TW201020625A - Transflective type liquid crystal apparatus, method for manufacturing thereof and method for manufacturing thin film transistor board thereof - Google Patents

Transflective type liquid crystal apparatus, method for manufacturing thereof and method for manufacturing thin film transistor board thereof Download PDF

Info

Publication number
TW201020625A
TW201020625A TW99101353A TW99101353A TW201020625A TW 201020625 A TW201020625 A TW 201020625A TW 99101353 A TW99101353 A TW 99101353A TW 99101353 A TW99101353 A TW 99101353A TW 201020625 A TW201020625 A TW 201020625A
Authority
TW
Taiwan
Prior art keywords
electrode
reflective
transmissive
substrate
region
Prior art date
Application number
TW99101353A
Other languages
Chinese (zh)
Inventor
Kook-Chul Moon
Joo-Sun Yoon
Pil-Mo Choi
Yong-Ho Yang
Yang-Suk Ahn
Hong-Gyun Kim
Young-Nam Yon
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020001803A external-priority patent/KR100787914B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201020625A publication Critical patent/TW201020625A/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

Disclosed are a transreflective type LCD, a method of manufacturing the same and a method of thin film transistor thereof. A TFT and a pixel electrode connected with a drain electrode of the TFT are formed on a TFT substrate. The pixel electrode includes a reflective electrode for reflecting a first light from an external and a transmissive electrode for transmitting a second light generated in the transreflective type LCD. The reflective electrode is formed to have a size no more than a size of an area in which the reflective electrode is not overlapped with the transmissive electrode. Thus, visual differences between the reflective and the transmissive modes are reduced. Also, the reflective electrode for reflecting the first light is formed with the TFT through one process, thereby reducing the number of manufacturing processes of the transreflective type LCD and the thickness thereof.

Description

201020625 六、發明說明: 【發明所屬之技術領域】 本發明係有關液晶顯示器(LCD),特別係有關透射與反射 型LCD及其製法。 、 【先前技術】 於今日所謂的資訊社會,電子顯示裝置作為資訊傳輸媒體 相當重要,多種電子顯示裝置廣泛用於產業裝置或家用電 φ 器。晚近,對新穎電子顯示裝置例如LCD的需求增加,新穎電 子顯示裝置具有厚度薄、重量輕、驅動電壓低以及耗電低等 特徵。此種LCD的製造由於半導體技術之進展已經改善。 LCD被歸類為反射型LCD,其係使用由外部提供之第一光 顯示影像;透射性LCD其使用由安裝於其中之發光裝置產生的 第二光顯示影像;以及透射與反射型LCD其係使用第一光或第 二光顯示影像。透射與反射型LCD於第一光數量足以顯示影像 時’使用第一光顯示影像’而於第一光數量不足以顯示影像 ❹ 時使用耗用電力產生的第 一光而顯示影像。如此,透射與反 射型LCD反射第一光而透射第二光。 第1圖為平面圖顯示習知透射與反射型LCD之單位像素。 透射與反射型LCD包括薄膜電晶體(TFT)基板(圖中未顯示)、 遽色片基板(圖中未顯不)以及液晶(圖中未顯示)插置於該Τρτ 基板與濾色片基板間。濾色片基板面對TFT基板,濾色片基板 包括RGB彩色像素以及一共用電極形成於RGB彩色像素上方。 參照第1圖,一形成於透射與反射型LCD之TFT基板上的單 位像素50包括TFT 20及像素電極1〇。TFT基板包括多數排列於 3 201020625 列方向之-貝料線31以及多數排列於行方向之閘線32。特別TFT 20包括閘極21、源極22及没極23。閘極21共通連接至於行方 向之多數閘線32,源極22共同連接至於列方向之多數資料線 31,以及汲極23係連接至像素電極1〇。 像素電極10包括反射電極12,其係藉反射第一光而顯示影 像、以及透射電極11,其係藉透射第二光而顯示影像。換言之, 透射電極11形成為連接TFT之没極23,帶有透射窗13之反射電 極12係形成於透射電極丨丨上,而暴露部分透射電極12。如此, 當外光數量足以顯示影像時,單位像素5〇係以反射模式顯示 影像,其中反射電極反射外光。若外光數量不足以顯示影像, 則早位像素5 0係以透射模式顯不影像,其中發光裝置產生之 光係經由藉透射窗13暴露的透射電極丨丨透射。 第1圖中,參考符號「A」及「2A」分別表示透射窗13之 一區(第二區),以及反射電極12之一區(第一區)。如此藉透射 窗13暴露之透射電極丨1該區同rA」。藉透射窗暴露之透射電 極「Α」區係小於反射電極12r2A」區。因此透射與反射型[〔ο 以反射模式顯示影像,進一步,當外光不足以顯示影像時, 以透射模式顯示影像,藉此減少電力耗用來發光。 但因第-區「2A」係大於第二區ΓΑ」,因此反射模式與 透射模式間之亮度有差異。反射模式亮度高於透射模式亮 度。若第二光之量提高來彌補亮度差異,則耗電量增加。 此外,儘管形成反射電極12,其具有第一區「2A」係大於 藉透射窗13暴露的透射電極11之第二區「a」,但第一光通過 滤色片基板於反射模式時至少為兩倍。於反射模式,第一光 201020625 係經由濾色片基板入射,然後第一光藉反射電極12反射後係 經由濾色片基板射出。如此無可避免地導致反射模式與透射 模式間的色彩再現性差異。 【發明内容】 本發明提供一種用以減少透射模式與反射模式間之視覺 差異之透射與反射型LCD。 本發明也提供一種減薄厚度之透射與反射型LCD。 φ 本發明提供一種製造透射與反射型LCD用薄膜電晶體基 板之方法。 本發明提供一種製造透射與反射型LCD之方法俾用以減 少透射模式與反射模式間之視覺差異。 本發明之一方面提供一種於透射模式以及於反射模式顯 示影像之透射與反射型LCD,該LCD包含:一第一基板,其具 有一薄膜電晶體,於該薄膜電晶體上形成一閘極、一資料電 極及一汲極,一透射電極形成於第一基板且連接至汲極以 • 及一具有第一區之反射電極以及一具有第二區之透射窗俾暴 露。亥透射電極,一第二基板其具有一共通電極且係面對第一 基板;以及一液晶插置於第一基板與第二基板間;其中該第 二區係大於第一區俾補償透射模式與反射模式間之視覺差 異。 於第二方面,提供一種透射與反射型LCD,其包含:一薄 膜電晶體基板其具有多數像素,各個像素具有—薄膜電晶體 形成於第-絕緣基板之第—面上;—與該薄膜電晶體絕緣之 下電極’· 一具有第一區之上電極反射板用以反射由第一表 201020625 面射出之光朝向第一表面對向之第二表面,該上電極反射板 係以薄膜電晶體連結且面對下電極,該下電極與上電極反射 板形成影像維持電容;以及一像素電極其具有一透射區該 透射區係用以透射由第二表面射出之光朝向第_表面以及 用以接受來自薄膜電晶體之電源電壓,該像素電極係連接薄 膜電晶體,以及透射區具有第二區,該第二區係大於第一區; -滤色片基板係面對薄膜電晶體基板,以及有一共用電極係 面對像素電極;以及-液晶係插置於薄膜電晶體基板與遽色 片基板間。 於又一方面提供一種製造薄膜電晶體基板之方法,該方法 包含下列步驟:形成一閘線於第一絕緣基板之第一面上,該 閘線具有-閘極及-下電極,該下電極係與閘極絕緣;形成 -第-絕緣層於第一絕緣基板上,於該第一絕緣基板上形成 閘線;形成-通道層於第—絕緣基板上,於該處形成閉極; 形成-資料線,該資料線具有—源極、—没極及—上電極反 射板,該上電極反射板係用以反射由第_表面射出之光朝向 第一表面對向之第二表面’該上電極反射板係連接汲極且具 有第-區’以及下電極與上電極反射板形成影像維持電容; 形成-第二絕緣層於第—絕緣基板±方俾暴露部分沒極·以 及形成-與沒極電連接之像素電極於第二絕緣層上方,俾接 收來自汲極之電源電壓,該像素電極包括一透射區其具有第 二區係大於第一區,該第一區係用以透射由第二表面發射之 光朝向第二表面。 又另一方面,提供一種透射與反射型LCD,其包含:一第 201020625 土板★其具有透明基板’該基板具有第一表面、第一表面 子向之第—表面以及側面;一薄膜電晶體設置於第一表面 透月像素電極具有第一區,其係用以接收由薄膜電晶 源電壓_電介f層設置於像素電極與第一表面 ,二及-影像維持反射電極其具有第二區,其係用以反射 口p刀第4面發#光朝向第二表φ,以及充電電荷入電介質 層該景/像維持反射電極係設置於電介質層與第一表面間; 第一基板’其係面對第一基板之第一表面,及其具有一彩 色像素面對像素電極;以及-液晶係插置於第一基板與第二 基板間。201020625 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display (LCD), and more particularly to a transmissive and reflective LCD and a method of fabricating the same. [Prior Art] In today's so-called information society, electronic display devices are very important as information transmission media. A variety of electronic display devices are widely used in industrial devices or household appliances. Recently, there has been an increase in demand for novel electronic display devices such as LCDs, which are characterized by thin thickness, light weight, low driving voltage, and low power consumption. The manufacture of such LCDs has improved due to advances in semiconductor technology. The LCD is classified as a reflective LCD using a first light display image provided externally; a transmissive LCD using a second light display image produced by a light emitting device mounted therein; and a transmissive and reflective LCD system The image is displayed using the first light or the second light. The transmissive and reflective LCD displays an image using the first light display image when the first amount of light is sufficient to display an image and the first light generated by the power consumption when the first amount of light is insufficient to display the image. As such, the transmissive and reflective LCD reflects the first light and transmits the second light. Fig. 1 is a plan view showing a unit pixel of a conventional transmissive and reflective LCD. The transmissive and reflective LCD includes a thin film transistor (TFT) substrate (not shown), a enamel substrate (not shown), and a liquid crystal (not shown) interposed between the τρτ substrate and the color filter substrate. between. The color filter substrate faces the TFT substrate, and the color filter substrate includes RGB color pixels and a common electrode formed over the RGB color pixels. Referring to Fig. 1, a unit pixel 50 formed on a TFT substrate of a transmissive and reflective LCD includes a TFT 20 and a pixel electrode 1A. The TFT substrate includes a plurality of bead lines 31 arranged in the direction of 3 201020625, and a plurality of gate lines 32 arranged in the row direction. The special TFT 20 includes a gate 21, a source 22, and a gate 23. The gate 21 is commonly connected to a plurality of gate lines 32 in the row direction, the source 22 is commonly connected to a plurality of data lines 31 in the column direction, and the drain electrodes 23 are connected to the pixel electrodes 1A. The pixel electrode 10 includes a reflective electrode 12 that displays an image by reflecting the first light and a transmissive electrode 11 that displays the image by transmitting the second light. In other