TW201020209A - Carbon nanotube film - Google Patents

Carbon nanotube film Download PDF

Info

Publication number
TW201020209A
TW201020209A TW97146250A TW97146250A TW201020209A TW 201020209 A TW201020209 A TW 201020209A TW 97146250 A TW97146250 A TW 97146250A TW 97146250 A TW97146250 A TW 97146250A TW 201020209 A TW201020209 A TW 201020209A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube film
carbon
nanocarbon
film
Prior art date
Application number
TW97146250A
Other languages
Chinese (zh)
Other versions
TWI478866B (en
Inventor
Kai-Li Jiang
Chen Feng
Lin Xiao
Zhuo Chen
Liang Liu
Shou-Shan Fan
Qun-Qing Li
Li Qian
Kai Liu
Yang Wei
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097146250A priority Critical patent/TWI478866B/en
Publication of TW201020209A publication Critical patent/TW201020209A/en
Application granted granted Critical
Publication of TWI478866B publication Critical patent/TWI478866B/en

Links

Abstract

The present invention relates to a carbon nanotube film. The carbon nanotube film includes a plurality of separated carbon nanotube yarns located side by side. There is at least one carbon nanotube between adjacent carbon nanotube yarns. Distances between the carbon nanotube yarns can be changed when a force is applied thereto.

Description

201020209 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米材料膜,尤其涉及一種奈米碳管 •膜。 ' ·【先前技術】 奈米碳管(Carbon Nanotube,CNT)係一種新型碳材 料,1991年由日本研究人員Iijima在實驗室製備獲得(請 參見,Helical Microtubules of Graphitic Carbon, Nature, ® V354, P56〜58 (1991))。奈米碳管的特殊結構决定了其具有 特殊的性質,如高抗張强度和高熱穩定性;隨著奈米碳管 螺旋方式的變化,奈米碳管可呈現出金屬性或半導體性 等。由於奈米碳管具有理想的一維結構以及在力學、電學、 熱學等領域優良的性質,其在材料科學、化學、物理學等 交叉學科領域已展現出廣闊的應用前景,包括場發射平板 顯示,電子器件,原子力顯微鏡(Atomic Force Microscope, ❹AFM)針尖,熱傳感器,光學傳感器,過濾器等。 雖然奈米碳管性能優異,具有廣泛的應用前景,然, 由於奈米碳管爲奈米級,大量奈米碳管易團聚,不易分散 形成均勻的宏觀的奈米碳管結構,從而限制了奈米碳管在 宏觀領域的應用。有鑒於此,如何獲得宏觀的奈米碳管結 構係奈米領域研究的關鍵問題。 爲了製成宏觀的奈米碳管結構,先前的方法主要包 括:直接生長法、喷塗法或朗繆爾.布洛節塔(Langmuir Blodgett,LB)法。其中,直接生長法一般通過控制反應條 8 201020209 Γ如以硫射爲添加劑紐置多層催化鮮,通過化學 耽相沈積法直接生長得到奈米碳管薄膜結構。喷塗法 通過將奈求碳管粉末形成水性溶液並塗覆於—基 經乾燥後形成奈米碳管薄臈結構。LB法—般通過將—太来 碳管溶液混人另-具有不同密度之溶液(如有機溶γ 利用分子自組裝運動,本半难溶.会山w 管薄旗結構。 出錢表㈣成奈米碳 ❹ &上述製備奈米碳管結構的方法通常步驟較爲繁 雜’且通過直接生長法或喷塗法獲得的奈米碳管薄膜結構 中’奈米碳管往往容易聚集成團,導致薄膜厚度不均。太 米碳管在奈米碳管結構中爲無序排列,不利於充分發: 米碳管的性能。 $ 爲克服上述問題,申請人於2002年9月16曰申請的 2008年8月20日公告的專利號為ZL〇213476〇 3中國專利 中揭不了一種簡單的獲得有序的奈米碳管結構的方法。該 ❹奈米碳管結構爲一連續的奈米碳管繩,其爲直接從一超順 排奈米碳管陣列中拉取獲得。所製備的奈米碳管繩中的奈 米碳管首尾相連且通過凡德瓦爾力緊密結合。該奈米碳管 繩的長度不限。其寬度與奈米碳管陣列所生長的基底尺寸 有關。進一步地,所述奈米碳管繩包括多個首尾相連的奈 米碳管片段,每個奈米碳管片段具有大致相等的長度且每 個奈米碳管片段由多個相互平行的奈米碳管構成,奈米碳 管片段兩端通過凡德瓦爾力相互連接。201020209 IX. Description of the Invention: [Technical Field] The present invention relates to a film of a nano material, and more particularly to a carbon nanotube film. 'Previous technology】 Carbon Nanotube (CNT) is a new type of carbon material. It was prepared in 1991 by Japanese researcher Iijima (see, Helical Microtubules of Graphitic Carbon, Nature, ® V354, P56). ~58 (1991)). The special structure of the carbon nanotubes determines its special properties, such as high tensile strength and high thermal stability. With the change of the helical shape of the carbon nanotubes, the carbon nanotubes can exhibit metallic or semiconducting properties. Because the carbon nanotubes have an ideal one-dimensional structure and excellent properties in the fields of mechanics, electricity, heat, etc., they have shown broad application prospects in the fields of materials science, chemistry, physics and other interdisciplinary fields, including field emission flat panel display. , electronic devices, Atomic Force Microscope (❹AFM) tips, thermal sensors, optical sensors, filters, etc. Although the performance of the carbon nanotubes is excellent, it has a wide application prospect. However, since the carbon nanotubes are nanometer-scale, a large number of carbon nanotubes are easily agglomerated and are not easily dispersed to form a uniform macroscopic carbon nanotube structure, thereby limiting the The application of carbon nanotubes in macroscopic fields. In view of this, how to obtain macroscopic carbon nanotube structures is a key issue in the field of nanotechnology research. In order to make a macroscopic carbon nanotube structure, the prior methods mainly include: direct growth method, spray method or Langmuir Blodgett (LB) method. Among them, the direct growth method generally controls the reaction strip 8 201020209, for example, using sulfur as an additive to build a multi-layer catalytic fresh, and directly growing by a chemical 耽 phase deposition method to obtain a carbon nanotube film structure. Spraying method The carbon nanotube powder is formed into an aqueous solution and coated on a base to form a carbon nanotube thin crucible structure. The LB method generally uses a solution of different density to the carbon dioxide solution (such as organic dissolved gamma using molecular self-assembly motion, the semi-insoluble solution. The mountain w tube thin flag structure. The money table (four) into Nanocarbon ❹ & The above method for preparing the carbon nanotube structure is generally complicated, and the carbon nanotube film structure obtained by the direct growth method or the spray method tends to be easily aggregated. The film thickness is uneven. The carbon nanotubes are disorderly arranged in the carbon nanotube structure, which is not conducive to full development: the performance of the carbon nanotubes. $ In order to overcome the above problems, the applicant applied for it on September 16, 2002. The patent No. ZL〇213476〇3, published on August 20, 2008, discloses a simple method for obtaining an ordered carbon nanotube structure. The tantalum carbon nanotube structure is a continuous nanocarbon. A pipe rope obtained by directly pulling from an array of super-sequential carbon nanotubes. The carbon nanotubes in the prepared carbon nanotube rope are connected end to end and tightly bonded by van der Waals force. The length of the pipe rope is not limited. Its width and the carbon nanotube array The length of the substrate is related. Further, the carbon nanotube string comprises a plurality of carbon nanotube segments connected end to end, each of the carbon nanotube segments having substantially equal lengths and each of the carbon nanotube segments being composed of The carbon nanotubes are parallel to each other, and the carbon nanotube segments are connected to each other by Van der Waals force.

