TW201021359A - Mixed power supply method for power-consuming device and secondary battery using the method - Google Patents

Mixed power supply method for power-consuming device and secondary battery using the method Download PDF

Info

Publication number
TW201021359A
TW201021359A TW097145864A TW97145864A TW201021359A TW 201021359 A TW201021359 A TW 201021359A TW 097145864 A TW097145864 A TW 097145864A TW 97145864 A TW97145864 A TW 97145864A TW 201021359 A TW201021359 A TW 201021359A
Authority
TW
Taiwan
Prior art keywords
power
secondary battery
battery
fuel cell
power supply
Prior art date
Application number
TW097145864A
Other languages
Chinese (zh)
Other versions
TWI403069B (en
Inventor
Tuo-Jun Lin
Yu-Run Lin
wen-bin Qiu
Original Assignee
Dynapack Internat Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynapack Internat Technology Corp filed Critical Dynapack Internat Technology Corp
Priority to TW097145864A priority Critical patent/TWI403069B/en
Publication of TW201021359A publication Critical patent/TW201021359A/en
Application granted granted Critical
Publication of TWI403069B publication Critical patent/TWI403069B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This invention discloses a mixed power supply method for power-consuming device in which a secondary battery and a fuel cell device are used as the mixed power. During the secondary battery provides power to the power-consuming device, the fuel cell device is initiated when the power capacity state of the secondary battery detected by the control unit is less than X1%. When the fuel cell device completes the initiation, the fuel cell device recharges the secondary battery and provides power to the power-consuming device; when the power usage of the power-consuming device is greater than the total power generation capacity of the fuel cell device, the secondary battery directly supplies power to the power-consuming device so as to provide power to the power-consuming device with the fuel cell device in a mixed manner. When the power capacity state of the secondary battery is less than X2%, the secondary battery stops power supply and notifies the fuel cell to enter the shut-off mode as well as notifies the power-consuming device to enter the power-saving mode or shut-off. When the power capacity state of the secondary battery recovers to at least Y%, the fuel cell device is shut off and the secondary battery directly supplies power to the power-consuming device.