words, the transmissive electrode 11 is formed to connect the dipole 23 of the TFT, and the reflective electrode 12 with the transmissive window 13 is formed on the transmissive electrode ,, while the exposed portion transmits the electrode 12. Thus, when the amount of external light is sufficient to display an image, the unit pixel 5 显示 displays the image in a reflective mode in which the reflective electrode reflects the external light. If the amount of external light is insufficient to display an image, the early pixel 50 displays an image in a transmissive mode, wherein the light generated by the light-emitting device is transmitted through the transmissive electrode 暴露 exposed through the transmissive window 13. In Fig. 1, reference numerals "A" and "2A" denote a region (second region) of the transmission window 13, and a region (first region) of the reflection electrode 12, respectively. Thus, the transmissive electrode 暴露1 exposed by the transmissive window 13 is the same as rA". The transmission electrode "Α" region exposed by the transmission window is smaller than the reflective electrode 12r2A" region. Therefore, the transmissive and reflective type [[o” displays images in a reflective mode. Further, when external light is insufficient to display an image, the image is displayed in a transmissive mode, thereby reducing power consumption for illumination. However, since the first-region "2A" is larger than the second region, the brightness between the reflection mode and the transmission mode is different. The reflection mode brightness is higher than the transmission mode brightness. If the amount of the second light is increased to compensate for the difference in brightness, the power consumption is increased. In addition, although the reflective electrode 12 is formed, the first region "2A" is larger than the second region "a" of the transmissive electrode 11 exposed by the transmissive window 13, but the first light passes through the color filter substrate in the reflective mode at least double. In the reflection mode, the first light 201020625 is incident through the color filter substrate, and then the first light is reflected by the reflective electrode 12 and then emitted through the color filter substrate. This inevitably leads to a difference in color reproducibility between the reflective mode and the transmissive mode. SUMMARY OF THE INVENTION The present invention provides a transmissive and reflective LCD for reducing the visual difference between a transmissive mode and a reflective mode. The present invention also provides a transmissive and reflective LCD having a reduced thickness. φ The present invention provides a method of manufacturing a thin film transistor substrate for a transmissive and reflective LCD. The present invention provides a method of fabricating a transmissive and reflective LCD for reducing the visual difference between a transmissive mode and a reflective mode. An aspect of the invention provides a transmissive and reflective LCD for displaying images in a transmissive mode and in a reflective mode, the LCD comprising: a first substrate having a thin film transistor, a gate formed on the thin film transistor, a data electrode and a drain electrode, a transmissive electrode formed on the first substrate and connected to the drain electrode and a reflective electrode having the first region and a transmissive window having the second region exposed. a transmissive electrode, a second substrate having a common electrode facing the first substrate; and a liquid crystal interposed between the first substrate and the second substrate; wherein the second region is larger than the first region 俾 compensation transmission mode Visual difference from reflection mode. In a second aspect, a transmissive and reflective LCD is provided, comprising: a thin film transistor substrate having a plurality of pixels, each pixel having a thin film transistor formed on a first surface of the first insulating substrate; and the thin film The crystal-insulated lower electrode '· has an electrode reflector on the first region for reflecting the light emitted from the surface of the first surface 201020625 toward the second surface opposite to the first surface, the upper electrode reflector being a thin film transistor Connecting and facing the lower electrode, the lower electrode and the upper electrode reflector form an image holding capacitor; and a pixel electrode having a transmissive region for transmitting light emitted from the second surface toward the first surface and for Receiving a supply voltage from the thin film transistor, the pixel electrode is connected to the thin film transistor, and the transmissive region has a second region, the second region being larger than the first region; the color filter substrate facing the thin film transistor substrate, and A common electrode layer faces the pixel electrode; and a liquid crystal system is interposed between the thin film transistor substrate and the enamel substrate. In a further aspect, a method for fabricating a thin film transistor substrate is provided, the method comprising the steps of: forming a gate line on a first side of a first insulating substrate, the gate line having a gate and a lower electrode, the lower electrode Is insulated from the gate; forming a first-insulating layer on the first insulating substrate, forming a gate line on the first insulating substrate; forming a channel layer on the first insulating substrate, forming a closed pole at the portion; forming - a data line having a source, a immersion, and an upper electrode reflector, wherein the upper electrode reflector is configured to reflect light emitted from the first surface toward the second surface of the first surface The electrode reflector is connected to the drain and has a first region and the lower electrode and the upper electrode reflector form an image holding capacitor; forming a second insulating layer on the first insulating substrate ± the exposed portion of the pole is formed and formed The pole electrode electrically connected to the pixel electrode is above the second insulating layer, and the germanium receives the power supply voltage from the drain, the pixel electrode includes a transmissive region having a second region larger than the first region, and the first region is used for transmitting Two surface emission Light toward the second surface. In another aspect, a transmissive and reflective LCD is provided, comprising: a 201020625 earth plate ★ having a transparent substrate 'the substrate having a first surface, a first surface, a first surface and a side surface; a thin film transistor The pixel electrode disposed on the first surface has a first region for receiving a voltage from the thin film electro-plasma source, the dielectric layer is disposed on the pixel electrode and the first surface, and the second and the image-preserving reflective electrode have a second region. a region for the reflective port p-blade 4th face light # toward the second table φ, and charging charge into the dielectric layer, the scene/image maintaining reflective electrode is disposed between the dielectric layer and the first surface; the first substrate And facing the first surface of the first substrate, and having a color pixel facing the pixel electrode; and the liquid crystal system is interposed between the first substrate and the second substrate.