Baughma,Ray,H·等人 2005 於文獻 “ Strong, 201020209Baughma, Ray, H. et al. 2005 in the literature "Strong, 201020209

Transparent, Multifunctional, Carbon Nanotube Sheets” Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Ray H. Baughman, etc.. Science, Vol.309, P1215-1219(2005)中揭示 i了一種奈米碳管膜的製備方法。所述奈米碳管膜同樣可從 ^一奈米碳管陣列中拉取製備。該奈米碳管陣列爲一生長在 一基底上的奈米碳管陣列。所述奈米碳管膜的長度不限。 然而,上述兩種方式製備的奈米碳管膜或繩的寬度均受所 述奈米碳管陣列生長基底的尺寸的限制(先前的用於生長 ®奈米碳管陣列的基底一般爲4英寸),無法製備大面積奈米 碳管膜。另外,所製備的奈米碳管膜的透光度不够好。 有鑒於此,提供一種尺寸不受製備基底限制的奈米碳 管膜實為必要。 【發明内容】 一種奈米碳管膜’其中,該奈米碳管膜包括多個奈米 碳管線並排且間隔設置’且相鄰的奈米碳管線之間包括至 ❹少一個奈米碳管,該多個奈米碳管線之間的距離受力後發 生變化。 相較於先前技術’本技術方案提供的奈米碳管膜具有 以下優點:其一,所述奈米碳管膜可設置在一彈性支撐體 上被拉伸,進而製備大面積奈米碳管膜,且該奈米碳管膜 的尺寸不受生長基底的限制。其二,本技術方案提供的奈 米碳管膜只需對奈米碳管膜進行拉伸來提高其透光度,避 免了採用繁雜的工序或昂貴的設備對奈米碳管膜進行後續 處理來提高奈米碳管膜透光度的步驟,其可廣泛應用於對 201020209 透光度具有較高要求的裝置中,如觸摸屏等。其三,所述 奈米碳管膜具有較好的拉伸性㊣,故所述奈米碳管膜可用 於彈性可拉伸元件及設備中。 '【實施方式】 以下將結合附圖詳細說明本技術方案實施例提供的 米碳管膜及其拉伸方法。 ~ 請參閱圖1至圖4,本技術方案實施例提供一種奈米 ❹碳管膜10。該奈米碳管膜1〇包括多個奈米碳管1〇〇。該奈 米碳管中的部分奈米碳管首尾相連形成一奈米碳管線 102。所述奈米碳管線1〇2中的奈米碳管可沿奈米碳管線的 軸向排列,且奈米碳管之間通過凡德瓦爾力緊密連接。所 述奈米碳管膜10包括多個並排且間隔設置的奈米碳管線 102。奈米碳管線1〇2之間通過凡德瓦爾力緊密連接。所述 奈米被管線102均勻分布在奈米碳管膜中且沿第一方向 排列。該第一方向爲D1方向。相鄰的奈米碳管線1〇2之 ❿間包括至少一個奈米碳管104。該部分奈米碳管1〇4的排 列方向不限。該部分奈米碳管104可與至少兩個相互並排 設置的奈米碳管線102接觸。進一步地,所述奈米碳管線 102之間可包括多個首尾相連的奈米碳管104。所述多個奈 米碳管線102之間有間距106’且相鄰兩個奈米碳管線1〇2 之間的距離在受力後發生變化。所述多個奈米碳管線1〇2 和奈米碳管線102之間的奈米碳管104形成一具有自支擇 結構的奈米碳管膜10。所謂自支撑結構的奈米碳管膜10 即所述奈米碳管膜1〇無需通過一支撑體支撐,也能保持 11 201020209 自身特定的形狀或只需部分設置在一支撐體上即可 其膜狀結構,且奈米碳管膜1G本身的結構不會發生變化、。 如將所述奈米碳管膜10設置在一框举 汇架或兩個間隔設置的 2、、,。構上’㈣巾間未與框架或支料構關的 官膜10可懸空設置。 % 一所述奈米碳管膜10在垂直於奈米碳管線1〇2的方向上 受力後發生形變。該垂直於奈米碳管線1〇2的方向爲叫 ⑩方向。該D2方向垂直於D1方向。當所述奈米碳管膜1〇 在D2方向上被拉伸時,奈米碳管膜1()發生形變奈㈣ 管線102之間的距離發生變化。具體地,所述奈米碳管線 102之間的距離隨奈米碳管膜1〇形變率的增加而增大。所 述奈米碳管膜H)在D2方向的形變率小於等於珊%。所 述相鄰的奈米碳管線102之間的距離大於〇微米且小於等 於50微米。該相鄰的奈米碳管、線1〇2之間的距離隨奈米碳 管膜U)的形變率的增加而增大。所述多個奈米碳管線· ❹可形成一奈米碳管束。 所述奈米碳管膜1〇的長度、寬度及厚度不限,可根據 實際需求製備。所述奈米碳管膜1G的厚度優選爲大於等於 0.5奈米且小於等於!毫米。所述奈米碳管膜中的奈米 碳管100的直徑大於等於〇.5奈米且小於等於5〇奈米。所 述奈米碳管100的長度爲大於等於50微来且小於等於5 毫米。 、 所述奈米碳管膜10在D2方向上的形變率與奈米碳管 膜1〇的厚度及密度有關。所述奈来碳管膜10的厚度及密 12 201020209 度愈大,其在D2方向上的形變率愈大。進一步地,所述 奈米碳管膜10的形變率與奈米碳管線102之間的奈米碳管 104的含量有關。在一定含量範圍内,所述奈米碳管線102 之間的奈米碳管104的含量越多,所述奈米碳管膜10在 ^D2方向上的形變率越大。所述奈米碳管膜10在D2方向 上的形變率小於等於300%。本技術方案實施例中,所述 奈米碳管膜10的厚度爲50奈米,其在D2方向上的形變 率可達到150%。 ® 所述奈米碳管膜10的透光度(光透過比率)與奈米碳 管膜10的厚度及密度有關。所述奈米碳管膜10的厚度及 密度越大,所述奈米碳管膜10的透光度越小。進一步地, 所述奈米碳管膜10的透光度與奈米碳管線102之間的距離 及相鄰奈米碳管線102之間的奈米碳管104的含量有關。 所述奈米碳管線102之間的距離越大,奈米碳管線102之 間的奈米碳管104的含量越少,則所述奈米碳管膜10的透 ◎光度越大。所述奈米碳管膜10的透光度大於等於60%且 小於等於95%。本技術方案實施例中,當奈米碳管膜10 的厚度爲50奈米時,拉伸前該奈米碳管膜10的透光度爲 大於等於67%且小於等於82%。當其形變率爲120%時, 所述奈米碳管膜10的透光度爲大於等於84%且小於等於 92%。以波長爲550奈米的綠光爲例,拉伸前所述奈米碳 管膜10的透光度爲78%,當形變率爲120%時,該奈米碳 管膜10的透光度可達89%。 由於所述奈米碳管膜10具有較好的拉伸性能,其可在 13 201020209 向發生形變,故所述奈米碳管膜ίο可廣泛應用於彈 =拉伸元件和設備中。另外,本技術方案 的拉伸方法避免了採用繁雜的卫序和昂貴的設備 器對奈米碳管膜1〇進行後續處理來提高奈米碳管 炎66胜光度的步驟’其可廣泛應用於對透光度具有較高要 你欲&置中,如觸摸屏等。另外,所述奈米碳管膜10可用 ;發聲裝置中’且奈米碳管膜10在拉伸過程中不影響發聲 效果。 請同時參閱圖5及圖6,本技術方案實施例進一步提 ’、-種拉伸奈米碳管膜1〇的方法’具體包括以下步驟·· 步驟一:提供至少一奈米碳管膜1〇及至少一彈性支 體20。 所述奈来碳管膜10的製備方法具體包括以下步驟·· 排太供—奈米碳管陣列,優選地,該陣列爲超順 排余水碳管陣列。 ❹料奈米碳管陣列的製備方法可爲化學氣相沈積法。 也可爲石墨電極恒流電弧放電沈積法、雷射蒸發沈積法等。 ,其次’採用-拉伸工具從所述奈米碳管陣财拉取獲 得一奈米碳管膜10。 所述奈米碳管膜10的製備方法具體包括以下步驟: U)從上述奈米碳管陣列中選定—個或具有寬度的 多個奈米碳管’本實施例優選爲採用具有一定寬度的膠帶 接觸奈米碳管陣列以選定一個或具有一定寬度的多個奈 来碳管;⑴以-定速度拉伸該選定的奈米碳f,從而带 201020209 成首尾相連的多個奈米碳管片段,以形成一連續的奈米碳 管膜10。 在上述拉取過程中,該多個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管片斷分別與其它奈米碳管片斷 首尾相連地連續地被拉出,從而形成一奈米碳管膜1〇。本 實施例中,該奈米碳管膜10的寬度與奈米碳管陣列所生長 ❹的基底的尺寸有關,該奈米碳管膜1〇的長度不限,可根據 實際需求制得。該奈米碳管膜10的厚度與選取的奈米碳管 片段有關,其厚度範圍爲0·5奈米〜1〇〇微米。本技術方案 實施例中,所述奈米碳管膜1〇的厚度爲5〇奈米。 圖3爲奈米碳管膜放大5〇〇倍的掃描電鏡照片。該 奈米碳管膜10包括多個奈米碳管線1〇2並排且間隔設置。 奈米破管線102之間通過凡德瓦爾力相互連接。所述奈米 碳管線102均勻分布在奈米碳管膜1〇中且沿第一方向排 ❹列。該第一方向爲奈米碳管膜的拉取方向,即方向。 所述奈米碳管線1〇2之間包括至少一個奈米碳管1〇4。該 部分奈米碳管104的排列方向不限。該部分奈米碳管1〇4 可與至少兩個相鄰的並排設置的奈米碳管線1〇2接觸。進 一步地,所述奈米碳管線1〇2之間可包括多個首尾相連的 奈米碳管104。所述多個奈米碳管線1〇2之間有距離,且 該距離在受力後發生變化。所述多個奈米碳管線102和奈 米碳管線102之間的奈米碳管ι〇4形成一具有自支撑結構 的奈米碳管膜10。 15 201020209 所述奈米碳管膜ίο的透光度(光透過比率)與奈米碳 管膜10的厚度及密度有關。所述奈米碳管膜1〇的厚度及 雄、度越大’所述奈米碳管膜10的透光度越小。進一步地, 所述奈米碳管膜10的透光度與相鄰奈米碳管線之間的 距離及奈米碳管線102之間的奈米碳管1〇4的含量有關。 所述奈米碳管線102之間的距離越大,奈米碳管線ι〇2之 間的奈米碳管104的含量越少,則所述奈米碳管膜1〇的透 光度越大。請參閱圖7,本技術方案實施例中,該直接製 備的奈米碳管膜10的厚度爲50奈米,其透光度大於等於 67%且小於等於82%。 所述彈性支撑體20具有較好的彈性。所述彈性支撑體 20的形狀和結構不限,其可爲一平面結構或一曲面結構。 所述彈性支撑體20包括一彈性橡膠、彈簧及橡皮筋中的一 種或幾種。該彈性支撐體20可用於支撑並拉伸所述奈米碳 管膜10。 ❹ 步驟二:將所述至少一奈米碳管膜1〇至少部分設置在 所述至少一彈性支撑體20。 所述奈米碳管膜10可直接設置並貼合在彈性支撑體 20的表面,此時,所述彈性支撑體2〇爲具有一表面的基 體。另外,所述奈米碳管膜1〇也可部分設置在所述彈性支 撑體20的表面。如鋪設在兩個彈性支撑體2〇之間。由於 不米碳管具有極大的比表面積,在凡德瓦爾力的作用下, 該不米碳管膜10本身有很好的黏附性,可直接設置在彈性 支撐體20上。可以理解,爲提高奈米碳管膜1〇與彈性支 16 201020209 撑體20之間的結合力’所述奈米碳管膜1〇也可通過黏結 劑固定於所述彈性支撐體2〇上。另外,可將所述多個奈米 碳管膜10沿同一方向重叠鋪設,形成一多層奈米碳管膜。 相鄰兩層奈米碳管膜1〇中的第一奈米碳管的排列方向相 同。當所述奈米碳管膜爲從一奈米碳管陣列中直接拉取的 奈米碳官膜時,多個奈米碳管膜可沿拉取方向重叠設置。 重叠a又置的奈米碳管膜具有較大的厚度,可提高奈米碳管 膜的形變率。 本技術方案實施例中,將拉取獲得的一奈米碳管膜1〇 直接設置於兩個彈性支撑體2〇上。請參閱圖6,所述兩個 彈性支撑體20平行且間隔設置。所述兩個彈性支撑體2〇 均沿D2方向設置。所述奈米碳管膜1〇通過黏結劑設置在 所述彈性支撑體20表面。該黏結劑爲一層銀膠。所述奈米 碳管膜10沿D1方向的兩端分別固定於該兩個彈性支撑體 20上。所述奈米碳管膜1〇在設置時,奈米碳管膜中的 ❹奈米碳管線102沿一個彈性支撑體2〇至另一個彈性支撑體 20的方向延伸。 步驟三:拉伸該彈性支撑體20。 具體地,可通過將上述彈性支撑體20固定於一拉伸裝 置(圖未示)中,通過該拉伸裝置拉伸該彈性支撑體2〇。 本技術方案實施例中,可分別將兩個彈性支撑體Μ的兩端 分別固定於拉伸裝置上。 所述拉伸速度不限,可根據所要拉伸的奈米碳管膜1〇 具體進行選擇。拉伸速度太大,則奈米碳管模10容易發生 17 201020209 破裂。優選地,所述彈性支撑體20的拉伸速度小於10厘 米每秒。本技術方案實施例中,所述彈性支撐體20的拉伸 速度爲2厘米每秒。 所述拉伸方向與至少一層奈米碳管膜10中的奈米碳 管線102的排列方向有關。