Description

201021359 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於用電裝置的混合供電方法,特別 是關於一種結合二次電池與燃料電池作為混合電力,來對用 電裝置進行供電。 【先前技術】 •用電裝置例如筆記型電腦在沒有市電的場所會以二次電 • 池作為電源。二次電池的使用固然便利,但是仍存有需要較長 響 時間充電的缺點。如果在二次電池的電量狀態已接近零時,此 時若沒有其它電力來源的話,則用電裝置會因缺乏電力供應而 無法使用’因此,包含有二次電池與其它電力來源的混合電力 即因應而生。在習知混合電力中,結合二次電池與燃料電池的 混合電力已經開始被應用在用電裝置。由於燃料電池具備免充 電的特性,只要注入燃料後,燃料電池便能夠產生電力,因此, ® 在結合二次電池與燃料電池的習知混合電力中,燃料電池是用 . 來作為主電力,而二次電池是用來作為副電力,也就是說,只 ' 魏料電池能夠產生足夠功率的電力時,就只賴料電池的電 Λ ’、有當燃料電池無法發電,或所產生電力的功率尚不足應 付用電裝置時,才會使用到二次電池的電力。 第嶋不在結合二次電池無料電池的胃知混合電力 燃料電池與二次電池的供電狀態圖。電力輸出曲線1是代 料電Α的供電狀態’電餘態曲線2是在代表二次電池的 5 201021359 供電狀態。在時間Tl的時_之前,混合電力只有燃料電池 對用電裝置供應電力,而二次電池並沒有供應任何電力,因此 二次電池電量狀態曲線2 —直維持蝴。在介於時間%與時 間T2之間,麟電池無法供應電力,乃改由二次f池對用電 裝置供應電力’ ®此’二次電池的電量狀態(Staeof Charge) 逐漸下降。在介於時間L與_ T3之間,燃料電池已恢復產 生電力,因此,恢復對用電裝置供應電力,同時,對二次電池 進行充電。在時間 ❹ Τ3的時間點之後,二次電池的電力已充電 至原先電量狀態’混合電力再次只有燃料電池電裝置供應 電力,而二次電池並沒有供應任何電力,因此電量狀態曲線2 一直維持相同。 本發明發明人有鑑於上述冑知混合電力仍有改良之處,乃 亟思發明而改良-種用糊電裝置的混合供電方法。 【發明内容】 參 本發明的目的在於提供一種用於用電裝置的混合供電方 法,能夠達成混合電力的供電功能,尚能夠獲得二次電池低 衰減率的效果。 本發明的另一目的在於提供一種用於用電裝置的混合供 電方法,能夠達成二次電池與燃料電池的混合電力供電功 能,能夠獲得二次電池低衰減率的效果以及延長燃料電池的 使用壽命。 201021359 本發明的又另_目的在於提供—種二次電池可結合外 接式電力而達成混合電力的供電魏,尚能夠獲得二次電池 低衰減率的效果。 為達上述之目的,本發明提供一種如申請專利範圍第^ 項所請求的用於用電裝置的混合供電方法,以及,提供一種 如申請專利範圍第7與U項所請求的二次電池。 為使責審查委員對本發明之構造、特徵及其使用功效 ❹ 有更深一層的認識與瞭解,茲舉較佳之可行實施例並配合圖 式詳細說明如下: 【實施方式】 本發明用於用電裝置的混合供電方法的特色是:用電裝 置的主供電者是以二次電池為主,只有當二次電池的電量狀 態下降至X!%電量狀態時,燃料電池裝置才會開始啟動然後 φ 供電。運作中的燃料電池裝置會對二次電池進行充電,同時 • 可取代二次電池來對用電裝置進行供電,一直供電至二次電 . 池的電量狀態恢復至Y%電量狀態為止。當二次電池的電量狀 態恢復至Y%電量狀態時’燃料電池裝置會被關機,二次電池 恢復對用電裝置進行供電。在燃料電池裝置對用電裝置進行 供電當中,如果發生燃料電池裝置的總發電量無法應付用電 裝置當時的用電量的情況時’此時’二次電池會再提供電力 給用電裝置’如此與燃料電池裝置提供混合電力來對用電裝 201021359 置進行供電。 -第二A、B _示本發魏合供電方法之絲圖,第三圖 顯不應用本發魏合供電方法之具體實_方制,第四圖 顯示本發明二次電池的控制單元之具體實施例方塊圖 ,以及 第五圖顯示執行本發明混合供電方法,二次電池的電量狀態 -時間特性崎圖。本發混合供電方法1()係糊二次電 池20與燃料電池裝置30來作為混合電力,用電裝置4〇的電 ❷ 力來源疋在通過混合供電方法1〇的執行下,是依據當時的二 次電池20㈣量狀態以及燃料電池20對用電裝置4〇的供電 狀態而作出決定,混合供電方法10包括步驟100至步驟 l〇9c,茲分別說明如下内文。 步驟100是提供二次電池2〇以及燃料電池裝置3〇來作 為混合電力。請配合參見第三、四圖,二次電池2〇乃包括控 制单元21、充電模組22、二次電池蕊(組)(Battery Cel 1) 24。 φ 二次電池蕊(組)24的電力可作為用電裝置40的電力來源。充 電模組22是用來接收來自燃料電池裝置3〇的電力,並且將 其轉換成符合二次電池蕊(組)24的充電電氣要求的充電電流 及充電電壓,以及轉送燃料電池裝置30的電力給用電裝置 40 〇控制單元21是用來執行本發明的混合供電方法1〇。電子 開關23a、23b是受控於電池容量偵測模組21B。燃料電池裝 置30乃包括控制器31(Controller)、升壓器(Booster)32、 201021359 以及燃料電池33。燃料電池33的電力可作為用電裝置4〇的 電力來源。升壓器(Booster)32是用來將燃料電池33的電力 轉換成符合充電模組22的電氣要求的電壓❶控制器3丨是用 來控制燃料電池33與升壓器32的運作與否,同時,控制器 31藉由通信手段27來與二次電池20的控制單元21彼此雙向 或單向傳輸訊號。 控制單元21的具體實施例可由微控制器21A與電池容量 ❹ 偵測模組21B所組成。再者,微控制器21A與電池容量偵測 模組21B可採實現成單顆積體電路(ic)。電池容量偵測模組 21B的功能是用來偵測二次電池蕊(組)24的電量狀態 (SOC-State of Charge)、保護二次電池(防止過電壓、過電 流等)、以及將電量狀態訊號傳輸至微控制器21A。 充電模組22的另一個功能是用來隨時偵測燃料電池兕 的目前總發電量,充電模組22會將代表燃料電池33的目前 ® 總發電量的電氣訊號22a(例如為電壓訊號)傳送給控制單元 21。控制导元21依據電氣訊號22a以及來自於電池容量彳貞測 模組21B的目前二次電池蕊(組)24用電量訊號,控制單元21 能夠獲知燃料電池33的目前總發電量是否能夠足以應付用電 裝置40的目前用電量。 步驟102是利用二次電池20對用電裝置40進行供電(步 驟102a),以及在二次電池20的供電狀態中,控制單元21隨 201021359 時偵測二次電池蕊(組)24的電量狀態,當控制單元21偵測出 二次電池蕊(組)24的電量狀態小於沁%時(步驟i〇2b),則控 制單元21會令燃料電池裝置3〇啟動(步驟1〇2c),以及,在 燃料電池裝置30完成啟動之前,二次電池2〇仍對用電裝置 40進行供電(步驟102d)。反之,若二次電池蕊(組)24的電量 狀態大於等於沁%時,則返回步驟1〇2a。 在步驟102中,請配合參見第三圖,二次電池20對用電 © 裝置40進行供電的期間’也就是說,在二次電池蕊(組)24的 電量狀態大於等於祕的躺,或是在祕電池裝置3〇完成 啟動之前的期間,在這兩個期間中,控制單元21會令電子開 關23a、23b維持導通,如此,二次電池蕊(組)24的電流將會 進入用電裝置40。當控制單元21偵測出二次電池蕊(組)24 的電量狀態小於祕時,控制單元21經由通信手段27傳輸 啟動訊號給控 31,織,鋪|| 31處理賊動訊號,接 參 著,控制器31令燃料電池33啟動。 在燃料電池裝置30完成啟動前的這段時間當巾,二次電 池20可對轉電池褒置30提供絲所需要的電力。 步驟104疋當燃料電池裝置完成啟動,且正常運作 時燃料電池裝置3〇即對二次電池蕊(組)24充電以及對用電 裝置40供電。控制器31令升壓器32運作,升壓器32輸出 充電電壓至充電模組22,如此使得燃料電池裝置3()可對二次 201021359 電池20進行充電。同時’運作中的充電模組22可將升壓器 32所輸出的電流轉送至用電裝置4〇,如此使得燃料電池裝置 30可對用電裝置40進行供電。 在步驟104中,請配合參見第三圖,當燃料電池裝置 凡成啟動且正常運作後,充電模組22會將代表燃料電池33 的目前總發電量的電氣訊號22a(例如為電壓訊號)傳送給控 制單元21。控制單元21依據電氣訊號22a便能夠獲知燃料電 鲁 池30已開始發電運作。或者,當燃料電池裝置30完成啟動 且正常運作後,控制器31經由通信手段27傳輸完成啟動訊 號給控制單元21,如此,控制單元21便能夠獲知燃料電池 30已開始發電運作。上述電氣訊號22a的具體範例可採行至 少包括燃料電池33發電功率訊號以及燃料電池33是否已插 置安裝(Plug in)訊號。 燃料電池裝置30已開始發電運作後,控制單元21令充 儀 電模組22運作,以及’控制單元21會令電子開關23a、23b 維持導通。從此刻起的二次電池蕊(組)24是處在被充電的狀 態’來自充電模組22的充電電流通過電子開關23a、23b,而 進入至二次電池蕊(組)24。以及,充電模組22轉送升壓器32 所輸出的電流至用電裝置4〇,如此達成燃料電池裝置3〇對用 電裝置40的供電。 燃料電池漿置30完成啟動且正常運作的發生時間點,乃 11 201021359 是發生在二次電池蕊(組)24的電量狀態介於χ2%之間 的某個時間點上。 步驟106是當燃料電池裝置30無法完成啟動時,且控制 單元21偵測二次電池20的電量狀態小於X2%時,則使得二 次電池20會停止對用電裝置4〇供電,以及,控制單元21在 二次電池20停止對用電裝置40供電之前,進一步通知用電 裝置40,使得用電裝置40進入省電模式或關機,同時,控制 參 單元21會令燃料電池裝置30關機。 在步驟106中,請配合參見第三圖,燃料電池裝置3〇無 法完成啟動的可能情形’例如是燃料電池裝置3〇故障;同時, 由於燃料電池裝置30在完成啟動前的這段期間當中,仍是由 二次電池20對用電裝置40進行供電,因此二次電池2〇的電 量狀態會持續下降。當控制單元21俄測出二次電池2〇的電 量狀態小於χ2%時,則控制單元21禁能(Disable)電子開關 ❹ 23a、23b,如此使得二次電池20與用電裝置40呈電氣斷路。 再者,控制單元21使得二次電池2〇停止對用電装置供電 之前,控制單元21藉由通信手段28傳送訊號至用電裝置仙, 通知用電裝置40馬上進入省電模式或是關機。同時,控 元21會令燃料電池裝置30關機。 步驟108是在燃料電池裝置3〇對二次電池2〇進行 中’控制單元21細二次電池2〇㈣量狀紐復至少為γ 201021359 %時,則控制單元21令燃料電池裝置30關機,同時,控制 單元21使得二次電池2〇將會直接對用電裝置4〇供電然後, 返回至步驟102a繼續執行。 在步驟108巾,請配合參見第三圖,正常運作中的燃料 電池裝置30所產生電電力乃經由升壓器32及充電模組泣的 轉換而同時供應給用電裝置與二次電池。當控制單元201021359 IX. Description of the Invention: [Technical Field] The present invention relates to a hybrid power supply method for an electric device, and more particularly to a combination of a secondary battery and a fuel cell as a hybrid power source for supplying power to a power device . [Prior Art] • A power-on device such as a notebook computer uses a secondary battery as a power source in a place where there is no mains. The use of secondary batteries is convenient, but there are still disadvantages that require longer time charging. If the state of charge of the secondary battery is close to zero, if there is no other source of power at this time, the power device will be unable to be used due to lack of power supply. Therefore, the hybrid power including the secondary battery and other power sources is included. Born to respond. In the conventional hybrid power, a hybrid power combining a secondary battery and a fuel cell has begun to be applied to a consumer. Since the fuel cell has a charge-free characteristic, the fuel cell can generate electric power as long as the fuel is injected. Therefore, in the conventional hybrid power combining the secondary battery and the fuel cell, the fuel cell uses the main power as the main power. The secondary battery is used as a secondary power, that is, when only the Wei battery can generate enough power, it only depends on the battery's power, and when the fuel battery cannot generate electricity, or the power generated. When the power supply device is not enough, the power to the secondary battery is used. The third is not a combination of the secondary battery and the battery, and the power supply state diagram of the fuel cell and the secondary battery. The power output curve 1 is the power supply state of the relay battery. The electric residual state curve 2 is the power supply state of the 5 201021359 representing the secondary battery. Before the time T1, the hybrid electric power only supplies the electric power to the electric power device, and the secondary battery does not supply any electric power, so the secondary battery electric power state curve 2 is maintained. Between the time % and the time T2, the battery cannot supply power, but the power supply to the consumer is replaced by the secondary f-cell. The Staeof Charge of the secondary battery gradually decreases. Between the times L and _T3, the fuel cell has recovered to generate electric power, and therefore, the supply of electric power to the electric device is resumed, and at the same time, the secondary battery is charged. After the time point of time ❹3, the power of the secondary battery has been charged to the original state of charge. 'The hybrid power is only supplied by the fuel cell electric device again, and the secondary battery does not supply any electric power, so the state of charge state 2 remains the same. . The inventors of the present invention have improved the hybrid power supply in view of the above-mentioned problems, and have improved the hybrid power supply method of the paste electric device. SUMMARY OF THE INVENTION An object of the present invention is to provide a hybrid power supply method for an electric device, which can achieve a power supply function of hybrid electric power, and can also obtain an effect of a low attenuation rate of the secondary battery. Another object of the present invention is to provide a hybrid power supply method for an electric device, which can achieve a hybrid electric power supply function of a secondary battery and a fuel cell, can obtain a low attenuation rate of the secondary battery, and prolong the service life of the fuel cell. . Further, another object of the present invention is to provide a secondary battery capable of achieving hybrid power supply in combination with external power, and it is possible to obtain a low attenuation rate of the secondary battery. In order to achieve the above object, the present invention provides a hybrid power supply method for an electric device as claimed in the scope of the patent application, and a secondary battery as claimed in claims 7 and 5 of the patent application. In order to enable the reviewing committee to have a deeper understanding and understanding of the structure, features and functions of the present invention, the preferred embodiments are described in detail with reference to the drawings as follows: [Embodiment] The present invention is applied to an electrical device. The characteristic of the hybrid power supply method is that the main power supplier of the electric device is mainly a secondary battery, and only when the state of the secondary battery drops to the X!