TW201024340A - Nano-scaled composite particle and method for making the same - Google Patents

Nano-scaled composite particle and method for making the same Download PDF

Info

Publication number
TW201024340A
TW201024340A TW97149720A TW97149720A TW201024340A TW 201024340 A TW201024340 A TW 201024340A TW 97149720 A TW97149720 A TW 97149720A TW 97149720 A TW97149720 A TW 97149720A TW 201024340 A TW201024340 A TW 201024340A
Authority
TW
Taiwan
Prior art keywords
nano composite
nano
composite particle
polymer
ball
Prior art date
Application number
TW97149720A
Other languages
Chinese (zh)
Other versions
TWI397548B (en
Inventor
Yuan Yao
Chang-Shen Chang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97149720A priority Critical patent/TWI397548B/en
Publication of TW201024340A publication Critical patent/TW201024340A/en
Application granted granted Critical
Publication of TWI397548B publication Critical patent/TWI397548B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

This invention relates to a nano-scaled composite particle. The nano-scaled composite particle includes a polymer matrix and at least one nanowire disposed in the polymer matrix. This invention also relates to a method for making the nano-scaled composite particle. The method includes the following steps: providing a plurality of nanowires; providing a liquid polymer or a polymer monomer as the polymer basis material; dispersing the plurality of nanowires into the polymer matrix to form a mixture; forming a composite by solidfing the mixture; comminuting the composite to form the nano-scaled composite particles.

Description

201024340 .九、發明說明: .【發明所屬之技術領域】 本發明涉及一種複合粒子及其製備方法,尤其涉及 一種奈米複合粒子及其備方法。 【先前技術】 奈米複合粒子由兩種或兩種以上具有不同性能之固相 粉末組成。由奈米粒子及基體材料形成之直徑爲奈米尺寸 之複合粒子,具有優异之物理性能。奈米複合粒子之結構 ©通常爲核殼結構’請參見文獻“Preparation and Sintering Behaviour of Nanostructured Alumina/Titania Composite Powders Modified with Nano-dopants,,(Yong Yang, You Wang, Materials Science and Engineering A, Vol. 490, P457_464(2008))。該文獻中Yong Yang等人揭示了 一種奈 米氧化鋁粒子及氧化鈦基體形成之奈米複合粒子及其製備 方法。所述奈米複合粒子爲核殼結構,其製備方法爲燒結 法。然而,采用燒結法通常僅適於製備基體爲陶瓷材料之 ®複合粒子,不適宜製備以聚合物或其它材料爲基體之複合 粒子,因此,該種奈米複合粒子之應用受限。 爲解决此問題,復旦大學之熊焕明及任慶光之於2008 年02月28曰公告之CN 101245126 A中揭示了一種氧化 鋅-聚合物核殼發光粒子及其製備方法。所述氧化鋅-聚合 物核殼發光粒子之内核爲各個方向之粒徑均在10奈米左 右之氧化鋅量子點,外殼由内層之聚曱基丙烯酸及外層之 聚乙二醇單曱基醚組成。所述奈米複合粒子之製備方法爲 溶膠-凝膠法,其具體步驟爲:將有機羧酸之辞鹽溶解到無 6 201024340 ’然後加入碱液促進鋅鹽水解,在無水環境下生 飾了繼鍵之氧化辞奈米粒子;將引發劑及聚 ,早,加人到反應體系中,在7請。c溫度下引發聚合 反應太在氧化鋅奈米粒子之表面形成共聚之高分子外殼。 :米複合粒子在應用中通常需對其進行表面改性,使 不同之表面活性’從而在不同之領域應用。然而, 、述核殼結構之氧化辞-聚合物核殼發光粒子中僅含 自氧化鋅里子點,當所需要之氧化鋅量子點數量較多 © t例如’對所述氧化鋅·聚合物核殼發光粒子進行表面改 ,而在醫療中用作癸光標記,需要對複數氧化鋅聚合物 ,發光粒子進行表面改性,因此,需要較多之改性劑對 氧化鋅-聚合物核殼發光粒子進行改性。 【發明内容】 有鑑於此,提供一種在應用中可節省表面改性劑用 量,且製備方法簡單之奈米複合粒+及其製備方法實為 必要。 一種奈米複合粒子,其包括一聚合物基體及設置於該 聚合物基體中之至少一個奈米線。 一種奈米複合粒子之製備方法,包括以下步驟:提供 複數奈米線;提供一液態之聚合物材料或聚合物單體;分 散所述複數奈米線至所述液態聚合物材料或聚合物單體 中,固化形成複合材料;及粉碎所述複合材料形成奈米複 合粒子^ 相對於先前技術,本發明提供之奈米複合粒子及其製 7 201024340 .法具備以下優點:其一,本發明提供之奈米複合粒子 3有至少-個奈米、線,在實際應用中當需要複數夺米 線,從而需要對含有奈米線於奈米複合粒子進行表面改性 時可僅對少數奈米複合粒子表面改性即可,相比於核殼 結構之奈米複合粒子所需之表面改性劑用量較少;其二, 本發明提供之奈米複合粒子之製備方法先將奈米線分散在 液態之聚合物或聚合物單體中並使之固化,再采用粉碎法 直接粉碎,相比於溶膠-凝膠法或燒結法,方法簡單,易於 11實現産業化。 、 【實施方式】 以下將結合附圖及具體實施例,對本發明提供之奈米 複合粒子及其製備方法作進一步之說明。 請參閱圖1,本發明實施例提供一種奈米複合粒子 10’該奈米複合粒子1〇包括一聚合物基體102及設置於該 聚合物基體102中之至少一個奈米線104。 珍所述聚合物基體102之材料爲樹脂、橡膠及塑料中之 一種或幾種。具體地’依不同應用聚合物基體1〇2之材料 爲聚本乙稀、聚乙婦、聚丙稀、聚氣乙稀、聚四氣乙烯、 天然橡膠、聚甲搭及聚乙酿中之一種或幾種。在本實施例 中,聚合物基體102之材料選擇半透明、無毒之聚乙烯。 所述奈米線104包括不同類型,包括金屬奈米線,其 金屬材料包括鎳、銘或金等;半導體奈米線,其半導體材 料包括砷化鎵、磷化鎵、氮化鎵、硫化鎘、氧化錫、二氧 化鈦或氧化鋅等;絕緣體奈米線,其絕緣體材料包括二氧 8 201024340 .化石夕或二氧化鈦等。奈米線1〇4之直獲小於⑺ 二。奈米線104之材料爲半導體奈米線。 ^列U線Κ)4爲氧化鋅奈米、線。所述偏辞奈米線之 =小於50微未’長度沒有限制。所述奈米複合粒子 2徑小於1〇00微米’優選地所述奈米複合粒子10之直 微米。本實施例中’所述奈轉合粒子1〇之 直枚爲500微米:。 ❹另外’所述奈米複合粒子1G中可包括複數奈米線 複/粒子1G中含有複數奈米線1Q4時,奈求 mr奈来複合粒子1〇中。本實施例中,奈米 複备粒子中包括複數氧化鋅奈米線分散在聚乙婦基體中。 加物ΙίΓ,所述奈料合粒子lG中進—步包括一種添 物或者多種添加物之混合物。所述添加物包括固化劑、 劑、填料或者稀釋劑等。所述固化劑用於促進所述聚 ::基體材料之固化。常用固化劑包括脂肪胺、脂環胺、 ❹、私、聚醯胺、酸野、樹脂類及叔胺令之一種或者幾種 。:性劑用於改善聚合物基體材料之柔性、抗 始抗變、抗沖或者提高絕緣性等。常用改性劑包括聚硫 聚醯胺樹月曰、聚乙婦醇叔丁路或者丁猜橡谬類中一 f或者幾種之混合。所述填料㈣改善所述聚合物基體材 =0化時之散熱條件,使用填料也可以减少所述聚合物材 料=用量’降低成本。f用填料包括石棉纖維、玻璃纖維、 英勃瓷粉、氧化鋁及矽膠粉令一種或者幾種之混合。 所述稀釋劑用於降低樹脂枯度,改善樹脂之滲透性。所述 9 201024340 •稀釋劑包括二縮水甘油謎、多縮水甘油醚、環氧丙烧丁基 醚、環氧丙貌苯基醚、二環氧丙烧乙基趟、三環氧丙院丙 基醚及烯丙基苯酚中之一種或者幾種之混合。 所述奈米複合粒子10根據奈米線1〇4之材料不同,具 有不同之應用。本實施例提供之以聚乙烯爲基體材料,至 ^個氧化鋅奈米線設置於聚乙烯中之奈米複合粒子可在 醫療令用作榮光標記。在應用時,先對所述奈米複合粒子 進行表面改性,使該種奈米複合粒子表面固 0別標記,從㈣料奈轉合好在具有該生Z 識別標記之癌細胞上。氧化鋅奈米線爲半導體發光材料, 可以發出特定波長之光,聚乙烯爲半透明,因此,氧化辞 奈来線發出之光可以穿透聚乙烯,通過光學朗裝置就可 以看到氧化鋅奈米線之位置及發光强度’也就確定了某種 癌細胞之存在與否,及其位置與數量。 本發明提供之奈米複合粒子中含有至少一個奈米線, ©在實際應用中當需要複數奈米線,從而需要對奈米複合粒 子進行表面改性時,可僅對少數奈米複合粒子改性即可, 相比於核殼結構之奈米複合粒子所需之表面改性劑用量較 少。 凊參閱圖2,本發明實施例進一步提供所述奈米複合 粒子10之製備方法’包括以下步驟: 步驟一:提供複數奈米線。 所述奈米線包括不同之類型,包括金屬奈米線,其金 屬材料包括鎳、翻、金等;半導體奈米線,其半導體材料 201024340 .化鎵、磷化鎵、氮化鎵、硫化鎘、氧化錫、二氧化 石夕/^鋅等,絕緣體奈料,n緣體射4包括二氧化 夕或一軋化鈦等。優選地,所 其直徑小於50撒半“爲+導體奈米線, 括化學限。所述奈料之製備方法包 外延!it :法、模板限制輔助生長法、金屬有機氣相 生長法及膠體化學自組裝法等。本實施例中夺 =匕鋅奈米線,所述氧化鋅奈米線之直徑小於⑽奈米: ^不限。本實施例中,所述氧化鋅奈 ==助生長法,其具想包括以下步称:提 Γ 在所述多孔氧化銘模板增-層銀膜做陰 Ϊ霞:: 一面固定在一導電基底上,銀膜另-面 暴露於氯化鋅電解液Φ · 藉_此士 在電位狀態下,將氧化鋅沈 模板中之不米孔中,去除模板得到氧化辞奈来線。 、々劍Γ選擇&所述複數奈米線進-步包括預先使用有機 該有機溶劑爲乙醇1醇、㈣、二氣乙烧及 ❹=中::種或者幾種之混合。所述奈米線經有機溶劑處 後’八表面會被有機溶劑浸潤。根據相似相溶原理,使 用有機溶劑處理奈求線有助於其在聚合物材料十之分散。 ί實施例中通過將氧化鋅奈米線浸泡在乙醇中-段時間使 氧化辞奈米線被浸潤β 步驟二··提供一液態之聚合物材料或聚合物單體。 聚合物爲熱固性或熱塑性之樹脂、橡膠及塑料令之一 種或幾種’具體地’所述聚合物之材料爲聚本乙烯、聚乙 烯、聚丙烯、聚氯乙烯、聚四氟乙婦、天然橡膠、聚f醛 11 201024340 .或聚乙醛中之一種或幾種。可選擇地,所述聚合物或聚合 .物單體中可進一步包括一種添加物或多種添加物之混合 物,並對所述混合有添加物之液態聚合物材料或聚合物單 體進行攪拌,使所述聚合物材料或聚合物單體與所述添加 物混合均勻,從而得到一液態之基體材料。所述添加物包 括固化劑、改性劑、填料或者稀釋劑等。攪拌混合有添加 物之液態聚合物材料或聚合物單體之時間由所述聚合物材 ❹料、聚合物單體材料及添加物之種類及數量所决定。聚合 物越粘稠,添加物種類、數量越多,則攪拌時間越長。可 選擇地,如果所提供之聚合物爲一常溫下處於固態之聚合 物材料’則對其進行加熱,使其熔化,形成一液態之聚合 物材料。 本實施例中提供一液態之聚乙烯,不添加其它添加 物。由於聚乙烯常溫下爲蠟狀,因此對其加熱至U2〇c -135°C ’使其熔化得到一液態之聚乙烯。 ❹ 步驟三:將所述複數奈米線添加至所述液態之聚合物 材料或聚合物單體中並分散。 將所述複數奈米線添加至所述液態之聚合物材料或聚 合物單體中並分散之方法之具體步驟爲:添加所述複數奈 米線至所述液態之聚合物材料或聚合物單體中;對聚合物 材料或聚合物單體與奈米線形成之混合物進行機械攪拌, 同時使用超聲波處理。 ’ 機械攪拌或超聲波處理使奈米線在液態之聚合物材料 或聚合物單體中均勻分散,形成一液態混合物。攪拌時間 12 201024340 由聚合物、聚合物單體及奈轉之種類及數量衫。 線之數量越多,聚合物越枯稠,則需要之_時間越:了 超聲波處理之方法可以爲釆用超聲波㈣機或超聲波分散 機對所述奈米線與聚合物材料或聚合物單體形成之 進行攪拌或分散。 、可以理解,分散所述複數奈米線至聚合物材料中之方201024340. Nine, invention description: [Technical field of invention] The present invention relates to a composite particle and a preparation method thereof, and more particularly to a nano composite particle and a preparation method thereof. [Prior Art] Nano composite particles are composed of two or more solid phase powders having different properties. The composite particles of nanometer diameter formed by nanoparticles and matrix materials have excellent physical properties. The structure of nanocomposite particles is usually a core-shell structure. See the literature "Preparation and Sintering Behaviour of Nanostructured Alumina/Titania Composite Powders Modified with Nano-dopants,, (Yong Yang, You Wang, Materials Science and Engineering A, Vol. 490, P457_464 (2008). In this document, Yong Yang et al. disclose a nano-composite particle formed of nano-alumina particles and a titanium oxide matrix, and a preparation method thereof. The nano-composite particle is a core-shell structure, The preparation method is a sintering method. However, the sintering method is generally only suitable for preparing a composite particle whose matrix is a ceramic material, and is not suitable for preparing a composite particle based on a polymer or other materials. Therefore, the application of the nano composite particle is applicable. Restricted. In order to solve this problem, a zinc oxide-polymer core-shell luminescent particle and a preparation method thereof are disclosed in CN 101245126 A, issued to you on December 28, 2008, by Xiong Huan-ming and Ren Qingguang, Fudan University. The core of the polymer core-shell luminescent particles is a zinc oxide quantum dot with a particle size of about 10 nm in all directions, and the outer shell The inner layer of polyacrylic acid acrylic acid and the outer layer of polyethylene glycol monodecyl ether. The preparation method of the nano composite particle is a sol-gel method, and the specific step is: dissolving the organic carboxylic acid salt into no 6 201024340 'There is then added lye to promote the hydrolysis of zinc salt, in the anhydrous environment, the oxidized nano-particles of the secondary bond are prepared; the initiator and the poly-, early, added to the reaction system, at 7 ° C temperature The polymerization reaction is too long to form a copolymerized polymer shell on the surface of the zinc oxide nanoparticle. The rice composite particles are usually subjected to surface modification in the application to make different surface activities 'in different fields. However, The oxidized word of the core shell structure - the polymer core-shell luminescent particle contains only the self-oxidation zinc neutron point, and when the required number of zinc oxide quantum dots is large, such as 'lighting the zinc oxide polymer core shell The surface modification of the particles, and the use as a calendering mark in medical treatment, requires surface modification of the complex zinc oxide polymer and the luminescent particles. Therefore, more modifiers are required for the zinc oxide-polymer core-shell luminescence. In view of the above, it is necessary to provide a nano composite particle and a preparation method thereof, which can save the amount of the surface modifier in the application, and the preparation method is simple. The invention comprises a polymer matrix and at least one nanowire disposed in the polymer matrix. A method for preparing a nano composite particle, comprising the steps of: providing a plurality of nanowires; providing a liquid polymer material or polymer a monomer; dispersing the plurality of nanowires into the liquid polymer material or polymer monomer, curing to form a composite material; and pulverizing the composite material to form a nano composite particle, compared to the prior art, the present invention provides The nano composite particle and the method thereof have the following advantages: First, the nano composite particle 3 provided by the invention has at least one nanometer and a wire, and in practical applications, when a plurality of rice tapping lines are required, it is necessary to When the surface of the nano-composite particles is modified by surface modification, only a few nano-composite particles can be surface-modified, compared to the nano-shell structure of the core-shell structure. The amount of surface modifier required for the particles is small; secondly, the preparation method of the nano composite particles provided by the invention first disperses the nanowires in a liquid polymer or polymer monomer and cures them, and then adopts The pulverization method directly pulverizes, and the method is simpler than the sol-gel method or the sintering method, and it is easy to industrialize. [Embodiment] Hereinafter, the nano composite particles and the preparation method thereof provided by the present invention will be further described with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1, an embodiment of the present invention provides a nano composite particle 10'. The nano composite particle 1 includes a polymer matrix 102 and at least one nanowire 104 disposed in the polymer matrix 102. The material of the polymer matrix 102 is one or more of a resin, a rubber and a plastic. Specifically, the material of the polymer matrix 1〇2 is a kind of polyethylene, polyethylene, polypropylene, polyethylene, polytetraethylene, natural rubber, polymethyl and polyethylene. Or several. In this embodiment, the material of the polymer matrix 102 is selected from translucent, non-toxic polyethylene. The nanowires 104 comprise different types, including metal nanowires, the metal materials thereof include nickel, indium or gold, etc.; semiconductor nanowires, the semiconductor materials thereof include gallium arsenide, gallium phosphide, gallium nitride, cadmium sulfide , tin oxide, titanium dioxide or zinc oxide; insulator nanowires, the insulator material includes dioxy 8 201024340. fossil or titanium dioxide. The diameter of the nanowire 1〇4 is less than (7) two. The material of the nanowire 104 is a semiconductor nanowire. ^ Column U line Κ) 4 is zinc oxide nanowire, line. There is no limit to the length of the nanowire = less than 50 micro. The nanocomposite particles 2 have a diameter of less than 1 〇 10 μm, preferably a micron of the nanocomposite particles 10. In the present embodiment, the straight portion of the naphthalene-transferred particles 1 500 is 500 μm:. Further, in the above-mentioned nanocomposite particles 1G, a plurality of nanowires/particles 1G may be included in the complex nanowires 1Q4, and the mr. In this embodiment, the nano-particles comprising the plurality of zinc oxide nanowires are dispersed in the matrix of the poly-embryo. In addition, the step of the in-situ particle lG includes an additive or a mixture of a plurality of additives. The additive includes a curing agent, a filler, a filler or a diluent, and the like. The curing agent is used to promote curing of the poly::base material. Commonly used curing agents include one or more of fatty amines, alicyclic amines, anthraquinones, private, polyamines, acid fields, resins, and tertiary amines. : Sex agents are used to improve the flexibility, resistance to deformation, impact resistance or insulation of polymer matrix materials. Commonly used modifiers include polysulfide polyamine tree sorghum, polyglycolate tert-butyl or di-cao rubber, or a mixture of several. The filler (4) improves the heat dissipation condition of the polymer base material when it is zero, and the use of the filler can also reduce the cost of the polymer material = amount. The fillers for f include asbestos fibers, glass fibers, ingot porcelain powder, alumina and tannin powder, and one or more of them are mixed. The diluent is used to reduce the resin dryness and improve the permeability of the resin. The 9 201024340 • Diluent includes diglycidyl mystery, polyglycidyl ether, propylene oxide butyl ether, epoxidized phenyl ether, diepoxypropanol ethyl hydrazine, triepoxypropyl propyl a mixture of one or more of ether and allyl phenol. The nanocomposite particles 10 have different applications depending on the material of the nanowires 1 to 4. In this embodiment, a polyethylene composite substrate is provided, and the nano composite particles disposed in the polyethylene to the zinc oxide nanowire can be used as a glory mark in medical treatment. In the application, the nano composite particles are first surface-modified, so that the surface of the nano-composite particles is solid-labeled, and the (n) material is converted into a cancer cell having the bio-Z recognition mark. The zinc oxide nanowire is a semiconductor light-emitting material, which emits light of a specific wavelength, and the polyethylene is translucent. Therefore, the light emitted from the oxidized Nylon wire can penetrate the polyethylene, and the zinc oxide can be seen through the optical device. The position and luminous intensity of the rice noodle determines the presence or absence of certain cancer cells, their location and quantity. The nano composite particle provided by the invention contains at least one nanowire, © in practical applications, when a plurality of nanowires are required, and thus the surface modification of the nano composite particle is required, only a few nano composite particles can be modified. It is sufficient, and the amount of surface modifier required for the nanocomposite particles compared to the core-shell structure is small. Referring to Figure 2, an embodiment of the present invention further provides a method for preparing the nanocomposite particle 10, which comprises the following steps: Step 1: providing a plurality of nanowires. The nanowires include different types, including metal nanowires, metal materials including nickel, turn, gold, etc.; semiconductor nanowires, semiconductor materials 201024340. gallium, gallium phosphide, gallium nitride, cadmium sulfide , tin oxide, sulfur dioxide, zinc, etc., insulator ingot, n-edge body shot 4 includes dioxide or a rolled titanium. Preferably, the diameter is less than 50 and the half is "+ conductor nanowire, including the chemical limit. The preparation method of the nanomaterial is epitaxial! It is: method, template-limited auxiliary growth method, metal organic vapor phase growth method and colloid In the present embodiment, the diameter of the zinc oxide nanowire is less than (10) nanometer: ^ is not limited. In the present embodiment, the zinc oxide has a growth-supporting growth. The method, which has the following steps: Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Φ · Borrowing _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The organic solvent is organic alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol, alcohol The principle of compatibility, the use of organic solvents to treat the nevus line helps its in the polymer material In the embodiment, the oxidized nanowire is infiltrated by soaking the zinc oxide nanowire in ethanol for a period of time. Step 2: Providing a liquid polymer material or polymer monomer. The material of the polymer is thermosetting or thermoplastic resin, rubber and plastic. The material of the polymer is polyethylene, polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, natural rubber. Or one or more of polyacetaldehyde 11 201024340 . or polyacetal. Alternatively, the polymer or polymer monomer may further comprise an additive or a mixture of additives, and The liquid polymer material or the polymer monomer mixed with the additive is stirred to uniformly mix the polymer material or the polymer monomer with the additive to obtain a liquid matrix material. The additive includes curing. Agent, modifier, filler or diluent, etc. The time of stirring the liquid polymer material or the polymer monomer mixed with the additive from the polymer material, the polymer monomer material and the additive The more the type and quantity, the more viscous the polymer, the more the type and quantity of the additive, the longer the stirring time. Alternatively, if the polymer provided is a polymer material that is solid at room temperature, then Heating and melting to form a liquid polymer material. In this embodiment, a liquid polyethylene is provided without adding other additives. Since the polyethylene is waxy at normal temperature, it is heated to U2〇c - It is melted at 135 ° C to obtain a liquid polyethylene. ❹ Step 3: Adding the plurality of nanowires to the liquid polymer material or polymer monomer and dispersing. a specific step of adding to the liquid polymer material or polymer monomer and dispersing the method is: adding the plurality of nanowires to the liquid polymer material or polymer monomer; Or a mixture of polymer monomers and nanowires is mechanically agitated while using ultrasonic treatment. Mechanical agitation or sonication allows the nanowires to be uniformly dispersed in a liquid polymeric material or polymer monomer to form a liquid mixture. Stirring time 12 201024340 The type and quantity of the polymer, polymer monomer and navel. The more the number of wires, the thicker the polymer, the more time it takes: the ultrasonic treatment can be carried out by using an ultrasonic (four) machine or an ultrasonic disperser for the nanowires and polymer materials or polymer monomers. It is formed to be stirred or dispersed. It can be understood that the plurality of nanowires are dispersed into the polymer material.

法還可以爲其它方法’例如采用磁力㈣機分散所述複數 奈米線至聚合物材料中。 本實施例中將複數氧化辞奈米線分散在聚乙烯中,對 氧化鋅奈米線及聚乙烯形成之混合物進行機械攪拌,同時 使用超聲波擾拌,使氧化辞奈米線均勻地分散在聚乙稀中。 步驟四:固化形成一複合材料。 對於上述液態之聚合物材料或聚合物單體與奈米線形 成之混合物,根據聚合物或聚合物單體材料之不同可采用 不同之方法使其固化,形成一複合材料。 Ο 對於熱固性之聚合物材料與奈米線形成之混合物采用 逐步升溫之方法使其固化。升溫固化所述熱固性材料之方 法具體爲:通過一加熱裝置對所述奈米線與液態之聚合物 形成之混合物進行加熱,形成一複合材料。熱固性材料需 要逐步升溫,升溫過快會導致熱固性聚合物材料爆聚,從 而影響材料之性能。所述熱固性材料固化之溫度及時間由 所述聚合物、添加物及奈米線之種類及數量决定。聚合物 熔點越高,添加物及奈米線之數量越多,則固化所需時間 越長。所述加熱裝置可以係加熱板、熱壓機、平板硫化機、 13 ψ 201024340 .熱壓罐或者烘箱等加熱装置中之一種。 -、對於熱塑性之聚合物材料與奈米線形成之混合物采用 冷却之方法使其固化。降低所述熱塑性材料溫度之方法爲 在至溫下自然冷却或通過一冷却裝置對液態之奈米線與聚 合物形成之混合物進行冷却,形成一複合材料。所述冷却 裝置可以係循%水冷却器、液壓油冷却器或油水冷却器等 冷却裝置中之一種。 參躲聚合物單體與奈料形成之混合物采用加入引發 劑之方法引發聚合反應,使聚合物單體發生聚合反應,形 成一固化之聚合物。 可以理解所述固化奈米線與聚合物材料或聚合物單體 形成混合物之方法不限於上述方法,還可以通過光固化技 術,例如,通過紫外光固化以石夕橡膠爲聚合物材料之複合 本實施射氧化鋅奈米線與聚乙烯材料形成之混合物 ❹爲熱塑性材料,因此釆職環水冷却輯氧化鋅奈米線與 聚乙烯形成之混合物進行冷却,形成一複合材料。 步驟五:粉碎上述複合材料形成奈米複合粒子。 粉碎上述複合材料形成一奈米複合粒子之方法包括球 磨法、造粒機粉碎法、破碎機粉碎法或氣流粉碎機粉碎法。 釆用球磨機粉碎所述複合材料,所述球磨 :合:料之方法具體包括以下步驟:將大球直程爲8毫 求丄中球直徑爲5.5毫米’小球直經爲3.9毫米之研磨體 以介於3:2:1-1:2:3之配料比與步驟四得到之複合材料 201024340 .於1··1_40··1之球料比裝入—球 筒體内之研磨體在慣性M 3 ’啓動球磨機’ •门㈣之研㈣在慣性、離心力作用及摩 與筒體内之複合材料相互撞擊古' . , 禮擎,球磨機轉速爲200-580轉/ = =,:碎所述複合材料形成奈米複合粒子。 斤述求磨過程中,球磨時間越長 料比越大及磨球配比中大球質量小而小球數=磨: 到之奈米複合粒子直徑較小。所述球磨過程:了=; =,:則球磨得到之奈米複合粒子直徑較大2 3 iHVT及小球之磨球配比爲1:2:3,球料比爲 3.1球磨機轉速爲350轉/分,球磨之時間爲5小時。 Φ 一丰1選,a可將經球磨機粉碎得到之奈*複合粒子進 ^乳流粉碎機巾進—步粉碎。所縣用氣流粉碎機 =球磨機粉碎得狀奈米複合粒子進—步粉碎之方法包 步驟·將經球磨機粉碎後得到之奈米複合粒子加入 2流私碎機讀碎时;通過噴嘴將壓縮空氣喷射進 碎腔;在壓縮空氣形成之氣流作用下奈米複合粒子被反復 =撞、磨擦、剪—進—步粉碎。粉碎後之奈米複合粒子 風機抽力仙下隨上升氣流運動至分級區,符合粒度要 隹之奈米複合粒子通過分級輪進入旋風分離器及除塵器收 、不符合粒度要求之粗顆粒下降至粉碎區繼續粉碎。 所製備之奈米複合粒子之直徑小於1〇〇〇微米,優選地 =述不米複合粒子之直徑爲細··微米。本實施例中, 采用球磨法粉碎料氧化鋅奈米線/聚乙稀複合材料形成 15 201024340 .奈米複合粒子,所製備之奈米複合粒子之直徑爲500微米。 、 本發明提供之奈米複合粒子及其製備方法具備以下優 點:其一,本發明提供之奈米複合粒子中含有至少一個奈 米線,在實際應用中當需要複數奈米線,從而需要對含有 奈米線於奈米複合粒子進行表面改性時,可僅對少數奈米 複合粒子表面改性即可,相比於核殼結構之奈米複合粒子 所需之表面改性劑用量較少;其二,本發明提供之奈米複 合粒子之製備方法先將奈米線分散在液態之聚合物或聚合 ⑩物單體中並使之固化,再采用粉碎法直接粉碎,相比於溶 膠-凝膠法或燒結法,方法簡單,易於實現産業化。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 β【圖式簡單說明】 ◎ 圖1爲本發明實施例提供之奈米複合粒子之結構示意 圖。 圖2爲本發明實施例提供之奈米複合粒子之製備方法 流程圖。 【主要元件符號說明】 奈米複合粒子 10 奈米線 102 聚合物基體 104 16The method can also disperse the plurality of nanowires into the polymeric material for other methods, e.g., using a magnetic (four) machine. In this embodiment, the plurality of oxidized nanowires are dispersed in the polyethylene, and the mixture of the zinc oxide nanowires and the polyethylene is mechanically stirred, and the ultrasonic ray is used to uniformly disperse the oxidized nanowires in the polymerization. Ethylene. Step 4: Curing to form a composite material. For the above liquid polymer material or a mixture of a polymer monomer and a nanowire, it may be cured by a different method depending on the polymer or the polymer monomer material to form a composite material. Ο The mixture of the thermosetting polymer material and the nanowire is cured by a stepwise heating method. The method of curing the thermosetting material by heating is specifically: heating a mixture of the nanowire and the liquid polymer by a heating device to form a composite material. Thermosetting materials need to be gradually heated up, and heating too fast can cause the thermosetting polymer material to blast, which affects the properties of the material. The temperature and time at which the thermoset material cures is determined by the type and amount of the polymer, additives, and nanowires. The higher the melting point of the polymer, the greater the amount of additives and nanowires, the longer it takes to cure. The heating device may be one of a heating device such as a heating plate, a hot press, a flat vulcanizing machine, a 13 ψ 201024340, an autoclave or an oven. - A mixture of a thermoplastic polymer material and a nanowire is cured by cooling. The method of lowering the temperature of the thermoplastic material is to cool the mixture of the liquid nanowire and the polymer by natural cooling at a temperature or by a cooling device to form a composite material. The cooling device may be one of a cooling device such as a % water cooler, a hydraulic oil cooler or a water water cooler. The mixture of the polymerizable monomer and the ingot is initiated by the addition of an initiator to polymerize the polymer monomer to form a solidified polymer. It is understood that the method for forming the mixture of the cured nanowires with the polymer material or the polymer monomer is not limited to the above method, and may also be a composite material of the polymer material by using a photocuring technique, for example, by ultraviolet light curing. The mixture formed by the zinc oxide nanowire and the polyethylene material is made of a thermoplastic material, so that the mixture formed by the water-cooled zinc oxide nanowire and the polyethylene is cooled to form a composite material. Step 5: pulverizing the above composite material to form nano composite particles. The method of pulverizing the above composite material to form a nano composite particle includes a ball milling method, a granulator pulverization method, a crusher pulverization method, or a jet mill pulverization method. The composite material is pulverized by a ball mill. The method of the ball milling: the concrete material comprises the following steps: the large ball is straight for 8 millimeters, the diameter of the ball is 5.5 mm, and the small ball is 3.9 mm. The ratio of the ratio of 3:2:1-1:2:3 to the composite material obtained in step 4 is 201024340. The ratio of the ball to the ball of 1··1_40··1 is loaded into the body of the ball in inertia. M 3 'Starting Ball Mill' • Door (4) Research (4) In the inertia, centrifugal force and the composite material of the friction and the cylinder collide with each other. , Li Qing, ball mill speed is 200-580 rev / = =,: The composite material forms nano composite particles. In the process of grinding, the longer the ball milling time, the larger the material ratio and the smaller the mass of the ball in the grinding ball ratio and the smaller the number of balls = grinding: the diameter of the composite particles to the nanometer is smaller. The ball milling process: == =,: the ball-milled nano-composite particles have a larger diameter of 2 3 iHVT and the ball-to-ball ratio is 1:2:3, and the ball-to-batch ratio is 3.1. The ball mill rotates at 350 rpm. / minutes, ball milling time is 5 hours. Φ 一丰1Select, a can be crushed by a ball mill to obtain the nano-composite particles into the milk flow pulverizer towel into the step-by-step smash. The county uses a jet mill = a ball mill to pulverize the nano-composite particles into a step-by-step pulverization method. The nano-composite particles obtained by pulverizing the ball mill are added to a 2-stream private crusher; the compressed air is passed through a nozzle. The sprayed into the crushing cavity; the nano composite particles are repeatedly smashed, rubbed, sheared, and pulverized under the action of the air formed by the compressed air. The pulverized nano-composite particle fan is pumped to the classification zone with the ascending airflow, and the nano-composite particles that meet the particle size requirements enter the cyclone and the dust collector through the grading wheel, and the coarse particles that do not meet the particle size requirements are lowered to The crushing zone continues to smash. The diameter of the prepared nanocomposite particles is less than 1 μm, preferably the diameter of the composite particles is fine··micron. In this embodiment, a ball-milled pulverized zinc oxide nanowire/polyethylene composite material is used to form a nano-composite particle having a diameter of 500 μm. The nano composite particle provided by the invention and the preparation method thereof have the following advantages: First, the nano composite particle provided by the invention contains at least one nanowire, and in practical applications, when a plurality of nanowires are required, When the surface modification of the nano-composite particles is carried out, only a few nano-composite particles can be surface-modified, and the amount of surface modifier required for the nano-composite particles of the core-shell structure is less. Secondly, the preparation method of the nano composite particle provided by the invention first disperses the nanowire in the liquid polymer or the polymer 10 monomer and solidifies it, and then directly pulverizes by using the pulverization method, compared with the sol- The gel method or the sintering method is simple in method and easy to industrialize. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. β [ BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic view showing the structure of a nano composite particle according to an embodiment of the present invention. 2 is a flow chart of a method for preparing nano composite particles according to an embodiment of the present invention. [Main component symbol description] Nano composite particles 10 Nanowire 102 Polymer matrix 104 16

Claims (1)

201024340 2. © 4. 6. φ 7. _、申請專利範園 米複合粒子,包括一聚合物基體,其改良在於,心if複合粒子進一步包括至少一個奈米線設置於 孩聚合物基體中。 申明專利範圍第1項所述之奈米複合教子,其中, 所述奈米複合粒子之直徑小於1000微米。/、 如申請專利範圍第!項所述之奈米複合粒子,其中, 所述奈米複合粒子之直徑為300-700微米。 如申請專利範圍第ί項所述之奈米複合粒子,1中, 所述奈米線之材料爲錄、翻、金、二氧切二氧化 鈦、砰化鎵、糾鎵、氮化鎵、硫㈣、氧化錫、二 氧化鈦或氧化鋅中之一種或幾種。 如申請專利範圍第丄項所述之奈米複合粒子,其中, 所述奈米線之直徑小於50微米。 如申請專利範圍第1項所述之奈米複合粒子,其中, 所述聚合物基體之材料爲樹脂、橡膠或塑料之一 或幾種。 @ 如申請專利範圍第1項所述之奈米複合粒子,其中, 所述奈米複合粒子包括-種添加物或者多種添 混合物。 々 8.如申請專利範圍第7項所述之奈米複合粒子,其中, 所述添加物包括脂肪胺、脂環胺、芳香胺、聚酿胺: 酸酐、樹脂類、聚硫橡膠、聚醯胺樹脂、聚乙烯醇叔丁 醛、丁腈橡膠、石棉纖維、玻璃纖維、石英粉、瓷粉、 氧化鋁、矽膠粉、二縮水甘油醚、多縮水甘油醚、環π氧 17 201024340 • H環氧丙院苯基謎、二環氧丙燒乙基麵、三 - 環氧丙烷丙基醚、烯丙基苯酚。 一 9.如申請專利範圍第w所述之奈米複合粒子,盆中 St複合粒子中包括複數奈米線均勻分散:聚合 ι〇.一種奈米複合粒子之製備方法,包括以下步驟. 提供複數奈米線; 驟· 提供一液態之聚合物材料或聚合物單體; Φ f:述複數奈米線添加至所述液態之聚合物材料或聚 合物單體中並分散丨 固化形成一複合材料,·及 粉碎所述複合材料形成奈米複合粒子。 請=範圍第10項所述之奈米複合粒子之製備 =,八中,將所述複數奈米線添加至所述液鲅之聚 。物材料或聚合物單體巾並分散之具體步驟爲·· 添加所述複數奈米線至所述液離 ⑩物單體中; 厅达液態之聚合物材料或聚合 =物材料或聚合物單體與奈米線形成之混合物進 仃機械攪拌,同時使用超聲波處理。 延 i2.m範圍第.10項所述之奈米複合粒子之製備 松姐,、’在所述H線添加至所述液態之聚合物 材枓或聚合物單體之步驟前,進 劑浸潤奈米線之步驟。 括使用有機各 ΐ3.π請m2項所述之奈来複合粒子之製備 方法,其中,所述有機溶劑爲乙醇、甲醇、丙嗣、二 18 201024340 氯乙烷及氯仿中'之一種或者幾種之混合。 範圍第1〇項所述之奈米;合粒子之製備 方法,八中,所述固化形成複合材料的方 發劑引發聚合反應的方法。 入 15.如申請專利範圍第1G項所述之奈米複合粒子 =的所述固化形成複合材料的方法為紫外光 16·如申請專利範圍第1G項所述之奈米複合粒子之製備 3井!二所述固化形成複合材料的方法為冷卻或 逐步升溫的方法。 17·如申请專利範圍第1()項所述之奈米複合粒子之製備 方法,其中,所述粉碎複合材料形成所述奈来複合粒 子之方法包括采用球磨法、造粒機粉碎法、破碎機粉 碎法或氣流粉碎機粉碎法。 18·如申明專利範圍第17項所述之奈米複合粒子之製備 方法〃中,所述粉碎複合材料形成所述奈米複合粒 m 子之方法為球磨法。 19.如申凊專利範圍第18項所述之奈米複合粒子之製備 方法,其中,所述粉碎複合材料形成奈米複合粒子之 方法進一步包括將經球磨機粉碎得到之奈米複合粒子 放入氣流粉碎機中進一步粉碎。 如申明專利範圍第17項所述之奈米複合粒子之製備 方法,其中,所述球磨過程中大球、中球及小球之磨 球配比爲1:2:3,球料比爲3:1,球磨機轉速爲35〇轉/ 分’球磨之時間爲5小時。 19 201024340 21·如申請專利範圍第19項所述之奈米複合粒子之製備 ’其中,所述將經球磨機粉碎得到之奈米複合粒 =氣流粉碎機中進-步粉碎的方法包括以下步 驟.將經球磨機粉碎後得到之奈米複入必 粉碎機之粉碎腔中;通過喷嘴將壓縮 = 碎腔;在壓縮空氣形成之氣流作用下叔 反復碰撞、磨擦、剪切而進一步粉碎I…、3 σ子被 春 Ο 20201024340 2. © 4. 6. φ 7. _, the patent application of the composite particles, including a polymer matrix, the improvement is that the core if composite particles further comprise at least one nanowire disposed in the polymer matrix of the child. The nanocomposite of claim 1, wherein the nanocomposite particles have a diameter of less than 1000 micrometers. /, such as the scope of patent application! The nano composite particle according to the invention, wherein the nano composite particle has a diameter of 300 to 700 μm. The nano composite particle according to claim 5, wherein the material of the nanowire is recorded, turned, gold, di-oxygen titanium dioxide, gallium antimonide, gallium-doped, gallium nitride, sulfur (four) One or more of tin oxide, titanium dioxide or zinc oxide. The nano composite particle according to the above aspect of the invention, wherein the nanowire has a diameter of less than 50 μm. The nano composite particle according to claim 1, wherein the material of the polymer matrix is one or more of a resin, a rubber or a plastic. The nano composite particle according to claim 1, wherein the nano composite particle comprises an additive or a plurality of addition mixtures. The nano composite particle according to claim 7, wherein the additive comprises a fatty amine, an alicyclic amine, an aromatic amine, a polyamine: an acid anhydride, a resin, a polysulfide rubber, a polyfluorene Amine resin, polyvinyl alcohol tert-butyraldehyde, nitrile rubber, asbestos fiber, glass fiber, quartz powder, porcelain powder, alumina, tannin powder, diglycidyl ether, polyglycidyl ether, ring π oxygen 17 201024340 • H ring Oxygen propylene hospital phenyl mystery, dipropylene propylene burning ethyl surface, tri- propylene oxide propyl ether, allyl phenol. 9. The nano composite particle according to claim w, wherein the St composite particle in the pot comprises a plurality of nanowires uniformly dispersed: a polymerized 〇. A method for preparing a nano composite particle, comprising the following steps. a liquid polymer material or a polymer monomer; Φ f: a plurality of nanowires are added to the liquid polymer material or polymer monomer and dispersed to form a composite material And pulverizing the composite material to form nano composite particles. Please = the preparation of the nano composite particles described in the item 10 of the range =, in the eighth, the plurality of nanowires are added to the liquid helium. The specific step of dispersing and dispersing the material or the polymer monomer is: adding the plurality of nanowires to the liquid monomer; the liquid polymer material or the polymerization material or the polymer The mixture of the body and the nanowire is mechanically stirred while using ultrasonic treatment. Preparation of nano composite particles as described in item 10.2 of the i2.m range, "Injection of the agent before the step of adding the H line to the liquid polymer material or polymer monomer" The steps of the nano line. The method for preparing a nano-composite particle according to the organic ruthenium 3. π, m2, wherein the organic solvent is one or more of ethanol, methanol, propylene glycol, bis 18 201024340 chloroethane and chloroform Mix of. The method of claim 1, wherein the method of preparing the composite particles, the method of initiating the polymerization of the composite forming the composite is initiated. The method for forming the composite material by using the nano composite particles as described in claim 1G of the patent application is ultraviolet light 16 and the preparation of the nano composite particles as described in claim 1G of claim 3 ! The method of curing to form a composite material is a method of cooling or gradually increasing the temperature. The method for preparing a nano composite particle according to the first aspect of the invention, wherein the method of forming the nanocomposite particle by the pulverized composite material comprises a ball milling method, a granulator pulverization method, and a crushing method. Machine pulverization method or jet mill pulverization method. 18. The preparation method of the nano composite particle according to claim 17, wherein the method of forming the nano composite particle m by the pulverized composite material is a ball milling method. The method for producing a nano composite particle according to claim 18, wherein the method of forming the nano composite particle by the pulverized composite material further comprises: placing the nano composite particle pulverized by a ball mill into an air flow. Further pulverization in the pulverizer. The method for preparing a nano composite particle according to claim 17, wherein in the ball milling process, the ball ratio of the large ball, the middle ball and the small ball is 1:2:3, and the ball to material ratio is 3 :1, the ball mill speed is 35 rpm / the time of the ball milling is 5 hours. 19 201024340 21. The preparation of the nano composite particles according to claim 19, wherein the nano composite particle obtained by pulverizing the ball mill = the method of further pulverizing in the jet mill comprises the following steps. The nano-particle obtained by pulverizing the ball mill is re-entered into the pulverizing chamber of the pulverizer; the compression = crushing cavity is passed through the nozzle; under the action of the air formed by the compressed air, the squeezing, rubbing, shearing and further pulverizing are further pulverized I..., 3 σ子被春Ο 20
TW97149720A 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same TWI397548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Publications (2)

Publication Number Publication Date
TW201024340A true TW201024340A (en) 2010-07-01
TWI397548B TWI397548B (en) 2013-06-01

Family

ID=44852040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Country Status (1)

Country Link
TW (1) TWI397548B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022637A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanocomposites
KR101132076B1 (en) * 2003-08-04 2012-04-02 나노시스, 인크. System and process for producing nanowire composites and electronic substrates therefrom
US7550543B2 (en) * 2003-08-05 2009-06-23 S.A. Nanocyl Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses
EP1722952B1 (en) * 2004-03-09 2010-12-08 NV Bekaert SA Composite article comprising a metal reinforcement element embedded in a thermoplastic polymer material

Also Published As

Publication number Publication date
TWI397548B (en) 2013-06-01

Similar Documents

Publication Publication Date Title
CN101735632B (en) Nano composite particle and preparation method thereof
Baskaran et al. Unsaturated polyester nanocomposites filled with nano alumina
CN103108903B (en) Nanoparticle pultrusion processing aide
Vijayan et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties
CN1288206C (en) Epoxy resin/montmorillonoid nano-compoiste-material and its preparation method
Zabihi et al. Investigation of mechanical properties and cure behavior of DGEBA/nano-Fe2O3 with polyamine dendrimer
KR20160043981A (en) Nanocomposites containing layered nanoparticles and dispersant, composites, articles, and methods of making same
CN102344632A (en) Three-layer core-shell-structure inorganic nanoparticle/silicon dioxide/high polymer composite microspheres and preparation method thereof
Li et al. The effect of hyperbranched polyester and zirconium slag nanoparticles on the impact resistance of epoxy resin thermosets
JP2009107857A (en) Dispersible silica nano hollow particles and method for producing dispersion liquid of silica nano hollow particles
Guo et al. One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal–mechanical properties of silica–epoxy composites
KR101556100B1 (en) Thermally conductive polymer composite and method for preparing thereof
Chen et al. Dual-responsive shape memory and thermally reconfigurable reduced graphene oxide-vitrimer composites
CN102876107A (en) Heat-conduction insulating varnish composite material and preparation method thereof
CN112375369A (en) Interface supermolecule reinforced nano composite material and preparation method thereof
CN109370414A (en) A kind of graphene heat radiation coating and preparation method thereof
CN1843905A (en) Method for preparing composite material of carbon nanotube with electric field for controlling arrangement thereof
Suhailath et al. Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites
Guo et al. Effects of surface-modified alkyl chain length of silica fillers on the rheological and thermal mechanical properties of underfill
TW201024340A (en) Nano-scaled composite particle and method for making the same
Wu UV-activated frontal polymerization for preparation of magnetically oriented graphene nanoplatelets/epoxy composites
JP2022059896A (en) Heat-conductive resin composition, heat dissipation member, electronic apparatus, and method for producing heat-conductive resin composition
CN101955570A (en) Resin particles of nuclear-shell structure and preparation method thereof
Hosur et al. Rheology, flexure and thermomechanical characterization of epoxy/CNF nanocomposites: Effect of dispersion techniques
Lekakou et al. Processability studies of silica‐thermoset polymer matrix nanocomposites