TW201036855A - Electric power steering controller - Google Patents

Electric power steering controller Download PDF

Info

Publication number
TW201036855A
TW201036855A TW98111179A TW98111179A TW201036855A TW 201036855 A TW201036855 A TW 201036855A TW 98111179 A TW98111179 A TW 98111179A TW 98111179 A TW98111179 A TW 98111179A TW 201036855 A TW201036855 A TW 201036855A
Authority
TW
Taiwan
Prior art keywords
reference coordinate
auxiliary
current
motor
mode
Prior art date
Application number
TW98111179A
Other languages
Chinese (zh)
Other versions
TWI367840B (en
Inventor
Shin-Hung Chang
Pin-Yung Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW098111179A priority Critical patent/TWI367840B/en
Publication of TW201036855A publication Critical patent/TW201036855A/en
Application granted granted Critical
Publication of TWI367840B publication Critical patent/TWI367840B/en

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The present invention related to an electric power steering controller, being different from those conventional electric power steering systems that only focus on the improvement of the steering-assist mechanism, that is an intelligent fuzzy electric power steering control logic comprising a base-assist logic, a damping compensation logic, a return compensation logic, and an inertia compensation logic. The electric power steering controller is able to base upon the current steering angle and current vehicle speed to issue a command for determining the amount of current is to be provided to a steering assist motor. Since there will be no enquiry formed to be established in response to those compensation logics built in the controller as those conventional steering control did, the memory required in the aforesaid controller is greatly reduced. Moreover, as there is no high-price sensor, such as the torque sensor, used in the controller of the invention, the overall cost is decreased. The present electric power steering controller is able to provide a smoother steering sensation than any conventional power steering since the intelligent fuzzy electric power steering control logic adopted thereby can simulate the human thinking patterns better than the others. There are four different controlling modes being configured in the controller of the invention, which are a stop mode, a sustain mode, an assist mode and a U-turn mode, and different modes are featuring by their distinctive fuzzy control logic for achieving different steering assistance and compensation.