% state of charge, the fuel cell device starts to start and then the φ power supply . The operating fuel cell device charges the secondary battery and • can replace the secondary battery to supply power to the consumer, and always supply power to the secondary power. The battery state returns to the Y% state. When the state of the secondary battery returns to the Y% state of charge, the fuel cell device is turned off and the secondary battery is restored to supply power to the consumer. In the case where the fuel cell device supplies power to the electric device, if the total power generation amount of the fuel cell device cannot cope with the current power consumption of the electric device, the 'secondary battery will supply power to the electric device at this time' This provides hybrid power to the fuel cell device to power the electrical equipment 201021359. - The second A, B _ shows the silk diagram of the power supply method of the present invention, the third diagram shows that the specific method of the power supply method of the present invention is not applied, and the fourth figure shows the control unit of the secondary battery of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A block diagram, and a fifth diagram, show a state of charge state-time characteristic of a secondary battery in which the hybrid power supply method of the present invention is performed. The hybrid power supply method 1() is used as the hybrid electric power of the paste secondary battery 20 and the fuel cell device 30, and the electric power source of the electric device 4〇 is executed by the hybrid power supply method 1 The secondary battery 20 (four) amount state and the fuel cell 20 determine the power supply state of the electric device 4A, and the hybrid power supply method 10 includes steps 100 to l9c, which are respectively described below. Step 100 is to provide secondary battery 2 〇 and fuel cell device 3 作 as hybrid electric power. Please refer to the third and fourth figures. The secondary battery 2 includes a control unit 21, a charging module 22, and a secondary battery unit (Battery Cel 1) 24. The electric power of the φ secondary battery core (group) 24 can be used as a power source for the electric device 40. The charging module 22 is for receiving power from the fuel cell device 3 and converting it into a charging current and a charging voltage that meet the charging electrical requirements of the secondary battery unit 24, and transferring the power of the fuel cell device 30. The power supply device 40 〇 control unit 21 is a hybrid power supply method for performing the present invention. The electronic switches 23a, 23b are controlled by the battery capacity detecting module 21B. The fuel cell device 30 includes a controller 31 (Controller), a booster (Booster) 32, 201021359, and a fuel cell 33. The power of the fuel cell 33 can be used as a source of electric power for the electric device. The booster 32 is used to convert the power of the fuel cell 33 into a voltage that meets the electrical requirements of the charging module 22. The controller 3 is used to control the operation of the fuel cell 33 and the booster 32, At the same time, the controller 31 transmits signals to the control unit 21 of the secondary battery 20 in both directions or in one direction by the communication means 27. The specific embodiment of the control unit 21 can be composed of the microcontroller 21A and the battery capacity detecting module 21B. Furthermore, the microcontroller 21A and the battery capacity detecting module 21B can be implemented as a single integrated circuit (ic). The battery capacity detecting module 21B functions to detect the SOC-State of Charge of the secondary battery cell 24, protect the secondary battery (to prevent overvoltage, overcurrent, etc.), and to charge the battery. The status signal is transmitted to the microcontroller 21A. Another function of the charging module 22 is to detect the current total power generation of the fuel cell stack at any time, and the charging module 22 transmits an electrical signal 22a (eg, a voltage signal) representing the current total power generation of the fuel cell 33. To the control unit 21. The control unit 21 can determine whether the current total power generation amount of the fuel cell 33 is sufficient according to the electrical signal 22a and the current secondary battery cell (group) 24 power consumption signal from the battery capacity detection module 21B. The current power consumption of the electric device 40 is dealt with. Step 102 is to supply power to the electric device 40 by using the secondary battery 20 (step 102a), and in the power supply state of the secondary battery 20, the control unit 21 detects the state of charge of the secondary battery unit (group) 24 with 201021359. When the control unit 21 detects that the state of charge of the secondary battery unit (group) 24 is less than 沁% (step i〇2b), the control unit 21 causes the fuel cell device 3 to start (step 1〇2c), and The secondary battery 2 〇 still supplies power to the electric device 40 before the fuel cell device 30 completes the startup (step 102d). On the other hand, if the state of charge of the secondary battery unit (group) 24 is greater than or equal to 沁%, the process returns to step 1〇2a. In step 102, please refer to the third figure, the period during which the secondary battery 20 supplies power to the power source device 40, that is, the state of charge of the secondary battery cell (group) 24 is greater than or equal to the secret lying, or During the two periods before the completion of the activation of the battery device 3, the control unit 21 keeps the electronic switches 23a, 23b turned on, so that the current of the secondary battery unit (group) 24 will enter the power supply. Device 40. When the control unit 21 detects that the state of charge of the secondary battery cell (group) 24 is less than the secret time, the control unit 21 transmits the activation signal to the control device 31 via the communication means 27, and processes the thief signal, and then receives the spurt signal. The controller 31 activates the fuel cell 33. The secondary battery 20 can supply the power required for the wire to the battery pack 30 during the period before the fuel cell device 30 completes the startup. Step 104: When the fuel cell device is fully activated, and the normal operation of the fuel cell device 3, the secondary battery cell 24 is charged and the power device 40 is powered. The controller 31 operates the booster 32, and the booster 32 outputs a charging voltage to the charging module 22 such that the fuel cell device 3() can charge the secondary 201021359 battery 20. At the same time, the operating charging module 22 can transfer the current output by the booster 32 to the powered device 4, so that the fuel cell device 30 can supply power to the powered device 40. In step 104, please refer to the third figure. After the fuel cell device is activated and operating normally, the charging module 22 transmits an electrical signal 22a (eg, a voltage signal) representing the current total power generation of the fuel cell 33. To the control unit 21. The control unit 21 can know from the electrical signal 22a that the fuel cell 30 has started the power generation operation. Alternatively, after the fuel cell device 30 is fully activated and operating normally, the controller 31 transmits the completion activation signal to the control unit 21 via the communication means 27, so that the control unit 21 can know that the fuel cell 30 has started the power generation operation. A specific example of the electrical signal 22a described above may include at least a power generation signal of the fuel cell 33 and a plug-in signal of the fuel cell 33. After the fuel cell device 30 has started the power generation operation, the control unit 21 causes the charger module 22 to operate, and the control unit 21 maintains the electronic switches 23a, 23b conductive. From this point on, the secondary battery cell 24 is in a charged state. The charging current from the charging module 22 passes through the electronic switches 23a, 23b and enters the secondary battery cell (group) 24. Further, the charging module 22 transfers the current output from the booster 32 to the consumer 4, thus achieving power supply to the consumer 40 by the fuel cell device 3. The point in time at which the fuel cell slurry 30 is completed and operating normally is 11 201021359 which occurs at a certain point in time when the state of charge of the secondary battery cell (group) 24 is between χ2%. Step 106 is when the fuel cell device 30 cannot complete the startup, and the control unit 21 detects that the state of charge of the secondary battery 20 is less than X2%, so that the secondary battery 20 stops power supply to the power device 4〇, and controls The unit 21 further notifies the electric device 40 before the secondary battery 20 stops supplying power to the electric device 40, so that the electric device 40 enters the power saving mode or is turned off, and at the same time, the control unit 21 causes the fuel cell device 30 to be turned off. In step 106, please refer to the third figure, the possible situation that the fuel cell device 3 can not complete the startup, for example, the fuel cell device 3 is faulty; meanwhile, because the fuel cell device 30 is in the period before the startup is completed, Since the secondary battery 20 supplies power to the electric device 40, the state of charge of the secondary battery 2 持续 continues to decrease. When the control unit 21 detects that the state of charge of the secondary battery 2 is less than χ2%, the control unit 21 disables the electronic switches a 23a, 23b, thus electrically disconnecting the secondary battery 20 from the powered device 40. . Furthermore, before the control unit 21 causes the secondary battery 2 to stop supplying power to the consumer, the control unit 21 transmits a signal to the consumer via the communication means 28, notifying the consumer 40 to immediately enter the power saving mode or shut down. At the same time, the control unit 21 will shut down the fuel cell unit 30. In step 108, when the fuel cell device 3 is in the middle of the secondary battery 2, the control unit 21 turns off the fuel cell device 30 when the control unit 21 is at least γ 201021359%. At the same time, the control unit 21 causes the secondary battery 2 to directly supply power to the powered device 4, and then returns to step 102a to continue execution. In step 108, please refer to the third figure. The electric power generated by the fuel cell device 30 in normal operation is simultaneously supplied to the electric device and the secondary battery via the conversion of the booster 32 and the charging module. When the control unit

