a supernatant; and d) supplying at least a portion of the supernatant to an electrochemical procedure to produce a proton-removing agent, Wherein the electrochemical procedure produces chlorine at the anode, oxygen at the anode, or no gas at the anode. In certain embodiments, the present invention provides a system comprising a) a processor designed to produce a composition from an industrial source of carbon dioxide, wherein the composition comprises a carbonate, a bicarbonate or a carbonate, and a carbonate a bismuth salt; b) - a treatment system designed to produce a supernatant from the composition; and c) an electrochemical system comprising an anode, wherein the electrochemical system is designed to remove protons from at least a portion of the supernatant And wherein the electrochemical system is designed to produce chlorine at the anode, to generate oxygen at the anode, or to generate no gas at the anode. In certain embodiments, the invention provides a method of treating carbon dioxide comprising contacting carbon dioxide with a circulating solution. In some embodiments, the circulating solution comprises an alkaline solution. In some embodiments, the circulating solution contains a solution that is depleted of soil metal ions. In some embodiments, the method further comprises causing the alkaline earth metal carbonate and/or strontium carbonate salt to be precipitated from a mineral-rich solution containing brine, fresh water, culvert, light brine or an alkaline earth metal. Circulating solution. In some embodiments, the method comprises separating a circulating liquid from the precipitated carbonate and/or bicarbonate of the alkaline earth metal. In some embodiments, the method additionally includes the circulating solution ions by nanofiltration, water softening, reverse osmosis 13 201038477, shelling or electrodialysis. In some specific examples, cations and anions are added to the anthracycline solution. In this case, the company also includes the addition of alkaline dissolved hydrogen or sodium hydroxide; In some specific real money, the method of adding acid water, fresh water, and money to add brine, sea, the method additionally includes adjusting the cycle Τ' ' to about pH 14. In some instances of the body instance φ / Ρ ΡΗ 8 , the circulating solution contains a ρ ΡΗ of about 0.5 10.5. In some embodiments, the method additionally includes incorporating carbonate and/or bicarbonate into the building material or product. In some embodiments, the method includes pumping a portion of the circulating solution spring to a temperature and pressure sufficient to retain c〇2 at the depth of the ocean or the depth of the reservoir. In certain embodiments, the invention provides a method of fading a solution comprising contacting carbon dioxide with a circulating solution. In some embodiments, the method additionally comprises precipitating an alkaline earth metal carbonate and/or a hydrogencarbonate from a solution containing a circulating solution. In some embodiments, the invention provides a method of making a building material or product that includes precipitating carbonate and/or bicarbonate by contacting carbon dioxide with a circulating solution. In some embodiments, the method additionally includes processing the precipitate into a building material or product. In some embodiments, the present invention provides a system for processing carbon dioxide, which comprises a source of carbon dioxide gas; suitable for absorbing carbon dioxide 201038477, and vice versa, a circulating solution and an alkaline earth metal ion source, wherein carbon dioxide and 5 hp circulating solution and alkaline earth are used. Metal ion contact, carbonate and/or lanthanum carbonate is precipitated from the carbon-sequestrating liquid. In some embodiments, the system additionally comprises a dewatering system that separates the solution from the precipitate. In some embodiments, the system further comprises a processor, wherein the circulating solution is in contact with a source of carbon dioxide and an alkaline earth metal ion. Ο

在某些具體實例中’本發明提供加工二氧化碳之系統 及方法’其包括以循環溶液吸收二氧化碳;調整Η以促 ;隹一 〜氧化碳之吸收;添加驗土金屬離子;製造一含有碳 ^遵、碳酸氫鹽或碳酸鹽及碳酸氫鹽以及其他物種(如锶) 成物;濃縮該組成物;並接著循環上澄液以供其他 乳徵吸收用。利用循環溶液最佳化水、鹼土金屬離子及 化學添加劑(如質子去除劑如氫氧化物)之使用。 在某些具體實例中,該循環溶液起初包含一實質上耗 毛蛉土金屬離子及溶解之二氧化碳之溶液。該溶液可藉 使輪:土金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽由 容液(即該循環溶液起初包含至少一部分藉使碳酸 鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽由一含有溶解C〇2之 冷液中沉澱所形成之上澄液)中沉澱獲得。在各個具體實 例中’該循環溶液起初包含一含有氫氧化鈉及/或氫氧化 錢之鹼性溶液。 之後’該循環溶液之pH可經調整以促進C02之吸收 並可與一包含鹼土金屬離子之溶液混合。由於混合該等 15 201038477 之之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸 成物(如含有CaC〇3及/或Mgc〇3之沉澱嫩 從液形成亚沉澱。在某些具體實例中,該上登 並則f環溶液形式循環。在具體實例中,含 有奴酸鹽、碳酸氫贱碳_及碳酸氫紅組成物可經 脫水(如過濾)且濾液係以循環溶液形式循環。 在各個具體實例中,該循環溶液包含一溶液,其中 PH範圍係從約pH 8至約pH 14;視情況該阳係約阳 10.5外,視情況該循環溶液之pH可藉添加氫氧根離 子(如氫氧化鈉、氫氧化鎂等)至該液體中進行調整。 在&各個具體實例中,含有鹼土金屬之碳酸鹽、碳酸氫 ,或碳酸鹽及碳酸氫鹽(如沉澱物)之組成物係在該循環 溶液與含C〇2氣體接觸後獲得。在各個具體實例中,鹼 土^屬離子在循環溶液中之濃度在與該含co2氣體接觸 之前增加。在某些具體實例中,該鹼土金屬離子係由鹼 度來源(如海水)獲得’而在其他具體實例中,係如2〇〇9 年7月1〇曰所申請之美國專利申請案第12/5〇1,217號所 述般(將其以引用方式併入本文中),該等鹼土金屬係藉由 消化鎮鐵礦物(如橄欖石於酸性水溶液中)獲得。 在一選用步驟中,該循環溶液係經加工以在該循環溶 液與含C〇2氣體接觸之前先選擇性除去陽離子及陰離 子。在此選用步驟中,接著如2009年11月12日所申請 之美國專利申請案第12/617,005號所述般(將其以引用方 式併入本文中),該溶液係經電化學步驟加工以藉由形成 16 201038477 氫氧化物、碳酸氫鹽及/或碳酸鹽而增加pH。之後,該 溶液與c〇2及鹼土金屬離子接觸以製備包含碳酸鹽、碳 酸氫鹽或碳酸鹽及碳酸氫鹽(如沉澱物)之組成物,接著循 環之。 在各個具體實例中’如2008年5月23日所申請共同 讓渡之美國專利申請案第12/126,776號所述般(將申請案 以引用方式併入本文中),源自該循環溶液之沉澱物可用 於建築材料或產物如水泥中。或者,如(例如)2〇〇8年6 月27日所申請共同讓渡之美國專利申請案第12/163,2〇5 號所述般(將申請案以引用方式併入本文中)所述般,本發 明系統及方法係適用於含有驗土金屬之淡化水。在又另 一具體實例中,至少一部分循環溶液係經稀釋並泵抽至 一溫度及壓力足以將C〇2保留於溶液中之海洋深度或儲 液槽深度處。 因此,利用本文所述包含循環之方法及系統可節省水 及加工二氧化碳所需之添加劑。 詳述 在更詳細描述本發明之前,應瞭解本發明不限於本文 所述特定具體實例,故該等具體實例可變化。亦應瞭解本 文所用術語係僅為達描述特定具體實例之目的並不欲限 制之,因為本發明範疇將僅受所附申請專利範圍限制。除 非另外陳述,本文所用之所有技術及科學術語具有如熟諳 本發明所屬技術者普遍瞭解相同之意義。 知·供一數值範圍時,應瞭解在該範圍之上限與下限間 17 201038477 間之值(除相^料清_,否則至下 何其他所述值或介於 可獨立包含在該等:。此等較小範圍之上限及下限 從任何所、f心乂'、靶圍内亚亦可涵蓋在本發明内遵 限内特別排除之限制。所述範圍包含該等界 亦:含中排除彼等所含界限中之-或兩者的範圍 特定範圍在本文中係以經術語,,約,,置於 ;。術語”約,,在本文制於提供其後精確數字之文字 =以及m近傾術語後之數 、 ==字一=數字時,該二: 描述數字之實質等效性/、在所呈現之内文中提供該特別 r公告案、專利或專利申請=:== 二,各所引狀公告案、專利及專射請案係則 併入本文巾叫㈣並描職所_之料公 = =任何公告案之引用係基於其申請曰前之;;内 之本發明純㈣先前發明而 比此公告案先取雜利。此外,所提供公告案之 =同於實際公告日期,而該實際公告日期可能需個別ς 應注意如本文及所附申請專利範圍中所用之單數形” 201038477 -”及”該”包括複數參考物,除非内文中另 另外應注意申請專利範圍可經撰寫以排除:何可曰選元 件。照此’此陳述係欲用作逐1舉巾請專利範圍 項兀素時使用此類排除性術語如”唯一,,、 負,,限制的先行基礎。 《 4或制In certain embodiments, the invention provides a system and method for processing carbon dioxide comprising: absorbing carbon dioxide with a circulating solution; adjusting enthalpy to promote; absorbing the absorption of cerium-oxygen; adding a soil metal ion; and producing a carbon-containing , bicarbonate or carbonate and bicarbonate and other species (such as hydrazine); concentrate the composition; and then circulate the liquid for other milk absorption. The use of a circulating solution optimizes the use of water, alkaline earth metal ions, and chemical additives such as proton-removing agents such as hydroxides. In some embodiments, the circulating solution initially comprises a solution that substantially depletes the alumina metal ions and dissolved carbon dioxide. The solution may be made up of a carrier: carbonate, bicarbonate or carbonate and bicarbonate from the earth metal (ie, the circulating solution initially contains at least a portion of the carbonate, bicarbonate or carbonate and bicarbonate) It is obtained by precipitation in a supernatant formed by precipitation in a cold liquid containing dissolved C〇2. In each of the specific examples, the circulating solution initially contained an alkaline solution containing sodium hydroxide and/or hydroxide. Thereafter, the pH of the circulating solution can be adjusted to promote absorption of CO 2 and can be mixed with a solution containing alkaline earth metal ions. By substituting the carbonates, bicarbonates or carbonates and carbonates of the 15 201038477 (such as precipitates containing CaC〇3 and/or Mgc3), a subprecipitate is formed. In some embodiments, The upper ring is then circulated in the form of a f-ring solution. In a specific example, the composition containing succinate, bismuth hydrogencarbonate and red hydrogen carbonate can be dehydrated (e.g., filtered) and the filtrate is recycled as a circulating solution. In an embodiment, the circulating solution comprises a solution, wherein the pH ranges from about pH 8 to about pH 14; as the case may be, the yang system is about 10.5 angstroms, and the pH of the circulating solution may be added by adding a hydroxide ion (such as hydrogen). Sodium oxide, magnesium hydroxide, etc.) are adjusted to the liquid. In each of the specific examples, the composition containing an alkaline earth metal carbonate, hydrogen carbonate, or a carbonate and a hydrogencarbonate (such as a precipitate) is The circulating solution is obtained after contact with a gas containing C. 2. In each specific example, the concentration of the alkaline earth ions in the circulating solution is increased prior to contact with the co2 containing gas. In some embodiments, the alkaline earth metal ion Alkalinity Sources (eg, seawater) are obtained as described in US Patent Application Serial No. 12/5〇1,217, filed on July 1, 2009. In the present invention, the alkaline earth metals are obtained by digesting iron-bearing minerals (such as olivine in an acidic aqueous solution). In an optional step, the circulating solution is processed to contain C 〇 2 in the circulating solution. Selective removal of cations and anions prior to gas contact. In this optional step, as described in U.S. Patent Application Serial No. 12/617,005, filed on Nov. 12, 2009, which is incorporated herein by reference. The solution is electrochemically processed to increase the pH by forming 16 201038477 hydroxide, bicarbonate and/or carbonate. Thereafter, the solution is contacted with c〇2 and alkaline earth metal ions to prepare a carbonate-containing salt. a composition of a bicarbonate or a carbonate and a bicarbonate (e.g., a precipitate), which is then recycled. In each of the specific examples, the U.S. Patent Application Serial No. 12/ filed on May 23, 2008. As stated in No. 126,776 (will apply As incorporated herein by reference, the precipitate derived from the circulating solution can be used in a building material or product such as cement. Or, for example, a U.S. patent to which the co-transfer is filed on June 27, 2008. The system and method of the present invention are applicable to desalinated water containing soil-measuring metals, as described in the application Serial No. 12/163, No. 5, which is incorporated herein by reference. In a specific example, at least a portion of the circulating solution is diluted and pumped to a temperature and pressure sufficient to retain C〇2 at the depth of the ocean or reservoir depth in the solution. Thus, utilizing the methods and systems encompassing the cycles described herein It can save water and the additives needed to process carbon dioxide. DETAILED DESCRIPTION OF THE INVENTION [0014] Before the present invention is described in more detail, it is understood that the invention is not limited to the specific embodiments described herein. It is also understood that the terminology used herein is for the purpose of describing the particular embodiments of the invention, and is not intended to limit the scope of the invention. Unless otherwise stated, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art. Knowing that when providing a range of values, the value between the upper and lower limits of the range 17 201038477 should be known (except for the phase clear _, otherwise the other values or the values can be independently included in the:). The upper and lower limits of such smaller ranges are to be construed as limiting the scope of the invention, and the scope of the invention. And the scope of the invention, or the scope of the two, is defined herein by the term ",", ",", and the term "about", which is used herein to provide the exact number of words = and m near The number after the term, == word one = number, the second: describe the substantial equivalence of the number /, provide the special r announcement, patent or patent application in the text presented ==== two, each The quotation, patent and special injection request system are incorporated into this article. (4) and the job description _ _ public = = any announcement is based on the application before the application;; the invention in the pure (four) previous invention And the first case is more profitable than this announcement. In addition, the announcement provided is the same as the actual announcement date. The actual date of the announcement may be individually ς ς ” 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 Exclusion: How to select components. As such, this statement is intended to be used as a basis for the use of such exclusionary terms such as "only,,,,,,,, and restrictions." System

如熟諳此技者在閱讀此揭示内容後將清楚瞭解般,本 文所述及酬之個職體實例各具有不同岭及特徵,立 :容易地與其他若干具體實财任—者之特徵分離或與 其結合而紐離本發明麟及精神。任何所述方法可依所 述事件順序或依任何其他賴切行之順序進行。雖然亦 可將任何龍或等效於彼等本文所述之方法及材料用於 實施或測試本發明’但現將描料代表性說明方法及材 料。 如上述般’降低氣候變遷之潛在風險將需螯合或螯合 並避免源自各種人為程序之二氧化碳。照此,提供用於 加工二氧化碳之系統及方法,包㈣合二氧化碳或餐合 並避免二氧化碳。 在某些具體實例中,本發明提供_種如圖1A所示用 於加工一氧化碳之系統,其中該系統包含經設計利用一 驗度來源(140)加工源自二氧化碳來源(13〇)之二氧化碳 之處理器(110)及處理系統(12〇)。如下更詳細描述般,該 處理器可包含一接觸器如氣_液或氣_液_固接觸器,其中 遠接觸器係經設計以將二氧化韻人—溶液或聚液中以 產生一帶二氧化碳之溶液或聚液。在某些具體實例中, 201038477 該接觸器係經没計以由二氧化碳或其經溶劑化的形式物 製造組成物’其中該等組成物包含碳酸鹽、碳酸氣鹽咬 碳酸鹽及碳酸氫鹽。在某些具體實例中,該處理另 外包含一設計用於由二氧化碳或其經溶劑化的形式物產 生含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物 的反應器。在某些具體實例中,該處理器可另外包含一 設計用於使包含含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸 氫鹽之沉激物的組成物沉降之沉降槽。如下更詳細^述 般,該處理系統可包含一設計用於濃縮含有碳酸鹽、碳 酸氫鹽或碳酸鹽及碳酸氫鹽之組成物的脫水系統。該處 理系統可另外包含一過濾系統,其中該過濾系統包含至 少一個設計用於過濾源自脫水系統之上澄液、過遽源自 處理器之組成物或其組合之過濾單元。如圖1B中所示並 如下更詳細描述般,本發明系統可另外設計成循環至少 一部分源自處理系統之上澄液。如下所述般,二氧化碳 來源可為多種二氧化碳之工業來源中之任一者,包括(但 不限於)燃煤發電廠及水泥廠。如下更詳細描述般,鹼度 來源可源自多種鹼度來源中之任一者,包括(但不限於$ 海水、滷水及加有礦物之淡水。在某些具體實例中,該 系,另外^包含二價陽離子來源如彼等鹼土金屬(如 Ca 、)來源。在此等具體實例中,二價陽離子來源 "與驗度來源連接操作或直接連接至處理器。 在某些具體實例中,本發明提供一種如圖1B所示用 於加工二氧化碳之系統,其中該系統包含經設計利用— 20 201038477As will be apparent to those skilled in the art after reading this disclosure, the examples of the individual employees described in this article have different ridges and characteristics, and are easily separated from the characteristics of several other specific financial entities. It is combined with the invention and the spirit. Any of the methods described may be performed in the order of the events or in any other order. Although any dragon or equivalent to the methods and materials described herein may be used in the practice or testing of the present invention, a representative method and material will now be described. As mentioned above, reducing the potential risks of climate change will require sequestration or sequestration and avoiding carbon dioxide from a variety of artificial processes. As such, systems and methods for processing carbon dioxide are provided, including (d) carbon dioxide or meal and avoiding carbon dioxide. In certain embodiments, the present invention provides a system for processing carbon monoxide as shown in FIG. 1A, wherein the system includes designing a source of carbon dioxide derived from a source of carbon dioxide (13 Å) using a source of potency (140). Processor (110) and processing system (12〇). As described in more detail below, the processor can include a contactor such as a gas-liquid or gas-liquid-solid contact, wherein the remote contactor is designed to produce a carbon dioxide in a dioxin-solution or poly-liquid. Solution or liquid. In some embodiments, 201038477 the contactor is devoid of carbon dioxide or a solvated form thereof to produce a composition wherein the compositions comprise carbonate, carbonate salt, carbonate, and bicarbonate. In some embodiments, the treatment additionally includes a reactor designed to produce a composition comprising carbonate, bicarbonate or carbonate and bicarbonate from carbon dioxide or a solvated form thereof. In some embodiments, the processor can additionally include a settling tank designed to settle a composition comprising a sinker comprising carbonate, bicarbonate or carbonate and bicarbonate. As described in greater detail below, the processing system can include a dewatering system designed to concentrate a composition comprising carbonate, bicarbonate or carbonate and bicarbonate. The processing system can additionally include a filtration system, wherein the filtration system includes at least one filtration unit designed to filter a liquid from the dewatering system, a composition derived from the processor, or a combination thereof. As shown in Figure 1B and as described in more detail below, the system of the present invention can be additionally designed to circulate at least a portion of the liquid from the processing system. As described below, the source of carbon dioxide can be any of a variety of industrial sources of carbon dioxide, including but not limited to coal-fired power plants and cement plants. As described in more detail below, the source of alkalinity can be derived from any of a variety of alkalinity sources, including (but not limited to, seawater, brine, and mineral-added fresh water. In some embodiments, the system, additionally ^ A source comprising divalent cations such as an alkaline earth metal (e.g., Ca,) source. In these specific examples, the source of divalent cations is linked to the source of the assay or directly to the processor. In some embodiments, The present invention provides a system for processing carbon dioxide as shown in FIG. 1B, wherein the system includes design utilization - 20 201038477

鹼度來源(140)加工源自二氧化碳來源(13〇)之二氧化碳 之處理器(110)及處理系統(12〇广並另外其中該處理器與 該處理系統連接操作以循環至少一部分處理系統上澄 液。如本文所述般,此等二氧化碳加工系統之處理系統 可包含一脫水系統及一過濾系統。照此,該脫水系統、 該過濾系統或該脫水系統與該過濾系統之組合可經設計 以將至少一部分上澄液供應至加工二氧化碳之處理器。 雖然未顯示於圖1B中,該處理系統亦可經設計以將至少 一部分上澄液供應至經設計用於清洗本發明組成物之清 洗系統中,其中該等組成物包含沉澱物(如CaC〇3、 MgC〇3)。本發明二氧化碳加工系統之處理器可經設計以 接收接觸器(如氣·液接觸器、氣_液_固接觸器)、反應器、 »亥接觸盗與該反應器之組合或處理器之任何其他單元或 單元組合中之處理系統上澄液。在某些具體實例中,該 二氧化碳加工系統係經設計以將至少一部分上澄液供應 至位於該二氧化碳加工系統外部之系統或程序中。例 如本發㈣統可與淡化廠連接操作而使該系統將至 ^ -部分處m錄供應至該淡化射以進行淡 在某些具體實例中,本發明提供一種如圖1C所示用 =工—氧化石厌之系統,其中該系統包含經設計利用一 =來源(140)加工源自二氧化碳來源⑽)之二氧化碳 人处理益(110)及處理系統(120),並其中該處理器另外包 3電化學系統(150)且另外其中該處理器、該處理系統 21 201038477 及β亥電化學系統連接插作以循環至少一部分處理系統上 澄液。如上圖1Β之處理系統所述般,該脫水系統、該過 濾、糸統或該脫水系統與該過遽系統之組合可經設計以將 至少一部分處理糸統上澄液供應至處理器中以加工二氧 化碳。該處理系統亦可經設計以將至少一部分處理系統 上液供應至S亥電化學系統中,其中該電化學系統如下 更詳細描述般係經設計以製造質子去除劑或進行質子去 除。如圖1B所述般,該處理系統亦可經設計以將至少— 部分上澄液供應至一設計用於清洗本發明組成物之清洗 系統中’其中該等組成物包含沉澱物(如CaC03、 MgC〇3)。本發明一氧化碳加工系統之處理器可經設計以 接收接觸器(如氣-液接觸器、氣-液-固接觸器)、反應器、 接觸器與反應器之組合或處理處理器之任何其他單元或 單元組合之處理系統上澄液或電化學系統流。在某些具 體貫例中,该一氧化碳加工系統可經設計以將至少一部 分上澄液供應至一位於該二氧化碳加工系統外部之系統 (如淡水廠)或程序(淡水)中。 關於圖1A-1C’本發明提供加工二氧化碳之工業來源 (Π0)並製造一含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫 鹽之組成物的方法。在此等具體實例中,可獲得該二氣 化碳之工業來源,可獲得鹼度來源(140)並可將其各供應 至欲加工之處理器110中(即使其處於一適合製造含有碳 酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物的條件)。 在某些具體實例中,加工二氧化碳之工業來源包括使其 22 201038477 與鹼度來源在一接觸器如 固接觸器中接觸以產生帶液接觸器㈣ 此呈俨眚你丨由人士 咿一乳化碳之溶液或漿液。在某 二實1中’ &有碳酸鹽、碳酸氫鹽或碳酸鹽及礙酸The alkalinity source (140) processes the processor (110) and the processing system derived from the carbon dioxide source (13 〇), and further processes the processor to be connected to the processing system to recycle at least a portion of the processing system As described herein, the processing system of such carbon dioxide processing systems can include a dewatering system and a filtration system. As such, the dewatering system, the filtration system, or a combination of the dewatering system and the filtration system can be designed to At least a portion of the supernatant liquid is supplied to a processor for processing carbon dioxide. Although not shown in FIG. 1B, the processing system can also be designed to supply at least a portion of the supernatant liquid to a cleaning system designed to clean the compositions of the present invention. Where the compositions comprise precipitates (e.g., CaC〇3, MgC〇3). The processor of the carbon dioxide processing system of the present invention can be designed to receive contactors (e.g., gas-liquid contactors, gas-liquid-solid contacts) , the reactor, the combination of the contact and the reactor, or any other unit or combination of processors in the processing system. In some embodiments, the carbon dioxide processing system is designed to supply at least a portion of the supernatant liquid to a system or program located external to the carbon dioxide processing system. For example, the present invention (4) can be connected to a desalination plant to operate the system. ^ - a portion of the record is supplied to the desalinated shot for lightness. In some specific examples, the present invention provides a system with a = work-steel oxide as shown in Figure 1C, wherein the system comprises a design utilizing a = source (140) processing carbon dioxide human treatment benefits (110) and processing system (120) derived from carbon dioxide source (10), and wherein the processor additionally comprises 3 electrochemical system (150) and additionally wherein the processor, the processing system 21 The 201038477 and βH electrochemical system are connected to recycle at least a portion of the processing system. As described above with respect to the processing system of Figure 1, the dewatering system, the filtration, the system, or the combination of the dewatering system and the system can be designed to supply at least a portion of the processing system to the processor for processing. carbon dioxide. The processing system can also be designed to supply at least a portion of the processing system liquid to the Shai electrochemical system, wherein the electrochemical system is designed to produce a proton-removing agent or proton removal as described in more detail below. As illustrated in Figure 1B, the processing system can also be designed to supply at least a portion of the supernatant to a cleaning system designed to clean the compositions of the present invention, wherein the compositions comprise precipitates (e.g., CaC03, MgC〇3). The processor of the carbon monoxide processing system of the present invention can be designed to receive a contactor (such as a gas-liquid contactor, a gas-liquid-solid contactor), a reactor, a combination of a contactor and a reactor, or any other unit of a processing processor Or a combination of unit processing systems for liquid or electrochemical system flow. In some embodiments, the carbon monoxide processing system can be designed to supply at least a portion of the supernatant to a system (e.g., a fresh water plant) or a program (fresh water) located outside of the carbon dioxide processing system. With respect to Figures 1A-1C', the present invention provides an industrial source for processing carbon dioxide (?0) and a process for the manufacture of a composition comprising carbonate, bicarbonate or carbonate and bicarbonate. In these specific examples, an industrial source of the two gasified carbons can be obtained, a source of alkalinity (140) can be obtained and each can be supplied to the processor 110 to be processed (even if it is in a suitable manufacturing to contain carbonates) , conditions of the composition of bicarbonate or carbonate and bicarbonate). In some embodiments, an industrial source for processing carbon dioxide includes contacting its source 22 201038477 with a source of alkalinity in a contactor such as a solid contactor to produce a liquid contactor (4). Solution or slurry. In a certain two, '& has carbonate, bicarbonate or carbonate and acid

i:之:ΐ:::該接觸器之帶二氧化碳之溶液或漿液 康ΐί:實例中’可將帶二氧化碳之溶液或漿 Ί:.、、〜器中,其内可製得含有碳酸鹽'碳酸氫鹽 或碳酸鹽及碳酸氫鹽之組成物。在某些具體實例中,該 組成物係在接觸n與反應器巾製得。例如,在某些具體 實例中’雜騎可產生—含有碳酸氫鹽之初始組成物 且該反應器可由該初始組成物產生含有碳酸鹽、碳酸氫 鹽或被酸鹽及石反酸氫鹽之組成物。在某些具體實例中, 本發明方法可另外包括獲得二價陽離子來源如彼等鹼土 金屬(如Ca2+、Mg2+)之來源。在此等具體實例中,可將 二價陽離子來源供應至鹼度來源中或直接供應至處理器 中。所提供之足量二價陽離子係由鹼度來源、二價陽離 子來源或上述來源之組合提供,該含有碳酸鹽、碳酸氫 鹽或碳酸鹽及碳酸氫鹽之組成物可包含一可分離沉澱物 (如CaC03、MgC03)。可將源自該接觸器或反應器之含 沉澱物之組成物供應至沉降槽中並接著供應至本發明處 理系統中。在此等具體實例中,可將該組成物直接供應 至處理系統中而無供應至沉降槽中。例如’可將不含可 分離沉澱物之本發明組成物直接供應至處理系統中;然 而,亦可將含有可分離沉澱物之本發明組成物直接供應 至處理系統中。如下另外詳細描述般’可將該組成物供 23 201038477 應至多個處理系統子系統中之任一者,包括(但不限於) 脫水系統、過濾系統或後接過濾系統之脫水系統’其中 該處理系統或其子系統由組成物中分離出上澄液並產生 一濃縮組成物(如該濃縮組成物具有較高之碳酸鹽、碳酸 氫鹽或碳酸鹽及碳酸氫鹽濃度)。 關於圖1B及1C,本發明亦提供加工二氧化碳之工業 來源(130)並產生一含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳 酸氫鹽之組成物的方法,其中至少一部分處理系統上澄 液係經循環。如圖1B及1C所示般,源自處理系統(其可 包含脫水系統及過濾系統)之上澄液可以多種方式循 環。照此,在某些具體實例中,至少一部分源自脫水系 統、過濾系統或脫水系統與過濾系統之組合之上澄液可 用於加工二氧化碳。可將該上澄液供應至二氧化碳加工 系統處理器令。在此等具體實例中,可將該上澄液供應 至接觸器(如氣-液接觸器、氣-液-固接觸器)、反應器、 接觸器與反應器之組合或任何其他單元或單元組合中以 處理二氧化碳。此外,在某些具體實例中,可將至少一 部分源自處理系統之上澄液供應至清洗系統中。在此等 具體實例中,該上澄液可用於清洗本發明組成物(如含有 CaC〇3及/或MgC03之沉澱物)。例如,上澄液可用於清 洗源自以碳酸鹽為主之沉澱物之氣化物。關於圖1C,可 將至少一部分處理系統上澄液供應至電化學系統中。照 此,處理系統上澄液可用於製造質子去除劑或進行質子 去除以加工二氧化碳。在某些具體實例中,可將至少一 24 201038477 部分源自處理系統之上澄液供應至不同系統或程序中。 例如,可將至少-部分處理緖上澄賴應至淡化廠或 淡化程序中而使一般比其他可得進料(如海水、滷水等) 更軟(即較低濃度之Ca2+及/或Mg2+)之處理系統上澄液在 用於加工一氧化石炭之後可經飲用水之淡化。 處理系統上澄液之循環係有利的,因為循環提供有效 利用可用資源、最小週遭環境干擾及較低能量需求,其 ❹ 較低之能量需求為本發明系統及方法提供較低碳足跡。i: It: ΐ::: The solution or slurry with carbon dioxide in the contactor. In the example, 'the solution or pulp with carbon dioxide can be used: ., ~, in which the carbonate can be produced. A composition of bicarbonate or carbonate and bicarbonate. In some embodiments, the composition is made by contacting n with a reactor towel. For example, in some embodiments, a hybrid can produce an initial composition comprising bicarbonate and the reactor can be produced from the initial composition comprising a carbonate, bicarbonate or acid salt and a rock acid hydrogenate. Composition. In certain embodiments, the methods of the present invention may additionally comprise obtaining a source of divalent cations such as alkaline earth metals (e.g., Ca2+, Mg2+). In these specific examples, the source of divalent cations can be supplied to the source of alkalinity or directly to the processor. The sufficient amount of divalent cations provided is provided by a source of alkalinity, a source of divalent cations or a combination of the above sources, and the composition comprising carbonate, bicarbonate or carbonate and bicarbonate may comprise a separable precipitate (such as CaC03, MgC03). The precipitate-containing composition derived from the contactor or reactor may be supplied to a settling tank and then supplied to the treatment system of the present invention. In these specific examples, the composition can be supplied directly to the processing system without being supplied to the settling tank. For example, the composition of the invention containing no separable precipitate can be supplied directly to the treatment system; however, the composition of the invention containing the separable precipitate can also be supplied directly to the treatment system. As described in additional detail below, the composition may be supplied to any of a plurality of processing system subsystems including, but not limited to, a dewatering system, a filtration system, or a dewatering system followed by a filtration system. The system or its subsystem separates the supernatant from the composition and produces a concentrated composition (e.g., the concentrated composition has a higher carbonate, bicarbonate or carbonate and bicarbonate concentration). With respect to Figures 1B and 1C, the present invention also provides an industrial source (130) for processing carbon dioxide and producing a composition comprising a carbonate, bicarbonate or carbonate and bicarbonate composition, wherein at least a portion of the treatment system is a liquid system Through the cycle. As shown in Figures 1B and 1C, the effluent from the processing system (which may include a dewatering system and a filtration system) can be circulated in a variety of ways. As such, in some embodiments, at least a portion of the dewatering system, filtration system, or combination of dewatering system and filtration system can be used to process carbon dioxide. The supernatant can be supplied to the CO2 processing system processor. In these specific examples, the supernatant can be supplied to a contactor (eg, a gas-liquid contactor, a gas-liquid-solid contactor), a reactor, a combination of a contactor and a reactor, or any other unit or unit. Combine to treat carbon dioxide. Moreover, in some embodiments, at least a portion of the liquid from the processing system can be supplied to the cleaning system. In these specific examples, the supernatant liquid can be used to clean the composition of the present invention (e.g., a precipitate containing CaC〇3 and/or MgC03). For example, the supernatant can be used to clean a vapor derived from a carbonate-based precipitate. With respect to Figure 1C, at least a portion of the processing system can be supplied to the electrochemical system. As such, the processing system can be used to make proton-removing agents or proton removal to process carbon dioxide. In some embodiments, at least one of the 24 201038477 portions may be supplied from a processing system to a different system or program. For example, at least a portion of the treatment can be applied to a desalination plant or a desalination process to make it generally softer than other available feeds (eg, seawater, brine, etc.) (ie, lower concentrations of Ca2+ and/or Mg2+). The treatment system can be desalinated by drinking water after being used for processing carbon monoxide. The circulation of the liquid on the treatment system is advantageous because the cycle provides efficient use of available resources, minimal ambient environmental disturbances, and lower energy requirements, and the lower energy requirements provide a lower carbon footprint for the systems and methods of the present invention.

當本發明二氧化碳加工系統與工廠(如燃石化燃料發電 廠如燃煤發電廠)連接操作並利用工廠所產生之動力 時,處理系統上澄液之循環所提供之較低能量需求提供 較低之工廠寄生負荷。並非為循環所設計之二氧化碳加 工系統(即為單流操作程序所設計之二氧化碳加工系統) ^圖1A所示者因將新鮮之鹼度來源(如海水、滷水)連 續泵抽至系統中而具有至少1〇%之工廠寄生負荷。在此 Q 一實例中,100 MW發電廠(如燃煤發電廠)需將1〇 mW 之動力用於二氧化碳加工系統中以將新鮮鹼度來源連續 泵抽至系統中。相反地,為循環所設計之系統如圖1B或 圖1C所示者可具有低於10〇/〇,如低於8%,包括低於6%, =如低於4%或低於2%之与寄生負荷,其寄生負荷可 歸因於泵抽補充水及循環上澄液。為循環所設計之二氧 化碳加工系統相較於為單流操作程序所設計之系統可呈 現至少2%,如至少5%,包括至少1〇%,例如至少 或至乂 504之寄生負荷降低量。例如,若為循環所設計 25 201038477 之二氧化碳加工系統消耗9 MW動力 7刀以盃社社:i: 4 ΜWhen the carbon dioxide processing system of the present invention is connected to a plant (such as a petrochemical fuel power plant such as a coal-fired power plant) and utilizes the power generated by the plant, the lower energy demand provided by the circulation of the liquid on the treatment system is provided lower. Factory parasitic load. Not a carbon dioxide processing system designed for recycling (ie, a carbon dioxide processing system designed for single-flow operation). Figure 1A shows the continuous pumping of fresh alkalinity sources (such as seawater, brine) into the system. At least 1% of the plant's parasitic load. In this Q example, a 100 MW power plant (such as a coal-fired power plant) is required to use 1 〇 mW of power in a carbon dioxide processing system to continuously pump a fresh alkalinity source into the system. Conversely, a system designed for cycling may have less than 10 〇/〇 as shown in FIG. 1B or FIG. 1C, such as less than 8%, including less than 6%, = less than 4% or less than 2%. With parasitic loads, the parasitic load can be attributed to pumping the makeup water and circulating the liquid. The carbon dioxide processing system designed for the cycle can exhibit at least 2%, such as at least 5%, including at least 1%, such as at least or to 504, a parasitic load reduction compared to a system designed for a single flow operating sequence. For example, if it is designed for recycling 25 201038477 carbon dioxide processing system consumes 9 MW power 7 knives to cup society: i: 4 Μ

伸示2丹體貫例τ,循環提供二氧化碳加 生負何之降低, 其中相較於為單流操作程序所設計之二 工系統之總寄 氧化碳加工系統之總寄生負荷時,該降低量為至少2%^ 如至少4%,包括至少6%,例如至少8%或至少1〇%。 如’若為循環所設計之二氧化碳加工系統具有15%寄生 負荷且為單流操作程序所設計之二氧化碳加王系統具有 20%寄生負荷,則為循環所設計之二氧化碳加工系統呈 現5%之總寄生負荷降低量。例如,為循環所設計之二氣 化碳加工系統(其中循環包括經由過濾單元(如圖5)如奈 米過遽單元過據)相較於為單流操作程序所設計之二氧 化碳加工系統可具有至少2%,如至少4%,包括至少 6%,例如至少8%或至少10%之總寄生負荷降低量。 本發明二氧化碳加工系統之寄生負荷可進一步藉由 有效使用其他資源而降低。在某些具體實例中,本發明 二氧化碳加工系統之寄生負荷可進一步藉由有效使用源 自工廠來源之熱而降低。在某些具體實例中,可將(例如) 源自二氧化碳之工業來源之熱(如源自燃煤發電廠之煙 26 201038477 這氣熱)用於乾燥一含有沉澱物(包含碳酸鹽、碳酸氫鹽或 碳酸鹽及碳酸氫鹽)之組成物。在此等具體實例中,噴霧 乾燥器可用於噴乾組成物。例如,可藉熱交換器利用低 度(如150-200。〇廢物熱以蒸發喷乾含有沉殿物之組成 物。此外,利用源自二氧化碳之工業來源之熱以乾燥本 發明組成物可同時冷卻該二氧化碳之工業來源(如源自 燃煤發電廠之煙道氣),其提高二氧化碳之溶解(一種與溫 度呈負相關之方法)。在某些具體實例中,本發明二氧化 石厌加工系統之寄生負荷可進一步藉由有效使用壓力而降 低。例如,在某些具體實例中,本發明二氧化碳加工系 統係設計成具有一能量回收系統。此等能量回收系統在 (例如)淡化技術中係為人所知並以壓力交換方式操作 之。在某些具體實例中,當捕獲及加工70-90°/。由工廠(如 燃煤發電廠)排出之二氧化碳時,二氧化碳加工系統之總 寄生負荷係低於20%,如低於15%,包括低於1〇%,例 =低於5%或低於3%。照此,為循環、熱交換及/或壓力 交換所設計之本發明二氧化碳加工系統可降低動力提供 工廠之寄生負荷並保持二氧化碳處理容量。 除了循環之外,二氧化碳加工系統之寄生負荷可進一 步藉由其他方式降低。熟諳此項技術者將瞭解:流率、 質傳及熱傳可變並可經最佳切祕本文所述系統及方 ^中且發電廠之寄生負荷可獲得降低並最大化二氧化化 碳之加工。精確控制反應條件可用於最大化本發明組成 物(如沉殿物及相關產物)之產量及品質並最小化材料及 27 201038477 能量輪入。例如,在某些具體實例中,可調整進料速率 而使將驗度、二價陽離子及/或質子去除劑供應至程序中 時可獲最適消耗。可受控制之其他參數包括(但不限於) 含有二氧化碳之廢氣的導入速率、反應時間、溫度、ρίΙ、 鹼度類型(如 hco3·、co32,、b(oh)4-、oh、ρ〇43-、:ηρο42·、Representing the 2 dan body τ, the cycle provides a reduction in the carbon dioxide growth, which is compared to the total parasitic load of the total carbon oxide processing system of the duplex system designed for the single-flow operation program. At least 2%^ such as at least 4%, including at least 6%, such as at least 8% or at least 1%. For example, if the carbon dioxide processing system designed for the cycle has a 15% parasitic load and the carbon dioxide addition system designed for the single-flow operation program has a 20% parasitic load, the carbon dioxide processing system designed for the cycle presents 5% of the total parasitic The amount of load reduction. For example, a two-gasification carbon processing system designed for recycling (where the cycle includes passing through a filtration unit (Fig. 5) such as a nano-passing unit) can have a carbon dioxide processing system designed for a single-flow operating procedure. At least 2%, such as at least 4%, including at least 6%, such as at least 8% or at least 10% of the total parasitic load reduction. The parasitic load of the carbon dioxide processing system of the present invention can be further reduced by the effective use of other resources. In some embodiments, the parasitic load of the carbon dioxide processing system of the present invention can be further reduced by the efficient use of heat from a factory source. In some embodiments, heat from an industrial source derived from carbon dioxide (eg, smoke from a coal-fired power plant 26 201038477) can be used to dry a precipitate containing a carbonate (carbonate, hydrogen carbonate). a composition of a salt or a carbonate and a hydrogencarbonate. In these specific examples, a spray dryer can be used to spray dry the composition. For example, it is possible to use a heat exchanger to utilize a low degree (e.g., 150-200. 〇 waste heat to evaporate and spray the composition containing the sinking matter. Further, using the heat of an industrial source derived from carbon dioxide to dry the composition of the present invention can simultaneously An industrial source that cools the carbon dioxide (such as flue gas from a coal-fired power plant) that increases the dissolution of carbon dioxide (a method that is inversely related to temperature). In some embodiments, the inventive dioxide is anoxic The parasitic load of the system can be further reduced by the effective use of pressure. For example, in certain embodiments, the carbon dioxide processing system of the present invention is designed to have an energy recovery system. These energy recovery systems are, for example, in desalination techniques. It is known and operated in a pressure exchange manner. In some specific examples, when capturing and processing 70-90°/. of carbon dioxide emitted by a plant (such as a coal-fired power plant), the total parasitic load of the carbon dioxide processing system Less than 20%, such as less than 15%, including less than 1%, such as less than 5% or less than 3%. As such, designed for circulation, heat exchange and / or pressure exchange The carbon dioxide processing system of the present invention can reduce the parasitic load of the power supply plant and maintain the carbon dioxide treatment capacity. In addition to the cycle, the parasitic load of the carbon dioxide processing system can be further reduced by other means. Those skilled in the art will understand: flow rate, quality The transfer and heat transfer are variable and can be optimized to minimize the process and the parasitic load of the power plant to reduce and maximize the processing of carbon dioxide. Precise control of the reaction conditions can be used to maximize the present invention. Yield and quality of constituents (such as sinkers and related products) and minimize material and energy transfer. For example, in some specific examples, the feed rate can be adjusted to allow for the determination of divalent cations and / or proton remover is optimally consumed when supplied to the program. Other parameters that can be controlled include, but are not limited to, the rate of introduction of carbon dioxide-containing waste gas, reaction time, temperature, ρίΙ, alkalinity type (eg hco3·, Co32,, b(oh)4-, oh, ρ〇43-,: ηρο42·,