又另方面,提供一種製造透射與反射型[CD之方法,該 方法包3下列步驟:經由圖樣化形成於第一透明基板第一表 面上之金屬薄層’形成—閘線連接至多數閘極,以及一影像 維持反射電極其具有第—區且與該閘線絕緣;形成-通道區 於閘極上且與閘極絕緣;形成一透明絕緣層於第一表面上, 於該透明絕緣層上形成第—及第二接觸孔俾暴露通道區之至 少二部分;經由圖樣化金屬薄層,形成一源極其連接第一接 觸孔,一貝料線其連接該源極,以及一汲極其連接第二接觸 孔,經由圖樣化形成於第一表面上之透明導電薄層而形成一 透月電極纟具有第一區將連接>及極;细裝一第二透明基板 而面對第一透明基板,於該第二透明基板上將形成彩色像素 及共用電極;以及插置一液晶於該第一透明基板與第二透明 基板間。 根據本發明,反射電極之第二區大小係小於經由透射窗暴 7 201020625 露之透射電極之第二區大小,故反射模式與透射模式間之色 彩再現性差異以及亮度差異縮小。 又反射第一光之反射板經由一次製程形成薄膜電晶體,如 此減少透射與反射型LCD之製程數目及減薄其厚度。 【實施方式】 具體實施例1 第2圖為剖面圖顯示根據本發明之第一具體實施例製造之 透射與反射型LCD。 參照第2圖,透射與反射型LCD 190包括一 TFT基板140, 一濾色片基板170其係面對該TFT基板140,以及一液晶層160 其係插置於TFT基板140與濾色片基板170間。 TFT基板140包括一第一絕緣層1〇〇,一 TFT 120其係設置 於第一絕緣層100上,一第一有機絕緣層114其成形有一接觸孔 115於TFT 120上,一透射電極11丨形成於第一有機絕緣層114 上’一第二有機絕緣層116其係形成於透射電極hi上,一透射 窗113以及一反射電極112其係電連接至透射電極丨丨^。第一絕 緣層100係由透明材料製成。 TFT 120係形成於第一絕緣層1〇〇上。TFT 12〇包括一閘極 121,一源極122及一汲極123,該閘極121係藉絕緣層而與源 極及汲極122及123電隔離。TFT 120包括一半導體層,用以回 應於電源電壓施加於閘極121,而由源極丨22施加電源電壓至 汲極123。 多數TFTs,例如TFT 120以矩陣形狀形成於TFT基板14〇 上。排列成矩陣形狀之TFT中,排列於行方向之TFTs之閘極係 201020625 經由一共通閘線(圖中未顯示)而接收閘電源電壓。換言之排列 於同一行的TFTs係藉經由對應該行之共通閘線施加的電源電 壓而同時被導通或同時被關斷。排列成矩陣形之多數TFTs 中’排列於列方向之TFTs之源極係經由共通資料線(圖中未顧 示)接收資料電源電壓。 當TFT 120之源極122接收電源電壓,而對應源極122之共 通閘線接收導通電壓時,施加於共通閘線之電源電壓係由源 參 極122經由半導體層供給汲極123。同理,連接至共通閘線(該 共通閘線施加電源電壓給TFT 120之源極122)之TFTs,係以 TFT 120之相同方式,回應於電源電壓操作。液晶16〇係回應 於汲極123輸出之電源電壓驅動而顯示影像。 汲極123連接像素電極110,於像素電極11〇上形成透射電 極111及反射電極112。汲極123形成於半導體層上,汲極高度 係與源極122高度相等。如此具有預定厚度之第一有機絕緣層 114形成於TFT 120上,俾僅電連接汲極123與透射電極及反射 ❹電極111及112。第一有機絕緣層114上表面係形成為凹凸形。 形成於第一絕緣層1〇〇上方之第一有機絕緣層U4包括接 觸孔115,因而經由部分移開第一有機絕緣層114而暴露部分汲 極123。於形成接觸孔115後,IT〇(銦錫氧化物)或12〇(銦鋅氧 化物)製成的透射電極111沉積於暴露的汲極123以及第一有機 絕緣層114上,且具有均一厚度。 具有均一厚度之第二有機絕緣層U6係形成於透射電極 111上。例如以丙烯系為主之有機絕緣層用作為第二有機絕緣 層116。形成於透射電;^U1上的第二有機絕緣層116包括二開 9 201020625 口。第一開口為接觸孔115 ’其係形成而對應於沒極之一位置; 以及第二開口係形成為與TFT 12〇隔開一段預定距離而暴露出 部分透射電極ill,且用作為透射窗113。反射電極112係經由 接觸孔115而電連接透射電極m。第二有機絕緣層116上表面 成形為凹凸形。 反射電極112形成於第二有機絕緣層116上,且反射由外部 入射之第一光L1至TFT基板140。因反射電極112之表面結構 (例如凹凸形)係與第二有機絕緣層116之表面結構相同,故反 射電極112增加第一光L1的反射量,且漫射第一光。。反射電 極112包括透射窗113,俾暴露部分透射電極1U。透射窗113 透射於透射與反射型LCD 190產生的第二光L2。 TFT基板140組合有第二絕緣層171之濾色片基板17〇,於 第二絕緣層171上形成RGB像素172及共用電極173。液晶16〇 插置於濾色片基板170與TFT基板140間。第3圖中,參考符號 「B」及「2B」分別表示反射電極之一區(第一區),以及透 射窗13之一區(第二區)。如此藉透射窗13暴露之透射電極^區 等於「2B」。反射電極π 2之第一區係小於藉透射窗113暴露之 透射電極111之第二區。換言之,由透射窗113暴露之透射電極 111之第二區大小足夠減少透射模式與反射模式間之視覺差 異。由於像素電極110之區為恆定’故第二區的增加將導致第 一區的減少。第二區對第一區之比「X」係依據反射電極112 之反射效率決定。比值「X」係與反射電極112之反射效率成 比例。第3圖為平面圖,顯示第2圖所示透射與反射型lcd之單 位像素。 201020625 參照第3圖,一單位像素150包括TFT 120以及連接TFT 120 之像素電極110 » TFT 120之閘極121連接印刷於第一絕緣基板 100上之共用閘線131,其源極122係連接印刷於第一絕緣基板 100上之共用資料線132,以及汲極123係連接像素電極11〇。 像素電極110係形成於第一有機絕緣層116上,且包括透明 ITO材料製成之透射電極111以及金屬材料製成之反射電極 112且係形成於透射電極111上。反射電極112包括透射窗113, φ 透射窗113部分暴露透射電極111。 假設像素電極110該區定義為第三區,反射電極112具有第 一區’第一區係由第三區大小扣除對應透射窗U3之第二區大 小獲得。第二區係大於第一區,第一區與第二區之大小比係 依據反射電極112之反射效率決定。 於習知單位像素,透射窗大小係小於反射電極大小。例如 第1圖中,指示反射電極12大小之第一區以及指示透射電極u 大小之第二區分別顯示為「2A」及「A」。如此像素電極1〇第 ❹ 三區大小對應於「2A+A=3A」。 但於根據本發明之單位像素150,透射窗大小係大於反射 電極大小。例如如第3圖所示’第三區指示像素電極丨〗〇大小, 第一區指示反射電極112大小’第二區指示由透射窗113暴露的 透射電極111大小分別為「3B」、「B」及「2B」。 第4圖為線圖顯示習知透射與反射型lcd於反射模式及透 射模式之亮度分佈。第5圖為線圖顯示第3圖所示透射與反射 型LCD於反射模式及透射模式之亮度分佈。第4圖中,符號 「R1」及「T1」分別指示第1圖中具有像素電極之lCd於反射 201020625 及透射模式之亮度分佈。第5圖中,符號「R2j及「T2」分別 表示第3圖所示具有像素電極之LCD於反射及透射模式之亮度 分佈。第4及5圖中,反射電極112具有反射效率約30%,透射 與反射型LCD具有有效顯示區於其對角線方向對應於約2 吋。X軸指示第一光之光度(勒克司),γ軸指示透射與反射型 LCD亮度(濁光/平方米)。 k 參照第1圖,反射電極12大小大於經由透射窗13暴露之透 射電極11大小。透射模式亮度維持於約15燭光/平方米。反射 ❹ 模式亮度隨第一光之光度改變。當第一光具有光度約1〇〇〇〇 勒克司時,反射模式具有亮度約10燭光/平方米,而當第一光 具有光度約50,000勒克司時,反射模式具有亮度約40燭光/平 方米。 如第4圖所示’習知透射與反射型LCD於反射模式亮度低 於15燭光/平方米時使用第二光於透射模式顯示影像;以及若 反射模式亮度尚於約15燭光/平方米,則於反射模式使用第一 光顯示影像。換言之,習知透射與反射型LCD唯有於第一光光 @ 度不足以顯示影像時才以透射模式顯示影像。如第4圖所示, 當第一光光度變高時’反射模式亮度變高。如此,當第一光 光度變高時,反射模式與透射模式間之亮度差異加大。 參照第3圖,根據本發明之透射與反射型LCD,經由透射 窗113暴露的透射電極ill第二區大小係大於反射電極U2之第 一區大小。第3圖中’第二區大小為第一區大小的兩倍。 參照第5圖’透射模式亮度約為30濁光/平方米,約為習知 透射型LCD的兩倍’原因在於透射電極ill第二區大小加大約 12 201020625 兩倍故。反射模式亮度係依據外部供應的第一光光度改變。 如此,因反射電極H2之第一區大小減半,故反射模式亮度降 低。當第一光顯示光度約為1〇,〇〇〇勒克司時,反射模式顯示亮 度約為5燭光/平方米,而當第一光具有光度約5〇 〇〇〇勒克司 時,反射模式顯示亮度約20燭光/平方米。 如第5圖所示,本發明之透射與反射型1^:;1)於反射模式亮 度低於約30燭光/平方米時於透射模式使用第二光顯示影像; ❹ 而當反射模式亮度高於約3〇燭光/平方米時,於反射模式顯示 影像。換言之,本發明之透射與反射型!^^係於第一光光度足 夠顯示影像之情況下於反射模式顯示影像。 隨著暴露的透射電極111第二區的加大,第一區面積縮 小,故隨著於反射模式第一光光度的增高,亮度增加速率係 小於習知透射與反射型LCD之亮度增加速率。如此,反射模式 與透射模式間之亮度差異縮小。反射模式及透射模式可由使 用者交替選用。此外,使用模式也可基於感應器偵測得第一 β 光光度而自動選用。 如第3圖所示,部分暴露透射電極1U之透射窗113為矩 形。但透射窗113可有各種形式,只要第二區面積大於第一區 面積即可。 第6及7圖為視圖顯示根據本發明之第一具體實施例之單 位像素。 參照第6及7圖,可形成多數透射窗。第6圖顯示形成二矩 形透射窗113a於反射電極112上。第7圖顯示多數呈圓形形狀的 透射窗113b。以形成多數透射窗1133及1131)為例,反射電極112 13 201020625 可均一形成於像素電極110,藉此提高反射電極112反射之第一 光的均一程度。 具體實施例2 第8圖為剖面圖顯示根據本發明之第二具體實施例之透射 與反射塑LCD。 參照第8圖,透射與反射型LCD 200包括一TFT基板250, 一面對TFT基板250的濾色片基板260,以及一液晶層270插置 於TFT基板250與濾色片基板260間。 TFT基板250包括一第一絕緣基板210,於其上形成多數像 素。各像素包括一 TFT 220具有一閘極、一源極及一汲極;一 影像維持電容227包括下電極221a及上電極反射板226a其反射 第一光;以及一透射電極240用以回應於TFT 220供給之電源 電壓而控制液晶270的對準,以及透射第一光於上電極反射板 226a對應區以外的一區。 濾色片基板260包括第二絕緣基板261。RGB像素262及共 用電極263循序設置於第二絕緣基板261下表面上。濾色片基 板260面對TFT基板250,共用電極263面對TFT基板250之像素 電極240。於TFT基板250耦合濾色片基板260後,液晶270注入 TFT基板250與濾色片基板260間,因而完成透射與反射型LCD 200。 後文將參照第9A至10D圖說明TFT基板構造及製造方法。In still another aspect, there is provided a method of fabricating a transmissive and reflective type [CD, the method of claim 3: forming a thin metal layer formed on a first surface of a first transparent substrate via patterning] - a gate line connected to a plurality of gates And an image-maintaining reflective electrode having a first region and insulated from the gate; forming a channel region on the gate and insulated from the gate; forming a transparent insulating layer on the first surface to form on the transparent insulating layer The first and second contact holes expose at least two portions of the channel region; the patterned metal thin layer forms a source extremely connected to the first contact hole, a bead line connects the source, and the first electrode is connected to the second a contact hole, forming a transflective electrode by patterning a transparent conductive thin layer formed on the first surface, having a first region to be connected and a pole; and a second transparent substrate to face the first transparent substrate, A color pixel and a common electrode are formed on the second transparent substrate; and a liquid crystal is interposed between the first transparent substrate and the second transparent substrate. According to the present invention, the size of the second region of the reflective electrode is smaller than the size of the second region of the transmissive electrode exposed through the transmission window, so that the difference in color reproducibility between the reflective mode and the transmissive mode and the difference in luminance are reduced. The reflecting plate which reflects the first light further forms a thin film transistor through one process, thereby reducing the number of processes of the transmissive and reflective type LCD and thinning the thickness thereof. [Embodiment] Fig. 2 is a cross-sectional view showing a transmissive and reflective LCD manufactured in accordance with a first embodiment of the present invention. Referring to FIG. 2, the transmissive and reflective LCD 190 includes a TFT substrate 140, a color filter substrate 170 facing the TFT substrate 140, and a liquid crystal layer 160 interposed between the TFT substrate 140 and the color filter substrate. 170 rooms. The TFT substrate 140 includes a first insulating layer 1 , a TFT 120 is disposed on the first insulating layer 100 , and a first organic insulating layer 114 is formed with a contact hole 115 on the TFT 120 and a transmissive electrode 11 . Formed on the first organic insulating layer 114, a second organic insulating layer 116 is formed on the transmissive electrode hi, and a transmissive window 113 and a reflective electrode 112 are electrically connected to the transmissive electrode. The first insulating layer 100 is made of a transparent material. The TFT 120 is formed on the first insulating layer 1A. The TFT 12 includes a gate 121, a source 122 and a drain 123. The gate 121 is electrically isolated from the source and drain electrodes 122 and 123 by an insulating layer. The TFT 120 includes a semiconductor layer for responding to a supply voltage applied to the gate 121, and a source voltage 22 is applied to the drain 123. A plurality of TFTs, for example, TFTs 120 are formed in a matrix shape on the TFT substrate 14A. In the TFTs arranged in a matrix shape, the gate system 201020625 of the TFTs arranged in the row direction receives the gate power supply voltage via a common gate line (not shown). In other words, the TFTs arranged in the same row are simultaneously turned on or turned off at the same time by the power supply voltage applied to the common gate line. The sources of the TFTs arranged in the column direction among the plurality of TFTs arranged in a matrix form receive the data supply voltage via a common data line (not shown). When the source 122 of the TFT 120 receives the power supply voltage and the common gate line of the corresponding source 122 receives the turn-on voltage, the power supply voltage applied to the common gate line is supplied from the source node 122 to the drain 123 via the semiconductor layer. Similarly, the TFTs connected to the common gate line (the common gate line applies a power supply voltage to the source 122 of the TFT 120) operate in response to the power supply voltage in the same manner as the TFT 120. The liquid crystal 16 is responsive to the power supply voltage output of the bungee 123 output to display an image. The drain electrode 123 is connected to the pixel electrode 110, and the transmissive electrode 111 and the reflective electrode 112 are formed on the pixel electrode 11A. The drain electrode 123 is formed on the semiconductor layer, and the drain height is equal to the source 122. The first organic insulating layer 114 having a predetermined thickness is formed on the TFT 120, and the germanium is electrically connected only to the drain electrode 123 and the transmissive electrode and the reflective germanium electrodes 111 and 112. The upper surface of the first organic insulating layer 114 is formed in a concavo-convex shape. The first organic insulating layer U4 formed over the first insulating layer 1b includes the contact hole 115, thereby exposing a portion of the drain electrode 123 via the partial removal of the first organic insulating layer 114. After the contact hole 115 is formed, a transmissive electrode 111 made of IT〇 (indium tin oxide) or 12 〇 (indium zinc oxide) is deposited on the exposed drain electrode 123 and the first organic insulating layer 114, and has a uniform thickness. . A second organic insulating layer U6 having a uniform thickness is formed on the transmissive electrode 111. For example, an organic insulating layer mainly composed of propylene is used as the second organic insulating layer 116. The second organic insulating layer 116 formed on the transmission electrode includes a second opening 9 201020625 port. The first opening is a contact hole 115' which is formed to correspond to a position of the electrodeless electrode; and the second opening is formed to be spaced apart from the TFT 12A by a predetermined distance to expose the partial transmission electrode ill, and is used as the transmission window 113. . The reflective electrode 112 is electrically connected to the transmissive electrode m via the contact hole 115. The upper surface of the second organic insulating layer 116 is formed into a concavo-convex shape. The reflective electrode 112 is formed on the second organic insulating layer 116, and reflects the