21細出二次電池2〇的電量狀態恢復至少為γ%時則控制 單元21會使電子開關23a、23b維持導通,如此達成二次電 ㈣將會直接對用電裝置40的供電,啊,控制單元21禁 月匕充電模組22 〇接著’控制單元21藉由通信手段27傳送訊 ,至控制器3卜接著’控制|| 31令燃料電池裝置3◦關機。 這樣一來_避免燃料電池裝置3Q僅獨自地單一制電裝置 40的供電’用電裝置4〇是一種用電量為高低不定的動態負 載機料電池震置3〇的系統控制會增加難度,例如:若當 裝置40所需電量過低時,燃料電池裝置別的甲醇燃料 要用效率會因而下降,因此僅以二次電池直接對用電装 伯田*進仃供電’可提祕料仙鱗及祕電池裝置30的 使用哥命。 在燃料電轉置3Q完_赌的 池20可對騎魏妓3() ^ 衣置卯扼供關機所需要的電力。 步驟職是在__ 3咖電裝置40供電進行 201021359 中,當用電裝置40的目前用電量大於燃料電池裝置30的總 發電量時’則二次電池20將會直接對用電裝置4〇進行供電’ 藉此與燃料電池裝置30 —起對用電裝置4〇進行混合電力的 供電。如果燃料電池裝置3〇的總發電量能夠足以應付用電裝 置40的目前用電量時,則跳入步驟。步驟i〇9c是二次電 池20會與燃料電池裝置30 —起對用電裝置4〇的供電。 在步驟109a、109c中,請配合參見第三圖,控制單元21 ® 依據電氣訊號22a以及來自於電池容量偵測模組21B的目前 用電量訊號,控制單元21 _出用電裝置4〇的目前用電量 乃大於燃料電池裝置30的總發電量時,此時’二次電池2〇 會由被充電狀態改變為放電狀態。同時,控制單元2丨會令電 子開關23a、23b維持導通,二次電池2〇因而對用電裝置4〇 的供電,同時,燃料電池裝置30亦同時對用電裝置4〇供電, 藉此達成對用電裝置40進行混合電力的供電。 ❺ 在步骤廳+,藉由二次電池2〇的再度供電能夠補 足燃料電池裝置30無法提供卿部份電力,如此—來能夠 避免燃料電池裝置30的發生過度負荷的情況,可提高燃料電 池裝置30的使用壽命。 步驟109b是當二次電池2〇㈣量狀態小於祕時則 二次電池20停止對用電裝置供電4〇。 在步驟109b巾,請配合參見第三圖,由於二次電池2〇 201021359 對用電裝置40進行供電,因此二次電池20的電量狀態會持 續下降。當控制單元21偵測出二次電池蕊(組)24的電量狀態 小於X2%時’則跳入步驟。 請參見第五圖’在二次電池20的控制單元21執行本發 明混合供電方法1〇下,以及在對用電裝置4〇進行長時間的 供電下,二次電池24的電量狀態曲線24d乃形成出一條曲21 When the state of charge of the secondary battery 2 is restored to at least γ%, the control unit 21 keeps the electronic switches 23a, 23b conductive, so that the secondary power (four) will directly supply power to the power device 40, ah, The control unit 21 disables the charging module 22 and then the control unit 21 transmits the signal by means of the communication means 27, and then the controller 3 then controls the fuel cell device 3 to shut down. In this way, it is difficult to prevent the fuel cell device 3Q from supplying power to the single power-generating device 40 alone. The power-on device 4 is a kind of system control in which the dynamic load battery of the power consumption is high and low, and the system control is increased. For example, if the power required by the device 40 is too low, the efficiency of the methanol fuel in the fuel cell device will decrease. Therefore, only the secondary battery directly supplies the power supply to the electric field. The use of the secret battery device 30 is a life. In the fuel-electric transposition 3Q _ gambling pool 20 can be used to ride Wei Wei 3 () ^ clothing for the power required for shutdown. The step is to supply power to the power device 40 in 201021359. When the current power consumption of the power device 40 is greater than the total power consumption of the fuel cell device 30, then the secondary battery 20 will directly contact the power device 4 The power is supplied to the fuel cell device 30 to supply power to the hybrid device 4A. If the total amount of power generated by the fuel cell device 3 is sufficient to cope with the current power consumption of the power unit 40, then the step is jumped. Step i〇9c is that the secondary battery 20 will supply power to the power unit 4 with the fuel cell unit 30. In steps 109a and 109c, please refer to the third figure, the control unit 21 ® controls the unit 21 _ based on the electrical signal 22a and the current power consumption signal from the battery capacity detecting module 21B. When the current power consumption is greater than the total power generation amount of the fuel cell device 30, the secondary battery 2 改变 will change from the charged state to the discharged state. At the same time, the control unit 2丨 keeps the electronic switches 23a, 23b turned on, the secondary battery 2 〇 thus supplies power to the electric device 4〇, and at the same time, the fuel cell device 30 simultaneously supplies power to the electric device 4〇, thereby achieving Power is supplied to the electric device 40 for hybrid electric power. ❺ In the step hall +, the re-powering of the secondary battery 2 能够 can make up the fuel cell device 30 can not provide the partial power, so that the excessive load of the fuel cell device 30 can be avoided, and the fuel cell device can be improved. 30 lifetime. In step 109b, when the state of the secondary battery 2 (four) is less than the secret state, the secondary battery 20 stops supplying power to the electric device. In step 109b, please refer to the third figure. Since the secondary battery 2〇 201021359 supplies power to the electric device 40, the state of charge of the secondary battery 20 continues to decrease. When the control unit 21 detects that the state of charge of the secondary battery cell (group) 24 is less than X2%, then the process proceeds to the step. Referring to the fifth figure, in the case where the control unit 21 of the secondary battery 20 performs the hybrid power supply method of the present invention, and under the power supply to the power device 4 for a long time, the state of charge 24d of the secondary battery 24 is Form a song