Description

201036855 .六、發明說明: 【發明所屬之技術領域】 本發明係有關一種電子動力輔助轉向控制器架構,尤 指一種利用模糊推論策略實現了輔助轉向中所需的基本輔 ' 助邏輯、回正補償邏輯、阻尼補償邏輯和慣性補償邏輯。 有別於一般使用查表示方式來實現這四種邏輯,我們透過 車速及方向盤轉角為依據,以近似人類思考模式的模糊推 論策略,使整個電子動力輔助轉向在操控上更加具有人性 ^ 化及平順,再者將可比使用查表方式有更小的記憶體使用 量,最重要的是節省了輔助系統電能上的耗能。 【先前技術】 . 在早期無動力方向盤的時代,雖然用很高的減速比可 減輕駕駛人的操作力矩,但事實上還是十分費力的。因此 液壓動力輔助轉向(HPS)的出現大大改善這個問題。駕駛人 轉動方向盤即是在控制液壓閥,造成轉向機構的橫向直線 Ο 運動,帶動轉向連桿組使車輪轉向。但隨著科技進步,節 能環保議題漸漸受到大家的重視,液壓動力輔助轉向雖有 • 其力量大,及出力平順等優點,但還有很多的缺點如下: . 1.管路易發生洩露。 2. 液壓油和和管路摩擦易生熱使其性質改變。 3. 定期檢查及更換動力方向盤油。 4. 管路複雜。 4 201036855 5.需液壓泵,儲油槽,油壓管路等而增加重量及 空間。 6·需額外引擎動力來驅動液壓泵,而增加油耗。 7·車輛直線前行時,亦需保持—定的操作壓力,造 成不必要的損失。 、隨著電子技術快速的發展,因此電子技術在汽車這個 領域的應用不斷擴大。汽車轉向裝置從早期純機械式轉向 到之後的液壓動力輔助轉向(Hydraulic p〇wer SteeHng, HPS),而真正加入電子技術在轉向裝置是從電動液壓辅助 轉向(Electric Hydraulic power Steering,EHps)開始, 如今發展的是為更節能且操控性更優越的電子動力輔助轉 向(Electrical Power Steering , EPS)。 而電子動力辅助轉向(EPS)無上述液壓辅助轉向系統 之缺點,並額外還有以下優點, ◎ 1·可依駕駛狀況不同,而給予不同之動力大小辅助。 2·只有在需要轉向輔助時才使馬達作動。 因此電子動力輔助轉向是將馬達直接安裂於轉向 上’藉由減速機將馬達產生之力矩放大並傳至轉向轴上, 用以減少駕驶者出力’輔助駕驶者轉向。過去幾年在 動力辅助轉向系統的相關文獻也相當的多,一 ^ 大研究主題’其:為著4於馬達控制器及機構的研究’、,'、例 如使用查表方式並結合模她制器及傳統piD控制器來達 201036855 成電子動力輔助轉向的動作。第二則是電子動力輔助轉向 策略分析的研究,這也是本發明創意之重點。 一般來說在轉向策略分析上,電子動力輔助轉向控制 1 策略包括基本輔助邏輯、阻尼補償邏輯、回正補償邏輯和 慣性補償邏輯等。以基本辅助邏輯為主要轉向策略,其餘 補償邏輯為輔,補償過度回正,回正不足,及快轉方向盤 造成之重手現象。每一補償邏輯皆是獨立,且有其對應之 查表過程,而輸入的感測訊號有車速訊號、方向盤轉角訊 〇 號、轉角速度、轉角加速度或者駕駛人操作力矩等的回授, 都可即時地調整補償增益值,使電子動力輔助轉向之輔助 特性更加完善。在一些研究上並無探討無車速之轉向策 略,也就是在無自動回正力矩時之情況,再者也都只有模 擬或者在實驗平台上測試,缺乏實車驗證。 【發明内容】 基於解決以上所述習知技藝的缺失,本發明為一種電 〇 子動力輔助轉向控制器架構,主要目的為利用一模糊推論 策略實現了輔助轉向中所需的基本辅助邏輯、回正補償邏 > 輯、阻尼補償邏輯和慣性補償邏輯。有別於一般使用查表 示方式來實現這四種邏輯,我們透過車速及方向盤轉角為 ’依據,以近似人類思考模式的模糊推論策略,使整個電子 動力輔助轉向在操控上更加具有人性化及平順,再者將可 比使用查表方式有更小的記憶體使用量,最重要的是節省 了輔助系統電能上的耗能。 本發明之另一目的為未使用轉矩感測器之高價偵測 6 201036855 .器’可有效降低整體成本。透過模糊控制策略更接近人類 思考模式下,可使電子動力輔助轉向系統在操控上更加的 平順。在本發明中更設計了四種不同的操控模式來輔助整 - 個推論策略更加的完善’包含停止模式,維持模式,辅助 • 模式,以及回轉模式,不同的模式有其專屬之模糊推論策 略來完成不同輔助及補償邏輯。 本發明著重於電子動力輔助轉向策略分析,以模糊推 論機構整合了基本輔助邏輯、阻尼補償邏輯、回正補償邏 Ο 輯和慣性補償邏輯,其優點如下: I 不需要每一種補償邏輯建立各種不同查詢表柊, 可省去大量記憶體空間。 2·模糊策略比查表法更具人性化,且推論值更為平 順’將可使駕驶者得到更好之操控環境。 3.轉向策略以方向盤轉角及車速為輸入依據,無 用轉矩感測.器,以最小成本達成相近功能。 〇 種電子動力輔助轉 為達上述之目的,本發明 制器架構,其係包括: 一轉角感測器,用以偵測出一方向盤之轉角信號, 以輸出; D〜’ 一車速感測n ’用則貞測出車速信號,並加 —1頻器,調整電壓頻率以控制—馬達的轉速 1考電流產生n ’接收車速錢及 咸,經處理後並輸出一給予馬達命令的電^ 至少—比例積分控制器,接收該參考,泣仙'值 7 巧电洲·產生器奢 201036855 電流值及該靜止參考座標至同步參考座標轉換單元 的轉換電流值,用以控制輸出電流; 一三軸參考座標至兩軸靜止參考座標之轉換單元,介 '於三相回授電流與d-q轴靜止參考座標回授電流之 '間,將一馬達三相回授電流轉換成d-q軸靜止參考座 標回授電流,並輸出該回授電流; 一靜止參考座標至同步參考座標轉換單元,接收該三 軸參考座標至兩軸靜止參考座標之轉換單元所輸出 Ο 回授電流,介於d-q軸靜止參考座標迴授電流與一同 步旋轉參考座標迴授電流之間,可把d-q軸上之迴授 電流進行靜止參考座標至同步旋轉參考座標的轉 換; 一同步參考座標至靜止參考座標轉換單元,接收該比例 積分控制器的信號,並將介於d-q轴同步旋轉參考座 標命令電壓與靜止參考座標命令電壓之間,把d-q軸 上之命令電壓進行同步旋轉參考座標至靜止參考座 Ο 標的轉換,作為兩者的轉換介面,並輸出該信號;以 及 ,一空間向量脈波寬度調變產生器,接收該同步參考座標 至靜止參考座標轉換單元之輸出信號,將該靜止參考 座標命令電壓轉換成三相命令電壓,並控制該變頻器 功率晶體的激發時序來切換直流電壓源。 為進一步對本發明有更深入的說明,乃藉由以下圖 示、圖號說明及發明詳細說明,冀能對貴審查委員於 8 201036855 審查工作有所助益。 【實施方式】 茲配合下列之圖式說明本發明之詳細結構,及其連結 •關係,以利於貴審委做一暸解。 請同時參閱圖一所示,係為本發明電子動力輔助轉向 之控制硬體功能方塊架構圖,其中一電子動力輔助轉向控 制器(13)具備方向盤(11)的轉角感測器(14)及車速感測 Ό 器(12),並透過一變頻器(15) ’驅使一 12V/500W永磁同步 馬達轉動(16),藉由減速齒輪組(17)與方向盤(11)所 延伸之轉向柱(19)做一連接’帶動一轉向架(18)橫移 而完成車輛轉向動作。 請同時參閱圖二所示,係為本發明電子動力輔助轉向 控制器之功能方塊架構圖,其中本發明系統的電子動力輔 5轉向控制器(13)具有一參考電流產生器(131),用來產生 Ο 1予馬達(16)的命令電流大小,該參考電流產生器(131) ^有模式決策單元(1311),用來作為判斷目前所在操控 且參考電流產生器(131)具有-難推論機構(1312) /、匕智慧型推論機構(如類神經網路及整合型模糊類神 、、、工網路等),W ^ 所命 j接又方向盤角度訊號及車速訊號,提供馬達 器&控制電流大小。本發明系統的電子動力輔助轉向控制 迴路。)ί有一組比例積分控制器(132)及(133),可達成閉 器控制能力。本發明系統的電子動力輔助轉向控制 )具有一同步參考座標至靜止參考座標轉換單元 ark轉換單元)(134),它介於d-q轴同步旋轉參考 9 201036855 座標命令電壓與靜止參考座標命令電壓之間,可把d-q軸 上之命令電壓進行同步旋轉參考座標至靜止參考座標的轉 換’作為兩者的轉換介面。本發明系統的電子動力輔助轉 向控制器(13)具有一空間向量脈波寬度調變(SVPWM)產生 器(136) ’可將靜止參考座標命令電壓轉換成三相命令電 壓’並藉由控制變頻器功率晶體的激發時序來切換直流電 壓源而得到。本發明系統的電子動力輔助轉向控制器(13) 具有一三軸參考座標至兩軸靜止參考座標之轉換單元 〇 (Clark轉換單元)(137),它介於三相回授電流與d-q 轴靜止參考座標回授電流之間,可把三相回授電流轉換成 d-q轴靜止參考座榡回授電流,作為兩者的轉換介面。本 發=系統的電子動力辅助轉向控制器(13)具有一靜止參考 =至同步參考座標轉換單it (Park轉換單元)(135), =二,於d-q轴靜止參考座標迴授電流與同步旋轉參考座標 =授電流之間’可把d_q軸上之迴授電錢行靜止參考座 I至同步旋轉參考座標的轉換,作為兩者的轉換介面,以 〇供比例積分控制器進行電流控制。 所謂模糊推論的原則如下: ·】代科,技術研究對象’往往都是非常巨大的物體或機 尸像這種大規模又複雜m若想正確地、精密地 局就必須從物體的細部做起,他必須非常準確 认許有~微的錯誤產生,所以更需有一個更好的理 δ兩才^丁。 科:技術的成長,完全取決於他有—個明4的數學 疋若這些被研究的對象中,無法瞭解其數學性質的 201036855 •話’那麼以過去這種科學技術的研究,將顯得束手無策 而被迫停止’ Zadeh教授認為對於無法用數學模式建構 的系統,Fuzzy理論將顯的更重要。 3. Fuzzy理論是以Fuzzy集合(fuzzy set)為基礎,其基本 精神是接受模糊性現象存在的事實,而以處理概念模糊 不確定的事物為其研究目標,並積極的將其嚴密的量化 成電腦可以處理的訊息,Fuzzy理論的應用較偏重於人 〇 類的經驗及對問題特性的掌握程度。 〇请同時參閱圖三所示,係為本發明系統之模式決策流 权圖’本發明系統的模式決策單元(1311)是一個具備決定 Z種知控模式之能力,開始(21)後,其判斷依據為當方 ^盤轉角小於正負5度(22)時,則為停止模式(23);當 (2^盤轉角絕對值的微分大於零(24),則為辅助模式 ’該輔助模式(25)更係具有一輔助模糊規則庫(如 〇 焉’可依據方向盤轉角及車速’透過模糊推論機構決定 ^ \所需基本辅助電流大小;其規則符合在相同車速時, 盤輪盤轉角越大’所需馬達輔助電流越大,及在相同方向 式角時’車速越快’所需馬達輔助電流越小,該辅助模 1 (25)係可判斷方向盤轉角之角加速度,若大於某設定 辦^則可進行辅助模式下之慣性補償,適時放大模糊輸出 ^ k,即放大輔助馬達電流增益;當方向盤轉角絕對 更^微分小於零(26),則為回轉模式(27),該回轉模式(27) 及2具有一回轉模糊規則庫(如圖十),可依據方向盤轉角 速’透過模糊推論機構決定馬達回轉時所需之電流大 201036855 小;此規則符合在回正不足時給予適當回正力矩,並在高 速回正時,提供限尼補償以降低所造成之振魏象,該回 轉模式(27)更係具有一可變模糊輸出增益值k,在益車 速時,此增益k值的大小等於輔助模式下之基本輔助邏輯 在有車速時’因回轉時有回饋力矩存在,所以此時輸 $增益k值的大小將小於辅助模式下之基本輔助邏輯時; 若為以上皆非情況’則為維持模式⑽),當車輛完全停止 後則為結束(2 9 )。 ❹明參閱圖四、五、六、九、十所示’其中輔助模式(⑸ 及回轉模式(27)有其所使用之輸入歸屬函數(圖四及圖 五)、輸出歸屬函數(圖六)及相對應之模糊規則庫(圖九及 圖十)。本發明系統的停止模式(23>被決定時,判斷為駕 駛者並非真要轉向,因此輔助馬達不作動,且該停止模式 (23)具有一馬達停止區間,可避免駕駛者在誤動作下, 馬達不會因此而誤動作。本發明系統的輔助模式(25)被決 疋時,判斷為駕駛者要開始轉向,因此辅助模式(π)模 〇 糊規則庫(圖九)將被選擇,依據方向盤轉角感測器(丨4)及 車速感測器(12),透過模糊推論機構(1312)決定馬達所需 輔助電流大小;再者,模式決策單元(1311)提供一模糊輪 出增益值k,若方向盤轉角之角加速度大於某設定值,則 為辅助模式(25)下之慣性補償,此時輸出增益k值的大小 將大於輔助模式(25)下之基本輔助邏輯時。本發明系統的 回轉模式(27)被決定時,判斷為駕駛者要開始回轉,因此 回轉模式模糊規則庫(圖十)將被選擇,依據方向盤轉角感 測器(14)及車速感測器(12),透過模糊推論機構(1312)決 12 201036855 需輔,4大小,另外回轉模式模糊規則庫(圖十) 單ΐ('3且及回正補償邏輯(32) ’模 益k值的大小二出增益^’在無車速時,此增 .... 、、輔助模式(25)下之基本輔助邏輯時,在 Ο 有車速時’因回轉時有回饋力矩存在,所以此時輸出增益 k值的大小將小於輔助模式(25)下之基本輔助邏輯時。: 發明系統的轉模式(28)被決定時,麟駕駛者正操控在 =固定方向盤轉角下,此時若有車速時給予一固辅助力, 若在無車速時就不予以輔助力。 本發明的模糊推論輸出可表示如下: 針對圖九及圖十,分別有2個輸入變數及25條規則,則 模糊邏輯推論輸出可以表示如下式: 25 2 产气, ΥΧ\μαΛχ) m=\ /=1 其中 是第個輸入對第m條模糊規則的模糊集合,歹", 是第/W條模糊規則輸出歸屬函數之中心值。 請參閱圖七所示,係為本發明車輛實際行駛時使用電 子動力辅助轉線路線圖,且同時參閱圖八A及八β所示, 其包括有本發明輸入方向盤轉角的曲線圖及對應圖八Α的 方向盤轉角所呈現輔助馬達電流的曲線圖,根據不同輸入 方向盤轉角會有其相對應之辅助馬達電流大小,圖中可觀 察到Α1處為車輛直行,故輔助馬達未提供任何動力;Α2 處為車輛開始右轉,輔助馬達的電流朝正向增加,直到 處為正向最大值,接下來方向盤向左回正時,就提供較小 負向電流;到Β2處時,車輛已完全垂直於道路,故辅助馬 13 201036855 達未提供任何動力,但此時車輛需要再向左轉,輔助馬達 的電流朝負向增加,直到C1處為負向最大值;接下來方向 盤向右回正時’就提供較小正向電流;到C2處時,車輛已 完全垂直於道路’故輔助馬達未提供任何動力,由該路線 圖(圖七)可同時瞭解方向盤轉角(圖八A)與輔助馬達 電流(圖八β)之對應關係。再者,因低速時方向盤轉動 幸乂為不易’故車速較低時所獲得的輔助馬達電流將會比車 速較高時來的大。 Ο ❹ 藉由上述圖一至圖十的揭露,即可瞭解本發明電子動 力輔助轉向控制器架構,並應用於實際輕型電動車上。有 別於一般電子動力輔助轉向系統設計著重機構之研究,具 有智慧型的模糊控制策略整合實現了辅助轉向系統中應有 的^本辅助邏輯、回正補償邏輯、阻尼補償邏輯、及慣性 補償邏輯,可判斷目前駕駛的方向盤轉向角度及行駛車 ,,決定辅助馬達所需給予的辅助命令電流大小,因無須 每種補償建立相對應之查詢表格,因此將可省去大 體空間。再者,本發明未使用轉矩感測器之高價偵測器了 可有效降低整體成本。透過模糊控制策略更接近人類思 杈式下’可使電子動力辅助轉向系統在操控上更加的 發明中更設計了四種不同的操控模式來輔助整個 推“略更加的完善’包含停止模式,維持模式 式’以及回轉模式,不同的模式有其專屬之模糊推= 來完成不同輔助及補償邏輯。 ’束略 綜上所述,本發明之結構特徵及各實施例皆已詳細 不,而可充分顯示出本發明案在目的及功效上均含〜, 之進步性’極具產業之利用^值,且為目前市面上 201036855 -見之運用,依專利法之精神所述,本發明案完全符合發明 專利之要件。 唯以上所述者,僅為本發明之較佳實施例而已,當不 » 能以之限定本發明所實施之範圍,即大凡依本發明申請專 ’ 利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵 蓋之範圍内,謹請 貴審查委員明鑑,並祈惠准,是所 至禱。 