first light L1 incident from the outside to the TFT substrate 140. Since the surface structure (e.g., concavo-convex shape) of the reflective electrode 112 is the same as that of the second organic insulating layer 116, the reflective electrode 112 increases the amount of reflection of the first light L1 and diffuses the first light. . The reflective electrode 112 includes a transmissive window 113 that exposes a portion of the transmissive electrode 1U. The transmission window 113 is transmitted through the second light L2 generated by the transmissive and reflective LCD 190. The TFT substrate 140 is combined with the color filter substrate 17A of the second insulating layer 171, and the RGB pixel 172 and the common electrode 173 are formed on the second insulating layer 171. The liquid crystal 16 is interposed between the color filter substrate 170 and the TFT substrate 140. In Fig. 3, reference symbols "B" and "2B" denote one region (first region) of the reflective electrode and one region (second region) of the transmissive window 13, respectively. Thus, the area of the transmissive electrode exposed by the transmissive window 13 is equal to "2B". The first region of the reflective electrode π 2 is smaller than the second region of the transmissive electrode 111 exposed by the transmission window 113. In other words, the size of the second region of the transmissive electrode 111 exposed by the transmissive window 113 is sufficient to reduce the visual difference between the transmissive mode and the reflective mode. Since the area of the pixel electrode 110 is constant', an increase in the second area will result in a decrease in the first area. The ratio "X" of the second zone to the first zone is determined by the reflection efficiency of the reflective electrode 112. The ratio "X" is proportional to the reflection efficiency of the reflective electrode 112. Fig. 3 is a plan view showing the unit pixels of the transmission and reflection type lcd shown in Fig. 2. 201020625 Referring to FIG. 3, a unit pixel 150 includes a TFT 120 and a pixel electrode 110 connected to the TFT 120. The gate 121 of the TFT 120 is connected to a common gate 131 printed on the first insulating substrate 100, and the source 122 is connected and printed. The common data line 132 on the first insulating substrate 100 and the drain electrode 123 are connected to the pixel electrode 11A. The pixel electrode 110 is formed on the first organic insulating layer 116, and includes a transmissive electrode 111 made of a transparent ITO material and a reflective electrode 112 made of a metal material and formed on the transmissive electrode 111. The reflective electrode 112 includes a transmissive window 113, and the φ transmissive window 113 partially exposes the transmissive electrode 111. Assuming that the pixel electrode 110 is defined as the third region, the reflective electrode 112 has the first region. The first region is obtained by subtracting the second region size from the third region size corresponding to the transmission window U3. The second zone is larger than the first zone, and the size ratio of the first zone to the second zone is determined according to the reflection efficiency of the reflective electrode 112. In conventional unit pixels, the transmission window size is smaller than the reflective electrode size. For example, in Fig. 1, the first area indicating the size of the reflective electrode 12 and the second area indicating the size of the transmissive electrode u are shown as "2A" and "A", respectively. Thus, the pixel electrode 1 〇 the third region size corresponds to "2A + A = 3A". However, in the unit pixel 150 according to the present invention, the transmission window size is larger than the reflective electrode size. For example, as shown in FIG. 3, the third region indicates the size of the pixel electrode ,, and the first region indicates the size of the reflective electrode 112. The second region indicates that the size of the transmissive electrode 111 exposed by the transmissive window 113 is "3B" and "B, respectively. And "2B". Fig. 4 is a line graph showing the luminance distribution of a conventional transmission and reflection type lcd in a reflection mode and a transmission mode. Fig. 5 is a line graph showing the luminance distribution of the transmissive and reflective LCD shown in Fig. 3 in the reflective mode and the transmissive mode. In Fig. 4, the symbols "R1" and "T1" respectively indicate the luminance distribution of lCd having the pixel electrode in Fig. 1 in reflection 201020625 and the transmission mode. In Fig. 5, the symbols "R2j and "T2" respectively indicate the luminance distribution of the LCD having the pixel electrode in the reflection and transmission modes shown in Fig. 3. In Figures 4 and 5, the reflective electrode 112 has a reflection efficiency of about 30%, and the transmissive and reflective LCD has an effective display area corresponding to about 2 于 in the diagonal direction. The X-axis indicates the luminosity of the first light (lux), and the γ-axis indicates the brightness of the transmissive and reflective LCD (cloudiness/square meter). k Referring to Fig. 1, the size of the reflective electrode 12 is larger than the size of the transmissive electrode 11 exposed through the transmissive window 13. The transmission mode brightness is maintained at approximately 15 candelas per square meter. The reflection ❹ mode brightness changes with the luminosity of the first light. When the first light has a luminosity of about 1 lux, the reflection mode has a brightness of about 10 candelas per square meter, and when the first light has a luminosity of about 50,000 lux, the reflection mode has a brightness of about 40 candelas per square meter. . As shown in Fig. 4, the conventional transmissive and reflective LCD displays the image using the second light in the transmissive mode when the brightness of the reflective mode is less than 15 candelas per square meter; and if the brightness of the reflective mode is still about 15 candles per square meter, The first light display image is then used in the reflective mode. In other words, conventional transmissive and reflective LCDs display images in transmissive mode only when the first light is insufficient to display an image. As shown in Fig. 4, the brightness of the reflection mode becomes high when the first light illuminance becomes high. Thus, when the first illuminance becomes high, the difference in luminance between the reflection mode and the transmission mode increases. Referring to Fig. 3, in accordance with the transmissive and reflective LCD of the present invention, the second region of the transmissive electrode ill exposed via the transmissive window 113 is larger in size than the first region of the reflective electrode U2. In Figure 3, the size of the second zone is twice the size of the first zone. Referring to Fig. 5, the transmission mode brightness is about 30 turbid/m2, which is about twice that of the conventional transmissive LCD, because the size of the second region of the transmissive electrode ill is about twice that of 201020625. The reflection mode brightness is changed according to the externally supplied first light illuminance. Thus, since the size of the first region of the reflective electrode H2 is halved, the brightness of the reflection mode is lowered. When the first light shows a luminosity of about 1 〇, when the lux is displayed, the reflection mode shows a brightness of about 5 candelas per square meter, and when the first light has a luminosity of about 5 lux, the reflection mode displays The brightness is about 20 candelas per square meter. As shown in FIG. 5, the transmissive and reflective type 1^:1) of the present invention uses the second light display image in the transmissive mode when the brightness of the reflective mode is less than about 30 candelas per square meter; ❹ and when the brightness of the reflective mode is high Display images in reflective mode at approximately 3 〇 candle/m2. In other words, the transmission and reflection type of the present invention! ^^ displays the image in reflective mode with the first illuminance sufficient to display the image. As the second region of the exposed transmissive electrode 111 is enlarged, the area of the first region is reduced, so that the luminance increase rate is smaller than that of the conventional transmissive and reflective LCD as the first luminosity in the reflection mode is increased. Thus, the difference in brightness between the reflection mode and the transmission mode is reduced. The reflection mode and the transmission mode can be alternately selected by the user. In addition, the usage mode can also be automatically selected based on the first beta luminosity detected by the sensor. As shown in Fig. 3, the transmission window 113 partially exposing the transmissive electrode 1U has a rectangular shape. However, the transmission window 113 can have various forms as long as the area of the second area is larger than the area of the first area. Figures 6 and 7 are views showing unit pixels in accordance with a first embodiment of the present invention. Referring to Figures 6 and 7, a plurality of transmission windows can be formed. Fig. 6 shows the formation of a two rectangular transmission window 113a on the reflective electrode 112. Fig. 7 shows a transmission window 113b having a plurality of circular shapes. Taking the formation of the plurality of transmission windows 1133 and 1131) as an example, the reflective electrodes 112 13 201020625 may be uniformly formed on the pixel electrode 110, thereby increasing the uniformity of the first light reflected by the reflective electrode 112. BEST MODE FOR CARRYING OUT THE INVENTION Fig. 8 is a cross-sectional view showing a transmissive and reflective plastic LCD according to a second embodiment of the present invention. Referring to Fig. 8, the transmissive and reflective LCD 200 includes a TFT substrate 250, a color filter substrate 260 facing the TFT substrate 250, and a liquid crystal layer 270 interposed between the TFT substrate 250 and the color filter substrate 260. The TFT substrate 250 includes a first insulating substrate 210 on which a plurality of pixels are formed. Each pixel includes a TFT 220 having a gate, a source and a drain; an image holding capacitor 227 includes a lower electrode 221a and an upper electrode reflector 226a for reflecting the first light; and a transmissive electrode 240 for responding to the TFT 220 supplies the power supply voltage to control the alignment of the liquid crystal 270, and transmits a first light to a region other than the corresponding region of the upper electrode reflector 226a. The color filter substrate 260 includes a second insulating substrate 261. The RGB pixels 262 and the common electrode 263 are sequentially disposed on the lower surface of the second insulating substrate 261. The color filter substrate 260 faces the TFT substrate 250, and the common electrode 263 faces the pixel electrode 240 of the TFT substrate 250. After the color filter substrate 260 is coupled to the TFT substrate 250, the liquid crystal 270 is injected between the TFT substrate 250 and the color filter substrate 260, thereby completing the transmissive and reflective LCD 200. The TFT substrate structure and manufacturing method will be described later with reference to FIGS. 9A to 10D.