線。在時間T2之前,二次電池2〇對用電裝置4〇供應電力, 以及,在時間Tl上,二次電池蕊(組)24的電量狀態已呈現小 於Χι%的情形。 在介於時間T2與時間T3之間,在二次電池20的電量狀態 在未達到Y%之前,二次電池20可能是處於被充餘態,或者 可能是處於放電狀態。 在介於時間Τ3與時間Τ4之間,二次電池20令燃料電池裝 置3〇關機,以及對用電裝置40供應電力。在燃料電池裝置 30完成關機前的時間Τ3與時間Τ4時間之間當中,二次電池 可對燃料電池裝置3G提供關機所需要的電力。在時間l的時 間點上,赌魏裝置30已完成關機。 在,|於時間T4與時間T5之間,二次電池2〇對用電裝置 40供應電力-直到_ Ts,接著,在時間ι之後,二次電池 20又再次被充電,—直被充電至電量狀態為Y%為止。 本發财法1G的二次電池蕊(組)24(供電模式〇、第一 15 201021359 @習知齡電力的二次電池蕊(供電模式B),以及僅以二次電 池蕊作為供電電力(供電模式A)等此三者的供電模式A、B、c 下,在進行電容量衰減(Fading)實驗後,兹舉以鐘離子充電 電池進行電容量衰減(Fading)實驗,所獲得_離子充電電 池電容量衰減的比較表如下: 棚 二次*地1*上 餘鼇* 衰減举 上R/小時 80Χ«瘫率 供電睥間 代, 開始 lstlt期 ~500th 遒期 最高上Λ 最麵下R A 1 500 100 76,2 loo 0 0.0271 738 B 1 500 100 95.0 100 90 0.0421 475 C 1 500 100 圓.一 —一_. 85.7 80 30 0.0084 2380 在上述的比較表中,本發明方法1〇的鐘離子充電電池 24(供電模式C)的衰減率遠小於供電模式A、B下的鐘離子充 電電池。同時,本發明方法1〇的鐘離子充電電池狄供電模 式C)的電谷量衰麟jj餘瞧的電容量的使用時間遠大於供電 模式A、B下的鋰離子充電電池。 茲說明本發明方法10的二次電池2〇的電量狀態⑽與γ Ζ的具體範例’兹舉以鐘離子充電電池進行實驗。請參見第 六圖’電容量衰減曲線24a是代表本發明方法1〇的鋰離子充 電電池24 ’在採用χ1= 〇、γ= 1〇〇的電量狀態下,所獲得的 電容量衰減崎;電容量麵曲線24b是代表本發明方法1〇 的鐘離子充電電池24’在制χ1=9〇、γ=⑽的電量狀態下, 所獲得的電容量衰減曲線;電容量衰減_⑽是代表本發 16 201021359 明方法10的鋰離子充電電池24,在採用Χι= 30、γ= 80的電 量狀態下’所獲得的電容量衰減曲線》從第五圖可知,在相 較於電容量衰減曲線24a、24b下,链離子充電電池24的電 量狀態採為30% (L%)與80% (Y%)的具體範例可以獲 得較低衰減率。經由了解本發明上述二次電池2〇的電量狀態 L%與γ%的諸具體範例,凡熟悉該項技藝人士當可輕易推 知’而求得適用於二次電池2〇的電量狀態沁%與?%的具體 鲁 數據。 二次電池20的控制單元21與充電模組22等電力來源例 如可以採用二次電池蕊(組)24的電力。二次電池蕊(組)24的 電量狀態X2%的具體範例,乃可以採用能夠讓控制單元21、 充電模組22、用電裝置40關機所需用電量與燃料電池裝置 關機所需用電量等維持運作預定時間長度所須要的電容量 值。再者,二次電池蕊(組)24的電量狀態χ2%的具體範例亦 每 可以改採用介於之間的任何數據。 本發明混合供電方法10可以採用韌體手段予以實現。實 施混合供電方法10的程式碼乃可儲存於微控制器21Α的内建 記憶體。充電模組22與電池容量偵測模組21Β皆可採用相關 習知技藝來予以具體實施。通信手段27、28的具體實施例例 如可採用電連接器連接手段’如此來達成控制器31與控制單 元21在電氣性連接一起,以及控制單元21與用電裝置4〇在 17 201021359 電氣性連接一起。 電子開關23a、23b的具體範例例如乃可採用場效電晶體 (M0SFET)。 一次電池凝(組)24的具體範例例如乃可採用可充電鐘離 子電池、可充電鎳氫電池、可充電錯酸電池、可充電鐘高分 子電池、可充電鎳鎘電池等其中一種。 依據本發明混合供電方法1〇的精神,在了解本發明後, ❹ 凡熟悉該項技藝人士當輕易可完成具有本發明混合供電方法 10的二次電池20。據此,凡具有本發明方法1〇精神的二次 電池,皆是屬於本發明範疇以内。 再者’依據本發明混合供電方法1〇所實施二次電池2〇, 其中Χι%與Y%電量狀態的各種範例數據的組合,例如,可 分別採用為(Xi= 5、Y= 95)、(χ1= 1〇、γ= 90)、(Χι= 20、Y= 80)、(Χι= 30、Υ= 80)、(Χι= 30、Υ= 70)等組合的其中一個。 _ 再者’ Υ%電量狀態係可選擇介於68%至97%之間的一個值, 以及Χι%電量狀態係可選擇介於2%至32%之間的一個值。又 再者,Y%電量狀態係可選擇介於55%至97%之間的一個值, 以及Χι %電量狀態係可選擇介於2%至45%之間的一個值。 燃料電池裝置30的燃料電池33、升壓器32以及控制器 31皆可以直接採用習知相關技藝來予以具體實施。燃料電池 33的具體範例例如乃可採用直接曱醇燃料電池、質子交換膜 18 201021359 燃料電池等其中一種。 站在用電裝置40的觀點而言,用電裝置40使用混合電力 作為電力來源,這混合電力是結合了二次電池20與燃料電池 裝置30。 站在二次電池20的觀點而言,二次電池20在介於Χι%與 Y%之間的電量狀態是處於放電(Discharge)狀態;當二次電 池20的電量狀態小於&%時,二次電池2〇由放電狀態轉變 Φ 成充電(Charge)狀態,在電量狀態恢復到至少為γ%之前, 充電狀態會因為外接式電力的供電量無法應付用電裝置的用 電量而受到改變。當二次電池20的電量狀態恢復到至少為γ % ’則轉變為放電狀態。在充電狀態下的二次電池2〇可接收 外接式電力(例如燃料電池裝置、太陽能電池)的電流,二次 電池20接收這外部電流來對本身内建二次電池蕊(組)進行 充電外’二次電池2〇並且轉送這外部電流給用電裝置4〇使 ❹ 用。外接式電力必須透過二次電池2〇的轉送才能夠成功地對 用電裝置40進行供電。 本發明混合供電方法,由於二次電池上述特殊設計的供電 方式與充電方式,除了能夠達成混合電力的供電功能,尚能 夠獲得一次電池蕊(組)低衰減率的優良效果,同時,二次電 池能夠補足燃料電池裝置在用電裝置高用電量下所無法提供 的那°卩伤電力,如此一來,尚能夠避免燃料電池裝置發生過 19 201021359 度負荷的情況,可提高燃料電池裝置的使用壽命,此即為本 發明優點所在。 惟以上所述者,僅為本發明之較佳實施例’當不能用以限 定本發明可實施之範圍,凡熟悉於本技藝人士所明顯可作變 化與修飾’皆應視為不.障離本發明之實質内容。 【圖式簡單說明】 第-圖顯示在結合二次電池與祕電池的習知混合電力中, ® 燃料電池與二次電池的供電狀態圖。 第二A、B _示本發瓶合供電方法之流程圖。 第三圖顯示應用本發明混合供電方法之具體實施例方塊圖。 第四圖顯示本發明二次電池的控制單元之具體實施例方塊 圖。 第五®顯錢行本發魏合供電麵,二次電池的電量狀態 —時間特性曲線圖。 帛六_示執行本發明混合供電方法的二次電池在不同挪 肖Υ%下,在電容量衰減(Fading)實驗的比較圖。 【主要元件符號說明】 1 電力輸出曲線 2 電量狀態曲線 10 混合供電方法 ^0 402 401106 408 步驟 20 201021359 20 二次電池 21 控制單元 21A 微控制器 21B 電池容量偵測模組 22 充電模組 22a 電氣訊號 23a、23b 電子開關line. Before the time T2, the secondary battery 2 is supplied with electric power to the electric device 4, and, at time T1, the state of electric power of the secondary battery unit (group) 24 has appeared to be less than Χι%. Between time T2 and time T3, the secondary battery 20 may be in a recharged state or may be in a discharged state before the state of charge of the secondary battery 20 reaches Y%. Between time Τ3 and time Τ4, the secondary battery 20 shuts down the fuel cell device 3 and supplies power to the electric device 40. The secondary battery can supply the fuel cell device 3G with the power required for the shutdown between the time Τ3 and the time Τ4 before the fuel cell device 30 completes the shutdown. At the time point of time l, the bet device 30 has completed the shutdown. Between time T4 and time T5, the secondary battery 2 供应 supplies power to the electric device 40 - until _ Ts , and then, after time ι , the secondary battery 20 is again charged again - directly charged to The battery status is Y%. The secondary battery core (group) 24 of this financing method 1G (power supply mode 第一, first 15 201021359 @ secondary battery core of the electric power (power supply mode B), and only the secondary battery core as the power supply (power supply mode) A) After the power supply modes A, B, and c of the three, after performing the capacitance decay (Fading) experiment, the battery is charged with a battery ion-charged battery for the capacity decay (Fading) experiment. The comparison table of capacity attenuation is as follows: shed twice * ground 1 * on the remaining 鳌 * attenuation is raised on R / hour 80 Χ « 瘫 rate power supply intergenerational generation, start lstlt period ~ 500th 遒 period maximum upper Λ most face RA 1 500 100 76,2 loo 0 0.0271 738 B 1 500 100 95.0 100 90 0.0421 475 C 1 500 100 Round. One to one _. 85.7 80 30 0.0084 2380 In the above comparison table, the method of the invention 1 〇 clock ion rechargeable battery 24 (Power supply mode C) The attenuation rate is much smaller than that of the battery ion charging battery under the power supply modes A and B. At the same time, the method of the present invention is a battery charging battery of the battery charging mode C). The usage time of the capacity is much larger than the lithium ion under the power supply modes A and B. Rechargeable Battery. A specific example of the state of charge (10) and γ Ζ of the secondary battery 2 of the method 10 of the present invention will be described. Referring to the sixth figure, the capacitance decay curve 24a is a lithium ion rechargeable battery 24' representing the method 1 of the present invention, and the obtained capacity is attenuated by using χ1=〇, γ=1〇〇; The capacity surface curve 24b is a capacitance decay curve obtained by the clock ion rechargeable battery 24' of the method 1 of the present invention in the state of charge of 1=9〇, γ=(10); the capacitance decay_(10) represents the present invention. 