Si0(0H)3-或其組合)、二價陽離子類型(如Ca2+、Mg2+)、 二價陽離子比例、二價陽離子濃度、沉澱條件、脫水條 件、乾燥條件及類似參數。精確控制反應條件亦可用於 控制所得產物,特別係沉澱物(Cac03、Mgco3或其組合) 之化學含量及形態。例如,控制反應條件可形成特定碳 酸鹽之介穩非晶質多晶形物,該等碳酸鹽係適合用於膠 結性材料(如補充膠結性材料)及聚集體之前驅物中。例 如,利用本發明電化學系統中所產生之質子去除劑(如 NaOH)結合高鹽度水(如海水、滷水、高驗度滴水、溶解 礦物等)可高度控制所形成之碳酸鹽物種及料碳酸鹽 物種之形態。最後,精確控制整個程序2pH不僅可最小 化能量成本,亦可防止二氧化碳(例如)在碳酸氫鹽成 碳酸鹽期間釋出。 不可避免地,本文所㈤方法可按下列方式消乾水:^ 可成為本發明組成物之-部分(如含有(例如)非晶質碳酿 辦CaC03.H2〇 ;三水碳鎂石MgC〇r2H2〇等之沉殿物) 可經乾燥(喷乾)本發明組成物而蒸發或在程序之某其袖 部分中喪失。照此,可供應難細解決加卫二氧ς喊 以製造本發馳成物(如喷乾之⑽物)之水損失。例如 28Si0(0H)3- or a combination thereof), a divalent cation type (e.g., Ca2+, Mg2+), a divalent cation ratio, a divalent cation concentration, a precipitation condition, a dehydrating condition, a drying condition, and the like. Precise control of the reaction conditions can also be used to control the chemical content and morphology of the resulting product, particularly the precipitate (Cac03, Mgco3, or a combination thereof). For example, control of the reaction conditions can form metastable amorphous polymorphs of a particular carbonate which are suitable for use in cementitious materials (e.g., complementary cementitious materials) and in aggregate precursors. For example, the use of a proton-removing agent (such as NaOH) produced in the electrochemical system of the present invention in combination with high-salt water (such as seawater, brine, high-degree drip, dissolved minerals, etc.) can highly control the carbonate species and materials formed. The form of carbonate species. Finally, precise control of the entire program 2pH not only minimizes energy costs, but also prevents carbon dioxide (for example) from being released during bicarbonate carbonate formation. Inevitably, the method of (5) herein can be used to dry the water in the following manner: ^ can be part of the composition of the present invention (for example, containing, for example, amorphous carbon brewing CaC03.H2 〇; hydrated MgC M MgC〇 The r2H2〇 etc. can be evaporated (sprayed) by the composition of the invention to evaporate or lost in one of its sleeve portions of the procedure. As such, it is possible to supply a water loss that is difficult to solve by sterilizing the dioxin to produce the hair-like product (such as the sprayed (10)). For example 28

201038477 ==::^充水可取代— =的程序中,該水可源自本文所述之任 雷應AM η 具體例中,例如’水可源自發 電,冷心錢回職_路_之射。需要 f其他㈣水之㈣魏為錄序 發明系統及方法係經設計以有效利用資源。序因為本 、脫水係由先前本文所述程序產生之關物中分離出 流出液體之程序。一般而言,脫水係視為以兩個或多個 步驟進行。第—步㈣稱為—級脫水,其中含有碳酸鹽、 碳酸氫鹽或碳酸鹽及碳酸氫鹽之原始組成物係經濃^而 使其包含高達50%(重量/重量)之固體。後續一或多個步 驟可使该組成物具有大於9〇%(重量/重量)之固體。在僅 有第二步驟之情況下,將其稱為二級脫水。一級脫水所 用之方法一般包括由溶液中物理分離出固體。一級脫水 中所用之示範性設備包括(但不限於):沉降槽、壓濾器、 壓帶機、真空轉筒、流體旋風機、離心機及澄清器(如201038477 ==::^ Filling water can replace the -= procedure, the water can be derived from the specific examples of Ren Leiying AM η described in this paper, for example, 'water can be derived from power generation, cold money back to work _ road _ Shot. Need f Other (4) Water (4) Wei is the order The invention system and method are designed to make effective use of resources. The procedure for the separation of the effluent from the water produced by the procedures described previously herein is due to the fact that dehydration. In general, dehydration is considered to be carried out in two or more steps. The first step (four) is referred to as - level dehydration, in which the original composition containing carbonate, bicarbonate or carbonate and bicarbonate is concentrated to contain up to 50% (w/w) solids. Subsequent one or more steps may result in the composition having greater than 9% by weight solids. In the case of only the second step, it is referred to as secondary dehydration. The method used for primary dewatering generally involves the physical separation of solids from solution. Exemplary equipment used in primary dewatering includes, but is not limited to, settling tanks, pressure filters, belt presses, vacuum drums, fluid cyclones, centrifuges, and clarifiers (eg

Epuramat澄清器)。用於後續脫水如二級脫水之方法一般 包括蒸發技術。換言之,該等方法可藉由施加熱或足夠 空氣通過混合物以蒸發含有碳酸鹽、碳酸氫鹽或碳酸鹽 及碳酸氫鹽之組成物的溶液而使混合物之剩餘部分之固 體增加。用於二級脫水之方法包括(但不限於):喷乾、使 組成物與利用廢熱之熱交換器接觸、以熱煙道氣直接加 29 201038477 熱混合物、使混合物暴露於蒸發池之週遭熱中並利用慣 用於灌 >既或造雪之系統以將混合物分散於空氣中並利用 空氣之周遭熱使其蒸發。在某些情況下,希望去除實施 程序所產生之水蒸氣的次微米微粒。在某些情況下,可 使用之示範性裝置可為濕式靜電集塵器。 在某些具體實例中,本發明系統另外包括一級脫水系 統或設備。在某些具體實例中,本發明系統包括一級脫 水系統或設備如(但不限於):Epuramat的 Extrem-SeparatorTExSep”)液-固分離器、Xer〇xPARC 的 螺旋濃縮機、沉降槽、壓濾器、壓帶機、真空轉筒、流 體旋風機、離心機、澄清器、層狀沉降槽、將水或其他 溶液搖離(例如)混合物或漿液之固體的輸送帶或其任何 組合。在某些具體實例中,本發明系統包括多個串聯或 並聯或兩者使用之一級脫水系統或設備。在某些具體實 例中,本發明系統中所用之一級脫水系統或設備係經由 構件如(但不限於)擋板、螺旋管道、導管、螺旋輪送機、 輸送帶、導管及泵浦系統、傾斜導管、一系列離散容琴 或其任何組合連接至該等系統之其他部分。在某些具體 實例中’該一級脫水系統或設備係設計以使含有碳駿 鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物具有5至 50%(重量/重量)之固體。在某些具體實例中’該一級脫 水系統或設備係設計以使該組成物具有5至重量/ 重量)之固體’如1〇至40%(重量/重量)之固體,如15至 35%(重量/重量)之固體,如20至30%(重量/重量)之固 201038477 體。在某些具體實例令,該一級脫水系統或設備係設計 以使該組成物具有5至40%(重量/重量)之固體。在某些 具體實例中,該一級脫水系統或設備係經設計以將上澄 液供應至該處理器中以與二氧化碳之工業來源接觸。在 某些具體實例中,用於與二氧化碳之工業來源接觸之溶 液(如含有上澄液之鹼性溶液)可包含至少1〇%之—級脫 水上澄液,如至少25%之一級脫水上澄液,包括至少5〇% 之一級脫水上澄液’例如至少75%或至少85%之一級脫 水上澄液。在某些具體實例中,用於與二氧化碳之工業 來源接觸之溶液可包含至少95%之一級脫水上澄液。在 某些具體實例中,用於與二氧化碳之工業來源接觸之溶 液可包含 10%至 25%、25%至 50%、50%至 75°/。或 75% 至95%之一級脫水上澄液。 在某些具體實例中,本發明系統另外包含二級脫水系 統或設備。在某些具體實例中,本發明系統包括多個串 聯或並聯或兩者使用之二級脫水系統或設備。在某些具 體實例中,本發明系統包含二級脫水系統或設備,如(但 不限於):噴霧乾燥器;慣用之灌溉設備;造雪機;火爐; 烘箱;將組成物暴露於廢熱中並移動該混合物或漿液之 設備(如可使混合物或漿液與源自工業程序之熱廢氣緊 密混合之螺旋輸送機);經由熱交換器利用廢熱使水由組 成物中蒸發之設備;蒸發潭或池;或其任何組合。在某 些具體實例中,本發明系統中所用之二級脫水系統或設 備係經由構件如(但不限於)擋板、螺旋管道、導管、螺旋 31 201038477 輸送機、輸送帶、導管及泵浦系統、傾斜導管、一系列 離散容器或其任何組合連接至該系統之其他部分。在某 些具體a例中,該二級脫水系統或設備係經設計以使含 有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物具有 大於40%(重量/重量)之固體。在某些具體實例中,該二 級脫水系統或設備係經設計以使該組成物具有4〇至 99°/〇(重量/重量)之固體。在某些具體實例中,該二級脫 水系統或設備係經設計以使該組成物具有45至95%(重 量/重量)之固體’如45至90%(重量/重量)之固體,如50 至90%(重量/重量)之固體,如5〇至85%(重量/重量)之固 體’如55至85°/〇(重量/重量)之固體’如6〇至μ%(重量 /重量)之固體,如60至80%(重量/重量)之固體,如65 至80%(重量/重量)之固體,如65至75%(重量/重量)之固 體。在某些具體實例,該二級脫水系統或設備係經設計 以使該組成物具有大於75%(重量/重量)之固體,如大於 80〇/〇(重量/重量)之固體,如大於85%(重量/重量)之固體, 如大於90%(重量/重量)之固體,如大於95%(重量/重量) 之固體。在某些具體實例,該二級脫水系統或設備係羥 設計以使該組成物具有大於99%(重量/重量)之固體。 某些具體實例中’該二級脫水系統錢備係經 上澄液供應至該處理器中以將 觸。在此等具财财,祕與二氧化碳U 觸之溶液(如含有上澄液之驗性溶液)可包含至少、=接 二級脫水上麵,如衫、25%之二賴水± 32 201038477 至少50%之二級脫水上澄液,例如至少乃%或至少μ% 之二級脫水上澄液。在某些具體實例中,用於與二氧化 石反之工業來源接觸之溶液可包含至少95%之二級脫水上 澄液。在某些具體實例中,用於與二氧化碳之工業來源 接觸之溶液可包含10%至25%、25%至50%、50%至75% 或75%至95%之二級脫水上澄液。 在某些具體實例中’本發明方法可另外包括一級脫水 步驟。在某些具體實例中’本發明方法包括一級脫水步 驟’其利用一或多種設備’如(但不限於)Epuramat的Epuramat clarifier). Methods for subsequent dewatering, such as secondary dewatering, generally include evaporation techniques. In other words, the methods can increase the solids of the remainder of the mixture by applying heat or sufficient air through the mixture to evaporate a solution containing a composition of carbonate, bicarbonate or carbonate and bicarbonate. Methods for secondary dewatering include, but are not limited to, spraying dry, contacting the composition with a heat exchanger utilizing waste heat, directly adding a hot mixture to the hot flue gas, exposing the mixture to the surrounding heat of the evaporation pond and A system that is conventionally used for irrigation & neither snowmaking is used to disperse the mixture in the air and evaporate it with the heat of the surrounding air. In some cases, it may be desirable to remove submicron particles of water vapor produced by the process. In some cases, an exemplary device that can be used can be a wet electrostatic precipitator. In some embodiments, the system of the invention additionally includes a primary dewatering system or apparatus. In certain embodiments, the system of the present invention includes a primary dewatering system or apparatus such as, but not limited to: Epuramat's Extrem-Separator TExSep") liquid-solid separator, Xer〇xPARC spiral concentrator, settling tank, pressure filter, Belt press, vacuum drum, fluid cyclone, centrifuge, clarifier, layered settling tank, conveyor belt for shaking water or other solution, for example, solids of a mixture or slurry, or any combination thereof. In an example, the system of the present invention comprises a plurality of one-stage dewatering systems or equipment in series or in parallel or both. In some embodiments, the one-stage dewatering system or equipment used in the system of the present invention is via components such as, but not limited to, Baffles, spiral conduits, conduits, screw conveyors, conveyor belts, conduits and pumping systems, inclined conduits, a series of discrete harpsichords, or any combination thereof, are coupled to other portions of such systems. In some embodiments, The primary dewatering system or equipment is designed to have a solid content of 5 to 50% (weight/weight) of the composition containing carbon salts, hydrogencarbonates or carbonates and hydrogencarbonates. In some embodiments, the primary dewatering system or equipment is designed such that the composition has 5 to weight/weight solids, such as 1 to 40% (weight/weight) solids, such as 15 to 35%. (Weight/weight) solids, such as 20 to 30% (weight/weight) solids 201038477. In some specific examples, the primary dewatering system or equipment is designed such that the composition has 5 to 40% (weight) /wt) solids. In some embodiments, the primary dewatering system or apparatus is designed to supply supernatant liquid to the processor for contact with an industrial source of carbon dioxide. In some embodiments, A solution in contact with an industrial source of carbon dioxide (eg, an alkaline solution containing a supernatant) may comprise at least 1% by weight of a dehydrated supernatant, such as at least 25% of a dehydrated supernatant, including at least 5% by weight. The primary dehydration solution is, for example, at least 75% or at least 85% of the dehydrated supernatant. In some embodiments, the solution for contact with an industrial source of carbon dioxide may comprise at least 95% of the dehydrated supernatant. In some specific examples, The solution in contact with the industrial source of carbon dioxide may comprise from 10% to 25%, from 25% to 50%, from 50% to 75[deg.] or from 75% to 95% of the dehydrated supernatant. In some embodiments, The inventive system additionally comprises a secondary dewatering system or apparatus. In some embodiments, the inventive system comprises a plurality of secondary dewatering systems or devices used in series or in parallel or both. In certain embodiments, the inventive system comprises Secondary dewatering system or equipment, such as (but not limited to): spray dryer; conventional irrigation equipment; snow machine; stove; oven; equipment that exposes the composition to waste heat and moves the mixture or slurry (if A screw conveyor in which the mixture or slurry is intimately mixed with hot exhaust gases from an industrial process; a device that utilizes waste heat to vaporize water from the composition via a heat exchanger; an evaporation pond or pool; or any combination thereof. In certain embodiments, the secondary dewatering system or apparatus used in the system of the present invention is via components such as, but not limited to, baffles, spiral conduits, conduits, spirals 31 201038477 conveyors, conveyor belts, conduits, and pumping systems. A tilting conduit, a series of discrete containers, or any combination thereof, is coupled to other portions of the system. In some specific examples, the secondary dewatering system or apparatus is designed to have a composition comprising carbonate, bicarbonate or carbonate and bicarbonate having greater than 40% (w/w) solids. In some embodiments, the secondary dewatering system or apparatus is designed such that the composition has a solids of from 4 Torr to 99 °/wt. In certain embodiments, the secondary dewatering system or apparatus is designed such that the composition has a solids of 45 to 95% (weight/weight), such as 45 to 90% (weight/weight) of solids, such as 50. Up to 90% (w/w) solids, such as 5 to 85% (w/w) solids such as solids of 55 to 85 ° / 〇 (weight / weight) such as 6 〇 to μ% (weight / weight A solid such as 60 to 80% (w/w) solids, such as 65 to 80% (w/w) solids, such as 65 to 75% (w/w) solids. In certain embodiments, the secondary dewatering system or apparatus is designed such that the composition has greater than 75% (weight/weight) solids, such as greater than 80 〇/〇 (weight/weight) solids, such as greater than 85 % (weight/weight) solids, such as greater than 90% (w/w) solids, such as greater than 95% (w/w) solids. In some embodiments, the secondary dewatering system or equipment is hydroxy designed to provide the composition with greater than 99% (w/w) solids. In some embodiments, the secondary dewatering system is supplied to the processor to be touched. In this kind of wealth, the secret solution of carbon dioxide U touch (such as the test solution containing the supernatant) can contain at least, = secondary dehydration above, such as shirt, 25% of the water ± 32 201038477 at least 50% of the secondary dehydration solution, for example at least % or at least μ% of the secondary dehydration solution. In some embodiments, the solution for contact with the oxidized stone and the industrial source may comprise at least 95% of the secondary dewatering supernatant. In some embodiments, the solution for contact with an industrial source of carbon dioxide can comprise from 10% to 25%, from 25% to 50%, from 50% to 75%, or from 75% to 95% of the secondary dewatering supernatant. In some embodiments, the method of the invention may additionally comprise a first stage dehydration step. In some embodiments, the method of the invention comprises a primary dehydration step which utilizes one or more devices such as, but not limited to, Epuramat

Extrem-Separator(“ExSep”)液-固分離器、xer〇x PARc 的 螺旋濃縮機、沉降槽、壓濾器、壓帶機、真空轉筒、流 體旋風機、離心機、澄清器、層狀沉降槽、將水或其他 >谷液搖離混合物或衆液之固體的輸送帶或其任何組合。 在某些具體實例中,本發明方法包括利用多個呈串聯或 並聯之(例如)本文先前所列類型之脫水設備之一級脫水 步驟。在某些具體實例中,該一級步驟使含有碳酸鹽、 碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物具有5至50%(重 量/重量)之固體。在某些具體實例中,該一級脫水步驟使 該組成物具有5至45%(重量/重量)之固體,如10至 40%(重量/重量)之固體,如15至35%(重量/重量)之固 體,如20至30%(重量/重量)之固體。在某些具體實例中, 該一級步驟使該組成物具有5至4 0 % (重量/重量)之固體。 在某些具體實例中’本發明方法可另外包含二級脫水 步驟。在某些具體實例中’可使用多個二級脫水步驟。 33 201038477 在某些具體實例中’本發明方法包括二級脫水步驟,其 利用一或多個設備如(但不限於):噴霧乾燥器;慣用之灌 派設備,造雪機’火爐,供相,將混合物或聚液暴露於 廢熱中並移動含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫 鹽之組成物之設備(如可使該組成物與源自工業程序之 熱廢氣緊密混合之螺說輸送機);經由熱交換器利用廢熱 使水由組成物中蒸發之設備;蒸發潭或池;或其任何組 合。在某些具體實例中,本發明方法包括利用多個呈串 聯或並聯之脫水設備’(例如)本文先前所列類型之脫水設彳 備之二級脫水步驟。在某些具體實例中,該二級脫水步 驟使含有碳酸鹽、破酸氫鹽或碳酸鹽及碳酸氫鹽之組成 物具有大於40%(重量/重量)之固體。在某些具體實例 中’該二級脫水步驟使該組成物具有40至99%(重量/重 量)之固體。在某些具體實例中’該二級脫水步驟使該組 成物具有45至95%(重量/重量)之固體,如45至90%(重 量/重量)之固體’如50至90%(重量/重量)之固體,如50 至85%(重量/重量)之固體’如55至85%(重量/重量)之固 ί 體,如60至85%(重量/重量)之固體,如60至80%(重量 /重量)之固體,如65至80%(重量/重量)之固體,如65 至75%(重量/重量)之固體。在某些具體實例中,該二級 脫水步驟使該組成物具有大於75%(重量/重量)之固體, 如大於80%(重量/重量)之固體,如大於85%(重量/重量) 之固體,如大於90%(重量/重量)之固體,如大於95%(重 量/重量)之固體。在某些具體實例,該二級脫水步驟使該 34 201038477 組成物具有大於99%(重量/重量)之固體。 在某些具體實例中’包含一級脫水系統及二級脫水系 統之脫水系統係經設計以使含有碳酸鹽、碳酸氫鹽或破 酸鹽及碳酸氳鹽之組成物具有40至99%(重量/重量)之固 體。在某些具體實例中,該脫水系統係經設計以使該組 成物具有45至95%(重量/重量)之固體’如45至90%(重 量/重量)之固體,如50至90%(重量/重量)之固體,如50 至85%(重量/重量)之固體,如55至85%(重量/重量)之固 體,如60至85%(重量/重量)之固體,如60至80%(重量 /重量)之固體’如65至80%(重量/重量)之固體’如65 至75%(重量/重量)之固體。在某些具體實例中,該脫水 系統係經設計以使該組成物具有大於75%(重量/重量)之 固體,如大於80%(重量/重量)之固體,如大於85%(重量 /重量)之固體,如大於90°/〇(重量/重量)之固體,如大於 95%(重量/重量)之固體。在某些具體實例中,該脫水系 統係經設計以使該組成物具有大於99%(重量/重量)之固 體。在某些具體實例中,包含一級脫水系統及二級脫水 系統之脫水系統係經設計以將上澄液供應至該處理器中 以與二氧化碳之工業來源接觸。在此等具體實例中,用 於與二氧化碳之工業來源接觸之溶液(如含有上澄液之 鹼性溶液)可包含至少10%之脫水系統上澄液,如至少 25%之脫水系統上澄液,包括至少50%之脫水系統上澄 液,例如至少75%或至少85%之脫水系統上澄液。在某 些具體實例中,用於與二氧化碳之工業來源接觸之溶液 35 201038477 可包含至少95%之脫水系統上澄液。在某些具體實例 中,用於與二氧化碳之工業來源接觸之溶液可包含10% 至25%、25%至50%、50%至75¾或75%至95%之脫水 系統上澄液。 如上所討論般’處理系統上澄液可經循環以再利用於 二氧化碳加工系統之處理器或該處理器之子系統(如氣_ 液接觸器、氣-液·固接觸器、反應器等)中。可使用含有 至少一個過濾單元之過濾系統進行處理系統上澄液(如 脫水系統上澄液)之再利用。在某些具體實例中,該過濾 系統包括超過濾單元、奈米過濾單元、逆滲透單元或上 述單元之組合。本發明過濾單元(如奈米過濾單元、逆滲 透單元)在某些具體實例中可用於(例如)增加加工二氧化 厌之多彳貝離子(如一價陽離子如Ca2+、Mg2+)的濃度,降 低組成物中單價離子(如Cr、Na+)之濃度以提供電化學系 、'克及程序之實質純水,提供清洗本發明組成物(如含有碳 酸鹽、β碳酸氫鹽或碳酸鹽及碳酸氫鹽之沉澱物)之實質純 水’提供電化學純及程序之含有NaC1 n純電解 =回,加工二氧化碳之質子去除劑(如〇H-)或由加工二 € j+b妷回^收未反應之多價陽離子(如二價陽離子如 )及/或鹼度(如碳酸氫鹽等)。亦可能有其他適 s用途或上述用途之組合。 過遽單元如逆渗透單元及奈米過滤單元可 以用於分 =各種離子(如三價陽離子、單價陰離子)域(如半渗透 、:’’、特徵。可使用任何適合膜進行所需分離。該等膜一 36 201038477 般為由不同孔隙度層所組成並始於纖維背板、聚;5風支撐 層及聚醯胺過濾層之薄膜複合物;然而,某些膜可為 纖維素乙酸酯(如二乙酸酯或三乙酸酯級或其混合物)。該 等膜係基於多種不同因素,包括溶質、電荷、尺寸及形 狀排除離子或容許離子通過。回收率%可由滲透液流與 進料流之比例(如回收率% =滲透液流/進料流X丨〇 〇)算 得。排除率%係依照下式算得, 排除率%=1-(滲透液TDS/進料TDS) 其中’’TDS”係總溶解固體。所需離子類或物種之濃度因子 (如二價陽離子濃度因子)係由阻留物與進料中之濃度比例 (如二價陽離子(“DVC”)濃度因子=[DVC]阻留物/[DVC]進 料)算得。 奈来過濾可非正式地描為”鬆散”類型之逆滲透;換言 之,奈米過濾膜通過更多溶質並操作在比逆滲透膜更低之 滲透壓下。在某些具體實例中,可選擇性排除多價離子 (如二價陽離子如Ca2+及/或Mg2+)並使單價離子(如cr) 通過之膜可用於濃縮阻留物中之二價離子。在本發明某 些具體實例中適用之奈米過濾膜包括獲自Koch(如 SR-100)及Dow(如FilmTec NF245)之膜。回收率%愈高, 阻留物中多價離子之濃度愈高。如上’回收率可由渗透液 流與進料流之比例算得。照此,較高回收率意指較小阻留 物流。由於阻留物與鹼度來源或脫水系統上澄液間之總溶 解固體(TDS)差異,奈米過濾之回收率%可高於逆滲透之 回收率°/〇。一般’奈米過濾在既定回收率下之TDS差異係 37 201038477 遠地於逆滲透者。 舉例而言,假設無二價陽離子通過奈米過_ 回收率下’二償陽離子之濃度因子為3。照此,含有。 3除4了在子另之= 3/4之水在另一貝例中,在8〇%回收率下, 為4 :應注意阻留物中之高二價陽離子濃度^ 過滤單元膜之污染並限制回收率%。 丁入 2如上:可將含有多價離子(如二價陽離子如⑹+及 Mg )之脫水系統上澄液供應至處理器中。在某些具會 例甲’可將脫水純上澄液供應至含有至少—個過 元,例如奈米過料元之過濾系統中,其中該脫水^统 上^登液係經濃縮以提供—多價離子(如二價陽離子如 Ca及/或Mg2+)濃縮來源以再利用於加工二氧化碳。 此等具體實例中,該過濾單元包含一容許單價離子(如 C1)以滲透液形式通過之膜,例如奈米過濾膜。多價離子 (如二價陽離子如Ca2+及/或Mg2+)係由該奈米過據膜排除 而有效濃縮阻留物中之多價離子。然後,可循環含有多價 離子濃縮來源以再利用於處理器中。可拋棄含有單價離 子濃縮來源之滲透液,將其供應至淡水廠中或循環之以 與(例如)本發明電化學系統聯用。 在某些具體實例中,可將含有多價離子(如二價陽離 子如Ca2+及/或Mg2+)之鹼度來源(如海水、滴水)供應至 過濾單元(如奈米過濾單元)中,其中該鹼度來源可經濃縮 以提供一鹼度濃縮來源及多價陽離子濃縮來源。在此等 38 201038477 =:式容許單價_, .々、之膑,例如奈米過濾膜。在此等具體 古^太米、子(如二價陽離子如Ca2+及/或Mg2+)係由 ;Γ:、二f 有效濃縮阻留物十之多價離子。然Extrem-Separator ("ExSep") liquid-solid separator, xer〇x PARc spiral concentrator, settling tank, pressure filter, belt press, vacuum drum, fluid blower, centrifuge, clarifier, layered settling A tank, a conveyor belt that shakes water or other > trough liquid away from the solids of the mixture or liquid, or any combination thereof. In some embodiments, the method of the invention comprises the use of a plurality of dehydration steps in series or in parallel, for example, a dewatering apparatus of the type previously listed herein. In some embodiments, the first step provides a solids containing from 5 to 50% by weight per weight of the carbonate, bicarbonate or carbonate and bicarbonate compositions. In some embodiments, the primary dewatering step provides the composition with from 5 to 45% (weight/weight) solids, such as from 10 to 40% (weight/weight) solids, such as from 15 to 35% (weight/weight) Solid, such as 20 to 30% (w/w) solids. In some embodiments, the first step provides the composition with from 5 to 40% (weight/weight) solids. In some embodiments, the method of the invention may additionally comprise a secondary dehydration step. In some embodiments, multiple secondary dehydration steps can be used. 33 201038477 In certain embodiments, the method of the invention comprises a secondary dewatering step utilizing one or more equipment such as, but not limited to: a spray dryer; a conventional irrigation apparatus, a snowmaker's furnace, for the phase Exposing the mixture or liquid to waste heat and moving the equipment containing carbonate, bicarbonate or a mixture of carbonate and bicarbonate (such as a snail that allows the composition to be intimately mixed with hot exhaust gases from industrial processes) Said conveyor; a device that uses waste heat to evaporate water from a composition via a heat exchanger; an evaporation pond or pool; or any combination thereof. In some embodiments, the method of the present invention comprises the use of a plurality of dewatering equipment in series or in parallel, e.g., a secondary dewatering step of a dewatering apparatus of the type previously listed herein. In some embodiments, the secondary dewatering step provides a composition comprising carbonate, hydrogen sulphate or carbonate and bicarbonate having greater than 40% (w/w) solids. In some embodiments, the secondary dewatering step provides the composition with from 40 to 99% (weight/weight) solids. In some embodiments, the secondary dewatering step provides the composition with 45 to 95% (w/w) solids, such as 45 to 90% (w/w) solids, such as 50 to 90% (weight/ A solid such as 50 to 85% (w/w) solids such as 55 to 85% (w/w) solids, such as 60 to 85% (w/w) solids, such as 60 to 80 % (w/w) solids, such as 65 to 80% (w/w) solids, such as 65 to 75% (w/w) solids. In some embodiments, the secondary dewatering step provides the composition with greater than 75% (weight/weight) solids, such as greater than 80% (weight/weight) solids, such as greater than 85% (weight/weight). A solid, such as greater than 90% (w/w) solids, such as greater than 95% (w/w) solids. In some embodiments, the secondary dewatering step provides the 34 201038477 composition with greater than 99% (w/w) solids. In some embodiments, the dehydration system comprising a primary dehydration system and a secondary dehydration system is designed to have a composition comprising carbonate, bicarbonate or acid salt and barium carbonate salt of 40 to 99% (weight/ Weight) solid. In certain embodiments, the dewatering system is designed such that the composition has from 45 to 95% (weight/weight) solids, such as from 45 to 90% (weight/weight) solids, such as from 50 to 90% ( Weight/weight) solids, such as 50 to 85% (w/w) solids, such as 55 to 85% (w/w) solids, such as 60 to 85% (w/w) solids, such as 60 to 80 % (w/w) solids such as 65 to 80% (w/w) solids such as 65 to 75% (w/w) solids. In certain embodiments, the dewatering system is designed such that the composition has greater than 75% (weight/weight) solids, such as greater than 80% (weight/weight) solids, such as greater than 85% (weight/weight) A solid such as a solid greater than 90°/〇 (w/w), such as greater than 95% (w/w) solids. In some embodiments, the dewatering system is designed such that the composition has greater than 99% (w/w) solids. In some embodiments, a dewatering system comprising a primary dewatering system and a secondary dewatering system is designed to supply the supernatant to the processor for contact with an industrial source of carbon dioxide. In these specific examples, a solution for contact with an industrial source of carbon dioxide (eg, an alkaline solution containing a supernatant) may comprise at least 10% of a dehydration system, such as at least 25% of a dehydration system. Including at least 50% of the dehydration system, such as at least 75% or at least 85% of the dehydration system. In some embodiments, the solution for contact with an industrial source of carbon dioxide 35 201038477 may comprise at least 95% of the dewatering system. In some embodiments, the solution for contact with an industrial source of carbon dioxide can comprise from 10% to 25%, from 25% to 50%, from 50% to 753⁄4, or from 75% to 95% of the dewatering system. As discussed above, the liquid on the processing system can be recycled for reuse in the processor of the carbon dioxide processing system or the subsystem of the processor (eg, gas-liquid contactor, gas-liquid-solid contactor, reactor, etc.) . The filtration system on the treatment system (e.g., the liquid on the dewatering system) can be reused using a filtration system containing at least one filtration unit. In some embodiments, the filtration system comprises an ultrafiltration unit, a nanofiltration unit, a reverse osmosis unit, or a combination of the above. The filtration unit of the present invention (such as a nanofiltration unit, a reverse osmosis unit) can be used, for example, to increase the concentration of a plurality of mussel ions (e.g., monovalent cations such as Ca 2+, Mg 2+ ) for processing oxidized anaesthesia, and to reduce composition. Concentration of monovalent ions (such as Cr, Na+) to provide an electrochemical system, 'grams, and procedures for substantial pure water, to provide cleaning of the compositions of the present invention (eg, containing carbonates, beta bicarbonates or carbonates, and bicarbonates) The pure water of the precipitate) provides electrochemical purity and procedures containing NaC1 n pure electrolysis = back, proton removal agent for processing carbon dioxide (such as 〇H-) or unprocessed by processing two € j+b Polyvalent cations (such as divalent cations such as) and/or alkalinity (such as bicarbonate, etc.). There may be other suitable uses or combinations of the above. Percolation units such as reverse osmosis units and nanofiltration units can be used to separate = various ion (eg, trivalent cation, monovalent anion) domains (eg, semi-permeable,: '', features. Any suitable membrane can be used to effect the desired separation. The membranes 36 are generally composed of different porosity layers and start with a film composite of a fiber backsheet, a poly5, a wind support layer and a polyamide buffer layer; however, some membranes may be cellulose acetate. Esters (such as diacetate or triacetate grades or mixtures thereof). These membranes are based on a variety of different factors, including solute, charge, size and shape to exclude ions or allow ions to pass through. The % recovery can be achieved by permeate flow and The ratio of the feed stream (such as recovery % = permeate flow / feed stream X 丨〇〇) is calculated. The exclusion rate % is calculated according to the following formula, the exclusion rate % = 1 - (permeate TDS / feed TDS) ''TDS' is the total dissolved solids. The concentration factor of the desired ion species or species (eg divalent cation concentration factor) is the concentration ratio of the retentate to the feed (eg divalent cation ("DVC") concentration factor =[DVC] Retentate / [DVC] feed) Calculated. Filtration can be informally described as a "loose" type of reverse osmosis; in other words, the nanofiltration membrane passes through more solutes and operates at a lower osmotic pressure than the reverse osmosis membrane. In some embodiments, selective Membranes that exclude multivalent ions (such as divalent cations such as Ca2+ and/or Mg2+) and pass monovalent ions (such as cr) can be used to concentrate divalent ions in the retentate. In certain embodiments of the invention, The membranes for rice include membranes obtained from Koch (eg SR-100) and Dow (eg FilmTec NF245). The higher the % recovery, the higher the concentration of multivalent ions in the retentate. As above, the recovery can be achieved by permeate flow. The ratio of the feed stream is calculated. As such, a higher recovery means a smaller retention stream. The nanofiltration is due to the difference in total dissolved solids (TDS) between the retentate and the alkalinity source or the dehydration system. The recovery rate can be higher than the recovery rate of reverse osmosis °/〇. Generally, the TDS difference of nanofiltration at a given recovery is 37 201038477. Far from the reverse osmosis. For example, suppose no divalent cations pass through the nanometer. _ Under the recovery rate, the concentration factor of the second cation is 3 As such, contains. 3 except 4 in the other = 3 / 4 of water in another shell, at 8 〇% recovery, 4: should pay attention to the high divalent cation concentration in the retentate ^ Filtration of membrane membranes and limiting recovery %. Ding 2 as above: The dehydration system containing multivalent ions (such as divalent cations such as (6) + and Mg) can be supplied to the processor. The example A can supply the dehydrated pure supernatant liquid to a filtration system containing at least one excess element, such as a nanometer feed element, wherein the dehydration system is concentrated to provide a multivalent ion (eg, two Valence cations such as Ca and/or Mg2+) are concentrated sources for reuse in processing carbon dioxide. In these specific examples, the filtration unit comprises a membrane that allows monovalent ions (e.g., C1) to pass as a permeate, such as a nanofiltration membrane. Multivalent ions (e.g., divalent cations such as Ca2+ and/or Mg2+) are effective in concentrating the multivalent ions in the retentate by the exclusion of the nanoparticle. The multivalent ion concentration source can then be recycled for reuse in the processor. The permeate containing the monovalent ion concentration source can be discarded, supplied to a fresh water plant or recycled for use with, for example, the electrochemical system of the present invention. In some embodiments, a source of alkalinity (eg, seawater, drip) containing a multivalent ion (eg, a divalent cation such as Ca 2+ and/or Mg 2+ ) may be supplied to a filtration unit (eg, a nanofiltration unit), wherein The source of alkalinity can be concentrated to provide a source of alkalinity concentration and a source of multivalent cation concentration. Here, 38 201038477 =: The formula allows the unit price _, .々, 膑, such as nanofiltration membrane. In this particular, the ancient glutinous rice, such as divalent cations such as Ca 2+ and/or Mg 2+ , are effectively concentrated by the enthalpy of enthalpy; Of course

Hi 子濃縮麵之_物供應至處理器中。The source of the Hi sub-concentration surface is supplied to the processor.

St有單價離子濃縮來源之渗透液,將其供應至淡 二H讀(例如)本發日月電化H統聯用。St has a permeate from a source of monovalent ion concentration, which is supplied to the H2H reading (for example).

糟,顧鹼度來源或脫水系統上澄液增加多價離子 =貝陽離子如Ca2'Mg2+)之濃度可增加本發明組成 物,特別係含有沉殿物(如Ca2+、Mg2+)之組成物的產率。 此一多價離子(如二價陽離子如Ca2+、Mg2+)之濃度使其 可使用較小槽、泵浦及/或後加工設備。伴隨增加過滤單 元阻留物(如奈純鮮植㈣)巾多㈣子之濃度了亦 可降低單價離子濃度(如α•濃度)。在此等具體實例中, 可使本發明組成物(如沉殿物)中之單價離子濃度變低以 降低對清洗本發明組成物之需求;換言之,(例如)若需要 低或無氣化物喊物(如沉缝)。獲自過祕度來源或脫 水系統上澄液之過濾單元滲透液(如奈米過濾單元滲透 液)可視為經淡化預處理並可為較低積垢,包括較低總溶 解固體(TDS)。可將此過濾單元滲透液供應至淡化廠^經 就地淡化。 源自處理器之組成物、源自脫水系統之上澄液或源自 過濾單元如奈米過濾單元之滲透液皆可用於過濾單元如 逆滲透單元中。在某些具體實例中,該逆滲透單元可經 39 201038477 設計以將滲透液供應至一電化學系統中。在某些具體實 例中,該逆滲透單元可經設計以將阻留物供應至一電化 學系統中。在某些具體實例中,含有兩個過濾單元之過 濾系統可用於處理源自處理器之組成物。在此等具體實 例中,該過濾系統可包含奈米過濾單元及逆滲透單元, 其中奈米過濾單元將滲透液供應至逆滲透單元中,因此 該逆滲透單元將阻留物供應至電化學系統中。逆滲透單 元包含一容許溶劑如水以滲透液形式通過之膜,例如逆 滲透膜。多價離子及單價離子皆可藉逆滲透膜排除以有 效濃縮阻留物之離子。然後,將含有離子濃縮來源之阻留 物供應至電化學系統中。可拋棄實質不含離子之滲透 液,將其供應至淡水廠中或循環之以供多種不同用途中 任一者使用。 可使用上述程序之組合。在某些具體實例中,處理器 組成物及含有多價離子(如二價陽離子如Ca2+及/或Mg2+) 之鹼度來源(如海水、滷水)可經奈米過濾濃縮並供應至處 理器中。在某些具體實例中,該處理器之組成物可藉奈 米過濾單元濃縮,其中可將過濾單元阻留物供應至處理 器中並可將滲透液供應至逆滲透單元以供進一步加工。 在某些具體實例中,含有二價陽離子之鹼度來源可藉奈 米過濾濃縮且處理器組成物係藉逆滲透濃縮。在某些具 體實例中,含有二價陽離子之鹼度來源可藉奈米過濾濃 縮並將阻留物供應至處理器中。在某些具體實例中,該 處理器之組成物可藉奈米過濾濃縮,將該奈米過濾單元 201038477 滲透液供㈣祕理11中’且該奈米碱單元渗透液可 藉逆滲遂濃縮旅將阻留物及滲透液供應至電化學系統 中。 在某參具雜實例中,本發明提供一種利用一循環溶液 加工二氧牝破之方法及系統。關於圖2,在一具體實例 中,該系·统2〇〇包含富含二氧化碳之廢氣流(230)。在各 個具體實例中,與該循環溶液接觸之二氧化碳來源可為 任何如下所述之慣用二氧化碳來源。 工廠之枝質在不同具體實例中可不同並包括工廠、發 電廠、牝學加工廠及其他產生含有二氧化碳副產物之氣 流之工廠。廢氣流(230)可為實質純c〇2或含有co2及一 或多種額外氣體之多組分氣流。額外氣體及其他組分可 包括S〇2)、N〇x、汞及其他金屬。在某些具體實 例中,將此等額外組分中之一或多者摻入該組成物中。 例如,在某些具體實例中,此等額外組分中之一或多者 同時或依此與含有酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽 之沉澱物沉澱。例如,S〇2可以硫酸鈣或亞硫酸鈣形式 沉澱。 在某些具體實例中,將含C02流(230)導入處理器210 中,其中使c〇2與該循環溶液接觸。該處理器21〇包含 多種不同元件中任一者,如溫度調節元件(如設計用於加 熱或冷卻水至所需溫度者)、化學添加劑元件(如用於將化 學pH提同劑(如NaOH)導入水中者)、攪拌元件及/或電 化學組件或元件(如陰極/陽極等)。該處理器可包含單一 201038477 隔室或多個隔室。 關於圖2,在各個具體實例中,該系統包含鹼度來源 (240)以視情況調整該循環溶液之pH。此外,關於圖2, 系統200可包含適合用於由循環溶液製造含有碳酸鹽、 碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物的鹼土金屬離子 來源(260)(如二價陽離子如Ca2+及/或Mg2+)。鹼土金屬離 子來源包含鹽水來源(如海水、滷水等)時,該輸入口係與 鹽水來源流體連通。例如,鹽水來源係海水時,該輸二 口可為由海水至路基系統之管線或進料。例如,在水其 系統中,該輸入口可為船體中之通口。或者,驗土金^ 離子可根據本文所述之本發明藉由消化鎂鐵礦物或另一 富含鹼土金屬之原料(如蛇紋石或橄欖石)而獲得。 如下所述’其他驗土金屬來源包括飛灰、查、廢棄 混凝土及技術中已知之類似物。其他鹼土金屬離子來源包 括滷水及硬水。此外,在某些具體實例中可使用矽石/來源 如鎂鐵礦物或飛灰。在此等具體實例中,含有矽石之最 終固體產物可視為火山灰。 系統·糾包含-歸㈣自#環溶液含有碳酸 鹽、碳酸氫鹽或碳酸鹽及賴氫鹽(如沉澱物)之喊物之 固體部分脫水之脫水系統224。視特定脫水系統而定, 脫水系統可包括職單元如連續帶軸賴水系統可包 含沉降槽或任何其他慣賴水單元。例如,可藉由喷乾 或)t、乾後接著It磨使該已過濾、材料形成離散粒子。喷乾 可有效使用煙道氣作為熱源。在某些具體實例中,最終 42 201038477 固體產物可财泥或打t添加劑如補_結 20%沉殿物:_水泥如普通波水泥)’· 體(如砂);粗合成聚集體m板;土壤€=^集 水泥及類似物形式用於建築環境中。 ’ Ο Ο 如圖2所說明般,在一級脫水系統224中,循产々 係藉由含有沉雜之組成物去除麟物並產生上 :式獲得。在各個具體實例中,循環溶液包含形= 有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽(如沉之 成物之固體部分上之上澄液或藉使沉澱物漿液:液且 固分離而獲得之上澄液。 订我 視情^,在錢具體實例中,可能需在該循環溶液與 J入之3 C〇2氣體(230)再接觸之前先調整其之 ” ,術中中將暸解般’可藉添加鹼度來源(如可溶P : 物、碳酸氫鹽等)至循環溶液中調整pH。視产況飞=化 藉添加-雜紐齡,其” ::,鹽等酿如(例如)共同讓渡之美國臨= 申睛案第61/091,729號所述般(將其以于 中)係藉由電化學程序增加。 視情况’亦可能需在該循環溶液與弓j入之 230再接觸之前先去除該循環溶液之 2氟_ 明般’在-具體實例中,該系統包括可選擇性^所說 渡單元、逆渗透單元等如,可使 部分二價陽離子⑽2+及W)移至—隔室並將單價g 43 201038477 如Na+及Cr移至另一隔室之系統。 濾單元。在某些具體實例中,將富含二括奈米過 新導入處理器210中,而富含單價離員離子之水重 電化學程料財 bs . ,.虱虱化物、碳酸氫 鹽板U其犯&物。此外,本發明 有石夕石之進料產生富切石之水。 ^狀田3 該系統可位於陸地上或水(如海洋)上。例如,該***可 為沿海地區(即接近海水來源)或在内部地區(即水係由海 水來源(如料、_水、地下;自料)奸賴送至系統 中)之陸基_。或者’該系統可為水基純(即存在於水 上或水中之系統)。此一系統必要時可存在於船、海洋平 台等之上。 如本文所述般且如熟諳此技者將瞭解般,本發明方法 及系統適用於批次及連續程序。 在某些具體實例中,該方法包括一藉使含C02氣體與 循環溶液接觸之步驟。如上所述般,在此步驟中,源自 含C〇2氣體230之C〇2可於處理器210與循環溶液接 觸。視情況,循環溶液之pH係經充分調整以促使氣體於 液體中之吸收。 在某些具體實例中,該方法另外包括製造一含有鹼土 金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成 物。在某些具體實例中’該等組成物可以沉澱物形式由 循環溶液中沉丨殿。 44 201038477 如圖2所示般’多種不同反應係發生在處理器(2 1 〇)中 以引發沉澂。特定言之,如熟諳此技者將瞭解般且不受 理論所限制,下列反應可在處理器中發生以產生含有碳 酸鹽之沉殿物:The concentration of multivalent ions = shell cations such as Ca2 'Mg 2+ can be increased by the source of the alkalinity or the dehydration system to increase the composition of the present invention, especially the composition of the composition containing the sinking matter (such as Ca 2+ , Mg 2+ ). rate. The concentration of this multivalent ion (e.g., divalent cations such as Ca2+, Mg2+) allows the use of smaller tank, pump and/or post processing equipment. Increasing the concentration of the filter element (such as nai pure fresh plant (4)) and increasing the concentration of the tetrad (4) can also reduce the monovalent ion concentration (such as α• concentration). In these specific examples, the monovalent ion concentration in the compositions of the present invention (e.g., sinks) can be lowered to reduce the need to clean the compositions of the present invention; in other words, if low or no gasification is required, for example Things (such as sinking). The filtration unit permeate (e.g., nanofiltration unit permeate) obtained from the source of the secret or the liquid on the dewatering system can be considered as a desalinated pretreatment and can be of lower fouling, including lower total dissolved solids (TDS). The filtration unit permeate can be supplied to the desalination plant to be desalinated in situ. The composition derived from the processor, the lysate derived from the dehydration system or the permeate derived from the filtration unit such as the nanofiltration unit can be used in a filtration unit such as a reverse osmosis unit. In some embodiments, the reverse osmosis unit can be designed via 39 201038477 to supply permeate to an electrochemical system. In some embodiments, the reverse osmosis unit can be designed to supply a retentate to an electrochemical system. In some embodiments, a filtration system containing two filtration units can be used to process the composition derived from the processor. In these specific examples, the filtration system can include a nanofiltration unit and a reverse osmosis unit, wherein the nanofiltration unit supplies the permeate to the reverse osmosis unit, such that the reverse osmosis unit supplies the retentate to the electrochemical system in. The reverse osmosis unit comprises a membrane which allows a solvent such as water to pass as a permeate, such as a reverse osmosis membrane. Both the multivalent ion and the monovalent ion can be excluded by the reverse osmosis membrane to effectively concentrate the ions of the retentate. The retentate containing the source of ion concentration is then supplied to the electrochemical system. The substantially ion-free permeate can be discarded and supplied to the fresh water plant or recycled for use in any of a variety of different applications. A combination of the above procedures can be used. In some embodiments, the processor composition and a source of alkalinity (eg, seawater, brine) containing multivalent ions (eg, divalent cations such as Ca2+ and/or Mg2+) can be concentrated by nanofiltration and supplied to the processor. . In some embodiments, the composition of the processor can be concentrated by a nanofiltration unit, wherein the filter unit retentate can be supplied to the processor and the permeate can be supplied to the reverse osmosis unit for further processing. In some embodiments, the source of alkalinity containing divalent cations can be concentrated by filtration through a nanofiltration and the processor composition is concentrated by reverse osmosis. In some embodiments, a source of alkalinity containing divalent cations can be concentrated by nanofiltration and the retentate supplied to the processor. In some embodiments, the composition of the processor can be concentrated by nanofiltration, the nanofiltration unit 201038477 permeate is supplied to (4) the secret 11 and the permeate can be concentrated by reverse osmosis. The brigade supplies the retentate and permeate to the electrochemical system. In a parametric example, the present invention provides a method and system for processing dioxin by a circulating solution. With respect to Figure 2, in one embodiment, the system comprises a carbon dioxide rich exhaust stream (230). In various embodiments, the source of carbon dioxide contacted with the circulating solution can be any conventional source of carbon dioxide as described below. The branches of the plant can vary in different specific examples and include plants, power plants, dropout processing plants, and other plants that produce gas streams containing carbon dioxide by-products. The exhaust stream (230) can be substantially pure c〇2 or a multicomponent gas stream containing co2 and one or more additional gases. Additional gases and other components may include S〇2), N〇x, mercury, and other metals. In some embodiments, one or more of these additional components are incorporated into the composition. For example, in some embodiments, one or more of such additional components are precipitated simultaneously or with precipitates containing acid salts, bicarbonates or carbonates and bicarbonates. For example, S〇2 may be precipitated in the form of calcium sulfate or calcium sulfite. In some embodiments, the CO 2 -containing stream (230) is introduced into the processor 210 with c〇2 in contact with the circulating solution. The processor 21A includes any of a variety of different components, such as temperature regulating components (such as those designed to heat or cool water to a desired temperature), chemical additive components (such as for chemical pH extraction agents (such as NaOH). ) introduced into the water), agitating elements and / or electrochemical components or components (such as cathode / anode, etc.). The processor can include a single 201038477 compartment or multiple compartments. With respect to Figure 2, in various embodiments, the system includes a source of alkalinity (240) to adjust the pH of the circulating solution as appropriate. Further, with respect to Figure 2, system 200 can comprise an alkaline earth metal ion source (260) suitable for use in the manufacture of a carbonate, bicarbonate or carbonate and bicarbonate-containing composition from a circulating solution (e.g., a divalent cation such as Ca2+ and / or Mg2+). When the source of the alkaline earth metal ion contains a source of brine (e.g., seawater, brine, etc.), the input port is in fluid communication with the source of the brine. For example, when the source of brine is seawater, the input can be a pipeline or feed from seawater to a subgrade system. For example, in a water system, the input port can be a port in the hull. Alternatively, the soil gold ions can be obtained by digesting the ferro-magnesium mineral or another alkaline earth-rich material (e.g., serpentine or olivine) according to the invention as described herein. Other soil testing sources include fly ash, inspection, waste concrete, and the like known in the art. Other sources of alkaline earth metal ions include brine and hard water. In addition, vermiculite/sources such as mafic iron minerals or fly ash may be used in certain embodiments. In these specific examples, the final solid product containing vermiculite can be considered as volcanic ash. The system includes a dehydration system 224 that dehydrates the solid portion of the #ring solution containing carbonates, bicarbonates or carbonates and lysine salts (e.g., precipitates). Depending on the particular dewatering system, the dewatering system may include a unit such as a continuous belted water system that may include a settling tank or any other conventional unit. For example, the filtered material can be formed into discrete particles by spray drying or t, drying followed by It grinding. Spray drying can effectively use flue gas as a heat source. In some specific examples, the final 42 201038477 solid product can be rich or t-additives such as supplement _ knot 20% sinking: _ cement such as ordinary wave cement) '· body (such as sand); coarse synthetic aggregate m board ; soil € = ^ set of cement and similar forms used in the built environment. Ο Ο As illustrated in Fig. 2, in the primary dewatering system 224, the mites are obtained by removing the lumps from the composition containing the impurities and producing the formula. In various embodiments, the circulating solution comprises a form of carbonate, bicarbonate or carbonate and bicarbonate (eg, a solid portion of the solid portion of the precipitate or a slurry of the precipitate: liquid and solid separation) And get the above liquid. Order me as the case ^, in the specific example of the money, it may be necessary to adjust the circulating solution before the J C 3 gas (230) re-contact, "in the middle of the process will understand Generally, the alkalinity source (such as soluble P:, bicarbonate, etc.) can be added to the circulating solution to adjust the pH. Depending on the condition of the fly = the addition of the addition - the new age, its ":, salt, etc. (for example, the United States Pro = the application of the United States Pro = 61/091, 729 (which will be used in the middle) is increased by electrochemical procedures. Depending on the situation 'may also need to enter the circulation solution and bow Before the 230 is re-contacted, the 2F of the circulating solution is removed. In the specific example, the system includes a selective unit, a reverse osmosis unit, etc., such that a portion of the divalent cation (10) 2+ and W can be Moving to the compartment - and moving the unit price g 43 201038477 such as Na+ and Cr to another compartment. Filter unit. In some specific examples, the bio-enriched bio-enriched material is enriched into the processor 210, and the water is rich in monovalent ion. bs., telluride, bicarbonate plate U It commits & Further, the present invention has a feed of Shi Xishi to produce water of rich cut stone. ^状田3 The system can be located on land or on water (such as the ocean). For example, the system can be land-based for coastal areas (ie, close to seawater sources) or in internal areas (ie, water systems are sent to the system by seawater sources (eg, water, underground, self-contained). Or the system can be water-based (i.e., a system present on or in water). This system can exist on ships, ocean platforms, etc. as necessary. As described herein and as will be appreciated by those skilled in the art, the methods and systems of the present invention are applicable to batch and continuous procedures. In some embodiments, the method includes the step of contacting the carbonyl containing gas with a circulating solution. As described above, in this step, C〇2 derived from the C〇2 containing gas 230 can be contacted with the circulating solution by the processor 210. Optionally, the pH of the circulating solution is adjusted to promote absorption of the gas in the liquid. In some embodiments, the method additionally includes the manufacture of a composition comprising an alkaline earth metal carbonate, bicarbonate or carbonate and bicarbonate. In some embodiments, the compositions may be precipitated in a form of a precipitate from a circulating solution. 44 201038477 As shown in Figure 2, a variety of different reaction systems occur in the processor (2 1 〇) to induce sinking. In particular, as will be understood by those skilled in the art and not limited by theory, the following reactions can occur in the processor to produce a reservoir containing carbonate:

NaOH ----> Na+ + 〇h* co2 + h2o ---->h"+hco3· HCOs' —H+ -h c〇32-Ca2+ + C032' —CaC03 (s) Mg2+ + >MgCOs(s)NaOH ----> Na+ + 〇h* co2 + h2o ---->h"+hco3· HCOs' —H+ -hc〇32-Ca2+ + C032' —CaC03 (s) Mg2+ + >MgCOs( s)

視產生沉澱之條件而定,碳酸鹽鈣及碳酸鎂或其組合 可以多種有或無一或多個水合水之多晶形狀態中之任一 者存在。在某些具體實例巾,t凝及/紐晶仙於最佳 化沉澱或影響特定多晶形物優於另一者。 在某些具體實例中,該方法另外包括藉由任何構件分 離並回收沉搬物及上澄液而回收沉殿物並於脫水 224中脫水之。此步驟可包括傾析或使濕沉澱物進行液 固分離以回收上澄液。 在某U實例中,該方法另外包括回收上澄液並循 環作為循環㈣之上紐。視㈣,沉澱物可經回收、 乾燥並進-步加工以製造有用產物(如有益再利 物)。在4代具體實例中,至少—部分循環液體可 釋祕抽至溫度及壓力皆足以將二氧化碳保留於溶液中 而無沉Μ猶鹽之海洋深度或儲液槽深度處。在另一 具體實例中’無進-步加I地處理含有碳酸鹽、碳酸氣 鹽或碳酸鹽及破酸氫鹽之沉澱物。例如,沉澱物可簡單 45 201038477 地儲存在陸地上或海洋中。在某些具體實例中, 如 2009 。年8、月7日所申請之美國臨時專利申請案第61/232,401 號所述般(將其全文用方式併人本文巾),將含有碳酸 鹽、奴酸氫鹽或碳酸鹽及碳酸氫鹽之組成物果抽至地 下。將,解加工既定量源自含C02氣體之C02所產生之 寄生負荷、碳足跡、能量用量及/或C02製造量係經一除 了丢棄外無進-步加卫該組成物之料最小化。在各個 具體實例中’視驗土金屬離子如何導人祕細而定, 將如技術中將瞭解般,可泵抽—部分循環溶液以保持一 ί 批次或穩定狀態流。 上述具體實例產生富含碳酸氫根離子、碳酸根離子、 氫氧根離子或其組合之電解f溶液以及在氫氧根離子來 源為電化學程序之具體實财產生酸化流。—電化學程 序可為-施加電壓於-或多個離子選擇性膜且該膜不同 側上之溶液的PH差可達pH丨_14 ’例如pH 〇_14之pH, PH Μ2之pH或pH 4_u之pH及任何其他適合範圍者。 在某些具體實财,f化學程序係—施加於電 „與陰極間之電壓小於2.8伏特且無氯或氧氣於陽 =形成者。在某些具體實例巾,料化學程序係一施加 :電化學電池之陽極與陰極間之電壓小於2·8伏益 氣體於陽極形成者。 …' 該酸化系統亦可在多種化學程序中找到應用如, =酸化流可祕溶解富含故/或敎養域紋石及撤 欖石以產生處理器210《二價陽離子來源。此等礦物可在 46 201038477 酸處理之前或與酸處理同時進行預處理以增加表面積(如 藉由喷射磨機、球磨機、聲音處理或任何其他適合程序以 破壞晶體結構)及/或增加反應速率。此二價陽離子來源可 裝入碳酸氫根離子,然後充分驗化之以便沉殿碳酸鹽。此 等沉澱反應及所得沉澱物於水泥之用途係另外描述於 2〇08 年 5 月 23 日申請名為”Hydraulic cements comprisingDepending on the conditions under which the precipitation occurs, the calcium carbonate and magnesium carbonate or combinations thereof may be present in any of a variety of polymorphic states with or without one or more hydrated water. In some specific examples, t-condensation and/or crystallization are preferred to precipitate or affect a particular polymorph than the other. In some embodiments, the method additionally includes recovering the sink and the supernatant by any means separating and recovering the sink and dehydrating in the dewatering 224. This step may include decanting or subjecting the wet precipitate to liquid-solid separation to recover the supernatant. In a U example, the method additionally includes recovering the supernatant and circulating it as a loop (4). Depending on (iv), the precipitate can be recovered, dried and further processed to produce useful products (e.g., beneficial remedies). In the fourth generation of specific examples, at least a portion of the circulating liquid can be released to a temperature and pressure sufficient to retain carbon dioxide in the solution without sinking the depth of the ocean or the depth of the reservoir. In another embodiment, a precipitate containing carbonate, carbonic acid salt or carbonate and hydrogen sulphate is treated in a step-by-step manner. For example, sediments can be stored on land or in the ocean simply. In some specific examples, such as 2009. The use of carbonates, hydrogen hydride or carbonates and bicarbonates, as described in U.S. Provisional Patent Application Serial No. 61/232,401, filed on Jan. 7, 2011. The composition of the fruit is pumped underground. The solution is to quantify the parasitic load, carbon footprint, energy usage, and/or CO2 production volume derived from CO 2 containing CO 2 gas, and minimize the amount of material that is not added to the composition except for discarding. . In each of the specific examples, depending on how the soil metal ions are guided, as will be appreciated in the art, the solution can be pumped to partially circulate the solution to maintain a batch or steady state flow. The above specific examples produce an electrolytic f-solution rich in bicarbonate ions, carbonate ions, hydroxide ions or a combination thereof and a specific acid-generating acidification stream in which the hydroxide ion source is an electrochemical process. - the electrochemical procedure can be - applying a voltage to - or a plurality of ion selective membranes and the pH difference of the solution on different sides of the membrane can be up to pH 丨 14", for example pH of pH 〇 14 , pH or pH of pH Μ 2 4_u pH and any other suitable range. In some specific real money, f chemical program - applied to the electricity and the voltage between the cathode is less than 2.8 volts and no chlorine or oxygen in the positive = formed. In some specific examples, the chemical program is applied: electrification The voltage between the anode and the cathode of the battery is less than 2·8 volts. The gas is formed in the anode. ...' The acidification system can also be found in a variety of chemical procedures such as, = acidification flow is secretly soluble, so rich or Domain stone and sapphire to produce processor 210 "source of divalent cations. These minerals can be pretreated prior to acid treatment at 46 201038477 or with acid treatment to increase surface area (eg by jet mill, ball mill, sound) Treatment or any other suitable procedure to destroy the crystal structure) and / or increase the reaction rate. This source of divalent cations can be charged with bicarbonate ions, and then fully verified to sink the carbonate. These precipitation reactions and the resulting precipitate The use of cement is additionally described on May 23, 2008. The application name is "Hydraulic cements included".

carbonate compound compositions”之美國專利申請案第 12/126,776號’將其以引用方式併入本文中。 在某些具體實例中,與其沉澱碳酸鹽基礦物以加工 C〇2,不如於一富含碳酸氫鹽之溶液將穩定達一較長時間 期限之場所處理之。例如,可將富含碳酸氫鹽之溶液泵 抽至一溫度及壓力皆足以保持該溶液穩定之海洋深度。 /如上評論般,本發明二氧化碳加工系統可包含一過濾 系統二該過濾系統包括過濾單元或選自超過濾單元、奈米 過濾單元及逆滲透組成之群之過濾單元組合。 、在η某齡體實例巾,二氡化碳加n可設計成具有 過滤單Μ濃祕絲源’之後再將驗度祕供應至該系 ?之二氧化碳處理器中。照此,源自天然來源(如鹽水、 水等)或人絲源(如淡化廢水)之驗度來源可藉過 早元〇奈米過料元、逆滲透單元等)處理以提供更濃 來源。可將源自過濾單元(如奈米過濾單元)之阻留 反應。處理器(如氣-液接觸器、氣_液_固接觸器、 if :等)以㈣本發明包括職物(如CaO)3、MgC〇3或 …且。)之組成物。在某些具體實例中,源自天然來源之 47 201038477 的二價陽離子係經過濾 =農縮。在此等具體實例中,源二二: 過處单兀)之卩巧物可在將其供應至處(奈未 鹽及/或礦物處理。銘記如圖4、5、6、7 =之^^外 含有f離子如。2+及Mg2+之鹼度來源係與—經設二:將 阻留物(一濃縮鹼度來源)供應至二氧力、、::: 之過遽單^單[奈㈣、i^透 連接操作。t驗絲_(例如)糾或淡 用此等系統。在某些具體實例中,驗度來源係經 縮以用於二氧化碳加工祕處理器中。在此等具體實例 中,不須如圖9、1()及U之二氧化碳加^统所例示般 濃縮鹼度來源。此等不須濃縮之鹼度來源包括各種不同 可得滷水。 圖4提供一根據本發明一具體實例之系統。在此等具 體實例中,二氧化碳加工系統_包含含有(例如)Ca2+及/ 或Mg2+之鹼度來源(440),其係藉由導管或等效物與過濾 單元428A(如奈米過濾單元)連接操作。過濾單元428A包 含一膜(如奈米過濾單元)’其適宜使單價離子如Na+及Cl_ 之溶液以滲透液形式通過而多價離子如Ca2+及Mg2+之溶 液以阻留物形式為*亥膜排除。照此,過濾'單元可經設計以 提供濃縮鹼度來源形式之阻留物,其中該阻留物之多價離 子如Ca2+及Mg2+係經濃縮。照此’過濾單元428A係藉由 阻留物導管或經設計將阻留物由過滤單元運送至處理器 之等效物結構與處理器410連接操作,在該處理器中該濃 48 201038477 縮鹼度來源可經含有二氧化碳之廢氣流(如含c〇2氣體來 源)加工。為此目的,可另外包含氣_液或氣_液_固接觸器 (4〇2)、反應器(4〇4)、沉降槽(4〇6)(未顯示)或其組合之處理 器係藉由導管或等效結構與含C〇2氣體來源(43〇)連接操 作。銘記二氡化破加工系統可經設計以如(例如)圖5所示 般將廢氣流供應至氣_液或氣_液_固接觸器中。在有或無添 加源自選用之電化學系統(450)之質子去除劑的情況下,該 處理器之氣-液或氣-液-固接觸器可經設計以產生一含有 碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物並將該 組成物供應至反應器、沉降槽或其組合中以進一步加工 之。任何上述處理器子系統或其組合可與脫水系統(未顯 示)連接操作以進行本發明組成物之脫水,其中脫水包括 產生一上澄液及碳酸鹽、碳酸氫鹽或碳酸鹽及礙酸氫鹽 經濃縮之組成物。雖然一般未將脫水系統視為本文所討 論之處理器之一部分,但為達表達描述圖4_u之構型的 目的,可將脫水系統視為處理器之一部分。如本文所述 般,一般將伴隨過濾系統之脫水系統視為本發明處理系 統。關於選用之電化學系統,本發明二氧化碳加工系統 可經設計以由過滤單元428A將滲透液供應至電化學系 統,該滲透液可視情況先經一或額外過濾單元進一步純 化,之後再供應至電化學系統β二氧化礙加工系統亦可 經設計以將鹽或補充鹽供應至電化學系統(若存在)中。例 如,本發明系統可經設計以將固體或水性氯化鈉供應至 電化學系統中。如上,該選用之電化學系統可經設計以 49 201038477 將質子去除劑(如NaOH)供應至處理器之氣-液或氣-液_ 固接觸器(參見’(例如)2009年8月13日申請之美國專利 申請案第12/541,055號及2009年11月12日申請之美國 專利申請案第12/617,055號,將其等之全文各以引用方 式併入本文中)。該電化學系統可另外設計成將質子去除 劑供應至任何處理器子系統中,包括(但不限於)反應器或 處理器子线之組合。照此,電化㈣統(若存在)可將質 子去除劑供應至處理器。如所示般,電化學系統(若存、 亦了經設計以消除酸性流(如HC1),其可如圖5所示=) 一氧化碳加工系統用於消化工業廢物或岩石及礦物。 固 捉伢很傳个货明一兴體貫例之系統。正如圖 般’二^化碳加工系、统500包含一包括(例如)含有β 或Mg2+之海水之鹼度來源(540),其係藉由導管或 構(如奈米過渡單元)連接操作。過匕 匕·卜膜(如奈米過濾、單元),其適宜使單價離; 如Na ^ C1之溶液以參透液形式通過而多價離子如 及容液以阻留物形式為該膜排除。照此 7L可經設相提供濃祕度來_式之阻留物,=早 留物,多價離子如化及吨2+係經濃縮,而其單價= ==係經耗乏。照此,過料s 528A係藉由 物導e H辑將阻留物(濃縮驗度來源)由過、、卜_ 送至反應器之等效結構物與反應器⑼4)連接操二=運 應1§中該濃縮鹼度來源可與带CO溶液—起 h反 本發明含^料、魏心 50 201038477U.S. Patent Application Serial No. 12/126,776, the disclosure of which is incorporated herein by reference. The solution of the hydrogen salt will be treated at a location that is stable for a longer period of time. For example, the bicarbonate-rich solution can be pumped to a temperature and pressure sufficient to maintain a stable ocean depth of the solution. The carbon dioxide processing system of the present invention may comprise a filtration system. The filtration system comprises a filtration unit or a combination of filtration units selected from the group consisting of an ultrafiltration unit, a nanofiltration unit and a reverse osmosis unit. Carbon plus n can be designed to have a single source of filtered filaments, and then supply the inspection secrets to the carbon dioxide processor of the system. As such, from natural sources (such as salt water, water, etc.) or human silk The source of the source (such as desalinated wastewater) can be treated by premature yuan nanometer feedstock, reverse osmosis unit, etc. to provide a more concentrated source. It can be derived from a filtration unit (such as a nanofiltration unit). The reaction is carried out. The processor (such as a gas-liquid contactor, a gas-liquid contactor, if: etc.) (4) includes a composition of the present invention (such as CaO)3, MgC〇3 or ... and. In some embodiments, the divalent cations derived from natural source 47 201038477 are filtered = agricultural shrinkage. In these specific examples, the source of the second two: the monosaccharide can be supplied It is everywhere (nai salt and/or mineral treatment. Bearing in mind that Figures 4, 5, 6, and 7 = ^^ contain f ions such as 2+ and Mg2+ alkalinity sources and - set two: will retain (a source of concentrated alkalinity) is supplied to the dioxin force, ::: 遽 遽 单 单 单 单 [ [ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( In some specific examples, the source of the test is condensed for use in a carbon dioxide processing processor. In these specific examples, it is not necessary to concentrate the alkalinity as illustrated by the carbon dioxide addition of Figures 9, 1 () and U. Sources. These sources of alkalinity that do not require concentration include a variety of different available brines. Figure 4 provides a system in accordance with an embodiment of the invention. In these specific examples, dioxide The processing system_ comprises a source of alkalinity (440) containing, for example, Ca2+ and/or Mg2+, which is connected by a conduit or equivalent to a filtration unit 428A (such as a nanofiltration unit). The filtration unit 428A comprises a membrane. (eg, nanofiltration unit) 'It is suitable to allow a solution of monovalent ions such as Na+ and Cl_ to pass as a permeate and a solution of multivalent ions such as Ca2+ and Mg2+ to be excluded as a retentate. As such, filtration' The unit can be designed to provide a retentate in the form of a concentrated alkalinity source, wherein the multivalent ions of the retentate, such as Ca2+ and Mg2+, are concentrated. As such, the 'filter unit 428A is via a retentate conduit or designed The equivalent structure of the retentate transported by the filter unit to the processor is coupled to the processor 410, wherein the source of the alkalinity 48 201038477 can pass through a carbon dioxide-containing exhaust stream (eg, a source containing c〇2 gas) )machining. For this purpose, a processor system may additionally be included which comprises a gas-liquid or gas-liquid-solid contactor (4〇2), a reactor (4〇4), a settling tank (4〇6) (not shown) or a combination thereof. It is connected by a conduit or equivalent structure to a C含2 gas source (43〇). It is in mind that the secondary processing system can be designed to supply the exhaust stream to a gas-liquid or gas-solid contact as shown, for example, in FIG. The gas-liquid or gas-liquid-solid contactor of the processor can be designed to produce a carbonate-containing, bicarbonate-containing product with or without the addition of a proton-removing agent derived from an electrochemical system (450) of choice. The salt or carbonate and bicarbonate compositions are supplied to the reactor, settling tank or a combination thereof for further processing. Any of the above processor subsystems or combinations thereof may be coupled to a dewatering system (not shown) for performing the dehydration of the compositions of the present invention, wherein dehydrating comprises producing a supernatant and a carbonate, bicarbonate or carbonate and hydrogen sulphate A concentrated composition of salt. Although the dewatering system is generally not considered part of the processor discussed herein, the dehydration system can be considered as part of the processor for the purpose of describing the configuration of Figure 4_u. As described herein, a dewatering system associated with a filtration system is generally considered to be the treatment system of the present invention. With respect to the electrochemical system of choice, the carbon dioxide processing system of the present invention can be designed to supply permeate to the electrochemical system by filtration unit 428A, which can be further purified by one or additional filtration units, optionally followed by electrochemistry. The system beta dioxide treatment system can also be designed to supply salts or make-up salts to the electrochemical system, if any. For example, the system of the present invention can be designed to supply solid or aqueous sodium chloride to an electrochemical system. As above, the electrochemical system of choice may be designed to supply a proton-removing agent (such as NaOH) to the processor's gas-liquid or gas-liquid _ solid contactor at 49 201038477 (see '(for example) August 13, 2009) U.S. Patent Application Serial No. 12/541,055, the entire disclosure of which is incorporated herein by reference. The electrochemical system can be additionally designed to supply proton-removing agents to any of the processor subsystems including, but not limited to, reactors or combinations of processor strands. As such, the electrochemical (four) system (if present) can supply the proton-removing agent to the processor. As shown, the electrochemical system (if present, also designed to eliminate acid flow (such as HC1), can be as shown in Figure 5). The carbon monoxide processing system is used to digest industrial waste or rocks and minerals. Solid catching a cockroach is a system that has a clear description of the goods. As shown, the <RTI ID=0.0>>><>><>><>><>><>> The film is suitable for monovalent separation; for example, a solution of Na ^ C1 is passed as a permeate and a multivalent ion such as a liquid is removed as a retentate for the film. According to this, 7L can provide a dense degree to the _ type of retentate, = early retention, multi-valent ions such as chemical and tons of 2+ are concentrated, and its unit price = = = system is depleted. As such, the excess material s 528A is connected to the reactor (9) 4 by means of the material guide e H to block the retentate (concentration test source), and the equivalent structure sent to the reactor. 1§ The source of concentrated alkalinity can be combined with the solution with CO - h anti-inventive containing material, Wei Xin 50 201038477

CaC〇3、MgC03或其組合,包括MgCa(c〇3)2)之組成物, 其中該带C〇2溶液可包含碳酸鹽、碳酸氫鹽或碳酸鹽及 石反酉欠虱鹽(如NaHC〇3)。圖5之二氧化碳加工系統可另外 包括一經設計以產生带c〇2溶液之接觸器(502)如氣_液 接觸器或氣-液-固接觸器,其中該接觸器係與含c〇2氣 體來源(530)(如發電廠如燃煤發電廠)及一經設計以提供 質子去除劑(水性氫氧化鈉)來源之電化學系統(55〇)連接 ❹ 操作。如所示般,該接觸器亦可與反應器連接操作而可 將带C〇2溶液直接供應至反應器中。如本文所述般,接 觸器與反應器之組合包含本發明二氧化碳處理器。雖無 顯示,但該處理器可另外包含一沉降槽,其可經設計以 產生上澄液及一碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽 (如CaC〇3、MgC〇3或其組合’包括MgCa(c〇3)2)經濃縮 之組成物。如所示般,反應器亦可經設計以作為某些操 作模式之沉降槽。如所示般,該反應器可經設計以產生 ❹ 上澄液及濃縮組成物。關於電化學系統(550),本發明二 氧化碳加工系統可經設計以由過濾單元528A將滲透液 供應至電化學系統中,該滲透液可視情況經一或多個額 外過濾單元進一步純化,之後再供應至電化學系統中。 該二氧化碳加工系統亦可經設計以將鹽或補充鹽供應至 ,化學系統中。例如,該系統可經設計以將固體或水性 氯化鈉供應至電化學系統中。如上,該電化學系統可經 ,計以將質子去除劑(如NaOH)供應至處理器之氣-液或 軋-液-固接觸器中以產生带c〇2溶液。如所示般,該電化 51 201038477 學系統亦可經設計以消除酸性流(如HC1),其中該酸性流 可為二氧化碳加工系統用於消化原料處理器(57〇)中之工 業廢物或岩石及礦物。在某些具體實例中’(例如)原料二 理器係經設計以利用HC1(aq)消化鎂矽酸鹽(二 MgSi〇3)(如蛇紋石、撖欖石等)以產生岩鹽(如Mga2)及^ (si〇2),其可一起或個別用於熔化路上之冰(參見,2〇〇^ 年7月10日申請之美國專利申請案第12/5〇1,217號中有 關消化礦物如鎂矽酸鹽之其他系統及方法,將其全文以 引用方式併入本文中)。在某些具體實例中,該原料處理 器係經設計以利用HCl(aq)消化鎂石夕酸鹽以產生二價陽 離子(如Mg2+)以用於處理器550中。 在某些具體實例中,本發明提供利用如彼等圖4及5 所提供者之系統製造含有碳酸鹽、碳酸氫鹽或其組合之 組成物之方法。在某些具體實例中’例如,含有二價陽 離子如Ca2+及/或Mg2+之鹼度來源(如海水、滷水等)可通 過一過濾單元(如過濾單元528A,如奈米過濾單元)以將驗 度來源分離成一含有單價離子(如Na+ ' ci·)之滲透液及一 含有多價離子(如二價陽離子如Ca2+及/或Mg2+)之阻留 物。含有單價離子之滲透液接著可經電化學系統(如電化 學系統550)加工以產生一含有質子去除劑(如NaOH(aq)) 之水溶液及另一含有酸(如HCl(aq))之水溶液。可將含有酸 之水溶液供應至多種酸利用程序中之任一者,其包括(但 不限於)原料加工單元(570)之原料加工,其中該原料加工 單元係經設計以利用HCl(aq)消化鎂矽酸鹽(如蛇紋石、橄 52 201038477CaC〇3, MgC03 or a combination thereof, comprising a composition of MgCa(c〇3)2), wherein the C〇2 solution may comprise a carbonate, a hydrogencarbonate or a carbonate and a stone ruthenium salt (such as NaHC) 〇 3). The carbon dioxide processing system of Figure 5 can additionally include a contactor (502) such as a gas-liquid contactor or a gas-liquid-solid contactor designed to produce a solution having a c〇2 solution, wherein the contactor is a gas containing c〇2 Source (530) (such as a power plant such as a coal-fired power plant) and an electrochemical system (55 〇) connected to a source of proton-removing agent (aqueous sodium hydroxide). As shown, the contactor can also be operated in conjunction with the reactor to supply the C〇2 solution directly to the reactor. As described herein, the combination of the contactor and the reactor comprises the carbon dioxide processor of the present invention. Although not shown, the processor may additionally include a settling tank that can be designed to produce a supernatant and a carbonate, bicarbonate or carbonate and bicarbonate (eg, CaC〇3, MgC〇3 or The combination 'comprises MgCa(c〇3)2) with a concentrated composition. As shown, the reactor can also be designed as a settling tank for certain modes of operation. As shown, the reactor can be designed to produce a sputum liquid and concentrate the composition. With regard to the electrochemical system (550), the carbon dioxide processing system of the present invention can be designed to supply permeate to the electrochemical system by filtration unit 528A, which can be further purified via one or more additional filtration units, optionally followed by supply To the electrochemical system. The carbon dioxide processing system can also be designed to supply salts or make-up salts to chemical systems. For example, the system can be designed to supply solid or aqueous sodium chloride to an electrochemical system. As above, the electrochemical system can be configured to supply a proton-removing agent (e.g., NaOH) to a gas-liquid or rolling-liquid-solid contactor of the processor to produce a c〇2 solution. As shown, the electrochemical system can also be designed to eliminate acidic flows (such as HC1), which can be used by the carbon dioxide processing system to digest industrial waste or rock in the raw material processor (57〇). mineral. In some embodiments, 'for example, the raw material processor is designed to utilize HCl (aq) to digest magnesium citrate (di MgSi〇3) (such as serpentine, sapphire, etc.) to produce rock salt (eg, Mga2). And ^ (si〇2), which can be used together or individually to melt the ice on the road (see, for example, U.S. Patent Application Serial No. 12/5, No. 1,217, filed on Jul. 10, 2011). Other systems and methods of minerals such as magnesium citrate are incorporated herein by reference in their entirety. In some embodiments, the feedstock processor is designed to digest the magnesite acid salt using HCl (aq) to produce a divalent cation (e.g., Mg2+) for use in the processor 550. In certain embodiments, the present invention provides a method of making a composition comprising a carbonate, bicarbonate, or a combination thereof, using systems as provided in Figures 4 and 5, respectively. In some embodiments, for example, a source of alkalinity containing a divalent cation such as Ca 2+ and/or Mg 2+ (eg, sea water, brine, etc.) may be passed through a filtration unit (eg, filtration unit 528A, such as a nanofiltration unit). The source is separated into a permeate containing a monovalent ion (such as Na+ 'ci·) and a retentate containing a multivalent ion such as a divalent cation such as Ca 2+ and/or Mg 2+ . The permeate containing the monovalent ions can then be processed by an electrochemical system (e.g., electrochemical system 550) to produce an aqueous solution containing a proton-removing agent (e.g., NaOH (aq)) and another aqueous solution containing an acid (e.g., HCl (aq)). . The aqueous acid-containing solution can be supplied to any of a variety of acid utilization procedures including, but not limited to, raw material processing of a feedstock processing unit (570) designed to digest with HCl (aq) Magnesium silicate (such as serpentine, olive 52 201038477

Ο 欖石等)並產生二價陽離子(如Mg2+)以後續用於程序中咬 用作岩鹽(如MgCU)及砂(Si〇2) ’其可一起或個別用於1 化路上之冰。利用本發明之氣-液接觸器或氣_液_固接^ 器(如502) ’含有質子去除劑(如NaOH(aq))之溶液可與源 自工業來源之二氧化礙組合以產生一含碳酸氫鹽(如' NaHCCb)溶液。含碳酸氫鹽溶液然後可與含有二價Π陽離 子如Ca2+及/或Mg2+之阻留物組合以產生一含有未用質子 去除劑(如NaOH(aq))之流及一含有碳酸鹽、碳酸氯鹽或 碳酸鹽及碳酸氫鹽之組成物。在某些具體實例中,該組 成物包含含有驗土金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及 碳酸氫鹽之沉澱物。在某些具體實例中’該沉澱物;經 加工以產生有益再利用產物如水泥、聚集體、補充膠結 性材料或類似物。 在某些具體實例中,二氧化碳加工系統亦可設計成具 有經設計以製造一含有鹼金屬及/或鹼土金屬之碳酸 鹽、碳酸氫贱碳酸鹽及魏之濃縮處理器組成物 之過渡單元。在某些具體實财,二氧化碳加工系統可 、、工進步β又计以將浪縮處理器組成物供應(即循環)回到 ,理器中’其中該濃縮處理器組成物之(例如)水合二氧化 碳^種(如碳酸、碳酸氫鹽、碳酸鹽)及/或多價離子(如 以、Mg2+或其組合)可更加濃縮。在某些具體實例中, 可,源自韻單元(如奈米賴單元)之_物直接供應 J處理器(如氣·液接觸器、氣-液_固接觸器、反應器等)以 裝備本發明組成物,包括沉殺物(CaC()3、MgCO3或其組 53 201038477 s)由於n利帛資源,根據此等具體實例之二氧化礙 加工系統可具有較低供電薇之寄生負荷。 照此,如圖6、8、9及U中所說明般,處理器可與 一經設計以循環阻留物(即多價離子如c^+及 Mg2+經濃 縮之處理H流出物)至處理II之過遽單元(如超過遽單 几、奈米過料TL、逆滲透單元)連接操作。源自過遽單 元之限留物可無賊系統之另—部分進—步加工地再利 用’可[5亥系統之另一部分進一步加工之再利用或簡單 丟棄之。 關於圖6,例如,本發明二氧化碳加工系統可包含一 經設計以顧,處理器流出物(如含有驗金屬及/或驗土 金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物) 之過渡單元(如奈米過料元)並如圖6、8、9及u中所 ,明般將呈濃縮形式之處理器流出物供應至處理器中。 ^些具體實财,連接至輯單元及處理器之導管係 缺處理為流出物(如含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳 ^氫鹽之組成物)供應至過渡單元。關於圖9,處理器流 物係藉由處理器_(如氣_液接觸器、氣液-固接觸器、 =應器,m由處理器流出物導管供應至過遽單元 。藉由(例如)奈米過麵’過遽單Μ挪係適合使 貝離子(如鈉)以渗透液形式通過奈米過遽膜並以阻留 形式排除多價離子(如Ca2+、Mg2+)。可丟棄含有單價 子之滲透液或循環之以與(例如)電化學系統950聯 用。含有多價離子之阻留物係藉由連接過料元(928b) 54 201038477 至處理器(910)之導管供應至處理器(910)中。 在某些具體實例中,該過濾單元如圖7、8、10及11 中所說明般可為逆滲透型之過濾單元。關於圖1〇,二氧 化碳加工系統1000包含過濾單元1〇28C及電化學系統 1050 ’其各與處理器1〇1〇連接操作。如所示般,過滤單 元1028C係藉由處理器流出物導管與處理器(101〇)連接 操作。過滤單元1028C包含一膜,例如,一適合使水以 滲透液形式通過逆滲透膜而單價及多價離子係以阻留物 形式為逆滲透膜排除之逆滲透膜。過濾單元阻留物係藉 由阻留物導管供應至電化學系統1050。可丟棄過濾單元 渗透液或將其用於多種不同用途(如經飲用水之進一步 純化)中之任·~者。 圖4、9及1〇所述系統之組合亦可能存在。在某些具 體實例中,系統包含兩個過濾單元,例如兩個奈米過濾 單元或一奈米過濾單元及一逆滲透單元。圖6說明一特 色為兩個過濾單元之具體實例。如所示般,二氧化碳加 工系統600包含過濾單元628A及過濾單元628B,其各 與處理器610連接操作。二氧化碳加工系統另外包含一 如圖6所說明般連接操作之電化學系統(650)。如所示 般’過濾單元628A係藉由阻留物導管與處理器(610)連 接操作。此外’含有(例如)Ca2+及Mg2+之鹼度來源係如所 示般藉由導管供應至過濾單元(628A)。過濾單元628A包 含一膜,例如,一適合使單價離子如Na+以滲透液形式 通過奈米過濾膜而多價離子如Ca2+及Mg2+係以阻留物形 55 201038477 式為奈米過濾膜排除之逆渗透膜。過渡單元阻留物係藉 由阻留物導管供應至處理器610(如氣-液接觸器、氣_液_ 固接觸器、反應器等),其中可由(例如)二價離子及二氧 化碳之工業來源製造一組成物。處理器流出物(如含有驗 金屬及/或驗土金屬之碳酸鹽、礙酸氫鹽或碳酸鹽及碳酸 氫鹽之組成物)係藉由處理器流出物導管由處理器61〇供 應至過濾單元628B。憑藉(例如)奈米過濾膜,過渡單元 628B係適合使單價離子(如Na+、CT)以滲透液形式通過 奈米過濾膜而多價離子(如Ca2+、Mg2+)係以阻留物形式排 除。可丢棄含有單價離子之滲透液或循環之以與(例如) 電化學系統650聯用。 含有多價離子之阻留物係藉由連接過濾單元(628B) 至處理器(610)之導管(61〇)供應至處理器(61〇)中。 一圖7說明另一特色為兩個過濾單元之具體實例。如所 =般’二氧化碳加工系統7〇〇包含過濾單元728a、過遽 單το 728(^及電化學系統75〇,其各與處理器71〇連接操 作。如所不般,過濾單元728A係藉由阻留物導管與處理 器(71〇)連接操作。此外,含細如)Ca2+及Mg2+之驗度 ,源係如所讀藉㈣,供應至過濾單元(BA)中。過渡 早728A包合一脸 ^ _、、 ^ s 犋,例如,一適合使單價離子如 及C1=參透液形式通過奈㈣賴而多價離子如Ca2+ ^ Mg係,阻留物形式為奈米過賴排除之奈米過渡 、過,單元阻留物係藉由阻留物導管供 應至處理器 (如氣-液接觸器、氣-液-固接觸器、反應器等),其中 56 201038477 可由(例如)二價陽離子 & 成物。如所示般,過遽革Γ乳化碳之工業來源製造一組 管與處理11(710)連接728C係藉由處理器流出物導 例如,-適人使水ΓΓ過滤單元728c包含一膜, 多價離子係以阻留物;;2形式通過逆渗透膜而單價及 物!藉由随留物導管供應至電化學系統 Ο ❹ 不同用、元渗透液或循環之或將其用於多種 不同用^^飲用水之進—步純化)中之任一者。 所示妒特色為兩個過據單元之具體實例。如 及产^哭Tnn化^加工系統1100包含過遽單元1128B、 :态、、各與過濾單元1128C連接操作。二氧 ^ 另外包含—如圖11所制般連接操作之電 :糸統(115G)。如所說明般,過料元ιΐ28Β(如奈米 過f早7^係經設計以循環處理器流出物並以濃縮形式 將处理1§流出物供應至處理器1UG。連接至過遽翠元 112犯及處理器⑴10)之導管將一處理器流出物(如含有 驗金屬及/或驗土金叙碳酸鹽、碳酸氫鹽或碳酸鹽及碳 酸氫鹽之組成物)供應至過據單元。處理器流出物係藉由 處理器流士物導管由處理器111〇供應至過遽單元 1128B。憑藉(例如)奈米過濾膜,過渡單元⑴昍係適合 使單價離子(如Na+、Q>x滲透液形式通過奈米過滤膜而 多價離子(如Ca2+及Mg2+)係以阻留物形式排除。含有多 價離子之阻留物係藉由連接過濾單元(1128B)至處理器 (1110)之導管供應至處理器⑴1〇)。含有單價離子之渗透 57 201038477 液係藉由連接過濾單元1128B至過濾單元1128c之導管 供應至過濾單元(1128C)。過濾單元1128C包含一膜,^ 如,一適合使水以渗透液形式通過逆渗透膜而單價及多 價離子係以阻留物形式為逆滲透膜排除之逆渗透膜。過 濾單元阻留物係藉由阻留物導管供應至電化學系統 (1150)。可丟棄過濾單元滲透液或循環之或將其用於多種 不同用途(如經飲用水之進一步純化)中之任—者。 圖8說明另一特色為過濾單元之組合之具體實例。一 氧化碳加工系統800包含如圖8所說明般連接操作之過 濾單元828A、過濾單元828B、過濾單元828c、處理器 810及電化學系統850。如所示般,過濾單元828人係^ 由阻留物導管與處理器(810)連接操作。此外,含有 如)Ca2+及Mg2+之鹼度來源係如所示般藉由導管供應至過 ;慮单元(828A)。過慮单元828A包含一膜,例如,一適: 使單b離子如Na及C1以渗透液形式通過奈米過渡膜而 多價離子如Ca2+及Mg2+係以阻留物形式為奈米過濾膜排 除之奈米過濾膜。過濾單元阻留物係藉由阻留物導管供 應至處理器810(如氣-液接觸器、氣-液-固接觸器、反應 器等)’其中可由(例如)二價陽離子及二氧化碳之工業來 源製造一組成物。過濾單元828B(如奈米過濾單元)係經 设計以循環處理氣流出物並以濃縮形式將處理器流出物 供應至處理器810中。連接至過滤單元828B及處理器 (810)之導管係將處理器流出物(如含有驗金屬及/或驗土 金屬之碳酸鹽、碳酸氩鹽或碳酸鹽及碳酸氫鹽之組成物) 58 201038477 供f至過料元。處理11流*物係*處理器81。藉由處 理器流㈣導#供應至職單元隨1藉(例如)奈米 慮膜過/慮單元828B係適合使單價離子(如Na+、ci·) 以滲透液形式通過奈米賴勒多_子(如Ca2+、Mg2+) 係以阻留物形式排除。含有多價離子之阻留物係藉由連 接過濾單元(828B)至處理器(810)之導管供應至處理器 (81〇)。含有多價離子之滲透液係藉由連接過濾單元828B 至過濾單元828C之導管供應至過濾單元(828c)。過濾單 το 828C包含一膜,例如,一適合使水以滲透液形式通過 逆滲透膜而單價及多價離子係以阻留物形式為逆滲透膜 排除之逆滲透膜。適用於某些具體實例中之逆滲透膜包 括 Dow(如 FilmTec 膜:FilmTec NF200-400、FilmTec NF270-400)、GE(如 SeaSoft™系列:SeaSoft 8040 HR、 SeaSoft8040 HF)、Koch(如 SW-400)及 R.〇. Ultra Tec(如 NF3系列)。在某些具體實例中,包含奈米過濾或逆滲透 膜之過濾單元排除超過75%,超過85%,超過90%,超 過91%,超過92%,超過93%,超過94%,超過95%, 超過96%,超過97%,超過98%,超過99%,超過99.5% 之附帶多價離子。在某些具體實例中,包含逆滲透膜之 過濾單元排除超過75%,超過85%,超過90%,超過91%, 超過92%,超過93%,超過94%,超過95%,超過96%, 超過97%,超過98%,超過99% ’超過99.5%之附帶單 價離子。在某些具體實例中,奈米過濾或逆滲透提供至 少1.5,至少2,至少3,至少4 ’至少5 ’至少6,至少 59 201038477 7,至少8,至少9, 些具體實例中,读2 至少10之多價離子濃度因子。在某榄 榄石, etc.) and produce divalent cations (such as Mg2+) for subsequent use in the process of biting as rock salt (such as MgCU) and sand (Si〇2), which can be used together or individually for ice on the road. Using a gas-liquid contactor or a gas-liquid splicer (e.g., 502) of the present invention, a solution containing a proton-removing agent (e.g., NaOH (aq)) can be combined with a dioxin derived from an industrial source to produce a Contains bicarbonate (such as 'NaHCCb) solution. The bicarbonate-containing solution can then be combined with a retentate containing a divalent europium cation such as Ca2+ and/or Mg2+ to produce a stream containing unused proton-removing agents (such as NaOH (aq)) and a carbonate-containing, carbonate-containing stream. a salt or a composition of a carbonate and a bicarbonate. In some embodiments, the composition comprises a precipitate comprising a carbonate, bicarbonate or carbonate and bicarbonate of a soil metal. In some embodiments, the precipitate is processed to produce a beneficial reuse product such as cement, aggregates, supplemental cementitious materials or the like. In some embodiments, the carbon dioxide processing system can also be designed to have a transition unit designed to produce a carbonated, bicarbonate carbonate, and concentrating processor composition comprising an alkali metal and/or alkaline earth metal. In some specific real money, the carbon dioxide processing system can, in turn, calculate the supply (ie, recycle) of the wave-shrinking processor composition, in which the condensed processor composition (for example) is hydrated. Carbon dioxide species (such as carbonic acid, bicarbonate, carbonate) and/or multivalent ions (eg, Mg2+ or a combination thereof) may be more concentrated. In some specific examples, the source of the rhyme unit (such as the nano-relay unit) may be directly supplied to the J processor (such as a gas/liquid contactor, a gas-liquid _ solid contactor, a reactor, etc.) to be equipped. The composition of the present invention, including the sinker (CaC()3, MgCO3 or a group thereof 53 201038477 s), may have a lower parasitic load of the power supply according to the specific example of the oxidative processing system. As such, as illustrated in Figures 6, 8, 9 and U, the processor can be designed to circulate retentate (i.e., multivalent ions such as c^+ and Mg2+ concentrated H effluent) to process II The connection unit (such as more than a single, nano TL, reverse osmosis unit) connection operation. Restricted from the excess unit can be reused in the thief-free system - part of the processing step can be reused. [Other parts of the 5 Hai system can be further processed for reuse or simply discarded. With respect to Figure 6, for example, the carbon dioxide processing system of the present invention may comprise a processor effluent (e.g., a composition comprising a carbonate, bicarbonate or carbonate and bicarbonate containing a metal and/or soil test metal). The transition unit (e.g., nanometer) and as shown in Figures 6, 8, 9 and u, the processor effluent in concentrated form is supplied to the processor. Some specific real money, the conduit system connected to the unit and the processor is supplied to the transition unit as an effluent (such as a composition containing carbonate, bicarbonate or carbonate and carbon hydrogen salt). With respect to Figure 9, the processor stream is supplied to the over-the-loop unit by a processor_ (e.g., a gas-liquid contactor, a gas-liquid-solid contactor, a =, m) by a processor effluent conduit. The nano-passing surface is suitable for the shellfish ion (such as sodium) to pass through the nano-perylene membrane as a permeate and to exclude multivalent ions (such as Ca2+, Mg2+) in a retained form. The permeate or circulation is used in conjunction with, for example, an electrochemical system 950. The retentate containing multivalent ions is supplied to the processor via a conduit connected to the element (928b) 54 201038477 to the processor (910). (910). In some embodiments, the filtration unit can be a reverse osmosis type filtration unit as illustrated in Figures 7, 8, 10, and 11. With respect to Figure 1, the carbon dioxide processing system 1000 includes a filtration unit 1 The 〇28C and the electrochemical system 1050' are each coupled to the processor 1〇1〇. As shown, the filter unit 1028C is coupled to the processor (101〇) by a processor effluent conduit. The filter unit 1028C includes a membrane, for example, one suitable for passing water through a reverse osmosis in the form of a permeate The membrane is permeable and the monovalent and multivalent ions are reverse osmosis membranes in the form of retentives that are excluded by the reverse osmosis membrane. The filter unit retentate is supplied to the electrochemical system 1050 via a retentate conduit. The filtration unit permeate can be discarded or It can be used in a variety of different applications (such as further purification by drinking water). Combinations of the systems described in Figures 4, 9 and 1 may also be present. In some embodiments, the system comprises two a filtration unit, such as two nanofiltration units or a nanofiltration unit and a reverse osmosis unit. Figure 6 illustrates a specific example featuring two filtration units. As shown, the carbon dioxide processing system 600 includes a filtration unit 628A and Filter unit 628B, each of which is coupled to processor 610. The carbon dioxide processing system additionally includes an electrochemical system (650) for operation as illustrated in Figure 6. As shown, 'filter unit 628A is a retentate conduit The operation is coupled to the processor (610). Further, the source of alkalinity containing, for example, Ca2+ and Mg2+ is supplied to the filtration unit (628A) by a conduit as shown. The filtration unit 628A includes a membrane. For example, one is suitable for allowing a monovalent ion such as Na+ to pass through a nanofiltration membrane as a permeate, and a multivalent ion such as Ca2+ and Mg2+ to a retentate shape 55 201038477 is a reverse osmosis membrane excluded from a nanofiltration membrane. The system is supplied to the processor 610 (such as a gas-liquid contactor, a gas-liquid contactor, a reactor, etc.) by a retentate conduit, which may be fabricated from an industrial source such as divalent ions and carbon dioxide. The processor effluent (such as a carbonate, metal sulphate or carbonate and bicarbonate composition containing metal and/or soil test metal) is supplied by the processor 61 藉 through the processor effluent conduit. To the filter unit 628B. With, for example, a nanofiltration membrane, the transition unit 628B is adapted to allow monovalent ions (e.g., Na+, CT) to pass through the nanofiltration membrane as a permeate and multivalent ions (e.g., Ca2+, Mg2+) to be removed as a retentate. Permeates or cycles containing monovalent ions can be discarded for use with, for example, electrochemical system 650. The retentate containing multivalent ions is supplied to the processor (61〇) by a conduit (61〇) connecting the filter unit (628B) to the processor (610). Figure 7 illustrates another specific example of two filter units. The carbon dioxide processing system 7 includes a filter unit 728a, a single unit το 728 (^ and an electrochemical system 75 〇, each of which is connected to the processor 71 。. If not, the filter unit 728A is borrowed. The retentate conduit is connected to the processor (71〇). In addition, the calibration such as fineness of Ca2+ and Mg2+ is supplied to the filtration unit (BA) as read (4). The transition early 728A includes a face ^ _, ^ s 犋 , for example, one suitable for monovalent ions such as C1 = parallax liquid form through Nai (4) and multivalent ions such as Ca 2+ ^ Mg system, the retentate form is nano Through the exclusion of the nano transition, the unit retentate is supplied to the processor (such as gas-liquid contactor, gas-liquid-solid contactor, reactor, etc.) through a retentive conduit, of which 56 201038477 may (for example) divalent cations & As shown, an industrial source of tanning emulsified carbon is used to make a set of tubes and process 11 (710) is connected to 728C by means of a processor effluent. For example, the aptamer causes the leech filter unit 728c to contain a membrane, The valence ion is in the form of a retentate; It can be supplied to the electrochemical system by means of a retentate conduit, ❹ ❹ different, meta-permeate or recycled or used in any of the different purifications of drinking water. The features shown are two specific examples of the unit. For example, the processing system 1100 includes a unit 1128B, a state, and a connection operation with the filter unit 1128C. Dioxin ^ In addition - the connection operation of the electricity as shown in Figure 11: 糸 (115G). As illustrated, the excess element ιΐ28Β (eg, nanometer f is designed to recycle the processor effluent and supply the processing 1 effluent to the processor 1UG in a concentrated form. Connected to the Emerald Yuan 112 And the conduit of the processor (1) 10) supplies a processor effluent (such as a composition containing metal and/or soil gold carbonate, bicarbonate or carbonate and bicarbonate) to the unit. The processor effluent is supplied by the processor 111 to the overrun unit 1128B by a processor flow conduit. By virtue of, for example, a nanofiltration membrane, the transition unit (1) is suitable for the passage of monovalent ions (eg Na+, Q>x permeate through the nanofiltration membrane and multivalent ions (such as Ca2+ and Mg2+) in the form of a retentate The retentate containing multivalent ions is supplied to the processor (1) 1) by a conduit connecting the filter unit (1128B) to the processor (1110). Permeation with monovalent ions 57 201038477 The liquid system is supplied to the filtration unit (1128C) by a conduit connecting the filtration unit 1128B to the filtration unit 1128c. The filtration unit 1128C comprises a membrane, such as a reverse osmosis membrane adapted to pass water through the reverse osmosis membrane as a permeate and monovalent and multivalent ions as a retentate in the form of a retentate. The filter unit retentate is supplied to the electrochemical system (1150) by a retentate conduit. The filtration unit permeate can be discarded or recycled or used in any of a variety of different applications, such as further purification by drinking water. Figure 8 illustrates another specific example of a combination of filter units. The carbon monoxide processing system 800 includes a filter unit 828A, a filter unit 828B, a filter unit 828c, a processor 810, and an electrochemical system 850 that operate in conjunction with each other as illustrated in FIG. As shown, the filter unit 828 is operated by a retentive conduit coupled to the processor (810). In addition, alkalinity sources containing, for example, Ca2+ and Mg2+ are supplied to the device by means of a catheter as shown (828A). The filter unit 828A comprises a membrane, for example, such that a single b ion such as Na and C1 is passed through the nano transition membrane as a permeate and multivalent ions such as Ca2+ and Mg2+ are excluded as a nanofiltration membrane in the form of a retentate. Nano filter membrane. The filter unit retentate is supplied to the processor 810 (such as a gas-liquid contactor, a gas-liquid-solid contactor, a reactor, etc.) by a retentate conduit, which may be industrialized by, for example, divalent cations and carbon dioxide. The source manufactures a composition. Filtration unit 828B (e.g., a nanofiltration unit) is designed to recycle the gas stream and supply the processor effluent to processor 810 in a concentrated form. The conduit connected to the filter unit 828B and the processor (810) is a processor effluent (eg, a carbonate, argon carbonate or carbonate and bicarbonate composition containing metal and/or soil metal) 58 201038477 For f to the material element. The 11 stream* system* processor 81 is processed. By means of the processor stream (four) guide # supply to the unit to borrow (for example) nanometer membrane / care unit 828B is suitable for the monovalent ions (such as Na +, ci ·) in the form of permeate through the nano-Rile Subunits (such as Ca2+, Mg2+) are excluded as a retentate. A retentate containing multivalent ions is supplied to the processor (81A) by a conduit connecting the filter unit (828B) to the processor (810). The permeate containing the multivalent ions is supplied to the filtration unit (828c) by a conduit connecting the filtration unit 828B to the filtration unit 828C. The filter sheet το 828C comprises a membrane, for example, a reverse osmosis membrane suitable for passing water through a reverse osmosis membrane as a permeate and a monovalent and multivalent ion system as a retentate in the form of a reverse osmosis membrane. Reverse osmosis membranes suitable for use in some specific examples include Dow (eg FilmTec membrane: FilmTec NF200-400, FilmTec NF270-400), GE (eg SeaSoftTM series: SeaSoft 8040 HR, SeaSoft 8040 HF), Koch (eg SW-400) And R.〇. Ultra Tec (such as NF3 series). In some embodiments, the filtration unit comprising a nanofiltration or reverse osmosis membrane excludes more than 75%, more than 85%, more than 90%, more than 91%, more than 92%, more than 93%, more than 94%, more than 95% , more than 96%, more than 97%, more than 98%, more than 99%, more than 99.5% with multi-valent ions. In some embodiments, the filtration unit comprising the reverse osmosis membrane excludes more than 75%, more than 85%, more than 90%, more than 91%, more than 92%, more than 93%, more than 94%, more than 95%, more than 96%. , more than 97%, more than 98%, more than 99% 'more than 99.5% of the attached monovalent ions. In some embodiments, the nanofiltration or reverse osmosis provides at least 1.5, at least 2, at least 3, at least 4', at least 5', at least 6, at least 59, 201038,477, 7, at least 8, at least 9, in some specific examples, reading 2 A multivalent ion concentration factor of at least 10. In a certain

些具體實例中,诘焱泳切w, . _ 土 7 /,芏:y 8,至少9,至少 過;慮早元(如奈米過遽或逆渗透 至少4,至少5 10之單價離子濃度因子。 单兀)之高多價離子排除率可增加含有碳酸鹽、碳酸氯魄 或碳酸肢魏氫鹽,包括職物之城物之產率;Γ 單價離子排除率可增加彻本發明產物(如含有驗土 2 屬之碳酸n、碳軌鹽或碳酸鹽及碰氫鹽之沉殺物)所 製得結構物(如強化道路)之長期穩定性。 在某些具體實例中,本發明提供利用如圖8所提供之 系統製造含有碳酸鹽、碳酸氩鹽或其組合之組成物的方 法。在某些具體實例中,例如,含有二價陽離子如Ca2+ 及/或Mg之驗度來源840(如淡水、海水、滷水等)可通過 過;慮早元828A(如奈米過慮單元、逆滲透單元等)以將驗 度來源分離成滲透液及阻留物(此濃縮驗度來源(如淡水、 海水)之方法亦可以如圖4-8之系統的系統實施;然而, 本發明方法亦如圖9-11所示般提供利用鹼度來源(如滷 水)而無濃縮)。在某些具體實例中’例如,奈米過濾單元 係用於將鹼度來源分離成一含有單價離子(如Na+及Cl—) 之滲透液及一含有多價離子(如二價陽離子如Ca2+及 Mg2+)之阻留物。含有單價離子之滲透液接著可經電化學 系統(如(例如)圖4及5所示)加工或淡化。然後將含有較 高鹼度及/或硬度(如Ca2+及/或Mg2+)之阻留物供應至處理 器810或其子系統(如氣_液接觸器、氣-液-固接觸器、反 201038477 Ο Ο i二等)中並以二氧化碳之工業來源加工之以形成本發明 i縮物w。在某些具體實例中,阻留物(或鹼度來源(若未經 合、、'。))可在處理器之氣_液接觸器或氣_液_固接觸器中組 如圖8(以及圖4_7及9_11}所示般,亦可將質子去除 體二,處理器或處理器子系統中以加工co2。在某些具 峻:例山中?列如’可能希望利用質子去除劑增加含有碳 二碳駄氫鹽或碳酸鹽及碳酸氫鹽之組成物的pH以協 可St:形成。藉由本文所述之沉降槽或者脫水系統 :造一濃縮組成物(即碳酸鹽、碳酸氫鹽或碳酸鹽及碳 j鹽經濃縮)。在某些具體實例中,濃縮組成物係經進 ^加工以產生有益再利用產物(如水泥、聚集體、 ^結性材料或類似物)。在某些具體實例中,可簡單地丟 ^邋縮組成物。由濃縮組成物之製造所產生之上澄液可 淥圖^所示般通過過濾單元828B(如奈米過濾單元、逆 單元專)以將上澄液分離成一滲透液及一阻留物。在 乂二具體實例中,例如,奈米過濾單元係用於將上澄液 成一含有單價離子(如Na+及cr)之滲透液及一含有 ^離子(如二價陽料如Ca2+及/或吨2+)之阻留物。(此 9 丁、米過濾單元濃縮上澄液之方法亦可以如圖6、7及 -1、1之系統的系統實施;然而,圖7及1〇之系統可經改 (如X使2^逆滲透單元)。然後將含有較高鹼度及/或硬度 ca2+及/或Mg2+)之阻留物循環至處理器810或其子系 、賤中f以二氧化碳之工業來源加工之以形成額外碳酸 反酉文氣鹽或奴酸鹽及碳酸氫鹽。在某些具體實例中, 201038477 可將阻留物供應至電化學系統(如所示’例如圖7及l〇) 或淡化之。在某些具體實例中’如圖8所示般,含有單 價離子(如Na+、Cr)之滲透液可通過濾單元828C(如逆渗 透單元)以將先前過據單元滲透液分離成一含有單價離 子(如Na+、C1·)之滲透液及一含有多價離子(如二價陽離 子如Ca2+及/或Mg2+)之阻留物,其兩者皆可用於所示電化 學系統850中。在某些具體實例中,滲透物、阻留物或 兩者在供應至電化學系統之前係先經去礦質化並視情況 經濃縮。電化學系統如本文所述般可用於製造一含有質 子去除劑(如NaOH(aq))之水溶液及另一含有酸(如 HCl(aq))之水溶液。可將含有酸之水溶液供應至多種酸利 用程序中之任一者,包括(但不限於)原料加工單元(如圖 5之原料加工單元57〇)之原料加工,其中該原料加工單 元係經設計以利用HCl(aq)消化鎂矽酸鹽(如蛇紋石、橄欖 石等)並產生二價陽離子(如Mg2+)以後續用於製造本發明 組成物或用作岩鹽(如MgCl2)及砂(Si02)之,其可一起或 個別用於熔化路上之冰。 圖12提供本發明系統之另一具體實例。在此等具體 灵例中’可將過濾單元(1228A)***接觸器1202(如氣-液 或氣-液-固接觸器)與反應器(12〇4)之間。照此,此等系統 之處理器(如接觸器與反應器之組合)係設計成具有中間 過;慮單元(如奈米過濾單元)。如所示般,接觸器可與含 C〇2氣體來源(123〇)及脫水系統(1222)連接操作並適合以 集自脫水系統之上澄液加工含C02氣體以製造含有碳酸 62 201038477 鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物。 與接觸器及反應器連接操作之過濾單元(如奈米過濾 單元)可經設計以過濾接觸器流出物(如含有碳酸鹽、碳酸 氫鹽或碳酸鹽及碳酸氫鹽之組成物)以致單價離子(如 Na+、Cl_)可以滲透液形式通過而多價離子(如ca2+、Mg2+ 或其組合)係以阻留物形式排除。例如,在某些具體實例 中,過濾單元係一設計成具有奈米過濾膜之奈米過濾單 元。與驗度來源(1240)、原料處理器(1270)、電化學系統 (1250)及過濾單元各者連接操作之反應器可經設計以進 一步加工接觸器所產生及過濾單元所濃縮之組成物。在 某些具體實例中’例如,接觸器可經設計以產生一主要 含有碳酸氳鹽之組成物。在此等例示性具體實例中,過 濾單元可經設計以產生濃縮組成物,其中濃縮組成物之 碳酸氫鹽及多價離子(如二價陽離子如Ca2+及/或Mg2+)係 經濃縮。因此,反應器可經設計以加工濃縮組成物以製 造一主要含有碳酸氫鹽之組成物。上文說明一以各可經 設計以供不同反應器組成物用之接觸器、過濾單元及反 應β為特徵之例示性具體實例。例如,如所示般,反應 器可經設計以接收源自電化學系統(1250)之質子去除 劑、源自原料處理器(127〇)之二價陽離子及源自鹼度來源 (12/4〇)之鹼度,其各可影響反應 器組成物。如同本發明其 他系統’反應器(或處理器)係與本發明脫水系統連接操 作。如圖12所示般,脫水系統可經設計以循環上澄液至 接觸器並提供有益再利用產物。 63 201038477 亦方提供關於利用-如圖12之***的系統加工二氧化 反之方法。照此,在某此罝體者&丨士 ==…統=== 製造—含有碳酸 或从鹽及碳醆氫鹽之組成 =可將源自接觸器之組成物 斤 ==:所述般,單元可經設二 滲透液及一阻留物。照此, 理而m 、自朗11之組成物可經過濾、單元處 理而㈣組成物之單價離子(如以2+、叫2+)可以 形式通過過滤單元而多價離子(如ea2+、Mg2H= :::::形式排除。此處理可降低(例如)本發明組成物 中納’其可能_於特定最終絲(如含有本發明 沉膽之水泥)。然後可將經過滤單元處理之紐成物絲 至反應器(1204)中,其中可加入源 自原料加:L之額外二一 陽離子、額外驗度或質子去除劑。視可取得材料(如用於 加工之原料、驗度來源等)而定,可在二氧化碳加工系統 1細之反應lit製得*同域物。在某些㈣實例中, 例^,可=源自原料處理器(1270)之足量二價陽離子(如 Ca2+、Mg2+或其組合)及鹼度來源供應至反應器中而可製 得一含有沉澱物(如CaC〇3、MgC〇3或其組合)之漿液。 可將此等漿液供應至本發明脫水系統中並將其分離成一 供接觸器再利用之上澄液及一有益再利用產物之沉澱 物。 64 201038477 ^發明系統可另外包含—絲質化系統,其包含多種 ,礦質化單元中之任一者,包括選自沉澱器及離子交換 早兀之去礦質化單元。本發明去礦質化系統可經設計以 任何方$進行足夠程度之去礦質化以將過濾單元阻留物 或過濾單元滲透液用於本發明其他系統單元中。例如, 在某,具體實例中,去礦質化系統係經設計以將去礦質 過濾單元阻留物供應至本發明電化學系統中。在另一例 〇 不巧具體實例中,去礦質化系統可經設計以將去礦質過 濾單元滲透液供應至電化學系統中。在此等具體實例 中,去礦質化系統可經設計以將過濾單元阻留物或滲透 液供應至沉澱器中,因此其係經設計以將所得組成物供 應至離子交換單元中。在另一構型中,去礦質化系統可 經设计以將過濾單元阻留物或滲透液供應至離子交換單 元中’因此’其係經設計以將所得組成物供應至沉澱器 中。在某些具體實例中,在經電化學系統加工之前,將 Q 去礦質阻留物或滲透液供應至設計用於濃縮該阻留物或 滲透液之濃縮器中。 關於去礦質化及/或濃縮之方法,在某些具體實例 中,該方法另外包括使至少一部分過濾單元阻留物去礦 質以產生一去礦質過濾單元阻留物。基於本發明目的, 去礦質過濾單元阻留物可為已去除Ca2+、Mg2+或其組合 之阻留物。在某些具體實例中,Ca2+及/或Mg2+係利用(例 如)NaOH以Ca(OH)2及/或Mg(OH)2形式藉由沉澱於沉澱 器中去除。在某些具體實例中,Ca2+及/或Mg2+係藉由離 65 201038477 子交換於利用(例如)Amberlite®IRC747之離 中去除。在某些具體實例中,Ca2+及/或^換軍 % 係轎In some specific examples, 诘焱 切 cut w, . _ soil 7 /, 芏: y 8, at least 9, at least over; consider early element (such as nano 遽 or reverse osmosis at least 4, at least 5 10 of the monovalent ion concentration Factor. Single high) multivalent ion exclusion rate can increase the yield of carbonates, chloranilated or carbonated hydrogen salts, including the properties of the goods; Γ The monovalent ion exclusion rate can increase the product of the invention ( Long-term stability of structures (such as fortified roads) prepared by the inclusion of carbonic acid n, carbon-rail salts or carbonates and hydrogen-absorbing salts of the 2 genera of the soil. In certain embodiments, the invention provides a method of making a composition comprising a carbonate, an argon carbonate salt, or a combination thereof, using the system as provided in Figure 8. In some embodiments, for example, a source of assay 840 containing divalent cations such as Ca2+ and/or Mg (eg, fresh water, seawater, brine, etc.) can be passed; early 828A (eg, nano-dialysis unit, reverse osmosis) The method of separating the source of the assay into a permeate and a retentate (the source of the concentration of the concentration (such as fresh water, seawater) can also be implemented by the system of the system of Figures 4-8; however, the method of the invention is also A source of alkalinity (such as brine) is provided as shown in Figures 9-11 without concentration. In some embodiments, for example, a nanofiltration unit is used to separate a source of alkalinity into a permeate containing monovalent ions (such as Na+ and Cl-) and a multivalent ion (such as divalent cations such as Ca2+ and Mg2+). ) Retaining material. The permeate containing the monovalent ions can then be processed or lightened by an electrochemical system such as, for example, Figures 4 and 5. The retentate containing a higher alkalinity and/or hardness (such as Ca2+ and/or Mg2+) is then supplied to the processor 810 or its subsystem (eg, gas-liquid contactor, gas-liquid-solid contactor, anti-201038477) Ο Ο i second) and processed with an industrial source of carbon dioxide to form the i shrinkage w of the present invention. In some embodiments, the retentate (or source of alkalinity (if uncombined, '') can be grouped in the gas-liquid contactor or gas-liquid-solid contactor of the processor as shown in Figure 8 ( As shown in Figures 4_7 and 9_11}, protons can also be removed from the processor or processor subsystem to process co2. In some extreme cases, such as in the mountains, it may be desirable to use proton-removing agents to increase the content. The pH of the carbodicarbon hydride or the composition of the carbonate and bicarbonate is formed as Co. St. by means of a settling tank or dehydration system as described herein: forming a concentrated composition (ie, carbonate, bicarbonate) Or carbonate and carbon j salts are concentrated.) In some embodiments, the concentrated composition is processed to produce a beneficial reuse product (such as cement, aggregates, ^-junction materials or the like). In some specific examples, the composition can be simply collapsed. The upper liquid produced by the manufacture of the concentrated composition can be passed through the filtering unit 828B (such as a nanofiltration unit or an inverse unit) as shown in FIG. Separating the supernatant liquid into a permeate and a retentate. In the specific example of the second example, For example, a nanofiltration unit is used to form a liquid into a permeate containing monovalent ions (such as Na+ and cr) and a retentate containing an ion (such as a divalent cation such as Ca 2+ and/or ton 2+ ). (The method of concentrating the liquid in the 9-square-meter filter unit can also be implemented in the system of the system of Figures 6, 7 and -1, 1; however, the system of Figures 7 and 1 can be modified (such as X to make 2) ^ Reverse osmosis unit). The retentate containing higher alkalinity and / or hardness ca 2+ and / or Mg 2+ ) is then recycled to the processor 810 or its sub-systems, which are processed at an industrial source of carbon dioxide to form additional Carbonate ruthenium salt or sulphonate and bicarbonate. In some embodiments, 201038477 can supply a retentate to an electrochemical system (as shown in Figure 7 and Figure 1-3) or fade it. In some embodiments, as shown in FIG. 8, a permeate containing a monovalent ion (eg, Na+, Cr) may pass through a filtration unit 828C (eg, a reverse osmosis unit) to separate the permeate from the previous unit into a monovalent ion ( a permeate such as Na+, C1·) and a retentate containing a multivalent ion such as a divalent cation such as Ca 2+ and/or Mg 2+ Both can be used in the illustrated electrochemical system 850. In some embodiments, the permeate, retentate, or both are demineralized and concentrated as appropriate prior to being supplied to the electrochemical system. As described herein, it can be used to make an aqueous solution containing a proton-removing agent such as NaOH (aq) and another aqueous solution containing an acid such as HCl (aq). The aqueous acid-containing solution can be supplied to various acid utilization programs. Any of the materials including, but not limited to, the processing of the raw material processing unit (such as the raw material processing unit 57 of FIG. 5), wherein the raw material processing unit is designed to digest the magnesium niobate with HCl (aq) (eg, Serpentine, olivine, etc.) and produce divalent cations (such as Mg2+) for subsequent use in the manufacture of the compositions of the invention or as rock salt (such as MgCl2) and sand (SiO2), which may be used together or individually for melting on the road. ice. Figure 12 provides another embodiment of the system of the present invention. In these specific examples, the filter unit (1228A) can be inserted between the contactor 1202 (e.g., a gas-liquid or gas-liquid-solid contactor) and the reactor (12〇4). As such, processors of such systems (e.g., combinations of contactors and reactors) are designed to have intermediates; such as nanofiltration units. As shown, the contactor can be operated in conjunction with a C〇2 gas source (123〇) and a dehydration system (1222) and is adapted to process the CO 2 containing gas from a dewatering system to produce a carbonate containing 62 201038477, A composition of bicarbonate or carbonate and bicarbonate. A filter unit (such as a nanofiltration unit) connected to the contactor and the reactor can be designed to filter the contactor effluent (such as a composition containing carbonate, bicarbonate or carbonate and bicarbonate) such that the monovalent ion (eg, Na+, Cl_) can be passed as a permeate and multivalent ions (such as ca2+, Mg2+, or a combination thereof) are eliminated as a retentate. For example, in some embodiments, the filtration unit is a nanofiltration unit designed to have a nanofiltration membrane. The reactor connected to the source of the assay (1240), the material processor (1270), the electrochemical system (1250), and the filter unit can be designed to further process the composition produced by the contactor and concentrated by the filter unit. In some embodiments, for example, the contactor can be designed to produce a composition comprising primarily strontium carbonate. In these exemplary embodiments, the filtration unit can be designed to produce a concentrated composition wherein the bicarbonate and polyvalent ions (e.g., divalent cations such as Ca2+ and/or Mg2+) of the concentrated composition are concentrated. Thus, the reactor can be designed to process a concentrated composition to produce a composition comprising primarily bicarbonate. The foregoing illustrates an illustrative specific example featuring contactors, filtration units, and reaction betas that can be designed for use with different reactor compositions. For example, as shown, the reactor can be designed to receive a proton-removing agent derived from an electrochemical system (1250), a divalent cation derived from a raw material processor (127〇), and a source derived from alkalinity (12/4) The alkalinity of 〇), each of which can affect the reactor composition. As with the other systems of the present invention, the reactor (or processor) is coupled to the dewatering system of the present invention. As shown in Figure 12, the dewatering system can be designed to circulate the supernatant to the contactor and provide a beneficial reuse product. 63 201038477 Also provides a method for processing dioxide using the system of Figure 12, and vice versa. As such, in some of the carcass & gentleman ==... system === manufacture - contains carbonic acid or consists of salt and carbonium hydrogen salt = can be derived from the composition of the contactor kg ==: Generally, the unit can be provided with two permeates and a retentate. As such, the composition of m, self-lang 11 can be filtered, unit processed, and (4) the monovalent ion of the composition (eg, 2+, 2+) can pass through the filter unit and multivalent ions (such as ea2+, Mg2H) =:::: Form exclusion. This treatment can reduce, for example, the composition of the present invention, which may be - for a particular final filament (such as cement containing the bladder of the present invention). The filament is introduced into the reactor (1204), and an additional dication, an additional test or a proton-removing agent derived from the raw material plus: L may be added. The available materials (such as raw materials for processing, sources of verification, etc.) may be added. Depending on the carbon dioxide processing system, a fine reaction can be made to produce a *isomorphism. In some (4) examples, a ^, can be = a sufficient amount of divalent cations derived from the raw material processor (1270) (such as Ca2+) , a Mg2+ or a combination thereof, and a source of alkalinity supplied to the reactor to produce a slurry containing a precipitate such as CaC〇3, MgC〇3 or a combination thereof. These slurryes may be supplied to the dehydration system of the present invention. And separate it into a contactor to reuse the liquid and a beneficial reuse Precipitate of matter. 64 201038477 ^ The inventive system may additionally comprise a silking system comprising a plurality of mineralization units, including a demineralization unit selected from the group consisting of a precipitator and an ion exchange early enthalpy. The demineralization system can be designed to demineralize to a sufficient extent to use the filtration unit retentate or filtration unit permeate in other system units of the present invention. For example, in one embodiment, demineralization The deuteration system is designed to supply demineralized filtration unit retentate to the electrochemical system of the present invention. In another example, the demineralization system can be designed to supply demineralized filtration unit permeate to In an electrochemical system, in such specific examples, the demineralization system can be designed to supply filtration unit retentate or permeate to the precipitator, thus being designed to supply the resulting composition to the ion exchange unit In another configuration, the demineralization system can be designed to supply filtration unit retentate or permeate to the ion exchange unit. Designed to supply the resulting composition to a precipitator. In some embodiments, Q demineralized retentate or permeate is supplied to a design to concentrate the retentate or permeate prior to processing by the electrochemical system. In a concentrator, in a specific embodiment, the method further comprises, in some embodiments, de-mining at least a portion of the filter unit retentate to produce a demineralization filter unit retentate. For the purpose of the invention, the demineralization filter unit retentate may be a retentate from which Ca2+, Mg2+ or a combination thereof has been removed. In some embodiments, Ca2+ and/or Mg2+ utilizes, for example, NaOH as Ca(OH)2 and The Mg(OH)2 form is removed by precipitation in a precipitator. In some embodiments, Ca2+ and/or Mg2+ are removed by ion exchange from 65 201038477 using, for example, Amberlite® IRC747. In some specific examples, Ca2+ and / or ^ change the army

Ca(OH)2及/或Mg(OH)2形式沉澱,接著進行離 除。在某些具體實例中,Ca2+及/或Mg2+係藉由離父$而去 接著以Ca(OH)2及/或Mg(OH)2形式沉澱而去除。子父換’ 具體實例中,去礦質過濾單元阻留物可用於某些 1匕+程序 中以製造質子去除劑。在某些具體實例中,去德餅、s Α廣貝過據 單元阻留物在用於電化學程序中以製造質子去除劑之 係經濃縮。在某些具體實例中,該方法另外包括使至少 一部分過濾、單元渗透液去礦質以產生一去礦質過濾、單元 滲透液。基於本發明目的,去礦質過濾單元滲透液可為 已去除Ca2+、Mg2+或其組合之滲透液。在某些具體實例 中,Ca2+及/或Mg2+係藉以Ca(OH)2及/或Mg(OH)2形式去 除。在某些具體實例中,Ca2+及/或Mg2+係藉由離子交換 去除。在某些具體實例中,Ca2+及/或Mg2+係藉以Ca(OH)2 及/或Mg(OH)2形式沉澱,接著進行離子交換而去除。在 某些具體實例中,Ca2+及/或Mg2+係藉由離子交換,接著 以Ca(OH)2及/或Mg(OH)2形式沉澱而去除。在某些具體 實例中,去礦質過濾單元滲透液可用於電化學程序中以 製造質子去除劑。在某些具體實例中,去礦質過濾單元 滲透液在用於電化學程序中以製造質子去除劑之前係經 濃縮。 二氣化碳 66 201038477 本發明具體實例提供使鹼度來源與二氧化碳來源接 觸’然後使帯二氧化碳溶液處於適合製造含有碳酸鹽、碳 酸氫鹽或碳酸鹽及;ε炭酸氫鹽之組成物的條件下之方法。 此等條件亦適合用於製造含有可分離沉澱物(如Cac〇3、 MgC〇3)之組成物。在某些具體實例中,本發明提供使驗 度來源與二氧化碳來源接觸並使該溶液處於適合製造含 有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物,包 括製造含有可分離沉澱物之組成物的條件下之方法。該 二氧化碳來源可為任何慣用二氧化碳來源且該來源可呈 任何慣用形式(如氣體、液體、固體、超臨界流體或溶於 液體如水中)。在某些具體實例中,二氧化碳來源係呈氣 體形式。例如,二氧化碳來源可為源自燃煤工廠或水泥廠 之工業廢物流(如廢氣流)。該工業廢物流可實質上為純二 氧化叙或除了二氧化碳之外包含多種組分,其中多種組合 可包含一或多種額外氣體(如氮氣)、微粒物質如灰分或某 一組合。在某些具體實例中,二氧化碳來源為廢物流如工 廠之排氣。工廠本質可不同,該等工廠包括(但不限於)發 電廠、化學加讀、韻加卫廠、精驗、水祕、鋼鐵 廠及其他產生二氧化碳之燃料燃燒或另一加工步驟(如水 泥廠煅燒)之副產物的工廠。 包含二氧化碳之廢氣流包括還原條件流(如合成氣、轉 移合成氣、天然氣、氫及類似物)及氧化條件流(如源自辦 燒之煙道氣)。本發雜狀蚊廢包括^化燃料(如 煤或L些微或無預處理之# —碳基燃料)所產生之含氧廢 67 201038477 :曾愿式峨出氣體、煤氣化產出氣體、預燃 ^成^如彼等在發電廠中煤氣化期間所形成者、轉移 煤乳化產出氣體、厭氣消化槽產出氣體、井σ天然氣流、 ,組=然氣或甲財合物及類似物。任何慣用燃燒程序之 廢可用於本㈣方法及㈣巾。在某些具體實例中, 可使用工廠如發f廠、水泥敍煤加4之錢後排放煙 囱中的廢氣。 因此,該等廢氣流可由多種不同類型之工廠產生。適 合的廢氣流包括燃燒化石燃料(如煤、油、天然氣、丙烷、 柴油)及天然有機燃料沈積物(如焦油砂、重油、油頁岩等) 之人為燃料產物的工廠所產生之廢物流。在某些具體實例 中,適合用於本發明系統及方法之廢氣流係源自燃煤發電 廠,如粉煤發電廠、超臨界煤發電廠、混燒煤發電廠及流 體化床煤發電廠。在某些具體實例中,該廢氣流係源自燃 氣或燃油鍋爐及蒸汽渦輪發電廠、燃氣或燃油鍋爐簡單循 環氣渦輪發電廠或燃氣或燃油鍋爐複合循環氣渦輪發電 廠。在某些具體實例中,可使用燃燒合成氣(即藉由氣化 有機物質(例如煤、生質等)所產生之氣體)之發電廠所製造 的廢氣流。在某些具體實例中,使用源自整合氣化複合猶 環(IGCC)廠之廢氣流。在某些具體實例中,根據本發明系 統及方法係使用藉由熱回收鍋爐(HRSG)廠所產生之廢氣 流。 水泥廠:所產生的廢氣流亦適合用於本發明中。水泥礙 之廢氣流包含源自濕法及乾法工廠之廢物流,該等工廠可 68 201038477 使用豎窯或旋轉窯並可包含預锻燒爐。此等工薇各可燃燒 單一燃料或可依序或同時燃燒兩或多種燃料。其他工廠如 冶煉廠及精製廠亦為包含二氧化碳之適宜廢氣流來源。 廢氣流可包含二氧化碳以作為主要非空氣衍生組分, 或特別在燃煤發電廠之情況下可包含額外組分如氮氧化 物(NOx)、硫氧化物(s〇x)及多種額外氣體及/或組分中任一 者。額外氣體及/或其他組分可包括CO、汞及其他重金屬 和粉塵微粒(如源自煅燒及燃燒程序)。廢氣流中之其他組 分亦可包括鹵化物如氯化氫及氟化氬;微粒物質如飛灰、 粉塵及金屬,包括砷、鈹、硼、鎘、鉻、鉻VI、鈷、鉛、 錳、汞、鉬、硒、鳃、鉈及釩;及有機物如烴、戴奥辛及 PAH化合物。在某些具體實例中’可經過處理之適合廢氣 流具有二氧化碳、S〇x(即一硫氧化物,包括s〇、s〇2及 SO3)、V0C(揮發性有機化合物)、重金屬如汞及微粒物質 (懸浮於氣體中之固體或液體微粒)。煙道氣溫度亦可不 同。在某些具體實例中’含有二氧化碳之煙道氣溫度可從 0°C 至 2000°c,如從 60°c 至 700°c,包括 loot:至 400。(:, 例如100°C至200°c。在特定具體實例中’感興趣之廢氣 流具有以 200ppm 至 l,000,000ppm,如 200,000ppm 至 lOOOppm’ 包括 200,000ppm 至 2000ppm,例如 180,000ppm 至 2000ppm,或 180,000ppm 至 5000ppm,亦包括 180,000ppm至10,000ppm之量存在之二氧化碳。該等廢 氣流’特別係各種燃燒氣之廢物流可包含一或多種額外組 分,例如水、NOx(即一氮氧化物如NO及N02)、8(\(即 69 201038477 一硫氧化物如SO、S〇2及s〇3)、v〇c(揮發性有機化合 物)、重金屬如汞及微粒物質(懸浮於氣體中之固體或液體 微粒)° 在某些具體實例中,產生一或多種額外組分或聯合產 物(即由其他起始物[如S〇x、N〇x等]在用於將二氧化碳轉 化成碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之相同條件 下所產生之產物)。在某些具體實例中,一或多種額外組 分係沈澱或陷入藉使含有此等額外組分之廢氣流與含有 鹼土金屬之二價陽離子(如Ca2+、Mg2+)之鹼度來源接觸所 形成之沈澱物中。鈣及/或鎂之硫酸鹽、亞硫酸鹽及類似物 可形成且(在某些具體實例中)當該廢氣流包含S0x(如S02) 時沈澱或陷入含有鈣及/或鎂之碳酸鹽的沉澱物中。在此等 具體實例中,鎂及鈣可分別反應形成Mgso4及Cas04以 及其他含鎂及含鈣化合物(如亞硫酸鹽),有效地由煙道氣 流中無脫硫步驟如煙道氣脫流(“FGD”)地去除硫。此外, 可無額外釋放二氧化碳地形成CaC03、MgC03及相關化合 物。在含有一價陽離子之驗度來源包含高量硫化合物(如 硫酸鹽)之例子中,該鹼度來源可富含鈣及鎂以致鈣及鎂 可在形成CaS〇4、MgS04及相關化合物之後或除了形成該 等物以外另可形成碳酸鹽化合物。在某些具體實例中,脫 硫步驟可與含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽 之組成物的製備同時分段進行。在某些具體實例中,脫 硫步驟可在製備含有碳睃鹽、碳酸氫鹽或碳酸鹽及碳酸氫 鹽之纟且成物之前分段進行。在某些具體實例中,脫硫步驟 201038477 可與含碳酸鹽沉澱物之沉澱同時分段進行或脫硫步驟可 在沉澱前分段發生。在某些具體實例中,於含有二氧化碳 之廢氣流之不同加工階段下集得多種反應產物(如 MgC03、CaC03、CaS04、前述物之混合物及類似物)。在 某些具體實例中,集得單一反應產物(如含有碳酸鹽、硫 酸鹽等之沈澱物)。於此等具體實例之步驟中,含有二氧 化碳之廢氣流的其他組分,如重金屬(如汞、汞鹽、含汞 化合物)可成為含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫 鹽之組成物的一部分。在某些具體實例中,含有二氧化碳 之廢氣流的其他組分,如重金屬(如汞、汞鹽、含汞化合 物)可能陷入含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氳鹽 之沈澱物中或可個別沈澱。 一部分源自工廠之廢氣流(即非整個廢氣流)可用於製 造本發明組成物(如沈澱物)。在此等具體實例中,廢氣流 中所用部分可佔廢氣流之75%或更少’如60%或更少,並 包括50%或更少。在另外其他具體實例中,實質上(如8〇0/〇 或更多)工廠所產生之全部廢氣流可用於產生本發明組成 物(如沈澱物之沉澱)。在此等具體實例中,80〇/〇或更多, 如90%或更多,包括95%或更多,高達1〇〇〇/0該工廠來源 所產生之廢氣流(如煙道氣)可用於製造本發明組成物。 雖然工業廢氣提供相對較濃的燃燒氣來源,本發明方 法及系統亦可應用於自可包含污染物濃度遠低於(例如)煙 道氣之較低濃度來源(如大氣空氣)去除燃燒氣體組分。因 此,在某些具體實例中,方法及系統涵蓋藉由產生一含有 71 201038477 碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物(如沉澱 物)而降低大氣空氣中污染物之濃度。在此等情況下,在 一部分大氣空氣中污染物(如二氧化碳)之濃度可降低10% 或更多,20%或更多,30%或更多,40%或更多,50%或更 多,6〇%或更多,70%或更多,80%或更多,90%或更多, 95%或更多’ 99%或更多,99.9%或更多,或99.99%。此 大氣污染物之降低可以本文所述之產率或以更高或較低 之產率達成並可以單一步驟或以一系列步驟完成。 鹼度 本發明具體實例提供使鹼度來源與二氧化碳來源接 觸’然後使带二氧化碳溶液處於適合製造含有碳酸鹽、碳 酸氫鹽或碳酸鹽及碳酸氫鹽之組成物的條件下之方法。 在某些具體實例中,本發明提供使鹼度來源與二氧化碳 來源接觸並使該溶液處於適合製造含有碳酸鹽、碳酸氫鹽 或石厌酸鹽及奴酸虱鹽之組成物,包括製造含有可分離沉 掇物之組成物的條件下之方法。雖然許多鹼度來源亦包含 二價陽離子(如Ca2+、Mg2+)’上述條件亦適合用於製造含 有可分離沉澱物(如CaC〇3、MgC〇3)之組成物。亦町包 含二價陽離子之鹼度來源視特定地點之可利用性而定可 ;原自多種不同來源中之任—者。此等來源包括(但不限於) ::廢物、海水、滴水、硬水、含有消化岩石及礦物(如 二、方鎮石、含有金屬♦酸鹽之材料如蛇紋石及振禮 等)之淡水及任何其他適合騎度來源。基於本發明目 72 201038477 的’呈原始形式之鹼度來源不須以水溶液形式存在。照 此’驗度來源可包括(例如)化石燃料燃燒灰分如飛灰、底 灰或鍋爐渣,條件係此等物質在經水加工時提供鹼度來 源。 在某些地點中,源自各種工業程序之工業廢物流提供 慣用鹼度來源以及(在某些具體實例中)二價陽離子及/或 夤子去除劑之來源(如金屬氫氧化物)。此類廢物流包括 (但不限於)採礦廢物;化石燃料燃燒灰分(如燃燒灰分如飛 灰底灰、鋼爐渣);礦渣(如鐵擴渣、含磷礦渣);水泥窯 廢物,煉油/石化精製廢物(如油田及子烧煤層滷水);煤層 廢物(如產氣滴水及煤層滷水);造紙廢物;水軟化廢滴水 (如離子父換流出物);⑦加卫廢物;農業廢物,·金屬表面 處理廢物,尚pH紡織廢物及苛性污泥。另外描述於 年6月17日申請之美國專利申請案第12/傷,692號中(將 其全文則丨用方式併人本文幻中金屬氧化物之共同廢物 來源之化石_職灰分、水泥f灰及可贿何組合 與另外描述於2_年7月1G日申請之美國專利申請案第 謂咖號中(亦將其全文以引用方式併入本文中)之含 金屬石夕酸鹽之材料聯用。任何本文所述驗度來源皆可經混 合及相配以達實施本發明之目的。例如,含有金屬石夕酸鹽 =材料(如敝石及·巧可與本靖述任册度來源組 合以達實施本發明之目的。 在某些=財’將製備本發敝祕之慣用驗度來 源為水(如水絲如海核表_水),討減實施本發 73 201038477 明之特定地點而變。可佶用夕、备 .^ ^ j便用之適合鹼度來源包括含有一或 、J,陽離子(如鹼土金屬陽離子如Ca2+及Mg2,之溶 =某些具體實例中,驗度來源包含二價_子,其中 =等二價陽離子包含驗土金屬陽離子。在某些具體實例 中,驗土金屬陽離子包括㉟、職其組合。在某些具體實 例中,驗度來源包含範圍從5〇至5〇,〇〇〇卯瓜、5〇至 40,000ppm、50 至 2〇 〇〇〇ppm、1〇〇 至 1〇 〇〇〇卯爪、2〇〇 至 5000ppm,或400至1〇〇〇ppm之量的約。在某些具體實例 中’驗度來源包含範圍從5〇至4〇,〇〇〇ppm、5〇至 20,000ppm、100 至 i〇 〇〇〇ppm、2〇〇 至 i〇,〇〇〇ppm、5〇〇 至5000ppm,或5〇〇至25〇〇ppm之量的錢。在某些具體實 例中,Ca及Mg2+皆存在時’驗度來源令ca2+與Mg2+之 比例(即 Ca2+ : Mg2+)為 1 : 1 至 1 : 2.5 ; 1 : 2.5 至 1 : 5 ; 1 : 5 至 1 : 10 ·’ 1 : 1〇 至丨:25 ;丨:25 至 1 : 5〇 ;丨:5〇 至 i : 100 ; 1 : 100 至 1 : 150 ; 1 : 15〇 至 i : 2〇〇 ; 1 : 2〇〇 至 i : 250 ’ 1 . 250 至 1 · 5〇〇 ; 1 : 500 至 1 : 1〇〇〇 或其範圍。例 如,在某些具體實例中,鹼度來源中Ca2+與Mg2+之比例 為 1 : 1 至 1 : 10 ; 1 : 5 至 i : 25 ; i : 1〇 至 1 : 50 ; i : 25 至 1 : 100 ; 1 : 50 至! : 5〇〇 ;或 1 : 1〇〇 至丨:1〇〇〇。在 某些具體實例中,鹼度來源中厘82+與Ca2+之比例(即 Mg2+ : Ca2+)為 1 : 1 至} : 2 5 ; i : 2 5 至! : 5 ;】:5 至 i : 10 ; 1 : 10 至 1 : 25 ; 1 : 25 至 1 : 50 ; 1 : 50 至 1 : 1〇〇 ; 1 : 100 至 1 : 150 ;】:15〇 至! : 200 ; 1 : 2〇〇 至 i : 25〇 ; 1 : 250至1 : 500 ;丨:5〇〇至i : 1000或其範圍。例如, 74 201038477 在某些具體實例中’鹼度來源中Mg2+與Ca2+之比例為j : 1 至 1 : 10 ; 1 : 5 至 1 : 25 ; 1 : 10 至 i : 5〇 ; i : 25 至 i : 1〇〇 ; 1 : 50 至 1 : 500 ;或 1 : 1〇〇 至! : 1〇〇〇。 鹼度來源可包含淡水、淡鹽水、海水或滷水(如天然滷 水或人為滷水如地熱廠廢水、淡化廠廢水)以及其他鹽度 大於淡水之鹽水,其中任一者可為天然或人為的且其;任 一者可包含二價陽離子。淡鹽水係比淡水鹹但不若海水般 鹹之水。淡鹽水具有一範圍從約0.5至約35ppt(每千分之 份數)之鹽度。海水係源自海、海洋或任何其他鹽度範圍 在約35至約50ppt之鹽水體的水。滷水係經鹽飽和或近飽 和之水。滷水具有約50ppt或更大之鹽度。在某些具體實 例中’鹼度來源係富含礦物(如富含鈣及/或富含鎖)之淡水 來源。在某些具體實例中,鹼度來源係選自海、海洋、湖、 沼澤、河口、潟湖、表面滷水、深層滷水、驗性湖、内海 或類似來源之天然鹽水來源。在某些具體實例中,驗度來 源係表面滷水。在某些具體實例中,鹼度來源係地下涵 水。在某些具體實例中,鹼度來源係深層滷水。在某些具 體實例中,鹼度來源係 Ca-Mg-Na-(KH:1、The Ca(OH)2 and/or Mg(OH)2 form precipitates and is then removed. In some embodiments, Ca2+ and/or Mg2+ are removed by precipitation from the parent $ followed by precipitation in the form of Ca(OH)2 and/or Mg(OH)2. Sub-family change In the specific example, the demineralized filter unit retentate can be used in some 1匕+ procedures to make a proton-removing agent. In some embodiments, the de-cake, s-sigma, and the unit retentate are concentrated in an electrochemical procedure to produce a proton-removing agent. In some embodiments, the method additionally includes de-mining at least a portion of the filtration, unit permeate to produce a demineralization filtration, unit permeate. For the purposes of the present invention, the demineralized filtration unit permeate can be a permeate from which Ca2+, Mg2+, or a combination thereof has been removed. In some embodiments, Ca2+ and/or Mg2+ are removed by the form of Ca(OH)2 and/or Mg(OH)2. In some embodiments, Ca2+ and/or Mg2+ are removed by ion exchange. In some embodiments, Ca2+ and/or Mg2+ are precipitated by Ca(OH)2 and/or Mg(OH)2, followed by ion exchange. In some embodiments, Ca2+ and/or Mg2+ are removed by ion exchange followed by precipitation in the form of Ca(OH)2 and/or Mg(OH)2. In some embodiments, the demineralized filtration unit permeate can be used in an electrochemical procedure to produce a proton-removing agent. In some embodiments, the demineralized filtration unit permeate is concentrated prior to use in an electrochemical procedure to produce a proton-removing agent. Dicarbonized carbon 66 201038477 A specific embodiment of the invention provides for contacting a source of alkalinity with a source of carbon dioxide and then placing the cerium carbon dioxide solution in a condition suitable for the manufacture of a composition comprising a carbonate, a hydrogencarbonate or a carbonate, and a ε carbonic acid hydrogenate. The method. These conditions are also suitable for the manufacture of compositions containing separable precipitates such as Cac(R) 3, MgC〇3. In certain embodiments, the present invention provides for contacting a source of assay with a source of carbon dioxide and rendering the solution suitable for the manufacture of a composition comprising carbonate, bicarbonate or carbonate and bicarbonate, including the manufacture of a separable precipitate. The method under the conditions of the composition. The source of carbon dioxide can be any conventional source of carbon dioxide and the source can be in any conventional form (e.g., gas, liquid, solid, supercritical fluid, or dissolved in a liquid such as water). In some embodiments, the source of carbon dioxide is in the form of a gas. For example, the source of carbon dioxide can be an industrial waste stream (e.g., an exhaust stream) originating from a coal fired plant or a cement plant. The industrial waste stream may be substantially pure dioxide or comprise a plurality of components in addition to carbon dioxide, wherein the plurality of combinations may comprise one or more additional gases (e.g., nitrogen), particulate matter such as ash, or a combination. In some embodiments, the source of carbon dioxide is a waste stream such as a plant exhaust. The nature of the plant may vary, including but not limited to power plants, chemical additions, rhyme addition plants, inspections, water secrets, steel plants and other carbon-burning fuel combustion or another processing step (eg cement plant) A factory for the by-product of calcination). Exhaust streams containing carbon dioxide include reducing condition streams (e.g., syngas, shift syngas, natural gas, hydrogen, and the like) and oxidizing conditions (e.g., flue gases derived from combustion). The present heterozygous mosquito waste includes an oxygen-containing waste generated by a chemical fuel (such as coal or a slightly or no pretreatment #-carbon-based fuel). 201038477: The gas is produced, the gasification gas is produced, and the gas is produced.燃^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Things. Any waste of conventional combustion procedures can be used for this (4) method and (4) towel. In some specific examples, the exhaust gas in the chimney can be discharged after the plant is used, such as the F plant, the cement, and the coal. Thus, such exhaust streams can be produced by a variety of different types of plants. Suitable waste streams include waste streams from factories that burn fossil fuels (such as coal, oil, natural gas, propane, diesel) and natural organic fuel deposits (such as tar sands, heavy oil, oil shale, etc.). In certain embodiments, exhaust gas streams suitable for use in the systems and methods of the present invention are derived from coal-fired power plants, such as pulverized coal power plants, supercritical coal power plants, co-fired coal power plants, and fluidized bed coal power plants. . In some embodiments, the exhaust stream is derived from a gas or oil-fired boiler and steam turbine power plant, a gas or oil-fired boiler, a simple cycle gas turbine power plant, or a gas or oil-fired boiler combined cycle gas turbine power plant. In some embodiments, an exhaust stream produced by a power plant that combusts syngas (i.e., a gas produced by vaporizing organic materials (e.g., coal, biomass, etc.) may be used. In some embodiments, an exhaust stream derived from an integrated gasification composite sulfene (IGCC) plant is used. In some embodiments, systems and methods in accordance with the present invention utilize exhaust streams produced by a heat recovery boiler (HRSG) plant. Cement Plant: The resulting exhaust stream is also suitable for use in the present invention. Cement waste streams include waste streams from wet and dry processes, which can be used in shaft kiln or rotary kiln and can include pre-forged furnaces. Each of these workers may burn a single fuel or may burn two or more fuels sequentially or simultaneously. Other plants, such as smelters and refineries, are also sources of suitable exhaust streams containing carbon dioxide. The exhaust stream may comprise carbon dioxide as the primary non-air derived component or, in particular in the case of a coal fired power plant, additional components such as nitrogen oxides (NOx), sulfur oxides (s〇x) and various additional gases and / or any of the components. Additional gases and/or other components may include CO, mercury, and other heavy metals and dust particles (e.g., derived from calcination and combustion procedures). Other components in the exhaust stream may also include halides such as hydrogen chloride and argon fluoride; particulate matter such as fly ash, dust and metals including arsenic, antimony, boron, cadmium, chromium, chromium VI, cobalt, lead, manganese, mercury , molybdenum, selenium, tellurium, antimony and vanadium; and organic matter such as hydrocarbons, dioxin and PAH compounds. In some embodiments, a suitable exhaust gas stream that can be treated has carbon dioxide, S〇x (ie, a sulfur oxide, including s〇, s〇2, and SO3), V0C (volatile organic compounds), heavy metals such as mercury, and Particulate matter (solid or liquid particles suspended in a gas). The flue gas temperature can also vary. In some embodiments, the temperature of the flue gas containing carbon dioxide can range from 0 ° C to 2000 ° C, such as from 60 ° C to 700 ° C, including loot: to 400. (:, for example, 100 ° C to 200 ° C. In a particular embodiment, the 'exhaust gas stream of interest has from 200 ppm to 1,000,000 ppm, such as 200,000 ppm to 1000 ppm' including 200,000 ppm to 2000 ppm, such as 180,000 ppm to 2000 ppm, Or 180,000 ppm to 5000 ppm, also including carbon dioxide in the amount of 180,000 ppm to 10,000 ppm. These waste streams, particularly those of various combustion gases, may contain one or more additional components, such as water, NOx (ie, nitrogen oxides). Such as NO and N02), 8 (\ (ie 69 201038477 a sulfur oxide such as SO, S〇2 and s〇3), v〇c (volatile organic compounds), heavy metals such as mercury and particulate matter (suspended in gas Solid or liquid microparticles in the process) In some embodiments, one or more additional components or combination products are produced (ie, by other starting materials [eg, S〇x, N〇x, etc.] are used to convert carbon dioxide into a product produced under the same conditions of carbonate, bicarbonate or carbonate and bicarbonate. In some embodiments, one or more additional components are precipitated or trapped in an exhaust gas containing such additional components. Flow and alkaline soil The alkalinity source of the divalent cations (such as Ca2+, Mg2+) is in contact with the precipitate formed. Calcium and/or magnesium sulfates, sulfites and the like can be formed and (in some specific examples) The exhaust gas stream contains S0x (such as S02) precipitated or trapped in a precipitate containing calcium and/or magnesium carbonate. In these specific examples, magnesium and calcium may react to form Mgso4 and Cas04, respectively, and other magnesium-containing and Calcium compounds (such as sulfites) effectively remove sulfur from the flue gas stream without a desulfurization step such as flue gas off-gas ("FGD"). In addition, CaC03, MgC03 and related compounds can be formed without additional carbon dioxide release. In the case where the source of the assay containing monovalent cations contains a high amount of sulfur compounds (such as sulfates), the source of alkalinity may be rich in calcium and magnesium such that calcium and magnesium may form after CaS〇4, MgS04 and related compounds. Alternatively, a carbonate compound may be formed in addition to the formation of the material. In some embodiments, the desulfurization step may be carried out in stages simultaneously with the preparation of a composition comprising carbonate, bicarbonate or carbonate and bicarbonate. In some In the case of the body, the desulfurization step can be carried out in stages before preparing the ruthenium containing carbonium salts, hydrogencarbonates or carbonates and hydrogencarbonates. In some embodiments, the desulfurization step 201038477 can be combined with carbonation. The precipitation of the salt precipitate can be carried out in stages or the desulfurization step can be carried out in stages before precipitation. In some embodiments, various reaction products (such as MgC03, CaC03, etc.) are collected in different processing stages of the carbon dioxide-containing waste gas stream. CaS04, a mixture of the foregoing and the like). In some embodiments, a single reaction product (e.g., a precipitate containing carbonate, sulfate, etc.) is collected. In the steps of these specific examples, other components of the carbon dioxide-containing waste gas stream, such as heavy metals (such as mercury, mercury salts, mercury-containing compounds) may be composed of carbonates, hydrogencarbonates or carbonates and bicarbonates. Part of the object. In some embodiments, other components of the carbon dioxide-containing waste gas stream, such as heavy metals (eg, mercury, mercury salts, mercury-containing compounds) may be trapped in precipitates containing carbonates, bicarbonates or carbonates, and barium carbonate salts. Or can be precipitated individually. A portion of the waste stream from the plant (i.e., not the entire exhaust stream) can be used to make the compositions of the present invention (e.g., precipitates). In these specific examples, the portion used in the exhaust stream may comprise 75% or less of the exhaust stream, e.g., 60% or less, and includes 50% or less. In still other embodiments, substantially all of the exhaust stream produced by the plant (e.g., 8 〇 0 / 〇 or more) can be used to produce the compositions of the present invention (e.g., precipitation of precipitates). In these specific examples, 80 〇 / 〇 or more, such as 90% or more, including 95% or more, up to 1 〇〇〇 / 0 of the waste gas stream generated by the plant source (such as flue gas) It can be used to make the compositions of the invention. While industrial exhaust gases provide a relatively rich source of combustion gases, the methods and systems of the present invention can also be used to remove combustion gas groups from sources of contaminant concentrations that are much lower than, for example, lower concentration sources of flue gases, such as atmospheric air. Minute. Thus, in certain embodiments, the methods and systems encompass reducing the concentration of contaminants in the air by creating a composition comprising 71 201038477 carbonate, bicarbonate or carbonate and bicarbonate (eg, a precipitate) . In such cases, the concentration of pollutants (such as carbon dioxide) in a portion of atmospheric air can be reduced by 10% or more, 20% or more, 30% or more, 40% or more, 50% or more. , 6〇% or more, 70% or more, 80% or more, 90% or more, 95% or more '99% or more, 99.9% or more, or 99.99%. This reduction in atmospheric contaminants can be achieved in the yields described herein or in higher or lower yields and can be accomplished in a single step or in a series of steps. Alkalinity A particular embodiment of the invention provides a method of contacting a source of alkalinity with a source of carbon dioxide and then subjecting the solution with carbon dioxide to a condition suitable for the manufacture of a composition comprising a carbonate, a hydrogencarbonate or a carbonate and a bicarbonate. In certain embodiments, the present invention provides for contacting a source of alkalinity with a source of carbon dioxide and placing the solution in a composition suitable for the manufacture of a carbonate, bicarbonate or sulphate salt and a saponin salt, including A method of separating the composition of the sinker. Although many sources of alkalinity also contain divalent cations (e.g., Ca2+, Mg2+), the above conditions are also suitable for use in the manufacture of compositions containing separable precipitates (e.g., CaC〇3, MgC〇3). The source of alkalinity containing divalent cations depends on the availability of a particular location; it is originally from a variety of sources. Such sources include (but are not limited to) :: waste, sea water, dripping water, hard water, fresh water containing digested rocks and minerals (eg, square, stone, metal-containing materials such as serpentine and ritual) Any other suitable source of riding. The source of alkalinity in the original form based on the present invention 72 201038477 need not be present in the form of an aqueous solution. As such, the source of the assay may include, for example, fossil fuel combustion ash such as fly ash, bottom ash or boiler slag, provided that such materials provide a source of alkalinity when processed by water. In some locations, industrial waste streams derived from various industrial processes provide a source of conventional alkalinity and, in some embodiments, sources of divalent cations and/or scorpion removers (e.g., metal hydroxides). Such waste streams include, but are not limited to, mining waste; fossil fuel combustion ash (such as combustion ash such as fly ash bottom ash, steel slag); slag (such as iron slag, phosphorus slag); cement kiln waste, refining / petrochemical Refined waste (such as oilfield and sub-fired coal bed brine); coal seam waste (such as gas production drip and coal bed brine); papermaking waste; water softening waste drip (such as ion father exchange effluent); 7 plus waste; agricultural waste, · metal Surface treatment waste, pH pH textile waste and caustic sludge. In addition, it is described in the U.S. Patent Application No. 12/Injury, No. 692 filed on June 17th of the year (the full text is used in the way of the fossil of the common waste source of metal oxides in this paper. A combination of ash and brittle and a metal-containing material which is described in U.S. Patent Application Serial No. 5, filed on Jul. 1 ug. Any combination of the sources of assay described herein may be mixed and matched for the purpose of carrying out the invention. For example, it contains metal oxalate = material (such as vermiculite and dexterity and the source of this book) Combine for the purpose of carrying out the invention. In some of the money, the customary test source for preparing the hair secret is water (such as water wire such as sea core table_water), and the specific place of the implementation of the present invention 73 201038477 is reduced. Suitable for alkalinity sources, including one or J, cations (such as alkaline earth metal cations such as Ca2+ and Mg2), in some specific examples, the test source contains Divalent _ sub, wherein = equal divalent cations contain soil cations In some embodiments, the soil metal cation comprises a combination of 35. In some embodiments, the source of the assay comprises from 5 〇 to 5 〇, 〇〇〇卯 melon, 5 〇 to 40,000 ppm, An amount of 50 to 2 ppm, 1 to 1 paw, 2 to 5000 ppm, or 400 to 1 ppm. In some specific examples, the source of the verification Contains from 5〇 to 4〇, 〇〇〇ppm, 5〇 to 20,000ppm, 100 to i〇〇〇〇ppm, 2〇〇 to i〇, 〇〇〇ppm, 5〇〇 to 5000ppm, or 5〇 〇 to the amount of 25 〇〇 ppm. In some specific examples, when both Ca and Mg 2+ are present, the ratio of ca2+ to Mg2+ (ie, Ca2+: Mg2+) is 1: 1 to 1: 2.5; : 2.5 to 1: 5 ; 1 : 5 to 1: 10 · ' 1 : 1 to 丨 : 25 ; 丨 : 25 to 1: 5 〇 ; 丨 : 5 〇 to i : 100 ; 1 : 100 to 1: 150 ; 1 : 15〇 to i : 2〇〇; 1 : 2〇〇 to i : 250 ' 1 . 250 to 1 · 5〇〇; 1 : 500 to 1: 1〇〇〇 or its range. For example, in a certain In some specific examples, the ratio of Ca2+ to Mg2+ in the alkalinity source is 1: 1 to 1: 10; 1 : 5 to i : 25 ; i : 1 〇 to 1: 50 ; i : 25 to 1: 100 ; 1 : 50 to ! : 5 〇〇 ; or 1: 1 〇〇 to 丨 : 1〇〇〇. In some embodiments, the ratio of PCT 82+ to Ca 2+ in the source of alkalinity (ie, Mg2+ : Ca 2+ ) is 1 : 1 to } : 2 5 ; i : 2 5 to! : 5 ;]: 5 to i : 10 ; 1 : 10 to 1: 25 ; 1 : 25 to 1: 50 ; 1 : 50 to 1: 1 ; 1 : 100 to 1: 150 ; ! : 200 ; 1 : 2〇〇 to i : 25〇 ; 1 : 250 to 1: 500 ; 丨 : 5〇〇 to i : 1000 or its range. For example, 74 201038477 In some embodiments, the ratio of Mg2+ to Ca2+ in the alkalinity source is j: 1 to 1: 10; 1: 5 to 1: 25; 1: 10 to i: 5; i: 25 to i : 1〇〇; 1 : 50 to 1: 500; or 1: 1 to! : 1〇〇〇. The alkalinity source may include fresh water, light salt water, sea water or brine (such as natural brine or artificial brine such as geothermal plant wastewater, desalination plant wastewater) and other brines with a salinity greater than fresh water, either of which may be natural or artificial and Any of them may contain divalent cations. Light salt water is salty than fresh water but not as salty as sea water. The light brine has a salinity ranging from about 0.5 to about 35 ppt (parts per thousand). The seawater is derived from sea, ocean or any other salt water having a salinity ranging from about 35 to about 50 ppt. The brine is saturated with salt or near-saturated water. The brine has a salinity of about 50 ppt or more. In some specific examples, the source of alkalinity is a source of fresh water rich in minerals (e.g., rich in calcium and/or rich in locks). In some embodiments, the source of alkalinity is selected from the group consisting of sea, ocean, lake, swamp, estuary, lagoon, surface brine, deep brine, natural lake, marine or similar source of natural brine. In some embodiments, the source is the surface brine. In some embodiments, the source of alkalinity is underground culvert. In some embodiments, the source of alkalinity is a deep brine. In some specific examples, the source of alkalinity is Ca-Mg-Na-(KH:1)

Na-(Ca)-S04-Cl、Mg-Na-(Ca)-S04-Cl、Na-C03-Cl 或 Na-C03-S04-Cl滷水或其蒸發鹽,如2009年11月25日申 請名為’’Method and Systems for Utilizing Salts”之美國臨 時專利申請案第61/264,564號中所述般。在某些具體實例 中’鹼度來源係一選自地熱廠廢水或淡化廠廢水之人為滴 水。 75 201038477 淡水經常係鹼度之慣用來源,其可另外包含鹼土金屬 之二價陽離子如Ca2+及Mg2+。可使衫種適合淡水來源 中之任-者,包括關從相料含礦物之來源至相對富含 礦物之來源的淡水來源。富含礦物之淡水來源可為天缺 的,包括多種硬水來源、湖(如驗性湖)或内海(如土耳其之 Lake Van)中之任一者。富含礦物之淡水來源亦可為人為 的。例如’缺乏義之(軟)水可與二價雜子如驗土金屬 陽離,(如Ca、Mg等)來源接觸以產生一適合用於本文 所述系統及方法的富含礦物之水。可湘任何慣时驗程 序(如添加固體、懸浮液或溶液)將鹽、礦物及類似物加入 或本文所述之任何其他麵之水)中以提供本發明驗 又來源。在某些具體實例中,可將選自Ca2+及Mg2+之二 =陽=加人淡水中以產生含有⑸+及/或吨2+之驗度來 Γ„體實例中’可將選自Na+AK+之單價陽離子 二二由以產生含有Na+及’或κ+之鹼度來源。在某些 ’含有Ca2+之淡水係與含有金屬係酸鹽之材 二物分(如飛灰、底灰、鋼爐潰)或其產物或加工形 驗度二。上文所述組合組合以產生包含_及鎂陽離子之 廠=某ί具體實例中,驗度來源可由亦提供廢氣流之工 為:二I如/’、在水冷卻工廠’如在海水冷卻工薇中,已 有碳酸_ 部之水然後可用作製造本發明組成物(如含 水。必^時,酸_或碳酸鹽及碳酸氣鹽之沉殿物)之 、,該水可在進入本發明處理器或處理器子系統 76 201038477 (氣-液接顧、氣鲁固接觸器)之前先經冷卻。此類方法 例如)單程冷卻系統使用。例如,城市或農業供水 =用作工廠之單程冷m紐可將源自工廠之水用於 製造本發明組成物(如⑽物),其巾輸丨水具有較低硬度 及較高純度。 質子去除劑及進行質子去除之方法 本發明方純括錄度來_叫來源翻,然後使 带二乳化碳溶祕於適合製造含有魏κ酸氫鹽或碳 酸鹽及碳酸氫鹽之組成物的條件下。此等條件亦適合用於 製造含有可分離沉澱物(如CaC〇3、MgC〇3)之組成物。 在某些具财财’本發明提供使驗度來_二氧化碳來 源接觸,然後使該溶液處於適合製造含有*酸鹽、碳酸氮 鹽或碳酸鹽及碳酸氫鹽之組成物,包括製造含有可分離 沉澱物之組成物的條件下之方法。不欲受理論所限制,鹼 度來源與C〇2來源接觸導致c〇2溶入鹼度來源中並產生 碳酸,一種與碳酸氫鹽及碳酸鹽呈平衡狀態之物種。為 製造含有碳酸鹽可分離沉澱物,自含有鹼度來源及溶解 C〇2之溶液中之多種物種(如碳酸、碳酸氫鹽、鋥等)去除 質子而使平衡朝向碳酸鹽移動。去除質子時,更多C02 進入溶液中。在某些具體實例中,使用質子去除劑及/或 方法並使鹼度來源與C02來源接觸以增加一沈澱反應相 中C〇2之吸收(其中ρΉ可保持固定、增加或甚至降低), 接著快速去除質子(如藉由鹼的添加)以使含碳酸鹽沈澱 77 201038477 物快速賴。在料具體實财,f子絲缺/或方法 係=於控制-特定碳酸鹽多晶形物之生長並因此決定含 有石厌酸鹽、奴酸氫鹽或碳酸鹽及碳酸氫鹽之最終組成 物:在某些賤實例巾,質子去除誠/或方法係用於有 利碳酸氫鹽之形成並因此決定含有破酸鹽、碳酸氮 破酸鹽及碳酸氫鹽之最終組成物。質子可由多種物種(如 碳酸、碳酸氫鹽、經等)藉由任-慣用方法,包括(但不限 於)使用天然質子去除劑、使用微生物及真菌、使用合成 化子質子去除劑、回收人造廢物流及利用電化學構件 除。 天然質子去除劑涵蓋任何可見於可產生或具有驗性局 部壞境之寬廣環境巾的許錄劑。某些具體實例提供天 然質子去除劑’包括在添加至溶液巾後產线性環境之礦 物。此等礦物包括(但不限於):石灰(Ca〇);方鎮石_〇广 氫氧化鐵礦(如針鐵礦及褐鐵礦);及火山灰。本文提供用 於消化此料物及含有料杨之岩^的方法。某些呈體 實例提供聽树作為質子去除劑総,其水體/包含 碳酸鹽、硼酸鹽、硫酸鹽或硝酸鹽鹼度或其某一組合。任 何驗性滴水(如表面·、地下滷水、深層滷水等適合 用於本發财作為鹼度來源及質子去_來源。在某些具 體實例中’含有碳酸歸度之表面滷水提供―質子去除劑 來源。在某些具體實财’含有爾躲度之表面滴水提 供-質子去_來源。在祕㈣實财,含有碳酸鹽驗 度之地下滷水提供一質子去除劑來源。在某些具體實例 78 201038477 中,含有硼酸鹽鹼度之地下滷水提供一質子去除劑來源。 在某些具體實例中,含有碳酸鹽鹼度之深層滷水提供一質 子去除劑來源。在某些具體實例中,含有硼酸鹽鹼度之深 層滷水提供一質子去除劑來源。自然鹼性水體之實例包括 (但不限於)表面水來源(如驗性湖如加州之Mono Lake)及 地下水來源(如驗性水層如位於加州之Searles Lake的深地Na-(Ca)-S04-Cl, Mg-Na-(Ca)-S04-Cl, Na-C03-Cl or Na-C03-S04-Cl brine or its evaporated salt, as applied for on November 25, 2009 U.S. Provisional Patent Application Serial No. 61/264,564, the disclosure of which is incorporated herein by reference in its entirety in its entirety, in its entirety, in its entirety, the <RTIgt; 75 201038477 Fresh water is often a common source of alkalinity, which may additionally contain divalent cations of alkaline earth metals such as Ca2+ and Mg2+. It can be used to suit any source of fresh water, including sources ranging from minerals to phase materials. A freshwater source that is relatively rich in mineral sources. Sources of mineral-rich freshwater can be scarce, including any of a variety of hard water sources, lakes (such as lakes in nature) or inland seas (such as Lake Van in Turkey). Mineral-derived freshwater sources can also be artificial. For example, 'deficient (soft) water can be contacted with divalent heteroses such as soil-measuring metal cations (such as Ca, Mg, etc.) to produce a suitable The mineral-rich water of the system and method. Any customary time test procedure (such as adding solids, The suspension or the addition of salts, minerals and the like to the water of any other surface described herein to provide a source of the invention. In some embodiments, two selected from the group consisting of Ca2+ and Mg2+ may be used. Yang = adding fresh water to produce a test containing (5) + and / or tons 2+. In the example, the monovalent cation selected from Na + AK + can be used to produce Na + and / or κ + Source of alkalinity. In some 'a fresh water system containing Ca2+ and a second substance containing a metal acid salt (such as fly ash, bottom ash, steel furnace collapse) or its product or processing shape II. In the specific combination of the above-mentioned combination to produce a plant containing _ and magnesium cations, the source of the test may be provided by the work of providing the exhaust gas stream: two I/, in a water-cooling plant, such as a seawater cooler. In Wei, the water of the carbonate has been used to make the composition of the present invention (such as water, must be, acid or carbonate and carbonate), and the water can enter the present The processor or processor subsystem 76 201038477 (gas-liquid contact, gas-lubricated contactor) is cooled prior to the invention. Such methods are used, for example, in a single pass cooling system. For example, urban or agricultural water supply = one-way cold m-link used as a factory. The water from the factory can be used to make the composition of the present invention (e.g., (10)), which has a lower hardness and higher purity. Proton-removing agent and method for performing proton removal The present invention is purely recorded, and then the second-emulsified carbon is dissolved in a composition suitable for producing a composition containing hydrogen hydride or carbonate and bicarbonate. Under conditions. These conditions are also suitable for the manufacture of compositions containing separable precipitates such as CaC〇3, MgC〇3. In some possessions, the present invention provides for the contact of a carbon dioxide source to be contacted, and then the solution is in a composition suitable for the manufacture of an acid salt, a carbonate salt or a carbonate and a hydrogencarbonate, including the manufacture of a separable product. A method of the composition of the precipitate. Without wishing to be bound by theory, contact of the source of alkalinity with the source of C〇2 results in the incorporation of c〇2 into the source of alkalinity and the production of carbonic acid, a species that is in equilibrium with bicarbonate and carbonate. To produce a carbonate-separable precipitate, the protons are removed from a variety of species (e.g., carbonic acid, bicarbonate, hydrazine, etc.) in a solution containing a source of alkalinity and dissolved in C〇2 to shift the equilibrium toward the carbonate. When protons are removed, more C02 enters the solution. In some embodiments, a proton-removing agent and/or method is used and the source of alkalinity is contacted with a source of CO 2 to increase the absorption of C〇2 in a precipitation reaction phase (wherein pΉ can remain fixed, increased or even decreased), and then Rapid removal of protons (such as by the addition of a base) to quickly precipitate the carbonate-containing precipitates 77 201038477. In the specific material, the f-filaments/or method = control of the growth of the specific carbonate polymorph and thus the final composition containing the stone analate, hydrogen hydride or carbonate and bicarbonate : In some case examples, the proton removal process is used to facilitate the formation of bicarbonate salts and thus to determine the final composition containing the acid salt, the carbonate salt and the bicarbonate. Protons can be used by a variety of species (eg, carbonic acid, bicarbonate, by, etc.) by any conventional method including, but not limited to, the use of natural proton-removing agents, the use of microorganisms and fungi, the use of synthetic proton-removing agents, and the recycling of artificial waste. Logistics and the use of electrochemical components to remove. Natural proton-removing agents cover any re-recording agent that can be found in a wide range of environmentally-friendly tissues that can produce or have an imperfect local environment. Some specific examples provide natural proton-removing agents' including minerals that produce a linear environment after addition to a solution towel. Such minerals include (but are not limited to): lime (Ca〇); Fangzhen Stone _ 〇 Hydroxide (such as goethite and limonite); and volcanic ash. This document provides a method for digesting this material and containing the rock of the material. Some of the present examples provide a tree of protons as a proton-removing agent, the body of water/containing carbonate, borate, sulfate or nitrate alkalinity or some combination thereof. Any veritable drip (such as surface, underground brine, deep brine, etc. is suitable for use in this wealth as a source of alkalinity and protons. Source. In some specific examples, the surface brine containing carbonation provides a proton-removing agent. Source. In some specific real money's surface drip provided - proton to _ source. In the secret (four) real wealth, the underground brine containing carbonate test provides a source of proton remover. In some specific examples 78 In 201038477, the underground brine containing borate alkalinity provides a source of proton-removing agent. In some embodiments, the deep brine containing carbonate alkalinity provides a source of proton-removing agent. In some embodiments, borate-containing The deep brine of alkalinity provides a source of proton-removing agents. Examples of natural alkaline waters include, but are not limited to, surface water sources (eg, lakes such as Mono Lake in California) and groundwater sources (eg, water layers such as California) Deep of Searles Lake

質驗性水層)。其他具體實例提供源自乾鹼性水體之沈積 物’如沿著非洲Great Rift Valley之Lake Natron的硬層之 使用。在某些具體實例中,使用在正常代謝中分泌鹼性分 子或溶液之生物作為質子去除劑。此等生物之實例為產生 鹼性蛋白酶之真菌(如具有9之最適pH的深海真菌焦曲 霉〇4孕^幻7/郎及產生鹼性分子之細菌(如青藍菌如 見於英國Columbia之Atlin濕地中的鞘絲藻办叹 切·)’其因光合作用之副產物而增加pH)。在某些具體實 =中:生物係用於製造質子去除劑,其中該生物巴氏 芽孢桿菌(細’細卿·•卜其將尿素水解成氨)代謝污染 物(如尿素)以製造質子去除劑或含有質子去除劑(如氨、氫 之溶液。在某些具體實财,生物係與沈殿反應 心物*開培養,其巾f子去除劑或含有f子去除劑之溶 液係用於加人錢贩應混合财。在料㈣實例中, =然,二造之酶係與質子去除·合使用以使含有碳酸 =。組成物(如沉澱物) ^兔贿酶係—由植物及動物所製造之酶,、 水溶液中碳酸變換成碳酸氫鹽。照此’碳_酶係 79 201038477 南c〇2之溶解並加速含有碳酸鹽、碳酸氫鹽或碳酸鹽及 碳酸氫鹽之組成物(如沉澱物)的形成,如2009年1〇月 19 日中請名為”Methods and systems for treating industrial waste gases”之美國臨時專利中請案第61/252,929號中所 進一步詳細描述般。 進行質子去除之化學試劑一般係指大量製造之市售合 成化學試劑。例如,去除質子之化學試劑包括(但不限於) 氫氧化物、有機鹼、超強鹼、氧化物、氨及碳酸鹽。氫氧 化物包括於溶液中提供氫氧根陰離子之化學物種,包括 (例如)氫氧化鈉(NaOH)、氫氧化鉀(K0H)、氫氧化約 (Ca(OH)2)或氫氧化鎂(Mg(〇H)2)。有機鹼係含碳分子,其 一般為含氮鹼,包括一級胺如甲基胺、二級胺如二異丙基 胺一級胺如二異丙基乙基胺、芳族胺如苯胺、雜芳族如 吡°定、咪唾及苯并咪唾和其多種形式物。在某些具體.實例 中,選自°比啶、甲基胺、咪唑、苯并咪唑、組胺酸及磷氮 環之有機驗係用於由形成含有碳酸鹽、碳酸氫鹽或碳酸 鹽及碳酸氫鹽之組成物(如沉澱物)之多種物種(如碳酸、 碳酸氫鹽、鋰等)中去除質子。在某些具體實例中,氨係 用於提高pH至-足以自二價陽離子溶液及工業廢物流形 成含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之組成物 (如沉澱物)之程度。適合用作質子去除劑之超強鹼包括乙 醇鹽、醯胺化鈉(NaNH2)、氫化鈉(NaH)、丁基鋰、二異丙 基酿胺化鐘、二6舰胺倾及雙(三?_)軸化鐘。氧 化物,包括(例如)氧化鈣(CaO)、氧化鎂(MgO)、氧化鳃 201038477 (SrO)、氧化鈹(BeO)及氧化鋇(Ba〇)亦為可使用之適合質子 去除劑。用於本發明之碳酸鹽包括(但不限於)碳酸鈉。 除了包含感興趣之陽離子及其他適合金屬形式物之 外,源自各種工業程序之廢物流可提供質子去除劑。此等 廢物/;IL包括(但不限於)採礦廢物;化石燃料燃燒灰分(如燃 燒灰分如飛灰、底灰、鍋爐渣);礦渣(如鐵礦渣、含磷礦 渣)’水泥窯廢物;煉油/石化精製廢物(如油田及曱烷煤層 滷水);煤層廢物(如產氣滷水及煤層滷水);造紙廢物;水 軟化廢滷水(如離子交換流出物);矽加工廢物;農業廢物; 金屬表面處理廢物;高pH紡織廢物;及苛性污泥。採礦 廢物包括任何由地面提取金屬或另一珍貴或有用礦物之 廢物。在某些具體實例中,利用採礦廢物以改善pH,其 中*亥廢物係選自下列各者:源自Bayer紹提取程序之紅 泥;由海水提取鎂之廢物(如Mg(〇H)2,如加州Moss Landing中所見者);及源自採礦程序,包括遞取之廢物。 例如,紅泥可用於改善pH,如2009年3月18日所申請 之美國臨時專利申請案第61/161369號所述般,將該案全 文係以引用方式併入本文中。另外描述於2〇〇9年6月17 曰申請之美國專利申請案第12/486,692號中(將其揭示内 各全文以引用方式併入本文中)中金屬氧化物之共同廢物 來源之化石燃料燃燒灰分、水泥窯灰及礦渣可單獨使用或 與其他質子去除劑組合使用以提供本發明之質子去除 劑。經由動物廢物或過度肥料使用所致之農業廢物可包含 氫氧化鉀(KOH)或氨(NH3)或兩者。照此,農業廢物在本發 81 201038477 可用作質子去除劑。經常將此農業廢 集於池塘巾,但其亦可向τ滲人水層中並可由其存取 1更用。 電化學方法係另一種自溶液中多種物種去除質子的方 /、係藉由〉谷質(如碳酸或碳酸氫鹽之去質 劑(如鋰或水之去暂早彳η,…所早。如1 1于化)次由/合 ^ =舌質子化)去除貝子。例如,若由co2溶解 之質子符合或超過由溶質分子電化學去除之質子 時、、,造成溶劑質子化。在某些具體實例中,低電壓電化學 3係用於去除質子,例如c〇2與驗度來源接觸並溶於其 、時。在某些聽實财,溶於*含驗絲源之水溶液中 =〇2係經低電壓電化學方法處理以自碳酸、碳酸氮鹽、 I或任何C〇2溶解所形成之物種或其組合去除質子。低 電壓電化學方法絲作在2、1.9、1.8、1.7或h6 v或更 低,如1,5、1.4、1.3、h2、hl v或更低,如lv或更低, 如〇.9V或更低、0.8V或更低、0.7V或更低、0.6V或更低、 〇.5V或更低、〇.4v或更低、〇.3V或更低、〇 2v或更低或 0.1 V或更低之平均電壓下。無產生氯氣之低電壓電化學方 法係本發明系統及方法所慣用。無產生氧氣之去除質子的 低電壓電化學方法亦為本發明系統及方法所慣用。在某此 具體實例中,低電壓方法在陽極無產生任何氣體。在某些 具體實例中,低電壓電化學方法於陰極產生氫氣並將其& 送至陽極且於該處將氫氣轉化成質子。無產生氫氣之電化 學方法亦係慣用的。在某些情況下,去除質子之電化學方 法不產生任何氣態副產物。進行質子去除之電化學方法係 82 201038477 另外描述於2008年12月24日申請之美國專利申請案第 12/344,019號;2008年12月23曰申請之美國專利申請 案第12/375,632號;2008年12月23日申請之國際專^ 申請案號PCT/US08/088242; 2009年1月28日中請之國 際專利申請案號PCT/US09/32301 ;及2009年6月24日 申請之國際專利申請案號PCT/US09/48511,將該等申請 案之全文各以引用方式併入本文中。 或者,電化學方法可經由(例如)氣-鹼法或其改良法用 於製造苛性分子(如氳氧化物)。電極(即陰極及陽極)可存 在於包含鹼度來源或带C〇2溶液的裝置中,且選擇性障 壁’如隔膜可分隔該等電極。用於去除質子之電化學系統 及方法可產生可經收集並用於其他目的之副產物(如氫)。 可用於本發明系統及方法中之其他電化學方法 限於)彼等2008年7月16曰申請之美國臨時專利申嘖案 第61/〇81,299號及2008年8月25日申請之美國臨時專 利申請案第61/091,729號中所述者;將其等之揭示内容以 ㈣方式併人本文巾。可使上述質子去除冑,丨來源及進行 質子去除之方法的組合。 組成物 本發明組成物如上述般可經進一步加工以產生含有沉 澱物之組成物,其可包含由共沈澱所產生之若干碳酸鹽及 /或若干碳酸鹽礦物相。例如,該沈澱物可包含碳酸鈣(如 方解石)以及奴酸鎮(如二水碳鎂石)。沈殿物亦可包含呈單 83 201038477 石一包), 條件而定,該沈蹩物τ兔,序沈瓜時,視獲得沈澱物之 上富含(如95%至如9G%i 95%)或實質 物可包含-定量之其他碳;他礦物相,編 相’其中所«物姆.佔沈‘之t9Qti== 實例中’將瞭解沈殿物除了碳酸鹽之外還可包含二或多種 A氧化物(如Ca_2、Mg(GH)2)。亦應瞭解沈澱物中所存 在之任何碳酸鹽錢氧化物可為完全或部分非晶質。在某 些具體實例中,碳酸鹽及/或氫氧化物為完全非晶質。 雖然因起始物之可變性而可能存在許多不同之含碳鹽 及化合物,但含有碳酸鎂、碳酸鈣或其組合之沈澱物係特 別適用的。在某些具體實例中,沈澱物包含白雲石 (CaMg(C03)2)、原白雲石、碳約鎮礦(CaMg3(c〇3)4)及/ 或水碳鎂鈣石(Ca2Mg„(C〇3)1;rH2〇),其係含鈣及鎂之碳 酸鹽礦物。在某些具體實例中,沈澱物包含呈一或多個選 自方解石、霰石、六方方解石或其組合之相之碳酸舞。在 某些具體實例中,沈澱物包含選自以下各者之碳酸I弓水合 形式物·六水碳妈石(CaC〇3.6H2〇) '非晶質碳酸名弓 (CaC〇3’nH2〇)、一水方解石(CaC〇3.H2〇)或其組合。在竿 些具體實例中,沈澱物包含碳酸鎂,其中碳酸鎂不具水合 水。在某些具體實例中,沈澱物包含破酸钱’其中碳酸鎮 可具有選自1、2、3、4或超過4個水合水之許多不同水 84 201038477A qualitative water layer). Other specific examples provide for the use of deposits derived from dry alkaline waters such as the hard layer along Lake Natron in the Great Rift Valley, Africa. In some embodiments, an organism that secretes alkaline molecules or solutions in normal metabolism is used as a proton-removing agent. Examples of such organisms are fungi that produce alkaline proteases (such as the deep-sea fungus of the optimum pH of 9), the genus 7 lang, and the bacteria that produce basic molecules (such as blue-green bacteria such as Atlin found in Columbia, UK). The spirulina in the wetland sighs ·) 'It increases the pH due to by-products of photosynthesis. In some concrete cases: the biological system is used to make a proton-removing agent, wherein the organism Bacillus bacillus (fine 'fine qing · · Buqi hydrolyze urea into ammonia) metabolizes pollutants (such as urea) to produce proton removal Or a proton-removing agent (such as ammonia, hydrogen solution. In some specific real money, the biological system and the Shen Dian reaction heart * open culture, its towel f remover or solution containing f sub-removal agent is used for adding In the case of material (4), in the case of material (4), the second enzyme is removed and used together to make it contain carbonic acid = composition (such as sediment) ^ rabbit bribe system - by plants and animals The enzyme produced, and the carbonic acid in the aqueous solution is converted into bicarbonate. As described herein, the carbon-enzyme system 79 201038477 dissolves and accelerates the composition containing carbonate, bicarbonate or carbonate and bicarbonate ( The formation of a precipitate, for example, is described in detail in U.S. Provisional Patent No. 61/252,929, entitled "Methods and Systems for Treating Industrial Waste Gas," on January 19, 2009. Chemical agents removed generally refer to Commercially available synthetic chemical reagents manufactured by volume. For example, chemical reagents for removing protons include, but are not limited to, hydroxides, organic bases, superbases, oxides, ammonia, and carbonates. Hydrogenates are included in the solution to provide hydrogen. Chemical species of oxyanion anion including, for example, sodium hydroxide (NaOH), potassium hydroxide (K0H), hydrogen hydroxide (Ca(OH)2) or magnesium hydroxide (Mg(〇H)2). a carbon-containing molecule, which is generally a nitrogen-containing base, including a primary amine such as methylamine, a secondary amine such as a diisopropylamine primary amine such as diisopropylethylamine, an aromatic amine such as aniline, a heteroaromatic group such as Pyridoxine, imipenem, and benzopyrene and various forms thereof. In some specific examples, organically selected from the group consisting of pyridine, methylamine, imidazole, benzimidazole, histidine, and phosphorus-nitrogen ring The test system is used to remove protons from various species (such as carbonic acid, bicarbonate, lithium, etc.) that form a composition containing carbonates, bicarbonates or carbonates and bicarbonates (such as precipitates). In the examples, ammonia is used to raise the pH to - sufficient to form carbonates from divalent cation solutions and industrial waste streams. To the extent of the composition of bicarbonate or carbonate and bicarbonate (such as precipitates). Superbases suitable for use as proton removers include ethoxide, sodium amide (NaNH2), sodium hydride (NaH), Butyl lithium, diisopropyl acetylation clock, bis 6 amine and double (tri?) axis clock. Oxides, including, for example, calcium oxide (CaO), magnesium oxide (MgO), cerium oxide 201038477 (SrO), beryllium oxide (BeO) and barium oxide (Ba〇) are also suitable proton-removing agents that can be used. The carbonates used in the present invention include, but are not limited to, sodium carbonate. In addition to other suitable metal forms, waste streams derived from various industrial processes can provide proton-removing agents. Such wastes/;IL include (but are not limited to) mining waste; fossil fuel combustion ash (such as combustion ash such as fly ash, bottom ash, boiler slag); slag (such as iron ore slag, phosphorus slag) 'cement kiln waste; Refining/petrochemical refined waste (such as oilfield and decane coal bed brine); coal bed waste (such as gas-producing brine and coal-bed brine); papermaking waste; water-softening waste brine (such as ion exchange effluent); 矽 processing waste; agricultural waste; Surface treatment waste; high pH textile waste; and caustic sludge. Mining Waste includes any waste that is extracted from the ground or another precious or useful mineral. In some embodiments, mining waste is utilized to improve pH, wherein the *Hai waste is selected from the group consisting of: red mud derived from the Bayer-Sauer extraction process; and magnesium-derived waste from seawater (eg, Mg(〇H)2, As seen in Moss Landing, California; and from mining procedures, including deported waste. For example, the red mud can be used to improve the pH as described in U.S. Provisional Patent Application Serial No. 61/161,369, filed on Mar. The fossil fuel of the common waste source of metal oxides in the U.S. Patent Application Serial No. 12/486,692, the entire disclosure of which is incorporated herein by reference. The combustion ash, cement kiln dust and slag may be used alone or in combination with other proton-removing agents to provide the proton-removing agent of the present invention. Agricultural waste resulting from the use of animal waste or over-fertilizer may comprise potassium hydroxide (KOH) or ammonia (NH3) or both. As such, agricultural waste can be used as a proton-removing agent in this issue 81 201038477. This agriculture is often collected in pond towels, but it can also be used in the water layer and can be accessed by it. Electrochemical methods are another way to remove protons from a variety of species in a solution. By using a barium (such as a demineralizer of carbonic acid or bicarbonate (such as lithium or water to prematurely 彳, ... early. For example, 1 1 in the chemical) sub-//^ = tongue protonation) remove the shellfish. For example, if a proton dissolved by co2 meets or exceeds a proton that is electrochemically removed by a solute molecule, the solvent is protonated. In some embodiments, the low voltage electrochemical 3 is used to remove protons, such as when c2 is contacted with and dissolved in a source of assay. In some of the real money, dissolved in the aqueous solution containing the silk source = 〇 2 is a low voltage electrochemical treatment of the species formed by the dissolution of carbonic acid, carbonate nitrogen, I or any C 〇 2 or a combination thereof Remove protons. The low voltage electrochemical method wire is made at 2, 1.9, 1.8, 1.7 or h6 v or lower, such as 1, 5, 1.4, 1.3, h2, hl v or lower, such as lv or lower, such as 〇.9V or Lower, 0.8V or lower, 0.7V or lower, 0.6V or lower, 〇.5V or lower, 〇.4v or lower, 〇.3V or lower, 〇2v or lower or 0.1V Or lower average voltage. Low voltage electrochemical methods without chlorine generation are conventionally employed in the systems and methods of the present invention. Low voltage electrochemical methods that do not produce oxygen to remove protons are also conventionally employed in the systems and methods of the present invention. In some specific examples, the low voltage method produces no gas at the anode. In some embodiments, a low voltage electrochemical process produces hydrogen at the cathode and sends it & to the anode where it is converted to protons. Electrochemical methods that do not produce hydrogen are also conventional. In some cases, the electrochemical method of removing protons does not produce any gaseous by-products. An electrochemical method for the removal of protons is disclosed in U.S. Patent Application Serial No. 12/344,019, filed on Dec. 24, 2008; International Patent Application No. PCT/US08/088242, filed on December 23, 2009; International Patent Application No. PCT/US09/32301, filed on January 28, 2009; and international patents filed on June 24, 2009 The application No. PCT/US09/48511, the entire contents of each of which is hereby incorporated by reference. Alternatively, the electrochemical method can be used to produce caustic molecules such as cerium oxide via, for example, a gas-alkali process or a modification thereof. The electrodes (i.e., the cathode and the anode) may be present in a device comprising a source of alkalinity or a solution with a C?2, and a selective barrier such as a membrane may separate the electrodes. Electrochemical systems and methods for removing protons can produce by-products (e.g., hydrogen) that can be collected and used for other purposes. Other electrochemical methods that may be used in the systems and methods of the present invention are limited to those of the U.S. Provisional Patent Application No. 61/81,299, filed on July 16, 2008, and the U.S. Provisional Application, filed on August 25, 2008 Patent Application No. 61/091,729; the disclosure of which is incorporated herein by reference. A combination of the above protons can be removed, the source of hydrazine and the method of proton removal. Compositions The compositions of the present invention may be further processed as described above to produce a composition comprising a precipitate which may comprise several carbonates and/or several carbonate mineral phases produced by coprecipitation. For example, the precipitate may comprise calcium carbonate (e.g., calcite) and niacin (e.g., dihydrate). The Shen Temple can also contain a single sheet of 83 201038477 stone, according to the conditions, the sinking object tau rabbit, the order of the melon, the top of the sediment is rich (such as 95% to 9G% i 95%) Or the substance may contain - quantification of other carbons; his mineral phase, the choreography of the t9Qti== in the example of 'the smug. s sink', it will be understood that the sacred matter can contain two or more kinds of A in addition to carbonate. Oxides (such as Ca 2 , Mg (GH) 2). It should also be understood that any carbonated money oxide present in the precipitate may be fully or partially amorphous. In some embodiments, the carbonate and/or hydroxide are completely amorphous. Although many different carbonaceous salts and compounds may be present due to the variability of the starting materials, precipitates containing magnesium carbonate, calcium carbonate or combinations thereof are particularly suitable. In some embodiments, the precipitate comprises dolomite (CaMg(C03)2), primary dolomite, carbon ore (CaMg3(c〇3)4), and/or hydrocalcium (Ca2Mg„(C) 〇3)1; rH2〇), which is a carbonate mineral containing calcium and magnesium. In some embodiments, the precipitate comprises carbonic acid in one or more phases selected from the group consisting of calcite, vermiculite, hexagonal calcite, or a combination thereof. In some embodiments, the precipitate comprises a carbonated hydrated form selected from the group consisting of: hexahydrate mascot (CaC〇3.6H2〇) 'amorphous carbonated bow (CaC〇3'nH2) 〇), monohydrate calcite (CaC〇3.H2〇) or a combination thereof. In some embodiments, the precipitate comprises magnesium carbonate, wherein the magnesium carbonate does not have hydrated water. In some embodiments, the precipitate comprises acid breaker Money' wherein the carbonated town may have a plurality of different waters selected from 1, 2, 3, 4 or more than 4 hydrated waters 84 201038477

合水中任一者。在某些具體實例中,沈澱物包含卜2、3、 4或超過4個之不同碳酸鎂相,其甲該等碳酸鎂相的水合 水數目不同。例如,沈澱物可包含菱鎂礦(MgC〇3)、水碳 鎮石(MgC〇3.2H2〇)、三水碳鎂石(MgC〇r3H2〇)、五水菱 鎂礦(MgCOr5H2〇)及非晶質碳酸鎂。在某些具體實例 中,沈澱物包括含有氫氧化物及水合水之鎂碳酸鹽如水纖 菱鎂礦(MgC〇3.Mg(〇H)r3H2〇)、水菱鎂礦 (Mg5(C03)4(0H)2.3(H20)或其組合。照此,沈殿物可包含 所有或部分本文_各種水合狀態之_、錢其組合的碳 酸鹽。親料亦可影響沈澱物之本f,其巾最快速之沈 澱速^係藉以所需相植晶溶液而達到。若無植晶,快速沈 ^可藉(例如)'时增城氣合物 產生較多非晶質成分。此外,阳命、、二其 則產生愈多非晶質錢物。愈尤版愈快,沈澱 沈殿期間調整主要離子比例可影響沈殿物 ====識著影響。例如二 沈殿物中碳酸…要=物叢:::低=石成為 财解石成為主要多晶形物。在二低 岣2皆存在時,沈澱物令Ca,M Γ+;體實例中,Ca及 為 1]至 1:2·5;1:2.5 至;:丨之; 至"25;1:25 至 1:5〇;1 : :1:1〇;1:1〇 5〇〇^ti5"〇L*〇 〇〇^:25〇;-25^- 5⑽至1:咖或_。例如,在某些具體 85 201038477 實例中,沈澱物中Ca2+與Mg2+之比例為1 : 1至1 : 10 ; 1 : 5 至 1 : 25 ; 1 : 10 至 1 : 50 ; 1 : 25 至 1 : 100 ; 1 : 50 至 1 : 500 ;或1 : 100至1 : 1000。在某些具體實例中,沈澱 物中 Mg2+與 Ca2+之比例(即 Mg2+ : Ca2+)為 1 : 1 至 1 : 2_5 ; 1 : 2.5 至 1 : 5 ; 1 : 5 至 1 : 10 ; 1 : 10 至 1 : 25 ; 1 : 25 至 1 : 50 ; 1 : 50 至 1 : 100 ; 1 : 100 至 1 : 150 ; 1 : 150 至 1 : 200 ; 1 : 200 至 1 : 250 ; 1 : 250 至 1 : 500 ;或 1 : 500至1 : 1000或其範圍。例如,在某些具體實例中,沈 澱物中Mg2+與Ca2+之比例為1 : 1至1 : 10 ; 1 : 5至1 : 25 ; 1 : 10 至 1 : 50 ; 1 : 25 至 1 : 100 ; 1 : 50 至 1 : 500 ; 或 1 : 100 至 1 : 1000 。 當本發明組成物至少部分衍生自鹼度來源時,該等組 成物可包含一或多種額外產物、聯合產物或其混合物以 指示驗度來源。例如,若驗度來源係海水,該一或多種 額外產物、聯合產物或其混合物包括:氯化物、鈉、硫、 鉀、溴化物、矽、锶及類似物。任何此類標記一般係以 小量,如低於20,000pppm,包括低於10,000ppm,如低 於5,000ppm,例如低於2000pppm或低於lOOOppm之量 存在。在某些具體實例中,標記係锶,在含有沉澱物, 例如CaC03如霰石之組成物中,銀可以10,000ppm或更 低之濃度摻入霰石晶格中。在某些具體實例中,沉澱物 可包含濃度範圍從3至10,000ppm,如從5至5000ppm, 包括5至lOOOppm,例如5至500ppm或5至lOOppm之 錄。 86 201038477 卜勺于人了含麵及/或鎂之組成物之外,本發明組成物可另 夕U 3矽、鋁、鐵及類似物。此等組成物可在本 及方法中被動地由加工可用原料中產生;然而,在其他具 ,實例中’此等組成物可藉由附屬物劑的添加蓄意地製 仟希望此等組成物(即另夕卜包含(例如)石夕、銘、鐵等之本 發明組成物)可改變含有該組餘之水泥的反應性或改變 由其所製成之固化水泥及混凝土的性質。例如,將含金屬 石夕酸鹽之㈣(如敝^、橄欖^等)可㈣本發明經過加 工以產生含有(例如)下列各者之沉澱物:非晶質矽石、非 晶質鋁矽酸鹽、晶質矽石、鈣矽酸鹽、鈣鋁矽酸鹽等。在 某些具體實例中,本發明組成物包含下列碳酸鹽:發石比 例之碳酸鹽(如碳酸鈣、碳酸鎂)及矽石:1 :丨至i : i 5 . 1 : 1.5 至 1 : 2 ; 1 : 2 至 1 : 2.5 ; 1 : 2.5 至 1 : 3 ; 1 : 3 至 1 · 3.5 , 1 · 3.5 至 1 · 4 ; 1 : 4 至 1 : 4.5 ; 1 : 4.5 至 1 : 5 · 1 · 5 至 1 . 7.5 ’ 1 . 7.5 至 1 : 1〇 ; 1 : 1〇 至 1 : μ ;或 1 : 15至1 :20或其範圍。在某些具體實例中,本發明組成物 包含下列碳酸鹽:矽石比例之碳酸鹽及矽石:1 : i至i : 5;1·5至1.10’或1.5至1:20。在某些具體實例中, 本發明組成物包含下列矽石:碳酸鹽比例之矽石及碳酸鹽 (如碳酸約、碳酸鎂):1 : 1至1 : 1.5 ; 1 : 1.5至1 : 2 ; 1 : 2 至 1 : 2.5 ; 1 : 2.5 至 1 : 3 ; 1 : 3 至 1 ·· 3.5 ; ! : 3 5 至 j : 4 ; 1 . 4 至 1 . 4.5 ’ 1 . 4.5 至 1:5; 1:5 至 1:75; 1 . 7.5 至 1 : ; 1 . 1〇 至 1 : 15 ;或 1 : 15 至 1 : 20 或其範 圍。在某些具體貝例中,本發明組成物包含下列梦石··碳 87 201038477 酸鹽比例之石夕石及碳酸鹽至1:5;ι:5至1:ι〇; 或1 . 5至1 . 20。照此,本發明組成物可包含石夕基材料及 至少一個碳酸鹽相。對於沉澱物而言,反應速率愈快者, 愈多矽基材料(如矽石)可摻入沈澱物中,假若矽基材料存 在於反應混合物中(即假若未在消化含有金屬矽酸鹽材料 後去除梦石)。 包含衍生自一氧化碳之工業來源之碳酸鹽、碳酸氫鹽 或碳酸鹽及碳酸氫鹽之組成物(如含有CaC〇3及/或 MgC〇3之沉澱物)可包含獲得二氧化碳(衍生自石化燃料 燃燒)之化石燃料(如煤、油、天然氣等)之相對碳同位素組 成(δ C)。單位為%。(每千板呎)之相對碳同位素組成(5nc) 值係兩穩定碳同位素(即12C和nc)相對於石化箭石標準品 (PDB標準品)之濃度比的量度。Any one of the combined waters. In some embodiments, the precipitate comprises two, three, four or more than four different magnesium carbonate phases, the number of hydrated water of the magnesium carbonate phases being different. For example, the precipitate may comprise magnesite (MgC〇3), water-carbon town stone (MgC〇3.2H2〇), tripartite (MgC〇r3H2〇), pentahydrate magnesite (MgCOr5H2〇) and non- Crystalline magnesium carbonate. In some embodiments, the precipitate comprises magnesium carbonate containing hydroxide and water of hydration such as water magnesite (MgC〇3.Mg(〇H)r3H2〇), hydromagnesite (Mg5(C03)4 (0H) 2.3 (H20) or a combination thereof. As such, the sedimentation may include all or part of the carbonates of the various hydration states, and the combination thereof. The parent may also affect the precipitate of the precipitate, and the towel is the most The rapid precipitation rate is achieved by the desired phase crystallization solution. If there is no crystallization, the rapid precipitation can be used to generate more amorphous components by (for example, 'Zengcheng gas compound. The more amorphous matter is produced, the faster the plate is, the more the main ion ratio can be adjusted during the sedimentation process, which can affect the sedimentation of the temple. ============================================================= Low = stone becomes the main polymorph of the calcite. In the presence of both lower 岣2, the precipitate makes Ca,M Γ+; in the case of the body, Ca and 1] to 1:2·5; 1:2.5 To;: 丨;; to "25; 1:25 to 1:5〇; 1: :1:1; 1:1〇5〇〇^ti5"〇L*〇〇〇^:25〇;- 25^- 5(10) to 1: Coffee or _. For example, in some specific 85 201 038477 In the example, the ratio of Ca2+ to Mg2+ in the precipitate is 1:1 to 1:10; 1:5 to 1:25; 1:10 to 1:50; 1:25 to 1:100; 1:50 to 1 : 500 ; or 1: 100 to 1: 1000. In some embodiments, the ratio of Mg 2+ to Ca 2+ in the precipitate (ie, Mg 2+ : Ca 2+ ) is 1:1 to 1: 2 _ 5 ; 1 : 2.5 to 1: 5 ; 1 : 5 to 1: 10 ; 1 : 10 to 1: 25 ; 1 : 25 to 1: 50 ; 1 : 50 to 1: 100 ; 1 : 100 to 1: 150 ; 1 : 150 to 1: 200 ; 200 to 1: 250; 1 : 250 to 1: 500; or 1: 500 to 1: 1000 or a range thereof. For example, in some specific examples, the ratio of Mg2+ to Ca2+ in the precipitate is 1:1 to 1: 10 ; 1 : 5 to 1: 25 ; 1 : 10 to 1: 50 ; 1 : 25 to 1: 100 ; 1 : 50 to 1: 500 ; or 1: 100 to 1: 1000 . When the composition of the present invention is at least partially When derived from a source of alkalinity, the compositions may comprise one or more additional products, combinations, or mixtures thereof to indicate the source of the assay. For example, if the source of the assay is seawater, the one or more additional products, combinations, or mixtures thereof include: chloride, sodium, sulfur, potassium, bromide, cesium, strontium, and the like. Any such label is typically present in minor amounts, such as below 20,000 pppm, including below 10,000 ppm, such as below 5,000 ppm, such as below 2000 pppm or below 1000 ppm. In some embodiments, the labeling system is used, and in a composition containing a precipitate such as CaC03 such as vermiculite, silver may be incorporated into the vermiculite lattice at a concentration of 10,000 ppm or less. In some embodiments, the precipitate may comprise a concentration ranging from 3 to 10,000 ppm, such as from 5 to 5000 ppm, including 5 to 1000 ppm, such as 5 to 500 ppm or 5 to 100 ppm. 86 201038477 In addition to the composition of the face and/or magnesium, the composition of the present invention may be additionally made of U 3 , aluminum, iron and the like. Such compositions can be passively produced from the processable raw materials in the present methods and methods; however, in other instances, such compositions can be deliberately prepared by the addition of ancillary agents. That is, the composition of the present invention containing, for example, Shi Xi, Ming, and iron, can change the reactivity of the cement containing the remainder of the group or change the properties of the cured cement and concrete produced therefrom. For example, (4) of a metal-containing oxalate salt (such as ruthenium, olive, etc.) may be processed. (4) The present invention is processed to produce a precipitate containing, for example, the following: amorphous vermiculite, amorphous aluminum ruthenium Acid salt, crystalline vermiculite, calcium citrate, calcium aluminate, and the like. In certain embodiments, the compositions of the present invention comprise the following carbonates: carbonates in the proportion of stone (such as calcium carbonate, magnesium carbonate) and vermiculite: 1 : 丨 to i: i 5 . 1 : 1.5 to 1: 2 ; 1 : 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1 · 3.5 , 1 · 3.5 to 1 · 4 ; 1 : 4 to 1: 4.5 ; 1 : 4.5 to 1: 5 · 1 · 5 to 1. 7.5 ' 1 . 7.5 to 1: 1 〇; 1 : 1 〇 to 1: μ; or 1: 15 to 1: 20 or its range. In some embodiments, the compositions of the present invention comprise the following carbonates: a carbonate in the proportion of vermiculite and vermiculite: 1: i to i: 5; 1.5 to 1.10' or 1.5 to 1:20. In certain embodiments, the compositions of the present invention comprise the following vermiculite: carbonate in proportion to carbonate and carbonate (eg, carbonic acid, magnesium carbonate): 1:1 to 1:1.5; 1 : 1.5 to 1:2; 1 : 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1 · · 3.5 ; ! : 3 5 to j : 4 ; 1 . 4 to 1. 4.5 ' 1 . 4.5 to 1:5 ; 1:5 to 1:75; 1. 7.5 to 1: ; 1. 1 to 1: 15; or 1: 15 to 1: 20 or its range. In some specific examples, the composition of the present invention comprises the following Dreamstone·carbon 87 201038477 acid salt ratio of stone and carbonate to 1:5; ι:5 to 1:ι〇; or 1.5 to 1. 20. As such, the compositions of the present invention may comprise a stone base material and at least one carbonate phase. For precipitates, the faster the reaction rate, the more sulfhydryl-based materials (such as vermiculite) can be incorporated into the precipitate, provided that the sulfhydryl-based material is present in the reaction mixture (ie, if the metal phthalate material is not being digested) After removing the dream stone). Compositions comprising carbonates, bicarbonates or carbonates and bicarbonates derived from carbon monoxide, such as precipitates containing CaC〇3 and/or MgC〇3, may comprise carbon dioxide (derived from fossil fuel combustion) The relative carbon isotope composition (δ C) of fossil fuels (such as coal, oil, natural gas, etc.). Unit is%. The relative carbon isotope composition (5nc) value (per thousand plates) is a measure of the concentration ratio of two stable carbon isotopes (ie, 12C and nc) to petrochemical stone standard (PDB standard).

源、*<-<日狄。〇 c/ C 樣品-13c/12cPDB 標準品)/ I3C/12CPDB 標準品]χίοο 本發明組成物之δ13(:值係用作二氧化碳氣體來 〇 c值可隨來源(即化石燃料來源)不同而變, 但本發明組成物之δ13c值一般(但非必然)在_9%。至_3 5 %〇之 範圍内。在某些具體實例中,本發明組成物之snc值係在 -1%〇與-50%。之間、在_5%。與_4〇%〇之間、在_5%。與_35%〇之 間、在-7%〇與-40%。之間、在_7%。與·35%。之間、在_9%〇與 -40%。之間或在_9%。與-35%。之間。在某些具體實例中,本 發明組成物之513C值係小於(即更負於)_3%〇、_5%。、_6%〇、 -7%〇 > -8%〇 ^ -9%〇 > -!〇〇/〇〇 > -ΐι〇/00 . .12〇/〇〇 , _13〇/〇〇 Λ _14〇/00 . -15%〇、-16%。、-17%。、-18%。、·19%。、_20%。、-21%。、-22%。、 88 201038477 -23%。、-24%。、-25%。、-26%。、-27%。、_28%〇、-29%。、-3096〇、 -31%。、-32%。、-33%。、-34%。、-35%。、-36%。、-37%〇、-3896。、 •39%。、·40%〇、-41%〇、-42%〇、-4396。、·44%〇或-45%〇,其中 更負之δ13(:值’含碳酸鹽之合成組成物富含更多i2c。任 何適合方法皆可用於測量δ13(:值,包括(但不限於)質量光 譜法或離軸積分腔輸出光譜法(離轴ICOS)。 ❹ Ο 沈澱物可呈儲存穩定形式(其可簡單地為風乾沈澱物) 並可在暴露條件(即對大氣開放)下長期儲存於地上而無顯 著(若有)降解。在某些具體實例中,沉澱物在暴露條件下 穩定達1年或更長、5年或更長、1〇年或更長、25年或更 長、50年或更長、100年或更長、25〇年或更長、1〇〇〇年 或更長、10,000年或更長、1 000,000年或更長或甚至 =0,000,_年或更長,存敎形式之沈澱物在多種不同 壤境條件下’例如朗從·刚。CS 之溫度及範圍從 ^至100%之渥度下係穩定的,其中該等條件可為無風、 夕風或暴風雨g g存穩定形式之沈丨殿物經過些若 正ΐ雨水PH下儲存於地上時,(若旬如依據自 產=放之co2氣體所量得之降解量每年將不超過5%, 貫例中每年將不超過1%。本發明所提供之 Π Λ 之溫度縫度條件下,包括正常雨水 、2 ' 5、10或20年或超過20年,例如超 二。在Γΐί際上無釋放超過其總C〇2之W、5%或 度齡下:二包括3=了1暴露於正常之溫度及渔 常雨水pH下達至少1年時無釋放超過 89 201038477 其總0)2之ι%。在某些具體實射,沉_暴露於正 之溫度及、屋度條件下,包括正常雨水pH下達至少^年時 無釋放超過其總〇)2之5%。在某些具財财,沉殿物 暴露於正常之溫度及澄度條件下,包括正常雨水pH下達 至少1年時無釋放超過其總c〇2之1〇%。在某些具體實例 中,沉澱物暴露於正常之溫度及溼度條件下,包括正常雨 水pH下達至少10年時無釋放超過其總€〇2之。在某 些具體貫例中,沉殿物暴露於正常之溫度及渔度條件下^ 包括正常雨水pH下達至少1〇〇年時無釋放超過其總c〇2 之1%。在某些具體實例中,沉澱物暴露於正常之溫度及 屢度條件下,包括正常雨水pH下達至少1〇〇〇年時無釋放 超過其總C02之1%。 可使用任何可合理地預測此穩定性之適合替代標記或 試驗。例如一包括較高溫度及/或適中至較大pH之條件的 加速試驗可合理地顯示在較長時間期限内之穩定性。例 如,視沉澱物之目標用途及環境而定,可使沉澱物樣品暴 露於 50、75、90、1〇〇、120 或 150°C及 10%至 50%之相 對溼度下達1、2、5、25、50、100、200或500天,可將 低於其碳之 1%、2%、3%、4%、5%、10%、20%、30% 或50%之損失視為本發明沉澱物在既定期限内(如1、1〇、 100、1000或超過1〇〇〇年)之穩定性的充分證明。 多種適合方法中任一者皆可用於測試沈澱物之穩定 性,包括物理測試方法及化學測試方法,其中該等方法係 適合用於決定沈澱物中之化合物係類似於或等同於已知 201038477 ΟSource, *<-< 〇c/C sample-13c/12cPDB standard) / I3C/12CPDB standard] χίοο δ13 of the composition of the invention (: value is used as carbon dioxide gas 〇c value can vary with source (ie fossil fuel source) However, the δ13c value of the composition of the present invention is generally (but not necessarily) in the range of _9% to _35% 。. In some embodiments, the snc value of the composition of the present invention is -1% 〇 Between -50%, _5%, _4〇%〇, _5%, _35%〇, between -7%〇 and -40%, between _ Between 7% and ·35%, between _9% 〇 and -40%, or between _9% and -35%. In some specific examples, the composition of the invention is 513C The value is less than (ie, more negative) _3% 〇, _5%., _6% 〇, -7% 〇> -8% 〇^ -9% 〇>-!〇〇/〇〇> -ΐι〇 /00 . .12〇/〇〇, _13〇/〇〇Λ _14〇/00 . -15%〇,-16%, -17%, -18%,·19%, _20%. -21%, -22%, 88 201038477 -23%, -24%, -25%, -26%, -27%, _28% 〇, -29%, -3096 〇, -31%, -32%, -33%, -34%, -35%, -36%, -37% 〇, -3896, • 39%, · 40% 〇, -41% 〇, -42% 〇, -4396., · 44% 〇 or -45% 〇, which is more negative δ13 (: value 'include The synthetic composition of carbonate is rich in more i2c. Any suitable method can be used to measure δ13 (: values, including but not limited to mass spectrometry or off-axis integral cavity output spectroscopy (off-axis ICOS). ❹ 沉淀 precipitation The material may be in a storage stable form (which may simply be an air-dried precipitate) and may be stored on the ground for extended periods of time under exposure conditions (ie, open to the atmosphere) without significant, if any, degradation. In some embodiments, the precipitate Stable under exposure conditions for 1 year or longer, 5 years or longer, 1 year or longer, 25 years or longer, 50 years or longer, 100 years or longer, 25 years or longer, 1 year or longer, 10,000 years or longer, 1 000,000 years or longer or even = 0,000, _ years or longer, deposits in the form of sediments in a variety of different soil conditions 'eg Lang Cong· The temperature and range of CS are stable from ^ to 100%, which can be a stable form of windless, evening wind or storm gg. If after some positive ΐ PH rainwater stored in the floor, (such as late if co2 gas from the basis of the amount of discharge capacity = the amount of degradation of each year will have less than 5%, consistent embodiment will not exceed 1% per year. The temperature sag conditions of the 提供 本 provided by the present invention include normal rain water, 2 ' 5, 10 or 20 years or more than 20 years, such as super two. No release over 总 超过 超过 超过 超过 超过 超过 超过 超过 : : : : : : : : : : : : : : : : : : : : : : : : : 2010 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无0) 2%. In some specific shots, Shen_exposure to positive temperature and house conditions, including normal rainwater pH for at least ^ years, no release exceeds 5% of its total 〇2. In some possessions, Shen Temple is exposed to normal temperature and sufficiency conditions, including normal rainwater pH for at least 1 year without release exceeding 1% of its total c〇2. In some embodiments, the precipitate is exposed to normal temperature and humidity conditions, including normal rainwater pH for at least 10 years without release over a total of 〇2. In some specific cases, the sinking matter is exposed to normal temperature and fishing conditions, including normal rainwater pH for at least 1 year, and no release exceeds 1% of its total c〇2. In some embodiments, the precipitate is exposed to normal temperature and repeated conditions, including normal rainwater pH for at least 1 year and no release exceeds 1% of its total CO2. Any suitable surrogate marker or test that can reasonably predict this stability can be used. For example, an accelerated test involving conditions of higher temperature and/or moderate to greater pH can reasonably exhibit stability over a longer period of time. For example, depending on the intended use of the sediment and the environment, the precipitate sample may be exposed to 50, 75, 90, 1 , 120 or 150 ° C and 10% to 50% relative humidity for 1, 2, 5 , 25, 50, 100, 200 or 500 days, can be regarded as the loss below 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30% or 50% of its carbon A sufficient proof of the stability of the invented precipitate over a given period of time (eg 1, 1, 100, 1000, or more than 1 year). Any of a variety of suitable methods can be used to test the stability of the precipitate, including physical testing methods and chemical testing methods, wherein the methods are suitable for determining that the compound in the precipitate is similar or equivalent to known 201038477 Ο

具有上列穩定性之天然化合物(如石灰石)。峨物之⑺ 含量可藉由任何適合方法監測,—此非蚊實例者為庫/ 分析法。視目標或可能環境而定,可酌情調整其他條件: 包括ΡΗ、壓力、UV射線及類似條件。將瞭解可使用任何 熟諳此技者合理推斷在所示時間期限内顯示必要穩定性 之適合條件。此外,若公認化學知識齡沉澱物將在所示 期限内具有必要穩定性,亦可使用之,另外使用之或用於 =代貝際測量。例如’可為本發明沉澱物之一部分之某些 碳酸鹽化合物(如呈既定多晶形形式)可為地質上所熟知且 已知可耐正常氣候達數十年、數世紀或甚至數千年而無明 顯分解並亦具有必要穩定性。 ” 如上述般,用於鉗合(seqUester)c〇2成一在較長時間期 限内i如地質時間等級)為穩定之形式的沈澱物可長期儲 存。右需達到一碳酸鈣對矽石之特定比例以形成火山灰材 料’沈澱物亦可與矽基材料(如源自含金屬矽酸鹽材料消 化後所分離之矽基材料;市售Si02等)混合。本發明火山 灰材料係石夕質或鋁矽質材料,其在與鹼如氫氡化鈣 (Ca(OH)2)組合時藉由形成鈣矽酸鹽及其他膠結材料而呈 見膠'。丨生質。含Si〇2材料如火山灰、飛灰、石夕灰、高反 應性偏南嶺土及高爐石粉和類似物皆可用於強化本發明 火山灰材料。在某些具體實例中,本發明火山灰材料係經 0.5%至 10%、1.0%至 2.0%、2.0%至 4.0%、4.0%至 6.0%、 6.〇%至 8.0%、8.0%至 1〇.〇〇/0、10.0%至 15.0%、15.0%至 2〇·〇%、20.0%至 30.0%、30.0%至 40.0%、40.0%至 50.0% 91 201038477 或其重疊範圍之含Si02材料強化。 藉由噴乾獲得之喷乾材料(如沈澱物、矽基材料、火山 灰材料等)可具有一致粒徑(即喷乾材料可具有相對窄之粒 徑分布)。照此,在某些具體實例中,至少5〇%、⑹。//、 70%、80%、90%、95%、97。/。或99%之喷乾材料係落0在 既定平均粒徑之±10微米内、±20微米内、±30微米内、 ±40微米内、±50微米内、±75微米内、±1〇〇微米内或士25〇 微米内。在某些具體實例中,既定平均粒徑係在/與5〇〇 微米之間。在某些具體實例中,既定平均粒徑係在與 250微米之間。在某些具體實例中,既定平均粒徑係在 100與200微米之間。例如,在某些具體實例中,至少 70%之噴乾材料係落在既定平均粒徑之±5〇微米内,其^ 既定平均粒徑係在5與500微米之間,如在5〇與25〇'微 米之間或在1〇〇與200微米之間。 、 一般而言,火山灰材料具有低於一般波特蘭水泥之膠 結性質,但在富含石灰之介質像氫氧化鈣的存在下,其 對於後來的強度(>28天)顯示較佳膠結性質。凝硬反應可 慢於水泥水合期間所發生之剩餘反應,並因此包含本發明 火山灰材料之混凝土的短期強度可能不如由純膠結^料 製成之混凝土高。此展示強度之公認機制係矽酸趟盥石灰 反應以形成第二膠結相(具較低C/s比例之矽酸鈣水合 物)=’其通常在7天後呈現逐漸增強之性質。強度發展程 度最終係視火山灰㈣之化學組成而定。增加# =料之 組成物(視情況添加石夕石及/或氧化銘),特別係非晶質石夕基 92 201038477 材料-般產生較佳凝硬反應及強度。高反應性火山灰,如 石夕灰及高反應性偏高嶺土可產生,,高早期強度”混凝土, 其增加含本發明沈澱物之混凝土獲得強度之速率。 含有矽酸鹽及鋁矽酸鹽之沈澱物可藉由細微分立之 石夕質及/或紹石夕質材料(如石夕基材料)的存在而容易地用於 水泥及混凝土工業中作為火山灰材料。石夕質及/或鋁石夕質 沈澱物可與波特蘭水泥摻合或以直接礦物摻混物的形式 Ο 加入混凝土混合物中。在某些具體實例中,火山灰材料 包含一最佳化凝固時間、硬化及所得水合產物(如混凝土) 之長期穩定性之比例(如上)之鈣及鎂。沈澱物中碳酸鹽之 結晶性、氯化物、硫酸鹽、鹼等之濃度可經控制以與波特 蘭水泥有較佳作用。在某些具體實例中,沈澱物包括矽 石’其巾 10-20%、20-30%、30-40%、40-50%、50-60%、 60-70%、70-80%、80-90%、90-95%、95-98%、98-99%、 99-99.9%之矽石具有小於45微米之粒徑(如最長尺寸)。 ◎ 在某些具體實例中,矽質沈澱物包含鋁矽石,其中 10-20%、20-30%、30-40%、40-50%、50_60%、60-70%、 70-80%、80-90%、90-95%、95-98%、98-99%、99-99.9% 之鋁矽石具有小於45微米之粒徑(如最長尺寸)。在某些 具體實例中,矽質沈澱物包含矽石及鋁矽石之混合物, 其中 10-20%、20-30%、30-40%、4〇_50%、50-60%、 60-70%、70-80%、80-90%、90-95%、95-98%、98-99%、 99-99.9%之混合物具有小於45微米之粒徑(如最大尺 寸)。 93 201038477 藉由本文所揭示方法所製成之火山灰材料可用作建造 材料,该材料可經加工以用作建造材料或經加工以用於建 築物(如商用、住宅等)及/或基礎建設(如路面、道路、橋 樑、天橋、牆壁、碼頭、水壩等)之現有建造材料中。建 造材料可掺入任何結構物中,另外包括地基、停車結構 物、房子、辦公大樓、商關公室、政敍樓及支撐結構 物(如閘Π之㈣、關及柱子)之結構物魏為建築環境 之-部分。建造材料可為此結構物之結構或非結構性組 件的成分。利用火山灰材料作為建造材料或用於建造材 射之額外减係可賴程序所狀叫(域自廢氣流 之C〇2)有效地鉗合在建築環境中。 /在^些具體實财,本發明火山灰材料剌作與水組 :後:疑固及;mjc硬水泥(如—般波特帛水泥)的組 ^藉由沈殿物與水泥及水組合所產生之產物的凝固及硬 =係由於產生水合物之故,其巾該水合物係水泥與水反應 後所形成且其本質±秘於水。此等水硬水泥、其製造方 途係描述於2_年5月23日所中請之共^申請的 、、s、利申請案第Μ26,”6號;將該申請案之揭示内容 方式併人本文中。在某些具體實例中,與水泥摻 口之火山灰材料以重量計為〇5%至i 〇%” 〇 2.0〇/〇至 4·〇%、4 〇%至 6〇%6〇%至 8舰、8 〇%至動%、 15·〇%、15綠 2議.20.0〇/〇^ 3〇.〇〇/0 . 30.0% 山;4G.G%至5G.G%、则%至_%或其範圍之火 才枓。例如,在某些具體實射,與水泥摻合之火 94 201038477 山灰材料以重量計為0.5%至2.0%、1.0%至4.0%、2.0% 至 8.〇%、4.0%至 15.0%、8.0%至 30.0%或 15.0%至 60.0% 之火山灰材料。 在某些具體實例中’火山灰材料係與其他膠結材料摻 合或混入水泥中作為摻混物或聚集體。本發明灰泥發現 可起用於黏結建造砌塊(如碑)中並填補建造砌塊間之間 隙在其他用途中’本發明灰泥亦可用於固定現存結構物 〇 (如以取代原有灰泥已失密或經侵蝕之區段)。 在某些具體實例中,火山灰材料可用於製造聚集體。 在某些具體實例中,聚集體係由沈澱物藉由成形(如壓 榨),接著壓碎所製成。在某些具體實例中,聚集體係由 沈澱物藉由擠壓及破壞所得擠壓材料所製成。此等聚集 體、其製造方法及用途係描述於2009年5月29日所申請 之共同申請的美國專利申請案第12/475378號中,將其揭 示内容之全文以引用方式併入本文中。 【貫施方式】 實例 實例I.奈米過濾/逆滲透系統 A·在此預言性實例中,奈米過濾及逆滲透係用於每天 可加工144,000加舍海水並每天產m頓沉殿物之系統 中。 根據圖8建構-系統而使第一奈米過據單元位於處理 器前面,第二奈米過滤單元位於處理器後面且逆渗透單元 95 201038477 位於第二奈米過濾單元後面。含有Ca2+及Mg2+之海水係 經過濾以去除微粒物質並供應至含有HlmTec NF27(M00 膜之第一奈米過遽單元中以去除或降低積垢溶質。以 1 OOgpm之速率流動之海水係經第一奈米過濾單元濃縮26 倍(75%回收率)並將阻留物以25gpm之速率運送至處理器 並於該處與帶C〇2之水組合或直接裝入c〇2。沉澱產物(如 CaC〇3、MgCCb)形成後,將處理器之流出物以32gpm之 速率供應至含有HlmTec NF270-400膜之第二奈米過遽單 元中。在奈米過慮之前視情況加入C〇2以降低處理器流出 物之pH(如PH 10.5)並維護膜壽命及鹼值。含有HC(V、 Ca2+及Mg2+之處理器流出物接著在第二奈米過濾單元阻 留物中濃縮2.7倍(75%回收率)並以8gpm之速率循環回到 處理器中,於該處與新鮮濃海水組合並裝入額外Coj以進 打額外加工。同時,源自第二奈米過濾設備含有NaCl之 滲透液係以24gpm之速率供應至逆滲透單元中。含有D〇w FilmTec SW30XLE 400i膜之逆滲透單元濃縮奈米過滤單 元滲透液2倍(50%回收率)並以12gpm之速率將富含n^ci 之阻留物供應至電化學系統中(如圖18所示般 B.在此預言性實例中’ |米過渡及逆渗透係用於每天 可加工144,000加|海水並每天產生2 88嘴沉殿物之系統 中。 /根據圖11建構-系統而使—奈米過遽單元位於處理器 後面且+逆渗透單元位於第二奈米過濾單元後面。含有C ^+ 及Mg之海水係經過m除微粒物質並以⑽gpm之速 96 201038477 率供應至處理器中並於該處與帶c〇2之水組合或直接裝 入co2。沉殿產物(如CaC〇3、MgC〇3)形成後,將處理器 之流出物以133gpm之速率供應至含有FilmTec NF27(M00膜之奈求過濾、單元中。在奈米過慮之前視情況 加入c〇2以降低處理器流出物之pH(^ pH 1〇 5)並維護膜 f命及驗值。,HC〇3-、Ca2+及Mg2+之處理器流出物接 著在奈米過濾單元濃縮使阻留物濃縮27倍(75%回收率) 亚以33gpm之速率循環回到處理器中,於該處與新鮮濃海 水組合並裝入額外C〇2以進行額外加工。同時,源自第二 奈米過濾設備含有NaCl之滲透液係以1〇〇gpm之速率供 應至逆滲透單元中。含有DowFilmTecSW3〇XLE4〇〇i膜 之逆滲透單元濃縮奈米過濾單元滲透液2倍(5〇%回收率') 並以50gpm之速率將富含NaC1之阻留物供應至電化學系 統(如圖18所示般)。 ^A natural compound (such as limestone) having the stability listed above. The content of the sputum (7) can be monitored by any suitable method - this non-mosquito case is a library / analysis method. Depending on the target or possible environment, other conditions may be adjusted as appropriate: including helium, pressure, UV radiation and similar conditions. It will be appreciated that any suitable skill can be reasonably inferred to show the necessary stability for the indicated time period. In addition, if it is recognized that the chemical age-precipitate will have the necessary stability for the indicated period, it can also be used, or used in addition to the = generational interbay measurement. For example, certain carbonate compounds which may be part of the precipitate of the invention (e.g., in the form of a given polymorph) may be well known in the art and are known to withstand normal weather for decades, centuries or even thousands of years. No significant decomposition and also the necessary stability. As described above, a precipitate for seqUester c〇2 in a stable form over a longer period of time, such as geological time grade, can be stored for a long period of time. The right needs to reach the specificity of calcium carbonate to vermiculite. The ratio to form a pozzolanic material 'precipitate can also be mixed with a cerium-based material (such as a cerium-based material derived from the digesting of a metal-containing silicate material; commercially available SiO 2 , etc.). The pozzolanic material of the present invention is a stone or aluminum. An enamel material which is formed by the formation of calcium citrate and other cementitious materials when combined with a base such as calcium hydride (Ca(OH) 2 ). 丨 质. Containing Si 〇 2 materials such as volcanic ash Fly ash, Shixia ash, highly reactive metakaolin and blast furnace powder and the like can be used to strengthen the pozzolanic material of the present invention. In some embodiments, the pozzolanic material of the present invention is 0.5% to 10%, 1.0. % to 2.0%, 2.0% to 4.0%, 4.0% to 6.0%, 6.〇% to 8.0%, 8.0% to 1〇.〇〇/0, 10.0% to 15.0%, 15.0% to 2〇·〇% 20.0% to 30.0%, 30.0% to 40.0%, 40.0% to 50.0% 91 201038477 or its overlapping range of SiO2-containing materials for strengthening. The spray-dried material (eg, precipitate, bismuth-based material, pozzolan material, etc.) may have a uniform particle size (ie, the spray-dried material may have a relatively narrow particle size distribution). As such, in some embodiments, at least 5 〇 %, (6), / /, 70%, 80%, 90%, 95%, 97%, or 99% of the spray dry material is 0 within ± 10 microns of the specified average particle size, within ± 20 microns, ± Within 30 microns, within ±40 microns, within ±50 microns, within ±75 microns, within ±1〇〇 microns or within ±25 μm. In some embodiments, the established average particle size is at /5〇〇 Between microns. In some embodiments, the average particle size is between 250 microns. In some embodiments, the average particle size is between 100 and 200 microns. For example, in some specific examples At least 70% of the spray-dried material falls within ±5 〇 microns of a given average particle size, and the predetermined average particle size is between 5 and 500 microns, such as between 5 〇 and 25 〇 'μm or Between 1〇〇 and 200 microns. In general, volcanic ash materials have lower cementation properties than general Portland cement, but are rich in lime. In the presence of calcium hydroxide, it exhibits better cementation properties for later strength (> 28 days). The pozzolanic reaction can be slower than the residual reaction occurring during cement hydration, and thus comprises the concrete of the pozzolanic material of the present invention. The short-term strength may not be as high as that of concrete made of pure rubber. The recognized mechanism of strength is the reaction of lanthanum citrate to form a second cement phase (calcium citrate hydrate with a lower C/s ratio) = 'It usually shows a progressively enhanced nature after 7 days. The degree of intensity development is ultimately determined by the chemical composition of the volcanic ash (iv). Increasing the composition of ##料(Add Shishishi and/or Oxidation as appropriate), especially the amorphous Shishiji 92 201038477 material generally produces better coagulation reaction and strength. Highly reactive volcanic ash, such as shisha ash and highly reactive metakaolin, can produce, high early strength "concrete, which increases the rate at which the concrete containing the precipitate of the invention is obtained. Precipitate containing bismuth citrate and aluminosilicate The material can be easily used as a pozzolanic material in the cement and concrete industry by the presence of finely divided stone and/or slate materials (such as Shi Xiji materials). Shi Xi and/or Aluminite The precipitate may be blended with Portland cement or added to the concrete mixture in the form of a direct mineral blend. In some embodiments, the pozzolanic material comprises an optimized set time, hardening, and resulting hydration product (eg, The ratio of long-term stability of concrete) (as above) to calcium and magnesium. The concentration of carbonate crystals, chlorides, sulfates, alkalis, etc. in the precipitate can be controlled to have a better effect with Portland cement. In some embodiments, the precipitate comprises vermiculite' 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80% of the towel. -90%, 90-95%, 95-98%, 98-99%, 99-99.9% of meteorites have small 45 micron particle size (such as the longest size). ◎ In some specific examples, the enamel precipitate contains aluminum vermiculite, of which 10-20%, 20-30%, 30-40%, 40-50%, 50_60 %, 60-70%, 70-80%, 80-90%, 90-95%, 95-98%, 98-99%, 99-99.9% of the anthraceite has a particle size of less than 45 microns (eg, the longest Dimensions). In some embodiments, the tannin precipitate comprises a mixture of vermiculite and anodolite, wherein 10-20%, 20-30%, 30-40%, 4〇_50%, 50-60% A mixture of 60-70%, 70-80%, 80-90%, 90-95%, 95-98%, 98-99%, 99-99.9% has a particle size (eg, maximum size) of less than 45 microns. 93 201038477 The pozzolanic material produced by the methods disclosed herein can be used as a construction material that can be processed for use as a construction material or processed for use in buildings (eg, commercial, residential, etc.) and/or infrastructure. In existing construction materials such as roads, roads, bridges, bridges, walls, wharves, dams, etc. Construction materials can be incorporated into any structure, including foundations, parking structures, houses, office buildings, business offices, Political and legal building and support The structure of the structure (such as the gate (4), the gate and the pillar) is part of the building environment. The building material can be the composition of the structural or non-structural components of the structure. The pozzolanic material is used as the building material or The additional reduction of the construction material can be effectively clamped in the built environment by the program (domain C from the waste gas flow). / In some specific real money, the pozzolan material and water group of the present invention: After: suspected; mjc hard cement (such as - Portland cement) group ^ by the combination of sediment and cement and water produced by the solidification and hard = due to the production of hydrates, the towel The hydrate-based cement is formed by reacting with water and its essence is secreted from water. These hydraulic cements and their manufacturing routes are described in the application filed on May 23, 2, s, and the application number ,26, "6"; the disclosure of the application is In some specific examples, the pozzolanic material mixed with cement is 〇5% to i 〇% 〇2.0〇/〇 to 4·〇%, 4〇% to 6〇%6〇 by weight. % to 8 ships, 8 〇% to moving %, 15·〇%, 15 green 2 points. 20.0 〇 / 〇 ^ 3 〇. 〇〇 / 0 . 30.0% mountain; 4G.G% to 5G.G%, then % to _% or its range of fires. For example, in some specific shots, fire blended with cement 94 201038477 mountain ash material is 0.5% to 2.0%, 1.0% to 4.0%, 2.0% to 8.9%, 4.0% to 15.0% by weight, 8.0% to 30.0% or 15.0% to 60.0% volcanic ash material. In some embodiments, the pozzolanic material is blended or blended into the cement as a blend or aggregate with other cementitious materials. The plaster of the present invention is found to be used for bonding construction blocks (such as monuments) and filling the gap between the construction blocks. In other applications, the plaster of the present invention can also be used to fix existing structures (for example, to replace the original plaster). a segment that has been compromised or eroded). In some embodiments, pozzolanic materials can be used to make aggregates. In some embodiments, the agglomeration system is made from a precipitate by forming (e.g., pressing) followed by crushing. In some embodiments, the agglomeration system is made from a precipitate by extruding and destroying the resulting extruded material. Such an aggregate, its method of manufacture, and its use are described in the commonly-owned U.S. Patent Application Serial No. 12/475,378, filed on May 29, 2009, the disclosure of which is hereby incorporated by reference. [Common application method] Example I. Nanofiltration/reverse osmosis system A. In this prophetic example, nanofiltration and reverse osmosis are used to process 144,000 Canadian seawater per day and produce m In the system. According to Figure 8, the first system is located in front of the processor, the second nanofiltration unit is located behind the processor and the reverse osmosis unit 95 201038477 is located behind the second nanofiltration unit. The seawater containing Ca2+ and Mg2+ is filtered to remove particulate matter and supplied to the first nanometer unit containing HlmTec NF27 (M00 membrane to remove or reduce the scale solute. The seawater flowing at a rate of 100 gpm One nanofiltration unit is concentrated 26 times (75% recovery) and the retentate is transported to the processor at a rate of 25 gpm where it is combined with water with C〇2 or directly loaded with c〇2. After the formation of CaC〇3, MgCCb), the processor effluent is supplied to the second nano-per unit containing HlmTec NF270-400 membrane at a rate of 32 gpm. C〇2 is added as appropriate before the nano-consideration Reduces the pH of the processor effluent (eg, pH 10.5) and maintains membrane life and base number. The processor effluent containing HC (V, Ca2+, and Mg2+ is then concentrated 2.7 times in the second nanofiltration unit retentate (75 % recovery rate) and recycled back to the processor at a rate of 8 gpm where it is combined with fresh concentrated seawater and charged with additional Coj for additional processing. Also, the second nanofiltration unit contains NaCl permeate. Is supplied to the reverse osmosis unit at a rate of 24 gpm. Contains D〇w The reverse osmosis unit of the FilmTec SW30XLE 400i membrane concentrates the nanofiltration unit permeate 2 times (50% recovery) and supplies the n^ci-rich retentate to the electrochemical system at a rate of 12 gpm (as shown in Figure 18). B. In this prophetic example, the 'meter transition and reverse osmosis system is used in a system that can process 144,000 plus seawater per day and produce 2 88 mouth sinks per day. / According to Figure 11 - System - The metering unit is located behind the processor and the + reverse osmosis unit is located behind the second nanofiltration unit. The seawater containing C^+ and Mg is depleted of particulate matter by m and supplied to the processor at a rate of (10) gpm at speed 96 201038477 and After combining with water with c〇2 or directly into co2. After forming the sink products (such as CaC〇3, MgC〇3), the processor effluent is supplied at a rate of 133gpm to contain FilmTec NF27 (M00). Membrane is required to filter, in the unit. Before the nano is considered, add c〇2 as needed to reduce the pH of the processor effluent (^ pH 1〇5) and maintain the membrane f and the test value. HC〇3-, The processor effluent of Ca2+ and Mg2+ is then concentrated in a nanofiltration unit to concentrate the retentate 27 times (75 % recovery rate) is recycled back to the processor at a rate of 33 gpm where it is combined with fresh concentrated seawater and charged with additional C〇2 for additional processing. Also, the second nanofiltration unit contains NaCl infiltration. The liquid system is supplied to the reverse osmosis unit at a rate of 1 〇〇 gpm. The reverse osmosis unit containing DowFilmTecSW3〇XLE4〇〇i membrane is immersed in the nanofiltration unit by 2 times (5% 回收% recovery) and at a rate of 50 gpm. The NaC1-rich retentate is supplied to the electrochemical system (as shown in Figure 18). ^

實例II.流率為48,000加侖/天之奈米過濾/逆滲透系統 一含有每天可加工48,000加侖海水之奈米過濾單元及 逆滲透單元之過濾系統產生下列結果(表i):Example II. Nanofiltration/Reverse Osmosis System with a Flow Rate of 48,000 Gallons/Day A filtration system containing a nanofiltration unit and a reverse osmosis unit capable of processing 48,000 gallons of seawater per day produced the following results (Table i):

表1奈米過遽/逆滲透之結果 質子去除劑來源:無 水源:海水 TDS NF%回收率: 97 201038477 RO%回收率: RO壓力: 進料 NF濃縮物 NF產物 RO濃縮物 RO產物 [PPm] [ppm] [ppm] [Ppm】 [ppm] Na 11,000 11,760 ΝΑ 17,300 212 Cl 20,000 26,430 ΝΑ 37,180 2790 Ca 423 586 ΝΑ 360 1.5 Mg 1320 2403 ΝΑ 492 2.7 質子去除劑來源:Mg(OH)2 水源 海水 TDS : pH : NF%回收率: NF壓力: RO%回收率: RO壓力: 進料 NF濃縮物 NF產物 RO濃縮物 RO產物 [ppm] [ppm] [ppm] [ppm] [ppm] Na 13,000 13,700 ΝΑ 22,460 284.3 Cl 20,500 24,200 ΝΑ 48,990 450 Ca 16 55 ΝΑ 50.4 0.39 Mg 1111 1828 ΝΑ 707.3 5.7 質子去除劑來源:白雲石灰石 水源:淡水 TDS : pH : NF%回收率: NF壓力: 98 201038477Table 1 Results of nanopermine/reverse osmosis Proton remover Source: Waterless source: Seawater TDS NF% recovery: 97 201038477 RO% recovery: RO pressure: Feed NF concentrate NF product RO concentrate RO product [PPm ] [ppm] [ppm] [Ppm] [ppm] Na 11,000 11,760 ΝΑ 17,300 212 Cl 20,000 26,430 ΝΑ 37,180 2790 Ca 423 586 ΝΑ 360 1.5 Mg 1320 2403 ΝΑ 492 2.7 Proton Remover Source: Mg(OH)2 Water Source Seawater TDS : pH : NF% recovery: NF pressure: RO% recovery: RO pressure: Feed NF concentrate NF product RO concentrate RO product [ppm] [ppm] [ppm] [ppm] [ppm] Na 13,000 13,700 ΝΑ 22,460 284.3 Cl 20,500 24,200 ΝΑ 48,990 450 Ca 16 55 ΝΑ 50.4 0.39 Mg 1111 1828 ΝΑ 707.3 5.7 Proton remover Source: Baiyun limestone Water source: Fresh water TDS: pH: NF% recovery: NF pressure: 98 201038477

RO%回收率: RO壓力: 進料 [ppm] NF濃縮物 [ppm] NF產物 [ppm] RO濃縮物 [ppm] RO產物 [ppm] Na 9107 6949 ΝΑ 12,280 77.8 Cl 15,950 11,300 ΝΑ 26,340 128 Ca 20.1 16.97 ΝΑ 15.48 0 Mg 746.1 844.7 ΝΑ 418.6 1.093 質子去除劑來源:Pomona飛灰 水源:淡水 pH : NF%回收率: NF壓力: RO%回收率: RO壓力: 進料 [PPm] NF濃縮物 [ppm】 NF產物 [ppm] RO濃縮物 [ppm] RO產物 [ppm】 Na 133.2 230.9 92.83 NA NA Cl 56 72 48 NA NA Ca 2.08 65.16 9.723 NA NA Mg 62.78 0.1492 0.0183 NA NA 質子去除劑來源:Pomona飛灰: 57%NF回收率 水源:淡水 TDS : pH: NF%回收率: NF壓力: 99 201038477 RO%回收率: RO壓力: 進料 NF濃縮物 NF產物 RO濃縮物 RO產物 [ppm] [ppm】 [ppm] [ppm] [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 0.0078 NA NA Mg 62.78 0.1327 7.28 NA NA 質子去除劑來源:Pomona飛灰 水源= 淡水 TDS : pH : NF%回收率: NF壓力: RO%回收率: RO壓力: 進料 NF濃縮物 NF產物 RO濃縮物 RO產物 [ppm】 [ppm] [ppm] [ppm] [ppm] Na 133.2 230.9 92.83 NA NA Cl 56 72 48 NA NA Ca 2.08 65.16 9.723 NA NA Mg 62.78 0.1492 0.0183 NA NA 質子去除劑來源:Pomona飛灰 水源:淡水 TDS : pH: NF%回收率: NF壓力: 100 201038477RO% recovery: RO pressure: Feed [ppm] NF concentrate [ppm] NF product [ppm] RO concentrate [ppm] RO product [ppm] Na 9107 6949 ΝΑ 12,280 77.8 Cl 15,950 11,300 ΝΑ 26,340 128 Ca 20.1 16.97 ΝΑ 15.48 0 Mg 746.1 844.7 ΝΑ 418.6 1.093 Proton Remover Source: Pomona Fly Ash Water Source: Fresh Water pH: NF% Recovery: NF Pressure: RO% Recovery: RO Pressure: Feed [PPm] NF Concentrate [ppm] NF Product [ppm] RO Concentrate [ppm] RO Product [ppm] Na 133.2 230.9 92.83 NA NA Cl 56 72 48 NA NA Ca 2.08 65.16 9.723 NA NA Mg 62.78 0.1492 0.0183 NA NA Proton Remover Source: Pomona Fly Ash: 57% NF Recovery Water Source: Fresh Water TDS: pH: NF% Recovery: NF Pressure: 99 201038477 RO% Recovery: RO Pressure: Feed NF Concentrate NF Product RO Concentrate RO Product [ppm] [ppm] [ppm] [ Ppm] [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 0.0078 NA NA Mg 62.78 0.1327 7.28 NA NA Proton Remover Source: Pomona Fly Ash Water Source = Fresh Water TDS : pH : NF% Recovery: NF Pressure: RO% Recovery: RO Pressure: Feed NF Concentrate NF Product RO Concentrate RO Product [ppm] [ppm] [ppm] [ppm] [ppm] Na 133.2 230.9 92.83 NA NA Cl 56 72 48 NA NA Ca 2.08 65.16 9.723 NA NA Mg 62.78 0.1492 0.0183 NA NA Proton remover Source: Pomona fly ash Water source: Fresh water TDS : pH: NF% recovery: NF pressure: 100 201038477

RO%回收率: RO壓力: 進料 [ppm] NF濃縮物 [ppm] NF產物 [ppm] RO濃縮物 [ppm】 RO產物 [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 7.28 NA NA Mg 62.78 0.1327 0.0078 NA NA 質子去除劑來源:Pomona飛灰 水源:谈水 TDS : pH : NF%回收率: NF壓力: RO%回收率: RO壓力: 進料 [ppm] NF濃縮物 [PPm] NF產物 [ppm] RO濃縮物 [ppm] RO產物 [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 7.28 NA NA Mg 62.78 0.1327 0.0078 NA NA 因此,前面僅說明本發明原理。將瞭解已閱讀過此揭 示内容之熟諳此技者現可想出多種變化、改變、取代及/ 或配置,雖然未明確描述或顯示於本文中,但此等皆使本 發明原理具體化並包含在本發明之精神及範疇内。照此, 101 201038477 明具體實例之各__以靜 a本U。此外’本文所述之所有實例及條件性語古主 要希望協助讀者瞭解本發明原理及發明者 =觀念並應將其解釋為不限於此等特別= 例及ΐ件。料,本文描縣發理、態樣及具體實例 以及其特定實狀所有陳述係希望涵蓋其結構及功能等 效物。此外,不考慮結構,此等等效物希望包括目前已知 之纽物及未來所發展之等效物,即任何為完成相同功能 所發展之讀。因此,靴將本發明料關在本文所示 及描述之示範性具體實例中。本發明範轉及精神係藉由所 附申請專利範圍具體化。 【圖式簡單說明】 本發明新穎特徵係特別陳述於所附申請專利範圍 中。藉由參考上列陳述利用本發明原理之說明性具體實 例之細節描述及其所附圖式將可更清楚暸解本發明之特 徵及優點’其中所附圖式為: 圖1Α提供一加工二氧化碳之系統。 圖1Β提供一加工二氧化碳之系統,其中該系統係為 循環所設計。 圖ic提供一加工二氧化碳之系統,其中該系統係為 循環所設計且其中該系統係經設計具有一用於製造質子 去除劑之電化學系統。 圖2提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含一級及二級脫水系統。 102 201038477 圖3提供一本發明過濾單元 圖4提供一加工二氧化碳之系統,其中該系統包含至 少一個過濾單元及一選用電化學系統。 圖5提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含一包含至少一個過濾單元之 過濾系統及一電化學系統。 圖6提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含一包含至少兩個過濾單元之 過濾、系統及一選用電化學系統。 圖7提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含一包含至少兩個過濾單元之 過濾、系統及一電化學系統。 圖8提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含一包含至少三個過濾單元之 過遽系統及一電化學系統。 圖9提供一加工二氧化碳之系統,其中該系統係為循 環所設計且其中該系統包含至少一個過濾單元及一選用 電化學系統。 圖10提供一加工二氧化碳之系統,其中該系統係為 循環所設計且其中該系統包含至少兩個過濾單元及一電 化學系統。 圖11提供一加工二氧化碳之系統,其中該系統係為 循環所設計且其中該系統包含一包含至少兩個過濾單元 之過濾、系統及一電化學系統。 103 201038477 圖12提供一加工二氧化碳之系統,其中該系統係為 循環所設計且其中該系統包含一包含過濾系統及脫水之 處理系統及一電化學系統。 【主要元件符號說明】 110 處理器 120 處理系統 130 二氧化碳來源 140 鹼度來源 150 電化學系統 200 系統 210 處理器 224 脫水系統 228 過濾單元 230 富含二氧化碳之廢氣流 240 鹼度來源 260 驗土金屬離子來源 400 二氧化碳加工系統 402 接觸器 404 反應器 428A 過濾單元 430 含C02氣體 440 鹼度來源 450 電化學系統 104 201038477RO% recovery: RO pressure: Feed [ppm] NF concentrate [ppm] NF product [ppm] RO concentrate [ppm] RO product [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 7.28 NA NA Mg 62.78 0.1327 0.0078 NA NA Proton Remover Source: Pomona Fly Ash Water Source: Tan Water TDS: pH: NF% Recovery: NF Pressure: RO% Recovery: RO Pressure: Feed [ppm] NF Concentrate [ PPm] NF product [ppm] RO concentrate [ppm] RO product [ppm] Na 133.2 193.5 81.72 NA NA Cl 56 68 48 NA NA Ca 2.08 49.55 7.28 NA NA Mg 62.78 0.1327 0.0078 NA NA Therefore, only the principle of the invention is explained above. . It will be appreciated by those skilled in the art that various changes, modifications, substitutions and/or arrangements can be devised. Within the spirit and scope of the present invention. As such, 101 201038477 shows the specific examples of each __ to a static U. Furthermore, all of the examples and conditional language described herein are intended to assist the reader in understanding the principles of the invention and the inventor's concept and should be construed as being not limited to the particulars and examples. It is intended that all statements in the context of this article, as well as specific examples and specific examples thereof, are intended to cover structural and functional equivalents. In addition, without regard to the structure, such equivalents are intended to include the currently known elements and equivalents developed in the future, that is, any reading developed to accomplish the same function. Accordingly, the present invention contemplates the present invention in the exemplary embodiments shown and described herein. The scope and spirit of the present invention are embodied by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The novel features of the present invention are set forth with particularity in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will become more apparent from the detailed description of the embodiments of the present invention. system. Figure 1A provides a system for processing carbon dioxide, wherein the system is designed for cycling. Figure ic provides a system for processing carbon dioxide, wherein the system is designed for cycling and wherein the system is designed to have an electrochemical system for making a proton-removing agent. Figure 2 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes primary and secondary dewatering systems. 102 201038477 Figure 3 provides a filtration unit of the invention. Figure 4 provides a system for processing carbon dioxide wherein the system comprises at least one filtration unit and an optional electrochemical system. Figure 5 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes a filtration system comprising at least one filtration unit and an electrochemical system. Figure 6 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes a filtration, system, and an electrochemical system comprising at least two filtration units. Figure 7 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes a filtration, system and an electrochemical system comprising at least two filtration units. Figure 8 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes a flooding system comprising at least three filtration units and an electrochemical system. Figure 9 provides a system for processing carbon dioxide wherein the system is designed for recycling and wherein the system includes at least one filtration unit and an optional electrochemical system. Figure 10 provides a system for processing carbon dioxide wherein the system is designed for cycling and wherein the system includes at least two filtration units and an electrochemical system. Figure 11 provides a system for processing carbon dioxide wherein the system is designed for cycling and wherein the system includes a filtration, system and an electrochemical system comprising at least two filtration units. 103 201038477 Figure 12 provides a system for processing carbon dioxide, wherein the system is designed for recycling and wherein the system comprises a processing system comprising a filtration system and dehydration and an electrochemical system. [Main component symbol description] 110 Processor 120 Processing system 130 Carbon dioxide source 140 Alkalinity source 150 Electrochemical system 200 System 210 Processor 224 Dehydration system 228 Filtration unit 230 Carbon dioxide-rich exhaust gas stream 240 Alkalinity source 260 Soil metal ion Source 400 Carbon Dioxide Processing System 402 Contactor 404 Reactor 428A Filtration Unit 430 Contains CO 2 Gas 440 Alkalinity Source 450 Electrochemical System 104 201038477

500 二氧化碳加工系統 502 接觸器 504 反應器 528A 過滤單元 530 含〇:02氣體來源 540 鹼度來源 550 電化學系統 570 原料處理器 600 二氧化碳加工系統 610 處理器 628A 過濾單元 628B 過濾單元 650 電化學系統 700 二氧化碳加工系統 710 處理器 728A 過濾單元 728C 過濾單元 750 電化學系統 800 二氧化碳加工系統 810 處理器 828A 過濾單元 828B 過濾單元 828C 過濾單元 840 鹼度來源 105 201038477 850 電化學系統 910 處理器 928B 過濾單元 950 電化學系統 1000 二氧化碳加工系統 1010 處理器 1028C 過濾單元 1050 電化學系統 1100 二氧化破加工系統 1110 處理器 1128B 過濾單元 1128C 過濾單元 1150 電化學系統 1200 二氧化礙加工系統 1202 接觸器 1204 反應器 1222 脫水系統 1228A 過濾單元 1230 含co2氣體來源 1240 驗度來源 1250 電化學系統 1270 原料處理裔 106500 Carbon Dioxide Processing System 502 Contactor 504 Reactor 528A Filtration Unit 530 Contains 〇: 02 Gas Source 540 Alkalinity Source 550 Electrochemical System 570 Feedstock Processor 600 Carbon Dioxide Processing System 610 Processor 628A Filtration Unit 628B Filtration Unit 650 Electrochemical System 700 Carbon dioxide processing system 710 processor 728A filtration unit 728C filtration unit 750 electrochemical system 800 carbon dioxide processing system 810 processor 828A filtration unit 828B filtration unit 828C filtration unit 840 alkalinity source 105 201038477 850 electrochemical system 910 processor 928B filtration unit 950 electrification 1000 System Carbon Dioxide Processing System 1010 Processor 1028C Filter Unit 1050 Electrochemical System 1100 Dioxide Breaking System 1110 Processor 1128B Filtration Unit 1128C Filtration Unit 1150 Electrochemical System 1200 Oxidation Processing System 1202 Contactor 1204 Reactor 1222 Dehydration System 1228A Filtration Unit 1230 Contains CO2 Gas Source 1240 Verification Source 1250 Electrochemical System 1270 Raw Material Treatment 106

Claims (1)

201038477 七、申請專利範圍: 1. 一種方法,其包括·· a) 使一溶液與二氧化碳之工業來源接觸以產生一帶以^溶 液; ’ b) 使s亥帶C〇1溶液處於足以產生一組成物之條件,其中該 組成物包含奴酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽; c) 處理該組成物以產生一濃縮組成物,其中處理該組成物 包括 〇 1)使該組成物脫水以增加所得濃縮組成物中碳酸 鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽之濃度並同時產生一上 澄液及 2)過滤該上澄液以產生一過濾、流;並 d)將至少一部分過濾流供應至電化學程序中以製造質子 去除劑。 107 1 —種系統,其包含: a) —設計用於由二氧化碳之工業來源製造組成物之處理 器,其中該組成物包含碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫 鹽; b) —設計用於濃縮該組成物之處理系統,其中該處理系 統包含: 1) 一設計用於濃縮所得濃縮組成物中之碳酸鹽、 碳酸氫鹽或碳酸鹽及碳酸氫鹽並同時產生一上澄液之脫水 系統及 201038477 2) —設計用於由該上澄液產生一過濾流之過濾系 統;及 c) 一設計用於接收至少一部分過濾流之電化學系統。 3. —種方法,其包括: a) 使一溶液與二氧化碳之工業來源接觸以產生一帶C02 溶液; b) 使該帶C02溶液處於足以產生一含沉澱物之漿液之條 件,其中該沉澱物包含碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氳 鹽; c) 由漿液中分離出上澄液;並 d) 循環至少一部分上澄液以與二氧化碳之工業來源接 觸。 4. 如申請專利範圍第3項之方法,其中該沈澱物包含鹼土 金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽。 5. 如申請專利範圍第4項之方法,其中該等鹼土金屬係選 自鈣、鎂或鈣與鎂之組合組成之群。 6. 如申請專利範圍第3-5項之方法,其中該沉澱物另外包含 錄。 7.如申請專利範圍第3-6項之方法,其中該沉澱物另外包含 108 201038477 3 至 10,000ppm 魏。 8. 如申請專利範圍第3-7項之方法’其中由漿液中分離出上 澄液包括使該漿液脫水以產生一脫水上澄液。 9. 如申請專利範圍第8項之方法,其中使該漿液脫水包括 一級脫水及二級脫水。 10·如申凊專利範圍第9項之方法,其中一級脫水產生一含 5-40%固體及一級脫水上澄液之一級脫水產物。 11. 如申請專利範圍第1〇項之方法,其中將一級脫水上澄液 供應至與二氧化碳之工業來源接觸之溶液。 12. 如申凊專利範圍第η項之方法,其中與二氧化礙之工業 來源接觸之溶液包含至少50%之一級脫水上澄液。 13. 如申請專利範圍第9項之方法’其中二級脫水產生一含 35-99%固體及二級脫水上澄液之二級脫水產物。 14. 如申凊專利範圍第13項之方法,其中將二級脫水上澄液 供應至與二氧化碳之工業來源接觸之溶液。 15. 如申凊專利範圍第14項之方法,其中與二氧化碳之工業 109 201038477 來源接觸之溶液包含至少25%之二級脫水上澄液。 16. 如申請專利範圍第8項之方法,其中與二氧化碳之工業 來源接觸之溶液包含至少75%之脫水上澄液。 17. 如申請專利範圍第8項之方法,其另外包括在一包含至 少一過濾單元之過濾系統中過濾該脫水上澄液。 18. 如申請專利範圍第17項之方法,其中過濾單元產生一過 滤果元阻留物(retentate)及一過濾單元渗透液(permeate)。 19·如申請專利範圍第π項之方法,其中過濾系統包含一超 過濾單元、一奈米過濾單元、一逆滲透單元或上述過濾單元 之組合。 20. 如申請專利範圍第8或19項之方法,其中該脫水上澄液 係經奈米過濾單元處理以產生一奈米過濾阻留物及一奈米 過濾滲透液。 21. 如申請專利範圍第20項之方法,其中至少一部分奈米過 濾單元滲透液係經電化學程序加工以製造質子去除劑。 22. 如申請專利範圍第20項之方法,其中該奈米過濾單元阻 留物包含一大於脫水上澄液至少5〇%之鹼土金屬濃度。 110 201038477 23. 如申請專利範圍第8或19項之方法,其中該脫水上澄液 係經逆滲透單元處理以產生一逆滲透阻留物及一逆滲透滲 透液。 24. 如申請專利範圍第23項之方法,其中至少一部分逆滲透 單元滲透液係經電化學程序加工以製造質子去除劑。 25. 如申請專利範圍第23項之方法,其中該逆滲透單元阻留 物包含大於上澄液至少50%之鹼土金屬濃度。 26. 如申請專利範圍第18項之方法,其中與二氧化碳之工業 來源接觸之溶液包含過濾單元阻留物。 27. 如申請專利範圍第18或26項之方法,其中該方法另外 包括使至少一部分過濾單元阻留物去礦質以產生一已去礦 質之過濾單元阻留物並以電化學程序加工該已去礦質之過 濾單元阻留物以製造質子去除劑。 28. 如申請專利範圍第18或26項之方法,其中該方法另外 包括使至少一部分過濾單元阻留物去礦質並濃縮之以產生 一已去礦質及濃縮之過濾單元阻留物並以電化學程序加工 該已去礦質及濃縮之過濾單元阻留物以製造質子去除劑。 111 201038477 29. 如申請專利範圍第3-28項之方法,其中循環該上澄液以 與二氧化碳之工業來源接觸而使總寄生負荷相較於單流操 作程序時降低至少4%。 30. 如申請專利範圍第3-28項之方法,其中循環該上澄液以 與二氧化碳之工業來源接觸而使總寄生負荷相較於單流操 作程序時降低至少8%。 31. —種方法,其包括: a) 使一含鹼土金屬溶液與二氧化碳之工業來源接觸以產 生一帶C02溶液; b) 使該帶C02溶液處於足以產生一含有沉澱物之漿液之 條件,其中該沉澱物包含鹼土金屬之碳酸鹽、碳酸氫鹽或碳 酸鹽及碳酸氫鹽,且其中足以產生漿液之條件包括利用源自 天然來源、工業廢物來源、電化學程序中所製得者或其組合 之質子去除劑; c) 由漿液中分離出上澄液; d) 經由過濾系統過濾上澄液以產生一過濾流;並 e) 循環至少一部分該過濾流以與二氧化碳之工業來源接 觸或以電化學程序製造質子去除劑。 32. —種系統,其包含: a) —設計用於由二氧化碳之工業來源產生一漿液之處理 器,其中該漿液包含含有碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸 112 201038477 氫鹽之沉澱物;及 b) —設計用於由該漿液中分離出上澄液之處理系統,其 中該處理器及該處理系統係連接操作以循環至少—部分^ 澄液。 33.如申請專利範圍第32項之系統’其中該處理系統包含— 設計用於由漿液中分離出上澄液之脫水系統。 34·如申請專利範圍第33項之系統,其中該脫水系統係經設 計以產生一脫水上澄液。 35.如申請專利範圍第33項之系統,其中該脫水系統包含一 級脫水系統及二級脫水系統。 3 6.如申請專利範圍第3 5項之系統,其中該一級脫水系統係 經設計以產生一含有5 - 4 0 %固體及一級脫水上澄液之一級 脫水產物。 37. 如申請專利範圍第35項之系統,其中該二級脫水系統係 經設計以產生一含有35-99%固體及二級脫水上澄液之二級 脫水產物。 38. 如申明專利範圍第34項之系統,其中該處理系統另外包 含-用於過賴脫水上澄液之m统,其中該職系統包 113 201038477 含至少一個過濾、單元。 39. 如申請專利範圍第38項之系統,其中該脫水系統係經設 計以將該脫水上澄液供應至該過濾系統中。 40. 如申請專利範圍第38項之系統,其中該過濾系統係經設 計以產生過濾單元阻留物及一過濾單元滲透液。 41. 如申請專利範圍第38或39項之系統,其中該過濾系統 包含一超過濾單元、一奈米過濾單元、一逆滲透單元或上述 過濾單元之組合。 42. 如申請專利範圍第41項之系統,其中該脫水系統係經設 計以將該脫水上澄液供應至奈米過濾單元。 43. 如申請專利範圍第42項之系統,其中該奈米過濾單元係 經設計以產生一奈米過遽單元阻留物,其包含大於脫水上澄 液至少50%之鹼土金屬濃度。 44. 如申請專利範圍第41項之系統,其中該脫水系統係經設 計以將該脫水上澄液供應至逆滲透單元。 45. 如申請專利範圍第44項之系統,其中該逆滲透單元係經 設計以產生一逆滲透單元阻留物,其包含大於脫水上澄液至 114 201038477 少50%之鹼土金屬濃度。 46. 如申請專利範圍第32-45項之系統,其中該處理器包含一 選自氣-液接觸器及氣-液-固接觸器組成之群之接觸器。 47. 如申請專利範圍第46項之系統,其中該接觸器係一多階 段接觸器。 48. 如申請專利範圍第46或47項之系統,其中該接觸器係 經設計以利用過濾單元所供應之過濾單元阻留物。 49. 如申請專利範圍第48項之系統,其中該接觸器另外經設 計成利用補充水。 50. 如申請專利範圍第38-49項之系統,其另外包含一經設計 以製造質子去除劑之電化學系統。 51. 如申請專利範圍第50項之系統,其中該電化學系統係經 設計以產生氫氧化物、碳酸氫鹽、碳酸鹽或其組合。 52. 如申請專利範圍第50或51項之系統,其中該電化學系 統係經設計以利用源自至少一個過濾單元之過濾單元滲透 液0 115 201038477 53.如申請專利範圍第50或51項之系統,其中該電化學系 統係經設計以利用源自至少一個過濾單元之過濾單元阻留 物。 54. 如申請專利範圍第52或53項之系統,其中該過濾單元 係一奈米過濾單元。 55. 如申請專利範圍第52或53項之系統,其中該過濾單元 係一逆滲透單元。 56. 如申請專利範圍第52項之系統,其另外包含一使過濾單 元滲透液去礦質之去礦質單元。 57. 如申請專利範圍第53項之系統,其另外包含一使過濾單 元阻留物去礦質之去礦質單元。 58. 如申請專利範圍第56或57項之系統,其另外包含一與 去礦質單元連接操作之濃縮單元。 59. 如申請專利範圍第32-58項之系統,其中相較於為單流操 作程序所設計之系統時,該系統提供一至少4%之總寄生負 荷的降低量。 60. —種系統,其包含: 116 201038477 a) -設計用於使含驗土金屬溶液與二氧化竣之工業來源 接觸並產生-含有沉殺物之漿液之處理器,其中該沉殿物包 括鹼土金屬之碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸氫鹽,且其 中,玄處理以外經設計成彻源自天然來源、卫業廢物來 源、電化學程序中所製得者或其組合之質子去除劑; Ο 〇 b) -設計用於由該滎液中分離出上澄液之脫水系統;及 ^^"計用於職上澄液並產生-過糕之過遽系統, ^該處理◎、該m狀該m纟祕連 至少一部分過濾流。 倜衣 —經設計以 61.如申請專利範圍第6G項之系統,其另外包含 製造質子去除劑之電化學系統。 逆====== 63· —種方法,其包括: 、、〜a)使-溶液與二氧化碳之工業來源接觸以產生〆帶⑽ /谷 , b) 使該帶c〇2溶液處於足以產生—含有魏_、破酸氫 -或碳酸鹽及碳酸氫鹽之組成物之條件; 孤 c) 處理該組成物以產生一上澄液;並 d) 將至少一部分上澄液供應至電化學程序以製造質子去 117 201038477 除劑,其中該電化學程序於陽極產生氯,於陽極產生氧或於 陽極無產生氣體。 64. —種系統,其包含: a) —設計用於由二氧化礙之工業來源產生一組成物之處 理器,其中該組成物包括碳酸鹽、碳酸氫鹽或碳酸鹽及碳酸 氫鹽; b) —設計用於由該組成物產生上澄液之處理系統;及 c) 一包含陽極之電化學系統,其中該電化學系統係經設 計以由至少一部分上澄液製造質子去除劑,且其中該電化學 系統係經設計以於陽極產生氯、於陽極產生氧或於陽極無產 生氣體。 118201038477 VII. Patent application scope: 1. A method comprising: a) contacting a solution with an industrial source of carbon dioxide to produce a solution; 'b) making the s-band C〇1 solution sufficient to produce a composition a condition in which the composition comprises a succinate, a hydrogencarbonate or a carbonate and a hydrogencarbonate; c) treating the composition to produce a concentrated composition, wherein treating the composition comprises hydrazine 1) causing the composition Dehydrating to increase the concentration of carbonate, bicarbonate or carbonate and bicarbonate in the resulting concentrated composition and simultaneously producing a supernatant and 2) filtering the supernatant to produce a filtration, stream; and d) at least A portion of the filtered stream is supplied to an electrochemical program to produce a proton-removing agent. 107 1 - A system comprising: a) - a processor designed to manufacture a composition from an industrial source of carbon dioxide, wherein the composition comprises carbonate, bicarbonate or carbonate and bicarbonate; b) - design A treatment system for concentrating the composition, wherein the treatment system comprises: 1) a carbonate, a bicarbonate or a carbonate and a bicarbonate designed to concentrate the resulting concentrated composition and simultaneously produce a supernatant Dewatering system and 201038477 2) - a filtration system designed to produce a filtered stream from the supernatant; and c) an electrochemical system designed to receive at least a portion of the filtered stream. 3. A method comprising: a) contacting a solution with an industrial source of carbon dioxide to produce a zone of CO 2 solution; b) subjecting the zone of CO 2 to a condition sufficient to produce a slurry containing a precipitate, wherein the precipitate comprises Carbonate, bicarbonate or carbonate and barium carbonate; c) separating the supernatant from the slurry; and d) recycling at least a portion of the supernatant to contact the industrial source of carbon dioxide. 4. The method of claim 3, wherein the precipitate comprises an alkali earth metal carbonate, a hydrogencarbonate or a carbonate, and a hydrogencarbonate. 5. The method of claim 4, wherein the alkaline earth metal is selected from the group consisting of calcium, magnesium or a combination of calcium and magnesium. 6. The method of claim 3-5, wherein the precipitate is additionally included. 7. The method of claim 3-6, wherein the precipitate further comprises 108 201038477 3 to 10,000 ppm Wei. 8. The method of claim 3-7 wherein the separation of the supernatant from the slurry comprises dehydrating the slurry to produce a dehydrated supernatant. 9. The method of claim 8, wherein the dewatering of the slurry comprises primary dewatering and secondary dewatering. 10. The method of claim 9, wherein the primary dehydration produces a dehydration product of 5-40% solids and a first-grade dehydrated liquid. 11. The method of claim 1, wherein the primary dehydration solution is supplied to a solution in contact with an industrial source of carbon dioxide. 12. The method of claim n, wherein the solution in contact with the industrial source of the oxidizing agent comprises at least 50% of the dehydrated supernatant. 13. The method of claim 9 wherein the secondary dehydration produces a secondary dehydration product comprising 35-99% solids and a secondary dehydrated supernatant. 14. The method of claim 13, wherein the secondary dehydration solution is supplied to a solution in contact with an industrial source of carbon dioxide. 15. The method of claim 14, wherein the solution in contact with the source of carbon dioxide industry 109 201038477 comprises at least 25% of the secondary dewatering supernatant. 16. The method of claim 8, wherein the solution in contact with the industrial source of carbon dioxide comprises at least 75% dehydrated supernatant. 17. The method of claim 8, further comprising filtering the dewatered supernatant in a filtration system comprising at least one filtration unit. 18. The method of claim 17, wherein the filter unit produces a filter element retentate and a filter unit permeate. 19. The method of claim π, wherein the filtration system comprises an ultrafiltration unit, a nanofiltration unit, a reverse osmosis unit, or a combination of the above filtration units. 20. The method of claim 8 or 19, wherein the dehydrated supernatant is treated by a nanofiltration unit to produce a nanofiltration retentate and a nanofiltration permeate. 21. The method of claim 20, wherein at least a portion of the nanofiltration unit permeate is electrochemically processed to produce a proton-removing agent. 22. The method of claim 20, wherein the nanofiltration unit retentate comprises an alkaline earth metal concentration greater than at least 5% by weight of the dehydrated supernatant. The method of claim 8 or claim 19, wherein the dehydrated supernatant is treated by a reverse osmosis unit to produce a reverse osmosis retentate and a reverse osmosis permeate. 24. The method of claim 23, wherein at least a portion of the reverse osmosis unit permeate is electrochemically processed to produce a proton-removing agent. 25. The method of claim 23, wherein the reverse osmosis unit retentate comprises an alkaline earth metal concentration greater than at least 50% of the supernatant. 26. The method of claim 18, wherein the solution in contact with the industrial source of carbon dioxide comprises a filter unit retentate. 27. The method of claim 18, wherein the method further comprises de-mining at least a portion of the filter unit retentate to produce a demineralized filter unit retentate and processing the electrochemical module. A mineral filter unit retentate to produce a proton-removing agent. 28. The method of claim 18, wherein the method further comprises demineralizing and concentrating at least a portion of the filtration unit retentate to produce a demineralized and concentrated filtration unit retentate and electrochemically The demineralized and concentrated filtration unit retentate is processed to produce a proton-removing agent. 111 201038477 29. The method of claim 3-28, wherein circulating the supernatant to contact an industrial source of carbon dioxide reduces the total parasitic load by at least 4% compared to a single flow operating procedure. 30. The method of claim 3-28, wherein circulating the supernatant to contact an industrial source of carbon dioxide reduces the total parasitic load by at least 8% compared to a single flow operating procedure. 31. A method comprising: a) contacting an alkaline earth metal-containing solution with an industrial source of carbon dioxide to produce a CO 2 solution; b) subjecting the CO 2 solution to a condition sufficient to produce a slurry containing the precipitate, wherein The precipitate comprises carbonate, bicarbonate or carbonate and bicarbonate of an alkaline earth metal, and wherein conditions sufficient to produce a slurry include utilization from natural sources, sources of industrial waste, those produced in electrochemical procedures, or combinations thereof. a proton-removing agent; c) separating the supernatant from the slurry; d) filtering the supernatant via a filtration system to produce a filtration stream; and e) recycling at least a portion of the filtration stream to contact an industrial source of carbon dioxide or electrochemically The program manufactures a proton remover. 32. A system comprising: a) a processor designed to produce a slurry from an industrial source of carbon dioxide, wherein the slurry comprises a precipitate comprising a carbonate, a bicarbonate or a carbonate and a hydrogenate of carbonic acid 112 201038477 And b) - a treatment system designed to separate the supernatant from the slurry, wherein the processor and the processing system are coupled to operate to circulate at least a portion of the liquid. 33. The system of claim 32, wherein the processing system comprises a dewatering system designed to separate the supernatant from the slurry. 34. The system of claim 33, wherein the dewatering system is designed to produce a dewatering supernatant. 35. The system of claim 33, wherein the dewatering system comprises a primary dewatering system and a secondary dewatering system. 3. The system of claim 35, wherein the primary dewatering system is designed to produce a dehydration product having a solids content of 5 - 40% solids and a first-grade dewatering liquid. 37. The system of claim 35, wherein the secondary dewatering system is designed to produce a secondary dehydration product comprising 35-99% solids and a secondary dewatering supernatant. 38. The system of claim 34, wherein the processing system additionally comprises - for use in dehydration, wherein the system package 113 201038477 comprises at least one filter, unit. 39. The system of claim 38, wherein the dewatering system is designed to supply the dewatering supernatant to the filtration system. 40. The system of claim 38, wherein the filtration system is designed to produce a filtration unit retentate and a filtration unit permeate. 41. The system of claim 38, wherein the filtration system comprises an ultrafiltration unit, a nanofiltration unit, a reverse osmosis unit, or a combination of the above filtration units. 42. The system of claim 41, wherein the dewatering system is designed to supply the dewatering supernatant to a nanofiltration unit. 43. The system of claim 42 wherein the nanofiltration unit is designed to produce a nanometer per unit unit retentate comprising an alkaline earth metal concentration greater than at least 50% of the dehydrated liquid. 44. The system of claim 41, wherein the dewatering system is designed to supply the dewatering supernatant to a reverse osmosis unit. 45. The system of claim 44, wherein the reverse osmosis unit is designed to produce a reverse osmosis unit retentate comprising an alkaline earth metal concentration that is greater than 50% less than the dehydrated liquid to 114 201038477. 46. The system of claim 32, wherein the processor comprises a contactor selected from the group consisting of a gas-liquid contactor and a gas-liquid-solid contactor. 47. The system of claim 46, wherein the contactor is a multi-stage contactor. 48. The system of claim 46, wherein the contactor is designed to utilize a filter unit retentate supplied by the filter unit. 49. The system of claim 48, wherein the contactor is additionally designed to utilize makeup water. 50. The system of claim 38-49, further comprising an electrochemical system designed to produce a proton-removing agent. 51. The system of claim 50, wherein the electrochemical system is designed to produce hydroxides, bicarbonates, carbonates, or combinations thereof. 52. The system of claim 50, wherein the electrochemical system is designed to utilize a filtration unit permeate from at least one filtration unit. 0 115 201038477 53. As claimed in claim 50 or 51 A system wherein the electrochemical system is designed to utilize a filtration unit retentate derived from at least one filtration unit. 54. The system of claim 52, wherein the filter unit is a nanofiltration unit. 55. The system of claim 52, wherein the filter unit is a reverse osmosis unit. 56. The system of claim 52, further comprising a demineralization unit for demineralizing the filtration unit permeate. 57. The system of claim 53, further comprising a demineralization unit for demineralizing the filtration unit retentate. 58. The system of claim 56 or 57, further comprising a concentration unit coupled to the demineralization unit. 59. The system of claim 32-58, wherein the system provides a reduction in total parasitic load of at least 4% compared to systems designed for single-flow operating procedures. 60. A system comprising: 116 201038477 a) - a processor designed to contact an industrial source comprising a soil test metal solution with cerium oxide and to produce a slurry containing a sinker, wherein the sink comprises Alkaline earth metal carbonates, bicarbonates or carbonates and bicarbonates, and wherein protons are designed to be derived from natural sources, sources of sanitary waste, those produced by electrochemical processes, or combinations thereof. Remover; Ο 〇b) - a dewatering system designed to separate the supernatant from the mash; and ^^" for the use of the liquid and the production of the cake, ^ ◎, the m-shaped m纟 secretly connected at least a part of the filtered stream. A garment - designed to have a system of claim 6G, which additionally comprises an electrochemical system for producing a proton-removing agent. Inverse ====== 63· A method comprising: ,, a~) contacting the solution with an industrial source of carbon dioxide to produce an anthracene band (10)/valley, b) causing the c〇2 solution to be sufficient to produce - a condition comprising a composition of Wei, hydrogen peroxide or carbonate and bicarbonate; orphan c) treating the composition to produce a supernatant; and d) supplying at least a portion of the supernatant to the electrochemical procedure To produce a proton to 117 201038477, the electrochemical procedure produces chlorine at the anode, produces oxygen at the anode, or produces no gas at the anode. 64. A system comprising: a) a processor designed to produce a composition from an industrial source of oxidizing, wherein the composition comprises a carbonate, a bicarbonate or a carbonate and a bicarbonate; a treatment system designed to produce a supernatant from the composition; and c) an electrochemical system comprising an anode, wherein the electrochemical system is designed to produce a proton-removing agent from at least a portion of the supernatant, and wherein The electrochemical system is designed to produce chlorine at the anode, generate oxygen at the anode, or generate no gas at the anode. 118
TW098142892A 2009-04-16 2009-12-15 Processing CO2 utilizing a recirculating solution TW201038477A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17008609P 2009-04-16 2009-04-16
US17847509P 2009-05-14 2009-05-14
US23942909P 2009-09-02 2009-09-02
US25464009P 2009-10-23 2009-10-23

Publications (1)

Publication Number Publication Date
TW201038477A true TW201038477A (en) 2010-11-01

Family

ID=44995057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098142892A TW201038477A (en) 2009-04-16 2009-12-15 Processing CO2 utilizing a recirculating solution

Country Status (1)

Country Link
TW (1) TW201038477A (en)

Similar Documents

Publication Publication Date Title
CA2694971C (en) Processing co2 utilizing a recirculating solution
US7931809B2 (en) Desalination methods and systems that include carbonate compound precipitation
AU2008278301B2 (en) Methods of sequestering CO2
US9260314B2 (en) Methods and systems for utilizing waste sources of metal oxides
AU2009260036B2 (en) Methods and systems for utilizing waste sources of metal oxides
US7754169B2 (en) Methods and systems for utilizing waste sources of metal oxides
US20120211421A1 (en) Systems and methods for processing co2
US20110277670A1 (en) Systems and methods for processing co2
WO2010132863A1 (en) Systems and methods for processing co2
JP2012519076A (en) Gas flow complex contaminant control system and method
WO2015134408A1 (en) Alkali enrichment mediated co2 sequestration methods, and systems for practicing the same
Kang et al. Chemical conversion of carbon dioxide via target metal separation using seawater‐derived wastewater
TW201016599A (en) Methods and systems for utilizing waste sources of metal oxides
TW201038477A (en) Processing CO2 utilizing a recirculating solution
TW201100158A (en) Gas stream multi-pollutants control system and method
TW201016600A (en) Production of carbonate-containing compositions from material comprising metal silicates