第9A至9F圖為剖面圖說明第8圖所示TFT基板之製造方 法。第10A圖為透視圖顯示第9A圖所示TFT基板,第10B圊為 透視圖顯示第9C圖所示TFT基板,第10C圖為透視圖顯示第9D 201020625 圖所示TFT基板,及第10D圖為透視圖顯示第9F圖所示TFT基 板。 第9A圖為沿線I-Ι所取之剖面圖,顯示第10A圖所示TFT基 板結構,以及第9C圖為沿線II-II所取之剖面圖,顯示第10B圖 所示TFT基板結構。第9D圖為沿線III-III所取之剖面圖,顯示 第10C圖所示TFT基板結構以及第9F圖為沿線IV-IV所取之剖 面圖,顯示第10D圖所示TFT基板結構。 φ 參照第9A及10A圖’用作為切換裝置之TFT 220係形成於 非導電材料,如玻璃或陶瓷製成之第一絕緣基板210上。為了 形成TFT 220,第一金屬層如鋁(A1)、鉬(Mo)、鉻(Cr)、鈕(Ta)、 鈦(丁丨)、銅(<:11)、或鎢(\¥)沉積於第一絕緣層210上。第一金屬 層經圖樣化而形成閘電路。閘電路包括一閘線GL,其具有薄 膜電晶體220之閘極210以及形成影像維持電容227之下電極 221a。閘極221形成為寬度大於閘線GL寬度,且以預定間隔與 下電極221a隔開。 〇 參照第9B圖,氮化矽(SixNy)係藉電漿化學氣相沉積 (PCVD)方法沉積於第一絕緣基板210(第一絕緣基板具有閘線 GL及下電極22la)上方而形成閘絕緣層222。 參照第9C、9D及10B圖,非晶矽層及原位攙雜之n+非晶矽 層藉PCVD方法循序沉積於閘絕緣層222上。非晶矽層及n+非 晶矽層經圖樣化而形成半導體層223及歐姆接觸層224於閘絕 緣層222之一部分上。閘絕緣層222之該部分係對應於設置於 閘絕緣層222該部分下方之閘極221。非晶矽層可藉雷射轉變 成多晶矽層。 15 201020625 參照第9D及10C圖,沉積第二金屬層如鋁(A1)或銀(Ag)於 第一絕緣層210後,第二金屬層經圖樣化而形成交叉閘線GL的 資料線DL,由資料線DL分支的源極及汲極225及226。影像維 持電容227及上電極反射板226a係形成於閘絕緣層222對應於 . 下電極221a。如此,TFT 220具有閘極221、半導體層223、歐 姆接觸層224、源極225及汲極226,TFT 220係形成於第一絕 緣基板210之像素部分上。又因上電極反射板226a係由鋁(A1) 或銀(Ag)等材料製成,故上電極反射板226a反射第一光至濾色 ❹ 片基板260,該第一光係由透射與反射型LCD 200外部經由濾 色片基板260入射至TFT基板250。 如第9D圖所示,影像維持電容227係由下電極221a及上電 極反射板226a形成,下電極221a之高度等於閘極221高度,上 電極反射板226a高度等於源極及汲極225及226高度。如此可縮 短下電極221a與上電極反射板226a間距,藉此提高影像維持電 容227的容量。 參照第9E圖,於形成TFT 220及影像維持電容227於第一絕 © 緣基板210後,使用旋塗法形成感光有機絕緣層230於第一絕 緣基板210上。感光有機絕緣層230經圖樣化而形成接觸孔 231,接觸孔231暴露TFT 220之汲極226。感光有機絕緣層230 係由貳苯并環丁烯(BCB)或全氟環丁烯(PFCB)等有機絕緣材 料、或二氧化矽(Si02)或氮化矽(SiNx)等無機絕緣材料製成。 參照第9F及10D圖,透射電極240形成於感光有機絕緣層 230上。透射電極240與共通電極263產生電場,回應於來自TFT 220之電源電壓控制液晶270。透射電極240係由ITO或IZO製 16 201020625 成,且經由接觸孔231連接汲極226俾接收來自TFT 220之電源 電壓。 如第10D圖所示,形成上電極反射板226a第四區「E」,其 大小係小於透射電極240第五區大小。換言之,第四區「E」 係小於第六區「F」’第六區「F」係由第五區減第四區「E」 獲得。第六區「F」表示透射電極240之非為上電極反射板226a 以外區域。第六區「F」係對應透射第二光的透射區。 若上電極反射板226a之第四區「E」係形成為大小小於透 射區之第六區「F」大小,則反射模式與透射模式間之亮度差 異縮小。若上電極反射板226a之反射效率增高,則上電極反射 板226a之第四區「E」面積變小。上電極反射板226a之第四區 「E」之面積不小於透射電極240第五區面積之1/3,藉此防止 反射模式之亮度降低。上電極反射板226a形成為第四區「e」 係小於第六區「F」。如此即使通過rgb像素之第一光超過反 射模式的兩倍,可縮小反射模式與透射模式間之色彩再現性 差異。 具體實施例3 第Π圖為剖面圖顯示根據本發明之第三具體實施例之透 射與反射型LCD之單位像素。 參照第11圖,透射與反射型LCD 600包括TFT基板500,面 對TFT基板500之濾色片基板3〇〇’以及插置於TFT基板5〇〇與濾 色片基板300間之液晶層400。 TFT基板500包括多數像素。各像素包括一 TFT 55〇,一透 射電極548 ’其係連接TFT 500之汲極544,且係用作為影像維 17 201020625 持電容560之第一電極,以及一第一影像維持反射電極526, 其係成形為高度等於TFT 550閘極522高度’且係用作為影像 維持電容560之第二電極。第一影像維持反射電極526係面對 透射電極548。 濾色片基板300包括第二絕緣基板310。具有均一厚度之 RGB像素320及共用電極330循序設置於第二絕緣基板310下表 面上。濾色片基板300面對TFT基板500,共用電極330係面對 TFT基板500之透射電極548。耦合TFT基板500及濾色片基板 © 300後,液晶400注入TFT基板500與濾色片基板300間,藉此完 成透射與反射型LCD 600。 後文將參照第12A至12E圖說明TFT基板500之製造方法。 第12A至12E圖為透視圖顯示第11圖所示TFT基板之製造 方法。 第12A圖為透視圖顯示一閘線、一閘極、及一影像維持反 射電極設置於透明基板上;第12B圖為透視圖顯示設置於第 12A圖所示閘極上之通道層;第12C圖為透視圖顯示設置於透 ^ 明基板上之資料線、源極及汲極;第12D圖為透視圖顯示設置 於透明基板之透明透射電極;以及第12E圖為沿線A-A所取之 剖面圖用以顯示TFT基板構造。 參照第12A圖,透明基板510包括閘金屬薄層(圖中未顯示) 形成於其上。閘金屬薄層使用微影術方法圖樣化而形成閘極 522、閘線524及第一影像維持反射電極526。閘線524及閘極 522可依據TFT基板之設計法則可以各種樣式形成,閘線524延 伸方向定義為第一方向D1。特別延伸至第一方向D1之閘線524 18 201020625 係與至少一閘極522—體成形。閘極522及閘線524數目係依據 透射與反射型LCD解析度決定。閘線524及閘極522施加導通信 號給薄膜電晶體。 如第12A圖所示,第一影像維持反射電極526形成於透明基 板510上,與極522隔開一段預定間隔距離。第一影像維持反 射電極526係用作為影像維持電容之第一電極,其係用以於一 訊框期間維持-料,以及同時削乍為反射電極用來反射第 _ 光。第一影像維持反射電極526形成為平板形狀,具有矩形 框形且有一開口 526a。具有閘極522之閘線524以及第一影像維 持反射電極526根據要求的解析度重複形成於透明基板51〇 上。透明第一絕緣薄層(圖中未顯示)係沉積於透明基板51〇 上,於透明基板510上形成閘極522、閘線524、及第一影像維 持反射電極526。 參照第12B圖,具有作為電導體以及非導體性質之半導體 層(圖中未顯示)形成於第一絕緣薄層上。半導體層經圖樣化而 ^ 形成通道層535,通道層535係對應於閘極522。通道層535係 使用非晶矽、多晶矽、或單晶矽形成,通道層535依據電場之 形成而定,選擇性具有電導體或非導體性質。 然後透明第一絕緣薄層形成於通道層5 3 5及第一絕緣層 上。 參照第12C圖’第二絕緣薄層包括第一及第二接觸孔M2a 及544a俾部分暴露通道層535。源及汲之金屬薄層(圖中未顯示) 係使用濺鍍法形成於第二絕緣薄層上方。金屬薄層使用微影 術方法圖樣化,資料線544、由資料線544伸出的源極542、及 201020625 汲極546形成於第二絕緣層上,如第12C圖所示。資料線544、 源極542、及汲極546依據TFT基板之設計法則而定可以多種形 式形成。 資料線544形成於第二方向,該第二方向係垂直閘線524, 多數資料線平行排列。由資料線544伸出的源極542係經由第 一接觸孔542a連接通道層535。汲極546經由第二接觸孔544a 連接通道層535,且非疊置於第一影像維持反射電極526。 參照第12D圖,透明導電薄層(圖中未顯示)形成於透明基 板510上方。透明導電薄層係由IT〇或IZ〇製成。透明導電薄層 係使用微影術方法圖樣化,形成透明電極548,其係電連接汲 極 546。 參照第12E圖,第一光L1經由透射電極548輸入第一影像維 持反射電極526,且藉第一影像維持反射電極526反射而射出 至外側。於透射與反射型LCD產生的第二光L2經由開口52以 射出至外側,如第12C圖所示。影像維持反射電極526之大小 係與開口 5 2 6 a大小相等。 第13A及13B圖為視圖顯示根據本發明之第三具體實施例 之另一 TFT基板。 參照第13A及13B圖’板形第二影像維持反射電極527形成 於透明基板510上。第二影像維持反射電極527位移至閘線524 及資料線544包圍的内區527a之一侧部。如此,第二影像維持 反射電極527部分疊置透射電極548。第二影像維持反射電極 527有一區之面積係對應第二影像維持反射電極527未疊置透 射電極548該區面積。 201020625 第14圖為視圖顯示根據本發明之第三具體實施例之又另 一 TFT基板。 參照第14圖’第三影像維持反射電極528形成於透明基510 上,且係設置於閘線524及資料線544包圍的内區。第三影像 維持反射電極528包括於第一方向D12延伸的第一反射電極 528a、以及於第二方向〇2延伸的第二反射電極52肋。第三影 像維持反射電極528之大小係相當於透射電極548大小之半。 參 第一至第二影像維持反射電極520 ' 527及528可經由考慮 第一至第二影像維持反射電極526、527及528與透射電極科8 間之尺寸比而以多種方式形成。 根據透射與反射型LCD,TFT以及連接TFT汲極之像素電 極形成於TFT基板上。像素電極包括透射電極及反射電極,反 射電極具有透射窗而部分暴露透射電極。反射電極第一區大 小係小於經由透射窗暴露的透射電極第二區大小。如此可縮 小反射模式與透射模式間之亮度差異及色彩再現性差異。 ❹ 此外,源極及汲極係經由單一製程形成,影像維持電容之 上電極係用作為反射第一光之反射板,故可減少透射與反射 型LCD製造過程數目且可減薄其厚度。 進一步,維持影像用之下電極係用作為反射板用以反射第 一光’藉此減少透射與反射型LCD之製程數目及其厚度。 雖然本發明係參照具體實施例做說明’但需了解本發明並 非囿限於此等具體實施例,熟諳技藝人士可於隨附之申請專 利範圍之精髓及範圍内做出多種變化及修改。 21 201020625 【圖式簡單說明】 前述及其它本發明之優點經由參照附圖說明具體實施例 將顯然自明,附圖中: 第1圖為平面圖顯不習知透射與反射型LCD之一單位像 素, 第2圖為剖面圖顯示根據本發明之第一具體實施例製造之 透射與反射型LCD ; 第3圖為平面圖顯示第2圖所示透射與反射型之單位 像素; 第4圖為線圖顯示習知透射與反射型LCD之反射模式及透 射模式之亮度分佈; 第5圖為線圖顯示第3圖所示透射與反射型lCd之反射模 式及透射模式之亮度分佈; 第6及7圖為視圖顯示根據本發明之第一具體實施例之單 位像素; 第8圖為剖面圖顯示根據本發明之第二具體實施例之透射 與反射型LCD ; 第9A至9F圖為剖面圖說明第8圖所示透射與反射型LCD之 製造方法; 第10A圖為透視圖顯示第9A圖所示TFT基板; 第10B圖為透視圖顯示第9C圖所示TFT基板; 第10C圖為透視圖顯示第9D圖所示TFT基板; 第10D圖為透視圖顯示第9F圖所示TFT基板; 第Π圖為剖面圖顯示根據本發明之第三具體實施例,透射 201020625 與反射型LCD之單位像素; 第12A至12E圖為透視圖說明第11圖所示TFT基板之製造 方法; 第13A及13B圖為視圖顯示根據本發明之第三具體實施例 之另一TFT基板;以及 第14圖為視圖顯示根據本發明之第三具體實施例之又另 一 TFT基板。 魯 【主要元件符號說明】 140、250 ' 500..-TFT基板 160、270、400…液晶層 170、260、300…濾色片基板 172 ' 262 ' 320…RGB像素 173、263、330…共用電極 190、200、600…透射與反射型LCD 210···第一絕緣基板 221a…下電極 222…閘絕緣層 223···半導體層 224···歐姆接觸層 227、560…影像維持電容 226a…上電極反射板 230···感光有機絕緣層 261···第二絕緣層 310···第二絕緣基板 510…透明基板 10、 110…像素電極 11、 111、240、548…透射電極 12、 112、528a-b…反射電極 13、 113,113a-b···透射窗Figs. 9A to 9F are cross-sectional views showing a method of manufacturing the TFT substrate shown in Fig. 8. 10A is a perspective view showing a TFT substrate shown in FIG. 9A, 10B is a perspective view showing a TFT substrate shown in FIG. 9C, and FIG. 10C is a perspective view showing a TFT substrate shown in FIG. 9D 201020625, and FIG. 10D. The TFT substrate shown in Fig. 9F is shown in a perspective view. Fig. 9A is a cross-sectional view taken along line I-Ι, showing the structure of the TFT substrate shown in Fig. 10A, and Fig. 9C is a cross-sectional view taken along line II-II, showing the structure of the TFT substrate shown in Fig. 10B. Fig. 9D is a cross-sectional view taken along line III-III, showing a structure of the TFT substrate shown in Fig. 10C and a cross-sectional view taken along line IV-IV in Fig. 9F, showing the structure of the TFT substrate shown in Fig. 10D. φ Referring to Figures 9A and 10A, the TFT 220 used as a switching device is formed on a first insulating substrate 210 made of a non-conductive material such as glass or ceramic. In order to form the TFT 220, the first metal layer such as aluminum (A1), molybdenum (Mo), chromium (Cr), button (Ta), titanium (butadiene), copper (<:11), or tungsten (\¥) Deposited on the first insulating layer 210. The first metal layer is patterned to form a gate circuit. The gate circuit includes a gate line GL having a gate 210 of the thin film transistor 220 and an electrode 221a forming the image holding capacitor 227. The gate 221 is formed to have a width larger than the width of the gate line GL and spaced apart from the lower electrode 221a by a predetermined interval. Referring to FIG. 9B, tantalum nitride (SixNy) is deposited on the first insulating substrate 210 (the first insulating substrate has the gate line GL and the lower electrode 22la) by a plasma chemical vapor deposition (PCVD) method to form a gate insulating layer. Layer 222. Referring to Figures 9C, 9D and 10B, the amorphous germanium layer and the in-situ doped n+ amorphous germanium layer are sequentially deposited on the gate insulating layer 222 by a PCVD method. The amorphous germanium layer and the n+ amorphous germanium layer are patterned to form a semiconductor layer 223 and an ohmic contact layer 224 on a portion of the gate insulating layer 222. This portion of the gate insulating layer 222 corresponds to the gate 221 disposed under the portion of the gate insulating layer 222. The amorphous germanium layer can be converted into a polycrystalline germanium layer by laser. 