16 201021359 The lithium ion rechargeable battery 24 of the method 10 is characterized in that the capacitance decay curve obtained by using the electric quantity of Χι=30 and γ=80 is as shown in the fifth figure, compared with the capacitance decay curve 24a, At 24b, the state of charge of the chain ion rechargeable battery 24 is 30% (L%) and 80% (Y%), and a lower attenuation rate can be obtained. By knowing the specific examples of the state of charge L% and γ% of the above secondary battery 2 of the present invention, those skilled in the art can easily infer that the state of charge applicable to the secondary battery 2% is ? % of specific Lu data. The electric power source such as the control unit 21 of the secondary battery 20 and the charging module 22 can be, for example, the electric power of the secondary battery unit (group) 24. For a specific example of the state of charge X2% of the secondary battery unit (group) 24, it is possible to use the power required to shut down the control unit 21, the charging module 22, and the power device 40, and the power required to shut down the fuel cell device. The amount of capacitance required to maintain a predetermined length of time. Furthermore, the specific example of the state of charge χ2% of the secondary battery cell (group) 24 can also be changed to any data in between. The hybrid power supply method 10 of the present invention can be implemented by means of firmware. The code for implementing the hybrid power supply method 10 can be stored in the built-in memory of the microcontroller 21A. Both the charging module 22 and the battery capacity detecting module 21 can be implemented by using related art techniques. The specific embodiment of the communication means 27, 28 can be, for example, an electrical connector connection means such that the controller 31 is electrically connected to the control unit 21, and the control unit 21 is electrically connected to the consumer 4〇 at 17 201021359 together. A specific example of the electronic switches 23a, 23b may be, for example, a field effect transistor (MOSFET). A specific example of the primary battery set 24 may be, for example, a rechargeable clock ion battery, a rechargeable nickel-hydrogen battery, a rechargeable acid-acid battery, a rechargeable clock height polymer battery, a rechargeable nickel-cadmium battery, or the like. According to the spirit of the hybrid power supply method of the present invention, after understanding the present invention, the secondary battery 20 having the hybrid power supply method 10 of the present invention can be easily completed by those skilled in the art. Accordingly, all of the secondary batteries having the spirit of the method of the present invention are within the scope of the present invention. Furthermore, the secondary battery 2 is implemented according to the hybrid power supply method of the present invention, wherein a combination of various exemplary data of Χι% and Y% state of charge, for example, can be adopted as (Xi=5, Y=95), (χ1=1〇, γ= 90), (Χι= 20, Y= 80), (Χι= 30, Υ = 80), (Χι= 30, Υ = 70), etc. _ Further ' Υ % power status can choose a value between 68% and 97%, and Χι% power status can choose a value between 2% and 32%. Again, the Y% state of charge can select a value between 55% and 97%, and the Χι% state of charge can select a value between 2% and 45%. The fuel cell 33, the booster 32, and the controller 31 of the fuel cell device 30 can be specifically implemented using conventional related art. A specific example of the fuel cell 33 may be, for example, a direct methanol fuel cell, a proton exchange membrane 18 201021359 fuel cell, or the like. From the viewpoint of the electric device 40, the electric device 40 uses hybrid electric power as a power source, which is a combination of the secondary battery 20 and the fuel cell device 30. From the viewpoint of the secondary battery 20, the state of charge of the secondary battery 20 between Χι% and Y% is in a Discharge state; when the state of charge of the secondary battery 20 is less than &%, The secondary battery 2 turns from the discharge state to the charge state, and before the state of charge returns to at least γ%, the state of charge is changed because the power supply amount of the external power cannot cope with the power consumption of the power device. . When the state of charge of the secondary battery 20 returns to at least γ % ', it changes to a discharge state. The secondary battery 2 in the charged state can receive the current of the external power (for example, the fuel cell device, the solar battery), and the secondary battery 20 receives the external current to charge the built-in secondary battery core (group). 'Secondary battery 2〇 and transfer this external current to the consumer 4 for use. The external power must be transferred through the secondary battery 2 to successfully power the consumer 40. According to the hybrid power supply method of the present invention, in addition to the above-mentioned specially designed power supply mode and charging mode of the secondary battery, in addition to the power supply function of the hybrid power, the excellent effect of the low attenuation rate of the battery core (group) can be obtained, and at the same time, the secondary battery It can compensate for the damage power that the fuel cell device cannot provide under the high power consumption of the electric device. In this way, the fuel cell device can be prevented from being loaded with the load of 19 201021359, and the use of the fuel cell device can be improved. Life, this is the advantage of the invention. However, the above description is only a preferred embodiment of the present invention, and should not be used to limit the scope of the invention, and those skilled in the art can clearly make changes and modifications. The essence of the invention. [Simple description of the diagram] The first figure shows the power supply state diagram of the fuel cell and the secondary battery in the conventional hybrid power combining the secondary battery and the secret battery. The second A, B _ shows the flow chart of the power supply method of the hair bottle. The third figure shows a block diagram of a specific embodiment of a hybrid power supply method to which the present invention is applied. The fourth figure shows a block diagram of a specific embodiment of the control unit of the secondary battery of the present invention. The fifth version of the display of the power supply surface of the secondary battery, the state of the secondary battery - time characteristic curve. _六— shows a comparison chart of the capacitance decay (Fading) experiment of the secondary battery in which the hybrid power supply method of the present invention is performed at different Υ Υ %. [Main component symbol description] 1 Power output curve 2 Battery state curve 10 Hybrid power supply method ^0 402 401106 408 Step 20 201021359 20 Secondary battery 21 Control unit 21A Microcontroller 21B Battery capacity detection module 22 Charging module 22a Electrical Signal 23a, 23b electronic switch