Ο 15 201036855 • 【圖式簡單說明】 圖一係為本發明電子動力輔助轉向之控制硬體功能方塊架 構圖, 圖二係為本發明電子動力輔助轉向控制器之功能方塊架構 圖三係為本發明系統之模式決策流程圖; 圖四係為本發明輸入方向盤角度之模糊集合線形圖; 圖五係為本發a月輸入車速之模糊集合線形圖; 〇 圖六係為本發明輸出參考電流之模糊集合線形圖; 圖七係為本發明車輛實際行駛時使用電子動力辅助轉線路 線圖; 圖八A係為本發明輸入方向盤轉角的曲線圖; 圖八B係為對應圖七的方向盤轉角所呈現輔助 曲線圖;_ 冤机的 圖九係為本發明辅助模式模糊規則庫; 圖十係為本發明回轉模式模糊規則庫。 〇 【主要元件符號說明】 11〜方向盤 12〜車速感測器 13〜電子動力輔助轉向控制器 131〜參考電流產生器 1311〜模式決策單元 1312〜模糊推論機構 132、133〜比例積分控制器 134〜同步參考座標至靜止參考座標轉換單元 201036855 - 135〜靜止參考座標至同步參考座標轉換單元 136〜空間向量脈波寬度調變產生器 137〜三軸參考座標至兩軸靜止參考座標之轉換單元 14〜轉角感測器 ' 15〜變頻器 16〜馬達 17〜減速齒輪組 18〜轉向架 Ο 19〜轉向柱 21〜開始 22〜方向盤轉角是否小於正負5度 23〜停止模式 24〜方向盤轉角絕對值的微分是否大於零 2 5〜輔助模式 ' 26〜方向盤轉角絕對值的微分是否小於零 2 7〜回轉模式 〇 28〜維持模式 29〜結束 31〜阻尼補償邏輯 32〜回正補償邏輯 17201036855. 6. Description of the Invention: [Technical Field] The present invention relates to an electronic power assisted steering controller architecture, and more particularly to a basic auxiliary assist logic and correction required for assisting steering using a fuzzy inference strategy Compensation logic, damping compensation logic, and inertia compensation logic. Different from the general use of the representation to achieve these four logics, we rely on the speed of the car and the steering wheel angle, based on the fuzzy inference strategy of the human thinking mode, so that the entire electronic power assisted steering is more humane and smooth in control. In addition, there will be a smaller amount of memory usage than the use of look-up tables, and the most important thing is to save energy in the auxiliary system. [Prior Art] In the early era of unpowered steering wheels, although the driver's operating torque was alleviated by a high reduction ratio, it was actually very laborious. Therefore, the emergence of hydraulic power assisted steering (HPS) has greatly improved this problem. The driver turns the steering wheel to control the hydraulic valve, causing the lateral linear motion of the steering mechanism to drive the steering linkage to steer the wheels. However, with the advancement of science and technology, the issue of energy-saving and environmental protection has gradually received the attention of everyone. Although the hydraulic power-assisted steering has its advantages of large strength and smooth output, there are still many disadvantages as follows: 1. The pipeline is prone to leakage. 2. Hydraulic oil and friction with the pipeline are prone to heat and change their properties. 3. Regularly check and replace the power steering oil. 4. The pipeline is complicated. 4 201036855 5. Requires hydraulic pump, oil storage tank, oil pressure pipeline, etc. to increase weight and space. 6. Additional engine power is required to drive the hydraulic pump and increase fuel consumption. 7. When the vehicle is moving straight ahead, it is also necessary to maintain a constant operating pressure to cause unnecessary losses. With the rapid development of electronic technology, the application of electronic technology in the field of automobiles has been expanding. The steering mechanism of the car has shifted from the early pure mechanical to the subsequent hydraulic power steering (Hydraulic p〇wer SteeHng, HPS), while the true electronic technology started with the steering device from the Electric Hydraulic Power Steering (EHps). Today's development is the Electric Power Steering (EPS), which is more energy efficient and more maneuverable. The electronic power assisted steering (EPS) does not have the disadvantages of the above-described hydraulic assisted steering system, and additionally has the following advantages: ◎ 1·Depending on the driving situation, different power sizes are provided. 2. The motor is only activated when steering assistance is required. Therefore, the electronic power assisted steering is to directly rupture the motor to the steering. The torque generated by the motor is amplified by the reducer and transmitted to the steering shaft to reduce the driver's output to assist the driver's steering. In the past few years, there have been quite a lot of related literatures on power-assisted steering systems. One of the major research topics is: 'For the research of motor controllers and mechanisms', 'for example, using the look-up table method and combining the model And the traditional piD controller to reach the 201036855 into an electronic power assisted steering action. The second is the study of electronic power assisted steering strategy analysis, which is also the focus of the inventive idea. Generally speaking, in the steering strategy analysis, the electronic power assisted steering control 1 strategy includes basic auxiliary logic, damping compensation logic, return compensation logic and inertia compensation logic. The basic auxiliary logic is the main steering strategy, and the rest of the compensation logic is supplemented, the compensation is excessively corrected, the return is insufficient, and the steering wheel is caused by the fast steering. Each compensation logic is independent and has a corresponding look-up table process, and the input sensing signal has a speed signal, a steering wheel angle signal, a corner speed, a corner acceleration or a driver's operating torque. Instantly adjust the compensation gain value to make the auxiliary features of the electronic power assisted steering more perfect. In some studies, there is no discussion of the steering strategy without speed, that is, when there is no automatic return torque, and then only the simulation or testing on the experimental platform, lack of real vehicle verification. SUMMARY OF THE INVENTION Based on the solution to the above-mentioned shortcomings of the prior art, the present invention is an electric scorpion power assisted steering controller architecture, the main purpose of which is to realize the basic auxiliary logic and auxiliary back needed in the auxiliary steering by using a fuzzy inference strategy. Positive compensation logic >, damping compensation logic and inertia compensation logic. Different from the general use of the representation to achieve these four kinds of logic, we use the speed and steering wheel angle as the basis, to approximate the human inference mode of the fuzzy inference strategy, so that the entire electronic power assisted steering is more humane and smooth in control In addition, there will be a smaller amount of memory usage than the use of look-up tables, and the most important thing is to save energy in the auxiliary system. Another object of the present invention is that the high-priced detection of the unused torque sensor 6 201036855 can effectively reduce the overall cost. The fuzzy control strategy is closer to the human thinking mode, which makes the electronic power assisted steering system more smooth in control. In the present invention, four different manipulation modes are designed to assist the whole inference strategy to be more perfect. 'Include stop mode, maintenance mode, auxiliary mode, and swing mode. Different modes have their own fuzzy inference strategy. Complete different auxiliary and compensation logic. The invention focuses on the analysis of the electronic power assisted steering strategy, and the fuzzy inference mechanism integrates the basic auxiliary logic, the damping compensation logic, the correction compensation logic and the inertia compensation logic, and the advantages are as follows: I do not need to establish various kinds of compensation logic. Query the table to save a lot of memory space. 2. The fuzzy strategy is more user-friendly than the look-up table method, and the inference value is smoother, which will give the driver a better control environment. 3. The steering strategy is based on the steering wheel angle and the vehicle speed, and the unnecessary torque sensing device achieves similar functions at the minimum cost. The electronic power assisted switch is the object of the above, and the controller structure of the present invention comprises: a corner sensor for detecting a corner signal of a steering wheel to output; D~' a vehicle speed sensing n 'Use the 贞 to measure the speed signal, and add -1 frequency, adjust the voltage frequency to control - the motor's speed 1 test current produces n 'receive the speed of the car and salt, after processing and output a motor command to give ^ ^ at least - The proportional integral controller receives the reference, and the value of the current value and the converted current value of the stationary reference coordinate to the synchronous reference coordinate conversion unit are used to control the output current; a three-axis reference A conversion unit from the coordinate to the two-axis stationary reference coordinate, between the three-phase feedback current and the dq-axis stationary reference coordinate feedback current, converts a motor three-phase feedback current into a dq-axis stationary reference coordinate feedback current And outputting the feedback current; a stationary reference coordinate to the synchronous reference coordinate conversion unit, and receiving the output of the three-axis reference coordinate to the conversion unit of the two-axis stationary reference coordinate The current is fed between the dq axis stationary reference coordinate feedback current and a synchronous rotation reference coordinate feedback current, and the feedback current on the dq axis can be converted from the stationary reference coordinate to the synchronous rotation reference coordinate; a synchronous reference coordinate a stationary reference coordinate conversion unit receives the signal of the proportional integral controller and synchronizes the dq axis synchronous rotation reference coordinate command voltage with the stationary reference coordinate command voltage to synchronously rotate the reference coordinate on the dq axis to a conversion of the stationary reference block as a conversion interface of the two, and outputting the signal; and a spatial vector pulse width modulation generator receiving the output signal of the synchronous reference coordinate to the stationary reference coordinate conversion unit, the stationary signal The reference coordinate command voltage is converted into a three-phase command voltage, and the excitation timing of the inverter power crystal is controlled to switch the DC voltage source. In order to further explain the present invention, it will be helpful to review the work of the review committee on 8 201036855 by the following figures, the description of the drawings and the detailed description of the invention. [Embodiment] The detailed structure of the present invention and its connection relationship are explained in conjunction with the following drawings to facilitate understanding by the audit committee. Please also refer to FIG. 1 , which is a block diagram of the control hardware function of the electronic power assisted steering of the present invention, wherein an electronic power assist steering controller (13) has a steering angle sensor (14) of the steering wheel (11) and The vehicle speed sensing device (12) drives a 12V/500W permanent magnet synchronous motor to rotate (16) through a frequency converter (15), and the steering column extended by the reduction gear set (17) and the steering wheel (11) (19) Make a connection 'to drive a bogie (18) to traverse to complete the steering action of the vehicle. Please also refer to FIG. 2, which is a functional block diagram of the electronic power assisted steering controller of the present invention, wherein the electronic power auxiliary 5 steering controller (13) of the system of the present invention has a reference current generator (131). To generate the command current of Ο1 to the motor (16), the reference current generator (131) has a mode decision unit (1311) for judging the current control and the reference current generator (131) has a hard to infer Institution (1312) /, 匕 intelligent inference institutions (such as neural networks and integrated ambiguous gods,, industrial networks, etc.), W ^ command and steering wheel angle signals and speed signals, provide motor &; Control the current size. The electronic power assisted steering control loop of the system of the present invention. ) ί has a set of proportional integral controllers (132) and (133) for closed-loop control. The electronic power assisted steering control of the system of the present invention has a synchronous reference coordinate to stationary reference coordinate conversion unit ark conversion unit) (134) which is interposed between the dq axis synchronous rotation reference 9 201036855 coordinate command voltage and the stationary reference coordinate command voltage The conversion of the command voltage on the dq axis to the synchronous reference coordinate to the stationary reference coordinate can be used as the conversion interface for both. The electronic power assisted steering controller (13) of the system of the present invention has a space vector pulse width modulation (SVPWM) generator (136) 'converts the stationary reference coordinate command voltage into a three-phase command voltage' and controls the frequency conversion The excitation timing of the power crystal is obtained by switching the DC voltage source. The electronic power assisted steering controller (13) of the system of the present invention has a three-axis reference coordinate to a two-axis stationary reference coordinate conversion unit Cl (Clark conversion unit) (137) which is interposed between the three-phase feedback current and the dq axis. The reference three-phase feedback current can be converted into a dq-axis stationary reference-seat feedback current as a conversion interface between the two reference feedback currents. The electronic power assist steering controller (13) of the system has a stationary reference = to synchronous reference coordinate conversion unit it (Park conversion unit) (135), = two, the dq axis stationary reference coordinate feedback current and synchronous rotation The reference coordinate = between the currents can be used to convert the static reference block I on the d_q axis to the synchronous reference block I to the synchronous rotation reference coordinate as the conversion interface of the two for the current control of the proportional integral controller. The principles of the so-called fuzzy inference are as follows: ·] Deputy, technical research objects 'often are very large objects or corpses like this large-scale and complex m. If you want to be correct and precise, you must start from the details of the object. He must be very sure to confirm that there is a slight error, so it is necessary to have a better rationality. Section: The growth of technology depends entirely on his own mathematics. If these objects are studied, they cannot understand the mathematical nature of 201036855. Then, in the past, this kind of scientific and technological research will be helpless. Forced to stop' Professor Zadeh believes that Fuzzy theory will be more important for systems that cannot be constructed using mathematical models. 3. Fuzzy theory is based on the fuzzy set. The basic spirit is to accept the fact that the ambiguity exists, and to deal with the concept of fuzzy and uncertain things, and actively quantify it into The information that the computer can handle, the application of Fuzzy theory is more focused on the experience of humanoids and the mastery of the characteristics of the problem.同时Please also refer to Figure 3, which is the mode decision flow diagram of the system of the present invention. The mode decision unit (1311) of the system of the present invention is capable of determining the Z knowledge control mode. After the start (21), The judgment is based on the fact that when the corner of the disk is less than plus or minus 5 degrees (22), it is the stop mode (23); when (the differential of the absolute value of the disk angle is greater than zero (24), it is the auxiliary mode 'the auxiliary mode' 25) It has a library of auxiliary fuzzy rules (such as 〇焉 'depending on the steering wheel angle and vehicle speed' through the fuzzy inference mechanism to determine the required basic auxiliary current size; the rules are consistent with the same speed, the greater the disk wheel angle 'The larger the motor assist current is required, and the faster the vehicle speed is at the same direction angle, the smaller the motor auxiliary current is required. The auxiliary mode 1 (25) can determine the angular acceleration of the steering wheel angle. ^ Then the inertia compensation in the auxiliary mode can be performed, and the fuzzy output ^ k is amplified in time, that is, the auxiliary motor current gain is amplified; when the steering wheel angle is absolutely more and the differential is less than zero (26), the rotation mode (27) is the rotation mode. (27) and 2 have a rotary fuzzy rule base (Fig. 10), which can be used to determine the current required for motor rotation through the fuzzy inference mechanism according to the steering wheel angle speed. The maximum current is 201036855. This rule is suitable for proper return when the return is insufficient. Positive torque, and when the high speed is positive, the compensation is provided to reduce the vibration of the vibration. The rotation mode (27) has a variable fuzzy output gain value k. At the beneficial vehicle speed, the gain k value The size is equal to the basic auxiliary logic in the auxiliary mode. When there is a vehicle speed, there is a feedback torque due to the rotation, so the value of the input gain k value will be less than the basic auxiliary logic in the auxiliary mode; 'The maintenance mode (10)), when the vehicle is completely stopped, it is the end (2 9 ). See Figure 4, 5, 6, 9, and 10 for details. 'The auxiliary mode ((5) and the swing mode (27) have it. The input attribution function (Fig. 4 and Fig. 5) used, the output attribution function (Fig. 6), and the corresponding fuzzy rule base (Fig. 9 and Fig. 10). When the stop mode of the system of the present invention (23> is determined, It is determined that the driver does not really want to turn, so the auxiliary motor does not move, and the stop mode (23) has a motor stop section, which can prevent the driver from malfunctioning due to the malfunction of the driver. The auxiliary mode of the system of the present invention ( 25) When it is decided, it is judged that the driver wants to start steering, so the auxiliary mode (π) mode rule library (Fig. 9) will be selected according to the steering wheel angle sensor (丨4) and the vehicle speed sensor ( 12), determining the auxiliary current required by the motor through the fuzzy inference mechanism (1312); further, the mode decision unit (1311) provides a fuzzy wheeling gain value k, and if the angular acceleration of the steering wheel angle is greater than a certain set value, Inertia compensation under mode (25), at which point the output gain k value will be greater than the basic auxiliary logic under auxiliary mode (25). When the swing mode (27) of the system of the present invention is determined, it is determined that the driver wants to start the swing, so the swing mode fuzzy rule base (Fig. 10) will be selected according to the steering wheel angle sensor (14) and the vehicle speed sensor ( 12), through the fuzzy inference mechanism (1312) by 12 201036855 need to be auxiliary, 4 size, and another rotary mode fuzzy rule base (Figure 10) single ΐ ('3 and back correction logic (32) 'model benefits k value size The second output gain ^' is in the case of no vehicle speed, this increases the basic auxiliary logic under the auxiliary mode (25), and when there is a vehicle speed, there is a feedback torque due to the rotation, so the output gain k at this time The value will be smaller than the basic auxiliary logic in the auxiliary mode (25).: When the transition mode (28) of the invention system is determined, the driver of the driver is operating at = fixed steering wheel angle, and if there is a speed, give one The solid assist force, if there is no vehicle speed, does not assist the force. The fuzzy inference output of the present invention can be expressed as follows: For Figure 9 and Figure 10, respectively, there are 2 input variables and 25 rules, then the fuzzy logic inference output can represent As follows: 25 2 Gas, ΥΧ \ μαΛχ) m = \ / = 1 where the first fuzzy input set of the m-th fuzzy rule, bad ", center value of / W fuzzy rules output membership function of. Please refer to FIG. 7 , which is an electronic power assisted transmission line diagram when the vehicle of the present invention is actually driven, and refers to FIG. 8A and FIG. 8β, which includes a graph and a corresponding diagram of the input steering wheel angle of the present invention. The steering wheel angle of the gossip shows the graph of the auxiliary motor current. According to different input steering wheel angles, there will be the corresponding auxiliary motor current. In the figure, the Α1 is observed as the vehicle goes straight, so the auxiliary motor does not provide any power; Α2 At the beginning of the right turn of the vehicle, the current of the auxiliary motor increases in the positive direction until it is at the positive maximum value. Then the steering wheel is turned back to the left to provide a small negative current; when it is at the Β2, the vehicle is completely vertical. On the road, the auxiliary horse 13 201036855 did not provide any power, but at this time the vehicle needs to turn left again, the current of the auxiliary motor increases in the negative direction until the negative maximum value at C1; then the steering wheel returns to the right. 'There is a small forward current; when it is C2, the vehicle is completely perpendicular to the road' so the auxiliary motor does not provide any power, by the road map (Figure 7) While understanding the relationship between the steering angle correspondence with the auxiliary motor current (Figure 8 beta]) of (Figure 8 A). Furthermore, since the steering wheel is rotated at a low speed, it is not easy to drive. Therefore, the auxiliary motor current obtained when the vehicle speed is low will be larger than when the vehicle speed is high. Ο 藉 By the above disclosure of Figures 1 to 10, the electronic power assisted steering controller architecture of the present invention can be understood and applied to an actual light electric vehicle. Different from the research on the design of the general electronic power assisted steering system, the intelligent fuzzy control strategy integrates the auxiliary logic, the return compensation logic, the damping compensation logic, and the inertia compensation logic in the auxiliary steering system. It can determine the steering angle of the steering wheel and the driving vehicle, and determine the auxiliary command current to be given by the auxiliary motor. Since no corresponding inquiry form is required for each compensation, the general space can be saved. Moreover, the present invention does not use a high-priced detector of the torque sensor, which can effectively reduce the overall cost. Through the fuzzy control strategy closer to the human mind, 'the electronic power-assisted steering system can be designed in the control of the invention. Four different control modes are designed to help the whole push "slightly more perfect" including stop mode, maintain The mode type and the swing mode, the different modes have their own fuzzy push = to complete the different auxiliary and compensation logic. 'Briefly, the structural features and embodiments of the present invention are detailed, but sufficient It is shown that the present invention has the objective and efficacy in its purpose, and the progressiveness of the industry is extremely useful, and it is currently used in the market on 201036855 - see the application, according to the spirit of the patent law, the present invention is fully consistent with The above is only the preferred embodiment of the present invention, and the scope of the present invention can be limited thereto, that is, the average change according to the scope of application of the present invention. And the modifications should still fall within the scope covered by the patent of the present invention. I would like to ask your review committee to give a clear understanding and pray for it. It is the prayer to be prayed. Ο 15 201036855 • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of the control hardware function of the electronic power assisted steering of the present invention, and Fig. 2 is a functional block diagram of the electronic power assisted steering controller of the present invention. Figure 4 is a fuzzy set line diagram of the input steering wheel angle of the present invention; Figure 5 is a fuzzy set line diagram of the input vehicle speed of the present month; Figure 6 is a fuzzy set line diagram of the output reference current of the present invention; Figure 7 is a diagram showing the use of an electronic power assisted turn line in the actual running of the vehicle of the present invention; Figure 8A is a graph of the input steering wheel angle of the present invention; Figure 8B is an auxiliary curve diagram corresponding to the steering wheel angle of Figure 7; _ Figure 9 is the auxiliary mode fuzzy rule base of the present invention; Figure 10 is the rotary mode fuzzy rule base of the present invention. 〇 [Main component symbol description] 11 ~ steering wheel 12 ~ vehicle speed sensor 13 ~ electronic power assisted steering The controller 131 to the reference current generator 1311 to the mode decision unit 1312 to the fuzzy inference mechanism 132, 133 to the proportional integral controller 13 4~ synchronous reference coordinate to stationary reference coordinate conversion unit 201036855 - 135 ~ stationary reference coordinate to synchronous reference coordinate conversion unit 136 ~ space vector pulse width modulation generator 137 ~ three-axis reference coordinate to two-axis stationary reference coordinate conversion unit 14~corner sensor '15~inverter 16~motor 17~reduction gear set 18~toggle Ο19~steering column 21~start 22~steering wheel angle is less than plus or minus 5 degrees 23~stop mode 24~steering wheel angle absolute value Whether the differential is greater than zero 2 5 ~ auxiliary mode '26 ~ steering wheel angle absolute value differential is less than zero 2 7 ~ swing mode 〇 28 ~ maintain mode 29 ~ end 31 ~ damping compensation logic 32 ~ back to the compensation logic 17

Claims (1)

201036855 - 七、申請專利範圍: 1. 一種電子動力輔助轉向控制器架構,其係包括: 一轉角感測器,用以i貞測出一方向盤之轉角信號,並加 ' 以輸出; * 一車速感測器,用以偵測出車速信號,並加以輸出; 一變頻器,調整電壓頻率以控制一馬達的轉速; 一參考電流產生器,接收車速信號及方向盤轉角信 號,經處理後並輸出一給予馬達的命令的電流值; Ο 至少一比例積分控制器,接收該參考電流產生器輸出的 電流值及該靜止參考座標至同步參考座標轉換單元 的轉換電流值,用以控制輸出電流; 一三軸參考座標至兩轴靜止參考座標之轉換單元,介 於三相回授電流與d-q轴靜止參考座標回授電流之 間,將一馬達三相回授電流轉換成d-q軸靜止參考座 標回授電流,並輸出該回授電流; 一靜止參考座標至同步參考座標轉換單元,接收該三 ❹ 軸參考座標至兩轴靜止參考座標之轉換單元所輸出 回授電流,介於d-q轴靜止參考座標回授電流與一同 步旋轉參考座標回授電流之間,可把d-q軸上之回授 電流進行靜止參考座標至同步旋轉參考座標的轉 換; 一同步參考座標至靜止參考座標轉換單元,接收該比例 積分控制器的信號,並將介於d-q軸同步旋轉參考座 標命令電壓與靜止參考座標命令電壓之間,把d-q軸 上之命令電壓進行同步旋轉參考座標至靜止參考座 標的轉換,作為兩者的轉換介面,並輸出該信號;以 18 201036855 及 ——空間向量脈波寬度調變產生器,接收該同步參考座標 至靜止參考座標轉換單元之輸出信號,將該靜止參考 . 座標命令電壓轉換成三相命令電壓,並控制該變頻器 _ 功率晶體的激發時序來切換直流電壓源。 2. 如申請專利範圍第1項所述之電子動力輔助轉向控制器 架構,其中該參考電流產生器可包含一模糊推論機構或 其它智慧型推論機構,可依其接收方向盤角度回授訊號 € 及車速回授訊號並產生馬達所需輔助命令電流。 3. 如申請專利範圍第2項所述之電子動力輔助轉向控制器 架構,其中該模糊推論機構具有: 一辅助模糊規則庫,可執行基本輔助邏輯及慣性補償邏 償之推論依據;以及 一回轉模糊規則庫,可執行回正補償邏輯及阻尼補償邏 償之推論依據。 4. 如申請專利範圍第1項所述之電子動力輔助轉向控制器 ^ 架構,其中該參考電流產生器更係包含一模式決策單 〇 元,該模式決策單元包括有下列模式: 一停止模式.,可停止馬達作動; •一辅助模式,可驅使馬達輔助作動,完成基本輔助邏輯 及慣性補償邏償; 一回轉模式,可驅使馬達回轉作動,完成回正補償邏輯 及阻尼補償邏償;以及 一維持模式,可驅使馬達輔助維持力矩。 5. 如申請專利範圍第4項所述之電子動力輔助轉向控制器 架構,其中該停止模式具有一馬達停止區間,可避免駕 19 201036855 驶者在誤動作下,馬達不會因此而誤動作。 6. 如申請專利範圍第4項所述之電子動力輔助轉向控制器 架構,其中該輔助模式更係具有一輔助模糊規則庫,可 . 依據方向盤轉角及車速,透過模糊推論機構決定馬達所 需基本輔助電流大小;其規則符合在相同車速時,方向 盤轉角越大,所需馬達輔助電流越大,及在相同方向盤 轉角時,車速越快,所需馬達輔助電流越小。 7. 如申請專利範圍第6項所述之電子動力輔助轉向控制器 0 架構,其中該輔助模式係可判斷方向盤轉角之角加速 度,若大於某設定值,則可進行輔助模式下之慣性補 償,適時放大模糊輸出增益值k,即放大輔助馬達電流 增益。 8. 如申請專利範圍第4項所述之電子動力輔助轉向控制器 ' 架構,其中該回轉模式更係具有一回轉模糊規則庫,可 依據方向盤轉角及車速,透過模糊推論機構決定馬達回 轉時所需之電流大小;此規則符合在回正不足時給予適 當回正力矩,並在高速回正時,提供阻尼補償以降低所 Q 造成之振盪現象。 9. 如申請專利範圍第8項所述之電子動力輔助轉向控制器 ♦ 架構,其中該回轉模式更係具有一可變模糊輸出增益值 , k,在無車速時,此增益k值的大小等於輔助模式下之基 本輔助邏輯時,在有車速時,因回轉時有回饋力矩存 在,所以此時輸出增益k值的大小將小於輔助模式下之 基本輔助邏輯時。 10. 如申請專利範圍第4項所述之電子動力輔助轉向控制 器架構,其中該維持模式具有在有車速時給予一固輔助 20 201036855 力,若在無車速時就不予以輔助力。 11. 如申請專利範圍第1項所述之電子動力輔助轉向控制 器架構,其中該馬達係指一永磁同步馬達。 , 12. 如申請專利範圍第1項所述之電子動力輔助轉向控制 器架構,其中該馬達更係藉由一減速齒輪以提供方向盤 輔助轉向動作,且該減速齒輪組與方向盤所延伸之轉向 柱做一連接,帶動一轉向架橫移而完成車輛轉向動作。 Ο 21201036855 - VII. Patent application scope: 1. An electronic power assisted steering controller architecture, comprising: a corner sensor for measuring the corner signal of a steering wheel and adding 'to output; * a vehicle speed a sensor for detecting a vehicle speed signal and outputting the same; a frequency converter adjusting the voltage frequency to control the speed of a motor; a reference current generator receiving the vehicle speed signal and the steering wheel angle signal, and processing and outputting a signal The current value of the command given to the motor; 至少 at least one proportional integral controller receives the current value output by the reference current generator and the converted current value of the stationary reference coordinate to the synchronous reference coordinate conversion unit for controlling the output current; A conversion unit of the axis reference coordinate to the two-axis stationary reference coordinate, between the three-phase feedback current and the dq axis stationary reference coordinate feedback current, converting a motor three-phase feedback current into a dq-axis stationary reference coordinate feedback current And outputting the feedback current; a stationary reference coordinate to the synchronous reference coordinate conversion unit, receiving the three-axis reference block The feedback current outputted by the conversion unit labeled to the two-axis stationary reference coordinate is between the dq-axis stationary reference coordinate feedback current and a synchronous rotation reference coordinate feedback current, and the feedback current on the dq axis can be used for stationary reference. Coordinate to synchronous rotation reference coordinate conversion; a synchronous reference coordinate to stationary reference coordinate conversion unit, receiving the signal of the proportional integral controller, and between the dq axis synchronous rotation reference coordinate command voltage and the stationary reference coordinate command voltage, The command voltage on the dq axis is synchronously rotated to convert the reference coordinate to the stationary reference coordinate as the conversion interface of the two, and the signal is output; and the synchronization is received by the 18 201036855 and the space vector pulse width modulation generator. The output signal of the reference coordinate to the stationary reference coordinate conversion unit converts the static reference coordinate command voltage into a three-phase command voltage, and controls the excitation timing of the inverter_power crystal to switch the DC voltage source. 2. The electronic power assisted steering controller architecture of claim 1, wherein the reference current generator can include a fuzzy inference mechanism or other intelligent inference mechanism for receiving a steering angle feedback signal and The vehicle speed feedback signal and generates the auxiliary command current required by the motor. 3. The electronic power assisted steering controller architecture as claimed in claim 2, wherein the fuzzy inference mechanism has: an auxiliary fuzzy rule base, which can perform basic auxiliary logic and inference basis of inertia compensation logic; and a turn The fuzzy rule base can perform the inference basis of the return compensation logic and the damping compensation logic. 4. The electronic power assisted steering controller architecture of claim 1, wherein the reference current generator further comprises a mode decision unit, the mode decision unit comprising the following modes: a stop mode. , can stop the motor to operate; • an auxiliary mode, can drive the motor to assist the operation, complete the basic auxiliary logic and inertia compensation logic; a swing mode can drive the motor to rotate, complete the return compensation logic and damping compensation logic; The maintenance mode drives the motor to assist in maintaining the torque. 5. The electronic power assisted steering controller architecture as described in claim 4, wherein the stop mode has a motor stop section to avoid driving. 19 201036855 The driver does not malfunction due to a malfunction. 6. The electronic power assisted steering controller architecture as described in claim 4, wherein the auxiliary mode further has an auxiliary fuzzy rule base, which can determine the basic requirements of the motor through the fuzzy inference mechanism according to the steering wheel angle and the vehicle speed. Auxiliary current size; the rule is consistent with the same vehicle speed, the larger the steering wheel angle, the larger the motor auxiliary current required, and the faster the vehicle speed at the same steering wheel angle, the smaller the motor auxiliary current required. 7. The electronic power assisted steering controller 0 architecture described in claim 6 wherein the auxiliary mode determines the angular acceleration of the steering wheel angle. If it is greater than a certain set value, the inertia compensation in the auxiliary mode can be performed. The fuzzy output gain value k is amplified in time, that is, the auxiliary motor current gain is amplified. 8. The electronic power assisted steering controller architecture according to claim 4, wherein the swing mode further has a rotary fuzzy rule base, which can determine the rotation of the motor through the fuzzy inference mechanism according to the steering wheel angle and the vehicle speed. The current required; this rule is in accordance with the appropriate return positive torque when the return is insufficient, and provides damping compensation to reduce the oscillation caused by Q when the high speed is positive. 9. The electronic power assisted steering controller ♦ architecture of claim 8 wherein the swing mode further has a variable fuzzy output gain value, k, and the magnitude of the gain k value is equal to no vehicle speed In the basic auxiliary logic in the auxiliary mode, when there is a vehicle speed, there is a feedback torque due to the rotation, so the magnitude of the output gain k will be smaller than the basic auxiliary logic in the auxiliary mode. 10. The electronic power assisted steering controller architecture of claim 4, wherein the maintenance mode has a solid assist 20 201036855 force when there is a vehicle speed, and does not assist if there is no vehicle speed. 11. The electronic power assisted steering controller architecture of claim 1, wherein the motor is a permanent magnet synchronous motor. 12. The electronic power assisted steering controller architecture of claim 1, wherein the motor further provides steering wheel assisted steering by a reduction gear, and the reduction gear set and the steering column extended by the steering wheel Make a connection and drive a bogie to traverse to complete the steering action of the vehicle. Ο 21
TW098111179A 2009-04-03 2009-04-03 Electric power steering controller TWI367840B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098111179A TWI367840B (en) 2009-04-03 2009-04-03 Electric power steering controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098111179A TWI367840B (en) 2009-04-03 2009-04-03 Electric power steering controller

Publications (2)

Publication Number Publication Date
TW201036855A true TW201036855A (en) 2010-10-16
TWI367840B TWI367840B (en) 2012-07-11

Family

ID=44856442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098111179A TWI367840B (en) 2009-04-03 2009-04-03 Electric power steering controller

Country Status (1)

Country Link
TW (1) TWI367840B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655833B (en) * 2017-02-17 2019-04-01 日商日本電產新寶股份有限公司 Reducer with motor
TWI688504B (en) * 2018-10-30 2020-03-21 財團法人車輛研究測試中心 Active steering control system and method with automatic superimposed compensation
CN112829821A (en) * 2019-11-22 2021-05-25 财团法人工业技术研究院 Steering apparatus and method
CN113460158A (en) * 2021-08-20 2021-10-01 上海汽车工业(集团)总公司 SBW (SBW recovery time) alignment control method, storage medium and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850007B (en) * 2018-12-28 2021-05-14 山东先河荣悦智能科技有限公司 Electric forklift drive-by-wire power-assisted control method
US11485407B2 (en) 2019-05-16 2022-11-01 Lightning Systems, Inc. Smart electronic power steering system and method for a retrofitted electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655833B (en) * 2017-02-17 2019-04-01 日商日本電產新寶股份有限公司 Reducer with motor
TWI688504B (en) * 2018-10-30 2020-03-21 財團法人車輛研究測試中心 Active steering control system and method with automatic superimposed compensation
CN112829821A (en) * 2019-11-22 2021-05-25 财团法人工业技术研究院 Steering apparatus and method
CN112829821B (en) * 2019-11-22 2022-06-21 财团法人工业技术研究院 Steering apparatus and method
US11548552B2 (en) 2019-11-22 2023-01-10 Industrial Technology Research Institute Steering device and method thereof
CN113460158A (en) * 2021-08-20 2021-10-01 上海汽车工业(集团)总公司 SBW (SBW recovery time) alignment control method, storage medium and system
CN113460158B (en) * 2021-08-20 2022-06-17 上海汽车工业(集团)总公司 SBW (SBW recovery time) alignment control method, storage medium and system

Also Published As

Publication number Publication date
TWI367840B (en) 2012-07-11

Similar Documents

Publication Publication Date Title
TW201036855A (en) Electric power steering controller
JP6179098B2 (en) Electric power steering device
CN102642557B (en) Driven steering device
JP6843907B2 (en) Power-assisted steering system
JP2013123984A (en) Vehicle steering device
US20130060426A1 (en) Electric power steering control device
JP2021154895A (en) Steering control device
JP2004352090A (en) Steering control device for vehicle
US11794803B2 (en) Steering controller
JP2007204034A (en) Method and control structure for controlling operation angle of superposition angle operation part and output torque
JP2007283891A (en) Vehicular steering device
JP6326171B1 (en) Steering control device, electric power steering device
JP5293136B2 (en) Vehicle steering system
Ma et al. System stability and control strategy of electric power steering
JP2014139039A (en) Electric power steering device
JP2004090834A (en) Motor-driven power steering gear
JP5012157B2 (en) Electric power steering device
JP2013005624A (en) Vehicle steering device
JP2002053050A (en) Electrical powered steering device
JP5045872B2 (en) Electric power steering device
JP2021031003A (en) Steering device for vehicle
JP2002293256A (en) Electric power steering device
JP5082267B2 (en) Control device for electric power steering device
JP2015217791A (en) Steering device
JP2012176741A (en) Electric power steering device