15 201020625 Referring to FIGS. 9D and 10C, after depositing a second metal layer such as aluminum (A1) or silver (Ag) on the first insulating layer 210, the second metal layer is patterned to form a data line DL crossing the gate line GL. The source and the drains 225 and 226 are branched by the data line DL. The image holding capacitor 227 and the upper electrode reflecting plate 226a are formed on the gate insulating layer 222 corresponding to the lower electrode 221a. Thus, the TFT 220 has the gate electrode 221, the semiconductor layer 223, the ohmic contact layer 224, the source electrode 225, and the drain electrode 226, and the TFT 220 is formed on the pixel portion of the first insulating substrate 210. Since the upper electrode reflecting plate 226a is made of a material such as aluminum (A1) or silver (Ag), the upper electrode reflecting plate 226a reflects the first light to the color filter substrate 260, which is transmitted and reflected. The outside of the LCD 200 is incident on the TFT substrate 250 via the color filter substrate 260. As shown in FIG. 9D, the image holding capacitor 227 is formed by the lower electrode 221a and the upper electrode reflecting plate 226a, the height of the lower electrode 221a is equal to the height of the gate 221, and the height of the upper electrode reflecting plate 226a is equal to the source and the drain 225 and 226. height. Thus, the distance between the lower electrode 221a and the upper electrode reflecting plate 226a can be shortened, thereby increasing the capacity of the image sustaining capacitor 227. Referring to Fig. 9E, after the TFT 220 and the image holding capacitor 227 are formed on the first insulating substrate 210, the photosensitive organic insulating layer 230 is formed on the first insulating substrate 210 by spin coating. The photosensitive organic insulating layer 230 is patterned to form a contact hole 231 which exposes the drain 226 of the TFT 220. The photosensitive organic insulating layer 230 is made of an organic insulating material such as benzobenzocyclobutene (BCB) or perfluorocyclobutene (PFCB) or an inorganic insulating material such as cerium oxide (SiO 2 ) or cerium nitride (SiNx). . Referring to Figures 9F and 10D, a transmissive electrode 240 is formed on the photosensitive organic insulating layer 230. The transmissive electrode 240 and the common electrode 263 generate an electric field, and the liquid crystal 270 is controlled in response to a power source voltage from the TFT 220. The transmissive electrode 240 is made of ITO or IZO 16 201020625, and is connected to the drain 226 through the contact hole 231 to receive the power supply voltage from the TFT 220. As shown in Fig. 10D, the fourth region "E" of the upper electrode reflecting plate 226a is formed to be smaller than the fifth region of the transmitting electrode 240. In other words, the fourth zone "E" is smaller than the sixth zone "F". The sixth zone "F" is obtained from the fifth zone minus the fourth zone "E". The sixth region "F" indicates that the transmissive electrode 240 is not the region other than the upper electrode reflector 226a. The sixth zone "F" corresponds to the transmission zone that transmits the second light. If the fourth region "E" of the upper electrode reflecting plate 226a is formed to have a size smaller than the sixth region "F" of the transmitting region, the difference in luminance between the reflective mode and the transmissive mode is reduced. When the reflection efficiency of the upper electrode reflecting plate 226a is increased, the area of the fourth region "E" of the upper electrode reflecting plate 226a becomes small. The area of the fourth region "E" of the upper electrode reflecting plate 226a is not less than 1/3 of the area of the fifth region of the transmitting electrode 240, thereby preventing the brightness of the reflection mode from being lowered. The upper electrode reflecting plate 226a is formed such that the fourth region "e" is smaller than the sixth region "F". Thus, even if the first light passing through the rgb pixel exceeds twice the reflection mode, the difference in color reproducibility between the reflection mode and the transmission mode can be reduced. BEST MODE FOR CARRYING OUT THE INVENTION Fig. 3 is a cross-sectional view showing a unit pixel of a transflective and reflective LCD according to a third embodiment of the present invention. Referring to FIG. 11, the transmissive and reflective LCD 600 includes a TFT substrate 500, a color filter substrate 3' facing the TFT substrate 500, and a liquid crystal layer 400 interposed between the TFT substrate 5 and the color filter substrate 300. . The TFT substrate 500 includes a plurality of pixels. Each of the pixels includes a TFT 55 〇, and a transmissive electrode 548 ′ is connected to the drain 544 of the TFT 500 and is used as the first electrode of the image capacitor 560 , the first image holding reflector 526 , and the first image. It is formed to have a height equal to the height TFT gate 522 of the TFT 550 and is used as the second electrode of the image holding capacitor 560. The first image sustaining reflective electrode 526 faces the transmissive electrode 548. The color filter substrate 300 includes a second insulating substrate 310. The RGB pixel 320 and the common electrode 330 having a uniform thickness are sequentially disposed on the lower surface of the second insulating substrate 310. The color filter substrate 300 faces the TFT substrate 500, and the common electrode 330 faces the transmission electrode 548 of the TFT substrate 500. After the TFT substrate 500 and the color filter substrate © 300 are coupled, the liquid crystal 400 is injected between the TFT substrate 500 and the color filter substrate 300, thereby completing the transmissive and reflective LCD 600. A method of manufacturing the TFT substrate 500 will be described later with reference to FIGS. 12A to 12E. 12A to 12E are perspective views showing a method of manufacturing the TFT substrate shown in Fig. 11. 12A is a perspective view showing a gate line, a gate, and an image sustaining reflection electrode disposed on the transparent substrate; and FIG. 12B is a perspective view showing the channel layer disposed on the gate shown in FIG. 12A; FIG. 12C The data line, the source and the drain which are disposed on the transparent substrate are displayed in a perspective view; the transparent transmission electrode disposed on the transparent substrate is shown in a perspective view in FIG. 12D; and the cross-sectional view taken along the line AA in FIG. To display the TFT substrate structure. Referring to Fig. 12A, the transparent substrate 510 includes a thin layer of a gate metal (not shown) formed thereon. The gate metal thin layer is patterned using a lithography method to form a gate 522, a gate line 524, and a first image sustaining reflection electrode 526. The gate line 524 and the gate 522 can be formed in various patterns according to the design rule of the TFT substrate, and the extension direction of the gate line 524 is defined as the first direction D1. The gate line 524 18 201020625 extending particularly to the first direction D1 is integrally formed with at least one gate 522. The number of gates 522 and gates 524 is determined by the resolution of the transmissive and reflective LCD. Gate line 524 and gate 522 apply a conduction signal to the thin film transistor. As shown in Fig. 12A, the first image sustaining reflective electrode 526 is formed on the transparent substrate 510 at a predetermined distance from the pole 522. The first image-retaining reflective electrode 526 is used as the first electrode of the image-retaining capacitor for maintaining the material during the frame and simultaneously for the reflective electrode to reflect the first light. The first image-retaining reflective electrode 526 is formed in a flat plate shape, has a rectangular frame shape, and has an opening 526a. The gate line 524 having the gate 522 and the first image sustaining reflection electrode 526 are repeatedly formed on the transparent substrate 51A according to the required resolution. A transparent first insulating layer (not shown) is deposited on the transparent substrate 51, and a gate 522, a gate line 524, and a first image-retaining reflective electrode 526 are formed on the transparent substrate 510. Referring to Fig. 12B, a semiconductor layer (not shown) having electrical conductors and non-conductor properties is formed on the first insulating thin layer. The semiconductor layer is patterned to form a channel layer 535, which corresponds to the gate 522. The channel layer 535 is formed using amorphous germanium, polycrystalline germanium, or single crystal germanium. The channel layer 535 is responsive to the formation of an electric field and is selectively electrically conductive or non-conductive. A transparent first insulating thin layer is then formed on the channel layer 535 and the first insulating layer. Referring to Fig. 12C', the second insulating thin layer includes first and second contact holes M2a and 544a, partially exposing the channel layer 535. A thin metal layer (not shown) of the source and the germanium is formed over the second insulating thin layer by sputtering. The thin metal layer is patterned using a lithography method, and a data line 544, a source 542 extending from the data line 544, and a 201020625 drain 546 are formed on the second insulating layer as shown in Fig. 12C. The data line 544, the source 542, and the drain 546 may be formed in various forms depending on the design rule of the TFT substrate. The data line 544 is formed in the second direction, and the second direction is the vertical gate line 524, and most of the data lines are arranged in parallel. The source 542 extending from the data line 544 is connected to the channel layer 535 via the first contact hole 542a. The drain 546 is connected to the channel layer 535 via the second contact hole 544a, and is not stacked on the first image sustaining reflection electrode 526. Referring to Fig. 12D, a transparent conductive thin layer (not shown) is formed over the transparent substrate 510. The transparent conductive thin layer is made of IT〇 or IZ〇. The transparent conductive thin layer is patterned using a lithography method to form a transparent electrode 548 which is electrically connected to the drain 546. Referring to Fig. 12E, the first light L1 is input to the first image-retaining reflective electrode 526 via the transmissive electrode 548, and is reflected by the first image-preserving reflective electrode 526 to be emitted to the outside. The second light L2 generated by the transmissive and reflective LCD is emitted to the outside through the opening 52 as shown in Fig. 12C. The size of the image sustaining reflective electrode 526 is equal to the size of the opening 5 2 6 a. 13A and 13B are views showing another TFT substrate according to a third embodiment of the present invention. Referring to Figures 13A and 13B, a plate-shaped second image sustaining reflection electrode 527 is formed on the transparent substrate 510. The second image sustaining reflection electrode 527 is displaced to one side of the inner region 527a surrounded by the gate line 524 and the data line 544. Thus, the second image sustaining reflective electrode 527 partially overlaps the transmissive electrode 548. The area of the second image-preserving reflective electrode 527 has an area corresponding to the area of the area where the second image-preserving reflective electrode 527 does not overlap the transmissive electrode 548. 201020625 Fig. 14 is a view showing still another TFT substrate in accordance with a third embodiment of the present invention. Referring to Fig. 14, the third image sustaining reflection electrode 528 is formed on the transparent substrate 510, and is disposed in the inner region surrounded by the gate line 524 and the data line 544. The third image sustaining reflection electrode 528 includes a first reflective electrode 528a extending in the first direction D12 and a second reflective electrode 52 rib extending in the second direction 〇2. The size of the third image sustaining reflective electrode 528 is equivalent to half the size of the transmissive electrode 548. The first to second image sustaining reflection electrodes 520' 527 and 528 can be formed in various ways by considering the size ratio of the first to second image-preserving reflective electrodes 526, 527, and 528 to the transmissive electrode unit 8. According to the transmissive and reflective LCD, the TFT and the pixel electrode connecting the drain of the TFT are formed on the TFT substrate. The pixel electrode includes a transmissive electrode and a reflective electrode, and the reflective electrode has a transmissive window to partially expose the transmissive electrode. The first region of the reflective electrode is smaller than the second region of the transmissive electrode exposed through the transmissive window. This reduces the difference in brightness and color reproducibility between the reflective mode and the transmissive mode. ❹ In addition, the source and drain are formed by a single process, and the upper electrode of the image-preserving capacitor is used as a reflective plate for reflecting the first light, so that the number of transmissive and reflective LCD manufacturing processes can be reduced and the thickness can be reduced. Further, the lower electrode for maintaining the image is used as a reflecting plate for reflecting the first light', thereby reducing the number of processes of the transmissive and reflective LCD and the thickness thereof. The present invention has been described with reference to the specific embodiments thereof, and it is understood that the present invention is not limited to the specific embodiments, and those skilled in the art can make various changes and modifications within the scope and scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing and other advantages of the invention will be apparent from the description of the embodiments illustrated in the accompanying drawings in which: FIG. 1 is a plan view showing one unit pixel of a transmissive and reflective LCD. 2 is a cross-sectional view showing a transmissive and reflective LCD manufactured in accordance with a first embodiment of the present invention; FIG. 3 is a plan view showing a transmissive and reflective type of unit pixel shown in FIG. 2; and FIG. 4 is a line graph showing The brightness distribution of the reflection mode and the transmission mode of the conventional transmission and reflection type LCD; FIG. 5 is a line diagram showing the brightness distribution of the reflection mode and the transmission mode of the transmission and reflection type 1Cd shown in FIG. 3; FIGS. 6 and 7 are The view shows a unit pixel according to a first embodiment of the present invention; FIG. 8 is a cross-sectional view showing a transmissive and reflective LCD according to a second embodiment of the present invention; and FIGS. 9A to 9F are cross-sectional views showing FIG. The manufacturing method of the transmissive and reflective LCD is shown; FIG. 10A is a perspective view showing the TFT substrate shown in FIG. 9A; FIG. 10B is a perspective view showing the TFT substrate shown in FIG. 9C; and FIG. 10C is a perspective view showing the 9D. The TFT substrate is shown; FIG. 10D is a perspective view showing the TFT substrate shown in FIG. 9F; and FIG. 10 is a cross-sectional view showing a unit pixel of the transmission 201020625 and the reflective LCD according to the third embodiment of the present invention; 12E is a perspective view illustrating a method of manufacturing the TFT substrate shown in FIG. 11; FIGS. 13A and 13B are views showing another TFT substrate according to a third embodiment of the present invention; and FIG. 14 is a view showing the present invention according to the present invention. Still another TFT substrate of the third embodiment. Lu [Major component symbol description] 140, 250 '500..-TFT substrate 160, 270, 400... Liquid crystal layer 170, 260, 300... Color filter substrate 172 '262' 320... RGB pixels 173, 263, 330... Electrodes 190, 200, 600...transmissive and reflective LCD 210···first insulating substrate 221a...lower electrode 222...gate insulating layer 223···semiconductor layer 224···ohmic contact layer 227, 560...image holding capacitor 226a ...electrode reflector 230···photosensitive organic insulating layer 261···second insulating layer 310···second insulating substrate 510...transparent substrate 10,110...pixel electrode 11,111,240,548...transmissive electrode 12 , 112, 528a-b...reflecting electrodes 13, 113, 113a-b···transmission window

20、 120、220、550". TFT 21、 121、221、522…閘極 22、 122、225、542…源極 % 23、123、226、546…汲極 31…資料線 32、524…閘線 50、150…單位像素 100、171…絕緣層 114、 116…有機絕緣層 115、 231、542a、544a.·.接 觸孔 131…共用閘線 132…共用資料線 23 201020625 526、527、528…影像維持反射電5極5…通道層 526a…開口 544…汲極,資料線 527a…内區20, 120, 220, 550 ". TFT 21, 121, 221, 522... gates 22, 122, 225, 542... source % 23, 123, 226, 546... bungee 31... data line 32, 524... gate Lines 50, 150... unit pixels 100, 171... insulating layers 114, 116... organic insulating layers 115, 231, 542a, 544a.. contact holes 131... common gate lines 132... shared data lines 23 201020625 526, 527, 528... Image-maintaining reflective electric 5 pole 5...channel layer 526a...opening 544...bungee, data line 527a...inner area

24twenty four

Claims (1)

201020625 七、申請專利範圍: 1_ 一種透射與反射型LCD,其包含: 一薄膜電晶體基板,其包含: 多數像素,各個像素具有一薄膜電晶體形成於一第一絕緣 基板之一第一表面上; 一影像維持電容之下電極,其與該薄膜電晶體絕緣; 一上電極反射板,其包括該影像維持電容之一上電極,該 ❹上電極係面對該下電極,該上電極反射板具有一第—區,且 反射由該第一表面射向與該第一表面對向之一第二表面之一 光,該上電極反射板係與該薄膜電晶體連結且面對該下電 極,該上電極反射板係與該薄膜電晶體之源極與汲極藉由一 相同製程自一相同層形成;以及 一像素電極,其具有一透射區,該透射區係用以透射由該 第二表面射向該第一表面之一光,以及用以接受來自該薄膜 電晶體之電源電壓,該像素電極係連接該薄膜電晶體,且該 • 透射區具有一第二區,該第二區係大於該第一區; 一濾色片基板,其係面對該薄膜電晶體基板,且其係具有 面對該像素電極之一共用電極;以及 一液晶,其係插置於該薄膜電晶體基板與該濾色片基板 間。 2. 如申請專利範圍第i項之LCD,其中該第二區之係大於該第 一區0 3. 如申請專利範圍第2項之LCD,其中該第二區之大小係不大 於該第一區之大小的三倍。 25 201020625 4· 一種透射與反射型LCD,其包含: 一第一基板,其包含: 一透明基板,該基板具有一第一表面、與該第一表面 對向之一第二表面以及一側表面; 一薄膜電晶體,其係設置於該第一表面上; 透明像素電極,其係具有一第一區,用以接收由該 薄膜電晶體輸出之一電源電壓; -電介質層,其係設置於該像素電極與該第一表面 間;以及 ¥ -影像維持反射電極,其具有一第二區,用以反射由 該第-表面射向該第二表面之一光的一部份,以及充電一 電荷入該電介質層,該影像維持反射電極係設置於該 質層與該第-表面間,該影像維持反射電極係盘該薄膜電 晶體之閘電極藉由一相同製程自一相同層形成;一第二基 Q 該第一基板之該第—表面,且具有-面對該 像素電極之彩色像素;以及 -液晶,其係插置於該第一基板與該第二基板間。 5·如申請專利範圍第4項之LCD,其中哕髟務& 一^。 其中㈣像維持反射電極有 二申請專利範圍第5項之㈣,其中該第-區係與第二區相 7. Π:範圍第4項之,其中該影像維持反射電極具 8·如申請專利範圍第4項之其中該影像維持反射電極包 26 201020625 含: 影像維持反射電極,其係平行於該第一表面且 第一方向延伸;以及 一影像維持反射電極,其係以一第二方向由該第 -影像維持反射電極延伸。 9.如申請專利範圍第8項之LCD’其中該第—方向與該第二方 向係彼此不同。201020625 VII. Patent application scope: 1_ A transmissive and reflective LCD comprising: a thin film transistor substrate comprising: a plurality of pixels each having a thin film transistor formed on a first surface of a first insulating substrate An image maintaining a lower electrode of the capacitor, which is insulated from the thin film transistor; an upper electrode reflecting plate including an upper electrode of the image holding capacitor, the upper electrode facing the lower electrode, the upper electrode reflecting plate Having a first region, and reflecting from the first surface toward one of the second surfaces opposite the first surface, the upper electrode reflective plate being coupled to the thin film transistor and facing the lower electrode, The upper electrode reflector is formed from a same layer from the source and the drain of the thin film transistor by a same process; and a pixel electrode having a transmissive region for transmitting the second The surface is directed to one of the first surface and is adapted to receive a supply voltage from the thin film transistor, the pixel electrode is coupled to the thin film transistor, and the transmissive region has a a second region, the second region is larger than the first region; a color filter substrate facing the thin film transistor substrate, and having a common electrode facing the pixel electrode; and a liquid crystal Inserted between the thin film transistor substrate and the color filter substrate. 2. The LCD of claim i, wherein the second zone is greater than the first zone 0. 3. The LCD of claim 2, wherein the size of the second zone is not greater than the first Three times the size of the area. 25 201020625 4 A transmissive and reflective LCD comprising: a first substrate comprising: a transparent substrate having a first surface, a second surface opposite the first surface, and a side surface a thin film transistor disposed on the first surface; a transparent pixel electrode having a first region for receiving a power supply voltage outputted by the thin film transistor; a dielectric layer disposed on Between the pixel electrode and the first surface; and a image-preserving reflective electrode having a second region for reflecting a portion of the light from the first surface toward the second surface, and charging a portion Charge is incident on the dielectric layer, the image-preserving reflective electrode is disposed between the quality layer and the first surface, and the image-maintaining reflective electrode is formed by a same process from a same layer; a second base Q of the first surface of the first substrate and having a color pixel facing the pixel electrode; and a liquid crystal interposed between the first substrate and the second substrate. 5. The LCD of the fourth application patent scope, in which the service & Wherein (4) the image-retaining reflective electrode has two (4) of the scope of the patent application, wherein the first-region and the second-region phase 7. Π: the fourth item of the range, wherein the image-preserving reflective electrode member 8 The image sustaining reflection electrode package 26 201020625 includes: an image sustaining reflective electrode extending parallel to the first surface and extending in a first direction; and an image maintaining reflective electrode in a second direction The first image maintains the reflection electrode extension. 9. The LCD of claim 8 wherein the first direction and the second direction are different from each other. 2727
TW99101353A 2002-01-11 2002-02-27 Transflective type liquid crystal apparatus, method for manufacturing thereof and method for manufacturing thin film transistor board thereof TW201020625A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020001803A KR100787914B1 (en) 2001-08-01 2002-01-11 Transflective type liquid crystal apparatus and method for manufacturing thin film transistor board thereof

Publications (1)

Publication Number Publication Date
TW201020625A true TW201020625A (en) 2010-06-01

Family

ID=44832287

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101353A TW201020625A (en) 2002-01-11 2002-02-27 Transflective type liquid crystal apparatus, method for manufacturing thereof and method for manufacturing thin film transistor board thereof

Country Status (1)

Country Link
TW (1) TW201020625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755254B (en) * 2021-01-15 2022-02-11 凌巨科技股份有限公司 Pixel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755254B (en) * 2021-01-15 2022-02-11 凌巨科技股份有限公司 Pixel structure

Similar Documents

Publication Publication Date Title
JP5500937B2 (en) Transflective liquid crystal display device, manufacturing method thereof, and manufacturing method of thin film transistor substrate
US7714963B2 (en) Transflective liquid crystal display device and method of fabricating the same
US7488983B2 (en) Transflective liquid crystal display device and method of fabricating the same
US7289099B2 (en) Transflective liquid crystal display device and method of fabricating the same
US20090185092A1 (en) Liquid crystal display device with high aperture ratio
US8659538B2 (en) Transflective liquid crystal display device and method of fabricating the same
EP2991121B1 (en) Array substrate, method for manufacturing array substrate and display device
CN101221959A (en) Thin film transistor substrate and fabricating method thereof
TW200428120A (en) A liquid crystal display device having a patterned dielectric layer
US7220610B2 (en) Manufacturing method of array substrate for liquid crystal display device
TW200405400A (en) Method for manufacturing liquid crystal display device
US8673663B2 (en) Method for manufacturing array substrate of transflective liquid crystal display
US8486740B1 (en) Method for manufacturing array substrate of transflective liquid crystal display
TW201020625A (en) Transflective type liquid crystal apparatus, method for manufacturing thereof and method for manufacturing thin film transistor board thereof
JP2003255375A (en) Liquid crystal display
US8470622B1 (en) Method for manufacturing array substrate of transmissive liquid crystal display
CN101256323B (en) Semi-penetration semi-reflective type pixel structure
KR100698240B1 (en) Reflection Liquid Crystal Display
KR100744401B1 (en) Array substrate of transflective type liquid crystal display device and method of manufacturing thereof
TWM577122U (en) Pixel structure
CN201117660Y (en) Active elements array substrate
CN101118912A (en) Film transistor array substrates and its producing method
KR20040048693A (en) Trans-reflective type liquid crystal display device and method for fabricating the same