24 二次電池蕊(組)(Second Battery cell) 24a、24b、24c電容量衰減曲線 24d 電量狀態曲線 27、28 通信手段 30 燃料電池 31 控制器 32 升壓器 33 燃料電池 40 用電裝置 2124 Secondary battery cell 24a, 24b, 24c capacitance decay curve 24d Electricity state curve 27, 28 Communication means 30 Fuel cell 31 Controller 32 Booster 33 Fuel cell 40 Electrical device 21

Claims (1)

201021359 十、申請專利範圍: 1、一種用於用電裝置的混合供電方法,包括下列步驟: (A) 提供一二次電池以及一燃料電池裝置,其中該二次電池 係至少具有一控制單元與一二次電池蕊(組),以及其中 該燃料電池裝置係至少具有一用於產生電力的燃料電 池; (B) 利用該二次電池對該用電裝置供電,以及在該二次電池 . 的供電狀態中,當該控制單元偵測該二次電池的電量狀 態小於Χι%時,則該控制單元令該燃料電池裝置啟動, 以及,在該燃料電池裝置完成啟動之前,該二次電池仍 對該用電裝置供電,其中〇; (C)當該燃料電池裝置元成啟動且正常運作時,該燃料電池 裝置對該二次電池進行充電,同時,該燃料電池裝置對 該用電裝置供電; φ (W在該燃料電池裝置對該用電裝置供電進行中,當該控制 . 單元债測該用電裝置的目前用電量大於該燃料電池裝置 的總發電量時,則令該二次電池對該用電裝置進行供 電,藉此與該燃料電池裝置一起對該用電裝置混合供電; (E) 當該二次電池的電量狀態小於X2%h夺,則令該二次電池停 止對該用電裝置供電,其中Χι> Χ2> 〇 ; (F) 當該二次電池的電量狀態恢復至少為伙時,則令該燃料 • 電池裝置關機’同時’令該二次電池對該用電裝置供電, 22 201021359 其中γ > L。 2、 如申請專利範圍第1項所述之用於用電裝置的混合供電方法, 其中該步驟(E)係進一步包括:在令該二次電池停止對該用電妒 置供電之前,該控制單元進一步通知該用電裝置,使得該用電襞 置進入省電模式或關機。 3、 如申請專利範圍第丄項所述之用於用電装置的混合供電方法, 其中該二次電池,進一步包括:一充電模組;一電池容量偵測 ❹ 模組。 4、 如申請專利範圍第1項所述之用於用電裝置的混合供電方法, 其中該二次電池蕊(組),係選擇自可充電鐘離子電、池、可充電 鎳氫電池、可充電鉛酸電池、可充電鋰高分子電池、可充電鎳 鑛電池。 5、 如申請專利範圍第1項所述之用於用電裝置的混合供電方法, 其中該燃料電池,係選擇自一直接曱醇燃料電池、一質子交換 ® 膜燃料電池。 6、 如申請專利範圍第1項所述之用於用電裝置的混合供電方法, 其中該控制單元’係至少包含:一微控制器、一電池容量偵測 模組。 7、 一種二次電池’係結合一外接式電力來作為一混合電力,包括: 一二次電池蕊(組)、一充電模組、一控制單元; 其中該控制單元是用來偵測該二次電池的電量狀態小於L% 23 201021359 , 時,則該控制單元令該外接式電力啟動,以及,在該外接式電 力完成啟動之前,該二次電池仍對該用電裝置供電,其中X,> 〇 ; 其中該外接式電力完成啟動且正常運作時,該外接式電力是用 來對該二次電池進行充電,同時,該外接式電力經由該二次電 池的轉送電力而對該用電裝置供電; 其令該外接式電力對_電裝置供電進行中,當_出該用電 裝置的目前用電量大於該外接式電力的總發電量時則該二次 ❹ 電丨該用電裝置進作供電’藉此與該外接式電力-起對該用 電裝置混合供電; 其中該控解元侧該二次電池的電量狀態小於χ2%時則該 二次電池停止對該用電裝置供電,其中Χι> Χ2> 〇; 其中該控制單元侧該二次電池的電量狀態恢復至少為恍 時’則該外接式電力停止供電’同時,該二次電池對該用電裝 置供電’其中Υ > L。 春8、*中請專利範圍第7項所述之二次電池,其中該控制單元, 係至少包含:-微控制器、一電池容量侧模組。 %如申物咖請所狀二錢池,其中料接式電力, 係一燃料電池装置。 ^如申請專利範圍第7項所述之之二次電池,其中該二次電池 抵(組)、,係選擇自可充電鐘離子電池、可充電鎳氫電池、可充電 銘酸電池、可充電般分子電池、可㈣鎳録電池。 24 201021359 ψ 11、 -種二次電池,係結合—外接式電力來作為—混合電力,包 括·-二次電池蕊(組)、—充電模組控制翠元; 其中該控制私是用來控制當該二次電池在被充電時,㈣該二 次電池的電量狀態的充電上限係小於或等於一第一預定電量狀 態;以及 其愤㈣單元是絲控制#該二次電池在放電時,控制該二次 • t池的電量狀_放電下限係大於於—第二預定電量狀態,其中 Φ 該第一預定電量狀態係大於該第二預定電量狀態。 12、 如申請專利範圍第11項所述之之二次電池,其中該控制單元, 係至少包含:一微控制器、一電池容量偵測模組。 13、 如申請專利範圍第11項所述之之二次電池,其中該二次電池 蕊(組),係選擇自可充電鋰離子電池、可充電鎳氫電池、可充電 鉛酸電池、可充電鋰高分子電池、可充電鎳鎘電池。 14、 如申請專利範圍第11項所述之之二次電池,其中該第一預定 φ 電量狀態與該第二預定電量狀態的組合,係選擇自(95%、5%)、 . (90%、10%)、(80%、20%)、(80%、30%)、(70%、30%)。 . 15、如申請專利範圍第11項所述之之二次電池,其中該第一預定 電量狀態係介於68%至97%之間的一個值,以及該第二預定電量 狀態係介於2%至32°/◦之間的一個值。 16、如申請專利範圍第11項所述之之二次電池,其中該第一預定 電量狀態係介於55%至97%之間的一個值,以及該第二預定電量 25 201021359 狀態係介於2%至45%之間的一個值。201021359 X. Patent application scope: 1. A hybrid power supply method for a power device, comprising the following steps: (A) providing a secondary battery and a fuel cell device, wherein the secondary battery has at least one control unit and a secondary battery cell (group), and wherein the fuel cell device has at least one fuel cell for generating electric power; (B) using the secondary battery to supply power to the electric device, and in the secondary battery In the power supply state, when the control unit detects that the state of charge of the secondary battery is less than Χι%, the control unit activates the fuel cell device, and before the fuel cell device completes startup, the secondary battery is still The power device is powered, wherein: (C) when the fuel cell device is activated and operates normally, the fuel cell device charges the secondary battery, and at the same time, the fuel cell device supplies power to the powered device; Φ (W) in the fuel cell device is supplying power to the power device, when the control unit measures the current power consumption of the power device is greater than the fuel When the total power generation amount of the battery device is generated, the secondary battery is supplied with power to the power device, thereby supplying power to the power device together with the fuel cell device; (E) when the state of charge of the secondary battery is less than X2%h is taken to stop the secondary battery from supplying power to the consumer, wherein Χι> Χ2>〇; (F) when the state of charge of the secondary battery is restored to at least a group, then the fuel • battery device Shutdown 'at the same time' to enable the secondary battery to supply power to the powered device, 22 201021359 wherein γ > L. 2. The hybrid power supply method for the electrical device according to claim 1, wherein the step The E) system further includes: before the secondary battery stops power supply to the power device, the control unit further notifies the power device to cause the power device to enter a power saving mode or shut down. The hybrid power supply method for a power device according to the above aspect, wherein the secondary battery further comprises: a charging module; a battery capacity detecting module; 4. claiming the first item of the patent scope The hybrid power supply method for an electric device, wherein the secondary battery core (group) is selected from a rechargeable battery ion battery, a pool, a rechargeable nickel-hydrogen battery, a rechargeable lead-acid battery, and a rechargeable lithium battery Molecular battery, rechargeable nickel ore battery 5. The hybrid power supply method for a power device according to claim 1, wherein the fuel cell is selected from a direct methanol fuel cell, a proton exchange® 6. A membrane fuel cell. 6. The hybrid power supply method for a power device according to claim 1, wherein the control unit comprises at least: a microcontroller and a battery capacity detecting module. A secondary battery combines an external power supply as a hybrid power, comprising: a secondary battery core (group), a charging module, and a control unit; wherein the control unit is configured to detect the secondary battery When the state of charge is less than L% 23 201021359, the control unit activates the external power, and the secondary battery still charges the battery before the external power is completed. Power supply, wherein X, >〇; wherein the external power is activated and normal operation, the external power is used to charge the secondary battery, and the external power is transferred through the secondary battery And supplying power to the electric device; wherein the external power supply is in the middle of power supply, and when the current power consumption of the electric device is greater than the total power generation of the external power, the second power is丨 the power supply device is powered to generate a power supply for the power supply device, wherein the secondary battery is stopped when the power state of the secondary battery is less than %2% The electric device is powered, wherein Χι> Χ2>〇; wherein the control unit side restores the state of charge of the secondary battery to at least 恍 when the external power supply stops supplying power while the secondary battery is powered by the secondary device Power supply 'where Υ > L. The secondary battery of the seventh aspect of the invention, wherein the control unit comprises at least: a microcontroller, a battery capacity side module. For example, if the application is for the coffee shop, it is a fuel cell device. ^ The secondary battery of claim 7, wherein the secondary battery is selected from a rechargeable battery, a rechargeable nickel-metal hydride battery, a rechargeable acid battery, and a rechargeable battery. General molecular battery, (4) nickel recording battery. 24 201021359 ψ 11, a kind of secondary battery, combined with - external power as a hybrid power, including · - secondary battery core (group), - charging module control Tsui Yuan; where the control is used to control When the secondary battery is being charged, (4) the upper limit of the charge state of the secondary battery is less than or equal to a first predetermined charge state; and the anger (four) unit is the wire control # the secondary battery is discharged, the control The second state of the battery is greater than the second predetermined state of charge, wherein the first predetermined state of charge is greater than the second predetermined state of charge. 12. The secondary battery of claim 11, wherein the control unit comprises at least: a microcontroller and a battery capacity detecting module. 13. The secondary battery according to claim 11, wherein the secondary battery core (group) is selected from a rechargeable lithium ion battery, a rechargeable nickel hydrogen battery, a rechargeable lead acid battery, and a rechargeable battery. Lithium polymer battery, rechargeable nickel cadmium battery. 14. The secondary battery of claim 11, wherein the combination of the first predetermined φ state of charge and the second predetermined state of charge is selected from (95%, 5%), . (90%) 10%), (80%, 20%), (80%, 30%), (70%, 30%). 15. The secondary battery of claim 11, wherein the first predetermined state of charge is a value between 68% and 97%, and the second predetermined state of charge is between 2 A value between % and 32°/◦. [16] The secondary battery of claim 11, wherein the first predetermined state of charge is a value between 55% and 97%, and the second predetermined amount of electricity 25 201021359 is between A value between 2% and 45%. 2626
TW097145864A 2008-11-27 2008-11-27 A hybrid power supply method for a power plant, and a secondary battery using the same TWI403069B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097145864A TWI403069B (en) 2008-11-27 2008-11-27 A hybrid power supply method for a power plant, and a secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097145864A TWI403069B (en) 2008-11-27 2008-11-27 A hybrid power supply method for a power plant, and a secondary battery using the same

