TW201030792A - Ion source cleaning in semiconductor processing systems - Google Patents

Ion source cleaning in semiconductor processing systems Download PDF

Info

Publication number
TW201030792A
TW201030792A TW098127518A TW98127518A TW201030792A TW 201030792 A TW201030792 A TW 201030792A TW 098127518 A TW098127518 A TW 098127518A TW 98127518 A TW98127518 A TW 98127518A TW 201030792 A TW201030792 A TW 201030792A
Authority
TW
Taiwan
Prior art keywords
cleaning
cathode
gas
source
ion
Prior art date
Application number
TW098127518A
Other languages
Chinese (zh)
Other versions
TWI463516B (en
Inventor
Joseph D Sweeney
Sharad N Yedave
Oleg Byl
Robert Kaim
David Eldridge
Lin Feng
Steven E Bishop
W Karl Olander
Ying Tang
Original Assignee
Advanced Tech Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2009/033754 external-priority patent/WO2009102762A2/en
Application filed by Advanced Tech Materials filed Critical Advanced Tech Materials
Publication of TW201030792A publication Critical patent/TW201030792A/en
Application granted granted Critical
Publication of TWI463516B publication Critical patent/TWI463516B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0209Avoiding or diminishing effects of eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Cleaning of an ion implantation system or components thereof, utilizing temperature and/or a reactive cleaning reagent enabling growth/etching of the cathode in an indirectly heated cathode for an ion implantation system by monitoring the cathode bias power and taking corrective action depending upon compared values to etch or regrow the cathode.

Description

201030792 六、發明說明: 【發明所屬之技術領域】 本發明係關於係關於半導體處理系統,特別是離子植入 系統之部件上的材料沈積之監測、控制以及清洗。 【先前技術】 離子植入被用於積體電路的製造以便精確地向半導體晶 圓中引入受控制量的摻雜雜質並且是微電子/半導體生產 中之重要製程。在此類植入系統中,一離子源使一所希望 參的摻雜元素氣體電離成離子並且該等離子以具有所希望能 量的一離子束的形式從源中萃取。萃取係藉由施加一高的 電壓跨過合適成型的萃取電極而實現,該等萃取電極將多 個孔合併成了萃取束的通道。離子束然後在工件的表面, 例如一半導體晶圓上進行定向,以便向該工件植入摻雜元 素。該束中的離子穿透該工件的表面來形成具有所希望的 導電率之區域。 • 幾種類型的離子源一般用於商業的離子植入系統中,包 括:使用熱電電極並且藉由一電弧供電之—_以及 Bernas類型、使用一磁控管的微波型、間接加熱的陰極 源、以及RF電衆源,所有該等離子源通常在一真空中運 行。離子源藉由向填充了摻雜氣體(一般稱為「原料氣 體」)的-真空室中引入電子來產生離子。電子與氣體中 之摻雜原子及分子的碰撞引起了由正的及負的摻雜離子組 、電離電漿之產生。具有-負的或正的偏壓的萃取電極 別允許該正的或負的離子作為一準直離子束通過孔並 142599.doc 201030792 且從離子源中出來,該離子束向著工件被加速。原料氣體 包括但不限於bf3、b10h14、Bl8H22、PH3、AsH3、PF5、201030792 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the monitoring, control, and cleaning of materials deposited on components of semiconductor processing systems, particularly ion implantation systems. [Prior Art] Ion implantation is used in the fabrication of integrated circuits to accurately introduce a controlled amount of dopant impurities into a semiconductor wafer and is an important process in microelectronic/semiconductor production. In such implant systems, an ion source ionizes a doped elemental gas of a desired parameter into an ion and the plasma is extracted from the source in the form of an ion beam having a desired energy. Extraction is achieved by applying a high voltage across a suitably shaped extraction electrode that combines multiple wells into a channel for the extraction beam. The ion beam is then oriented on a surface of the workpiece, such as a semiconductor wafer, to implant doped elements into the workpiece. The ions in the beam penetrate the surface of the workpiece to form a region of the desired conductivity. • Several types of ion sources are commonly used in commercial ion implantation systems, including: using thermoelectric electrodes and powered by an arc - and Bernas type, microwave type using a magnetron, indirectly heated cathode source And RF sources, all of which are typically operated in a vacuum. The ion source generates ions by introducing electrons into a vacuum chamber filled with a dopant gas (generally referred to as "feed gas"). The collision of electrons with dopant atoms and molecules in the gas causes the generation of positive and negative doped ion groups and ionized plasma. The extraction electrode with a negative or positive bias does not allow the positive or negative ion to pass through the aperture as a collimated ion beam and exits the ion source, which is accelerated toward the workpiece. Raw material gases include but are not limited to bf3, b10h14, Bl8H22, PH3, AsH3, PF5,

AsF5、H2Se、N2、Ar、GeF4、SiF4、〇2、H2、以及 GeH4。 目前,在現有技術之器件的製造中達心㈠固植入步 驟。增加晶圓大小、減小臨界尺寸、以及生長電路的複雜 性正在提出對離子植入工具就争林认+ > 丹就更好的處理控制、低能高束 電流的釋放、以及平均盔故暗 J ·,、、玟障時間(MTBF)減小而言更多 的要求。 最需要維護的離子植入機工M A t 揭工具的部件包括:離子源,它 必須在大約100到300小時的;重彡_。士 Ba 于的運仃時間之後進行檢修(取決 於其運行條件);萃取電極以βp 电蚀以及咼電壓絕緣子,它們在運 行幾百小時之後通常需要清爷.触 戈月,先,離子植入真空系統的前級 管道以及真空泵,包括離早、%、a β 離子源渴輪泵及其關聯的前級管 道。另外,離子源之各種杜,& ," 裡。卩件(绪如絲極、陰極及其類似 者)在運行後可能需要更換。 在理想的情況下’所有的盾极八7 a ’的原枓分子均會被電離並且萃 取,但是實際上會發生一定县认広、 疋1的原料分解,這導致了在離 子源區域上的沈積以及污毕 永舉例而言’磷的殘餘物(例 如由使用諸如填化氫之^粗备轴β 士 '、枓乳體付來)迅速地沈積在該離 子源區域的表面上。該殘終队7 士必 殘餘物可在離子源中之低電壓絕緣 子上形成’引起電短路, t 乂 了月b中斷產生熱電子所需要的 電弧。這種現象通常稱為「强„ _ , 馬源閃爍(glitching)」,並且它係 離子束不穩定性的重要因音θ U素並且可能最終引起該源的過 早損壞。殘餘物還在離子插 > 于植入機的咼電壓部件(例如該源 142599.doc 201030792 的絕緣子或萃取電極的表面)上形成,引起高能的高電壓 發電花。此類電花係束流不穩定性的另一因素,並且由該 等電花所釋放的能量可以損壞靈敏的電子部件,導致增加 的裝備故障以及差的MTBF。 對於使用Sb2〇3作為固體摻雜材料的銻(Sb+)的植入,會 發生另一常見的問題,這可以藉由甚至僅在Sb+植入幾小 時之後"IL入硼(B)而惡化。該蝴束電流可以使該明顯受損 的離子源的性能及壽命顯著地變壞。此類性能退化的原因 歸因於在源的室及其部件上過度沈積的Sbe因為產量由於 更頻繁的預防性維護或更少的束電流而降低了,所以離子 源的故障顯著地降低了植入機的生產帛。由於Sb的植入廣 泛地用於類似的雙極器件中,並且還用作對於MOS(金屬 氧化物半導體)器件的淺接面形成的n_型摻雜,因此本領域 有發展一方法咕需要,即當Sb+用作摻雜劑時,特別是讥 植入之後轉換成科,該方法可以從源的㈣及其部件上 移除沈積的Sb。 此外’摻雜原子(例如B、Ge、Si、 Si、P及As)可沈積在離子AsF5, H2Se, N2, Ar, GeF4, SiF4, 〇2, H2, and GeH4. At present, in the manufacture of devices of the prior art, the (I) solid implantation step is achieved. Increasing wafer size, reducing critical dimensions, and the complexity of growing circuits are being proposed for ion implantation tools. > Dan is better handling control, low energy high beam current release, and average helmet darkness More requirements for J · , , and time to failure (MTBF) reduction. The most demanding ion implanter M A t removes the components of the tool including: the ion source, which must be in the range of about 100 to 300 hours; Ba is repaired after the operation time (depending on its operating conditions); the extraction electrode is βp galvanic and 咼 voltage insulators, which usually require Qing dynasty after several hundred hours of operation. Touch Moon, first, ion implantation The pre-stage piping of the vacuum system and the vacuum pump, including the early, %, a beta ion source thirteen round pump and its associated foreline. In addition, the ion source is a variety of Du, &, ". Parts (such as filaments, cathodes, and the like) may need to be replaced after operation. In the ideal case, all the original scorpion molecules of the shield octapole will be ionized and extracted, but in fact, the decomposition of the raw materials of a certain county and 疋1 will occur, which results in the ion source region. For example, the deposit of phosphorus and the residue of phosphorus (for example, by using, for example, a filler such as a hydrogen-filled shaft, a sputum emulsion) are rapidly deposited on the surface of the ion source region. The final residue of the squad can be formed on the low voltage insulator in the ion source to cause an electrical short circuit, and the arc required to interrupt the generation of the hot electrons. This phenomenon is commonly referred to as "strong _ _ , glitching" and it is an important factor of ion beam instability and may eventually cause premature failure of the source. The residue is also formed on the enthalpy voltage component of the implanter (e.g., the surface of the insulator or extraction electrode of the source 142599.doc 201030792), causing high energy, high voltage power generation. This type of electro-flowering is another factor in beam instability, and the energy released by the electro-acoustic can damage sensitive electronic components, resulting in increased equipment failure and poor MTBF. For the implantation of strontium (Sb+) using Sb2〇3 as a solid doping material, another common problem occurs, which can be exacerbated by even “IL” into boron (B) even after Sb+ implantation for several hours. . The tuft current can significantly degrade the performance and lifetime of the significantly damaged ion source. The reason for such performance degradation is due to the excessive deposition of Sbe on the source chamber and its components because the yield is reduced due to more frequent preventive maintenance or less beam current, so the ion source failure significantly reduces the implant The production of the machine is defective. Since the implantation of Sb is widely used in similar bipolar devices, and also serves as n-type doping for shallow junction formation of MOS (Metal Oxide Semiconductor) devices, there is a need in the art to develop a method. That is, when Sb+ is used as a dopant, especially after the implantation of the ruthenium into a family, the method can remove the deposited Sb from the source (d) and its components. In addition, 'doped atoms (such as B, Ge, Si, Si, P, and As) can be deposited on ions.

氣體清洗劑來如願地原位清洗該等沈積 142599.doc 201030792 物。 在離子源故障的另-原因中,各種材料(例如鹤,^可 以在長期的離子植入過程中累積在陰極上。一旦該等材料 累積達到-臨界程度,該陰極電源不再能保持足以滿足束 電流設定點的溫度。這引起離子束電流的損失,需要更換 離子源。所產生的離子源性能退化及壽命縮短降低了離子 植入機系統的生產率。 而離子源故障的另-原因係陰極材料的㈣(或減鑛)。 舉例而言,來自陰極的金屬材料(例如冒、1^〇等)被電弧室 中電漿中的離子濺鍍。因為濺鍍受到電漿中的最重的離子 的控制,所以隨著離子質量增加,濺鍍效果可能變壞。事 實上,連續的材料的濺鍍使該陰極「變薄」,最後導致在 陰極上形成一孔洞(「陰極穿通」)。結果係離子源的性能 及壽命大大降低。因此本領域繼續尋求能保持材料在陰極 上的累積及㈣之間的平衡的方法來延長離子源的壽命。 其他殘餘物可能由該離子源材料與該離子植入系統的部 件之間的反應產生’這取決於系統内的條件。此類反應可 以導致殘餘物沈積在系統的額外部件上。舉例而言,鎢鬚 晶可形成於電弧室萃取孔上,從而導致束不均句性問題i 沈積物在離子源的元件上很常見,例如絲極以及反㈣ 電極。此類内部沈積物總體上是由電弧室材料構成的,並 且最常見的是當具有一氟化物源的原料的高電漿電源與由 嫣或翻構成的一電弧室結合而操作時。儘管使用非含函化 物源的材料的離子植入系統的離子源的預期壽命一般是大 142599.doc 201030792 約100小時到300小時,而有些含齒化物材料(例如㈣4)由 於在離子源操作中内部沈積物的有害影響,離子源的壽命 可以低至10小時到50小時。 除了由於在該離子植入機中的殘餘物引起的操作困難之 • 夕卜由於為了清洗而移除部件時散發出有毒或腐蝕蒸氣, €存在重大的人員安全問題。安全問題會在殘餘物存在的 任何地方發生]旦特別受關注的是在離子源區_,因為離 子源係離子植人機最經常維護的部件。為了最小化停機時 間,經常在顯著地高於室溫的溫度下將受污染的離子源從 植入機中移除,這增加了蒸氣的散發並且加深了安全問 題0 處理以上困難的已有方法已包括t試阻止沈積物的形成 2及清洗在萃取電極及離子源上產生的沈積物(即,在該 萃取電極上,如公布的美國專利申請2006/0272776、公布 的美國專利申請2006/0272775以及公布的國際專利申請 • wo 2005/059942 A2中所討論)。然而,依然需要清洗離子 植入系統的所有元素的額外過程。 因此在離子植人領域中希望提供具有—單獨的清洗台的 離位的π洗方法,由此可以安全地對已經從該植入機移 '、的又污柒。卩件進行清理而沒有任何機械磨損,該機械磨 才貝可此損害例如石,奚電極之精細部件。因此提供一離線清 洗口還將疋在離子植入領域中的一顯著進步,它可以用來 在部件從該植入系統移除之後選擇性並且非破壞地清洗它 們,而停機時間最短。 H2599.doc 201030792 提供一原位的清洗方法也將是離子植入領域中的一顯著 進步,該方法用於在植入過程中有效地、選擇性地移除不 必要的遍及該植入機(特別是該離子源區域)沈積的殘餘 物。這種原位清洗會提高人員安全並且促進穩定的、不間 斷的植入裝備的操作。 可以進行一原位清洗過程而不拆開該處理室。對於原位 過程,將一氣體試劑從該處理室中流過以便以連續的、脈 衝的或混合的連續-脈衝方式來移除累積的薄膜。取決於 情況,一電漿可以在或不在這種清洗過程中產生。 使用三氟化氣(C1F3)以及其他的氟源的材料(例如, CF4、NF3、C2F6、C3F8、SF6以及C1F3)的無電漿的或乾燥 清洗方法可用於從半導體處理室中移除固體殘餘物,例如 藉由與固體殘餘物進行反應以形成藉由真空或其他的移除 條件從該處理室中可移除的揮發性反應產物,並且在此類 情況下,該等清洗試劑可能需要高溫的清洗條件。見Y. Saito等,「Plasmaless Cleaning Process of Silicon Surface Using Chlorine Trifluoride 」,APPLIED PHYSICS LETTERS,第 56(8)卷,第 1119-1121 頁(1990);還見 D.E. Ibbotson 等,「Plasmaless Dry Etching of Silicon with Fluorine-Containing Compounds」,JOURNAL OF APPLIED PHYSICS,第 56(10)卷,第 2939-2942 頁(1984)。 美國專利號4,498,953描述了一原位清洗方法,其中將一 種鹵素間化合物(例如BrF5、BrF3、C1F3、或IF5)連續地流 過該處理室,同時維持在該室内的一預定的壓力。在該處 142599.doc 201030792 理結束時,終止該鹵素間化合物氣體的流動。此類方法可 以產生含Cl、Br、或I的副產物,連同含氟的副產物,由 此產生大量的需要處理或其他處置的危險廢料。此外,此 類連續流動清洗在非常低的壓力條件下進行,在此壓力下 清洗效率實質上降低了。 在某些離子源應用中,已經進行了 BF3、PH3、及/或 As%的策略性排序以便實現更長的離子源壽命。 氟基或含氟的鹵素間化合物用於清洗半導體處理裝備的 應用有限制其商業活力的相關不足。氟基或含氟的鹵素間 化合物(包括C丨F3)具有高度腐蝕的特點。此外,鹵素間化 合物係對人類呼吸道的強烈刺激物,舉例而言,對於C1F3 蒸氣的臨限人體耐受水平可以低到1〇〇 ppb,LC50為在3〇〇 ppm下1小時的級別。 本領域繼續尋求新的清洗試劑以及離位及原位系統與方 法’以及相關的監測及控制裝置及方法。 • 【發明内容】 本發明總體上係關於用於監測、控制以及清洗離子植入 系統或其部件的裝置以及方法’也係關於有效地用於此種 清洗的組合物。 在一態樣本發明k供了在系統操作過程中監測一離子植 入系統的絲極狀態之方法’該方法包含:(a)在一離子源的 電弧室中使用足以在所述電弧室中產生一電聚的一初始電 流向一絲極供電;(b)在連續電漿生成的一預定時間量測對 該絲極的電流輸入以便保持該電弧室中的電漿;(c)將在嗜 142599.doc 201030792 預定時間量測的電流輸入與該初始電流進行比較,並且(d) 根據此類比較確定材料是否已經沈積到該絲極上或是否已 經發生該絲極的蝕刻,其中,相對於該初始電流在該預定 時間的-更大的電流表示材料在該絲極上的沈積,而相對 於該初始電流在該預定時間的一更小的電流表示該絲極的 姓刻。 在另一態樣本發明提供了在該系統操作過程中控制一離 子植入系統的一絲極的狀態之方法,包含:(a)在一離子源 的電弧室中使用足以在所述電弧室中產生一電漿的一初始 電流向一絲極供電;(b)在連續電漿生成的一預定時間量測 對該絲極的查流輸入以便保持該電弧室中的電漿;(C)將在 該預定時間量測的電流輸入與該初始電流進行比較,根 據此類比較確定材料是否已經沈積到該絲極上或是否已經 發生該絲極的蝕刻,其中,相對於該初始電流在該預定時 間的一更大的電流表示材料在該絲極上的沈積,而相對於 該初始電流在該預定時間的—更小的電流表示該絲極的蝕 刻,並且(e)回應於該確定,從該絲極移除沈積的材料或在 該絲極上沈積附加的材料,至一程度,在該程度重新建立 了該初始電流輸入、或在所述初始電流輸入的一預定範圍 内的一電流輸入。在此態樣之另一實施方式中,步驟至 步驟(d)可在離子植入過程期間進行;步驟(e)可在離子植 入過程之前、之後或之間進行。 在另一態樣中,本發明提供了在系統操作期間控制一離 子植入系統之一間接加熱的陰極(IHC)源之狀態的方法, 142599.doc -10- 201030792 其包含:(a)藉由在一預定時間量測陰極偏壓功率供應來確 定間接加熱的陰極源之使用功率;(b)比較該預定時間之該 使用功率與初始功率;及(0回應於該比較採取校正動作⑴ 或(11)以控制該間接加熱的陰極之狀態,藉此⑴若在該預 定時間之該使用功率高於該初始功率,則蝕刻該間接加熱 的陰極;或(Η)若在該預定時間之該使用功率低於該初始 功率,則再生長該間接加熱的陰極。初始功率包括在一預 ❹ 定時間之量測之前的一時間的陰極偏壓功率之值,例如, 其可為啟動時之功率,或正常操作條件下之功率,或任何 其他預設定時間點或值。如熟習此項技術者將理解,陰極 偏壓功率量測及初始功率值取決於植入過程或其他情況可 呈-範圍或多個範圍之形式。該⑷⑴之蝕刻包括在足以蝕 刻之低溫至中等溫度的條件下操作該間接加熱的陰極。在 此方面之低溫至中等溫度經例示為自約室溫高達約 2000 C。該(c)(u)之再生長包括使一氟化氣體在一電漿狀 鲁況下在該間接加熱的陰極上流動,其中該氟化氣體包含以 下中之一或多者:Xei?2、XeF4、XeF6、GeF4、SiJ^、 BF3、AsF5、AsF3、PF5、PF3、F2、TaF3、TaF5、WF6、 WF5、WF4、NF3、IF5、IF7、KrF2、SF6、C2F6、CF4、 C1F3、N2F4、N2F2、N3F、NFH2、NH2F、BrF3、C3F8、 C4F8、C5F8、CHF3、CH2F2、CH3F、COF2、HF、C2HF5、 C2H2F4、C2H3F3、C2H4F2、C2H5F、C3F6&MoF6。該(c)(ii) 之再生長包括在足以發生金屬沈積之高溫的狀況下操作該 間接加熱的陰極。在此方面之高溫經例示為大於2000°c。 142599.doc -11. 201030792 校正步驟⑷可於離子植入過程之前、之後或之間進行。另 外,針對再生長,若經植入之物質係選自上文直接描述之 氟化氣體中之-者,則可在植人過程㈣進行校正步輝。 上文或本文其他處所論述之方法步驟可由適當控制裝置 (諸如微控制器、控制器、微處理器等)及相關聯之電氣、 電子及/或機電料進行,該特制裝置經適#程式化及/ 或經組態以進行離子源之部件(諸如絲極、反射極電極、 陰極及反電極)的自動修復或清洗。 在另-態樣中,本發明提供了操作在—離子源的電弧室 中包括-絲⑮或陰極(或可經餘刻或具有諸如但不限於反 電極、反射極及其類似者之沈積物的離子源之其他部们 的離子植入系統之方法,來保持該離子源的操作效率,所 述方法包含將該絲極或陰極或如前述之離子源的其他部件 在以下條件τ與—職㈣行制,該等條件選自構成如 下的組: (a) 實現鎢在該絲極上沈積的條件;以及 (b) 實現從該絲極上蝕刻所沈積材料的條件。 在此方面之一實施方式中’(例如)陰極、反射極(其分別 對應於陰極及絲極)或其類似者之其他離子源部件可具 備適當加熱元件以調整部件之表面溫度,以選擇性地飯 刻來自其之材料或在其上沈積材料。 在另一實施方式中,間接加熱的陰極(IHc)離子源可包 括兩個陰極(替代陰極及反電極)。在植入期間,一'個= 極可作為反陰極來操作,且在修復或校正過程期間,= 142599.doc -12· 201030792 個陰極之溫度可根據需要經控制以沈積或蝕刻材料。 本發明係關於在另一態樣中係關於清洗一離子植入*** 的一或多個部件之方法,用於從所述一或多個部件至少部 分地移除與電離作用有關的沈積物,所述方法包含將—清 洗氣在以下條件下流過該系統,該等條件選自構成如 組: (a) 實現材料在該絲極、陰極或如前述之其他離子源部件 上沈積的條件;以及 (b) 實現從該絲極、陰極或如前述之其他離子源部件上 蝕刻所沈積材料的條件。 本發明的另一態樣係關於係關於將在一電弧室中的離子 源的一絲極保持一預定的電阻之方法,該方法包含將該絲 極與取決於絲極的溫度相對於該電弧室壁的溫度有效地在 該絲極上沈積材料或有效地從該絲極上蝕刻材料的一試劑 進行接觸’並且控制該絲極之溫度及該電弧室壁中的溫度 φ 來有效地在該絲極上沈積或蝕刻材料,以保持所述預定的 電阻。總體上,若在電弧室壁係低溫至中等溫度(小於絲 極’之溫度)時’絲極之溫度足夠高(例如大於2〇〇〇它),則發 生絲極上材料之沈積。若不考慮電弧室壁之溫度(雖然電 弧室壁之溫度小於或大於絲極之溫度為較佳的),絲極之 度係低溫至中等溫度(例如,小於約15 〇 〇 °C至2 〇 〇 〇 ), 則發生自絲極蝕刻材料。 在另一態樣中’本發明係關於係關於清洗一離子植入系 統或其一或多個部件以便從中移除與電離作用有關的沈積 -J3· 342599.doc 201030792 物之方法,該方法包含將該離子植入系統或其一或多個部 件在其中Brh與該等沈積物具有化學反應性的條件下與所 述BrF3接觸以便實現它們至少部分地移除。 在另一態樣中,本發明係關於係關於清洗一離子植入系 統的一則級管道以便從中移除一與電離作用有關的沈積物 之方法,該方法包含將一離子植入系統的前級管道與—清 洗氣體在其中所述清洗氣體與該沈積物具有化學反應性的 條件下進行接觸以便至少部分地移除它們。此方法可以改 良一離子植入系統的性能並且延長其壽命。 在另一態樣中,本發明係關於係關於改良一離子植入系 統的性能並且延長其壽命之方法,該方法包含將該陰極與 包含至少一種清洗氣體以及至少一種沈積氣體的一氣體混 合物進行接觸,其中所述氣體混合物平衡了材料在陰極上 的沈積以及該沈積材料或其他材料從該陰極上的腐蝕。 本發明的其他態樣、特徵以及實施方式從隨後的揭示内 容以及所附申請專利範圍將會更加明顯。 【實施方式】 本發明係關於係關於用於監測、控制以及清洗半導體處 理系統及/或其部件的裝置以及方法,並且係關於係關於 用於此種清洗的組合物。 在一態樣中,本發明係關於係關於從該半導體處理系統 或半導體處理系統的部件中移除沈積物,其中將該系統或 系統部件與包括一氣相反應性材料的一清洗組合物進行接 觸0 142599.doc •14· 201030792 如此處所使用’術語「氣相反應性材料」旨在寬泛地解 釋為指以下材料,包含:—或多種齒化物及/或錯合物(以 氣態或蒸氣的形式)’該-或多種化合物及/或錯合物的離 子及電聚形式’以及從該—或多種化合物、—或多種錯合 物以及離子及電浆形式衍生的元素以及離子。如在本發明 的寬泛的操作中所使用的—氣相反應性材料還可以不同地 是指(但不限於)— 一「清洗氣體」、 「氣態清洗劑」、 「氣相反應性組合物」、一「清洗劑」、The gas cleaning agent is used to clean the deposits in situ 142599.doc 201030792. In another cause of ion source failure, various materials (eg, cranes, ^ can accumulate on the cathode during long-term ion implantation. Once the material reaches a criticality, the cathode power supply can no longer be maintained. The current at the set point of the beam current. This causes a loss of ion beam current and requires replacement of the ion source. The resulting degradation of ion source performance and shortened lifetime reduces the productivity of the ion implanter system. The other cause of ion source failure is the cathode. (4) (or reduced ore) of the material. For example, the metal material from the cathode (eg, squirrel, etc.) is sputtered by ions in the plasma in the arc chamber. Because the sputtering is the heaviest in the plasma. The control of the ions, so the sputtering effect may deteriorate as the mass of the ions increases. In fact, the sputtering of the continuous material "thins" the cathode, which eventually leads to the formation of a hole in the cathode ("cathode through"). As a result, the performance and lifetime of the ion source are greatly reduced. Therefore, the art continues to seek ways to maintain the accumulation of materials on the cathode and the balance between (4) to extend the ion source. Lifetime. Other residues may result from the reaction between the ion source material and the components of the ion implantation system. 'This depends on the conditions within the system. Such reactions can cause residues to deposit on additional components of the system. In other words, tungsten whiskers can be formed on the arc chamber extraction holes, resulting in beam irregularities. i Deposits are common on components of ion sources, such as filaments and counter-(four) electrodes. Such internal deposits are generally Consisting of arc chamber materials, and most commonly when a high plasma power source having a fluoride source is combined with an arc chamber constructed of crucibles or turns, although using materials that are not containing a source of material The expected lifetime of an ion source for an ion implantation system is typically 142599.doc 201030792 for about 100 hours to 300 hours, while some toothed materials (eg, (iv) 4) are due to the deleterious effects of internal deposits during ion source operation, the source of the ion source The life can be as low as 10 hours to 50 hours. In addition to the operational difficulties caused by the residues in the ion implanter, due to the removal of the part for cleaning There are toxic or corrosive vapors in the case, and there are significant personnel safety problems. Safety problems will occur anywhere in the residue. The special concern is in the ion source area _ because the ion source is the most Frequently maintained parts. To minimize downtime, contaminated ion sources are often removed from the implanter at temperatures significantly above room temperature, which increases vapor emissions and deepens safety issues. Difficult prior methods have included t-testing the formation of deposits 2 and cleaning deposits produced on the extraction electrode and ion source (i.e., on the extraction electrode, as disclosed in U.S. Patent Application No. 2006/0272776, published U.S. Patent application 2006/0272775 and the published international patent application; WO 2005/059942 A2). However, there is still a need for an additional process of cleaning all elements of the ion implantation system. It is therefore desirable in the field of ion implantation to provide a π-washing method with a separate cleaning station, whereby it is safe to be contaminated from the implanter. The jaws are cleaned without any mechanical wear, which can damage fine parts such as stone and tantalum electrodes. There is therefore a significant advancement in providing an off-line rinsing port in the field of ion implantation that can be used to selectively and non-destructively clean components after they are removed from the implant system with minimal downtime. H2599.doc 201030792 Providing an in situ cleaning method would also be a significant advancement in the field of ion implantation for effectively and selectively removing unnecessary implants throughout the implantation process ( In particular, the ion source region) is deposited as a residue. This in-situ cleaning improves personnel safety and facilitates the operation of stable, uninterrupted implant equipment. An in-situ cleaning process can be performed without disassembling the processing chamber. For the in-situ process, a gaseous reagent is passed from the processing chamber to remove the accumulated film in a continuous, pulsed or mixed continuous-pulse manner. Depending on the situation, a plasma may or may not be produced during such a cleaning process. A plasmaless or dry cleaning method using materials of trifluorocarbon (C1F3) and other fluorine sources (eg, CF4, NF3, C2F6, C3F8, SF6, and C1F3) can be used to remove solid residues from semiconductor processing chambers Reactive reaction products that are removable from the processing chamber by vacuum or other removal conditions, for example, by reaction with a solid residue, and in such cases, such cleaning reagents may require high temperatures. Cleaning conditions. See Y. Saito et al., "Plasmaless Cleaning Process of Silicon Surface Using Chlorine Trifluoride", APPLIED PHYSICS LETTERS, Vol. 56(8), pp. 1119-1121 (1990); see also DE Ibbotson et al., "Plasmaless Dry Etching of Silicon" With Fluorine-Containing Compounds", JOURNAL OF APPLIED PHYSICS, Vol. 56 (10), pp. 2939-2942 (1984). U.S. Patent No. 4,498,953 describes an in-situ cleaning process in which an interhalogen compound (e.g., BrF5, BrF3, C1F3, or IF5) is continuously passed through the processing chamber while maintaining a predetermined pressure within the chamber. At the end of the 142599.doc 201030792, the flow of the interhalogen compound gas is terminated. Such processes can produce by-products containing Cl, Br, or I, along with fluorine-containing by-products, thereby producing a large amount of hazardous waste requiring treatment or other disposal. In addition, such continuous flow cleaning is carried out under very low pressure conditions, at which the cleaning efficiency is substantially reduced. In some ion source applications, strategic sequencing of BF3, PH3, and/or As% has been performed to achieve longer ion source lifetimes. The use of fluorine- or fluorine-containing interhalogen compounds for cleaning semiconductor processing equipment has associated deficiencies that limit its commercial viability. Fluorine- or fluorine-containing interhalogen compounds (including C丨F3) are highly corrosive. In addition, inter-halogen compounds are strong irritants to the human respiratory tract. For example, the tolerance level for C1F3 vapors can be as low as 1 〇〇 ppb and the LC50 is 1 hr at 3 〇〇 ppm. The art continues to seek new cleaning reagents as well as off-site and in-situ systems and methods' and related monitoring and control devices and methods. • SUMMARY OF THE INVENTION The present invention generally relates to apparatus and methods for monitoring, controlling, and cleaning ion implantation systems or components thereof, as well as compositions useful for such cleaning. In one state sample invention k is a method for monitoring the filament state of an ion implantation system during system operation. The method comprises: (a) using in an arc chamber of an ion source sufficient to generate in the arc chamber An initial current of an electropolymer is supplied to a filament; (b) measuring a current input to the filament at a predetermined time of continuous plasma generation to maintain plasma in the arc chamber; (c) will be in the 142599 .doc 201030792 The current input measured at a predetermined time is compared to the initial current, and (d) determining, based on such comparison, whether material has been deposited onto the filament or whether etching of the filament has occurred, wherein, relative to the initial The current at the predetermined time of the current indicates the deposition of the material on the filament, and a smaller current at the predetermined time relative to the initial current indicates the last name of the filament. In another aspect, the invention provides a method of controlling the state of a filament of an ion implantation system during operation of the system, comprising: (a) using in an arc chamber of an ion source sufficient to produce in the arc chamber An initial current of a plasma is supplied to a filament; (b) measuring a flow input to the filament at a predetermined time during continuous plasma generation to maintain plasma in the arc chamber; (C) A current input measured at a predetermined time is compared to the initial current, and based on such comparison, it is determined whether material has been deposited onto the filament or whether etching of the filament has occurred, wherein one of the predetermined times relative to the initial current A larger current indicates deposition of material on the filament, and a smaller current at the predetermined time relative to the initial current indicates etching of the filament, and (e) is moved from the filament in response to the determination In addition to the deposited material or the deposition of additional material on the filament, to the extent that the initial current input is re-established, or within a predetermined range of the initial current input Stream input. In another embodiment of this aspect, step to step (d) can be performed during the ion implantation process; step (e) can be performed before, after or between the ion implantation process. In another aspect, the present invention provides a method of controlling the state of an indirectly heated cathode (IHC) source of an ion implantation system during system operation, 142599.doc -10- 201030792 which comprises: (a) Determining the power used by the indirectly heated cathode source by measuring the cathode bias power supply at a predetermined time; (b) comparing the used power to the initial power for the predetermined time; and (0 responding to the comparison to take corrective action (1) or (11) controlling the state of the indirectly heated cathode, whereby (1) etching the indirectly heated cathode if the used power is higher than the initial power at the predetermined time; or (Η) if the predetermined time The indirect heated cathode is regenerated by a power lower than the initial power. The initial power includes a value of the cathode bias power at a time prior to the measurement of a predetermined time, for example, it can be the power at startup. , or power under normal operating conditions, or any other pre-set time point or value. As will be understood by those skilled in the art, the cathode bias power measurement and initial power value depend on the implantation process. Other conditions may be in the form of a range or a plurality of ranges. The etching of (4)(1) includes operating the indirectly heated cathode at a low temperature to moderate temperature sufficient for etching. In this regard, the low to medium temperature is exemplified as a self-contained chamber. The temperature is up to about 2000 C. The regrowth of (c)(u) includes flowing a monofluorinated gas over the indirectly heated cathode in a plasma state, wherein the fluorinated gas comprises one of the following or Many: Xei?2, XeF4, XeF6, GeF4, SiJ^, BF3, AsF5, AsF3, PF5, PF3, F2, TaF3, TaF5, WF6, WF5, WF4, NF3, IF5, IF7, KrF2, SF6, C2F6, CF4, C1F3, N2F4, N2F2, N3F, NFH2, NH2F, BrF3, C3F8, C4F8, C5F8, CHF3, CH2F2, CH3F, COF2, HF, C2HF5, C2H2F4, C2H3F3, C2H4F2, C2H5F, C3F6 & MoF6. (c) (ii) The regrowth includes operating the indirectly heated cathode at a temperature sufficient to cause metal deposition. The high temperature in this respect is exemplified as greater than 2000 ° C. 142599.doc -11. 201030792 Calibration step (4) is available for ions Before, after or between the implantation processes. In addition, the needle For regrowth, if the implanted material is selected from the fluorinated gases described directly above, corrective stepping can be performed in the implantation process (4). The method steps discussed above or elsewhere herein may be appropriate Control devices (such as microcontrollers, controllers, microprocessors, etc.) and associated electrical, electronic, and/or electromechanical materials that are programmed and/or configured to perform components of the ion source Automatic repair or cleaning (such as filaments, reflector electrodes, cathodes and counter electrodes). In another aspect, the present invention provides for the operation of a wire 15 or a cathode in an arc chamber of an ion source (or may be residual or have deposits such as, but not limited to, counter electrodes, reflectors, and the like) Method of ion implantation system of other parts of the ion source to maintain the operational efficiency of the ion source, the method comprising the filament or cathode or other components of the ion source as described above under the following conditions τ (d) the system, the conditions being selected from the group consisting of: (a) achieving conditions for depositing tungsten on the filament; and (b) achieving conditions for etching the deposited material from the filament. One embodiment of this aspect Other ion source components in which, for example, a cathode, a reflective pole (which corresponds to a cathode and a filament, respectively) or the like may be provided with suitable heating elements to adjust the surface temperature of the component to selectively engrave materials therefrom Or depositing a material thereon. In another embodiment, the indirectly heated cathode (IHc) ion source can include two cathodes (instead of the cathode and the counter electrode). During implantation, one of the electrodes can be used as a counter cathode Come During the repair or correction process, the temperature of the cathode can be controlled to deposit or etch the material as needed. The present invention relates to cleaning an ion implantation in another aspect. A method of one or more components of a system for at least partially removing deposits associated with ionization from the one or more components, the method comprising flowing a purge gas through the system under conditions The conditions are selected from the group consisting of: (a) the conditions under which the material is deposited on the filament, cathode or other ion source component as described above; and (b) from the filament, cathode or other ion source as described above Conditions for etching deposited material on a component. Another aspect of the invention relates to a method of maintaining a filament of a source of ions in an arc chamber with a predetermined electrical resistance, the method comprising The temperature of the filament is effective to deposit material on the filament or to effectively contact a reagent that etches material from the filament relative to the temperature of the arc chamber wall and to control the temperature of the filament The temperature φ in the wall of the arc chamber effectively deposits or etches material on the filament to maintain the predetermined electrical resistance. Generally, if the wall of the arc chamber is at a low to moderate temperature (less than the temperature of the filament ') 'The temperature of the filament is sufficiently high (for example, greater than 2 〇〇〇), the deposition of material on the filament occurs. If the temperature of the arc chamber wall is not considered (although the temperature of the arc chamber wall is less than or greater than the temperature of the filament is preferred) From the low temperature to the medium temperature (for example, less than about 15 〇〇 ° C to 2 〇〇〇), the self-filament etching material occurs. In another aspect, the present invention relates to A method of cleaning an ion implantation system or one or more components thereof to remove an ionization-related deposition therefrom - J3. 342599.doc 201030792, the method comprising implanting the ion implantation system or one or more components thereof The BrF3 is contacted under conditions in which Brh is chemically reactive with the deposits to effect at least partial removal thereof. In another aspect, the present invention is directed to a method of cleaning a stage conduit of an ion implantation system for removing a deposit associated with ionization, the method comprising implanting an ion into a pre-stage of the system The conduit and the purge gas are contacted under conditions in which the purge gas is chemically reactive with the deposit to at least partially remove them. This approach can improve the performance of an ion implantation system and extend its life. In another aspect, the present invention is directed to a method for improving the performance and extending the life of an ion implantation system, the method comprising performing the cathode with a gas mixture comprising at least one cleaning gas and at least one deposition gas. Contact, wherein the gas mixture balances the deposition of material on the cathode and the corrosion of the deposited material or other material from the cathode. Other aspects, features, and embodiments of the invention will be apparent from the appended claims and appended claims. [Embodiment] The present invention relates to apparatus and methods for monitoring, controlling, and cleaning semiconductor processing systems and/or components thereof, and to compositions for such cleaning. In one aspect, the invention relates to the removal of deposits from components of the semiconductor processing system or semiconductor processing system, wherein the system or system component is contacted with a cleaning composition comprising a gas phase reactive material 0 142599.doc •14· 201030792 As used herein, the term 'gas phase reactive material' is intended to be broadly interpreted to mean the following materials, including:—or a variety of dentates and/or complexes (in gaseous or vapor form). 'Ionic and electropolymerized forms of the - or compounds and/or complexes' and elements and ions derived from the or compounds, or complexes, and ion and plasma forms. The gas phase reactive material as used in the broad operation of the present invention may also be referred to as (but not limited to) - a "cleaning gas", a "gaseous cleaning agent", or a "gas phase reactive composition". , a "cleaning agent",

-「蝕刻氣體」、一「氣態鹵化物」、一 一「反應性i化物」、一「清洗化合 潸况組合物」 物」 氣」或此類術語的任何組合 如此處所使用,就一離子植入機而言,「離子源區域」 包括,但不限於真空室、源電弧室、源絕緣子、萃取電 極、抑制電極、高電壓絕緣子、源套管、絲極、陰極以及 反射極電極。如熟習此項技術者將理解,用語「離子源區 域」以其最廣意義使用,例如,貝爾納(Bernas)或弗里曼 (Freemen)離子源總成包括一絲極及反射極電極且源 總成包括陰極及反陰極。 本發明考慮了半導體處理系統及其部件的清洗,連同其 他基板及裝置,該等基板及裝置在其正常處理操作中易受 其上形成的沈積物影響。該操作包括,但不限於真空前級 管道及低真空泵之清洗。鑒於此處之描述,如熟習此項技 術者將理解,清洗氣體可能流經複數個口中之選定口以繞 過植入機的某些區及/或目標特定區。舉例而言,XeF2或 142599.doc •15· 201030792 其他清洗氣體可經遞送通過接近需要清洗之區的口。清洗 效能亦可增強’只要大多數清洗氣體將沿流通路徑被引入 目標區且不被與殘餘物進行之反應所耗盡(如在(例如)清洗 氣體僅引入通過離子源室之情況下可能發生)。選定之口 可預先存在或針對此目的而形成/產生。此技術可用於清 洗(但非限制)植入機之離子源區域、磁性/分析器區域、真 空系統、處理室等。清洗可藉由將清洗氣體連續流動通過 及’或穿過植入機之所要區或區域歷經預定之時間量來實 現。替代地,或與之組合,清洗氣體可經封閉於系統中歷 瘳 經預定之時間量來允許清洗氣體擴散且與不需要之殘餘物 及/或沈積物反應。 本發明在不同的態樣提供了一離子植入系統,該系統具 有以下能力:藉由適當地控制在電弧室中的溫度而生長/ 蝕刻在電弧室的離子源内的絲極以便實現所希望的絲極的 生長或可替代的絲極的蝕刻。 本發明的額外態樣係關於係關於使用反應性的氣體例如 WFX、AsFx、PF>^TaFx(其中χ具有一化學計量地適當的值❿ 或值的範圍)用於在原位或離位的清洗安排中在電漿或高 皿條件下來清洗離子植人機的區域或離子植人機的部件。 、本發明的另一係關於態樣係關於份匕用於在原位或離位 的清洗安排中在環境溫度、高溫或電聚的條件下來清洗離 子植入系統或其一或多個部件的用途。 一離子植入系統的操作導致在該系統或其部件令產生與 電離作用有關的材料的沈積。本發明考慮了監測、控制及/ 142599.doc • 16 - 201030792 或清洗該離子植入系統及/或其一或多個部件,以便從該 系統及/或其部件上至少部分地移除此類與電離作用有關 的沈積物。該清洗方法係關於將該系統及/或其部件與包 含一氣相反應性材料的一清洗組合物在能夠使該氣相反應 度材料與該沈積物進行反應的條件下進行接觸以實現它們 至少部分的移除。 除了由原料氣體本身引起的與電離作用有關的沈積物之 外,還已經發現了在一離子植入系統内形成的沈積物或殘 餘物可旎起因於原料氣體與構成該系統部件的材料的反應 f生。舉例而$,一離子植入系統的真空室可以使用不鏽鋼 或鋁來構成。在該真空室内的系統部件可以使用石墨(例 如,標準的或玻璃質的),絕緣材料(例如,氮化硼)及/或 後封材料(例如 Teflon®、Kel-FTM、PEEKTM、DelrinTM、- "etching gas", a "gaseous halide", a "reactive i-compound", a "cleaning compound composition", or any combination of such terms as used herein, an ion implant In terms of access, the "ion source region" includes, but is not limited to, a vacuum chamber, a source arc chamber, a source insulator, an extraction electrode, a suppression electrode, a high voltage insulator, a source sleeve, a filament, a cathode, and a reflector electrode. As will be understood by those skilled in the art, the term "ion source region" is used in its broadest sense. For example, a Bernas or Freeman ion source assembly includes a filament and a reflector electrode and a total source. The cathode includes a cathode and a counter cathode. The present invention contemplates the cleaning of semiconductor processing systems and components thereof, as well as other substrates and devices that are susceptible to deposits formed thereon during their normal processing operations. This operation includes, but is not limited to, vacuum pre-stage piping and low vacuum pump cleaning. In view of the description herein, as will be understood by those skilled in the art, the purge gas may flow through selected ports of the plurality of ports to bypass certain regions of the implanter and/or target specific regions. For example, XeF2 or 142599.doc •15· 201030792 Other purge gases can be delivered through the port close to the area to be cleaned. Cleaning performance can also be enhanced 'as long as most of the purge gas will be introduced into the target zone along the flow path and will not be depleted by reaction with the residue (as may occur, for example, if the purge gas is only introduced through the ion source chamber) ). The selected port may be pre-existing or formed/produced for this purpose. This technique can be used to clean (but not limit) the ion source area of the implanter, the magnetic/analyzer area, the vacuum system, the processing chamber, and the like. Cleaning can be accomplished by continuously flowing the cleaning gas through and & or through a desired area or region of the implanter for a predetermined amount of time. Alternatively, or in combination, the purge gas can be sealed in the system for a predetermined amount of time to allow the purge gas to diffuse and react with unwanted residues and/or deposits. The present invention provides an ion implantation system in a different aspect, the system having the ability to grow/etch a filament within the ion source of the arc chamber by appropriately controlling the temperature in the arc chamber to achieve the desired The growth of the filament or the etching of an alternative filament. An additional aspect of the invention relates to the use of reactive gases such as WFX, AsFx, PF>^TaFx (wherein χ has a stoichiometrically appropriate value ❿ or range of values) for in situ or out of position In the cleaning arrangement, the area of the ion implanter or the components of the ion implanter are cleaned under the condition of plasma or high dish. Another aspect of the invention relates to the use of a portion for cleaning an ion implantation system or one or more components thereof under ambient temperature, high temperature or electropolymerization conditions in an in situ or off-site cleaning arrangement. use. The operation of an ion implantation system results in the deposition of materials associated with ionization in the system or its components. The present invention contemplates monitoring, controlling, and/or cleaning the ion implantation system and/or one or more components thereof to at least partially remove such components from the system and/or components thereof. Sediments associated with ionization. The cleaning method relates to contacting the system and/or its components with a cleaning composition comprising a gas phase reactive material under conditions capable of reacting the gas phase reactivity material with the deposit to achieve at least a portion thereof. Removal. In addition to deposits associated with ionization caused by the feed gas itself, it has been discovered that deposits or residues formed within an ion implantation system can be caused by the reaction of the feed gas with the materials that make up the components of the system. f born. For example, the vacuum chamber of an ion implantation system can be constructed using stainless steel or aluminum. System components in the vacuum chamber may use graphite (e.g., standard or vitreous), insulating materials (e.g., boron nitride), and/or back sealing materials (e.g., Teflon®, Kel-FTM, PEEKTM, DelrinTM,

Vespel 、VltonTM、Buna_N、矽等)來構造。可以在該離 子植入系統中存在的並且對其中沈積物產生的化學反應易 • 感的其他材料包括但不限於陶瓷、含氧化鉛的環氧組合 物、氮化銘、氧化!呂、二氧切以及氮化棚。 〇亥離子源本身可以是由鎢、石墨、鉬或钽、有時有少量 的銅及銀構成。該離子源f弧室通常由鎢或簡成、或一 墨體該石墨體襯有鎢或翻。在這種情況了 ’ -種氣化 物源的進料材料(例如BF3、GeF4、siF4、ASF5、ASF3、 5及/或PF3)在操作a度下與電孤室的材料⑽如來自電 弧至或該至的襯裏的鶴或銦)進行反應,以形成-中間副 產物,該副產物進而可以在該系統中遷移並且分解以沈積 142599.doc -17· 201030792 鎢或鉬並釋放出氟。 舉例而言,一原料氣體例如GeF4會在該離子源室中解離 並且產生的游離的氟化物會蝕刻腐蝕該電弧室中的材料, 例如鎢。在一更冷的表面上鎢將會發生此種反應,所以如 果是在電漿經撞擊並且因此該絲極係熱的,則該氟化物會 與鎢在電弧室的該等壁上進行反應,蝕刻該等壁並形成 WF6氣體。WF0然後會在該熱的絲極上沈積鎢,引起其尺 寸的增長。 當GeF*產生大量游離的氟時,原料氣體例如bf3或SiF4 產生更少量的游離氟以及相應地在絲極上更少程度的鶴沈 積,它儘管少,但仍然很重要。 不含氟的原料氣體(例如PH3及AsH3)係有問題的,因為 可能引起絲極上的金屬沈積到電弧室的壁上,而結果絲極 變細。 本發明因此考慮了清洗一離子植入系統或其一或多個部 件’用於至少部分地移除與該電弧室的材料相同的與電離 作用有關的沈積物。 根據本發明的清洗可以在一離子植入系統中進行,其中 多種原料氣體同時引入該系統中。原料氣體還可以與一或 多種氣相反應性材料同時使用,或可以與一或多種氣相反 應性材料交替脈衝輸 入到該系統中。 本發明之清洗方法所指的與電離作用有關的沈積物包括 户種材料,該等材料可以例如藉由在離子源或其他電離過 程的袭備中形成並且累積來干擾離子植入系統的正常操 142599.doc 201030792 作。所沈積的材料可以不同地包含、由以下組成、或基本 由以下組成:石夕、硼、鱗、鍺、砂、鎢、鉬、砸、録、 銦、碳、鋁及/或鈕。 在離子源電弧室中以及萃取電極上的與電離作用有關的 沈積物可以形成薄片並且形成小的顆粒。該等顆粒一旦形 成,則能夠以一離子束傳送,例如植入到—晶圓中的一择 雜離子的束。如果此類的傳送顆粒到達該晶圓,則在該晶 圓上產生的顆粒污染可能嚴重地降低可以在該晶圓上製造 ® 的有用器件的產率。本發明之清洗方法在此類與電離作用 有關的沈積物能夠形成薄片以及顆粒之前將其移除,並且 由此實現在產品晶圓上顆粒的減少並且提高半導體零件的 產率。 根據本發明用於清洗的氣相反應性材料或清洗氣體可以 包括對至少部分地移除該離子植入系統中的與電離作用有 關的沈積物有效的任何材料。 Φ 本發明還考慮了使用氣相反應性材料以藉由適當地控制 反應而從不希望的位置移除與電離作用有關的沈積物,及/ 或在希望的位置沈積材料。在本發明的特別的實施方式 中’鶴構成了作為不希望的沈積物經移除的材料,而在其 他的實施方式中,鎢被期望地沈積在受益於其存在的表面 上。因此,反應性地形成的氟化鎢中間產物的一氣體(例 如 XeF2、GeF4、SiF4、BF3、AsF5、AsF3、%、及/或 pF3) 可以用在本發明的控制以及清洗方法中。另外,多種鶴氣 化物氣體例如WF6、WF5、及/或WF4可以直接用於本發明 142599.doc -19· 201030792 的控制以及清洗方法中。因而’本發明的氣相反應性材料 包括,但不限於 XeF2、GeF4、SiF4 ' BF3、AsF5、AsF3、 PF5、PF3、F2、TaF3、TaF5、WF6、WF5、及/或 WF4。 在不同的特別的貫施方式中,該氣相反應性材料可以與 增加该氣相反應性材料的揮發性的一「清洗增強劑」或 「共反應劑」共同施用’導致比使用無清洗增強劑或共反 應劑的氣相反應性材料更多的沈積物的移除。舉例而言, 用XeF2移除銥沈積物可以藉由路易士(Lewis)鹼以及電子回 饋鍵種類的共同施用而增強。在特定的應用中,可以使用 馨 一氧化碳、三氟鱗’以及三统基膦類。 作為一另外的實例’在一離子植入系統中,其中進料氣 體在具有鎢壁的一電弧室中被電離成連續的電漿,在該等 壁上,一邊女裝有一絲極而另一邊安裝有一反射極並且他 們藉由陶瓷的絕緣子與該等壁分開,該電弧室的部件可能 會被進料氣體的分解產物、電弧室的元素以及碳污染。 在這種情況下,有用於移除形成揮發性的氟化物的金屬 污染物(例如鎢)的一清洗劑(例如XeF2)可以與一含氧添加 ❿ 劑進行組合’該含氧添加劑藉由將污染物碳轉變成C〇、 C〇2、及/或COF2而有效地將其移除。有用於此目的的含氧 添加劑組分在本發明的特別的實施方式中包括但不限於 NO、N20、N02、(:〇2及/或 〇2。 因此本發明考慮了包括有效移除一金屬污染物(藉由反 應形成此金屬的一揮發性(氣態)的氟化物化合物)的一清洗 劑以及有效移除碳污染物(藉由由其形成一揮發性的氧化 142599.doc -20- 201030792 物或氟氧化物)的一清洗劑兩者的清洗組合物。該等清洗 試劑可以同時地或順序地流入該電弧室中。 在一實施方式中,該等試劑在電離作用的條件下同時流 入該電弧室中,這樣該等清洗劑均進行了電離以便將金屬 以及碳的污染物轉變成從該室中藉由將其機械抽吸而容易 移除的揮發性化合物。 月包夠使該氣相反應性材料與沈積物進行反應的條件可以 包括任何適當的溫度、壓力、流速、組成等條件,在此等 條件下,該氣相反應性材料與污染物進行接觸並且化學上 相互作用以便從該基板中(例如受所沈積材料污染的植入 機裝備的表面)移除此類材料。 可以使用的不同條件的實例包括但不限於環境溫度、超 過環境溫度的溫度、存在電漿、沒有電漿、低於大氣壓 力、大氣壓力以及超級大氣壓。 用於氣相反應性材料的接觸來移除沈積物的確切溫度在 φ 不同的實施方式中可以在從大約〇°C到大約200(TC的範圍 中。接觸可以包括該氣相反應性材料在一載氣中、或以一 純的形式、或在與一另外的清洗劑、摻雜劑等的混合物中 進行遞送。該氣相反應性材料可以進行加熱以便與在環境 溫度下的沈積物進行化學反應’以提高反應動力學。 該载相反應性材料與污染物沈積物之間的反庳可以基於 改變清洗劑與污染物之間的反應特性進行監測及/或調 節。此類反應特性可以包括壓力、時間、溫度、濃度、一 具體物質的存在、壓力改變的速度、(一具體種類)濃度改 142599.doc -21 - 201030792 變的速度、電流的改變等等。因此,向系統中引入該氣相 反應性材料可以基於一預定的反應特性的實現而終止,例 如在真空室中的一預定電壓、渡過了一預定的時間量、或 一預定的溫度、在該系統中一具體元素的濃度、一具體副 產物的存在、在該系統中的反應產物或其他的物質、或在 該監測操作中一預定的電流條件的實現。 鎢沈積物可以由進料氣體與一植入機系統的電弧室的反 應引起。用於清洗此類沈積物的方法可以取決於該系統的 溫度梯度及/或流到以及經由絲極的電流、及/或有效地確 定並且能夠監測的任何其他特性。 舉例而言,來自進料材料的氟可以與該電弧室在一第一 溫度下進行反應,藉由以下反應(1)或(2)形成WF6: 3F2 (g) + W (s) ^ WF6 (g) (1) 6F (g) + W(s)->WF6 (g) ⑺ 還可以存在清洗氣體與該電弧室的鎢材料之間的反應,例 如: 3XeF2+ W -> 3Xe + WF6 (3) 替代地,WF6(或WF5或WF4)可以直接地提供給該系統。 在該系統中曾經形成或者以其他方式存在的鎢氟化物然 取決於其他位置的溫 後可以遷移到該系統的另一位置 度,該鎢氟化物會在該位置蝕刻或沈積鎢。在該絲極上, 溫度將主要取決於通過它的實際電流通量。在該電弧室的 其他位置的溫度可以變化,這取決於具體的位置以及電弧 室的設計、絲極電流、連同其他非絲極電流。 142599.doc -22· 201030792 如果第二位置係在高溫,則鎢氟化物分解,鎢被沈積而 氟被釋放,只要鎢氟化物繼續存在,鎢沈積物的尺寸就會 生長。沈積反應可以包括以下的反應(4)、(5)及/或(6): WF6^ W + 3F2 (4) 2WF5^2W + 5F2 (5) WF4->W+2F2 ⑹Vespel, VltonTM, Buna_N, 矽, etc.). Other materials that may be present in the ion implantation system and that are susceptible to chemical reactions in the deposit include, but are not limited to, ceramics, lead oxide containing epoxy compositions, nitriding, oxidation! Lu, dioxotomy and nitration shed. The ion source itself may be composed of tungsten, graphite, molybdenum or tantalum, and sometimes a small amount of copper and silver. The ion source f-arc is typically tungsten or fused, or an ink body, the graphite body being lined with tungsten or turned. In this case, the feed material of the gasification source (eg BF3, GeF4, siF4, ASF5, ASF3, 5 and/or PF3) is operated at a degree with the material of the electrical isolation chamber (10) as from the arc to or The lining of the crane or indium is reacted to form an intermediate by-product which in turn can migrate and decompose in the system to deposit 142599.doc -17·201030792 tungsten or molybdenum and release fluorine. For example, a source gas, such as GeF4, will dissociate in the ion source chamber and the resulting free fluoride will etch the material in the arc chamber, such as tungsten. This reaction will occur on a colder surface, so if the plasma strikes and therefore the filament is hot, the fluoride will react with the tungsten on the walls of the arc chamber. The walls are etched and a WF6 gas is formed. WF0 then deposits tungsten on the hot filament, causing its size to grow. When GeF* produces a large amount of free fluorine, the feedstock gas such as bf3 or SiF4 produces a smaller amount of free fluorine and correspondingly a lower degree of crane deposition on the filament, which, although small, is still important. Fluorine-free material gases (e.g., PH3 and AsH3) are problematic because they may cause metal deposits on the filaments to deposit on the walls of the arc chamber, with the result that the filaments become thinner. The present invention therefore contemplates cleaning an ion implantation system or one or more components thereof for at least partially removing the same ionization-related deposits as the material of the arc chamber. The cleaning according to the present invention can be carried out in an ion implantation system in which a plurality of material gases are simultaneously introduced into the system. The feed gas may also be used in conjunction with one or more gas phase reactive materials, or may be alternately pulsed into the system with one or more gas counter materials. The ionization-related deposits referred to in the cleaning method of the present invention include household materials that can interfere with the normal operation of the ion implantation system, for example, by formation and accumulation in the ion source or other ionization process. .doc 201030792. The deposited material may comprise, consist of, or consist essentially of: stone, boron, scale, tantalum, sand, tungsten, molybdenum, niobium, tantalum, indium, carbon, aluminum, and/or a button. The ionization-related deposits in the ion source arc chamber and on the extraction electrode can form flakes and form small particles. Once formed, the particles can be delivered by an ion beam, such as a bundle of selected ions implanted into the wafer. If such transport particles reach the wafer, particle contamination on the wafer can severely reduce the yield of useful devices that can be fabricated on the wafer. The cleaning method of the present invention removes such deposits associated with ionization before they can form flakes and particles, and thereby achieves a reduction in particles on the product wafer and increases the yield of semiconductor parts. The gas phase reactive material or purge gas for cleaning according to the present invention may comprise any material effective to at least partially remove the ionization-related deposits in the ion implantation system. Φ The present invention also contemplates the use of gas phase reactive materials to remove deposits associated with ionization from undesired locations by appropriately controlling the reaction, and/or depositing materials at desired locations. In a particular embodiment of the invention 'the crane constitutes a material that is removed as an undesired deposit, while in other embodiments, tungsten is desirably deposited on the surface that benefits from its presence. Therefore, a gas (e.g., XeF2, GeF4, SiF4, BF3, AsF5, AsF3, %, and/or pF3) of the formally formed tungsten fluoride intermediate can be used in the control and cleaning method of the present invention. In addition, a variety of helic gas gases such as WF6, WF5, and/or WF4 can be directly used in the control and cleaning methods of the present invention 142599.doc -19·201030792. Thus, the gas phase reactive material of the present invention includes, but is not limited to, XeF2, GeF4, SiF4'BF3, AsF5, AsF3, PF5, PF3, F2, TaF3, TaF5, WF6, WF5, and/or WF4. In different special modes, the gas phase reactive material can be co-administered with a "cleaning enhancer" or "co-reactant" that increases the volatility of the gas phase reactive material. The removal of more deposits of the gas phase reactive material of the agent or co-reactant. For example, the removal of tantalum deposits with XeF2 can be enhanced by the co-administration of Lewis bases and electronic feedback bond species. In certain applications, octane carbon monoxide, trifluoroscale and trisylphosphines can be used. As a further example, in an ion implantation system, wherein the feed gas is ionized into a continuous plasma in an arc chamber having a tungsten wall, on which the women have a pole and the other side A reflector is mounted and they are separated from the walls by ceramic insulators, which may be contaminated by decomposition products of the feed gas, elements of the arc chamber, and carbon. In this case, a cleaning agent (e.g., XeF2) having a metal contaminant (e.g., tungsten) for removing volatile fluorides may be combined with an oxygen-containing additive agent. The contaminant carbon is converted to C〇, C〇2, and/or COF2 to effectively remove it. Oxygenated additive components useful for this purpose include, but are not limited to, NO, N20, N02, (: 〇2 and/or 〇2) in particular embodiments of the invention. The present invention therefore contemplates including effective removal of a metal. a cleaning agent that removes a volatile (gaseous fluoride compound of the metal by reaction) and effectively removes carbon contaminants (by forming a volatile oxidation therefrom) 142599.doc -20- 201030792 a cleaning composition for both a cleaning agent or a cleaning agent. The cleaning agents may flow into the arc chamber simultaneously or sequentially. In one embodiment, the reagents flow simultaneously under ionization conditions. In the arc chamber, the cleaning agents are all ionized to convert metal and carbon contaminants into volatile compounds that are easily removed from the chamber by mechanical pumping thereof. The conditions for the reaction of the phase reactive material with the deposit may include any suitable conditions of temperature, pressure, flow rate, composition, etc. under which the gas phase reactive material is attached to the contaminant. Touching and chemically interacting to remove such materials from the substrate, such as the surface of an implanted device that is contaminated by the deposited material. Examples of different conditions that may be used include, but are not limited to, ambient temperature, ambient temperature Temperature, presence of plasma, absence of plasma, sub-atmospheric pressure, atmospheric pressure, and superatmospheric pressure. The exact temperature at which the contact of the gas-phase reactive material is removed to remove deposits can vary from approximately φ in different embodiments. From ° C to about 200 (the range of TC. Contact may include the gas phase reactive material in a carrier gas, or in a pure form, or in a mixture with an additional cleaning agent, dopant, etc. Delivery. The gas phase reactive material can be heated to chemically react with deposits at ambient temperature to increase reaction kinetics. The rumination between the phase-carrying reactive material and the contaminant deposit can be based on changing the cleaning The reaction characteristics between the agent and the contaminant are monitored and/or adjusted. Such reaction characteristics may include pressure, time, temperature, concentration, and specific The presence of matter, the rate of pressure change, (a specific type) concentration change 142599.doc -21 - 201030792 change speed, current change, etc. Therefore, the introduction of the gas phase reactive material into the system can be based on a predetermined Termination of reaction characteristics, such as a predetermined voltage in a vacuum chamber, a predetermined amount of time, or a predetermined temperature, a concentration of a particular element in the system, the presence of a specific by-product, The reaction product or other substance in the system, or the achievement of a predetermined current condition in the monitoring operation. The tungsten deposit can be caused by the reaction of the feed gas with the arc chamber of an implanter system. The method of deposit-like may depend on the temperature gradient of the system and/or the current flowing to and through the filament, and/or any other characteristic that is effectively determined and can be monitored. For example, fluorine from the feed material can be reacted with the arc chamber at a first temperature to form WF6 by the following reaction (1) or (2): 3F2 (g) + W (s) ^ WF6 ( g) (1) 6F (g) + W(s)->WF6 (g) (7) There may also be a reaction between the cleaning gas and the tungsten material of the arc chamber, for example: 3XeF2+ W -> 3Xe + WF6 ( 3) Alternatively, WF6 (or WF5 or WF4) can be provided directly to the system. The tungsten fluoride that was formed or otherwise present in the system may migrate to another location of the system depending on the temperature at other locations where the tungsten fluoride will etch or deposit tungsten. At this filament, the temperature will primarily depend on the actual current flux through it. The temperature at other locations in the arc chamber can vary depending on the particular location and design of the arc chamber, filament current, along with other non-filament currents. 142599.doc -22· 201030792 If the second position is at a high temperature, the tungsten fluoride decomposes, the tungsten is deposited and the fluorine is released, and as long as the tungsten fluoride continues to exist, the size of the tungsten deposit grows. The deposition reaction may include the following reactions (4), (5), and/or (6): WF6^W + 3F2 (4) 2WF5^2W + 5F2 (5) WF4->W+2F2 (6)

相反,如果第二位置係在中等溫度,鎢氟化物可以蝕刻 該位置’移除鎢並且在反應產物中保留氟,這樣钱刻的位 置隨著蝕刻的進行而縮小。此蝕刻反應可以包括以下反應 (7)、(8)及/或(9): WF6 (g) + 2W (s) 3 WF2 (g) (7) 2WF6 (g) + W (s) 3 WF4 (g) ⑻ 5 WF6 (g) + W (s) 6WF5 (g) (9) 因此,對於鎢沈積物的移除,可以選擇帶有沈積物的部 件的溫度以使移除的速度及範圍最大化。 在本發明的其他實施方式中,在電弧室中硼及/或鉬沈 積物以一相應的方式移除。 在本發明之方法中清洗劑與處理裝備的接觸可以藉由監 測在接觸過程中壓力的變化而進行,當壓力變化為零時, 則接觸終止。 替代地,該接觸可以藉由監測該氣相反應性材料或由此 得到的反應物,或在該接觸中產生的反應產物的分壓而進 仃,當該分壓達到一預定的值,即,一終點時,該接觸終 止。例如’此種終點監測可以使用一合適的終點監測器進 142599.doc -23- 201030792 行,例如在美國專利號6,534,〇〇7以及美國專利申請號: 10/273,036 > 10/784,606 ^ 10/784,750 ' A 10/758,825 t ^ 更全面描述的一類型的終點監測器,或一熱電堆紅外 (TPIR)或其他紅外探測器。 在另—實施方式中,該接觸可以使用該處理裝備系統的 部件藉由氣相反應性材料的受控制的流動而進行,該等部 件允許調節氣相反應性材料的分壓並且因此控制反應速 率。 在又實施方式中,使用一預定流速的氣體反應性材料 的連續流來進行該清洗操作。 如在上文中關於反應(1)_(9)所討論的,與電離作用有關 的鎢的沈積物可以在非常高的溫度下進行沈積並且在低溫 至中等溫度下進行蝕刻。在此方面,與電離作用有關的沈 積物意謂歸因於電漿但未必歸因於離子之操作而形成的沈 積物。因此,只要仍然存在足夠熱的表面,鎢之沈積亦可 於沒有電漿(例如,不存在離子)之情況下發生。在沈積或 蝕刻的位置係植入機系統的絲極的情況下,溫度及電流通 篁係彼此直接相關的。當該絲極經姓刻時,絲極會變細而 對電流的阻力會隨著該絲極的截面的減小而增加,這樣通 過該絲極的電流流量會減小。如果該絲極的條件促進了在 其之上的沈積,則對電流的阻力會隨著不斷地沈積而減 小,因為該絲極的截面增加並且絲極變粗,相應地其中通 過的電流流量也有了增加。 在另一態樣,本發明係關於係關於監測在源絲極上的沈 142599.doc 201030792 積士及所致的絲極生長之方法,係關於監測通過該絲極的 電抓流!。因為,由於沈積,絲極的截面增大了,所以對 電流的阻力會減小並且電流會增大以便保持該絲極處於支 持在電弧至中的電漿所需要的溫度。因此電流的—監測到 的增大可以用來表示對絲極清洗的一需要。 卜L樣本發明係關於係關於藉由監測通過絲極 的電流流量來監測該絲極的_或清洗㈣之方法。因Conversely, if the second location is at a moderate temperature, the tungsten fluoride can etch the location to remove the tungsten and retain fluorine in the reaction product, so that the position of the coin is reduced as the etching progresses. This etching reaction may include the following reactions (7), (8), and/or (9): WF6 (g) + 2W (s) 3 WF2 (g) (7) 2WF6 (g) + W (s) 3 WF4 ( g) (8) 5 WF6 (g) + W (s) 6WF5 (g) (9) Therefore, for the removal of tungsten deposits, the temperature of the part with the deposit can be selected to maximize the speed and extent of removal. . In other embodiments of the invention, boron and/or molybdenum deposits are removed in a corresponding manner in the arc chamber. In the method of the present invention, the contact of the cleaning agent with the processing equipment can be carried out by monitoring the change in pressure during the contact, and when the pressure changes to zero, the contact is terminated. Alternatively, the contacting may be carried out by monitoring the gas phase reactive material or the reactant obtained thereby, or the partial pressure of the reaction product produced in the contact, when the partial pressure reaches a predetermined value, ie At the end of the journey, the contact is terminated. For example, such an end point monitoring can be performed using a suitable end point monitor in 142, 599. doc -23 - 201030, 792, for example, in U.S. Patent No. 6,534, 〇〇7, and U.S. Patent Application No.: 10/273,036 > 10/784,606 ^ 10 /784,750 ' A 10/758,825 t ^ A more comprehensive description of one type of endpoint monitor, or a thermopile infrared (TPIR) or other infrared detector. In another embodiment, the contacting can be performed using controlled flow of the gas phase reactive material using the components of the processing equipment system, the components permitting adjustment of the partial pressure of the gas phase reactive material and thus control of the reaction rate . In still another embodiment, the cleaning operation is performed using a continuous flow of a gas reactive material at a predetermined flow rate. As discussed above with respect to reactions (1) - (9), deposits of tungsten associated with ionization can be deposited at very high temperatures and etched at low to moderate temperatures. In this regard, the deposit associated with ionization means a deposit that is attributed to the plasma but is not necessarily due to the operation of the ions. Thus, as long as there is still a sufficiently hot surface, the deposition of tungsten can also occur without plasma (e.g., in the absence of ions). In the case where the deposited or etched locations are the filaments of the implant system, the temperature and current flows are directly related to each other. When the filament is engraved by the last name, the filament becomes thinner and the resistance to current increases as the cross section of the filament decreases, so that the current flow through the filament decreases. If the condition of the filament promotes deposition above it, the resistance to current will decrease with constant deposition as the cross section of the filament increases and the filament becomes thicker, correspondingly the current flow therethrough There has also been an increase. In another aspect, the present invention is directed to a method of monitoring sinking and resulting filament growth on a source filament, relating to monitoring electrical pick-up through the filament! . Because, due to the deposition, the cross section of the filament is increased, the resistance to the current is reduced and the current is increased to maintain the filament at the temperature required to support the plasma in the arc to medium. Therefore, the monitored increase in current can be used to indicate a need for filament cleaning. The invention relates to a method for monitoring the filament or cleaning (4) by monitoring the current flow through the filament. because

為由於姓刻、濺鑛或蒸發,絲極截面減小,對電流的阻 ^會增大並且電流會減小以便保持該絲極處於支持在電弧 至中的電漿所需要的溫度。因此此電流的一監測到的減小 可以用來表示將附加的材料沈積到—受蝕刻的絲極上的一 需要,或終止一清洗或電離過程的需要。 本發明的另-實施方式包括基於如以上所料的監測流 過該絲極的電流來控制該絲極的狀態之方法。In order to reduce the cross section of the filament due to engraving, splashing or evaporation, the resistance to current increases and the current decreases to maintain the filament at the temperature required to support the plasma in the arc to medium. Thus a monitored decrease in this current can be used to indicate the need to deposit additional material onto the etched filament or to terminate a cleaning or ionization process. Another embodiment of the invention includes a method of controlling the state of the filament based on monitoring the current flowing through the filament as taught above.

在-實施方式中’受監測的絲極電流的減小提供了絲極 接近斷裂的-指示,作為回應,—氣相反應性材料流入該 系統中(例如當在撞擊電衆時’或者可替代地,使電漿關 閉但是絲極仍然是熱的(例如’〜2Q⑽。c)),以誘發產生金 屬在該絲極上的沈積的反應,例如,來自該電狐室壁的 鶴。此反應以允許進行到直至該電流在有效操作該離子 植入系統的一預定範圍内,指示該絲極已經「再生長 一令人滿意的程度。 」 流的增大提供了一 長作為回應,允 在另一實施方式中,所監測的絲極電 指示,即:由於材料的沈積絲極正在生 142599.doc -25· 201030792 許該絲極冷卻一段預定的時間後,或到一預定的溫度(它 可以是在例如從室溫到高達約2000。(:的一範圍内)之後, 該氣相反應性材料流入該系統,這樣,絲極被冷卻到足以 允許餘刻該絲極。此後’由該氣相反應性材料作為媒體的 隨後的蝕刻反應其後可以允許進行到直至電流在有效操作 §亥離子植入系統的一預定範圍内,指示該絲極已經變細至 一適當的程度。 因此本發明之方法可以藉由將一基板與一氣相反應性材 料接觸足以至少部分地從該基板移除沈積物的時間來從該 基板移除一沈積物,該沈積物包括硼、梦、碎、罐、錄、 鎢、鉬、硒、銻、銦、钽以及碳的至少之一。用於此目的 的氣相反應性材料可以包括一或多種以下物質:XeF2、In an embodiment - the reduction in the monitored filament current provides an indication of the filament approaching the fracture, in response - the gas phase reactive material flows into the system (eg when striking the electricity) or can be replaced Ground, the plasma is turned off but the filament is still hot (eg, '~2Q(10).c)) to induce a reaction that produces a deposit of metal on the filament, for example, a crane from the wall of the electric fox chamber. The reaction is allowed to proceed until the current is within a predetermined range of effective operation of the ion implantation system, indicating that the filament has "regenerated to a satisfactory extent." The increase in flow provides a long response. In another embodiment, the monitored filament electrical indication, ie, due to the deposition of the material filament is being produced 142599.doc -25· 201030792 the filament is cooled for a predetermined period of time, or to a predetermined temperature (It may be, for example, from room temperature up to about 2000. (a range of:), the gas phase reactive material flows into the system such that the filament is cooled sufficiently to allow for the remaining filament." Subsequent etching reactions from the gas phase reactive material as a medium may then be allowed to proceed until a current is within a predetermined range of effective operation of the ion implantation system indicating that the filament has been tapered to an appropriate extent. Thus the method of the present invention can remove a deposit from the substrate by contacting a substrate with a gas phase reactive material sufficient to at least partially remove deposits from the substrate. The deposit comprises at least one of boron, dream, crush, can, recorded, tungsten, molybdenum, selenium, tellurium, indium, antimony, and carbon. The gas phase reactive material used for this purpose may include one or more of the following: XeF2

XeF4、XeF6、GeF4、SiF4、BF3、AsF5 ' AsF3、PF5、 PF3、F2、TaF3、TaF5、WF6、WF5、WF4、NF3、IF5、 IF7、KrF2、SF6、C2F6、CF4、Cl2、HC1、C1F3、C102、 N2F4、N2F2、N3F、NFH2、NH2F、HOBr、Br2、BrF3、 C3F8、C4F8、C5F8、CHF3、CH2F2、Ch3F、C〇f2、HF、 c2hf5、c2h2f4、c2h3f3、c2h4f2、c2h5F、c3F6、 COCl2、CC14、CHC13、CH2C12、以及CH3C1。 在本發明的操作中,氟化的氙化合物可以用作清洗劑以 及電漿源試劑,並且可以包括任何合適數目的氟原子。相 對於更低的F/Xe化合物,F與Xe的一更高的比值使之能夠 相對更快並且更有效地進行清洗。更高的蒸氣壓力提高了 清洗劑的遞送速率並且使之能夠遞送更多的材料。 142599.doc •26· 201030792 ^本毛月的實施方式中,六氟化氙被用作—清洗劑或 電漿源"式劑。儘管XeF6的蒸氣壓力在室溫下比Xe;p2的蒸氣 Μ力大約向七倍’邮,以及,係與水非常易反應 ,、6最有利地是在不係關於水、烴類、氫或還原劑的 f在或生成的清洗環境中使用。然而,當使用具有更低蒸 虱麼力的清洗化合物時,可能需要調整流通線路以便避免 在流通路徑中不適當的壓降並且保持清洗劑的適當高的遞 送速率。 只施本發明之方法的裝置能以任何適當的方式構成並安 排,以便向該清洗提供氣相反應性材料。 '在實知方式中,本發明提供了—離子植人以及清洗總 成匕3 .⑴一離子植入系統,該系統包括一或多個部 件,在该系統的離子植入處理的過程令在該等部件上累積 有與電離作用有關的沈積物,(Π)-清洗總成,包括含-清洗組合物的一清洗組合物源,該清洗組合物包括一氣相 籲反應性材料,例如一種函化物化合物,該函化物化合物與 沈積物呈反應性以便實現在清洗條件下從一或多個部件至 少部分地移除沈積物,該清洗條件包括該清洗組合物與沈 積物的接觸,⑵)流通線路,它適合於將清洗組合物從清 洗·,且σ物源傳送到-或多個用來與它在清洗條件下進行接 觸的。Ρ件’以及(lv)流通部件,它適合於控制在清洗狀態 的過程中清洗組合物流動通過該流通線路,以便實現從一 或多個部件上至少部分地移除沈積物。 上述總成中的流通部件可以是任何合適的類型,包括例 142599.doc •27- 201030792 如闊、間致動器、限流器、調節器、泵、質量流量控制 益、壓力計、殘餘氣體分析器、中央處理單元、隔膜、等 等。此類流通部件係適配㈣便在所使料具體的清洗條 件下工作。 〃 在植入機裝置中的一或多個部件(該等部件在該系統中 的離子植人處理過程中在其上累财與電離作用有關的沈 積物)可以是任何合適的類型,例如,真空室、電弧室、 電極、絲極、高壓套管、電磁波導、晶圓處理部件至夾XeF4, XeF6, GeF4, SiF4, BF3, AsF5 'AsF3, PF5, PF3, F2, TaF3, TaF5, WF6, WF5, WF4, NF3, IF5, IF7, KrF2, SF6, C2F6, CF4, Cl2, HC1, C1F3, C102, N2F4, N2F2, N3F, NFH2, NH2F, HOBr, Br2, BrF3, C3F8, C4F8, C5F8, CHF3, CH2F2, Ch3F, C〇f2, HF, c2hf5, c2h2f4, c2h3f3, c2h4f2, c2h5F, c3F6, COCl2 CC14, CHC13, CH2C12, and CH3C1. In the practice of the present invention, the fluorinated ruthenium compound can be used as a cleaning agent and a plasma source agent, and can include any suitable number of fluorine atoms. A higher ratio of F to Xe allows for relatively faster and more efficient cleaning than lower F/Xe compounds. Higher vapor pressures increase the delivery rate of the cleaning agent and enable it to deliver more material. 142599.doc •26· 201030792 ^In the embodiment of the Maoyue, antimony hexafluoride was used as a cleaning agent or a plasma source. Although the vapor pressure of XeF6 is about seven times higher than the vapor pressure of Xe; p2 at room temperature, and is very reactive with water, 6 is most advantageously not related to water, hydrocarbons, hydrogen or The reducing agent f is used in the resulting cleaning environment. However, when using a cleaning compound having a lower enthalpy, it may be necessary to adjust the flow line to avoid undue pressure drop in the flow path and to maintain a suitably high delivery rate of the cleaning agent. The apparatus for applying only the method of the present invention can be constructed and arranged in any suitable manner to provide a gas phase reactive material to the cleaning. In a known manner, the present invention provides an ion implantation and cleaning assembly. (1) an ion implantation system comprising one or more components, the process of ion implantation processing in the system Deposits associated with ionization, (Π)-cleaning assemblies, including a source of cleaning composition comprising a cleaning composition, the cleaning composition comprising a gas phase reactive material, such as a letter a compound which is reactive with the deposit to effect at least partial removal of deposits from one or more components under cleaning conditions, the cleaning conditions comprising contact of the cleaning composition with the deposit, and (2) circulation A line suitable for transporting the cleaning composition from the cleaning and sigma source to - or a plurality of contacts for contacting it under cleaning conditions. The rafter' and (lv) flow-through member are adapted to control the flow of the cleaning composition through the flow line during the cleaning state to effect at least partial removal of deposits from the one or more components. The flow-through components in the above assemblies may be of any suitable type, including, for example, 142599.doc • 27- 201030792 such as wide, inter-actuators, flow restrictors, regulators, pumps, mass flow control benefits, pressure gauges, residual gases Analyzer, central processing unit, diaphragm, and more. Such flow-through components are adapted (4) to operate under the specific cleaning conditions of the materials being used.一 One or more components in the implanter device (the deposits on which the components are associated with ionization during ion implantation processing in the system) may be of any suitable type, for example, Vacuum chamber, arc chamber, electrode, filament, high voltage bushing, electromagnetic waveguide, wafer processing part to clip

環、輪、盤、等等。在一實施方式中,該部件係一真空室 或含在其中的一部件。 清洗組合物源可以包含含有該清洗組合物的—材料存儲 及分配套件。該材料存儲及分配套件包括一容器該容器 可以是,例如,限定了其内體積的總體上為圓柱形的容 器。在一特別的實施方式中,該清洗組合物在環境溫度的 條件下可以為固體並且此清洗組合物可以在該容器内的一 增強的表面區域上受到支持。此匕增強的表面區射以包括Rings, wheels, plates, and so on. In one embodiment, the component is a vacuum chamber or a component contained therein. The cleaning composition source can comprise a material storage and dispensing kit containing the cleaning composition. The material storage and dispensing kit includes a container which may be, for example, a generally cylindrical container defining its inner volume. In a particular embodiment, the cleaning composition can be solid at ambient temperature and the cleaning composition can be supported on a reinforced surface area within the container. This enhanced surface area is projected to include

其中的結構體,例如托盤、如在美國專利號6,92l,G62中所 描述,或多孔惰性泡沫體,例如受過陽極化處理的鋁、不 錄鋼、錄、青銅料,以提供該清洗材料的一個一致的蒸 發速率並且進而提供足以進行相關的清洗過程的分配以及 電離步驟的蒸氣麼力。在利用托盤的情況下,在分配操作 中,清洗組合物可以受到—些托盤表面的支持,該等托盤 具有與其相關的流動通道管,用於蒸氣在該容器中向上流 入其分配口。 142599.docA structure therein, such as a tray, as described in U.S. Patent No. 6,92, G62, or a porous inert foam, such as anodized aluminum, unrecorded steel, recorded, bronze, to provide the cleaning material. A consistent evaporation rate and, in turn, provides sufficient vaporization for the dispensing of the associated cleaning process and the ionization step. In the case of a tray, in a dispensing operation, the cleaning composition can be supported by a number of tray surfaces having associated flow channel tubes for vapor to flow upwardly into the dispensing opening in the container. 142599.doc

•2L 201030792 、生ί上述裝備安排中的流通線路適配於將該清洗組合物在 ζ月、/曰條件下從該清洗組合物源傳送到電弧室中。此適配可 2疋基於β洗組合物的不同特性。例如當該清洗組合物且 有:低的蒸氣壓力時,可以使用高的傳導來避免在流通路 位中的不必要的壓降。最大化流導以及最小化流通壓縮的 方法在本領域係眾所周知的。 9 在本發s的所有清洗方法中,可以任選地用另外的方法 以及裝置進仃清洗從而延長離子植入系統(特別是離子源) 的壽命:此類延長壽命的方法可以包括改變一離子植入系 統以便適應具體的基板、沈積的材料及/或氣相反應性材 料。系統裝置的改變可以包括但不限於提供以下各項:具 有主動熱控制系統的萃取電極;降低放電的頻率/發生的 主動加熱的萃取電極(active〗y heated extracti〇n electr〇de);包含金屬優選鋁、鉬或氧化鋁(a12〇3)的萃取 電極,遠程電漿源;萃取電極與加熱器的關聯;萃取電極 與冷卻器件的關聯;光滑的無特徵的(featureless)萃取電 極;電漿室,該等電漿室經安排為接收多種源氣體,該等 源氣體能夠被電漿分解以產生通過該室的出口以及導管的 反應性氣體的流束,以便將該反應性的氣體輸送至電離作 用室;溫度探測器,該等溫度探測器經設計為探測反應性 的氣體與在處理系統的表面上的污染的放熱反應的實質上 的結束’·在該處理裝備中的易受氣相反應性材料的損害之 部件的保護(例如,在對氣相反應性材料易感的部件的周 圍提供了對抗此類材料的擋護物);及/或包含鋁或氧化鋁 142599.doc •29· 201030792 的系統部件的使用。 延長處理裝備的壽命的方法可以包括但不限於:對萃取 電極進行主動加熱以降低放電的頻率以及發生;在高於遞 送至離子源的源材料的冷凝溫度之上加熱萃取電極;主動 地控制適合於所使用的具體類型的離子源的萃取電極的溫 X㈠#熱或冷*的離子源進行組合加熱或冷卻該 電極);及/或在萃取過程中保持該萃取電極處於高溫下。 此類附加的裝置的改變以芬 夏扪汉變U及方法在美國專利申請公布號 2006/0272776及2006/0272775以及國際專利公布號WO 05/059942中進扞了争人& 更王面的描述,將其全文以引用的方 式併入本文。 '在一特別的實施方式中,該離子植人系統包括—電弧室 以及一摻雜劑源,其中該摻雜劑源可以包括例如阳、 XA、ASH3、ph3、GeF4、SiF4、砂、叫、他、 PF5、PF3或其他删、石夕、畔、璘或含鍺的摻雜劑源。 在另一實施方式中,本發明係關於係關於-離子植入的 方法m包括在一離子植入系統的電孤室中由一推雜 劑源氣體產生一電漿,該摻雜劑源氣體流動通過該電 以形成用於植入的掺雜劑源離子,其中在該摻雜劑源氣體 流動通過該電孤室的過財的至少—部分時間的過程卜 料與換雜劑源氣趙並行地流動通過該電弧 至,以便實現在該離子植入***中的清洗。 總體上,儘管摻_源氣體減相反練材料可 並行的流動以便實現原位清洗,但是典型地是優選以―: 142599.doc -30· 201030792 繼的方式進行清洗操作,例如當該離子源從一第一推雜劑 源產生-第-電聚,並且隨後該離子源從—第二捧雜劑源 產生-第二電聚時,使用-介入的清洗步驟,其中氣相反 應性材料流動通過該離子源,有或沒有電漿生成。 在-實施方式中,本發明提供了形成一摻雜的矽基板之 方法,該方法包含將Xe+離子植入一矽基板中,並且在這 之後在該矽基板t植入摻雜劑離子。在此過程中,植入 ❿ Xe離子用於無定形化(am〇rphize)該基板的晶體結構。 在用於清洗的氟化的氙電漿(例如XeF2電漿)的生成中, Xe+離子可以進行一些源本身的低能濺鍍清洗。萃取之 後,Xe+離子可以進行離子源下游部件,例如真空壁、離 子光學部件、晶圓盤以及晶圓支架的一些高能濺鍍。 類似地’在使用鎢氟化物種類,例如WF6、WF5、及/或 WF4的情況下,游離的氟化物可以濺鍍潔淨的、不同的離 子源部件及/或鎢可以沈積在離子源的不同部件上。在清 φ 洗以及沈積之間發生的行為取決於在系統中各個部件的溫 度。 本發明在不同的態樣係關於係關於在一微電子裝置的製 造中所使用的清洗一離子植入系統的離子源區域之方法及 裝置。該離子源區域可以包括例如一間接加熱的陰極源, 弗里曼(Freeman)源或一貝爾納(Bernas)源。 本發明在一實施方式中係關於係關於從離子植入機以及 其中所含的部件藉由將該真空室及/或部件與一氣相反應 性lS化物紐_合物在足夠的時間以及足夠條件下進行接觸而 142599.doc -31 201030792 除殘餘物以便至少部分地從該真空室及/或部件中 物’並且係闕於係闕於藉由這樣一方式來完成, :,备殘餘物與構成真空室及/或部件的材料不同時,該 早拮ί!後材料與殘餘物選擇性地進行反應並且與構成離 于植入機的真空金0 d 至及/或部件的材料最低限度地進行反應 斑V:吉本上不反應,並且優選完全不反應),·而當殘餘物 與構成真空室及/或部件的材料相同時,則氣相反應性材 料可以疋與殘餘物以及真空室及/或部件均呈反應性的。 如此處所使用,應用於該氣相反應性齒化物與一殘餘物 的反應性的術語「選擇性地」係用於描述在該氣相反應性 齒化物與-殘餘物之間的一優先的反應。儘管與構成離子 植广機的真空室及/或部件的材料保持實質上不反應,如 果”亥真空至及/或部件包含與那些殘餘物本身相同或相似 的元素,氣相反應性鹵化物可以與構成離子植入機的真空 室及/或部件的某些材料進行反應。例如,當與來自一部 件的鎢沈積物選擇性地反應並且將其移除時,該氣相反應 性材料可能也與在部件本身中的鶏反應。對於此共反應的 發生,殘餘物以及部件不必精確地是相同的材料,但是會 包含一些共同的材料。 在另一實施方式中,離子植入機部件在一單獨的專門的 室(部件從一離子植入機中移入其中)中離位地進行清洗。 進一步詳細地考慮原位清洗,此種清洗主要取決於以下 三個因素:清洗前體的反應性的性質,清洗反應副產物的 揮發性,以及在化學清洗中所使用的反應條件。該清洗組 142599.doc •32- 201030792 合物必須移除不必要的殘餘物同時最小化構成離子植入機 的材料的磨損。藉由清洗反應所產生的副產物必須是足夠 揮發性的以便藉由離子植入機的真空系統或其他的抽Μ 置方便它們的移除。 對於與離子植入機的一或多個部件相同的材料形成的殘 餘物的清洗會導致部件本身的一些磨損。確切地說,使用 XeF2作為-清洗劑從―利料電弧室的系統中移除鶴沈積 物會導致來自電弧室的内部的某些鶴的移除。然而,為了 使系統效率最大化,從系統性能降低的角度來看(如果該 系統不進行清洗並且允許鶴沈積物累積在該系統中)電弧 至的某些内部材料的損失不是报要緊的。 該氣相反應性材料可以包括例如一種氟化的山气化合物蒸 氣,例如XeF2蒸氣。XeF2係一優選的反應性齒化物氣體, 並且在室溫下會昇華,但是可以使用一加熱器進行加熱以 增加昇華速率。已知XeF2係一有效的石夕敍刻劑並且已經在 • 微電子機械系統(MEMS)器件處s中用作一石夕選擇性钱刻 劑。確切地說,XeFz與矽根據以下反應進行反應。 2 XeF2 (g) + Si (s) -> 2 Xe (g) + SiF4 (g) ⑽ 該矽/XeF2反應可以不用活化而發生,即,不用電漿或熱 致加熱。XeF2與Si的反應速率遠高於以匕與3丨〇2的反應速 率,使得XeF2選擇性地與si反應。• 2L 201030792, the flow line in the above equipment arrangement is adapted to transfer the cleaning composition from the source of the cleaning composition to the arc chamber under conditions of the month of the month. This adaptation can be based on the different characteristics of the beta wash composition. For example, when the cleaning composition has: low vapor pressure, high conduction can be used to avoid unnecessary pressure drops in the flow path. Methods for maximizing conductance and minimizing flow compression are well known in the art. 9 In all of the cleaning methods of the present invention, the cleaning of the ion implantation system (especially the ion source) may be extended by additional methods and apparatus to extend the life of the ion implantation system (especially the ion source): such an extended life method may include changing an ion The system is implanted to accommodate a particular substrate, deposited material, and/or gas phase reactive material. Variations in system equipment may include, but are not limited to, providing the following: an extraction electrode with an active thermal control system; a frequency of reduced discharge/active heating of the extraction electrode (active y heated extracti〇n electr〇de); Preferred are extraction electrodes of aluminum, molybdenum or aluminum oxide (a12〇3), remote plasma sources; association of extraction electrodes with heaters; association of extraction electrodes with cooling devices; smooth featureless extraction electrodes; a chamber, the plasma chambers being arranged to receive a plurality of source gases that are capable of being decomposed by the plasma to produce a stream of reactant gases passing through the outlet of the chamber and the conduit to deliver the reactive gases to Ionization chamber; temperature detectors designed to detect the substantial end of the exothermic reaction of reactive gases with contamination on the surface of the treatment system'· susceptible to gas phase reactions in the processing equipment Protection of damaged parts of a material (for example, providing protection against such materials around parts susceptible to gas-phase reactive materials) And/or the use of system components including aluminum or alumina 142599.doc •29· 201030792. Methods of extending the life of the processing equipment may include, but are not limited to, actively heating the extraction electrode to reduce the frequency and occurrence of the discharge; heating the extraction electrode above the condensation temperature of the source material delivered to the ion source; actively controlling the fit The temperature of the extraction electrode of the particular type of ion source used is X (a) #thermal or cold* ion source for combined heating or cooling of the electrode); and/or the extraction electrode is maintained at a high temperature during the extraction process. The addition of such additional devices is based on the Fennishing and U.S. Patent Application Publication Nos. 2006/0272776 and 2006/0272775 and International Patent Publication No. WO 05/059942. The description is incorporated herein by reference in its entirety. In a particular embodiment, the ion implantation system includes an arc chamber and a dopant source, wherein the dopant source can include, for example, yang, XA, ASH3, ph3, GeF4, SiF4, sand, He, PF5, PF3 or other sources of dopants that are deleted, Shi Xi, Pan, Tantalum or niobium-containing. In another embodiment, the invention relates to a method for ion implantation comprising generating a plasma from a dopant source gas in an electrical isolation chamber of an ion implantation system, the dopant source gas Flowing through the electricity to form dopant source ions for implantation, wherein at least a portion of the process of the dopant source gas flowing through the electrical isolation chamber and the dopant source gas Flow through the arc in parallel to achieve cleaning in the ion implantation system. In general, although the doping-source gas subtraction material can be flowed in parallel for in-situ cleaning, it is typically preferred to perform the cleaning operation in the manner of: 142599.doc -30· 201030792, for example when the ion source is A first dopant source produces a -first-electropolymerization, and then the ion source is generated from the second dopant source - the second electropolymerization, using an intervening cleaning step in which the gas phase reactive material flows through The ion source is generated with or without plasma. In an embodiment, the invention provides a method of forming a doped germanium substrate, the method comprising implanting Xe+ ions into a germanium substrate, and thereafter implanting dopant ions on the germanium substrate t. In this process, ❿Xe ions are implanted for amorphizing the crystal structure of the substrate. In the formation of fluorinated tantalum plasma (eg, XeF2 plasma) for cleaning, the Xe+ ions can be subjected to low energy sputtering cleaning of some of the sources themselves. After extraction, Xe+ ions can perform high-energy sputtering on downstream components of the ion source, such as vacuum walls, ion optics, wafer pads, and wafer holders. Similarly, in the case of tungsten fluoride species such as WF6, WF5, and/or WF4, free fluoride can be sputtered with clean, different ion source components and/or tungsten can be deposited on different components of the ion source. on. The behavior that occurs between cleaning and deposition depends on the temperature of the various components in the system. The present invention is directed to a method and apparatus for cleaning an ion source region of an ion implantation system for use in the fabrication of a microelectronic device. The ion source region can include, for example, an indirectly heated cathode source, a Freeman source, or a Bernas source. In one embodiment, the present invention relates to sufficient time and sufficient conditions for the vacuum chamber and/or component to be reacted with a vapor-phase reactive lS compound from the ion implanter and the components contained therein. Contacting 142599.doc -31 201030792 in addition to the residue in order to at least partially from the vacuum chamber and / or components - and the system is completed in such a way, :, residue and composition When the materials of the vacuum chamber and/or the components are different, the material is selectively reacted with the residue and minimized with the material constituting the vacuum gold from the implanter to the component and/or the component. The reaction spot V: does not react on the genomic, and preferably does not react at all), and when the residue is the same as the material constituting the vacuum chamber and/or the component, the gas phase reactive material can be smashed with the residue and the vacuum chamber and/or Or the components are all reactive. As used herein, the term "selectively" applied to the reactivity of the gas phase reactive toothing with a residue is used to describe a preferential reaction between the gas phase reactive toothing and the residue. . Although substantially non-reactive with the materials of the vacuum chamber and/or components that make up the ion implanter, if the vacuum is and/or the component contains the same or similar elements as those residues, the gas phase reactive halide can Reacting with certain materials that constitute the vacuum chamber and/or components of the ion implanter. For example, when selectively reacting with and removing tungsten deposits from a component, the gas phase reactive material may also Reacts with enthalpy in the component itself. For this co-reaction to occur, the residue and components need not be exactly the same material, but will contain some common materials. In another embodiment, the ion implanter component is in A separate dedicated chamber (the components are moved into it from an ion implanter) is cleaned off-position. Further consideration is given in situ to cleaning, which depends mainly on three factors: the reactivity of the cleaning precursor. The nature, the volatility of the by-products of the cleaning reaction, and the reaction conditions used in the chemical cleaning. The cleaning group 142599.doc •32- 201030792 must be In addition to unnecessary residue, the wear of the materials constituting the ion implanter is minimized. The by-products produced by the cleaning reaction must be sufficiently volatile to be vacuumed by the ion implanter or other pumping device. Facilitate their removal. Cleaning of the residue formed by the same material as one or more components of the ion implanter can result in some wear on the part itself. Specifically, using XeF2 as a cleaning agent Removal of crane deposits in the system of the chamber results in the removal of certain cranes from the interior of the arc chamber. However, in order to maximize system efficiency, from the point of view of system performance degradation (if the system is not cleaned and allowed The accumulation of certain internal materials to which the arc deposits accumulate in the system is not critical. The gas phase reactive material may comprise, for example, a fluorinated mountain compound vapor, such as XeF2 vapor. XeF2 is preferred. Reactive tolerant gas, and sublimes at room temperature, but can be heated using a heater to increase the rate of sublimation. XeF2 is known An effective Shi Xi scribe and has been used as a lithograph in the microelectromechanical system (MEMS) device. In particular, XeFz reacts with hydrazine according to the following reaction. 2 XeF2 (g) + Si (s) -> 2 Xe (g) + SiF4 (g) (10) The 矽/XeF2 reaction can be carried out without activation, that is, without plasma or by thermal heating. The reaction rate of XeF2 and Si is much higher than that of The reaction rate of ruthenium with 3 丨〇 2 allows XeF2 to selectively react with si.

XeF2或其他氟化的氙化合物作為用於金屬硼的一蝕刻劑 有用地用於本發明的操作。儘管不希望受理論的束缚,但 是認為硼根據以下反應(n)被蝕刻: 142599.doc •33· 201030792 3 XeF2 (g) + 2 B (s) — 3 Xe (g) + 2 BF3 (g) (11) 本發明考慮使用XeF2作為用於珅、礎以及錄的一钱刻劑, 並且可以係關於以下的反應: 5 XeF2 (g) + 2 As (s) -> 5 Xe (g) + 2 AsF5 (g) (12) 5 XeF2 (g) + 2 P (s) — 5 Xe (g) + 2 PF5 (g) (13) 2 XeF2 (g) + Ge (s) -» 2 Xe (g) + GeF4 (g) (14) 此類反應可以使用或不使用高能活化而進行。 當殘餘物材料與那些材料不同時,本發明之方法及裝置 用於至少部分地從離子植入機的部件中移除殘餘物,例 參 如,移除至少25%,更優選至少5〇%並且最優選至少75% 的此種殘餘物,並且藉由這樣一方式來完成:就構成離子 植入機部件的材料而言,例如鋁、鎢、鉬、石墨、絕緣材 料、密封劑材料等,對殘餘物進行選擇性地移除。 當殘餘物與構成部件的材料係相同的材料時,希望有相 似程度的殘餘物移除,同時保持材料從部件中的移除處於 低的程度,例如在微米或數十微米的範圍内,以便不顯著 地影響部件的性能。此外’由於沈積物一般沒有均勾的厚〇 度或沈積,以門在清洗過程中可以比部件本身的材料更具 反應性,這樣該氣相反應性材料組合物比與部件部分的反 應更選擇性地與該殘餘物進行反應。 可以採用幾種形式將氣相反應性材料组合物遞送到可# 進行原位清洗的離子源區域’包括一不流動的方式、—連 續的方式、以及-直接引入的方式。此類清洗方式更全面 地描述於國際公布W〇 07/127865中,連同在本發明的操作 142599.doc •34· 201030792 中有效使用的裝置以及方法學。國際公布w〇 G7/127865的 披露内容藉由引用作為整體結合在此。儘管結合本發明的 不同實施方式在此描述了使用XeF2作為一清洗組合物,但 應理解的是,可以使用其他氟化的化合物,例如wf6、 WFS及/或WF4,替代或結合XeF2,或可以使用其他的以 及額外的氟化的化合物。例如可以使用腳3來钮刻鎢而不 ㈤要電锻。在另-態樣’本發明係關於係關於改良使用固 鲁歸雜材料的一離子植入系統的性能以及延長其壽命之方 法,該方法包含使用XeF2或Ν2;Ρ4作為所述固體推雜材料的 一載氣。該固體摻雜材料包括,但不限於元素砷、磷、 硒、録、SbF3、Ina、Se〇2 '处办及Ιηα3。如本發明所 考慮的使用XeF2或N2?4作為Sb>2〇3、lnci3或其他固體摻 雜材料的-載氣移除了該源室以及其部件上所沈積的sb、XeF2 or other fluorinated ruthenium compounds are useful as an etchant for metal boron useful in the practice of the present invention. Although not wishing to be bound by theory, it is believed that boron is etched according to the following reaction (n): 142599.doc •33· 201030792 3 XeF2 (g) + 2 B (s) — 3 Xe (g) + 2 BF3 (g) (11) The present invention contemplates the use of XeF2 as a scavenger for hydrazine, base, and recording, and may be related to the following reactions: 5 XeF2 (g) + 2 As (s) -> 5 Xe (g) + 2 AsF5 (g) (12) 5 XeF2 (g) + 2 P (s) — 5 Xe (g) + 2 PF5 (g) (13) 2 XeF2 (g) + Ge (s) -» 2 Xe (g + GeF4 (g) (14) Such reactions can be carried out with or without high energy activation. When the residue material is different from those materials, the method and apparatus of the present invention are used to at least partially remove residue from the components of the ion implanter, for example, removing at least 25%, more preferably at least 5% by weight. And most preferably at least 75% of such residues are accomplished by means of materials constituting the components of the ion implanter, such as aluminum, tungsten, molybdenum, graphite, insulating materials, sealant materials, and the like, The residue is selectively removed. When the residue is the same material as the material constituting the component, it is desirable to have a similar degree of residue removal while maintaining the removal of the material from the component to a low extent, such as in the range of microns or tens of microns, so that Does not significantly affect the performance of the part. In addition, because the deposits generally do not have the thickness or deposition of the hooks, the door can be more reactive than the material of the component itself during the cleaning process, so that the gas phase reactive material composition is more selective than the reaction with the component parts. The reaction is carried out sexually with the residue. The gas phase reactive material composition can be delivered in several forms to an ion source region that can be cleaned in situ, including a non-flowing manner, a continuous manner, and a direct introduction. Such cleaning methods are more fully described in International Publication No. 07/127865, along with apparatus and methodology that are effectively used in the operation of the present invention 142599.doc • 34· 201030792. The disclosure of International Publications, 7 G7/127865, is hereby incorporated by reference in its entirety. Although the use of XeF2 as a cleaning composition is described herein in connection with various embodiments of the present invention, it is to be understood that other fluorinated compounds such as wf6, WFS and/or WF4 may be used instead of or in combination with XeF2, or Use other and additional fluorinated compounds. For example, the foot 3 can be used to button tungsten instead of (f) to be forged. In another aspect, the present invention relates to a method for improving the performance and extending the life of an ion implantation system using a Guru-based material, the method comprising using XeF2 or Ν2; Ρ4 as the solid dopant material A carrier gas. The solid doping materials include, but are not limited to, elements arsenic, phosphorus, selenium, smect, SbF3, Ina, Se 〇 2 ' and Ι η α 3 . The carrier gas, as contemplated by the present invention, using XeF2 or N2?4 as Sb>2?3, lnci3 or other solid doped material removes the sb deposited on the source chamber and its components,

In以及其他摻雜劑。該暫態方法即使在Sb植人之後切換為 彌也具有效用。藉由本方法所得的優點至少是兩重的:首 鲁先b提供了即時的源清洗來防止或減少摻雜劑累積到該 離子源至及其。件上,因此改良了離子源性能同時延長離 子源的哥命,第二,它增強及/或穩定了電漿及/或束電 流。 在另-態樣,本發明係關於係關於改良使用氣態挣雜材 料的-離子植入系統的性能並且延長其壽命之方法,該方 法包含用又#2或邮4作為與所述氣體推雜材料的一併流氣 體。該氣態摻雜材料包括,但*限於純4及阳。如本發 明所考慮的,使用邮或灿作為與邮4或其他氣態推雜 142599.doc -35- 201030792 材料的-併流氣體移除了沈積在源室以及其部件上的㈣ 其他的摻雜劑。藉由本發明的這種操作所獲得的優點至少 是兩重的:首先’它提供了即時的源清洗來阻止或減少摻 雜劑累積到該離子源室及其部件上,目此改良了離子源性 能並且延長了離子源壽命;第二,它增強及/或穩定了電 漿及/或束電流。 在另一態樣,本發明係關於係關於清洗一離子植入系統 的一前級管道以便移除此處與電離作用有關的沈積物之方 法,包含將一離子植入系統的前級管道與一清洗氣體在以 下反應條件下進行接觸,其中所述清洗氣體與該沈積物具 有化學反應性以實現其中至少部分地移除。沈積物包括, 但不限於包括B、Ge、Si、P及As,或它們的混合物的那 些物質。該清洗氣體包括但不限於XeF2、ν2Ϊ?4、f2以及與 前述構成的一沈積物呈反應性的其他氟化的物質。如熟習 該項技術者所理解,所需要的清洗氣體的量取決於存在的 沈積物的量。類似地,在清洗氣體與沈積物反應的過程中 釋放出的熱的量取決於清洗氣體的流速。從清洗過程中產 生的副產物種類的識別以及濃度取決於清洗氣體的流速、 沈積物的組合性構成、以及泵吹掃流速。僅用於非限制性 說明的目的,以下對使用XeF2從一前級管道中清洗磷的一 實例進行說明: 用於確定在清洗過程中所需要的XeF2量的化學反應係: 5 XeF2 (g)+2 P (s)45 Xe (g)+2 PF5 (g)。形成捨(以 kJ/mol) 係取自 Lange’s Handbook of Chemistry (14th ed)並且在此列 142599.doc -36 - 201030792 出用於確定在反應過程中 ^狂1f所釋放的熱:XeF2(_164);In and other dopants. This transient method has utility even if it is switched to Sb after Sb implantation. The advantages obtained by this method are at least twofold: Shou Lu Xian b provides an instant source cleaning to prevent or reduce the accumulation of dopants into the ion source to it. Thus, the ion source performance is improved while prolonging the ion source's life, and second, it enhances and/or stabilizes the plasma and/or beam current. In another aspect, the present invention relates to a method for improving the performance and extending the life of an ion implantation system using a gaseous fusible material, the method comprising using #2 or 4 as a gas to be mixed with the gas A parallel flow of material. The gaseous dopant material includes, but is limited to, pure 4 and positive. As contemplated by the present invention, the co-current gas using postal or luminescence as a material for the postal or other gaseous 142599.doc-35-201030792 removes (d) other dopants deposited on the source chamber and its components. . The advantages obtained by this operation of the present invention are at least twofold: firstly, it provides immediate source cleaning to prevent or reduce dopant accumulation onto the ion source chamber and its components, thereby improving the ion source. Performance and extended ion source life; second, it enhances and/or stabilizes plasma and/or beam current. In another aspect, the present invention is directed to a method of cleaning a pre-stage conduit of an ion implantation system for removing deposits associated with ionization herein, comprising implanting a pre-stage of an ion implantation system with A purge gas is contacted under reaction conditions wherein the purge gas is chemically reactive with the deposit to effect at least partial removal therein. Deposits include, but are not limited to, those comprising B, Ge, Si, P, and As, or mixtures thereof. The purge gas includes, but is not limited to, XeF2, ν2??4, f2, and other fluorinated materials that are reactive with a deposit of the foregoing composition. As will be understood by those skilled in the art, the amount of cleaning gas required will depend on the amount of deposit present. Similarly, the amount of heat released during the reaction of the purge gas with the deposit depends on the flow rate of the purge gas. The identification and concentration of by-product species produced during the cleaning process depends on the flow rate of the purge gas, the combined composition of the deposits, and the pump purge flow rate. For purposes of non-limiting illustration only, an example of the cleaning of phosphorus from a pre-stage pipeline using XeF2 is illustrated below: Chemical reaction system for determining the amount of XeF2 required during the cleaning process: 5 XeF2 (g) +2 P (s) 45 Xe (g) + 2 PF5 (g). The formation (in kJ/mol) is taken from Lange's Handbook of Chemistry (14th ed) and is listed here 142599.doc -36 - 201030792 to determine the heat released during the reaction: XeF2 (_164) ;

Xe(0) ; P(〇);以及 PF5(_159 • ) XeF2的流速決定了清洗 過程所需要時間的長度連同m 所釋放的熱。沒有提供加熱Xe(0); P(〇); and PF5(_159 • ) The flow rate of XeF2 determines the length of time required for the cleaning process along with the heat released by m. No heating provided

XeF2氣瓶的手段,最大的拉遙、.ώμ j 丁议取八叩符續流速係大約50 sccm,假定 有足夠的遞送管道傳導率。Α 子守午如果藉由使用一加熱夾套保持 該氣瓶在室溫下,則流速可以增加到⑽s_或更大。清 洗磷沈積物所需的XeF2的量在表!中示出,且在該清洗反 ❿ 應過程中釋放的熱的量在表2中示出。 表1 所需的又啦的量⑻ 1修:霞:賞、賢'叫 - 表2 叙磁病'V。 'g:- / ^: ,、 -<S K .〜〆令少 ' . *· 5〇.t. :·';;;'·,-,' ;", ,、Ί . .^4,. /<«'' Ί , 、 . · 、 ·Λ 17.6:;·.;·; ν; ~ 二 * . ν*^ > :乂岁· Τ ^ ' 35-, - · ν '' ,〇r-: ·:,ν -:;^; ν'- ' > ',,! ' - ' - ' ^ 200 ^ „ . 八、-,、: ..' > . 70 ' Λ ' /、 ' ·· J -\k ' '....:Π..·:::·::. ? 來自上述的清洗反應中的不同副產物的最大產生速率在 表3中示出。The means of XeF2 gas cylinders, the largest pull-up, ώμ j 议 取 叩 续 续 continuous flow rate is about 50 sccm, assuming sufficient delivery duct conductivity. If the cylinder is kept at room temperature by using a heating jacket, the flow rate can be increased to (10) s or more. The amount of XeF2 required to clean the phosphorus deposits is in the table! The amount of heat shown in the process and released during the cleaning reaction is shown in Table 2. Table 1 The amount of replenishment required (8) 1 repair: Xia: reward, Xian 'called - Table 2 〗 〖Symbolic disease 'V. 'g:- / ^: , , -<SK .~〆令少' . *· 5〇.t. :·';;;'·,-,' ;", ,,Ί . .^4 ,. /<«'' Ί , , . . . , ·Λ 17.6:;·.;·; ν; ~ 二* . ν*^ > :乂岁· Τ ^ ' 35-, - · ν '' ,〇r-: ·:,ν -:;^; ν'- ' > ',,! ' - ' - ' ^ 200 ^ „ . Eight, -,,: ..' > . 70 ' Λ ' /, '·· J -\k ' '....:Π..·:::::: The maximum production rate of the different by-products from the above washing reaction is shown in Table 3.

XeF2 的流速 (seem) :::酶:::::::::丨 ......... . BF3 '’亡 SiF4 50 0.20g/min (33.3 seem) 0.13 g/min (33.3sccm) 0.10 g/min (33:3 seem) 0.17 g/min (25 seem) 0.12 g/min (25 seem) 142599.doc • 37- 201030792 如熟習該項技術者所理解,由於殘餘物的組成可能不 因此在表3中示出的資料係基於以下假設:副產物的 量係確定為對於每種元素假定1〇〇%係那種元素的組成性 構成°此外’該等物質的最域度取決於在排氣系統中的 稀釋流速。例如’如果低真空泵具有—1G咖的氣氣清 洗,則就在該泵的下游,PL的最大穩定態濃度係333〇 ppm如果XeF2的流速大於50 seem,則該值可以增加。 在上述方法的一實施方式中,該清洗氣體流入該植入源 室’渦輪泵關閉而低真空泵打開。此操作增強了經過前級 管道的沈積物上方的清洗氣體的流速,因此提供了 一更快 的清洗過程。清洗氣體流的速率可以進一步藉由對在其中 使該清洗氣體存儲在室溫或室溫以上的該氣瓶進行加熱。 優選在此操作中對從氣瓶到離子植入機的遞送管線類似地 進行加熱。 在上述方法的另一實施方式中,該清洗氣體以一脈衝流 方式流入該植入源室中,其中將該植入源室、該泵以及前 級管道充到某一壓力並且然後抽到更低的壓力。重複此過 程直至移除離子植入系統的前級管道上的沈積物。此操作 優選使用在該低真空泵的進口上的一隔離閥。 在一優選的操作中,上述實施方式進一步包含對在其中 使該清洗氣體存儲在室溫或室溫以上的該氣瓶進行加熱。 對於所有實施方式’該方法優選進一步包含在該低真空 泵出口上的一氣體洗滌器以便從清洗過程中移除所產生的 揮發性副產物。 142599.doc -38- 201030792 每個實施方式優選進一步包含如從Air Products and Chemicals, Inc.(PA,USA)可商購的一Xe回收系統,並且描 述於 http://www.fabtech.org/product_briefings/_a/new_ product_air_products_offers_on_site_xenon_recovery·,中, 其併入本文中。 清洗一離子植入系統的一前級管道的方法的另一實施方 式包含在一渦輪泵下游提供該清洗氣體並且將所述清洗氣 體連續地流過該離子植入系統的前級管道。所述清洗氣體 之連續流動可直接進入源殼、源殼與源渦輪泵之間的區 域,或源渦輪泵之下游。此操作優選清洗前級管道上的沈 積物(即使當該植入過程進行時),由此減小離子植入操作 的中斷。 在上述的實施方式中,該清洗氣優選存儲在一氣瓶中; 該方法優選進一步包含對在其中使該清洗氣體存儲在室溫 或室溫以上的該氣瓶進行加熱。 上述的實施方式優選進一步包含在該低真空泵的出口提 供一氣體洗滌器以便從該清洗過程中移除所產生的揮發性 副產物。 上述的實施方式進一步包含提供一如從Air Products and Chemicals,Inc.(PA,USA)可商購的Xe回收系統,並且描述 於 http://www.fabtech.org/product_briefings/_a/new_product_ air_products_offers_on_site_xenon_recovery.,中’其併入 本文中。 在另一態樣,本發明係關於係關於改良具有一陰極的一 142599.doc -39- 201030792 離子植入系統的性能並且延長其壽命之方法,該方法包含 將該陰極與由至少—種清洗氣體以及至少-種沈積氣體構 成的-氣體混合物進行接觸,其中所述氣體混合物平衡了 材料在该陰極上的沈積與該材料或其他材料從該陰極上的 制離。氣體混合物的清洗氣體移除了沈積在該陰極上的捧 雜劑材料以及陰極的材料,而氣體混合物的沈積氣體直接 或間接地引起掺雜劑材料沈積在該陰極上。此氣體混合物 保持了在6亥陰極上掺雜材料的累積以及它或其他材料的剝 離之間的一平衡,並且因此延長了離子源的壽命。將理解 不僅掺雜劑材料可經沈積或蝕刻,而且電弧室壁之材料 (例如,W或Mo)可經沈積或蝕刻。清洗氣體直 接地(經由 濺鍍或化學蝕刻)或間接地(經由氟化鎢/氟化鉬之化學除 氣)防止沈積或降低沈積速率。沈積氣體經由鹵素循環(來 自氣體之氟姓刻來自冷卻壁的貿或河^,且接著將W4M〇 分解至非常熱的陰極上或藉由在陰極上實際地沈積摻 雜劑分子/原子(例如,來自BF3之B)而造成陰極上之沈積, 且一類似機制應用於貝爾納離子源之絲極。對於絕緣體或 電弧室之其他靈敏部件上之摻雜劑沈積的狀況,清洗氣體 傾向於化學钱刻經形成之摻雜劑沈積物,或清洗氣體可在 掺雜劑沈積之前首先與沈積氣體反應以阻止或最小化沈 積。以實例說明在第一情況中清洗氣體可如何阻止沈積: 沈積氣體GeHU可使Ge沈積物形成於陰極、絕緣體或其他 部件上。若清洗氣體為XeF2,則其可與GeH4反應以形成比 Ge更具揮發性的至少一些量之GeF2&/或GeF4,且因此可 142599.doc -40- 201030792 經由抽吸從源區域移除。此外,沈積氣體及清洗氣體之任 一者或兩者亦可係摻雜劑氣體。該氣體混合物在離子源植 入機中的存儲及分配可以藉由使用以下各項來完成:一吸 附·解吸裝置(被稱為SDS-安全遞送源),它描述於美國專利 號5,518,528中,並且其内容藉由引用併入本文;一包含用 於保持一流體在所希望的一壓力下的容器的流體存儲及分 配系統(被稱為VAC真空致動氣瓶)描述於美國專利號 0,101,816中,並且其内容藉由引用併入本文;或一8〇:5與 ❹ VAC的混合流體存儲及分配系統(被稱為VAC-Sorb),它描 述於美國專利號6,089,027中並且其内容藉由引用併入本 文。該等流體存儲及分配系統提供了氣體在低於大氣壓下 的遞送’並且由此比高壓流體存儲及分配系統更安全並且 更有效。此外’該氣體混合物中的一些氣體可以一起在 SDS、VAC或VAC-Sorb系統中存儲及分配,該等氣體在高 壓流體存儲及分配系統中的共存係不相容的。 φ 在以上方法的一實施方式中,氣體混合物的多種氣體同 時地流動以便接觸該陰極或易受沈積影響之其他靈敏部 件。 在以上方法的另一實施方式中,氣體混合物的多種氣體 順序地流動以便接觸該陰極或易受沈積影響之其他靈敏部 件。 在以上方法的另一實施方式中,氣體混合物包含至少一 種含氫氣體與至少一種含氟氣體的一組合,其中該含氫氣 體作為清洗氣體而該含氟氣體作為沈積氣體。 142599.doc 41 201030792 在以上方法的另一實施方式中,該氣體混合物包含至少 種非摻雜氣體(即不含八3、?、(^、3、以、或(:的氣體) 與^少-種摻雜氣體的一組合,其中該非摻雜氣體作為清 洗氣體而該摻雜氣體作為沈積氣體。 清洗氣體的實例係但不限於Xe/H2、Ar/%、Ne/出、Flow rate of XeF2 (seem) :::Enzyme:::::::::丨....... . BF3 ''Death SiF4 50 0.20g/min (33.3 seem) 0.13 g/min (33.3 Sccm) 0.10 g/min (33:3 seem) 0.17 g/min (25 seem) 0.12 g/min (25 seem) 142599.doc • 37- 201030792 As understood by those skilled in the art, due to the composition of the residue The data not shown in Table 3 is therefore based on the assumption that the amount of by-products is determined to be a constitutive composition of the elements assumed to be 1% for each element. In addition, the most locality of such substances depends on The dilution flow rate in the exhaust system. For example, if the low vacuum pump has a gas purge of -1 G coffee, then the maximum steady state concentration of PL is 333 〇 ppm downstream of the pump. If the flow rate of XeF2 is greater than 50 seem, the value can be increased. In an embodiment of the above method, the purge gas flows into the implant source chamber. The turbo pump is turned off and the low vacuum pump is turned on. This operation enhances the flow rate of purge gas over the deposits of the foreline, thus providing a faster cleaning process. The rate of purge gas flow can be further heated by heating the gas cylinder in which the purge gas is stored at or above room temperature. Preferably, the delivery line from the gas cylinder to the ion implanter is similarly heated in this operation. In another embodiment of the above method, the cleaning gas flows into the implant source chamber in a pulsed manner, wherein the implant source chamber, the pump, and the pre-stage tube are charged to a certain pressure and then pumped to a more Low pressure. This process is repeated until the deposit on the foreline of the ion implantation system is removed. This operation preferably uses an isolation valve on the inlet of the low vacuum pump. In a preferred operation, the above embodiment further comprises heating the gas cylinder in which the cleaning gas is stored at or above room temperature. For all embodiments, the method preferably further comprises a gas scrubber at the outlet of the low vacuum pump to remove the volatile byproducts produced from the cleaning process. 142599.doc -38- 201030792 Each embodiment preferably further comprises a Xe recovery system as commercially available from Air Products and Chemicals, Inc. (PA, USA) and is described at http://www.fabtech.org/ Product_briefings/_a/new_ product_air_products_offers_on_site_xenon_recovery·, which is incorporated herein. Another embodiment of a method of cleaning a pre-stage conduit of an ion implantation system includes providing the purge gas downstream of a turbo pump and continuously flowing the purge gas through a foreline of the ion implantation system. The continuous flow of purge gas can be directed to the source shell, the region between the source shell and the source turbine pump, or downstream of the source turbine pump. This operation preferably cleans the deposit on the foreline (even when the implantation process is performed), thereby reducing the interruption of the ion implantation operation. In the above embodiment, the purge gas is preferably stored in a gas cylinder; the method preferably further comprises heating the gas cylinder in which the purge gas is stored at or above room temperature. The above embodiments preferably further comprise providing a gas scrubber at the outlet of the low vacuum pump to remove the volatile by-products produced from the cleaning process. The above embodiments further comprise providing a Xe recovery system as commercially available from Air Products and Chemicals, Inc. (PA, USA) and described at http://www.fabtech.org/product_briefings/_a/new_product_air_products_offers_on_site_xenon_recovery. , 'which is incorporated herein. In another aspect, the present invention is directed to a method for improving the performance and extending the life of a 142599.doc-39-201030792 ion implantation system having a cathode, the method comprising cleaning the cathode with at least one The gas is contacted with a gas mixture of at least one deposition gas, wherein the gas mixture balances the deposition of the material on the cathode and the separation of the material or other material from the cathode. The purge gas of the gas mixture removes the dopant material deposited on the cathode and the material of the cathode, and the deposition gas of the gas mixture causes the dopant material to deposit directly or indirectly on the cathode. This gas mixture maintains a balance between the accumulation of dopant material at the 6-gal cathode and the stripping of it or other materials, and thus extends the life of the ion source. It will be appreciated that not only the dopant material may be deposited or etched, but also the material of the arc chamber wall (e.g., W or Mo) may be deposited or etched. The cleaning gas is prevented from depositing or reducing the deposition rate by direct grounding (via sputtering or chemical etching) or indirectly (by chemical degassing of tungsten fluoride/molybdenum fluoride). The deposition gas is circulated through the halogen (the fluorine from the gas is engraved from the gas or gas from the stave, and then the W4M is decomposed to a very hot cathode or by actually depositing dopant molecules/atoms on the cathode (eg , from B) of BF3, causing deposition on the cathode, and a similar mechanism is applied to the filament of the Bernard ion source. For the deposition of dopants on insulators or other sensitive components of the arc chamber, the cleaning gas tends to be chemical The dopant deposit formed by the money engraving, or the cleaning gas, may first react with the deposition gas to prevent or minimize deposition prior to dopant deposition. An example illustrates how the cleaning gas may prevent deposition in the first case: deposition gas GeHU can form Ge deposits on the cathode, insulator or other components. If the purge gas is XeF2, it can react with GeH4 to form at least some amount of GeF2&/or GeF4 that is more volatile than Ge, and thus 142599.doc -40- 201030792 is removed from the source area via suction. In addition, either or both of the deposition gas and the cleaning gas may be a dopant gas. The storage and distribution of the compound in the ion source implanter can be accomplished by using an adsorption/desorption device (referred to as an SDS-safe delivery source) as described in U.S. Patent No. 5,518,528, and The contents are incorporated herein by reference; a fluid storage and dispensing system (referred to as a VAC vacuum actuated gas cylinder) containing a container for maintaining a fluid at a desired pressure is described in U.S. Patent No. 0,101,816 And its contents are incorporated herein by reference; or a mixed fluid storage and distribution system (referred to as VAC-Sorb) of 〇 VAC and ❹ VAC, which is described in U.S. Patent No. 6,089,027 and the content of which is incorporated herein by reference. The references are incorporated herein. These fluid storage and distribution systems provide delivery of gas at sub-atmospheric pressures' and are thus safer and more efficient than high pressure fluid storage and distribution systems. Further, some of the gases in the gas mixture can be together Storage and distribution in SDS, VAC or VAC-Sorb systems, the coexistence of such gases in high pressure fluid storage and distribution systems is incompatible. φ One implementation of the above method Wherein the plurality of gases of the gas mixture flow simultaneously to contact the cathode or other sensitive components susceptible to deposition. In another embodiment of the above method, the plurality of gases of the gas mixture sequentially flow to contact the cathode or are susceptible to In another embodiment of the above method, the gas mixture comprises a combination of at least one hydrogen-containing gas and at least one fluorine-containing gas, wherein the hydrogen-containing gas acts as a purge gas and the fluorine-containing gas acts as a deposition Gas. 142599.doc 41 201030792 In another embodiment of the above method, the gas mixture comprises at least one non-doped gas (ie, does not contain eight, three? a combination of (^, 3, or, (: gas) and ^ less-type doping gas, wherein the non-doped gas acts as a cleaning gas and the doping gas acts as a deposition gas. Examples of cleaning gas are but not Limited to Xe/H2, Ar/%, Ne/out,

Xe/NH3 ' Ar/NH3、Ne/NH3、Ar/Xe、及 Ar/Xe/H2。 沈積氣體的實例係(但不限於):F2、N2F4、Cl。、wF6、Xe/NH3 'Ar/NH3, Ne/NH3, Ar/Xe, and Ar/Xe/H2. Examples of deposition gases are, but are not limited to, F2, N2F4, Cl. , wF6,

MoF6、GeF4及 NF3。MoF6, GeF4 and NF3.

氣體混合物的實例係(但不限於):AsH3/AsFExamples of gas mixtures are (but not limited to): AsH3/AsF

AsH3/AsF5 > PH3/PF3 ^ PH3/PF5 . SiH4/SiF4 . H2/Xe/SiF4 ^ GeH4/GeF4、H2/Xe/GeF4、H2/GeF4、B2ivBF3、、 F2/BF3 ^ co2/F2 ^ co2/cf4 > co/f2 ^ co/cf4 ^ cof2/f2 > cof2/ch4、cof2/h2。 本發明的特點及優點藉由以下非限制性的實例更全面地 示出。 實例1 此實例示出了在離子源壽命上的改良以及植入機的利 用,這藉由使用一化學清洗劑來移除沈積物可以實現。優 選地,以有規律的間隔移除沈積物以便阻止植入機中的污 染物薄片及傳導膜的積累。 原位清洗係藉由以有規律的間隔自位於離子植入機的氣 體箱中的XeF2的供給容器引入XeF2來進行,其中青先 蒸氣以每日兩次每次1〇·丨5分鐘引入該離子源中。使用一 尚電流植入機來試驗以評估該清洗試劑的流動動力風。 予。確 142599.doc -42- 201030792 定了 XeF2清洗特性並且證實了該清洗劑對植入機的束流管 道部件沒有不利的影響。於是,使用XeI?2試劑的清洗過程 對於在一中度電流植入機裝置中使用係合格的。 圖1係由此類中度電流植入機在原位清洗過程的實施之 前及之後所彙編的離子源壽命資料的一圖表。該等資料係 對於包括砷化氫以及磷化氫的一摻雜組合物來開發的。在AsH3/AsF5 > PH3/PF3 ^ PH3/PF5 . SiH4/SiF4 . H2/Xe/SiF4 ^ GeH4/GeF4, H2/Xe/GeF4, H2/GeF4, B2ivBF3, F2/BF3 ^ co2/F2 ^ co2/ Cf4 > co/f2 ^ co/cf4 ^ cof2/f2 > cof2/ch4, cof2/h2. The features and advantages of the present invention are more fully shown by the following non-limiting examples. Example 1 This example shows an improvement in ion source life and the use of an implanter, which can be achieved by using a chemical cleaner to remove deposits. Preferably, the deposits are removed at regular intervals to prevent accumulation of contaminant sheets and conductive membranes in the implanter. In-situ cleaning is carried out by introducing XeF2 from a supply container of XeF2 located in a gas box of the ion implanter at regular intervals, wherein the qingshui vapor is introduced twice a day for 1 〇 丨 5 minutes. In the ion source. A still current implanter was used to test to assess the flow dynamics of the cleaning reagent. Give. Indeed 142599.doc -42- 201030792 defined the XeF2 cleaning characteristics and confirmed that the cleaning agent did not adversely affect the beam conduit components of the implanter. Thus, the cleaning process using the XeI 2 reagent is acceptable for use in a moderate current implanter device. Figure 1 is a graph of ion source lifetime data compiled by such a moderate current implanter before and after the in-situ cleaning process. Such data was developed for a doped composition comprising hydrogen hydride and phosphine. in

清洗之前,受兩種常見的故障模式的限制,該離子源具有 大約25〇土9〇小時的平均操作壽命。 主要的故障模式係從一抑制器電壓電源的過度洩露。為 了成功萃取一穩定離子束,將抑制器電壓施加到定位於該 電弧室外部的-電極上。該電極藉由多個小的絕緣體進行 電隔離,並且在該等絕緣體中的一或多個上的一傳導膜的 積累可能引起過度的抑制器洩露。 故障的可歸因於所沈積材料的薄片的電弧 室中部件的短路。 的化學清洗過程而最小 中源的壽命。 發現,該等故障模式可藉由原位 化。定期每日兩次清洗增加了生產Prior to cleaning, the ion source has an average operating life of approximately 25 〇 9 〇 hours, limited by two common failure modes. The main failure mode is an excessive leakage from a suppressor voltage supply. In order to successfully extract a stable ion beam, a suppressor voltage is applied to the -electrode positioned outside the arc chamber. The electrodes are electrically isolated by a plurality of small insulators and the accumulation of a conductive film on one or more of the insulators may cause excessive suppressor leakage. The failure is attributable to a short circuit of the components in the arc chamber of the sheet of deposited material. The chemical cleaning process is minimal while the source life is. It was found that these failure modes can be in situ. Regular cleaning twice a day increases production

XeF2對抑制器的洩露電流的影響 =中度電一入原位清洗操作之之 露電流的—圖表。每個數據點表示在需要植入一晶 圓批次的時間的過程中的一平均抑制器電流,並 :經隨:幾個離子源的壽命標繪出。茂露的大小取=從 -人預防性維護的絕緣體的更換開始的實 資料示出定期原位清洗大大降低了,露電流,這樣它= 142599.doc • 43- 201030792 達到1.5 mA的上控制限’在該點需要一未經排程的源維 護。 π 還使用包括BF3及PH3的一植入摻雜混合評估了原位清洗 的效果。該源在該等條件下操作了 497小時並且在一電弧 限制條件下(係關於絲極上的鎢或硼沈積物)發生了故障, 這可歸因於BF3的化學性質。操作係關於在試驗系統中497 小時的單個源壽命與在相同系統中長期的歷史平均值299 小時相比是有利的。這係一單個的資料點,但是它適合所 建立的模型。在這種情況下,源壽命的改良看上去是由於 在該源電孤室中用Xel?2敍刻了鶬沈積物。 圖3 A及3B的照片提供了清洗劑效果的另外的證據。在 兩幅照片中,示出了在每種情況下大約生產98天之後,移 去週期性預防性維護的離子源總成之後離子源殼的外觀。 對於圖3 A中的照片,每天進行兩次原位清洗,而對於圖 3B中的照片,沒有進行清洗。 在沒有清洗時,存在實質量的沈積的材料,其中有些已 經開始層離及片落。在定期維護活動中,使用手動擦洗來 從殼的内表面移除沈積的材料。用原位清洗該殼看上去更 乾淨,無需花較少時間或不花時間進行手動清洗。沈積物 藉由未反應的XeFs流出該電弧室並且傳到真空室的壁上進 行移除,而摻雜劑以及其他沈積物藉由化學反應移除。 在该離子源之中以及周圍的沈積物產生所謂的「植入機 έ己憶效應」。當從一摻雜劑源氣體改變成另一種時,在該 第一摻雜氣體流入終止之後很長時間,來自該第一摻雜劑 142599.doc -44 - 201030792 元素的離子繼續從該離子源電漿中萃取。此效應在有些情 況下引起所希望的離子束流的嚴重污染並且導致植入過程 的惡化。 該植入機記憶效應的一實例係在一 BI?2植入中的p污染。 這種污染對工藝產量的後果係如此嚴重,以致於眾多的半 導體生產設施都在避免將磷及硼的植入排程到相同工具 上。這係在排程植入操作時的一實質性障礙。p/BF2污染 起因於使用PH3的植入的源中的磷沈積物。當對於BF2 +植 入更換成BF3氣體時,一些氟反應形成了 31ρ19ρ+。31ρ19ρ+ 的質量係50。這非常足以接近對於nBl9F2所希望的的的質 量,這樣PF+與BF/離子共植入。結果係,Bf2+植入受到 了在特疋質量-忐量範圍具有最低限度的質量解析能力的 某些高電流系統的限制。 用來自PH3摻雜氣體的p+離子束使用一高電流植入機在 模擬生產中操作大約200小時對XeF2清洗進行評估,以確 • 定它對該植入機記憶效應的影響。該系統切換成BF3氣體 並且使用一尚劑量(5><1〇15沁旧/⑽”的Bp/直接植入一裸 露的石夕監視器晶圓。在BF2+植入的過程中,系統的分析磁 體的解析孔比通常更大地打開以確保污染效應對使用二次 離子質譜(SIMS)分析的常規量測足夠大。 BF3、氬以及XeF2的清洗效果係藉由操作這3種氣體中的 每一種並且然後藉由用BIV植入監視器晶圓週期地監測剩 餘3染物的量來進行比較。與BF2共植入的p的量藉由 SIMS進行量測。在圖4A中示出所植入的磷的一典型的 142599.doc •45· 201030792Effect of XeF2 on the leakage current of the suppressor = Chart of the current of the neutral power into the in-situ cleaning operation. Each data point represents an average suppressor current during the time required to implant a wafer batch, and is plotted along with the lifetime of several ion sources. The size of the lure = the actual data from the replacement of the person-preventive maintenance of the insulation shows that the regular in-situ cleaning is greatly reduced, the current is exposed, so that it = 142599.doc • 43- 201030792 reaches the upper control limit of 1.5 mA 'At this point, an unscheduled source maintenance is required. π also evaluated the effect of in-situ cleaning using an implant doping mixture including BF3 and PH3. The source was operated under these conditions for 497 hours and under an arc limiting condition (with respect to tungsten or boron deposits on the filament), which was attributable to the chemistry of BF3. The operating system is advantageous with respect to a single source life of 497 hours in the test system compared to a long-term historical average of 299 hours in the same system. This is a single data point, but it fits the model built. In this case, the improvement in source life appears to be due to the engraving of the ruthenium deposits with Xel?2 in the source cell. The photographs of Figures 3A and 3B provide additional evidence of the effectiveness of the cleaning agent. In both photographs, the appearance of the ion source shell after removal of the periodically preventatively maintained ion source assembly after approximately 98 days of production in each case is shown. For the photograph in Fig. 3A, in-situ cleaning was performed twice a day, and for the photograph in Fig. 3B, no cleaning was performed. In the absence of cleaning, there is a substantial amount of deposited material, some of which have begun to delaminate and flake. Manual scrubbing is used to remove deposited material from the inner surface of the shell during regular maintenance activities. Cleaning the shell in situ looks cleaner and does not require less time or time for manual cleaning. The deposits exit the arc chamber by unreacted XeFs and pass to the walls of the vacuum chamber for removal, while dopants and other deposits are removed by chemical reaction. Deposits in and around the ion source produce a so-called "implantation effect". When changing from one dopant source gas to another, ions from the first dopant 142599.doc -44 - 201030792 element continue to be from the ion source long after the first dopant gas inflow ceases Extraction in plasma. This effect in some cases causes significant contamination of the desired ion beam current and leads to deterioration of the implantation process. An example of the memory effect of the implanter is p-contamination in a BI?2 implant. The consequences of this pollution on process yields are so severe that many semiconductor production facilities are avoiding the implantation of phosphorus and boron onto the same tool. This is a substantial obstacle in scheduling implant operations. The p/BF2 contamination results from phosphorus deposits in the implanted source using PH3. When the BF2 + implant was replaced with BF3 gas, some of the fluorine reaction formed 31ρ19ρ+. The mass of 31ρ19ρ+ is 50. This is very close enough to the desired quality for nBl9F2, such that PF+ is co-implanted with BF/ion. As a result, Bf2+ implantation is limited by certain high current systems that have minimal mass resolution capabilities in the special mass-mass range. The XeF2 wash was evaluated using a p+ ion beam from a PH3 doping gas using a high current implanter for approximately 200 hours in simulated production to determine its effect on the memory effect of the implant. The system switches to BF3 gas and is implanted directly into a bare Shixi monitor wafer using a dose (5 > 1 〇 15 沁 old / (10) Bp/. During the BF2+ implantation process, the system The analytical wells of the analytical magnets are opened larger than usual to ensure that the contamination effect is sufficiently large for conventional measurements using secondary ion mass spectrometry (SIMS) analysis. The cleaning effect of BF3, argon and XeF2 is achieved by operating each of these three gases. One and then a comparison is made by periodically monitoring the amount of the remaining 3 stains with a BIV implanted monitor wafer. The amount of p co-implanted with BF2 is measured by SIMS. The implanted is shown in Figure 4A. A typical phosphatigen 142599.doc •45· 201030792

sms譜,其中在磷譜中的峰對應於從該離子源萃取的pF 離子的植入深度,並且該劑量對應於在BF2中大約3% pF的 一污染程度。 圖4B係使用BF3或XeF2污染程度作為清洗時間的一函數 的圖,其中該圖在從PH;轉變成到BF<3之後立即歸一化 (normalize)到污染程度。當操作Eh電锻時即使剀、時之後 對PF污染也幾乎無影響。當使用氬電漿時,獲得了類似的 結果(未示出)。藉由比較,打污染在用XeF2原位清洗僅Μ 分鐘之後減少了兩倍,而在用XeF2原位清洗3〇分鐘之後減 少了幾乎5倍。 使用原位清洗之前,該中等電流植入機單元每月每工具 係平均3.3次源更換,其中平均的源更換過程以及隨後的 合格試驗需要大約5小時,相當於每工具每年的生產時間 才貝失近200小時。源壽命藉由原位清洗有效地加倍了對 於每個中等電流工具產生了約1〇〇小時的額外的生產時 間。試驗晶圓產生的節省,連同生產時間以及合格晶圓的 後處理所需的度量衡工具的節省(對於每個中等電流植入 機每年進行尚達40次合格試驗),證明了原位清洗的有效 性。 實例2 此實例證明了在一說明性的離子植入機系統的離子源中 絲極生長的控制。 圖5A係示出了就增加的絲極電流及重量而言Xe]p2流以及 電弧功率變化的效應的一圖表。該圖示出了絲極重量(以 142599.doc -46· 201030792 克計)作為植入機系統的操作實耗時間(以小時計)的函數的 圖。該圖中較高的線代表以每分鐘2.2標準立方厘米(sccm) 的XeF2流量以及100伏特/0·05安培的電弧功率操作,對 此,在3小時操作之後確定了一319毫克/小時的絲極重量 增加。該圖中較低的線反映了 〇_5 sccm的xeF2流量以及4〇 伏特/0.05安培電弧功率,這在3小時的持續執行時間中產 生了 63毫克/小時的絲極重量增加。The sms spectrum, wherein the peak in the phosphorus spectrum corresponds to the implantation depth of the pF ion extracted from the ion source, and the dose corresponds to a degree of contamination of about 3% pF in BF2. Figure 4B is a graph using BF3 or XeF2 contamination levels as a function of cleaning time, where the graph normalizes to the degree of contamination immediately after transitioning from PH; to BF<3. When operating Eh electric forging, there is almost no effect on PF contamination even after aging and time. A similar result (not shown) was obtained when argon plasma was used. By comparison, the contamination was reduced by a factor of two after in-situ washing with XeF2 for only one minute, and nearly five times after in-situ washing with XeF2 for 3 minutes. Prior to in-situ cleaning, the medium-current implanter unit averaged 3.3 source changes per tool per month, with an average source replacement process and subsequent qualifying tests requiring approximately 5 hours, equivalent to the annual production time per tool. Lost nearly 200 hours. The source life effectively doubles the additional production time for each medium current tool by in-situ cleaning for about 1 hour. The savings from test wafers, along with the savings in metrology tools required for production time and post-processing of qualified wafers (up to 40 qualifying tests per year for each medium current implanter), demonstrates effective in-situ cleaning Sex. Example 2 This example demonstrates the control of filament growth in an ion source of an illustrative ion implanter system. Figure 5A is a graph showing the effect of Xe]p2 flow and arc power variation with respect to increased filament current and weight. The graph shows the filament weight (as 142599.doc -46.201030792 grams) as a function of the elapsed time (in hours) of the implant system operation. The higher line in the figure represents a XeF2 flow of 2.2 standard cubic centimeters per minute (sccm) and an arc power of 100 volts/0.55 amps, for which a 319 mg/hr is determined after 3 hours of operation. The weight of the filament is increased. The lower line in the figure reflects the xeF2 flow of 〇_5 sccm and the 4 volt/0.05 amp arc power, which produces a filament weight gain of 63 mg/hr over a 3 hour continuous execution time.

圖5B不出了就絲極電流而言XeI?2流量以及電弧功率變化 的效應的一圖表。該圖示出了絲極電流(以安培計)作為植 入機系統的執行時間的-函數的圖巧圖中較高的線代表 以每分鐘2.2標準立方厘米(sccm)的XeF>2流量以及丨〇〇伏特 /〇·〇5安培的電弧功率操作,對此,在確定了 16安培/小時 ,絲極電流增加。圖中較低的線反映了 Q5伽的邮流 :以及40伏特/o.M安培的電弧功率,這在3小時的持續執 行時間中產生了 23安培/小時的絲極電流增加。 沒圖Μ絲極重量變化(以毫克每小時計)作為平均絲極電 函數的—圖表。該圖用對於低流量及高 熱絲極條件以及對於低流量以及高流量的電 下的資料·^ ill 1 ' 的效應。該等::流量(無電漿)以及電裝條件對於鎢傳送 適 胃料7^ m统中的傳送可以藉由選擇 的二=件選擇性地進行調整以便實現材料在絲極上 夏孑可替代的蝕刻。 此實例顯示 實例3 出了糟由監測陰極偏麼功率供應來實現的在 142599.doc -47· 201030792 離子源壽命以及植入機利用上的改良。 圖7係顯示了陰極偏壓功率之變化作為時間及氣體類型 之-函數的圖表。確切地說,當邮流動時,由素循環使 W沈積於陰極上,其引起偏壓功率增加(以便保持設定離子 束電流)。當PH3流動時,罐離子濺鑛陰極,導致陰極偏壓Figure 5B shows a graph of the effect of XeI 2 flow and arc power changes in terms of filament current. The graph shows the filament current (in amperes) as a function of the execution time of the implanter system. The higher line represents the XeF > 2 flow at 2.2 standard cubic centimeters per minute (sccm) and The arc power operation of 5 amps of volts/〇·〇, for which, at 16 amps/hour, the filament current increased. The lower line in the figure reflects the Q5 gamma mail flow: and the arc power of 40 volts/o.M amps, which produces a 23 amp/hour filament current increase over the 3 hour continuous execution time. There is no graph of the change in the weight of the filament (in milligrams per hour) as an average filament function. This figure uses the effect of low flow and high hot wire conditions and data for low flow and high flow rates. These:: flow (no plasma) and electrical conditions for the transfer of tungsten in the stomach can be selectively adjusted by the selected two = in order to achieve material alternative to the filament on the filament Etching. This example shows an improvement in the lifetime of the ion source and the utilization of the implanter in Example 3 due to the power supply to monitor the cathode bias. Figure 7 is a graph showing the change in cathode bias power as a function of time and gas type. Specifically, when the mail flows, a cycle of W is deposited on the cathode, which causes an increase in the bias power (to maintain the set ion beam current). When the PH3 flows, the can ion splashes the cathode, causing the cathode to be biased.

功率之下降。在此實例中 P 只1PH3與GeF4之比率係使得偏壓 功率最終在大約76小時之後到達其最大輸出。以此方式監 測該偏壓功率,且採取適當動作將能夠改良離子源壽命。 圖8係顯示了陰極W重量變化作為偏壓功率之一函數的 圖表。確切地說,使用XeF2作為源氣體,鎢(w)可藉由簡 單改變陰極偏壓功率而從陰極被蝕刻或沈積於陰極上。高 偏壓功率將陰極之溫度增加至有利於W沈積反應之一程 度,而低偏壓功率至中等偏壓功率將溫度降低至有利於w 蝕刻反應之條件。取決於陰極之狀態,可選擇偏壓功率以 從陰極蝕刻不需要之沈積物,或將需要之w沈積回至陰極 上,且因此能夠改良離子源壽命。 儘管已經參照不同的特別的實施方式對本發明進行了描 述’應理解的是本發明並非因此受到限制,而且延伸到並 涵蓋如熟習該項技術者所理解的不同的其他變更及實施方 式。因此’本發明旨在根據所附的申請專利範圍來進行寬 泛地解釋及詮釋。 【圖式簡單說明】 圖1係在引入原位清洗過程之前及之後的源壽命資料的 一圖表,示出了由於該過程而帶來的壽命的延長。 142599.doc -48- 201030792 圖2係圖表顯示了 XeFz對抑制器的洩漏電流的影響的一 圖表,如在實例1中所詳述。 圖3 A及3 B係示出了證明原位清洗的清洗效果的照片, 如在實例1中所詳述。 圖4A及4B示出了原位清洗的清洗效果,如在實例5中所 詳述。 圖5A及5B係用Xeh流經過一實耗時間段的增加的絲極 重量(圖5A)以及絲極電流(圖5B)的圖表。 ❹ 圖6係對於用XeF2流在該系統内的鎢傳送,絲極重量變 化作為絲極電流的一函數的一圖表。 圖7係顯示了陰極偏壓功率之變化作為時間及氣體類型 之一函數的圖表。 圖8係顯示了陰極w重量變化作為偏壓功率之一函數的 圖表。 ^The decline in power. In this example, P only has a ratio of 1PH3 to GeF4 such that the bias power eventually reaches its maximum output after about 76 hours. Monitoring the bias power in this manner, and taking appropriate action will improve the ion source lifetime. Figure 8 is a graph showing the change in cathode W weight as a function of bias power. Specifically, using XeF2 as the source gas, tungsten (w) can be etched or deposited on the cathode from the cathode by simply changing the cathode bias power. The high bias power increases the temperature of the cathode to a degree that favors the W deposition reaction, while the low bias power to the medium bias power lowers the temperature to a condition that favors the w etch reaction. Depending on the state of the cathode, the bias power can be selected to etch unwanted deposits from the cathode, or to deposit the required w back onto the cathode, and thus can improve ion source lifetime. Although the present invention has been described with reference to various specific embodiments, it should be understood that the invention is not limited thereto, and is intended to cover various modifications and embodiments of the invention as understood by those skilled in the art. Therefore, the invention is intended to be broadly construed and construed in accordance with the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing source life data before and after introduction of an in-situ cleaning process, showing an increase in life due to the process. 142599.doc -48- 201030792 Figure 2 is a graph showing the effect of XeFz on the leakage current of the suppressor, as detailed in Example 1. Figures 3A and 3B show photographs demonstrating the cleaning effect of in-situ cleaning, as detailed in Example 1. Figures 4A and 4B show the cleaning effect of in-situ cleaning as detailed in Example 5. Figures 5A and 5B are graphs showing the increased filament weight (Figure 5A) and filament current (Figure 5B) over a period of time spent with Xeh flow. Figure 6 is a graph of filament weight change as a function of filament current for tungsten transport in a system with XeF2 flow. Figure 7 is a graph showing the change in cathode bias power as a function of time and gas type. Figure 8 is a graph showing the change in cathode w weight as a function of bias power. ^

142599.doc -49-142599.doc -49-

Claims (1)

201030792 七、申請專利範圍: 1· 一種《卜離子植人系統中-間接加熱的陰極源之狀態 的方法,該方法包含: a) 藉由在一預定時間量測陰極偏壓功率來確定該間接 加熱的陰極源之使用功率; b) 比較該預定時間之該使用功率與初始功率;及 c) 回應於該比較採取校正動作⑴或(ii)以控制該間接加 熱的陰極之該狀態,藉此 (1)若該預定時間之該使用功率高於該初始功率,則 敍刻該間接加熱的陰極;或 (!0若該預定時間之該使用功率低於該初始功率,則 再生長該間接加熱的陰極。 2. 如請求項!之方法,其中該⑷⑴之蝕刻包括在足以蝕刻 之低溫至中等溫度的條件下操作該間接加熱的陰極。 3. 如請求項丨之方法,其中該((;)(11)之再生長包括使__氟化 氣體在一電漿條件下在該間接加熱的陰極上流動。 4. 如咕求項1之方法,其中該氟化氣體包含以下中之一或 多者:XeF2、xeF4、XeF6、GeF4、SiF4、Bf3、AsF5、 AsF3 pp5 , pp^ λ ^ Ta¥3 > TaF5 ' WF6 ' WF5 > WF4 > NF3、%、IF7、KrF2、SF6、C2F6、CF4、C1F3、N2F4、 、N3F、NFH2、NH2F、BrF3、C3F8、(:4F8、C5F8、 CHF 0 3、CH2F2、CH3F、COF2、HF、C2HF5、C2H2F4、 C2H3F3、C2H4F2、c2h5f、C3F6及 m〇f6。 5. 如清求項1之方法’其中該(c)(ii)之再生長包括在足以發 142599.doc 201030792 生金屬沈積之高溫條件下操作該間接加熱的陰極。 6. 如請求項4之方法,其令該氟化氣體包含以匕及沁匕中 之一或多者。 7. -種操作-離子植入系統之方法,㈣子植人系統在― 離子源之-電弧室t包括—陰極,為保持該離子源的操 作效率,所述方法包含將該陰極在以下條件下與一鎢試 劑進行接觸,該等條件係選自以下構成的群組: (a) 實現鎢在該陰極上沈積的條件;以及 (b) 實現自該陰極上蝕刻所沈積材料的條件。 8. -種清洗-離子植入系統的—或多個部件之方法,用於 自該-或多個部件至少部分地移除與電離作用有關的沈 積物,所述方法包含將一清洗氣體在以下條件下流過該 系統,該等條件係選自以下構成的群組: (a) 實現材料在該陰極上沈積的條件;以及 (b) 實現自該陰極上蝕刻所沈積材料的條件。 142599.doc201030792 VII. Patent application scope: 1. A method for the state of an indirect heated cathode source in a plasma ion implantation system, the method comprising: a) determining the indirect by measuring a cathode bias power for a predetermined time The power used to heat the cathode source; b) comparing the power used to the initial power for the predetermined time; and c) taking the corrective action (1) or (ii) in response to the comparison to control the state of the indirectly heated cathode (1) if the used power of the predetermined time is higher than the initial power, the indirectly heated cathode is engraved; or (!0 if the used power is lower than the initial power for the predetermined time, the indirect heating is regenerated 2. The method of claim 2, wherein the etching of (4)(1) comprises operating the indirectly heated cathode under conditions sufficient to etch from a low temperature to a moderate temperature. 3. The method of claim ,, wherein the ((; The regrowth of (11) comprises flowing a __ fluorinated gas over the indirectly heated cathode under a plasma condition. 4. The method of claim 1, wherein the fluorinated gas comprises the following Or more: XeF2, xeF4, XeF6, GeF4, SiF4, Bf3, AsF5, AsF3 pp5, pp^ λ ^ Ta¥3 > TaF5 ' WF6 ' WF5 > WF4 > NF3, %, IF7, KrF2, SF6, C2F6, CF4, C1F3, N2F4, N3F, NFH2, NH2F, BrF3, C3F8, (: 4F8, C5F8, CHF 0 3, CH2F2, CH3F, COF2, HF, C2HF5, C2H2F4, C2H3F3, C2H4F2, c2h5f, C3F6 and m 〇f6. 5. The method of claim 1 wherein the regrowth of (c)(ii) comprises operating the indirectly heated cathode at a high temperature sufficient to deposit 142599.doc 201030792. 6. The method of item 4, wherein the fluorinated gas comprises one or more of cerium and lanthanum. 7. - operation - ion implantation system method, (4) sub-planting system - ion source - arc chamber t includes a cathode for maintaining the operational efficiency of the ion source, the method comprising contacting the cathode with a tungsten reagent under the following conditions selected from the group consisting of: (a) Conditions for deposition on the cathode; and (b) conditions for etching the deposited material from the cathode. - a method of cleaning - an ion implantation system - or a plurality of components for at least partially removing deposits associated with ionization from the one or more components, the method comprising: subjecting a purge gas to the following conditions Flowing through the system, the conditions are selected from the group consisting of: (a) the conditions under which the material is deposited on the cathode; and (b) the conditions under which the deposited material is etched from the cathode. 142599.doc
TW098127518A 2009-02-11 2009-08-13 Method of ion source cleaning in semiconductor processing systems TWI463516B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/033754 WO2009102762A2 (en) 2008-02-11 2009-02-11 Ion source cleaning in semiconductor processing systems

Publications (2)

Publication Number Publication Date
TW201030792A true TW201030792A (en) 2010-08-16
TWI463516B TWI463516B (en) 2014-12-01

Family

ID=42562402

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103120759A TWI567775B (en) 2009-02-11 2009-08-13 Ion implantation system and method of operating the same
TW098127518A TWI463516B (en) 2009-02-11 2009-08-13 Method of ion source cleaning in semiconductor processing systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW103120759A TWI567775B (en) 2009-02-11 2009-08-13 Ion implantation system and method of operating the same

Country Status (6)

Country Link
EP (1) EP2396809A1 (en)
KR (1) KR101658975B1 (en)
CN (2) CN104217981B (en)
SG (1) SG173621A1 (en)
TW (2) TWI567775B (en)
WO (1) WO2010093380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972946B2 (en) 2021-01-18 2024-04-30 Eugene Technology Co., Ltd. Method for removing impurities in thin film and substrate processing apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934222B2 (en) * 2010-09-15 2016-06-15 プラクスエア・テクノロジー・インコーポレイテッド Method for extending the lifetime of an ion source
US9093372B2 (en) * 2012-03-30 2015-07-28 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9396902B2 (en) * 2012-05-22 2016-07-19 Varian Semiconductor Equipment Associates, Inc. Gallium ION source and materials therefore
JP6201496B2 (en) * 2013-08-02 2017-09-27 セントラル硝子株式会社 IF7-derived iodine fluoride compound recovery method and recovery device
US10170286B2 (en) * 2016-09-30 2019-01-01 Axcelis Technologies, Inc. In-situ cleaning using hydrogen peroxide as co-gas to primary dopant or purge gas for minimizing carbon deposits in an ion source
JP6529000B2 (en) * 2017-09-27 2019-06-12 日新イオン機器株式会社 Ion source, operating method of ion source
US10700207B2 (en) 2017-11-30 2020-06-30 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device integrating backside power grid and related integrated circuit and fabrication method
KR20200144151A (en) * 2018-05-17 2020-12-28 엔테그리스, 아이엔씨. Germanium tetrafluoride and hydrogen mixture for ion implantation systems
US10784079B2 (en) 2018-09-26 2020-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Ion implantation system and source bushing thereof
US11791141B2 (en) * 2020-07-29 2023-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for residual gas analysis
US11664183B2 (en) * 2021-05-05 2023-05-30 Applied Materials, Inc. Extended cathode and repeller life by active management of halogen cycle
EP4348235A1 (en) 2021-06-01 2024-04-10 INFICON, Inc. Method of detecting radicals using mass spectrometry

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370568A (en) * 1993-03-12 1994-12-06 Harris Corporation Curing of a tungsten filament in an ion implanter
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
US5943594A (en) * 1997-04-30 1999-08-24 International Business Machines Corporation Method for extended ion implanter source lifetime with control mechanism
JP3836991B2 (en) * 1999-02-02 2006-10-25 三菱化学株式会社 Film forming method and magnetic recording medium manufacturing method
JP4374487B2 (en) * 2003-06-06 2009-12-02 株式会社Sen Ion source apparatus and cleaning optimization method thereof
US7820981B2 (en) * 2003-12-12 2010-10-26 Semequip, Inc. Method and apparatus for extending equipment uptime in ion implantation
US7819981B2 (en) * 2004-10-26 2010-10-26 Advanced Technology Materials, Inc. Methods for cleaning ion implanter components
JP2010503977A (en) * 2006-04-26 2010-02-04 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド Cleaning method for semiconductor processing system
US7853364B2 (en) * 2006-11-30 2010-12-14 Veeco Instruments, Inc. Adaptive controller for ion source
TW200839829A (en) * 2007-03-21 2008-10-01 Advanced Micro Fab Equip Inc Capacitance-coupled plasma chamber, structure and manufacturing method of gas distribution head, refurbishment and reuse method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972946B2 (en) 2021-01-18 2024-04-30 Eugene Technology Co., Ltd. Method for removing impurities in thin film and substrate processing apparatus

Also Published As

Publication number Publication date
SG173621A1 (en) 2011-09-29
WO2010093380A1 (en) 2010-08-19
CN104217981B (en) 2018-01-09
TW201438052A (en) 2014-10-01
EP2396809A1 (en) 2011-12-21
CN104217981A (en) 2014-12-17
TWI463516B (en) 2014-12-01
KR101658975B1 (en) 2016-09-23
CN102396048A (en) 2012-03-28
CN102396048B (en) 2014-08-27
TWI567775B (en) 2017-01-21
KR20110128848A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
TWI573179B (en) Ion source cleaning in semiconductor processing systems
TW201030792A (en) Ion source cleaning in semiconductor processing systems
US8603252B2 (en) Cleaning of semiconductor processing systems
US20060086376A1 (en) Novel methods for cleaning ion implanter components
JP2019515449A (en) Lanterned tungsten ion source and beamline components
KR102489443B1 (en) Phosphorus Trifluoride for Carbon Implants