TW201032337A - Protection of optoelectronic devices and method thereof - Google Patents

Protection of optoelectronic devices and method thereof Download PDF

Info

Publication number
TW201032337A
TW201032337A TW98105190A TW98105190A TW201032337A TW 201032337 A TW201032337 A TW 201032337A TW 98105190 A TW98105190 A TW 98105190A TW 98105190 A TW98105190 A TW 98105190A TW 201032337 A TW201032337 A TW 201032337A
Authority
TW
Taiwan
Prior art keywords
layer
inorganic
photovoltaic
layers
carbon
Prior art date
Application number
TW98105190A
Other languages
Chinese (zh)
Inventor
Fachri Atamny
Original Assignee
Oerlikon Trading Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading Ag filed Critical Oerlikon Trading Ag
Priority to TW98105190A priority Critical patent/TW201032337A/en
Publication of TW201032337A publication Critical patent/TW201032337A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention provides an optoelectronic device comprising a substrate, an optoelectronic layer, and two inorganic thin layers of different types, wherein the first inorganic layer is an encapsulation layer deposited on the optoelectronic layer and the second inorganic layer is a protective layer that is deposited on the first inorganic layer. Such layers can be produced in a single vapor deposition procedure.

Description

201032337 六、發明說明: 【發明所屬之技術領域】 本發明係關於太陽能光電裝置之領域。尤其是提供一 種用以保護此裝置以對抗諸如風、刮痕(scratch)、濕氣 等之環境影響的方法。 【先前技術】 φ 作用於光電裝置上之諸如風、刮痕、濕氣及/或如氧 之氣體等之影響,會造成裝置之性能及/或壽命的降低。 所有光電裝置(用以將其製成之技術係為獨立地)必 須被保護以免受此環境之影響,特別是避免氧氣、水、 及水蒸氣的影響。此外,此些裝置必須以機械方式來保 護以避免刮傷,以及必須以機械方式來穩定以避免裝置 的故障。 光電裝置之特定子群為太陽能電池及/或太陽能模 參 組,亦即太陽能電池之面板。傳統太陽能電池係藉由使 用諸如晶圓或緞帶(ribbons)之塊狀矽薄片作為載體(亦 即,基板),以及作為主動吸收層,或藉由在一玻璃基板 上沈積薄膜結構(其具有良好的光學特性且亦為一良好 的環境障壁)而製造。現今於玻璃基板上所製造之大部分 太陽能電池係以一額外的玻璃來封裝,並於其間具有一 箔片(foil)。箔片通常用於二玻璃之間作為積層 (lamination),以確保有效封裝。然而,玻璃本身的性質 為堅硬且笨重的,且玻璃比較昂貴。此外,二玻璃之間 3 201032337 的太陽能電池之封裝增加製造成本。 藉,僅使用’,塑膠”箔片來封裝,則可達到節省成 本及重量輕之優點。然而’因下列事實而無法滿足太陽 能電池之壽命(約2〇年)所需: 塑膠箔片針對氧、水及水蒸氣之導磁係數是比較 高的。此外,箔片更不足以用機械穩定方式來長期承受 環境的影響。而且,箔片表面為,,可刻劃的 (scratchable)” ,導致箔片對氧及水的導磁係數增加。 對於太陽能電池之傳統封裝,其太陽能電池係以’, 塑膠”箔片及箔片之頂部上之玻璃基板來覆蓋。太陽能 模組接著以高溫加熱,造成箔片於二玻璃之間,,熔解 (melting)’’ 。此製程導致太陽能電池被洛片所覆蓋’且 與二玻璃一起黏著住。此封裝(亦即,積層)製程是昂貴 且難以完成的,因為其需要好幾個不同的製程步驟以及 需要二玻璃及一塊於其間之箔片。 概括地說’一般所使用之太陽能電池之封裝/積層具 有其成本上之缺點,特別是在大薄膜太陽能面板之封 裴。此外,由於必須互相擠壓二玻璃以封裝此些電池, 故具有減少封裝/積層產量之風險。 因此,需存有新的及經改良之保護光電裝置的方 法’特別是太陽能電池及/或太陽能模組。 【發明内容】 本發明之目的係提供用以保護光電裝置之新賴方 201032337 法’以及改良以此方式所保護之光電裝置。此目的係 由依照申請專利範圍第1項之光電裝置及依照申請專利 範圍第4項之方法來達成。有助益之實施例係指定於1 屬項申請範圍中。 9 s附 因此在本發明之第一態樣係關於一種光電裝置,其 包括基板、光電層,以及二不同型之無機薄層,其中光 電層係配置在基板上,且其中第一無機層為沈積於光電 層上之封裝層’而第一無機層為沈積於第一無機層上之 ❹保護層。 ’’、 本發明之解決方式係基於二種類型之無機薄層的結 合。此些層之第一類型係用來封裝,而第二類型係用^ 保護以防止諸如刮傷及/或磨損之環境影響。此些層之第 一類型係以一較佳的單步驟PECVD製程來沈積,亦即, 僅包括一個裝載/卸載操作於製程室中。在單步驟pECVD 沈積製程期間,藉由實質及分離控制大氣環境,例如, 製程氣體NH3、H2、SiH4、A ’以及諸如氣體壓力、製 程電力與基板溫度之其它製程參數,沈積數層無機材料 分離層。 光電裝置較佳為一環境感測光電裝置。更佳地是, 光電裝置係選自由太陽能裝置、太陽能模組、有機光電 伏特裝置、有機光電裝置,諸如為小分子或高分子形式 之有機發光二極體(OLED)、有機薄膜電晶體、有機電色 顯示器、電泳墨水、以及LCD,較佳為用於錶及/或手機 之LCD所組成之群組。最佳之光電裝置為太陽能裝置, 5 201032337 較佳為基於薄膜太陽能電池及/或太陽能模組 陽能電池之面板。 1 双 ^基板可由玻璃、塑膠、陶瓷、金屬所製成。其可為 箔片,例如由塑膠或金屬片製成。 光電層可為所屬技術領域中之熟悉技術者所知悉之 任何光電層。例如,在0LEDs之情況下,光電層可^括 二具有有機半導體層之電極,其中有機半導體層係钱入 此二電極之間。此些電極之—通常為金屬陰極,同時另 一者通常為透明陽極。包括太陽能電池之太陽能裝置作 為光電層為所屬技術領域中所習知。具有各種太陽能裝 置之技,;某些係基於結晶矽,所謂的塊狀矽太陽能裝 置可以單矽晶晶圓或多晶矽或緞帶矽材料 係基於無機薄太陽能電池,諸如無晶石夕、微晶梦、匕 鎘(CdTe)、鎘_銦_(二)硒化物(CIS)/鎘_銦_鎵_(二)硒化物 (CIGS)。另一太陽能電池種類為有機系之太陽能電池。 在一實施例中,無機層之數量為^2,更佳地為 且sio。在另一實施例中,每一層之厚度為gi5nm且$ 1000nm,較佳為2 15nm且g 1 OOnm。上限可依照特定需 求而作調整。第一無機層係使用作為封裝層亦即障壁 層,其保護光電層避免受環境影響,較佳為避免受濕氣、 水、水蒸氣及諸如氧氣之氣體影響。因此,第一無機層 可以任何適合作為封裝層之材料來製成。在一較佳實施 例中封裝層與基板一起-完全密封及/或覆蓋光電層。 在一實施例中,第一無機層包括一或多個氧化矽 201032337 (SixOy,1<=χ<=2 ’ l<=y<=3)、一或多個氮化石夕(SixNy, 1<=χ<=3,l<=y<=4)及/或一或多個氮氧化石夕(SiON) 〇較 佳地是,第一有機層包括氮化石夕。 在另一實施例中,第一無機層包括數個分離層,亦 即數層之堆疊。這些分離層不僅在其化學計量 (stoechiometric)組成上可改變,而且在其所組成之元件 上亦可改變。較佳地是,第一無機層包括多層氮化石夕堆 疊。 在進一步之實施例中,第一無機層係沈積在光電層 上,較佳的是藉由氣相沉積技術,更佳係藉由物理氣相 沈積(PVD)、化學氣相沈積(CVD),以及最佳的是藉由電 漿增強 CVD (PECVD)。 第二無機層係用以作為保護層,亦即此層係以機械 方式保護光電裝置免受刮傷及磨損影響,以及以機械方 式穩定裝置以避免裝置破裂。因此,第二無機層可以任 何適合作為保護層之材料來製成。 在一實施例中,第二無機層包括類鑽碳(DLC)及/或 無晶四面體碳(ta-C)。較佳地是,第一有機層包括DLC。 在另一實施例中,第二無機層同樣包括數層分離 層,亦即數層之堆疊。 在進一步之實施例中,第二無機層係沈積在光電層 上,較佳的是藉由氣相沈積技術,更佳的是藉由物理氣 相沈積(PVD)、化學氣相沈積(CVD),以及最佳的是藉由 電漿增強CVD (PECVD)。 201032337 在^一態樣中,本發明係關於一種光電裝置之製造 >、t勹=疋關於一種具保護功能之光電裝置之製造方 列步驟:a)提供-沈積於基板上之光電層; = 層無機封裝層;以及c)沈積至少-層無機 之無中’步驟b)之無機封裝層及/或步驟c) 無機保❹包括數層分離層,亦即上述之層堆4。 =明之另—實施例中’步驟15)之無機封裝層包 括上所述之材料,其較佳包括 多個氮化石夕及/或一或多個氮氧化石夕。夕戍 包括ΐίΓΓ進一步實施例中,步驟c)之無機保護層 碳。料之材料,較佳為類鐵碳及/或無晶四面體 積。Ϊ二之層堆叠可以單一或多重沈積製程來沈 :別ΐ:ΓΓ: ’此二無機層之層堆叠的沈積可 中實行,較佳為在單-― 二 實施例中,二類型之層係隨後 在不中斷真空下,被沈積在㈣的沈積室中。 在進一步之態樣中,本發明係針對一 明之第一態樣的方法而產生之光電裝置。 … 【實施方式】 而更此些或其他態樣可參照如下所述之實施例 201032337 第1圖係顯示光電技術之主要類別之概觀,特別係 指光電伏特技術,本發明可應用於光電伏特之技術領域。 第2圖為玻璃基板1(其為前面(fr〇nt)玻璃)上之傳統 薄膜太陽能模組之典型構造之示意圖。為了保護光電裝 置-在此情況下,太陽能電池2本身具有電極-避免受環 境影響’覆蓋整個裝置之積層3以及於其頂部上之背面 玻璃4是必要的。 第3a圖係顯示傳統晶形(cryStanine)太陽能電池之 結構的剖面,其包括背面電極8、鋁層5、吸收層(亦即p 層)6、η層7以及頂部電極第3b圖係顯示傳統薄膜 太%能電池,其具有玻璃基板1、透明導電氧化物(Tc〇) 前面(front)接觸層11、薄膜吸收層12(例如矽系),以及 背面(back)接觸層13。第4圖係概要圖示傳統薄膜光電 伏特電池之封裝。在此,薄膜電池15係封裝在前面玻璃 基板1、背面玻璃4與塑膠(例如聚合物)箔μ之間,用 以將電池封裝在二玻璃之間。 所有薄層,TCO 11、背面接觸13以及吸收層12均 需要被保護以避免氧及蒸氣的擴散,市場更要求太陽能 模組要能耐到傷。此外,封裝_亦即,封裝箔/積層及背 面玻璃;加上所謂積層步驟-需要提供機械上及化學上的 穩定度,在應用薄膜期間,必須密閉地密封太陽能電池 且必須緊密地填滿裝置之複合頂部結構,例如太陽能電 池。 依照本發明之解決方式,其目的在於以一層堆疊 201032337 (stack)來取代背面玻璃及/或封裝層之至少一者,其中層 堆疊係藉由氣相沈積來沈積。較佳地,層堆疊係被沈積 為至少一層包括類鑽碳(DLC)、氧化矽(SiOx)、氮化矽 (SiNy)、氮氧化矽(SiOxNy)、無晶四面體碳(ta-C)或上述 材料之組合層。 為此目的,習知技術為例如藉由電漿輔助真空沈積 製程之類鑽碳層或無晶四面體碳之沈積。此等製程一般 係在低於10_4hPa’最好為低於l〇-5hPa壓力之真空條件 下處理。最後於如氫之附帶氣體以及如氬之非活性氣體 中被稀釋之諸如乙炔等碳供給氣體,係依照習知之 CVD、PVD或PECVD之原理而被使用在真空沈積設備 中。 上述發明層/層堆疊之適用性並不侷限於如玻璃或 陶瓷之堅硬材料,其對於如塑膠、箔片或金屬片之撓性 基板也是有用的。依照本發明之層/層堆疊可以現今已使 用之PECVD設備來沈積於太陽能電池製品中,藉以容 許於設備處理及維持下協同作用。 本發明提供一種封裝及保護方法以及光電裝置(較 佳為太陽能電池及/或太陽能面板)之各別層堆疊。 第5圖係顯示依照本發明之封裝層19與附加保護 2〇之此沈積結果。於單一步驟真空沈積製程中,至少 者’較佳為一組多重無機層(至少為氧化 矽(SiNy)、氮氧化矽(Si〇xNy)之一)之 (X)氮‘ 2〇(其包括無機層’最好為類鑽碳饥係'接在保護 及/或無晶四面 201032337 碳(ta-C))之沈積後,以作為無機層之沈積步驟的延續或 分別作為在各室中所執行之進一步真空沈積製程。 第5圖進一步顯示前面玻璃基板1上之薄膜太陽能 電池15,係藉由多重無機層19之堆疊,加上保護層20 於封裝層19之頂部上來覆蓋。 第6圖係顯示設計為多重無機層25之堆疊的封裝層 之更詳細的結構。然而,由於製造程序偶有針孔缺陷23 及結合(incorporated)粒子24,故顯示所沈積之無機層之 ^ 堆疊。藉由堆疊數層,堆疊25之每一層獨自遮蔽免受環 境影響,並明顯增加缺陷間的平均擴散長度。 由於事實上多重分離層係水平沈積及呈現,故諸如 粒子24之缺陷與針孔缺陷23之影響係極小與侵襲平面 垂直。於統計上找到之諸如氧及蒸氣之多餘化學藥劑在 相同缺陷數量下,比起在較厚得多之單層障壁中更少越 過此些多重無機堆疊而直接存取路徑。此係為何越過此 ^ 多重無機堆疊較越過具有相同整體厚度之單層之擴散係 數較低得多。 如上所述,本發明之解決方式係基於二種類型之無 機薄層的組合。此些層之第一類型係用於封裝,且其第 二類型係用來保護以避免諸如刮傷或磨損之環境影響。 第一類型之層係藉由一較佳單步驟PECVD製程來沈 積,亦即,僅包括一裝載/卸載操作於製程室中。在單步 驟PECVD沈積製程期間,藉由實質及分離控制大氣環 境,例如,製程氣體NH3、H2、SiH4、N2,以及諸如氣 11 201032337 體壓力、製程電力與基板溫度之其它製程參數,沈積數 層無機材料之分離層。 因此,這些層不僅在其化學計量組成上,也可在其 所組成之元件上作嚴謹地改變。本發明之此些層提供比 先前技術更快速的封裝,並且可防止濕氣及氧氣對裝置 的損害,藉以改善裝置之壽命並降低封裝(亦即,積層) 所產生的費用。 第二層系統(較佳為DLC及/或ta-C)係用於避免諸如 刮傷、侵蝕、磨損等影境影響之保護。為了產生此層, 係將基板配置在真空沈積室中,並且將腔室抽真空至小 於 10·4 mbar,較佳為 10_5 mbar。接著,金剛石(adamantine) 碳層的應用自氣體相位(phase)藉由單一電漿輔助沈積破 之方式來發生。 範例1 :封裝層 為了實現高效封裝層,可使用表1中的參數。需注 意的是,若需要的話,實質上可減少沈積溫度,而不會 降低封裝層的功能性。程序係在具有含有前驅氣體(如矽 甲烷(SiH4))之矽與傳送氣體之氮(如氨(NH3))之平行板 PECVD反應器中發生。進一步之製程氣體包括氫及/或 如氬之非活性(inert)氣體。 表1 12 201032337 溫度 (°〇 標準 氣流 (seem) 標準 耽流 (seem) 標準 氣流 (seem) 標準 氣流 (seem) 壓力 (hPa) RF 功率 (kW) 步驟 時間 (min) 厚度 (nm) 沈積 率 (A/s) T sfflu nh3 n2 h2 P P T D D/t 120 80 600 500 750 0.7 700 2.35 100 6.45 120 80 600 500 500 0.7 650 2.46 100 6.01 120 80 600 500 750 0.7 700 2.35 100 6.45 120 80 600 500 500 0.7 650 2.46 100 6.01 於120°C下所沈積之多重氮化矽堆疊呈現5.66χ10·4 g/m2/day 之水蒸氣轉換率(water vapor transition rate, WVTR)。藉由調整製程參數,其可進一步將滲透率降低 至相同準位或甚至比175 °C製程之值還低,而不會損及 功能性。 在進一步之範例中’沈積溫度在可能之結果下已被 降低至80°C。在另一範例中’氮化矽(SiNx)及氮氧化矽 (SiOxNy)層係於彼此之頂部上交替沈積。 藉由謹慎設計單執行步驟PECVD沈積製程(單一裝 載/卸載步驟,因此係為一單一沈積執行步驟)’可建立 一簡單、經濟及非常有效之封裝層及環境障壁。因此, 可實現1.5xl(T4之平均水滲透值以及與9xl0-5 g/m2/day 一樣低之峰值。 此些層在可見範圍内係為透明的,其為大部分光電 13 201032337 裝置之結構的需求。 藉由PECVD所沈積之多重層實現良好的階梯覆 蓋,用以覆蓋太陽能薄膜電池之所有經圖案化之結構, 且保持此些層高障壁特性。利用PECVD單一執行多重 層製程,可較佳地覆蓋複合結構。 多重無機障壁之產生為可再生的,並因單一步驟製 程,故可提供高產量與低污染風險。此多重層提供非機 械上的不匹配以及化學上及機械上的穩定。 由於本發明之無機層一般在化學上十分地穩定(不 像先前技術之無機/有機堆疊),故可實現良好的耐蝕性。 範例2 :保護層 在額外的步驟中,接著藉由電漿CVD自氣體相位沈 積碳,以產生DLC層或金剛石碳層作為覆蓋層,在此情 況中,使用含有碳之氣體,較佳為滲碳(carburretted)之 水媒氣,特別為乙炔作為反應氣體。在進一步之實施例 中,除了含有碳之氣體外,用以沈積碳之反應氣體更可 含有氫及惰性(noble)氣體,較佳為氬或氙。在此情況下, 於製程室中之設定壓力為介於1 〇_4 mbar到10_2 hPa之 間。 藉由調整層厚度及材料的選擇,可實現反射能力的 增強。此導致所產生之光電伏特電池具有較高效率。 雖然本發明已於圖式及前述說明作詳細圖解及說 明,但此圖解及說明為考量中之圖解或例示且非限制性 的,本發明並不侷限於所揭示之實施例。在實行所主張 201032337 之發明時,對所揭示之實施例的其它改變可為所屬技術 項域中之熟悉此技術者在研究此些圖式、該揭示及隨附 之申請專利範圍後所瞭解及達成。在申請專利範圍中, 字詞”包括”不排除其它元件或步驟,並且不定冠詞” (a)或 一(an)’’並不排除複數。於彼此不同的附屬 項申請專利範圍中所詳載之特定量測,並不表示不會使 用這些S測之組合來帶來助盈。於此些申請專利範圍中 之任何參照符號不應被解釋為限制該範圍。 【圖式簡單說明】 第1圖係為光電伏特技術之主要類別之概觀; 第2圖係為傳統太陽能模組之一典型構造之示意圖; 第3a圖係顯示一典型晶形太陽能電池之結構; 第3b圖係說明一典型薄膜太陽能電池之結構; 第4圖係概要圖示薄膜光電伏特電池之封裝; 第5圖係為本發明之光電裝置之一實施例;以及 第6圖係為本發明之封裝層的結構之更詳細的視圖。 【主要元件符號說明】 1 :玻璃基板; 2 :太陽能電池; 3 :積層; 4:背面玻璃; 15 201032337 5 :鋁層; 6:吸收層; 7 : η 層; 8 :背面電極; 9 :頂部電極; 11 :透明導電氧化物前面接觸層; 12 :吸收層; 13 :背面接觸層; 15 :薄膜電池; 16 :塑膠箔; 19 :封裝層; 20 :保護層; 23 :針孔缺陷; 24 :粒子;以及 25 :多重無機層之堆疊。 16201032337 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of solar photovoltaic devices. In particular, a method for protecting the device against environmental influences such as wind, scratches, moisture, etc. is provided. [Prior Art] The influence of φ on the photovoltaic device such as wind, scratches, moisture, and/or a gas such as oxygen may cause a decrease in the performance and/or life of the device. All optoelectronic devices (the technology used to make them are independent) must be protected from the environment, especially from oxygen, water, and water vapor. In addition, such devices must be mechanically protected from scratches and must be mechanically stabilized to avoid device failure. A particular subgroup of optoelectronic devices is a solar cell and/or solar module, i.e., a panel of solar cells. Conventional solar cells use a bulky crucible sheet such as a wafer or ribbon as a carrier (i.e., a substrate), and as an active absorption layer, or by depositing a thin film structure on a glass substrate (which has It is manufactured with good optical properties and also a good environmental barrier. Most solar cells manufactured today on glass substrates are packaged with an additional glass with a foil therebetween. The foil is typically used as a lamination between the two glasses to ensure efficient packaging. However, the properties of the glass itself are hard and bulky, and the glass is relatively expensive. In addition, the packaging of solar cells between two glass 3 201032337 increases manufacturing costs. By using only ', plastic' foil, it can achieve the advantages of cost saving and light weight. However, due to the following facts, the life of the solar cell cannot be satisfied (about 2 years): Plastic foil for oxygen The magnetic permeability of water and water vapor is relatively high. In addition, the foil is not enough to withstand the environmental effects for a long time in a mechanically stable manner. Moreover, the surface of the foil is scratchable, resulting in The foil has an increased magnetic permeability to oxygen and water. For the traditional packaging of solar cells, the solar cells are covered with a ', plastic' foil and a glass substrate on top of the foil. The solar module is then heated at a high temperature to cause the foil to be between the two glasses, melting ( Melting)''. This process causes the solar cell to be covered by the film' and adheres to the two glass. This package (ie, laminate) process is expensive and difficult to accomplish because it requires several different process steps and Two glass and one foil are needed. In summary, the packaging/layering of solar cells generally used has its cost disadvantages, especially in the sealing of large thin film solar panels. In addition, since they must be squeezed each other Two glasses to encapsulate such batteries have the risk of reducing package/layer production. Therefore, there is a need for new and improved methods of protecting photovoltaic devices, particularly solar cells and/or solar modules. The object of the present invention is to provide a new method for protecting photovoltaic devices, 201032337, and to improve the protection in this manner. Electrical device. This object is achieved by the optoelectronic device according to claim 1 and in accordance with the method of claim 4 of the patent application. The helpful embodiments are specified in the scope of the 1 application. A first aspect of the invention relates to an optoelectronic device comprising a substrate, a photovoltaic layer, and two different types of inorganic thin layers, wherein the photovoltaic layer is disposed on the substrate, and wherein the first inorganic layer is deposited on the photovoltaic layer The first encapsulating layer 'and the first inorganic layer is a tantalum protective layer deposited on the first inorganic layer. '' The solution of the present invention is based on the combination of two types of inorganic thin layers. The first type of these layers Used for packaging, while the second type is protected against environmental influences such as scratches and/or abrasion. The first type of layer is deposited in a preferred single-step PECVD process, ie, only Includes a loading/unloading operation in the process chamber. During the single-step pECVD deposition process, the atmosphere is controlled by substantial and separate separation, for example, process gases NH3, H2, SiH4, A' and such as gas pressure, The process power and the other process parameters of the substrate temperature, depositing a plurality of inorganic material separation layers. The photovoltaic device is preferably an environmental sensing photoelectric device. More preferably, the photovoltaic device is selected from the group consisting of solar devices, solar modules, organic photovoltaics Device, organic optoelectronic device, such as organic light-emitting diode (OLED) in the form of small molecules or polymers, organic thin film transistors, organic electrochromic displays, electrophoretic inks, and LCDs, preferably for use in watches and/or mobile phones The group of LCDs. The best optoelectronic device is solar device, 5 201032337 is preferably a panel based on thin film solar cells and / or solar module solar cells. 1 double ^ substrate can be glass, plastic, ceramic, metal It can be made of a foil, for example made of plastic or sheet metal. The photovoltaic layer can be any photovoltaic layer known to those skilled in the art. For example, in the case of OLEDs, the photovoltaic layer can include electrodes having an organic semiconductor layer in which an organic semiconductor layer is interposed between the two electrodes. These electrodes are typically metal cathodes while the other is typically a transparent anode. Solar devices including solar cells are known as photovoltaic layers in the art. Technology with various solar devices; some are based on crystalline germanium, so-called bulk tantalum solar devices can be single twinned wafers or polycrystalline germanium or ribbon ribbons based on inorganic thin solar cells, such as azurite, microcrystalline Dream, cadmium telluride (CdTe), cadmium_indium _ (di) selenide (CIS) / cadmium _ indium _ gallium _ (two) selenide (CIGS). Another type of solar cell is an organic solar cell. In one embodiment, the number of inorganic layers is ^2, more preferably sio. In another embodiment, each layer has a thickness of gi 5 nm and $ 1000 nm, preferably 2 15 nm and g 1 OO nm. The upper limit can be adjusted to suit specific needs. The first inorganic layer is used as an encapsulating layer, i.e., a barrier layer, which protects the photovoltaic layer from environmental influences, preferably from moisture, water, water vapor, and gases such as oxygen. Therefore, the first inorganic layer can be made of any material suitable as an encapsulating layer. In a preferred embodiment, the encapsulation layer, together with the substrate, completely seals and/or covers the photovoltaic layer. In one embodiment, the first inorganic layer comprises one or more yttrium oxide 201032337 (SixOy, 1 <= χ <=2 ' l <= y <= 3), one or more nitrides (SixNy, 1 < = χ <=3, l <= y <= 4) and / or one or more nitrous oxide (SiON) 〇 Preferably, the first organic layer comprises nitrite. In another embodiment, the first inorganic layer comprises a plurality of separate layers, i.e., a stack of several layers. These separation layers can be varied not only in their stoechiometric composition, but also in the components they constitute. Preferably, the first inorganic layer comprises a plurality of layers of nitride nitride. In a further embodiment, the first inorganic layer is deposited on the photovoltaic layer, preferably by vapor deposition techniques, more preferably by physical vapor deposition (PVD), chemical vapor deposition (CVD), And the best is by plasma enhanced CVD (PECVD). The second inorganic layer serves as a protective layer, i.e., the layer mechanically protects the photovoltaic device from scratches and abrasions, and mechanically stabilizes the device to avoid device cracking. Therefore, the second inorganic layer can be made of any material suitable as a protective layer. In an embodiment, the second inorganic layer comprises diamond-like carbon (DLC) and/or amorphous tetrahedral carbon (ta-C). Preferably, the first organic layer comprises DLC. In another embodiment, the second inorganic layer also includes a plurality of separate layers, i.e., a stack of several layers. In a further embodiment, the second inorganic layer is deposited on the photovoltaic layer, preferably by vapor deposition techniques, more preferably by physical vapor deposition (PVD), chemical vapor deposition (CVD). And the best is by plasma enhanced CVD (PECVD). 201032337 In one aspect, the invention relates to the manufacture of an optoelectronic device, t勹=疋 for a manufacturing step of a photovoltaic device having a protective function: a) providing a photovoltaic layer deposited on a substrate; = a layer of inorganic encapsulation layer; and c) depositing at least a layer of inorganic non-intermediate 'step b) of the inorganic encapsulation layer and / or step c) inorganic retention comprising a plurality of separation layers, that is, the above-mentioned layer stack 4. In the alternative, the inorganic encapsulating layer of the 'Step 15) includes the above-described materials, which preferably include a plurality of nitrides and/or one or more nitrogen oxynitrides. The 戍 戍 includes the inorganic protective layer carbon of step c) in a further embodiment. The material of the material is preferably iron-like carbon and/or amorphous tetrahedron. The layer stack of the second layer can be deposited by a single or multiple deposition process: ΐ: ': 'The deposition of the layer stack of the two inorganic layers can be carried out, preferably in the single-two embodiment, the second type of layer It is then deposited in the deposition chamber of (4) without interrupting the vacuum. In a further aspect, the invention is directed to a photovoltaic device produced by the method of the first aspect. [Embodiment] Further, these and other aspects can be referred to the following embodiments. 201032337. Fig. 1 shows an overview of the main categories of optoelectronic technology, especially the photovoltaic technology, and the present invention can be applied to photovoltaic volts. Technical field. Fig. 2 is a schematic view showing a typical configuration of a conventional thin film solar module on a glass substrate 1 which is a front glass. In order to protect the photovoltaic device - in this case, the solar cell 2 itself has electrodes - to avoid environmental influences - it is necessary to cover the laminate 3 of the entire device and the back glass 4 on the top thereof. Fig. 3a is a cross section showing the structure of a conventional crystal form (cryStanine) solar cell including a back electrode 8, an aluminum layer 5, an absorbing layer (i.e., p layer) 6, an η layer 7, and a top electrode 3b. A solar cell having a glass substrate 1, a transparent conductive oxide (Tc) front contact layer 11, a thin film absorbing layer 12 (for example, a lanthanide), and a back contact layer 13. Figure 4 is a schematic diagram showing the packaging of a conventional thin film photovoltaic cell. Here, the thin film battery 15 is packaged between the front glass substrate 1, the back glass 4 and the plastic (e.g., polymer) foil μ for encapsulating the battery between the two glasses. All thin layers, TCO 11, back contact 13 and absorber layer 12 need to be protected from oxygen and vapor diffusion, and the market requires solar modules to be resistant to injury. In addition, the package_ie, the package foil/layer and the back glass; plus the so-called lamination step - requires mechanical and chemical stability, the solar cell must be hermetically sealed during application of the film and must be tightly filled A composite top structure, such as a solar cell. In accordance with a solution of the present invention, the object is to replace at least one of the back glass and/or the encapsulation layer by a layer stack 201032337 (stack), wherein the layer stack is deposited by vapor deposition. Preferably, the layer stack is deposited such that at least one layer comprises diamond-like carbon (DLC), yttrium oxide (SiOx), tantalum nitride (SiNy), lanthanum oxynitride (SiOxNy), amorphous tetrahedral carbon (ta-C). Or a combination of the above materials. For this purpose, conventional techniques are, for example, deposition of a carbon-impregnated layer or amorphous tetrahedral carbon by a plasma-assisted vacuum deposition process. These processes are generally treated under vacuum conditions below 10_4 hPa', preferably below 1 〇-5 hPa. Finally, a carbon supply gas such as acetylene diluted in an accompanying gas such as hydrogen and an inert gas such as argon is used in a vacuum deposition apparatus in accordance with the principles of conventional CVD, PVD or PECVD. The applicability of the above described layer/layer stack is not limited to rigid materials such as glass or ceramics, which are also useful for flexible substrates such as plastics, foils or sheet metal. The layer/layer stack in accordance with the present invention can be deposited in solar cell products using PECVD equipment that is now in use to allow for device handling and maintenance synergy. The present invention provides a package and protection method and individual layer stacks of optoelectronic devices, preferably solar cells and/or solar panels. Figure 5 shows the results of this deposition of the encapsulation layer 19 and the additional protection 2 in accordance with the present invention. In a single-step vacuum deposition process, at least one is preferably a set of multiple inorganic layers (at least one of cerium oxide (SiNy), one of cerium oxynitride (Si〇xNy)) (X) nitrogen '2〇 (which includes The inorganic layer 'is preferably a diamond-like carbon hunger' after deposition of the protective and/or amorphous four-sided 201032337 carbon (ta-C), as a continuation of the deposition step of the inorganic layer or as a separate chamber Perform a further vacuum deposition process. Figure 5 further shows that the thin film solar cell 15 on the front glass substrate 1 is covered by a stack of multiple inorganic layers 19, plus a protective layer 20 on top of the encapsulation layer 19. Figure 6 shows a more detailed structure of an encapsulation layer designed as a stack of multiple inorganic layers 25. However, since the manufacturing process occasionally has pinhole defects 23 and incorporated particles 24, a stack of deposited inorganic layers is shown. By stacking several layers, each of the layers 25 is individually shielded from the environment and significantly increases the average spread length between defects. Due to the fact that multiple separation layers are deposited and presented horizontally, the effects of defects such as particles 24 and pinhole defects 23 are minimal and perpendicular to the invasion plane. The excess chemical, such as oxygen and vapor, found statistically, has a direct access path over the multiple inorganic stacks in the same number of defects compared to the much thicker single layer barrier. Why does this line cross this ^ The multi-inorganic stack has a much lower diffusion coefficient than a single layer with the same overall thickness. As described above, the solution of the present invention is based on a combination of two types of inorganic thin layers. The first type of such layers is used for packaging, and the second type is used to protect against environmental influences such as scratches or abrasion. The first type of layer is deposited by a preferred one-step PECVD process, i.e., only one load/unload operation is included in the process chamber. During the single-step PECVD deposition process, several layers are deposited by substantial and separate control of the atmospheric environment, such as process gases NH3, H2, SiH4, N2, and other process parameters such as gas pressure, process power, and substrate temperature. A separate layer of inorganic material. Therefore, these layers can be changed rigorously not only in their stoichiometric composition but also in the components they constitute. Such layers of the present invention provide a faster package than prior art and prevent moisture and oxygen damage to the device, thereby improving the life of the device and reducing the cost of packaging (i.e., buildup). The second layer system (preferably DLC and/or ta-C) is used to protect against the effects of shadows such as scratches, erosion, and abrasion. To create this layer, the substrate is placed in a vacuum deposition chamber and the chamber is evacuated to less than 10·4 mbar, preferably 10_5 mbar. Next, the application of the diamond (adamantine) carbon layer occurs from the gas phase by means of a single plasma-assisted deposition. Example 1: Encapsulation Layer To achieve an efficient encapsulation layer, the parameters in Table 1 can be used. It should be noted that if necessary, the deposition temperature can be substantially reduced without degrading the functionality of the encapsulation layer. The procedure occurs in a parallel plate PECVD reactor with a helium containing a precursor gas such as helium methane (SiH4) and a nitrogen transporting gas such as ammonia (NH3). Further process gases include hydrogen and/or inert gases such as argon. Table 1 12 201032337 Temperature (°〇 standard airflow (seem) Standard turbulence (seem) Standard airflow (seem) Standard airflow (seem) Pressure (hPa) RF power (kW) Step time (min) Thickness (nm) Deposition rate ( A/s) T sfflu nh3 n2 h2 PPTDD/t 120 80 600 500 750 0.7 700 2.35 100 6.45 120 80 600 500 500 0.7 650 2.46 100 6.01 120 80 600 500 750 0.7 700 2.35 100 6.45 120 80 600 500 500 0.7 650 2.46 100 6.01 The multiple tantalum nitride stack deposited at 120 ° C exhibits a water vapor transition rate (WVTR) of 5.66 χ 10 · 4 g / m 2 / day. By adjusting the process parameters, it can further penetrate The rate is reduced to the same level or even lower than the value of the 175 °C process without compromising functionality. In a further example, the deposition temperature has been reduced to 80 ° C under the possible results. In the example, 'SiNx and SiOxNy layers are alternately deposited on top of each other. By carefully designing a single-step PECVD deposition process (single loading/unloading step, it is performed as a single deposition) Step) 'can create one Single, economical and very effective encapsulation and environmental barriers. Therefore, 1.5xl (the average water permeation value of T4 and peaks as low as 9xl0-5 g/m2/day) can be achieved. These layers are visible in the visible range. Transparent, which is a requirement for the structure of most optoelectronic 13 201032337 devices. Good step coverage is achieved by multiple layers deposited by PECVD to cover all patterned structures of solar thin film cells while maintaining these layers Barrier properties: PECVD can be used to perform multiple layers of processes to better cover composite structures. The generation of multiple inorganic barriers is reproducible and provides high yield and low risk of contamination due to a single-step process. Mechanical mismatch and chemical and mechanical stability. Since the inorganic layer of the present invention is generally chemically very stable (unlike the inorganic/organic stack of the prior art), good corrosion resistance can be achieved. The protective layer is in an additional step, followed by plasma CVD to deposit carbon from the gas phase to produce a DLC layer or a diamond carbon layer as a cover layer, in which case Using the carbon-containing gas, preferably carburizing (carburretted) of the water-borne gas, particularly acetylene as a reaction gas. In a further embodiment, in addition to the carbon-containing gas, the reaction gas for depositing carbon may further contain hydrogen and a noble gas, preferably argon or helium. In this case, the set pressure in the process chamber is between 1 〇 4 mbar and 10 _2 hPa. Enhancement of reflectivity can be achieved by adjusting layer thickness and material selection. This results in a higher efficiency of the photovoltaic cells produced. The present invention has been illustrated and described with reference to the embodiments of the embodiments of the invention Other variations to the disclosed embodiments may be apparent to those skilled in the art in the field of the inventions, the disclosure and the accompanying claims. Achieved. In the scope of the patent application, the word "comprising" does not exclude other elements or steps, and the indefinite article " (a) or an "an" does not exclude the plural. The specific measurement does not mean that the combination of these S measurements will not be used to bring the profit. Any reference signs in the scope of the patent application should not be construed as limiting the scope. The figure is an overview of the main categories of photovoltaic technology; Figure 2 is a schematic diagram of a typical structure of a conventional solar module; Figure 3a shows the structure of a typical crystalline solar cell; Figure 3b shows a typical thin film solar The structure of the battery; Fig. 4 is a schematic diagram showing the package of the thin film photovoltaic cell; Fig. 5 is an embodiment of the photovoltaic device of the present invention; and Fig. 6 is a more detailed structure of the package layer of the present invention. [Main component symbol description] 1 : glass substrate; 2: solar cell; 3: laminate; 4: back glass; 15 201032337 5: aluminum layer; 6: absorption layer; 7: η layer; 9: top electrode; 11: transparent conductive oxide front contact layer; 12: absorption layer; 13: back contact layer; 15: thin film battery; 16: plastic foil; 19: encapsulation layer; 20: protective layer; Pinhole defects; 24: particles; and 25: stacking of multiple inorganic layers.

Claims (1)

201032337 七、申請專利範圓: 1. 一種具保護功能之光電裝置,係包括一基板一光電 層、一帛一無機層以及一第二無機&,且該第一無機 層和該第二無機層係為不同型: 其中該光電層係配置在該基板上;以及 其中該第一無機層為一封裝層(19),係配置於該光電 層上,以及該第二無機層為一保護層(2〇),係配置於 該第一無機層上。 2. 如申請專利範圍第i項之光電裝置,其中該第一無機 封裝層包括數層獨立包括一或多個氧化矽、一或多個 氮化矽、及/或一或多個氮氧化矽之分離層。 3. 如申請專利範圍第i項之光電裝置,其中該第二無機 保護層包括類鑽碳及/或無晶四面體碳。 ❹ 4. 一種具保護功能之光電裝置之製造方法,包括下列 驟: a) 提供一沈積於一基板上之光電層; b) 至少一層無機封裝層;以及 c) 至少一層無機保護層。 5. 如申請專利範圍第4項之製造料,其中該步驟咐 無機層包括數層獨立包括一或多個氧化矽、一或多個 氮化秒及/或一或多個氮氧化石夕之分離層。 6·如申請專利範圍第4項之製造方法,其中該步驟。)之 17 201032337 無機層包括類鑽碳及/或無晶四面體碳。 7.如申請專利範圍第5或6項之製造方法,其中該步驟 b)及/或c)中之沈積係以單一氣相沈積製程來實行。 18201032337 VII. Patent application: 1. A photovoltaic device with a protective function, comprising a substrate, a photovoltaic layer, an inorganic layer, and a second inorganic layer, and the first inorganic layer and the second inorganic layer The layer is of a different type: wherein the photovoltaic layer is disposed on the substrate; and wherein the first inorganic layer is an encapsulation layer (19) disposed on the photovoltaic layer, and the second inorganic layer is a protective layer (2〇) is disposed on the first inorganic layer. 2. The photovoltaic device of claim i, wherein the first inorganic encapsulating layer comprises a plurality of layers independently comprising one or more hafnium oxide, one or more tantalum nitrides, and/or one or more niobium oxynitrides. Separation layer. 3. The photovoltaic device of claim i, wherein the second inorganic protective layer comprises diamond-like carbon and/or amorphous tetrahedral carbon. ❹ 4. A method of fabricating a protective optoelectronic device comprising the steps of: a) providing a photovoltaic layer deposited on a substrate; b) at least one inorganic encapsulation layer; and c) at least one inorganic protective layer. 5. The manufacturing material of claim 4, wherein the step of the inorganic layer comprises a plurality of layers independently comprising one or more cerium oxide, one or more nitriding seconds and/or one or more nitrogen oxynitrides. Separation layer. 6. The manufacturing method of claim 4, wherein the step is. 17 201032337 The inorganic layer includes diamond-like carbon and/or amorphous tetrahedral carbon. 7. The method of manufacture of claim 5, wherein the deposition in step b) and/or c) is carried out in a single vapor deposition process. 18
TW98105190A 2009-02-18 2009-02-18 Protection of optoelectronic devices and method thereof TW201032337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98105190A TW201032337A (en) 2009-02-18 2009-02-18 Protection of optoelectronic devices and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98105190A TW201032337A (en) 2009-02-18 2009-02-18 Protection of optoelectronic devices and method thereof

Publications (1)

Publication Number Publication Date
TW201032337A true TW201032337A (en) 2010-09-01

Family

ID=44854859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98105190A TW201032337A (en) 2009-02-18 2009-02-18 Protection of optoelectronic devices and method thereof

Country Status (1)

Country Link
TW (1) TW201032337A (en)

Similar Documents

Publication Publication Date Title
US10745795B2 (en) Inorganic graded barrier film and methods for their manufacture
US7492091B2 (en) Diffusion barrier layer and method for manufacturing a diffusion barrier layer
KR101772135B1 (en) Method for deposition of high-performance coatings and encapsulated electronic devices
US8389389B2 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
EP1629543B1 (en) Barrier films for flexible polymer substrates fabricated by atomic layer deposition
KR101319947B1 (en) Organic electronic device, organic electronic device manufacturing method, organic electronic device manufacturing apparatus, substrate processing system, protection film structure and storage medium with control program stored therein
US20110097533A1 (en) Thin film encapsulation method
JP5480897B2 (en) Solar cell
US20120145240A1 (en) Barrier films for thin-film photovoltaic cells
TW200535262A (en) Method and apparatus of depositing low temperature inorganic films on plastic substrates
JP2004063304A (en) Manufacturing method of protection membrane and organic el element
US20150027531A1 (en) Silicon-containing film and method for forming silicon-containing film
WO2011017479A2 (en) Barrier-coated thin-film photovoltaic cells
JPWO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
JP2014140043A (en) Photoelectric conversion device and method of manufacturing the same
WO2009098241A1 (en) Encapsulation of optoelectronic devices
TW201032337A (en) Protection of optoelectronic devices and method thereof
KR101610006B1 (en) Thin-film encapsulation for organic photonic and electronic devices and fabrication process thereof
US20230197870A1 (en) Photovoltaic module provided with a h2o gas permeation barrier layer
TWI784672B (en) Packaging structure for flexible organic solar cell module and packaging method thereof
JP2013004550A (en) Solare cell module
CN114695701A (en) Packaging structure, photoelectric device and preparation method thereof
KR20210102298A (en) Stabilization of laser structured organic photovoltaic cells
Moro et al. 3.0 led encapsulation
Han et al. Simple Encapsulation Method for Flexible Perovskite Solar Cells with Transparent Electrode‐Integrated Barrier Films