Publications (2)

Publication Number Publication Date
TW201021359A true TW201021359A (en) 2010-06-01
TWI403069B TWI403069B (en) 2013-07-21

Family

ID=44832604

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145864A TWI403069B (en) 2008-11-27 2008-11-27 A hybrid power supply method for a power plant, and a secondary battery using the same

Country Status (1)

Country Link
TW (1) TWI403069B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470859B (en) * 2011-06-10 2015-01-21 Lg Chemical Ltd Connecting structure for secondary battery and battery pack including the same
CN110943629A (en) * 2013-11-08 2020-03-31 泰达电子股份有限公司 Resistorless precharge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628895B (en) 2017-03-17 2018-07-01 台達電子工業股份有限公司 Electric power system and method of operating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656951A (en) * 1996-02-05 1997-08-12 Motorola, Inc. Input circuit and method for holding data in mixed power supply mode
US6037756A (en) * 1999-03-05 2000-03-14 Pong; Ta-Ching Power supply with mixed mode batteries
US6376909B1 (en) * 1999-09-02 2002-04-23 Micron Technology, Inc. Mixed-mode stacked integrated circuit with power supply circuit part of the stack
US6449177B1 (en) * 2001-08-14 2002-09-10 Lee-Fei Chen Power supply having a mixed mode regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470859B (en) * 2011-06-10 2015-01-21 Lg Chemical Ltd Connecting structure for secondary battery and battery pack including the same
CN110943629A (en) * 2013-11-08 2020-03-31 泰达电子股份有限公司 Resistorless precharge
CN110943629B (en) * 2013-11-08 2023-12-22 泰达电子股份有限公司 Resistor-less precharge

Also Published As

Publication number Publication date
TWI403069B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
US7795842B2 (en) Adjustable cut-off voltage for mobile device battery
US8410749B2 (en) Device and method for controlling the charging and discharging of a battery for supplying power from the battery and a fuel cell
US20080290731A1 (en) Energy Efficient Power Supply
JP5253690B1 (en) Power supply system and control method thereof
US9531212B2 (en) Secondary battery system and charge and discharge method for the same
US11745610B2 (en) Power conversion device and power transfer system
US20090265570A1 (en) Battery structure of portable electronic device
WO2007094246A1 (en) Charging circuit for secondary battery, power supply switching method in charging circuit for secondary battery, and power supply unit
TW201110502A (en) Power supply system for power saving and method thereof
CN101667739B (en) Power supply device and discharging method thereof
US20150194844A1 (en) Mobile terminal and control method for battery thereof
US20100052608A1 (en) Electronic apparatus
CN102148409A (en) Battery charging device, terminal equipment and method for controlling charging of terminal equipment
TW201021359A (en) Mixed power supply method for power-consuming device and secondary battery using the method
CN101437081A (en) Mobile phone backup power equipment
CN102447284B (en) Messaging device and control method thereof
CN101958572B (en) Power circuit and power management method thereof
CN201118879Y (en) A dual battery ultra-long idle mobile phone
CN115986233A (en) Battery cluster, energy storage system, uninterrupted power source system and electric automobile
CN112531848B (en) Battery pack and control method thereof
US20050242778A1 (en) Controlling circuit for long-time battery retention
KR100956119B1 (en) Cell charger and its control method for standby power isolation
KR20150043842A (en) Battery management system having safety power-off function and control method thereof
KR20080044425A (en) Power supply apparatus using two secondary battery
JP2015084625A (en) Power supply system and power supply method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees