TW201022382A - Transparent high-thermal-insulation paint - Google Patents

Transparent high-thermal-insulation paint Download PDF

Info

Publication number
TW201022382A
TW201022382A TW97148804A TW97148804A TW201022382A TW 201022382 A TW201022382 A TW 201022382A TW 97148804 A TW97148804 A TW 97148804A TW 97148804 A TW97148804 A TW 97148804A TW 201022382 A TW201022382 A TW 201022382A
Authority
TW
Taiwan
Prior art keywords
agent
nano
transparent high
coating
transparent
Prior art date
Application number
TW97148804A
Other languages
Chinese (zh)
Inventor
Rui-Hao Wang
Original Assignee
Rui-Hao Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rui-Hao Wang filed Critical Rui-Hao Wang
Priority to TW97148804A priority Critical patent/TW201022382A/en
Publication of TW201022382A publication Critical patent/TW201022382A/en

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

This invention is a transparent high-thermal-insulation paint comprising: particles selected from transparent metal oxides, wherein the particle size is between 10-100 nm, such as any one of nano indium tin oxide (ITO), nano antimony tin oxide (ATO), GZO, aluminum zinc oxide (AZO), SnO, zinc oxide (ZnO), IZO, titanium dioxide (TiO.sub.2), nano gold, nano silver, or combination thereof. The weight percentage of the metal oxides occupied in the paint is: 1-10g (i.e. 0.01-0.1%) per kilogram; and furthermore the substrate of the paint is any one of the following substances or combination thereof: A: temperature-resistant waterproof resin that can be polyacetals, epoxy resins, polyesters, PU (polyurethane), acrylic acid (acrylic resin), polyvinyl acetates, polyvinyl alcohols; B: water; C: coagent (0.1%-1%), that can be leveling agent, defoaming agent, humectant, silicon coupling agent, dispersant, brightness increasing agent, thickening agent, film-forming coagent; and D: hole expansion agent that can be polyethylene glycol (PEG), propylbenzene lotion.

Description

201022382 九、發明說明: 【發明所屬之技術領域】 提出種_之塗料,尤其屬於—種透明高隔熱之塗料。 【先前技術】 、,一般平常的_方式為不分波長完全阻隔光線 ’此雖可有效隔熱,但把 平常環境所需之可見光—併隔離室内缺乏自然光線則未必為節省能源 之舉又魏物之縣處隔熱’傳統制窗簾之方法,亦僅為調節進入室 φ内之光量並無法只梅取所需之可見光。因此’針對此種環境,市面上大 多使用金屬氧化物鍍臈或熱反射貼膜用於玻璃的隔熱 ’藉以僅讓大部分可 見光進入但是’這些產品通常都是採祕理方法如磁控麟法真空蒸 鍛法溶膠凝膠法,❿這些設備投資大成本高且還難以做到大面積推 廣應用因此’為了讓此項技術能夠順應一般之建築物塗敷施工方法並減 低成本本發明特開發出—種透明高隔熱之塗料,用以解決磁控滅射法、 設備投f大成本高的問題。 【發明内容】 • 有鏗於此’本發明提出一種透明高隔熱之塗料,係包含: 選自透明金屬氧化物之粒子,其巾雜子別、介於1(M⑼伽間例如奈米 氧化銦鍚⑽)、奈米氧化鍚銻⑽)、GZ〇、氧化鋁辞⑽)、Sn〇、氧化 辞(ΖηΟ)、ΙΖ0、二氧化鈦⑽2)、奈米金、奈米銀之任一或其組合; 其中金屬氧化物所佔塗料的重量百分比為:lkg裡含卜1〇g(即 0· 01 〜0.1¾); 並且,塗料之基材為下列物質之任一或組合: A :耐溫防水樹脂,可為:聚縮醛類、環氧樹脂、多元酯、pu、丙烯酸(壓克 5 201022382 力樹脂)、聚醋酸乙烯酯、聚乙烯醇。 B :水。 C .助劑(0.1%〜1%),可為:流平劑、消泡劑、保澄劑、碎偶合劑分散劑、 增光劑、增稠劑、成膜助劑。 D :擴孔劑’可為:聚乙二醇(PEG))、丙苯乳液。 【實施方式】 為達上述發明之透明高隔熱塗料之目的,於此提出一最佳實施例,並驗 •證功效如下。 首先,為求透明及隔熱效果,本發明所選材料原則上必須具有良好的可 見光穿透能力和近红外的反射、隔斷能力,則所選材料的能帶寬度Eg,必 須大於可見光的能量,這樣在可見光的照射下才不致引起材料的本質激 發,且由於所選取的無機奈米材料的粒徑遠小於可見光的波長,對可見光 具有一定的繞射作用,所以使其對整個可見光是透明的。 又,由於紅外線波段對於寬能帶材料不具有吸收性,且因奈米粒子具有 ® 高散射、高反射能力,當粒子幾何尺寸遠小於輻射波長,而散射粒子之間 的間距大於輻射波長時’由瑞利散射可得塗層的散射系數如下式: 2 2 2 2 2 2 4 Τ(λ) = (4^ nsp s( η - η〇Μ( η + 2 /?0; ; Λλ 其中:ηΟ表示支撑散射源的媒質折射率;11表示散射粒子的折射率;表 示散射粒子體積;ns表示粒子程度。 對於給定的散射能力m,则最有效散射波長下材料的顆粒直柽d d/ k ,其中 k =0.9 (m2 + 2)/n;r(m2 - l)m =η0/η;其中塗料中樹鹿的 折光系數;n0為填料的折光指数;m為散射能力。 201022382 以上分析可知,塗層内反射材料的種類、粒徑分佈和折射率的大小等均 會對材料的隔熱效果產生一定的影響。 如前所述’理想的透明隔熱奈米塗料應該對太陽光的可見光部分具有良 好穿透侧,而對近红外部分具有良好的阻隔、反射侧,以達透明及隔熱 效果’選用具有良好的可見光穿透能力和近红外的反射、阻隔能力材料… 對可見光需求而言則選用需是E:g必须大於可見光的能量材料,且粒徑大小 需小於其波長’而對紅外光而言需選擇高反·或高麵比的淡色或白色 © 無機颜料作為透明隔熱奈米塗料的颜填料。 依照上述之說明’本發明幾經實驗與研究,終於完成本發明,本發明之 透明高隔熱塗料係包含: 選自透明金屬氧化物之粒子,其中該粒子大小介於10〜10〇11111間,例如奈米 氧化銦鍚(ΙΤ0)、奈米氧化錯録(AT0)、GZ0(Ga摻雜ZnO)、氧化銘鋅(AZ0;A1 摻雜ZnO)、SnO、氧化鋅(ΖηΟ)、ΙΖ0、二氧化鈦(Ti02)、奈米金、奈米 銀之任一或其組合; ® 其中金屬氧化物所佔塗料的重量百分比為:1kg裡含1〜10g(即0.01〜0.1%); 並且’塗料之基材為下列物質之任一或組合: A :耐溫防水樹脂,可為:聚縮醛類、環氧樹脂、多元酯、pu、丙烯睃(壓克 力樹脂)、聚醋酸乙烯酯、聚乙烯醇。 B :水。 C :助劑(0.1%〜1¾),可為:流平劑、消泡劑、保溼劑、矽偶合劑、分散劑、 增光劑、增稠劑、成膜助劑。 7 201022382 - D :擴孔劑,可為:聚乙二醇(PEG))、丙苯乳液。 .本實驗塗料主要材質選擇之透明金屬氧化物之粒子為AT〇,其餘上述的 等效金屬氧化物均可替代’在所使用的粒子大小約為3〇nm,約每公斤塗料 添加3〜5公克透明金屬氧化物(按,若添加丨〜⑺公克亦保有透明隔熱之 效果,惟其實驗結果不另贅述)’第1圖為光線波長穿透率的示意圖,係顯 示上述之材料在可見光的部分有約85%的穿透率,在紅外光的穿透率部分 則僅為約40%,故尚可保有大部分之可見光,為求更詳細之隔熱驗證,以 Φ 下以厚度約為1公分之透明測試片實驗,檢測標準如表一所示,光源係使 用i〇〇w碘鎢燈(波長近似太陽光),測溫器為YS_947D熱電耦測溫器,檢 測距離10cm,檢測時間分別為卜3、5、10分鐘,光穿透率測定的儀器則 為全波段光譜儀(0-2000nm),同時表一的檢測結果將顯示於第2圖中以圖 式的方式呈現。 表一檢測標準 項目 規格 光源 100W碘鎢燈(波長近似太陽光) 測溫器 YS-947D熱電耦測溫器 檢測距離 10 cm 檢測時間 1,3, 5,10 min 光穿透率 全波段光譜儀(0-2000 nm) 請參閱第2圖,為本發明之溫度統計對照圖,其中: 8 201022382 第2圖A係顯示:依不同光照時間照射玻璃及隔熱塗料/玻璃之對照。 第2圖B係顯示:依不同光照時間照射玻璃、隔熱塗料/玻璃及空氣之對 照。 從第2圖可清楚發現,在光源照射於玻璃及隔熱塗料/玻璃下,其照射 3分鐘下溫度差異最大❶且光源照射於玻璃、隔熱塗料/玻璃及隔熱塗料/空 氣下’其照射3分鐘下溫度差異最大,且照射3分鐘後其溫度不再上升。 結論:由於大部分的太陽光熱能,主要來自於波段約l〇〇〇nm的紅外線, 其結果量測知此塗料可有效地阻絶紅外線約6〇%。 本發明雖已藉上述較佳實施例加以詳細說明,惟以上所述者,僅用以 說明本發贼胁本技藝者可更祕了解本發明,並_來蚊本發明實 施之範圍。 故,凡依本發明f料-赌叙形狀構造雖域神所為之均等 變化與修飾,均應包含於本發明之申請專利範圍内。 【圖式簡單說明】 第1圖為光線波長穿透率的示意圖。 第2圖為本發明之溫度統計對照圖。 【主要元件符號說明】201022382 IX. Description of the invention: [Technical field to which the invention belongs] The invention proposes a coating, in particular, a transparent high-insulation coating. [Prior Art], the usual way is to completely block the light without wavelength. 'Although it can effectively insulate, but the visible light needed in the normal environment - and the lack of natural light in the room is not necessarily energy saving. The method of heat-insulating 'traditional curtains' in the county of the object is also only to adjust the amount of light entering the chamber φ and not only to obtain the visible light required. Therefore, 'for this kind of environment, most of the market uses metal oxide rhodium or heat reflective film for glass insulation' so that only most of the visible light enters. 'These products are usually secret methods such as magnetron control. Vacuum steaming forging sol-gel method, these equipments are expensive to invest and are difficult to promote and apply in large areas. Therefore, in order to make this technology conform to the general building coating construction method and reduce the cost, the invention has been developed. A kind of transparent high-insulation coating, which is used to solve the problem of high cost of magnetron emission control method and equipment investment. SUMMARY OF THE INVENTION The present invention provides a transparent high-insulation coating comprising: particles selected from transparent metal oxides, which have a miscellaneous amount of between 1 (M(9) gamma such as nano-oxidation Indium bismuth (10)), nano cerium oxide (10)), GZ lanthanum, aluminum oxide (10)), Sn 〇, oxidized (ΖηΟ), ΙΖ0, titanium dioxide (10) 2), nano gold, nano silver or any combination thereof The weight percentage of the coating of the metal oxide is: lbg contains 1 〇g (ie 0·01 ~0.13⁄4); and the substrate of the coating is any one or combination of the following materials: A: temperature resistant and waterproof The resin may be: polyacetal, epoxy resin, polyester, pu, acrylic (press 5 201022382 resin), polyvinyl acetate, polyvinyl alcohol. B: Water. C. Auxiliary agent (0.1%~1%), which can be: leveling agent, antifoaming agent, Baocheng agent, dispersing agent dispersing agent, brightening agent, thickening agent and film forming auxiliary. D: the pore-expanding agent ' can be: polyethylene glycol (PEG)), propylbenzene emulsion. [Embodiment] For the purpose of achieving the transparent high heat-insulating coating of the above invention, a preferred embodiment is proposed here, and the efficacy is verified as follows. Firstly, in order to achieve transparency and heat insulation effect, the material selected in the present invention must have good visible light penetration capability and near-infrared reflection and isolation capability, and the energy band width Eg of the selected material must be greater than the visible light energy. Thus, under the illumination of visible light, the intrinsic excitation of the material is not caused, and since the particle size of the selected inorganic nanomaterial is much smaller than the wavelength of visible light, it has a certain diffraction effect on visible light, so that it is transparent to the entire visible light. . Moreover, since the infrared band is not absorptive to the wide band material, and because the nano particles have high scattering and high reflection ability, when the particle geometry is much smaller than the radiation wavelength, and the spacing between the scattering particles is larger than the radiation wavelength' The scattering coefficient of the coating obtained by Rayleigh scattering is as follows: 2 2 2 2 2 2 4 Τ(λ) = (4^ nsp s( η - η〇Μ( η + 2 /?0; ; Λλ where: ηΟ Represents the refractive index of the medium supporting the scattering source; 11 indicates the refractive index of the scattering particles; indicates the volume of the scattering particles; ns indicates the degree of the particles. For a given scattering power m, the particles of the material at the most effective scattering wavelength are 柽/k, Where k = 0.9 (m2 + 2) / n; r (m2 - l) m = η0 / η; where the refractive index of the tree deer in the paint; n0 is the refractive index of the filler; m is the scattering ability. 201022382 The above analysis shows that The type of reflective material inside the coating, the particle size distribution and the refractive index will have a certain effect on the thermal insulation effect of the material. As mentioned above, the ideal transparent insulating nano-coating should be visible to the visible part of sunlight. Has a good penetration side, and has a near-infrared portion Good barrier, reflective side, to achieve transparency and heat insulation effect 'Use materials with good visible light penetration and near-infrared reflection and barrier properties... For visible light demand, the choice should be E: g must be greater than visible light Energy material, and the particle size should be smaller than its wavelength'. For infrared light, choose high-reverse or high-surface ratio light or white © inorganic pigment as the pigment filler of transparent insulating nano-coating. The present invention has finally completed the present invention. The transparent high heat insulating coating of the present invention comprises: particles selected from transparent metal oxides, wherein the particle size is between 10 and 10 11111, such as nano indium oxide.钖(ΙΤ0), nano-oxidation error recording (AT0), GZ0 (Ga-doped ZnO), oxidized zinc (AZ0; A1-doped ZnO), SnO, zinc oxide (ΖηΟ), ΙΖ0, titanium dioxide (Ti02), Nai Any one or combination of rice gold and nano silver; wherein the weight percentage of the coating of the metal oxide is 1 to 10 g (ie 0.01 to 0.1%) in 1 kg; and the substrate of the coating is the following Any or combination: A: temperature resistance The water resin may be: polyacetal, epoxy resin, polyester, pu, acrylonitrile (acrylic resin), polyvinyl acetate, polyvinyl alcohol B: water C: auxiliary (0.1%~ 13⁄4), can be: leveling agent, defoamer, humectant, bismuth coupling agent, dispersant, brightener, thickener, filming aid. 7 201022382 - D : pore-expanding agent, can be: poly Ethylene glycol (PEG), styrene emulsion. The particles of the transparent metal oxide selected from the main materials of this experiment are AT〇, and the other equivalent metal oxides can be substituted for 'the size of the particles used is about 3 〇 nm, about 3 to 5 grams of transparent metal oxide per kilogram of paint (by pressing, if added 丨 ~ (7) grams also retains the effect of transparent insulation, but the experimental results are not described again) 'Figure 1 is the light wavelength penetration The schematic diagram shows that the above material has a transmittance of about 85% in the visible light portion and only about 40% in the infrared light transmittance portion, so that most of the visible light can be retained, for more details. Insulation verification, with a transparent test piece with a thickness of about 1 cm under Φ, the test standard As shown in Table 1, the light source uses i〇〇w iodine tungsten lamp (wavelength is similar to sunlight), the temperature detector is YS_947D thermocouple temperature detector, the detection distance is 10cm, and the detection time is 3, 5, 10 minutes respectively. The instrument for measuring the light transmittance is a full-band spectrometer (0-2000 nm), and the test results of Table 1 are shown in Figure 2 in a schematic manner. Table 1 Test Standard Item Specifications Light source 100W iodine tungsten lamp (wavelength approximation of sunlight) Thermometer YS-947D thermocouple temperature detector detection distance 10 cm Detection time 1,3,5,10 min Light transmittance full-band spectrometer ( 0-2000 nm) Please refer to Fig. 2, which is a temperature statistical comparison chart of the present invention, wherein: 8 201022382 Fig. 2A shows the comparison of the glass and the thermal insulation coating/glass according to different illumination times. Figure 2B shows the comparison of glass, heat-insulating paint/glass and air in different lighting times. It can be clearly seen from Fig. 2 that under the illumination of the light source and the heat-insulating paint/glass, the temperature difference is the highest under the irradiation for 3 minutes, and the light source is irradiated on the glass, the heat-insulating paint/glass and the heat-insulating paint/air. The temperature difference was the highest after 3 minutes of irradiation, and the temperature did not rise after 3 minutes of irradiation. Conclusion: Since most of the solar thermal energy is mainly from infrared rays with a wavelength of about 1 〇〇〇 nm, the results show that the coating can effectively block infrared rays by about 6〇%. The present invention has been described in detail by the above-described preferred embodiments, but the above description is only used to illustrate the present invention, and the scope of the present invention can be further understood. Therefore, all the equivalent changes and modifications of the f-gambling shape structure according to the present invention should be included in the scope of the patent application of the present invention. [Simple description of the figure] Figure 1 is a schematic diagram of the wavelength transmittance of light. Figure 2 is a comparison of temperature statistics of the present invention. [Main component symbol description]

Claims (1)

201022382 十、申請專利範園: 1. 一種透明高隔熱之塗料,係包含: 選自透明金屬氧化物之粒子,其中該粒子大小介於10〜100咖間,又該 金屬氧化物所佔塗料的重量百分比為〇. 〇1~〇 1% (即lkg裡含卜丨时广 並且,塗料之基材為下列物質之任一或組合: A :樹脂、B :水、C :助劑、D :擴孔劑。 2. 如申請專利範圍第1項之透明高隔熱之塗料,其中該透明金屬氧化物之 Φ 粒子可為奈米氧化銦鍚(ITO)、奈米氧化鍚銻(ΑΤΟ)、GZO、氧化鋁鋅 (ΑΖ0)、SnO、氧化辞(ΖηΟ)、ΙΖ0、二氧化鈦(Ti〇2)、奈米金、奈米銀 之任一或其組合。 3. 如申請專利範圍第1項之透明高隔熱之塗料,其中該耐溫防水樹脂為: 聚縮醛類、環氧樹脂、多元酯、PU、丙烯酸(壓克力樹脂)、聚醋酸乙烯 酯、聚乙烯醇之任一或組合。 4·如申請專利範圍第丨項之透明高隔熱之塗料,其中該助劑為:流平劑、 • 消泡劑、保溼劑、矽偶合劑、分散劑、增光劑、増铜劑、成膜助劑之任 一或組合。 5·如申請專利範圍第4項之透明高隔熱之塗料,其中該助劑之重量百分比 為 0.1%〜1%。 6. 如申請專利範圍第1項之透明高隔熱之塗料’其中該擴孔劑為:聚乙二 醇(PEG))、丙苯乳液之任一或組合。 7. 如申請專利範圍第i項之透明高隔熱之塗料’其中該樹指為耐溫防水樹201022382 X. Application for Patent Park: 1. A transparent high-insulation coating comprising: particles selected from transparent metal oxides, wherein the particle size is between 10 and 100 cafés, and the metal oxide occupies the coating. The weight percentage is 〇. 〇1~〇1% (that is, the lkg contains a wide range of dips and the substrate of the coating is any one or combination of the following: A: resin, B: water, C: auxiliary, D : A pore-enlarging agent. 2. A transparent high-insulation coating according to claim 1 wherein the Φ particles of the transparent metal oxide may be nano-indium lanthanum oxide (ITO) or nano-cerium oxide (ΑΤΟ). , GZO, aluminum oxide zinc (ΑΖ0), SnO, oxidized (ΖηΟ), ΙΖ0, titanium dioxide (Ti〇2), nano gold, nano silver or any combination thereof. Transparent high-insulation coating, wherein the temperature-resistant waterproof resin is: polyacetal, epoxy resin, polyester, PU, acrylic (acrylic resin), polyvinyl acetate, polyvinyl alcohol or 4. For example, the transparent high-insulation coating of the third paragraph of the patent application, wherein the additive is: Any one or combination of a leveling agent, an antifoaming agent, a humectant, a hydrazine coupling agent, a dispersing agent, a brightening agent, a beryllium copper agent, and a film forming aid. 5. A transparent high partition as in claim 4 of the patent application scope. A hot coating in which the weight percentage of the auxiliary agent is from 0.1% to 1%. 6. A transparent high heat-insulating coating material according to claim 1 wherein the pore-expanding agent is polyethylene glycol (PEG). Any one or combination of styrene emulsions. 7. For transparent high-insulation coatings of the scope of patent application i, where the tree is a temperature-resistant waterproof tree
TW97148804A 2008-12-15 2008-12-15 Transparent high-thermal-insulation paint TW201022382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148804A TW201022382A (en) 2008-12-15 2008-12-15 Transparent high-thermal-insulation paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148804A TW201022382A (en) 2008-12-15 2008-12-15 Transparent high-thermal-insulation paint

Publications (1)

Publication Number Publication Date
TW201022382A true TW201022382A (en) 2010-06-16

Family

ID=44832952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148804A TW201022382A (en) 2008-12-15 2008-12-15 Transparent high-thermal-insulation paint

Country Status (1)

Country Link
TW (1) TW201022382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109705691A (en) * 2019-01-22 2019-05-03 段小宁 A kind of preparation method of fast, waterproof the aqueous, environmental protective paint of film forming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109705691A (en) * 2019-01-22 2019-05-03 段小宁 A kind of preparation method of fast, waterproof the aqueous, environmental protective paint of film forming

Similar Documents

Publication Publication Date Title
Li et al. Solution‐processed all‐ceramic plasmonic metamaterials for efficient solar–thermal conversion over 100–727 C
Huang et al. Scalable aqueous processing‐based passive daytime radiative cooling coatings
US20170353996A1 (en) Transparent sheet heater
KR101470901B1 (en) Heat-reflecting film with the visibility improvement and the thermal barrier and thermal insulation characteristics
KR101901486B1 (en) Heat dissipation structure and wind power unit for heat generating equipment
MX2010010100A (en) Substrate comprising a stack with thermal properties.
JP6498202B2 (en) Low radiation coating and functional building materials for joinery including the same
Zhang et al. Low‐cost and large‐scale producible biomimetic radiative cooling glass with multiband radiative regulation performance
EA201171111A1 (en) SUBSTRATE EQUIPPED WITH A THERMAL PROPERTIES PACKAGE CONTAINING A LAYER WITH A HIGH REFINEMENT INDICATOR
CN105814150B (en) Low emissivity coated film, its preparation method and the functional building materials of window comprising it
CN105655894B (en) It is easy to the distribution box safeguarded
CN105814149B (en) Low emissivity coated film, its preparation method and the functional building materials of window comprising it
CN103943691B (en) Automatically cleaning solar cell antireflective film
Dang et al. A visible transparent solar infrared reflecting film with a low long-wave emittance
JP2015526369A (en) Low radiation transparent laminate and building material including the same
KR102007723B1 (en) The heat insulation film
CN103884122B (en) A kind of solar energy optical-thermal conversion transparent heat mirror of heat collector and preparation method thereof
He et al. Engineering a Versatile Spectrally Selective Absorber for Moderate‐and Low‐Temperature Application with Gradient High‐Entropy Nitride Nanofilms
JP2014058052A (en) Glass film
CN102900159A (en) Heat-insulating film
JP6261140B2 (en) Low radiation transparent laminate and building material including the same
TW201022382A (en) Transparent high-thermal-insulation paint
Hu et al. Enhancement of solar absorption by a surface-roughened metal–dielectric film structure
JP6877180B2 (en) Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film
CN104476840B (en) A kind of flexible membrane