TW201033300A - Interlayer formulation for flat films - Google Patents

Interlayer formulation for flat films Download PDF

Info

Publication number
TW201033300A
TW201033300A TW099100724A TW99100724A TW201033300A TW 201033300 A TW201033300 A TW 201033300A TW 099100724 A TW099100724 A TW 099100724A TW 99100724 A TW99100724 A TW 99100724A TW 201033300 A TW201033300 A TW 201033300A
Authority
TW
Taiwan
Prior art keywords
solvent
layer
composition
hole
semiconductor
Prior art date
Application number
TW099100724A
Other languages
Chinese (zh)
Inventor
Simon Goddard
Paul Wallace
Emine Tekin
Original Assignee
Cambridge Display Tech Ltd
Sumation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Display Tech Ltd, Sumation Co Ltd filed Critical Cambridge Display Tech Ltd
Publication of TW201033300A publication Critical patent/TW201033300A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A composition suitable for printing of an opto-electrical device, comprises a semiconducting hole transport material, a first solvent and a second solvent, the first solvent being 1-tetralone, benzylbenzoate and 1 methoxynaphthalene o-xylene, mixed-xylene, ethylbenzene, propylbenzene, butylbenzene having a higher boiling point and a greater viscosity than the second solvent, the second solvent being mesitylene, o-xylene, mixed-xylene, ethylbenzene, propylbenzene, butylbenzene. The solvents are miscible with one another and the viscosity of the first solvent is in the range of 5 to 12 mPas. The first solvent has a boiling point between 250 and 350 DEG C, and the second solvent has a boiling point between 100 and 200 DEG C.

Description

201033300 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種含電洞傳輸材料或電洞注入材料、或 發光聚合物材料、電子傳輸材料或電子注入層材料之組合 物,該組合物適於在有機發光裝置製造中藉由噴墨印刷喷 嘴塗覆、嘴塗、較印、浸塗、狹缝塗佈、膠版印刷沉積。 【先前技術】 典型的有機發光裝置(〇LED)包括一基板,於其上支撐 一陽極、一陰極及一位於陰極與陽極之間並包括至少一種 聚CT物電致發光材料的發光層。在操作中,電洞係通過該 陽極注入該裝置中及電子係通過該陰極注入該裝置中。該 等電洞及電子在發光層中組合,以形成一隨後經歷放射性 衰變而發光之激子。 在該OLED内可存在其他層,例如,可在該陽極與該發 光層之間-又置-電洞注入材料(如,聚(乙婦二氧嘆吩)/聚 苯乙稀續酸醋(PEDOT/PSS))層,以協助電洞自該陽極注入 «亥發光層此外,可在該陽極與該發光層之間設置一由電 洞傳輸材料製得之電洞傳輸層,以協助電洞傳輸至該發光 層。 螢光共輛聚合物係一類重要材料,其將被用於下 資訊技術為主之消費產品的有 本旁機毛光裝置令。相對於無| 機染枓材料,使用聚合物的主要好處在 成膜材料之溶液處理生產低成本裝置的範在過去与 内’已付出諸多努力以藉由開發高效率材料或有效的裝置 145810.doc 201033300 結構來提高有機發光二極體(OLED)的發射效率。 共軛聚合物之另一優點係其可容易地藉由鈐木(Suzuki) 或山本(Yamamoto)聚合形成。此能高度控制所得聚合物之 區域規則度。 因為存在適當的增溶基團,故共軛聚合物可係溶液可處 理。適用於聚伸芳基,尤其係聚第類之溶劑包括單_或多 烧基苯類,如甲苯及二甲苯。特別佳的溶液沉積技術係旋 塗及噴墨印刷。 旋塗尤其適用於其中不需要電致發光材料之圖案化的裝 置,例如用於照明應用或簡單的單色分段顯示器。 喷墨印刷尤其適用於高資訊含量顯示器,尤其係全彩顯 示器。 其他溶液沉積技術包括浸塗、輥印及絲網印刷。 OLED之發光層之喷墨印刷描述於(例如)Ep 〇88〇3〇3中。 據稱該發光層係由一有機化合物製得。據教示,適用於喷 墨印刷的有機發光材料之組合物需要滿足對接觸角、黏度 及表面張力之至少一者所給定之數值範圍的條件。接觸角 的給定範圍為30至170度。黏度的給定範圍為1至2〇邛。 表面張力的給定範圍為20至7〇達因/cm。據稱一較佳實施 例係其中該有機發純合物為電洞注人及傳輸類型材料。 亦揭示-層合至該發光層之分開的電洞注入及傳輸層。對 於此電洞注入及傳輸層之形成方法並無特定限制,但據稱 可使用喷墨方法(舉例而言)形成該層。其給出構成該電洞 注入及傳輸層之材料之實例係:基於芳族二胺之化合物 1458J0.doc 201033300 (如 TPD)、MTDATA、啥 〇丫 咬酮、(bisstH)蒽衍生物、 PVK、基於酞菁之錯合物(如銅酞菁)、基於卟吩之化合 物、NPD、TAD、聚苯胺及其類似物。 在EP 〇880303之實例2中,藉由喷墨印刷將一 ρνκ電洞 注入層ί儿積於紅色及綠色發光層上。並未提供該pvk之物 理特性(黏度、表面張力、接觸角)。在Ερ 〇88〇3〇3之實例3 中,利用一喷墨裝置將一電洞注入層材料與紅色、綠色及 藍色發光材料混合以形成紅色、綠色及藍色發光層。 WO 2006/123 167係關於用於喷墨印刷用來製造光電裝置 之導電或半導電有機材料之組合物。w〇 2〇〇6/123167中稱 電荷注入層可以一包括在高沸點溶劑中之導電有機材料之 組合物沉積。PEDOT:PSS經舉例為導電有機材料。其揭示 一種藉由噴墨印刷包括PEDOT(或其他可能的電洞注入材 料)及高沸點溶劑之調配物而形成一裝置之方法。 WO 2006/123167亦揭示一種組合物,其包括有機電致發 光材料及沸點高於水之高沸點溶劑。在w〇 2〇〇6/123167中 並未揭示或建議藉由噴墨印刷沉積半導體電洞傳輸材料以 形成分開的電洞傳輸層。 對喷墨印刷感興趣的關鍵原因係其之可放大性及可適應 性。前者允許將任意大尺寸的基板圖案化,及後者係指與 從一個產品轉變至另一個產品相關的工具成本微不足道, 因為印刷於基板上之點之圖像係由軟體界定。初看此將 類似於印刷圖像--可取得可於廣告牌大小的基板上印刷任 意圖像之商業印刷設備。然而,圖形印刷機舆顯示面板間 I45810.doc -6 - 201033300 的顯著差異在於·前者使用多孔基板或使用uv可固化的 油墨,以致乾燥環境對膜形成之影響極小。相比而言,用 於製造OLED顯示器之》、由墨係喷墨印刷於無孔纟自,且從 濕油墨轉變至乾膜的過程係受像素中該油墨之乾燥環境主 宰。因為該印刷製程涉及印刷油墨之條紋(或長條)(對應於 該喷墨頭寬度)’所以乾燥環境存在内在不對稱性。此 外OLED裝置需求該等膜係奈米容限均勻。因此獲得可 放大性及可適應性需要控制油墨的膜形成特性及此製程對 像素尺寸及覆蓋時間變化的穩定性。 然而’噴墨印刷之—關鍵問題係平面膜中的層間邊緣增 厚。此清晰地顯*於圖3巾。此邊緣增厚導致該電致發光 層之邊緣變;|。貫穿—個像素的電致發光膜厚度的變化導 致不均勻的發射且降低裝置效率及壽命。 因此有需要提供用於喷墨印刷之調配物,其可為平面膜 裝置產生平坦邊緣或甚至更薄的邊緣層間。 據此,本發明者已禮定愛、在μ # , 4 啼疋為要钕供適於藉由喷墨印刷 以獲得平面膜,且可吉月g卜;+、叫es 」見服上述問題之另外的組合物。 【發明内容】 沉積 因此本發明之第一態樣提供一種適於光電裝置之喷墨 刷噴嘴塗覆、噴塗、親印、浸塗、狹縫塗佈或膠版印 印 刷之組合物,該組合物包括半導體電洞傳輸材料、電洞注 入材料、發光聚合物材料、電子傳輸材料或電子注入層、 第一溶劑及第二溶劑,嗲笛 Vi „ 削该第一溶劑具有比該第二溶劑更高 的沸點及更大的黏度,其中锋望— 头干該專洛劑係可彼此混溶且該第 145810.doc 201033300 一溶劑之黏度範圍為5至12 mPas。 '•玄第一較高黏度溶劑係用於在乾燥期間減緩聚合物向像 素邊緣之遷移。具有較低黏度及較低沸點之該第二溶 發掉而留下更黏的第一溶劑。 t 乂、'且σ物之總黏度較佳低於20 mPas。該第—溶劑之 黏度較佳高於6 mPas。該第一溶劑之黏度甚至更佳高於 7 mPas。 該第—溶劑可選自以下各者:卜四氫萘酮、苯甲酸节酯 及1-曱氧基萘。對於該第二溶劑而言,適宜的溶劑包括對 稱三曱苯、鄰二甲苯、混合二甲笨、乙苯、丙苯、丁苯。 在沒有特定限制下,該第一溶劑之沸點為250至350它之 間°通常’該第二溶劑之沸點為1 〇〇至2〇〇°c之間。 該第一溶劑對該第二溶劑的體積比並無特定限制,且可 包括1:1之體積比。 通常情況下,包括發光材料及溶劑之組合物具有約 1 w/v %之固體含量。採用此範圍係由於發射體之分子量 及該組合物之黏度限制,其需在喷墨印刷頭之黏度臨限值 内。在喷墨組合物中,發光材料之濃度通常經最大化,以 致於每一滴組合物中沉積儘可能多的發光材料。即使如 此,為沈積足量的發光材料,一般仍需要使噴墨頭通過兩 或二次,以產生厚度約60 nm之發光層,該厚度係最佳裝 置性能所需之厚度。然而,本發明者已發現一電洞傳輸層 可在低許多的厚度下(約10 nm)提供最佳性能。因此,電 洞傳輸組合物可以低許多的濃度提供。 145810.doc 201033300 在該半導體電洞傳輸材料係一聚合物的情況下發現使用 此低濃度之一特別效益,其中可使用甚高分子量的半導體 電洞傳輸聚合⑯而非相應分子量的發光聚合物。該半導艘 電洞傳輸聚合物之分子量範圍可為4G,_至彻,_道爾頓 (Dalton)。此半導體電洞傳輸聚合物之分子量較佳為至少 350,000道爾頓(除非另外說明,否則本文提供之聚合物分 子量係藉由凝膠滲透層析測得之相對於聚笨乙烯之以道爾 頓。十的刀子量)。如果該組合物之聚合物包括可交聯基團 尤其有利,因為在較高分子量的聚合物中每個聚合物鏈有 較高數量的可交聯基團。 包括分子量低於250,000道爾頓之發光聚合物之裝置的 裝置性能較差’所以不會利用此等低分子量聚合物調配適 於喷墨印刷之發光組合物。然而,本發明者已發現未對電 洞傳輸聚合物發現如此差的裝置性能。 組合物之噴射性能很大程度取決於固體含量(組合物之 固體含量可簡單地藉由蒸發溶劑並稱重剩餘固體而測 定)。 通常而s ’用於噴墨印刷之含發光材料之組合物將具有 約1 w/v %之較高固體含量。在該組合物中,該半導體電 洞傳輸材料之濃度較佳係〇·8 w/v °/〇或更低。 在本文描述之任何組合物中,該半導體電洞傳輸材料可 由於存在可交聯基團而係可交聯的。 在本文描述之任何組合物中,該半導體電洞傳輸材料較 佳包括聚合物。較佳的半導體電洞傳輸聚合物包括三芳胺 145810.doc 201033300201033300 VI. Description of the Invention: [Technical Field] The present invention relates to a composition comprising a hole transporting material or a hole injecting material, or a light emitting polymer material, an electron transporting material or an electron injecting layer material, the composition It is suitable for inkjet printing nozzle coating, nozzle coating, printing, dip coating, slit coating, offset printing deposition in the manufacture of organic light-emitting devices. [Prior Art] A typical organic light-emitting device (〇LED) includes a substrate on which an anode, a cathode, and a light-emitting layer between the cathode and the anode and including at least one polyCT electroluminescent material are supported. In operation, a hole is injected into the device through the anode and electrons are injected into the device through the cathode. The holes and electrons are combined in the luminescent layer to form an exciton that subsequently undergoes radioactive decay to emit light. Other layers may be present within the OLED, for example, between the anode and the luminescent layer - a re-injection-hole injecting material (eg, poly(Ethylene Diox) / polystyrene vinegar (" a layer of PEDOT/PSS)) to assist the hole from being injected into the anode. In addition, a hole transport layer made of a hole transport material may be disposed between the anode and the light-emitting layer to assist the hole. Transfer to the luminescent layer. Fluorescent co-polymers are an important class of materials that will be used in consumer technology-based consumer products. Compared to non-machine-dyed materials, the main benefit of using polymers in the solution processing of film-forming materials is the production of low-cost devices in the past and within the 'work has been made to develop high-efficiency materials or effective devices 145810. Doc 201033300 Structure to improve the emission efficiency of organic light-emitting diodes (OLEDs). Another advantage of conjugated polymers is that they can be readily formed by the polymerization of Suzuki or Yamamoto. This highly controls the degree of regularity of the resulting polymer. The conjugated polymer can be treated as a solution because of the presence of suitable solubilizing groups. Suitable solvents for the poly(arylene) group, especially the polycondensation type, include mono- or polyalkylenes such as toluene and xylene. Particularly preferred solution deposition techniques are spin coating and ink jet printing. Spin coating is particularly suitable for devices in which no patterning of electroluminescent material is required, such as for lighting applications or simple monochrome segmented displays. Inkjet printing is especially suitable for high-information displays, especially full-color displays. Other solution deposition techniques include dip coating, roll printing, and screen printing. Ink jet printing of the luminescent layer of an OLED is described, for example, in Ep 〇 88 〇 3 〇 3. The luminescent layer is said to be made from an organic compound. It is taught that compositions suitable for ink jet printed organic luminescent materials need to meet conditions within a range of values given for at least one of contact angle, viscosity and surface tension. The contact angle is given in the range of 30 to 170 degrees. The given range of viscosity is 1 to 2 inches. The given range of surface tension is 20 to 7 dynes/cm. A preferred embodiment is said to be wherein the organic hair complex is a hole injection and transport type material. Also disclosed is a separate hole injection and transport layer laminated to the luminescent layer. There is no particular limitation on the method of forming the hole injection and transport layer, but it is said that the layer can be formed using, for example, an ink jet method. An example of a material constituting the hole injection and transport layer is given: an aromatic diamine-based compound 1458J0.doc 201033300 (eg TPD), MTDATA, biting ketone, (bisstH) anthracene derivative, PVK, Phthalocyanine-based complexes (such as copper phthalocyanine), porphin-based compounds, NPD, TAD, polyaniline, and the like. In Example 2 of EP 〇880303, a ρνκ hole was injected into the red and green light-emitting layers by inkjet printing. The physical properties (viscosity, surface tension, contact angle) of the pvk are not provided. In Example 3 of Ερ 〇88〇3〇3, a hole injecting layer material was mixed with red, green and blue luminescent materials by an ink jet device to form red, green and blue luminescent layers. WO 2006/123 167 relates to compositions for ink jet printing of electrically conductive or semiconductive organic materials used to make photovoltaic devices. The charge injection layer may be deposited as a composition comprising a conductive organic material in a high boiling solvent, as described in w〇 2〇〇6/123167. PEDOT: PSS is exemplified by a conductive organic material. It discloses a method of forming a device by ink jet printing a formulation comprising PEDOT (or other possible hole injecting material) and a high boiling solvent. WO 2006/123167 also discloses a composition comprising an organic electroluminescent material and a solvent having a boiling point higher than that of water. The deposition of a semiconductor hole transport material by ink jet printing to form a separate hole transport layer is not disclosed or suggested in WO 〇 6/123167. The key reason for interest in inkjet printing is its scalability and adaptability. The former allows for the patterning of any large-sized substrate, and the latter refers to the negligible cost of the tool associated with transitioning from one product to another because the image of the dots printed on the substrate is defined by the software. At first glance this will be similar to a printed image - a commercial printing device that can print any image on a billboard-sized substrate. However, the significant difference between the graphic printer 舆 display panel I45810.doc -6 - 201033300 is that the former uses a porous substrate or uses uv curable ink, so that the dry environment has little effect on film formation. In contrast, the process for producing an OLED display, by ink-based inkjet printing on a non-porous layer, and from a wet ink to a dry film is dominated by the dry environment of the ink in the pixel. Since the printing process involves strips (or strips) of printing ink (corresponding to the width of the head), there is inherent asymmetry in the dry environment. In addition, OLED devices require uniform uniformity of these membranes. Therefore, obtaining scalability and adaptability requires controlling the film formation characteristics of the ink and the stability of the process to variations in pixel size and coverage time. However, the key issue of 'inkjet printing' is the thickening of the interlaminar edges in the planar film. This is clearly shown in Figure 3. This edge thickening causes the edge of the electroluminescent layer to change; Variations in the thickness of the electroluminescent film throughout the pixel result in uneven emission and reduce device efficiency and lifetime. There is therefore a need to provide formulations for ink jet printing that can create flat edges or even thinner edge layers for planar film devices. Accordingly, the inventors have ceremoniously loved, in μ # , 4 啼疋 啼疋 钕 适于 适于 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 喷墨 见 见 见 见 见 见 见 见 见 见 见 见Additional composition. SUMMARY OF THE INVENTION Deposition, therefore, a first aspect of the present invention provides a composition suitable for inkjet brush nozzle coating, spray coating, photo printing, dip coating, slit coating or offset printing of an optoelectronic device, the composition The semiconductor hole transporting material, the hole injecting material, the light emitting polymer material, the electron transporting material or the electron injecting layer, the first solvent and the second solvent, the first solvent is higher than the second solvent The boiling point and greater viscosity, of which the front-of-the-head-drying agent can be miscible with each other and the viscosity of the solvent is 5 to 12 mPas. '•The first higher viscosity solvent It is used to slow the migration of polymer to the edge of the pixel during drying. The second solution with lower viscosity and lower boiling point leaves off the more viscous first solvent. t 乂, 'and the total viscosity of σ Preferably, the viscosity of the first solvent is preferably higher than 6 mPas. The viscosity of the first solvent is even better than 7 mPas. The first solvent may be selected from the following: tetrahydronaphthalene , benzoic acid ester and 1-decyloxy naphthalene. Suitable solvents for the second solvent include symmetric triterpene benzene, o-xylene, mixed dimethyl benzene, ethyl benzene, propyl benzene, butyl benzene. Without particular limitation, the first solvent has a boiling point of 250 to 350 is generally between 'the boiling point of the second solvent is between 1 〇〇 and 2 〇〇 ° C. The first solvent has no particular limitation on the volume ratio of the second solvent, and may include 1:1 Volume ratio. Typically, a composition comprising a luminescent material and a solvent has a solids content of about 1 w/v %. This range is due to the molecular weight of the emitter and the viscosity limitations of the composition, which is required in ink jet print heads. Within the viscosity threshold, in inkjet compositions, the concentration of the luminescent material is typically maximized such that as much luminescent material as possible is deposited in each drop of composition. Even so, a sufficient amount of luminescent material is deposited, generally There is still a need to pass the ink jet head two or two times to produce a luminescent layer having a thickness of about 60 nm which is the thickness required for optimum device performance. However, the inventors have discovered that a hole transport layer can be much lower. Thickness (about 10 nm) For optimum performance, therefore, the hole transport composition can be provided in much lower concentrations. 145810.doc 201033300 In the case of a semiconductor hole transport material, a polymer is found to be one of the special benefits of this low concentration, which can be used Very high molecular weight semiconductor holes transport polymerization 16 rather than a corresponding molecular weight luminescent polymer. The molecular weight of the semi-conducting hole transport polymer can range from 4G to _to, Dalton. The molecular weight of the hole transporting polymer is preferably at least 350,000 Daltons (unless otherwise stated, the molecular weight of the polymer provided herein is determined by gel permeation chromatography relative to polystyrene to Dalton. Knife amount). It is especially advantageous if the polymer of the composition comprises a crosslinkable group because in the higher molecular weight polymer there is a higher number of crosslinkable groups per polymer chain. Devices having a luminescent polymer having a molecular weight of less than 250,000 Daltons have poor performance, so that such low molecular weight polymers are not utilized to formulate luminescent compositions suitable for ink jet printing. However, the inventors have discovered that such poor device performance has not been found for cavity transport polymers. The spray performance of the composition is highly dependent on the solids content (the solids content of the composition can be determined simply by evaporating the solvent and weighing the remaining solids). Typically, the composition of the luminescent material used for ink jet printing will have a relatively high solids content of about 1 w/v%. In the composition, the concentration of the semiconductor hole transporting material is preferably 〇·8 w/v ° / 〇 or lower. In any of the compositions described herein, the semiconductor hole transport material can be crosslinked due to the presence of crosslinkable groups. In any of the compositions described herein, the semiconductor hole transporting material preferably comprises a polymer. Preferred semiconductor hole transport polymers include triarylamines 145810.doc 201033300

重複單元。 較佳的三芳胺重複單元符合通式ι -Ar1-fN-Ar2 ARepeat unit. Preferred triarylamine repeating units conform to the formula ι -Ar1-fN-Ar2 A

rn 1 其中Ar1及A—係視情況經取代的芳基或 二等於1 ’較佳為_,及_或取代基二二= m,’二基或芳基或雜芳基’最佳為芳基或雜芳 ;早兀中之任何方基或雜芳基可經取π 取代基包括燒基及烧氧基。在式i重複單元中之任何芳^ _基可藉由直接鍵或二價連接原子或基團相連接。較 佳的二價連接原子及基團包括0、S、經取代㈣、及經取 代的C。 ' 符合式1之特佳單元包括式2至4之單元:Rn 1 wherein Ar1 and A- are optionally substituted aryl or two equal to 1 'preferably _, and _ or substituent di s = m, 'diyl or aryl or heteroaryl' is best Or a heteroaryl; any of the aryl or heteroaryl groups in the early oxime may be substituted with a π substituent including an alkyl group and an alkoxy group. Any of the aryl groups in the repeating unit of formula i may be linked by a direct bond or a divalent linking atom or group. Preferred divalent linking atoms and groups include 0, S, substituted (d), and substituted C. 'Special units that conform to Equation 1 include units of Equations 2 through 4:

Ar^ /N —Ar2—Ar^ /N —Ar2—

Ar2- -{— ^Ar2-j-Ar2- -{- ^Ar2-j-

Ar3Ar3

Ar3Ar3

Af3 ,Ns 2 3Af3, Ns 2 3

Ar3 Ar3 4 其中Ar及Ar係如上定義,及Ar3係視情況經取代的芳基或 雜芳基。當存在時,Ar3之較佳取代基包括烷基及烷氧 基。 145810.doc 201033300 此類型之尤其佳的電洞傳輸聚合物係三芳胺重複單元與 第二重複單元之共聚物(特別是AB共聚物p該第二重複單 元較佳為苐重複單元,更佳為式5之重複單元:Ar3 Ar3 4 wherein Ar and Ar are as defined above, and Ar3 is optionally substituted aryl or heteroaryl. When present, preferred substituents for Ar3 include alkyl and alkoxy groups. 145810.doc 201033300 This type of particularly preferred hole transport polymer is a copolymer of a triarylamine repeating unit and a second repeating unit (particularly an AB copolymer p. The second repeating unit is preferably a repeating unit, more preferably Repeating unit of formula 5:

其中R1及R2係獨立選自氫或視情況經取代之烧基、院氧 基、芳基、芳基烧基、雜芳基及雜芳基烧基。更佳地,R1 及R中之至少-者包括視情況經取代之烧基或芳 基。 本發月之第一態樣係關於一種形成有機發光裝置之方 法’其包括以下步驟: a. 提供一陽極層; b. 視情況在該陽極上提供一導電電洞注入層; c·藉由噴墨印刷在該陽極或電洞注人層上沉積如本文定 義之組合物’以形成—半導體電洞傳輸層,限制條件為: 當藉由喷墨印刷沉積該半導體電洞傳輸材料時,則該 體電洞傳輸材料係在一電洞注入層上沉積。 本發明之第三態樣係-種形成有機發光装置之方法,其 包括以下步驟: 丹 1.藉由噴墨印刷沉積如本文定義之組合物 體電洞傳輸層。 X千导 根據本發明之第二或第=能择 '第-態樣之方法較佳包括藉由加熱 145810.doc -11- 201033300 烘烤該半導體電洞傳輸層之另一步驟。 應選擇烘烤條件以使該半導體電洞傳輸層之至少一部分 變得不可溶,以致可沉積發光層而不會溶解該半導體電二 傳輸層。技術界已知此洪烤半導體電洞傳輸層之技術。用 於烘烤之適宜溫度範圍係160至戰, 200°C。 ”關於本發明之第二及第三態樣,應瞭解料義組合物之 /儿積通常將係在一陽極或一導電電洞注入層上。 在根據本發明之第:及第三態樣之方法中,該半導體電 洞傳輸層之厚度範圍較佳為5越咖,更佳為5至3〇咖, 再更佳為8至20 nm,及最佳為約1〇⑽。該溶劑可在數秒 至數分鐘内乾燥並形成與最初的「油墨」體積相比相對薄 的膜。通常沉積許多液滴(較佳於乾燥開始 夠的乾燥材料厚度。 疋 在所有根據本發明之第二及第三態樣之方法中, ❹ 法通常將包括以下步驟:在該半導體電洞傳輸層上沉X積一 發光層,視情況在該發光層上沉積—電子傳輸層, 發光層或電子傳輸層(當存在時)上沉積H ^ ^瞭解,在本發明之第二及第三態樣中,該等方 ί括以下步驟:在該半導體電洞傳輸層形成後,自其移除 達litre移除:亥(等)溶劑之較佳方法包括於高溫Τ(通常最高 二力V二取決於真空壓力)真空乾燥。提供高彿點溶劑 會增加該組合物之乾燥時間。 即 在根據本發明之第二及第三態樣之方法中,應明白印刷 145810.doc -12· 201033300 -般將係進人由堤岸結構界定之像素中。在此方面,該組 合物之所需黏度將在某種程度上取決於像素大小、液滴直 徑、液滴體積、液滴頻率、及將沉積該組合物之表面的可 肩it對於小像素,—般使用較高的固體含量。對於較大 像素:使用較低的固體含量。對於較大像素,降低該組合 物之浪度以獲得良好的成膜特性。Wherein R1 and R2 are independently selected from hydrogen or, optionally substituted, alkyl, aryl, arylalkyl, heteroaryl and heteroaryl. More preferably, at least one of R1 and R includes an optionally substituted alkyl or aryl group. The first aspect of the present month relates to a method of forming an organic light-emitting device that includes the following steps: a. providing an anode layer; b. providing a conductive hole injection layer on the anode as appropriate; c. Inkjet printing deposits a composition as defined herein on the anode or hole injection layer to form a semiconductor hole transport layer, with the proviso that when the semiconductor hole transport material is deposited by ink jet printing, The bulk hole transport material is deposited on a hole injection layer. A third aspect of the invention is a method of forming an organic light-emitting device comprising the steps of: depositing a composition body transport layer as defined herein by ink jet printing. The method of the second or the second alternative according to the present invention preferably includes the further step of baking the semiconductor hole transport layer by heating 145810.doc -11-201033300. The baking conditions should be selected such that at least a portion of the semiconductor hole transport layer becomes insoluble so that the light-emitting layer can be deposited without dissolving the semiconductor second transport layer. The technology of this flooded semiconductor hole transport layer is known in the art. The optimum temperature range for baking is 160 to 200 °C. With regard to the second and third aspects of the invention, it will be appreciated that the composition of the composition will generally be on an anode or a conductive hole injection layer. In accordance with the invention: and the third aspect In the method, the semiconductor hole transport layer has a thickness in the range of preferably 5 to 3, more preferably 5 to 3, more preferably 8 to 20 nm, and most preferably about 1 (10). It dries in seconds to minutes and forms a relatively thin film compared to the original "ink" volume. Typically, a plurality of droplets are deposited (preferably the thickness of the dried material at which drying begins). In all methods according to the second and third aspects of the invention, the ruthenium method will generally comprise the following steps: in the semiconductor hole transport layer Sinking X a light-emitting layer, optionally deposited on the light-emitting layer - an electron transport layer, a light-emitting layer or an electron transport layer (when present) is deposited on H ^ ^, in the second and third aspects of the invention In the following steps, after the formation of the semiconductor hole transport layer, the removal from the litre removal: the preferred method of removing the solvent is included in the high temperature Τ (usually the highest two force V Vacuum drying under vacuum pressure. Providing a high point solvent will increase the drying time of the composition. That is, in the method according to the second and third aspects of the present invention, it should be understood that printing 145810.doc -12· 201033300 Will be incorporated into the pixel defined by the bank structure. In this regard, the desired viscosity of the composition will depend somewhat on pixel size, droplet diameter, droplet volume, droplet frequency, and will deposit Surface of the composition For small pixels shoulder it - like the use of higher solids content for the larger pixel: using a lower solids content for the larger pixel, the reduction waves of the composition to obtain a good film forming characteristics.

該組合物較佳應與該堤岸具有—接觸角,使得其潤渴該 井之基部,但不會溢出該井。 本毛明之第四態樣提供—種藉由根據本發明之第二或第 三態樣之方法製得的有機發光裝置。 根據本發明第四態樣之裝置之較佳特性提供如下: 參考圖1,根據本發明第四態樣之電致發光裝置之結構 ㈣包括通常係透明玻璃或塑料)基板i、-陽極2及一 陰極4。在陽極2與陰極4之間設置一發光層3。 “’、裳置中,至少一個電極係半透明以使光可發 射:當該陽極係透明時,其通常包括氧化銦錫。 °玄半導體電洞傳輸層係存在於陽極2與發光層3之間。於 陽極2與陰極3之間可設置其他層,如電荷傳輸、電荷注入 或電荷阻擋層。 β特疋。需要提供—導電電洞注人層,其可自位在該 陽極2與„亥半導體電洞傳輸層之間的導電有機或無機材料 形成,以協助電涧白兮m k 电幻自邊陽極注入該半導體電洞傳輸層。經 摻雜有機電洞注人材料之實例包括經摻雜的聚(乙稀二氧 ^ )(PEDT) ’尤其係摻雜有電荷平衡多元酸之PEDT,該 H5810.doc •13- 201033300 多元酸例如EP 0901176及EP 0947123所揭示之聚苯乙烯磺 酸酯(PSS)、聚丙烯酸或氟化磺酸(例如Nafion®) ; US 57之3873及US 5798170所揭示之聚苯胺;及聚(二噻吩并二 噻吩)。導電無機材料之實例包括過渡金屬氧化物,如揭 示於 Journal of Physics D: Applied Physics (1996), 29(11), 2750至 2753 中之 VOx MoOx及 RuOx。 位於陽極2與發光層3間之該電洞傳輸層之HOMO值較佳 低於或等於5.5 eV,更佳為約4.8至5.5 eV。HOMO值可藉 由循環伏安法(舉例而言)測量。 若存在之位於電致發光層3與陰極4之間之電子傳輸層較 佳具有約3至3.5 eV之LUMO值。 本發明之第五態樣提供一種全彩顯示器,其包括根據本 發明第四態樣之有機發光裝置。 一較佳的全彩顯示器包括「紅色」像素、「綠色」像素 及「藍色」像素,每一像素包括一如關於第四態樣定義之 OLED。一「紅色」像素將具有一包括紅色電致發光材料 之發光層。一「綠色」像素將具有一包括綠色電致發光材 料之發光層。一「藍色」像素將具有一包括藍色電致發光 材料之發光層。該電洞傳輸層較佳係通用於所有顏色。 所謂「紅色電致發光材料」係指一藉由電致發光發射波 長範圍為600至750 nm之輻射,較佳為6〇〇至7〇〇 nm,更佳 為610至650 nm及最佳為具有約65〇至66〇 nm之發射峰的有 機材料。 所謂「綠色電致發光材料」係指一藉由電致發光發射波 145810.doc _ 14· 201033300 長範圍為510至580 nm之輻射,較佳為51〇至57〇 nm的有機 材料。 所明藍色電致發光材料」係指一藉由電致發光發射波 長乾圍為400至500 nm之輻射,較佳為43〇至5〇〇 nm的有機 材料。 紅色、綠色及藍色電致發光材料係技術界已知。 【實施方式】 ❿ 現將參考附圖更詳細地描述本發明。 參考根據第四態樣之裝置,發光層3可僅由發光材料組 成或可包括該發光材料與一或更多種其他材料的組合。特 定言之,該電致發光材料可與如揭示於(例如)w〇 讀咖中之電洞及/或電子傳輸材料摻合,或可包括存於 一半導體主體基質中之-發光摻雜劑。或者,該發光材料 可共價鍵結至電荷傳輸材料及/或主體材料。 發光層3可經圖案化或未經圖案化。可使用包括一未圖 案化層之裝置作為照明光源(舉例而言)。白光發射裝置係 尤其適用於此目的。一種包括一圖案化層之裝置可為(例 如)主動矩陣顯示器或被動矩陣顯示器。在主動矩陣顯示 :之情況中,—圖案化電致發光層通常係與一圖案化陽極 及-未圖案化陰極組合使用。在被動矩陣顯示器之情況 2 ’销極層係㈣極材料之平行職形成,且電致發光 材科及陰極材料之平行條紋係垂直於該陽極材料設置,盆 光材料及陰極材料之條紋通常係經藉由光微影形 成之絕緣材料之條紋(「陰極分離器」)分離。 145810.doc 15 201033300 適用於發光層3之材料包括小分子、聚合物及樹狀高分 子材料及其組合物。適用於層3之電致發光聚合物包括聚 (伸芳基伸乙烯基)(如,聚(對伸苯基伸乙烯基))及聚伸芳基 (如聚苐類’尤其係、2,7_連接的9,9二烧基聚㈣或2,7_連接 的9,9二芳基聚茱類);聚螺苐類,尤其係2,7-連接的 聚_9’9·螺茱類;聚節并第類,尤其係2,7_連接的聚節并g 類,聚伸苯基,尤其係經烷基或烷氧基取代的聚4,4 —伸苯 基此等t合物揭示於(例如)Adv· Mater. 2000 12(23) 1737至1750及其中之參考文獻中。適用於層3之電致發光飜 樹狀高分子類包括帶有樹狀高分子基團之電致發光金屬錯 合物’如揭示於(例如)WO 02/066552中者。 陰極4係選自具有允許電子注入該發光層之功函數之材 料。其他因素會影響該陰極之選擇,如該陰極與該電致發 光材料間之不良相互作用可能性。該陰極可由單一材料, 如鋁層組成。或者,其可包括多種金屬(例如)低功函數材 料及高功函數材料(如揭示於w〇 98/1〇621中之鈣及鋁)之 雙層、元素鋇(如揭示於w〇 98/57381、Appl. Phys Leu 〇 2〇〇2’ 81(4),634、及w〇 Μ/84?59中)、或金屬化合物之薄 層(尤其係鹼金屬或鹼土金屬之氧化物或氟化物)以協助電 · 子注入(例如’揭示於WO 00/48258中之氟化鋰、揭示於 Appl. Phys. Lett. 2〇〇1,79(5),2〇〇1 中之氟化鋇及氧化 鎖)。為提供有效的電子注入至該裝置,該陰極較佳具有 低於3.5 eV之功函數,更佳低於3·2 eV,最佳低於3 。 金屬之功函數可見於(例如)Michaelson, J. Appl. phys. 145810.doc -16- 201033300 48(11),4729,1977。 該陰極可係不透明或绣 及透明的。透明陰極尤其有利於主動 車裝置因為通過此等裝置中之透明陽極之發射會至少 . 卩刀也被位於4發射像素下方之驅動電路所阻斷。透明陰 極將包括層足夠薄而呈透明之電子注入材料。由於其薄 度,此層之橫向電導率通常將較低。在此情況下,該電子 注入材料層係與透明導電材料(如氧化銦錫)之較厚層組合 使用。 應瞭解,透明陰極裝置不需具有透明陽極(當然,除非 需要完全透明的裝置用於底部發光裝置之該透 明陽極可用一反射性材料層(如鋁層)取代或補充。透明陰 極裝置之實例揭示於(例如)GB 2348316中。 光學裝置往往對水分及氧氣敏感。據此,該基板較佳具 有避免水分及氧氣滲入該裝置之良好阻隔特性。該基板一 般係玻璃,然而亦可使用替代基板,尤其係當該裝置需要 Φ 可撓性時。例如,該基板可包括如US 6268695(其揭示一 交替的塑料及阻隔層之基板)中之塑料或揭示於Ep 094985〇中之薄玻璃及塑料之層壓板。 '該裝置較佳用一密封材料密封(沒有顯示於圖1)以防止 水分及氧氣之滲入。適宜的密封材料包括玻璃板材、具有 適宜阻隔特性的膜(如交替堆疊之聚合物及介電質,如揭 示於(例如)WO 01/81649中)或一氣密容器(如揭示於(例 如)WO 01/19142中)。可將用於吸收任何可能滲透通過該 基板或密封材料之環境中之水分及/或氧氣之吸收劑材料 145810.doc 17 201033300 設置於該基板與該密封材料之間。 聚合方法 用於製備半導體聚合物之較佳方法係鈴木聚合反應(如 描述於(例如)WO 00/53656中)及山本聚合反應(如描述於 (例如)T. Yamamoto,"Electrically Conducting And Thermally Stable π-Conjugated Poly(arylene)s Prepared by Organometallic Processes", Progress in Polymer Science 1993, 17,1153-1205 中)o 此等聚合技術皆係通過「金屬***」而操作,其中使一金 屬錯合物觸媒之金屬原子***於一芳基與一單體之一離去 基之間。在山本聚合之情況下,使用鎳錯合物觸媒;在鈴 木聚合之情況下,使用鈀錯合物觸媒。 例如,在藉由山本聚合合成線性聚合物時,使用具有兩 個活性函素基之單體。類似地,根據鈐木聚合方法,至少 一個活性基係硼衍生物基(如關酸或關酸酯)及另一個活性 基係i素。較佳的鹵素係氣、溴及碘,以溴為最佳。 因此應明白,如在整篇專利說明書中說明之包括芳基之 重複單元及端基可衍生自一帶有適宜離去基之單體。 可使用鈐木聚合以製備區域規則性、嵌段及無規共聚 物。特定言之,當一個活性基係鹵素及另一個活性基係硼 衍生物基時,可製備得均聚物或無規共聚物。或者,當第 一單體之兩個活性基係硼且第二單體之兩個活性基係鹵素 時,可製備得嵌段或區域規則性(尤其係AB型)共聚物。 作為函化物之替代,能參與金屬***之其他離去基包括 含甲苯磺酸鹽(酯)、曱磺酸鹽(酯)及三氟甲磺酸鹽(酯)之基 145810.doc -18 - 201033300 團。 溶液處理 可自溶液沉積單一聚合物或多種聚合物以形成層3。適 用於聚伸芳基(尤其係聚第類)之溶劑包括單-或多-烷基苯 類’如曱苯及二曱苯。尤其佳的溶液沉積技術係旋塗及噴 墨印刷。Preferably, the composition should have a contact angle with the bank such that it will quench the base of the well but will not overflow the well. The fourth aspect of the present invention provides an organic light-emitting device produced by the method according to the second or third aspect of the present invention. The preferred characteristics of the apparatus according to the fourth aspect of the present invention are as follows: Referring to FIG. 1, the structure (4) of the electroluminescent device according to the fourth aspect of the present invention includes a substrate i, an anode 2, which is usually a transparent glass or plastic, and A cathode 4. A light-emitting layer 3 is disposed between the anode 2 and the cathode 4. "In the skirt, at least one of the electrodes is translucent to enable light to be emitted: when the anode is transparent, it usually comprises indium tin oxide. The Xuan semiconductor hole transport layer is present in the anode 2 and the luminescent layer 3. Between the anode 2 and the cathode 3, other layers may be disposed, such as charge transport, charge injection or charge blocking layer. β 疋. Need to provide a conductive hole injection layer, which can be self-locating at the anode 2 and A conductive organic or inorganic material is formed between the transmission layers of the semiconductor hole to assist the electro-optical self-edge anode to inject the semiconductor hole transport layer. Examples of doped organic hole injecting materials include doped poly(ethylene dioxygen) (PEDT) 'especially PEDT doped with charge-balanced polybasic acid, H5810.doc •13- 201033300 polyacid For example, polystyrene sulfonate (PSS), polyacrylic acid or fluorinated sulfonic acid (for example, Nafion®) as disclosed in EP 0 901 176 and EP 0 947 123; polyaniline disclosed in US Pat. No. 3,873, and US Pat. No. 5,798,170; and poly(dithiophene) And dithiophene). Examples of the conductive inorganic material include transition metal oxides such as VOx MoOx and RuOx disclosed in Journal of Physics D: Applied Physics (1996), 29(11), 2750 to 2753. The hole transport layer between the anode 2 and the light-emitting layer 3 preferably has a HOMO value of less than or equal to 5.5 eV, more preferably about 4.8 to 5.5 eV. The HOMO value can be measured by cyclic voltammetry (for example). The electron transport layer between the electroluminescent layer 3 and the cathode 4 preferably has a LUMO value of about 3 to 3.5 eV. A fifth aspect of the invention provides a full color display comprising an organic light emitting device according to a fourth aspect of the invention. A preferred full color display includes "red" pixels, "green" pixels, and "blue" pixels, each pixel including an OLED as defined in relation to the fourth aspect. A "red" pixel will have a luminescent layer comprising a red electroluminescent material. A "green" pixel will have a luminescent layer comprising a green electroluminescent material. A "blue" pixel will have a luminescent layer comprising a blue electroluminescent material. The hole transport layer is preferably used in all colors. By "red electroluminescent material" is meant a radiation having an emission wavelength in the range of from 600 to 750 nm, preferably from 6 Å to 7 Å, more preferably from 610 to 650 nm, and most preferably An organic material having an emission peak of about 65 〇 to 66 〇 nm. The term "green electroluminescent material" means an organic material which emits light by electroluminescence from 510 to 580 nm, preferably from 51 Å to 57 Å. The term "blue electroluminescent material" means an organic material which emits light having a wavelength of 400 to 500 nm by electroluminescence, preferably 43 to 5 Å. Red, green and blue electroluminescent materials are known in the art. [Embodiment] The present invention will be described in more detail with reference to the accompanying drawings. Referring to the apparatus according to the fourth aspect, the light-emitting layer 3 may be composed only of a light-emitting material or may include a combination of the light-emitting material and one or more other materials. In particular, the electroluminescent material can be blended with a hole and/or an electron transporting material as disclosed, for example, in a coffee maker, or can comprise an emissive dopant in a semiconductor host matrix. . Alternatively, the luminescent material can be covalently bonded to the charge transport material and/or host material. The luminescent layer 3 can be patterned or unpatterned. A device comprising an unpatterned layer can be used as the illumination source, for example. White light emitting devices are particularly suitable for this purpose. A device comprising a patterned layer can be, for example, an active matrix display or a passive matrix display. In the case of active matrix display: - the patterned electroluminescent layer is typically used in combination with a patterned anode and an unpatterned cathode. In the case of a passive matrix display, the 'pin-layer (four) pole material is formed in parallel, and the parallel stripes of the electroluminescent material and the cathode material are perpendicular to the anode material, and the stripes of the potting material and the cathode material are usually The strips of insulating material ("cathode separator") formed by photolithography are separated. 145810.doc 15 201033300 Materials suitable for luminescent layer 3 include small molecules, polymers and dendritic polymeric materials and combinations thereof. Electroluminescent polymers suitable for layer 3 include poly(exoaryl extended vinyl) (eg, poly(p-phenylene vinyl)) and poly(aryl) groups (eg, polyfluorenes, especially, 2,7_) Connected 9,9-dialkyl poly(tetra) or 2,7-linked 9,9-diarylpolyfluorenes; poly-snails, especially 2,7-linked poly-9'9-snails Polynuclear and the first class, especially 2,7_linked poly-glycol g, polyphenylene, especially poly-4,4-phenylene substituted by alkyl or alkoxy It is disclosed, for example, in Adv. Mater. 2000 12(23) 1737 to 1750 and references therein. Electroluminescent luminescent materials suitable for layer 3 The dendrimers include electroluminescent metal complexes having dendritic polymeric groups as disclosed, for example, in WO 02/066552. The cathode 4 is selected from materials having a work function that allows electrons to be injected into the light-emitting layer. Other factors can influence the choice of the cathode, such as the potential for adverse interaction between the cathode and the electroluminescent material. The cathode can be composed of a single material, such as an aluminum layer. Alternatively, it may comprise a plurality of metals, such as a low work function material and a high work function material (such as calcium and aluminum disclosed in w〇98/1〇621), a double layer, element 钡 (as disclosed in w〇98/ 57381, Appl. Phys Leu 〇2〇〇2' 81(4), 634, and w〇Μ/84?59), or a thin layer of a metal compound (especially an oxide or fluoride of an alkali or alkaline earth metal) ) to assist in the injection of electricity (for example, lithium fluoride disclosed in WO 00/48258, cesium fluoride disclosed in Appl. Phys. Lett. 2〇〇1, 79(5), 2〇〇1 and Oxidation lock). To provide efficient electron injection into the device, the cathode preferably has a work function of less than 3.5 eV, more preferably less than 3·2 eV, and most preferably less than 3. The work function of metals can be found, for example, in Michaelson, J. Appl. phys. 145810.doc -16- 201033300 48(11), 4729, 1977. The cathode can be opaque or embroidered and transparent. Transparent cathodes are particularly advantageous for active vehicle devices because the emission through the transparent anodes in such devices is at least. The file is also blocked by a drive circuit located below the 4 emission pixels. The transparent cathode will include an electron injecting material that is sufficiently thin and transparent. Due to its thinness, the lateral conductivity of this layer will generally be lower. In this case, the electron injecting material layer is used in combination with a thicker layer of a transparent conductive material such as indium tin oxide. It should be understood that the transparent cathode device does not need to have a transparent anode (of course, unless a completely transparent device is required for the bottom illuminator, the transparent anode can be replaced or supplemented with a layer of reflective material (such as an aluminum layer). An example of a transparent cathode device reveals For example, GB 2348316. Optical devices are often sensitive to moisture and oxygen. Accordingly, the substrate preferably has good barrier properties to prevent moisture and oxygen from penetrating into the device. The substrate is typically glass, but alternative substrates can also be used. In particular, when the device requires Φ flexibility, for example, the substrate may comprise a plastic such as US 6,268,695 (which discloses an alternating substrate of plastic and barrier layers) or a thin glass and plastic disclosed in Ep 094985. Laminate. 'The device is preferably sealed with a sealing material (not shown in Figure 1) to prevent infiltration of moisture and oxygen. Suitable sealing materials include glass sheets, films with suitable barrier properties (such as alternating stacks of polymers and Dielectrics, as disclosed, for example, in WO 01/81649, or an airtight container (as disclosed, for example, in WO 01/19142) An absorbent material 145810.doc 17 201033300 for absorbing any moisture and/or oxygen in the environment that may penetrate the substrate or sealing material may be disposed between the substrate and the sealing material. A preferred method of semiconducting polymers is Suzuki polymerization (as described, for example, in WO 00/53656) and Yamamoto polymerization (as described, for example, in T. Yamamoto, "Electrically Conducting And Thermally Stable π-Conjugated Poly (arylene)s Prepared by Organometallic Processes", Progress in Polymer Science 1993, 17,1153-1205) o These polymerization techniques are operated by "metal insertion" in which a metal atom of a metal complex is used. Inserted between an aryl group and a leaving group of a monomer. In the case of Yamamoto polymerization, a nickel complex catalyst is used; in the case of Suzuki polymerization, a palladium complex catalyst is used. For example, When synthesizing a linear polymer by Yamamoto polymerization, a monomer having two active functional groups is used. Similarly, according to the eucalyptus polymerization method, at least one The basic group is a boron derivative group (such as an acid or an acid ester) and another active group is an element. Preferred halogen gas, bromine and iodine are preferably bromine. Therefore, it should be understood that, as in the whole article The repeating units and end groups including the aryl group described in the patent specification can be derived from a monomer having a suitable leaving group. Eucalyptus polymerization can be used to prepare the regional regular, block and random copolymers. When one reactive group is a halogen and the other reactive group is a boron derivative group, a homopolymer or a random copolymer can be prepared. Alternatively, when the two reactive groups of the first monomer are boron and the two reactive groups of the second monomer are halogen, a block or regioregular (especially AB type) copolymer can be prepared. As an alternative to the functional group, other leaving groups capable of participating in metal insertion include a tosylate containing a tosylate, an oxime sulfonate, and a triflate 145810.doc -18 - 201033300 Mission. Solution Treatment A single polymer or a plurality of polymers can be deposited from the solution to form layer 3. Suitable solvents for the polycondensation aryl group (especially the condensed type) include mono- or poly-alkyl benzenes such as toluene and dinonylbenzene. Particularly preferred solution deposition techniques are spin coating and ink jet printing.

旋塗特別適用於其中不需要電致發光材料之圖案化之裝 置,例如,用於照明應用或簡單的單色分段顯示器。 噴墨印刷特別適用於高資訊含量顯示器,尤其係全彩顯 不盗。OLED之噴墨印刷描述於(例如)Ep〇88〇3〇3中。 其他溶液沉積技術包括浸塗、輥印及絲網印刷。 如果該裝置之多個層係藉由溶液處理形成,則熟悉技藝 人士當知曉防止相鄰層混雜之技術,例如,藉由先交聯一 層隨後再沉積另-層’或選擇相鄰層之材料使得首先形成 層之材料不會溶於用於沉積第二層之溶劑中。 可將有機LEDw積於—基板上之—像素矩陣中以形成單 色或夕色像素化顯不益。—多色顯示器可使用紅色、綠 色、及藍色發光像素之群組組建。所謂的主動矩陣顯示器 具與各像素相關聯之記憶元件(通常係一餘存電容器 及一電晶體而被動矩陣顯示器則不具有此記憶元件且 取而代之為重複地掃描以提供_穩定圖像之印象。 顯示通過一 OLED裝置1〇〇之一實例之垂直截面。在 主動矩陣顯不器中,部分的像 诚^ 土⑽- 、積破相關的驅動電路佔 (未顯示於圖2中)。該裝置之結構為說明之目的而梢有簡 145Sl0.doc •19· 201033300 化。 該OLED 100包括一基板1〇2,通常係〇 7 _之 玻璃,但視情況係透明塑料,已於其上沉積—陽極層 106。該陽極層通常包括約15〇 nm厚之IT〇(氧化銦錫卜於 其上提供一金屬接觸層(通常係約5〇〇 nm之鋁,有時稱為 陽極金屬)。經塗布ITO及接觸金屬之玻璃基板可購自Spin coating is particularly suitable for devices in which no patterning of electroluminescent material is required, for example, for lighting applications or simple monochrome segmented displays. Inkjet printing is especially suitable for high-information displays, especially for full-color display. Ink jet printing of OLEDs is described, for example, in Ep〇88〇3〇3. Other solution deposition techniques include dip coating, roll printing, and screen printing. If multiple layers of the device are formed by solution processing, those skilled in the art will be aware of techniques for preventing intermixing of adjacent layers, for example, by first crosslinking a layer and then depositing another layer or selecting materials of adjacent layers. The material which first forms the layer is not dissolved in the solvent used to deposit the second layer. The organic LEDs can be accumulated in a matrix of pixels on the substrate to form a single color or a sapphire pixelation. - Multi-color displays can be grouped using groups of red, green, and blue illuminating pixels. The so-called active matrix display device is associated with the memory elements of each pixel (usually a residual capacitor and a transistor and the passive matrix display does not have this memory element and instead is repeatedly scanned to provide an impression of a stable image. A vertical section through an example of an OLED device 1 is shown. In the active matrix display, part of the image is related to the driver circuit (not shown in Figure 2). The structure is for illustrative purposes and has a slab 145Sl0.doc • 19· 201033300. The OLED 100 comprises a substrate 1 〇 2, usually a 〇 7 _ glass, but as the case is transparent plastic, has been deposited thereon - Anode layer 106. The anode layer typically comprises an IT crucible of about 15 Å thick (indium tin oxide is provided thereon with a metal contact layer (typically about 5 Å nm aluminum, sometimes referred to as an anode metal). Glass substrates coated with ITO and metal are available from

Commg,US Α。該接觸金屬(及視情況該ΙΤ〇)視需要藉由光 微影接著蝕刻之習知方法圖案化,以致其不會遮掩該顯示 器。 於該陽極金屬上提供一實質上透明的導電電洞注入層 l〇8a,接著該半導體電洞傳輸層1〇81>及一電致發光層 了在°亥基板上形成堤岸112(例如由正或負光阻材料 形成)’以界定可於其中選擇性地沉積此等活性有機層的 井114。該等井因此界定該顯示器之發光區域或像素。 隨後藉由(如)物理氣相沉積施用一陰極層11〇。該陰極層 通常包括經較厚的鋁封蓋層覆蓋之低功函數金屬如鈣或 鋇,及視情況包括一與該電致發光層直接相鄰之用於改善 電子能階匹配之額外層,如氟化鋰層。可通過使用陰極分 離器達成陰極線之相互電隔離。通常在單一基板上製造多 個顯示器,且在製程結束時,將該基板劃線並分離該等顯 示器。可利用密封材料,如玻璃板或金屬,以抑制氧化及 水分滲入。 如圖所示,5亥等堤岸之邊緣或面通常係以〗〇至4〇度之間 的角度傾斜於該基板之表面上。該等堤岸呈現一疏水性表 145810.doc 201033300 面’使其不會被沉積有機材料之溶液潤濕,從而有助於將 該沉積材料局限在一井内。此係藉由利用〇2/CF4電漿處理 一堤岸材料(諸如聚醯亞胺)而達成,如揭示於EP 0989778 中。或者,可藉由使用氟化材料(如氟化聚醯亞胺)而避免 該電漿處理步驟,如揭示於w〇 03/083960。熟習此項技術 者已知多種其他堤岸結構。例如,該堤岸可包括多個相同 或不同材料層,例如經疏水層封蓋之親水層。該堤岸亦可 • 包括下切口,即’由該堤岸所界定之孔係小於該井之基部 表面積’如揭示於(例如)W〇 2005/076386中者。 該堤岸及分離器結構可自抗蝕劑材料形成,例如使用一 正(負)抗蝕劑作為該等堤岸及一負(或正)抗蝕劑作為該等 分離器,此兩種抗蝕劑可係基於聚酿亞胺並旋塗於該基板 上,或可應用一氟化或類氟化光阻。 實例 用於一層間材料(電洞傳輸材料)之層間調配物(稱為層間 φ 〇為於苯甲醚’苯氧基曱苯^1)中包括0.28%固體之固體材 料溶液。當用此調配物印刷時,產生具有邊緣增厚(最高 達40 nm)之膜斷面(15 nm)。邊緣增厚不利於裝置性能因 為: 0印刷該EL油墨會導致裝置壽命減少, H)隨後印刷的EL層之膜斷面係取決於該比斷面。因此 如果該IL膜邊緣增厚,則該EL層將顯示邊緣變薄。 貝穿-個像素之EL膜厚度的變化導致非均勻發射並 降低裝置效率及壽命。 145810.doc 201033300 本發明者之此研究已證實用於層間油墨之新穎溶劑組合 可消除層間邊緣增厚。 表1顯示用於根據本發明之新穎組合物中之該等溶劑之 物理特性。所有此等調配物皆成功地消除邊緣增厚。 溶劑 溶劑沸點 °C 溶劑表面張力 mN/m 溶劑黏度 mPa.s 作用 二環己基50% 227 32 3.4 DC :較不佳 /苯甲醚50% (A/DC1) 154 34 1 苯氧基曱苯 271 38.7 5.0 已添加P至上述調配 /二環己基49.5% 227 32 3.4 物以降低粗糙度 /苯曱醚50% (P/DC/A80) 154 34 1 1-四氫萘酮80% 255 43 8.6 TET .南黏度·南表 /對稱三甲苯20% (TET/MES9) 165 29 0.6 面張力 對稱三曱苯60% 165 29 0.6 BZB :高黏度-高表 /苯曱酸苄酯40% (MES/BZB2) 323 43 10 面張力 1-曱氧基萘50% 270 43 7.2 MON :高黏度-高表 /對稱三曱苯50% (MON/MES1) 165 29 0.6 面張力 表1 圖4至6顯示當在PED〇T(PD239)上印刷時衍生的層間膜 斷面。目前使用的A/P1調配物顯示邊緣增厚,而該等新穎 調配物使邊緣稍變薄。 圖4顯示當在PEDOT(PD239)上印刷時衍生的層間膜斷 面。目前使用的A/P1調配物顯示邊緣增厚,而兩種新調配 物(A/DC1及TET/MES9)使邊緣稍變薄。該A/DC1調配物亦 產生粗糙膜,可能係由於該聚合物在此特定溶劑中之不溶 性所導致。 145810.doc •22· 201033300 A/P1 =苯曱醚-3-苯氧基曱苯(1-1) A/DC1 =苯曱醚-二環己基(1-1) TET/MES9=1-四氫萘酮-對稱三甲苯(8-2)(新穎調配物2) 圖5顯示添加不同量之苯氧基曱苯至該A/DC1以降低粗 糙度之結果。從下方的圖可看到,僅0.5%之苯氧基甲苯 (P/DC/A 81 :(新穎調配物1))添加量可充分降低粗糙度並 保持稍呈圓頂形之斷面。Commg, US Α. The contact metal (and optionally the ruthenium) is patterned as desired by photolithography followed by etching so that it does not obscure the display. Providing a substantially transparent conductive hole injecting layer 8a on the anode metal, and then the semiconductor hole transporting layer 1〇81> and an electroluminescent layer forming a bank 112 on the substrate (for example, by Or a negative photoresist material is formed 'to define a well 114 in which such active organic layers can be selectively deposited. The wells thus define the illuminated area or pixels of the display. A cathode layer 11 随后 is then applied by, for example, physical vapor deposition. The cathode layer typically comprises a low work function metal such as calcium or tantalum covered by a thicker aluminum capping layer, and optionally an additional layer adjacent to the electroluminescent layer for improved electron energy level matching, Such as lithium fluoride layer. The mutual electrical isolation of the cathode lines can be achieved by using a cathode separator. A plurality of displays are typically fabricated on a single substrate, and at the end of the process, the substrates are scribed and separated from the displays. Sealing materials such as glass plates or metals can be utilized to inhibit oxidation and moisture infiltration. As shown, the edge or face of the bank such as 5 hai is usually inclined at an angle of between 〇 and 4 degrees on the surface of the substrate. The banks present a hydrophobic surface 145810.doc 201033300 face so that they are not wetted by the solution of deposited organic material, thereby helping to confine the deposited material to a well. This is achieved by treating a bank material (such as polyimine) with 〇2/CF4 plasma, as disclosed in EP 0989778. Alternatively, the plasma treatment step can be avoided by using a fluorinated material such as fluorinated polyimine, as disclosed in WO 03/083960. A variety of other bank structures are known to those skilled in the art. For example, the bank may comprise a plurality of layers of the same or different materials, such as a hydrophilic layer that is capped with a hydrophobic layer. The bank may also include a lower cut, i.e., the hole defined by the bank is smaller than the base surface area of the well as disclosed in, for example, W〇 2005/076386. The bank and separator structure can be formed from a resist material, for example using a positive (negative) resist as the banks and a negative (or positive) resist as the separators, the two resists It may be based on polyiminoimide and spin coated on the substrate, or a fluorinated or fluorinated photoresist may be applied. EXAMPLE An interlayer formulation for inter-layer material (hole transport material) (referred to as interlayer φ 〇 in anisole 'phenoxy fluorene benzene ^1) included 0.28% solids solid material solution. When printed with this formulation, a cross-section of the film (15 nm) with edge thickening (up to 40 nm) is produced. Edge thickening is not conducive to device performance because: 0 printing of the EL ink results in a reduction in device life, and H) the film cross-section of the subsequently printed EL layer depends on the specific cross-section. Therefore, if the edge of the IL film is thickened, the EL layer will thin the display edge. The change in the thickness of the EL film of the pixel-to-pixel results in non-uniform emission and reduces device efficiency and lifetime. 145810.doc 201033300 This study by the inventors has demonstrated that a novel solvent combination for interlayer inks can eliminate interlayer edge thickening. Table 1 shows the physical properties of the solvents used in the novel compositions according to the invention. All of these formulations successfully eliminated edge thickening. Solvent solvent boiling point °C Solvent surface tension mN/m Solvent viscosity mPa.s Action Dicyclohexyl 50% 227 32 3.4 DC: Lesser / Anisole 50% (A/DC1) 154 34 1 Phenoxyquinone 271 38.7 5.0 Added P to the above formulation / dicyclohexyl 49.5% 227 32 3.4 to reduce roughness / phenyl ether 50% (P / DC / A80) 154 34 1 1-tetralone 80% 255 43 8.6 TET .South viscosity · South table / Symmetrical toluene 20% (TET / MES9) 165 29 0.6 Surface tension symmetry Triterpenes 60% 165 29 0.6 BZB : High viscosity - high surface / benzyl benzoate 40% (MES/BZB2 ) 323 43 10 Surface Tension 1-Methoxynaphthalene 50% 270 43 7.2 MON: High Viscosity - High Gauge / Symmetric Triterpenoid 50% (MON/MES1) 165 29 0.6 Surface Tension Table 1 Figures 4 to 6 show when Interlayer film section derived from PED〇T (PD239) when printed. The currently used A/P1 formulations show edge thickening, and these novel formulations make the edges slightly thinner. Figure 4 shows the interlayer film fractures derived when printed on PEDOT (PD239). The currently used A/P1 formulations show edge thickening, while the two new formulations (A/DC1 and TET/MES9) make the edges slightly thinner. The A/DC1 formulation also produces a rough film, possibly due to the insolubility of the polymer in this particular solvent. 145810.doc •22· 201033300 A/P1 = benzoquinone-3-phenoxypurine benzene (1-1) A/DC1 = benzoquinone-dicyclohexyl (1-1) TET/MES9=1-four Hydronaphthalene-symmetric trimethylbenzene (8-2) (novative formulation 2) Figure 5 shows the results of adding different amounts of phenoxynonanes to the A/DC1 to reduce roughness. As can be seen from the graph below, only 0.5% of phenoxytoluene (P/DC/A 81 : (new formulation 1)) is added in an amount sufficient to reduce the roughness and maintain a slightly dome-shaped cross section.

圖6顯示由另兩種調配物證實之1-四氫萘酮(具有高黏度 及高表面張力之高沸點溶劑)之影響之結果。 MON/MES1 : 1-甲氧基萘(50%):對稱三曱苯(50%)(新穎 調配物3) MES/BZB2 :對稱三甲苯(60°/。):苯甲酸苄酯(40%)(新穎 調配物4) 【圖式簡單說明】 圖1顯示一典型OLED之結構; 圖2顯示一通過一 OLED實例之垂直截面; 圖3顯示在一薄膜之層間之邊緣增厚;及 圖4至6顯示由不同溶劑調配物所得之層間膜斷面。 【主要元件符號說明】 1 基板 2 陽極 3 發光層 4 陰極 100 有機發光裝置(OLED) 145810.doc -23- 201033300 102 基板 106 陽極 108a 導電電洞注入層 108b 半導體電洞傳輸層 108c 電致發光層 110 陰極層 112 堤岸 114 井 145810.doc -24-Figure 6 shows the results of the influence of 1-tetralone (high boiling point solvent having high viscosity and high surface tension) confirmed by the other two formulations. MON/MES1 : 1-methoxynaphthalene (50%): Symmetric triterpene benzene (50%) (novel formulation 3) MES/BZB2: symmetrical trimethylbenzene (60°/.): benzyl benzoate (40%) (New formulation 4) [Simplified illustration of the drawings] Figure 1 shows the structure of a typical OLED; Figure 2 shows a vertical section through an OLED example; Figure 3 shows the edge thickening between layers of a film; and Figure 4 Up to 6 shows the interlayer film cross section obtained from different solvent formulations. [Main component symbol description] 1 substrate 2 anode 3 light-emitting layer 4 cathode 100 organic light-emitting device (OLED) 145810.doc -23- 201033300 102 substrate 106 anode 108a conductive hole injection layer 108b semiconductor hole transport layer 108c electroluminescent layer 110 cathode layer 112 bank 114 well 145810.doc -24-

Claims (1)

201033300 七、申請專利範圍: 1. 一種適於一光電裝置之喷墨印刷、喷嘴塗覆、喷塗、輥 印、浸塗、狹缝塗佈、或膠版印刷之組合物,該組合物 i括半導體電/同傳輸材料、電洞注入材料、發光聚合 物材料、電子傳輸材料、或電子注入層材料、第一溶劑 及第二溶劑,該第一溶劑具有比該第二溶劑更高之沸點 及更大之黏度,其中該等溶劑可彼此混溶且該第一溶劑 之黏度範圍係5至12 mPas。 ® 2_如請求項1之組合物,盆中兮笛々愈,—〆 共〒邊第一溶劑之黏度係大於 6 mPas。 3.如請求項1或2之組合物,装中兮笛 ^ Λ ^ m 兵〒該第一溶劑之黏度係大於 7 mPas。 4·如先前請求項中任一項 唄之組合物,其中該第一溶劑係1_ 四氫萘酮、笨曱酸节酷月彳 备 卞0曰及1_甲軋基萘、鄰二甲苯、混合 一曱苯、乙笨、丙苯、丁苯中之任一者。 5.如先前請求項中任一項之组人物,—处 • $ <、,且β物,其中該第二溶劑係對 稱二曱苯、鄰二甲苯、八_ 屁口一 Τ本、乙苯、丙苯、丁笨 中之任一者。 ♦ ' 6·如先前請求項中任一項之组人物,ϋ分姑 . 喟之、,且。物其中該第一溶劑之沸 • 點為250至35〇t:之間。 7. 如先刖請求項中任一人 巧 <、、丑σ物其中該第溶劑 點為100至20(rc之間。 # -齊丨之/弗 8. 如先前請求項中任一項 唄之、且°物其包括-半導體電洞 r:,其中該半導體電洞傳輪材料包括-分子量範 145810.doc 201033300 圍為4G,〇〇〇至4〇〇,G⑽道爾頓(Dalt〇n)之聚合物。 9. 10. 11. 12. 13. 14. 15. 16. 先剛明求項中任—項之組合物,其包括一半導體電洞 傳輸材料’其中該半導體電洞傳輪材料包括—分子量至 少為350,〇〇〇道爾頓之聚合物。 如請求項8或請求項9之組合物,其中該半導體電洞傳輸' 材料在組合物中之濃度為〇 8 w/v%或更低。 先剛”求項中任一項之組合物,其中該第一溶劑對該 第二溶劑之比例為1:1。 先則叫求項中任一項之組合物,其包括一半導體電洞⑩ 傳輸材料,其中該電洞傳輸材料由於存在可交聯基團而 係可交聯。 先前請求項中任一項之組合物,其包括一半導體電洞 傳輸材料’其中該電洞傳輸材料包括一具有三芳胺重複 單元之聚合物。 刖叫求項中任一項之組合物,其包括一半導體電洞 材料,其中該電洞傳輸材料係三芳胺重複單元與第 二重複單元之共聚物。 /、 Q 如明求項14之組合物’其中該第三重複單元㈣重 元。 一種形成-有機發光裝置之方法,其包括以下步驟: a ·提供一陽極層; b視情況在該陽極層上提供一導電電洞注入層; 姓c·、藉由喷墨印刷在該陽極或電洞注入層上沉積—如 吻求項1至15中任一項之組合物,以形成一半導體電洞 145810.doc -2 · 201033300 傳輸層,其限制條件為:當 珥,亥+導體電洞傳 由喷墨印刷沉積時,則嗲I 得輸材料係藉 w该牛導體電洞傳輪 一電洞注入層上。 務1材料係沉積在 17. —種形成一有機發光裝置之 々在其包括以下牛8¾. # 由喷墨印刷沉積一如請求項】至15中任—馆藉 以形成-半導體電洞傳輸層。 之、·且合物, 18. ΓΤ6或請求項17之方法,該方法包括藉― ❹ 烤該半導體電洞傳輸層之另一步骤。 八 19. 如請求項17或18之方法,— ,人 (万法’其中該組合物係沉積在一陽極 或一導電電洞注入層上。 20. 如請求項16至19中任一項之方法,其進—步包括以下步 驟·在該半導體電洞傳輸層上沉積一發光層視情況在 /發光層上"L積一電子傳輸層及在該發光層或電子傳 輸層(當存在時)上沉積一陰極。 21. 如請求項16至2〇中任一項之方法,其進一步包括自該半 導體電洞傳輸層移除溶劑之步骤。 22· —種藉由如請求項16至21中任一項之方法製造之有機發 光裝置。 23· —種包括如請求項22之有機發光裝置之全彩顯示器。 145810.doc201033300 VII. Patent Application Range: 1. A composition suitable for inkjet printing, nozzle coating, spray coating, roll printing, dip coating, slit coating, or offset printing of an optoelectronic device, the composition i a semiconductor electric/co-transport material, a hole injecting material, a light emitting polymer material, an electron transporting material, or an electron injecting layer material, a first solvent, and a second solvent, the first solvent having a higher boiling point than the second solvent A greater viscosity wherein the solvents are miscible with each other and the first solvent has a viscosity in the range of 5 to 12 mPas. ® 2_ As in the composition of claim 1, the flute in the pot is healed, and the viscosity of the first solvent is greater than 6 mPas. 3. The composition of claim 1 or 2, wherein the viscosity of the first solvent is greater than 7 mPas. 4. The composition of any one of the preceding claims, wherein the first solvent is 1 - tetralone, alum, and acenaphthene, o-xylene, Mix one of benzene, phenylbenzene, propylbenzene, and butylbenzene. 5. A group of persons as claimed in any one of the preceding claims, wherein: <<,, and beta, wherein the second solvent is symmetric dianthene, o-xylene, 八 _ 屁 Τ 、, B Any of benzene, propylbenzene, and butadiene. ♦ ' 6. A group of people as in any of the previous claims, ϋ 姑 . 喟 喟 , , , , , , , , , , The boiling point of the first solvent is between 250 and 35 〇t:. 7. If any of the request items is prior to <, ugly, the solvent point is between 100 and 20 (between rc. # -齐丨之/弗八. As in any of the previous claims 呗And the semiconductor includes a semiconductor hole r: wherein the semiconductor hole carrier material comprises - molecular weight 145810.doc 201033300 surrounded by 4G, 〇〇〇 to 4〇〇, G(10) Dalton (Dalt〇n Polymer of 9.) 11. 13. 13. 14. 15. 16. The composition of any of the items of the present invention, comprising a semiconductor hole transport material, wherein the semiconductor hole transfer wheel The material comprises a polymer having a molecular weight of at least 350, 〇〇〇Dalton. The composition of claim 8 or claim 9, wherein the semiconductor hole transporting material has a concentration of 〇8 w/v in the composition. % or lower. The composition of any one of the preceding claims, wherein the ratio of the first solvent to the second solvent is 1:1. The composition of any one of the above items, including A semiconductor cavity 10 transports material wherein the hole transport material is crosslinkable due to the presence of a crosslinkable group. The composition comprising a semiconductor hole transporting material, wherein the hole transporting material comprises a polymer having a triarylamine repeating unit. The composition of any of the above-mentioned items, comprising a semiconductor cavity material, Wherein the hole transporting material is a copolymer of a triarylamine repeating unit and a second repeating unit. /, Q. The composition of claim 14 wherein the third repeating unit (four) is a heavy element. A method of forming an organic light emitting device And comprising the steps of: a providing an anode layer; b optionally providing a conductive hole injection layer on the anode layer; surname c·, depositing on the anode or hole injection layer by inkjet printing - The composition of any one of items 1 to 15 is formed to form a semiconductor hole 145810.doc -2 · 201033300 transport layer, the restriction condition is: when the +, hai+conductor hole is deposited by inkjet printing Then, the material to be transported by the 嗲I is borrowed from the hole of the electric conductor of the bull conductor. The material is deposited in 17. The organic light-emitting device is formed in the following: the following cattle 83⁄4. Inkjet printing Brush deposition as in the request to the library - to form a semiconductor hole transport layer. The method of claim 17, the method of claim 17, or the method of claim 17, comprising baking the semiconductor hole Another step of the transport layer. VIII. 19. The method of claim 17 or 18, wherein, the person (the method is deposited on an anode or a conductive hole injection layer. 20. The method of any one of the preceding claims, comprising the steps of: depositing a light-emitting layer on the semiconductor hole transport layer as appropriate on the light-emitting layer "L-an electron transport layer and on the light-emitting layer or A cathode is deposited on the electron transport layer (when present). The method of any one of claims 16 to 2, further comprising the step of removing solvent from the semiconductor hole transport layer. An organic light-emitting device manufactured by the method of any one of claims 16 to 21. 23. A full color display comprising an organic light emitting device as claimed in claim 22. 145810.doc
TW099100724A 2009-01-12 2010-01-12 Interlayer formulation for flat films TW201033300A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0900451A GB2466842B (en) 2009-01-12 2009-01-12 Interlayer formulation for flat films

Publications (1)

Publication Number Publication Date
TW201033300A true TW201033300A (en) 2010-09-16

Family

ID=40379462

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099100724A TW201033300A (en) 2009-01-12 2010-01-12 Interlayer formulation for flat films

Country Status (3)

Country Link
GB (1) GB2466842B (en)
TW (1) TW201033300A (en)
WO (1) WO2010079330A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906752B2 (en) 2011-09-16 2014-12-09 Kateeva, Inc. Polythiophene-containing ink compositions for inkjet printing
JP5844590B2 (en) * 2011-09-27 2016-01-20 理想科学工業株式会社 Non-aqueous inkjet ink
JP6015073B2 (en) * 2012-04-02 2016-10-26 セイコーエプソン株式会社 Functional layer forming ink and light emitting device manufacturing method
JP6225413B2 (en) * 2012-11-16 2017-11-08 セイコーエプソン株式会社 Functional layer forming ink, ink container, ejection device, functional layer forming method, organic EL element manufacturing method
WO2015065499A2 (en) * 2013-10-31 2015-05-07 Kateeva, Inc Polythiophene-containing ink compositions for inkjet printing
GB201511398D0 (en) * 2015-06-30 2015-08-12 Cambridge Display Tech Ltd Method for preparing an organic semiconducting layer
JP7046938B2 (en) * 2016-10-31 2022-04-04 メルク パテント ゲーエムベーハー Formulation of organic functional materials
US10950792B2 (en) 2016-10-31 2021-03-16 Merck Patent Gmbh Formulation of an organic functional material
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
CN107177239B (en) * 2017-02-17 2019-03-08 纳晶科技股份有限公司 The preparation method of the functional layer of ink set, photoelectric device and photoelectric device
KR20200099217A (en) * 2019-02-12 2020-08-24 삼성디스플레이 주식회사 Composition for forming organic light-emitting device and method for manufacturing organic light-emtting device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723873A (en) 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
US5798170A (en) 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
WO1998005187A1 (en) 1996-07-29 1998-02-05 Cambridge Display Technology Limited Electroluminescent devices with electrode protection
EP0925709B1 (en) 1996-09-04 2003-08-13 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
JP3899566B2 (en) 1996-11-25 2007-03-28 セイコーエプソン株式会社 Manufacturing method of organic EL display device
US6452218B1 (en) 1997-06-10 2002-09-17 Uniax Corporation Ultra-thin alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes
GB9718393D0 (en) 1997-08-29 1997-11-05 Cambridge Display Tech Ltd Electroluminescent Device
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
KR100660384B1 (en) 1998-03-17 2006-12-21 세이코 엡슨 가부시키가이샤 Manufacturing method for display device
GB2335884A (en) 1998-04-02 1999-10-06 Cambridge Display Tech Ltd Flexible substrates for electronic or optoelectronic devices
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
GB9903251D0 (en) 1999-02-12 1999-04-07 Cambridge Display Tech Ltd Opto-electric devices
AU2926400A (en) 1999-03-05 2000-09-28 Cambridge Display Technology Limited Polymer preparation
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
EP1083775B1 (en) * 1999-03-29 2010-10-13 Seiko Epson Corporation Composition comprising an organic electroluminescent material
CN1385053A (en) 1999-09-03 2002-12-11 优尼爱克斯公司 Encapsulation of organic electronic devices
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
DE60239730D1 (en) 2001-02-20 2011-05-26 Isis Innovation METAL CONTAINING DENDRIMERE
JP4347569B2 (en) * 2001-02-27 2009-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド Method for depositing material on a substrate
CN100353580C (en) 2001-04-17 2007-12-05 皇家菲利浦电子有限公司 LED comprising conductive transparent polymer layer with low sulfate and high metal lon content
GB0207134D0 (en) 2002-03-27 2002-05-08 Cambridge Display Tech Ltd Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
US20050067949A1 (en) * 2003-09-30 2005-03-31 Sriram Natarajan Solvent mixtures for an organic electronic device
GB0402559D0 (en) 2004-02-05 2004-03-10 Cambridge Display Tech Ltd Molecular electronic device fabrication methods and structures
DE102004007777A1 (en) * 2004-02-18 2005-09-08 Covion Organic Semiconductors Gmbh Solutions of organic semiconductors
WO2005112144A1 (en) * 2004-05-18 2005-11-24 Merck Patent Gmbh Formulation for ink-jet printing comprising semiconducting polymers
JP4616596B2 (en) * 2004-08-27 2011-01-19 株式会社 日立ディスプレイズ Manufacturing method of electronic device
KR101277916B1 (en) * 2005-05-20 2013-06-21 스미또모 가가꾸 가부시키가이샤 Polymer Composition and Polymer Light-Emitting Device Using Same
GB0510382D0 (en) 2005-05-20 2005-06-29 Cambridge Display Tech Ltd Ink jet printing compositions in opto-electrical devices

Also Published As

Publication number Publication date
GB2466842B (en) 2011-10-26
GB2466842A (en) 2010-07-14
WO2010079330A1 (en) 2010-07-15
GB0900451D0 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
TW201033300A (en) Interlayer formulation for flat films
US8404159B2 (en) Solvent for a printing composition
TWI523885B (en) Formulation and method for preparation of organic electronic devices
US7023012B2 (en) Formulation for depositing a conjugated polymer layer
JP4994550B2 (en) Formulation for attaching a light emitting polymer layer
KR101665732B1 (en) Compositions and methods for manufacturing light-emissive devices
EP2695212B1 (en) Organic light emitting device and method
US20130187146A1 (en) Organic light-emitting device and method
US10985322B2 (en) Polymer and organic light-emitting device
JP2009545870A (en) Photoelectric device and method for manufacturing the same
TW201033301A (en) Interlayer formulation for flat films
JP5456781B2 (en) Method for manufacturing a display
EP3262127B1 (en) Phosphorescent ink
TWI605071B (en) Organic light emissive device
GB2515182A (en) Organic light-emitting device and method
Aoki et al. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance
US11283030B2 (en) Light-emitting compound
GB2460216A (en) Hole transport material composition
KR20160134535A (en) Polymer and organic light-emitting device
WO2017103597A1 (en) Polymer