當所述奈米碳管膜10爲直接拉 取獲得的一層奈米碳管膜10或沿同一方向重叠設置的多 層奈米碳管膜時,所述拉伸方向爲沿垂直於奈米碳管線 102的方向或垂直於奈米碳管膜10的拉取方向,即D2方Transparent, Multifunctional, Carbon Nanotube Sheets" Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Ray H. Baughman, etc.. Science, Vol. 309, P1215-1219 (2005) discloses a carbon nanotube film The preparation method: the carbon nanotube film can also be prepared by drawing from a carbon nanotube array, wherein the carbon nanotube array is an array of carbon nanotubes grown on a substrate. The length of the tubular membrane is not limited. However, the width of the carbon nanotube membrane or rope prepared by the above two methods is limited by the size of the carbon nanotube array growth substrate (previously used for growth ® carbon nanotubes) The substrate of the array is generally 4 inches. It is impossible to prepare a large-area carbon nanotube film. In addition, the prepared carbon nanotube film has insufficient transmittance. In view of this, it is provided that the size is not limited by the preparation substrate. The carbon nanotube film is really necessary. [Summary] A carbon nanotube film, wherein the carbon nanotube film comprises a plurality of nano carbon pipelines arranged side by side and spaced apart and adjacent between adjacent carbon carbon pipelines To one less carbon nanotube, the multiple nanometers The distance between the pipelines is changed after the force is applied. Compared with the prior art, the carbon nanotube membrane provided by the technical solution has the following advantages: First, the carbon nanotube membrane can be disposed on an elastic support body. Stretching, thereby preparing a large-area carbon nanotube film, and the size of the carbon nanotube film is not limited by the growth substrate. Second, the carbon nanotube film provided by the technical solution only needs to be on the carbon nanotube film. Stretching to increase its transparency, avoiding the step of improving the transparency of the carbon nanotube film by complicated processes or expensive equipment for subsequent treatment of the carbon nanotube film, which can be widely applied to 201020209 Among the devices with high luminosity requirements, such as touch screens, etc. Third, the carbon nanotube film has good tensile properties, so the carbon nanotube film can be used for elastic stretchable components and equipment. The embodiment of the present invention provides a carbon nanotube film and a stretching method thereof according to the embodiments of the present invention. Carbon tube film 10. The carbon nanotube film 1 The crucible includes a plurality of carbon nanotubes. A portion of the carbon nanotubes in the carbon nanotubes are connected end to end to form a nano carbon line 102. The carbon nanotubes in the nano carbon line 1〇2 can be Arranged along the axial direction of the nanocarbon pipeline, and the carbon nanotubes are closely connected by van der Waals force. The carbon nanotube membrane 10 includes a plurality of carbon nanotubes 102 arranged side by side and spaced apart. The pipelines 1〇2 are closely connected by van der Waals force. The nanoparticles are evenly distributed in the carbon nanotube film by the pipeline 102 and arranged in the first direction. The first direction is the D1 direction. Adjacent nanometers At least one carbon nanotube 104 is included between the carbon pipes 1〇2. The arrangement of the partial carbon nanotubes 1〇4 is not limited. The portion of the carbon nanotubes 104 can be in contact with at least two nanocarbon lines 102 arranged side by side. Further, a plurality of carbon nanotubes 104 connected end to end may be included between the nanocarbon lines 102. There is a spacing 106' between the plurality of nanocarbon pipelines 102 and the distance between adjacent two nanocarbon pipelines 1〇2 changes after being stressed. The carbon nanotubes 104 between the plurality of nanocarbon lines 1〇2 and the nanocarbon line 102 form a carbon nanotube film 10 having a self-selective structure. The so-called self-supporting structure of the carbon nanotube film 10, that is, the carbon nanotube film 1〇 does not need to be supported by a support body, and can maintain the specific shape of the 11 201020209 itself or only partially disposed on a support body. The film structure, and the structure of the carbon nanotube film 1G itself does not change. For example, the carbon nanotube film 10 is disposed on a frame lifting frame or two spaced apart 2, . The official film 10 which is not structured with the frame or the support material can be suspended. % The carbon nanotube film 10 is deformed after being forced in a direction perpendicular to the carbon nanotube line 1〇2. The direction perpendicular to the carbon nanotube line 1 〇 2 is called the direction 10 . The D2 direction is perpendicular to the D1 direction. When the carbon nanotube film 1 被 is stretched in the D2 direction, the carbon nanotube film 1 () undergoes a change in the distance between the deformed (four) lines 102. Specifically, the distance between the carbon nanotubes 102 increases as the deformation rate of the carbon nanotube film increases. The deformation rate of the carbon nanotube film H) in the D2 direction is less than or equal to %. The distance between the adjacent nanocarbon lines 102 is greater than 〇 microns and less than equal to 50 microns. The distance between the adjacent carbon nanotubes and the line 1〇2 increases as the deformation rate of the carbon nanotube film U) increases. The plurality of nanocarbon pipelines may form a bundle of carbon nanotubes. The length, width and thickness of the carbon nanotube film 1〇 are not limited and can be prepared according to actual needs. The thickness of the carbon nanotube film 1G is preferably 0.5 nm or more and less than or equal to! Millimeter. The diameter of the carbon nanotube 100 in the carbon nanotube film is greater than or equal to 0.5 nm and less than or equal to 5 nm. The length of the carbon nanotube 100 is 50 μm or more and 5 mm or less. The deformation rate of the carbon nanotube film 10 in the D2 direction is related to the thickness and density of the carbon nanotube film. The greater the thickness and density of the carbon nanotube film 10, the greater the deformation rate in the D2 direction. Further, the deformation rate of the carbon nanotube film 10 is related to the content of the carbon nanotubes 104 between the carbon nanotubes 102. The greater the content of the carbon nanotubes 104 between the nanocarbon lines 102, the greater the deformation rate of the carbon nanotube film 10 in the ^D2 direction. The carbon nanotube film 10 has a deformation rate in the D2 direction of 300% or less. In the embodiment of the technical solution, the carbon nanotube film 10 has a thickness of 50 nm, and the deformation rate in the D2 direction can reach 150%. The transmittance (light transmission ratio) of the carbon nanotube film 10 is related to the thickness and density of the carbon nanotube film 10. The greater the thickness and density of the carbon nanotube film 10, the smaller the transmittance of the carbon nanotube film 10. Further, the transmittance of the carbon nanotube film 10 is related to the distance between the carbon nanotubes 102 and the content of the carbon nanotubes 104 between the adjacent nanocarbon tubes 102. The greater the distance between the nanocarbon lines 102 and the smaller the content of the carbon nanotubes 104 between the carbon nanotubes 102, the greater the luminosity of the carbon nanotube film 10. The carbon nanotube film 10 has a light transmittance of 60% or more and 95% or less. In the embodiment of the present invention, when the thickness of the carbon nanotube film 10 is 50 nm, the transmittance of the carbon nanotube film 10 before stretching is 67% or more and 82% or less. When the deformation rate is 120%, the transmittance of the carbon nanotube film 10 is 84% or more and 92% or less. Taking the green light having a wavelength of 550 nm as an example, the transmittance of the carbon nanotube film 10 before stretching is 78%, and the transmittance of the carbon nanotube film 10 when the deformation rate is 120%. Up to 89%. Since the carbon nanotube film 10 has good tensile properties, it can be deformed at 13 201020209, so the carbon nanotube film ίο can be widely used in elastic = tensile elements and equipment. In addition, the stretching method of the technical solution avoids the step of improving the carbon smear of the carbon nanotube film by a complicated process and an expensive device to improve the brightness of the carbon nanotube film 66. For light transmittance, you want to & center, such as touch screen. Further, the carbon nanotube film 10 can be used in the sounding device' and the carbon nanotube film 10 does not affect the sounding effect during stretching. Referring to FIG. 5 and FIG. 6 simultaneously, the method of the present technical solution further provides a method for stretching the carbon nanotube film 1 ', which specifically includes the following steps: Step 1: providing at least one carbon nanotube film 1 And at least one elastic support 20. The preparation method of the carbon nanotube membrane 10 specifically includes the following steps: - arranging the carbon nanotube array, preferably, the array is a super-sequential carbon dioxide tube array. The preparation method of the tantalum carbon nanotube array may be a chemical vapor deposition method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. Next, a carbon nanotube film 10 is taken from the carbon nanotube array by a stretching tool. The method for preparing the carbon nanotube film 10 specifically includes the following steps: U) selecting a plurality of carbon nanotubes having a width or a width from the carbon nanotube array; the embodiment preferably adopts a certain width Tape contacting the carbon nanotube array to select one or a plurality of carbon nanotubes having a certain width; (1) stretching the selected nanocarbon f at a constant speed, thereby bringing 201020209 into a plurality of carbon nanotubes connected end to end Fragments are formed to form a continuous carbon nanotube film 10. In the above drawing process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the pulling force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. In the present embodiment, the width of the carbon nanotube film 10 is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film 1 is not limited and can be obtained according to actual needs. The thickness of the carbon nanotube film 10 is related to the selected carbon nanotube segments, and the thickness thereof ranges from 0.5 nm to 1 μm. In an embodiment of the present invention, the carbon nanotube film has a thickness of 5 nanometers. Figure 3 is a scanning electron micrograph of a carbon nanotube film magnified 5 times. The carbon nanotube film 10 includes a plurality of nanocarbon lines 1〇2 arranged side by side and spaced apart. The nano-breaking lines 102 are connected to each other by Van der Waals force. The nanocarbon line 102 is evenly distributed in the carbon nanotube film 1 排 and arranged in the first direction. The first direction is the pulling direction of the carbon nanotube film, that is, the direction. At least one carbon nanotube 1〇4 is included between the nanocarbon pipelines 1〇2. The arrangement of the partial carbon nanotubes 104 is not limited. The portion of the carbon nanotubes 1〇4 can be in contact with at least two adjacent side-by-side carbon nanotubes 1〇2. Further, a plurality of carbon nanotubes 104 connected end to end may be included between the nanocarbon lines 1〇2. There is a distance between the plurality of nanocarbon lines 1〇2, and the distance changes after being stressed. The carbon nanotubes ι 4 between the plurality of nanocarbon lines 102 and the carbon nanotubes 102 form a carbon nanotube film 10 having a self-supporting structure. 15 201020209 The transmittance (light transmission ratio) of the carbon nanotube film ίο is related to the thickness and density of the carbon nanotube film 10. The thickness and the maleness of the carbon nanotube film are larger, and the transmittance of the carbon nanotube film 10 is smaller. Further, the transmittance of the carbon nanotube film 10 is related to the distance between adjacent nanocarbon lines and the content of the carbon nanotubes 1〇4 between the carbon nanotubes 102. The greater the distance between the carbon nanotubes 102, the less the content of the carbon nanotubes 104 between the carbon nanotubes ι〇2, the greater the transmittance of the carbon nanotube membranes 1〇 . Referring to FIG. 7, in the embodiment of the technical solution, the directly prepared carbon nanotube film 10 has a thickness of 50 nm and a transmittance of 67% or more and 82% or less. The elastic support body 20 has better elasticity. The shape and structure of the elastic support body 20 are not limited, and may be a planar structure or a curved structure. The elastic support body 20 includes one or more of an elastic rubber, a spring, and a rubber band. The elastic support 20 can be used to support and stretch the carbon nanotube film 10. ❹ Step 2: The at least one carbon nanotube film 1 is at least partially disposed on the at least one elastic support body 20. The carbon nanotube film 10 can be directly disposed and attached to the surface of the elastic support body 20, and at this time, the elastic support body 2 is a substrate having a surface. Further, the carbon nanotube film 1〇 may be partially disposed on the surface of the elastic support body 20. For example, it is laid between two elastic support bodies 2〇. Since the carbon nanotube has a large specific surface area, the carbon nanotube film 10 itself has good adhesion under the action of the van der Waals force, and can be directly disposed on the elastic support body 20. It can be understood that in order to improve the bonding force between the carbon nanotube film 1〇 and the elastic branch 16 201020209 support 20, the carbon nanotube film 1〇 can also be fixed to the elastic support body 2 by a bonding agent. . Alternatively, the plurality of carbon nanotube films 10 may be stacked in the same direction to form a multilayered carbon nanotube film. The first carbon nanotubes in the adjacent two carbon nanotube membranes are arranged in the same direction. When the carbon nanotube film is a nano carbon film directly pulled from an array of carbon nanotubes, a plurality of carbon nanotube films may be overlapped in the drawing direction. The carbon nanotube membrane with overlapping a and a larger thickness has a larger thickness and can improve the deformation rate of the carbon nanotube film. In the embodiment of the technical solution, the one carbon nanotube film 1 拉 obtained by drawing is directly disposed on the two elastic support bodies 2〇. Referring to Figure 6, the two elastic supports 20 are parallel and spaced apart. The two elastic support bodies 2 are all disposed along the D2 direction. The carbon nanotube film 1 is disposed on the surface of the elastic support 20 by a binder. The binder is a layer of silver glue. Both ends of the carbon nanotube film 10 in the direction D1 are respectively fixed to the two elastic supporting bodies 20. When the carbon nanotube film 1 is disposed, the nanocarbon carbon line 102 in the carbon nanotube film extends in the direction of one elastic support 2 to the other elastic support 20. Step 3: The elastic support 20 is stretched. Specifically, the elastic support body 2 can be stretched by the stretching device by fixing the elastic support body 20 to a stretching device (not shown). In the embodiment of the technical solution, the two ends of the two elastic support bodies are respectively fixed to the stretching device. The stretching speed is not limited and may be specifically selected depending on the carbon nanotube film 1 to be stretched. If the stretching speed is too large, the carbon nanotube mold 10 is prone to occur 17 201020209 rupture. Preferably, the elastic support 20 has a drawing speed of less than 10 cm per second. In the embodiment of the technical solution, the elastic support body 20 has a stretching speed of 2 cm per second. The direction of stretching is related to the direction in which the carbon nanotubes 102 in the at least one layer of the carbon nanotube film 10 are arranged. When the carbon nanotube film 10 is a layer of the carbon nanotube film 10 obtained by direct drawing or a multilayered carbon nanotube film disposed in the same direction, the stretching direction is perpendicular to the carbon nanotube line. The direction of 102 or perpendicular to the pulling direction of the carbon nanotube film 10, that is, the D2 side

由於所述至少一奈米碳管膜10固定在所述彈性支撑 體20上,故在拉力的作用下,隨著所述彈性支撑體20被 拉伸,該奈米碳管膜10也隨之被拉伸。當所述奈米碳管膜 10在D2方向上被拉伸時,奈米碳管線102之間的距離發 生變化。具體地,所述奈米碳管線102之間的距離隨奈米 碳管膜10形變率的增加而增大。由於碳奈米線102之間有 ❹距離,且奈米碳管線102之間有至少一個奈米碳管104, 故被拉伸過程中,所述奈米碳管線102和其之間的奈米碳 管104之間可維持凡德瓦爾力連接,並排設置的奈米碳管 線102之間的距離增大。其中,拉伸前所述並排設置的奈 米碳管線102之間的距離大於0微米且小於10微米,拉伸 後並排設置的奈米碳管線102之間的距離最大可達50微 米。所述奈米碳管膜10仍維持膜狀結構。當所述多個奈米 碳管膜10重叠設置形成一多層奈米碳管膜時,由於該多層 奈米碳管膜中的奈米碳管100分布更均勻、密度更大,故 18 201020209 當對該多層奈米碳管膜進行拉伸時,可獲得更高的形變 率。所述奈米碳管膜ίο的形變率小於等於3〇〇%,且可基 本維持不米碳管膜10的形態。即所述奈米碳管膜可在 原有尺寸的基礎上增加3_。本實施例中,所述奈米碳 管膜10爲單層奈米碳管膜’拉伸方向爲沿垂直於奈米碳管 線102的方向,即D2方向。所述奈米碳管膜1〇在1)2方 向上的形變率可達150%。圖4爲奈来碳管膜1〇拉伸12〇% 鑤時放大500倍的掃描電鏡照片,從圖中可以看出拉伸後的 奈米碳管膜10相對拉伸前的奈米碳管膜1〇,並排設置的 奈米峡管線102之間的距離變大。從圖7中可以看出,當 形變率爲120%時,所述奈米碳管骐1〇對波長大於19〇奈 米且小於900奈米的光的透光度可達84%至92%。在拉伸 過程中,所述奈米碳管膜1〇在拉伸方向上的電阻不發生變 化。 進一步地,當形變率小於60%時,所述並排設置的奈 ❹米碳管線102之間的距離最大可達2〇微米。該拉伸後的奈 求碳管膜1〇可在反向拉力的作用下逐漸回復爲拉伸前的 奈米碳管膜10。在回復的過程中,所述奈米碳管線1〇2之 間的距離逐漸减小,並排設置的奈米碳管線1〇2之間的距 離逐漸减下。故所述奈米碳管膜10可在拉力的作用下實現 伸縮。所述奈米碳管膜1〇可廣泛應用於可伸縮的裝置中。 本技術方案實施例提供的奈米碳管膜10及其拉伸方 法具有以下優點:其一,所述奈米碳管膜10可設置在一彈 性支撑體20上被拉伸,進而製備大面積奈米碳管膜,且該 19 201020209 奈来碳管膜的尺寸不受生長基底的限制。其二,所述拉伸 奈米碳管膜ίο的方法爲通過將所述奈米碳管膜1〇設置在 至少一彈性支撑體20上,拉伸該彈性支撑體2〇,該拉伸 方法簡單、成本較低。其三,本技術方案提供的奈米碳管 '•膜10的拉伸方法避免了採用繁雜的工序和昂責的設備(如 雷射裝置)對奈米碳管膜10進行後續處理來提高奈求碳管 膜10透光度的步驟’其可廣泛應用於對透光度具有較高要 ❹求的裝置中,如觸摸屏等。其四,由於所述奈米碳管膜10 具有較好的拉伸性能,其可在垂直於奈米碳管線102的方 向上被拉伸,故所述奈米碳管膜10可用於彈性可拉伸元件 及設備中。其五,本技術方案拉伸奈米碳管膜10的方法有 利於製備大尺寸奈米碳管膜,進而有利於擴大奈米碳管膜 在大尺寸裝置中的應用。 、 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利中請。惟,以上所述者僅為本發明之較佳實施例, ❹自不能以此限制本案之申請專利範圍。舉凡習知本案技蓺 之人士援依本發明之精神所作之等效修飾或變化,皆: 蓋於以下申請專利範圍内。 ” 【圖式簡單說明】 圖1係本技術方案實施例奈米射臈的結構示 圖2係圖1中的局部放大結構示意圖。 電 圖3係本技術方案實施例拉伸前奈米碳管膜的掃描 圖4係本技術方案實施例拉伸後奈米碳管膜的掃描電 20 201020209 鏡照片。 圖5係本技術方案實施例奈米碳管膜的拉伸方法流程 圖。 圖6係本技術方案實施例奈米碳管膜的拉伸示意圖。 圖7係本技術方案實施例奈米碳管膜拉伸前後透光度 對比示意圖。 【主要元件符號說明】 奈米碳管膜 10 ®奈米碳管 100 奈米碳管線 102 奈米碳管線之間的奈米碳管 104 間距 106 彈性支撑體 20Since the at least one carbon nanotube film 10 is fixed on the elastic support body 20, the carbon nanotube film 10 is also followed by the tensile force as the elastic support body 20 is stretched. Stretched. When the carbon nanotube film 10 is stretched in the D2 direction, the distance between the carbon nanotubes 102 changes. Specifically, the distance between the carbon nanotubes 102 increases as the deformation rate of the carbon nanotube film 10 increases. Since there is a helium distance between the carbon nanowires 102 and there is at least one carbon nanotube 104 between the nanocarbon pipelines 102, the nanocarbon pipeline 102 and the nano between them are stretched during stretching. The van der Waals force connection can be maintained between the carbon tubes 104, and the distance between the side-by-side nanocarbon lines 102 increases. Wherein, the distance between the carbon nanotubes 102 disposed side by side before stretching is greater than 0 micrometers and less than 10 micrometers, and the distance between the nanocarbon pipelines 102 disposed side by side after stretching is up to 50 micrometers. The carbon nanotube film 10 still maintains a film-like structure. When the plurality of carbon nanotube films 10 are overlapped to form a multi-layered carbon nanotube film, since the carbon nanotubes 100 in the multi-layered carbon nanotube film are more uniformly distributed and denser, 18 201020209 When the multilayered carbon nanotube film is stretched, a higher deformation rate can be obtained. The deformation rate of the carbon nanotube film ίο is 3% or less, and the morphology of the carbon nanotube film 10 can be substantially maintained. That is, the carbon nanotube film can be increased by 3_ based on the original size. In the present embodiment, the carbon nanotube film 10 is a single-layer carbon nanotube film. The stretching direction is in a direction perpendicular to the carbon nanotube line 102, that is, in the direction D2. The carbon nanotube film has a deformation rate of 150% in the 1) 2 direction. Fig. 4 is a scanning electron micrograph of a 500-fold magnification of a carbon nanotube film stretched at 12〇% ,. It can be seen from the figure that the carbon nanotube film 10 after stretching is opposite to the carbon nanotube before stretching. The distance between the membranes 1 and the nano-xia pipelines 102 arranged side by side becomes large. It can be seen from FIG. 7 that when the deformation rate is 120%, the carbon nanotubes 〇1〇 can transmit light of 84% to 92% for light having a wavelength greater than 19 〇 nanometers and less than 900 nm. . The resistance of the carbon nanotube film 1 in the stretching direction does not change during the stretching. Further, when the deformation rate is less than 60%, the distance between the side by side carbon nanotubes 102 is up to 2 μm. The stretched carbon nanotube film 1 逐渐 can be gradually returned to the carbon nanotube film 10 before stretching by the reverse pulling force. During the recovery process, the distance between the nanocarbon lines 1〇2 is gradually reduced, and the distance between the side carbon nanotubes 1〇2 is gradually reduced. Therefore, the carbon nanotube film 10 can be expanded and contracted by the tensile force. The carbon nanotube film 1 can be widely used in a retractable device. The carbon nanotube film 10 and the stretching method thereof provided by the embodiments of the present technical solution have the following advantages: First, the carbon nanotube film 10 can be stretched on an elastic support body 20 to prepare a large area. The carbon nanotube film, and the size of the 19 201020209 carbon nanotube film is not limited by the growth substrate. Secondly, the method of stretching the carbon nanotube film is to stretch the elastic support body 2 by disposing the carbon nanotube film 1 on at least one elastic support body 20, the stretching method Simple and low cost. Thirdly, the stretching method of the carbon nanotube 'film 10 provided by the technical solution avoids the complicated processing and the rigorous equipment (such as laser device) for subsequent processing of the carbon nanotube film 10 to improve the nai. The step of determining the transmittance of the carbon tube film 10 can be widely applied to a device having high requirements for transmittance, such as a touch panel or the like. Fourth, since the carbon nanotube film 10 has good tensile properties, it can be stretched in a direction perpendicular to the nanocarbon line 102, so the carbon nanotube film 10 can be used for elasticity. Stretching components and equipment. Fifth, the method of stretching the carbon nanotube film 10 of the present technical solution is advantageous for preparing a large-sized carbon nanotube film, thereby facilitating the application of the carbon nanotube film in a large-sized device. In summary, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention cannot be limited thereby. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are as described in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural schematic view of a nano-projection of the embodiment of the present technical solution. FIG. 2 is a partial enlarged structural view of FIG. 1. The electrical diagram 3 is a pre-stretched carbon nanotube before the embodiment of the present technical solution. Scanning of the film FIG. 4 is a scanning photograph of the scanning carbon 20 film of the carbon nanotube film after stretching in the embodiment of the present technical solution. FIG. 5 is a flow chart of the stretching method of the carbon nanotube film of the embodiment of the present technical solution. Schematic diagram of the stretching of the carbon nanotube film in the embodiment of the present invention. Fig. 7 is a schematic diagram showing the comparison of the transmittance of the carbon nanotube film before and after stretching in the embodiment of the present invention. [Key element symbol description] Carbon nanotube film 10 ® Nano carbon tube 100 nano carbon line 102 nano carbon tube between the carbon line 104 spacing 106 elastic support 20

21twenty one

Claims (1)

201020209 十、申請專利範圍 1· 一種奈米碳管膜,其改良在於,該奈米碳管膜包括多 .個奈米碳管線併排且間隔設置,且相鄰的奈米碳管線 之間包括至少-個奈米碳管,該多個奈米碳管線之間 的距離受力後發生變化。 2·如申請專利範圍第1項所述的奈米碳管膜,其中,所 述奈米碳管線包括多個首尾相連的奈米碳管沿奈米碳 參*線的轴向排列,且奈米碳管之間通過凡德瓦爾力緊 密連接。 3.如申請專利範圍第工項所述的奈米碳管膜,#中所 述不米碳管線之間的奈米碳管與至少兩個併排設置的 奈米碳管線接觸。 (如申請專利範圍第i項所述的奈米碳管膜,其中,所 迷奈米碳管線之間包括多個首尾相連的奈米碳管。 魏·如申請專利範圍第1項所述的奈米碳管膜,其中,所 • $奈米碳管膜中的多個奈米碳管線和奈米碳管線之間 的奈米碳管形成一網絡結構。 6.請專利範圍第1項;述的奈米碳管膜,其中,所 ^水碳管膜在垂直於奈米碳管線的方向上受力後發 生形變。201020209 X. Patent Application Scope 1 A modified carbon nanotube film is characterized in that the carbon nanotube film comprises a plurality of nano carbon pipelines arranged side by side and spaced apart, and at least between adjacent carbon carbon pipelines - a carbon nanotube, the distance between the plurality of nanocarbon lines changes after being stressed. 2. The carbon nanotube film according to claim 1, wherein the nanocarbon pipeline comprises a plurality of end-to-end carbon nanotubes arranged along the axial direction of the nanocarbon ginseng wire, and The carbon tubes are tightly connected by Van der Waals force. 3. The carbon nanotube membrane between the non-meter carbon pipelines described in #, in the application of the patent scope, is in contact with at least two carbon nanotubes arranged side by side. (For example, the carbon nanotube film described in claim i, wherein the carbon nanotubes include a plurality of carbon nanotubes connected end to end. The carbon nanotube membrane, wherein the carbon nanotubes between the plurality of nanocarbon pipelines and the nanocarbon pipelines in the carbon nanotube membrane form a network structure. The carbon nanotube film is characterized in that the carbon nanotube film is deformed after being forced in a direction perpendicular to the carbon nanotube. 2請專利範圍第6項所述的奈米碳管膜,其中,所 ^米碳管膜在垂直於奈米碳管線的方向上的形變率 小於等於300%。 8. 如申請專利範圍第7項所述的奈米碳管膜, 其中,所 22 201020209 述奈米碳管膜在垂直於奈米碳管線的方向上的 小於等於150%。 午 9·如申請專利範圍第7項所述的奈米碳管膜,&中 述奈米碳管線之間的距離隨奈求碳管膜形變率的 而增-大。 ^ 10·如申請專利範圍第9項所述的奈米碳管膜,其中 述相鄰的奈米碳管線之間的距離大於〇微米且斤 於50微米。 、辱 11·如申請專利範圍第i項所述的奈米碳管膜,其中 述奈米碳管膜的厚度大於等於0.5奈米且小於等於χ 毫米。 1 12·如申請專利範圍第!項所述的奈米碳管膜,其中 述奈米碳管膜的透光度大於等於60%且小於等於 13·如申請專利範㈣1項所述的㈣碳管膜,其中,戶; ❹ 述奈米碳管膜爲自支撑結構。 14· 一種奈米碳管膜,其改良在於 _ . . Α ^ 民长於’該奈米碳管膜包括多 個奈米碳管線併排設置,且知細W* Μ 且且相鄰的奈米碳管線之間έ 括至少一個奈米碳管。 15·如申請專利範圍第14項所述的奈米碳管膜,其中,所 述奈米碳管膜在垂直於奈米碳管線的方向 生形變。 货 16.如申請專利顧第15項所述的奈米碳管媒,其中,所 迷奈求碳管膜在垂直於奈米碳管線的方向上的形變率 201020209 小於等於300%。 17·如申請專利範圍第16項所述的奈米碳管膜,其中,所 述奈来碳管膜在垂直於奈米碳管線的方向上的形變率 小於等於150%。 18.如申請專利範圍第14項所述的奈米碳管膜,其中,所 述相鄰的奈米碳管線之間的距離大於0微米且小於等 於50微米。2 The carbon nanotube film according to the sixth aspect of the invention, wherein the carbon nanotube film has a deformation rate of 300% or less in a direction perpendicular to the carbon nanotube line. 8. The carbon nanotube film according to claim 7, wherein the carbon nanotube film is less than or equal to 150% in a direction perpendicular to the carbon nanotube line. 9. In the case of the carbon nanotube film described in the seventh paragraph of the patent application, the distance between the nano carbon pipes and the above-mentioned carbon nanotubes increases and decreases with the deformation rate of the carbon nanotube film. The carbon nanotube film of claim 9, wherein the distance between the adjacent nanocarbon lines is greater than 〇 micron and is less than 50 microns. 11. The invention relates to a carbon nanotube film as described in claim i, wherein the thickness of the carbon nanotube film is greater than or equal to 0.5 nm and less than or equal to χ mm. 1 12·If you apply for a patent scope! The carbon nanotube film according to the item, wherein the carbon nanotube film has a transmittance of 60% or more and less than or equal to 13 (4) as described in the patent application (4), wherein the household is; The carbon nanotube film is a self-supporting structure. 14· A carbon nanotube film, the improvement is in _ . . . 民 ^ Min Chang in 'The carbon nanotube film consists of a plurality of nano carbon pipelines arranged side by side, and the fineness of W* Μ and adjacent nano At least one carbon nanotube is included between the carbon lines. The carbon nanotube film according to claim 14, wherein the carbon nanotube film is deformed in a direction perpendicular to the carbon nanotube. Goods 16. For example, the carbon nanotube medium described in claim 15 wherein the carbon nanotube film has a deformation rate of 300% or less in the direction perpendicular to the carbon nanotube line of 201020209. The carbon nanotube film according to claim 16, wherein the carbon nanotube film has a deformation rate of 150% or less in a direction perpendicular to the carbon nanotube. 18. The carbon nanotube film of claim 14, wherein the distance between the adjacent nanocarbon lines is greater than 0 microns and less than equal to 50 microns. ❹ 24❹ 24
TW097146250A 2008-11-28 2008-11-28 Carbon nanotube film TWI478866B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097146250A TWI478866B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097146250A TWI478866B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Publications (2)

Publication Number Publication Date
TW201020209A true TW201020209A (en) 2010-06-01
TWI478866B TWI478866B (en) 2015-04-01

Family

ID=44832115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097146250A TWI478866B (en) 2008-11-28 2008-11-28 Carbon nanotube film

Country Status (1)

Country Link
TW (1) TWI478866B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700779A (en) * 2012-09-28 2014-04-02 北京富纳特创新科技有限公司 Organic light emitting diode
CN103700748A (en) * 2012-09-28 2014-04-02 北京富纳特创新科技有限公司 Light-emitting diode
TWI510973B (en) * 2010-12-30 2015-12-01 Hon Hai Prec Ind Co Ltd Finger-stall for touch panel
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
TWI602776B (en) * 2012-04-25 2017-10-21 北京富納特創新科技有限公司 Conductive element
US10377120B2 (en) 2012-04-25 2019-08-13 Beijing Funate Innovation Technology Co., Ltd. Apparatus and method for making conductive element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726971A (en) 2016-08-11 2018-02-23 清华大学 Strain transducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696138B (en) * 2004-11-09 2019-02-01 得克萨斯大学体系董事会 The manufacture and application of nano-fibre yams, band and plate
CN100427388C (en) * 2005-11-25 2008-10-22 清华大学 Large-area ultra-thin carbon nanotube film and its preparation process
TWI312337B (en) * 2005-12-16 2009-07-21 Hon Hai Prec Ind Co Ltd Method for making the carbon nanotubes silk
US20090052029A1 (en) * 2006-10-12 2009-02-26 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510973B (en) * 2010-12-30 2015-12-01 Hon Hai Prec Ind Co Ltd Finger-stall for touch panel
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
TWI602776B (en) * 2012-04-25 2017-10-21 北京富納特創新科技有限公司 Conductive element
US10377120B2 (en) 2012-04-25 2019-08-13 Beijing Funate Innovation Technology Co., Ltd. Apparatus and method for making conductive element
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element
CN103700779A (en) * 2012-09-28 2014-04-02 北京富纳特创新科技有限公司 Organic light emitting diode
CN103700748A (en) * 2012-09-28 2014-04-02 北京富纳特创新科技有限公司 Light-emitting diode
US9041137B2 (en) 2012-09-28 2015-05-26 Beijing Funate Innovation Technology Co., Ltd. Light emitting diode
TWI504022B (en) * 2012-09-28 2015-10-11 Beijing Funate Innovation Tech Light emitting diode
CN103700779B (en) * 2012-09-28 2016-05-04 北京富纳特创新科技有限公司 Organic light emitting diode
CN103700748B (en) * 2012-09-28 2016-06-15 北京富纳特创新科技有限公司 Light emitting diode
TWI553936B (en) * 2012-09-28 2016-10-11 北京富納特創新科技有限公司 Organic light emitting diode

Also Published As

Publication number Publication date
TWI478866B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI478865B (en) Carbon nanotube film
CN101734644B (en) Method for stretching carbon nano-tube films
JP4589439B2 (en) Method for producing carbon nanotube composite
CN101870591B (en) Carbon nanotube film precursor, carbon nanotube film, manufacturing method thereof, and light-emitting device with carbon nanotube film
CN101734645B (en) carbon nano-tube film
TW201020209A (en) Carbon nanotube film
JP4504446B2 (en) Carbon nanotube film manufacturing apparatus and manufacturing method thereof
CN101734646B (en) Carbon nano-tube film
TWI395708B (en) Method for stretching carbon nanotube film
JP2009184907A (en) Carbon nanotube composite material
JP5243478B2 (en) Nanomaterial thin film
JP5243481B2 (en) Method for producing carbon nanotube film
JP2009184910A (en) Linear carbon nanotube structure
US9997323B2 (en) Composite carbon nanotube structure
TW201627518A (en) Method for producing carbon nanotube sheet, and carbon nanotube sheet
TWI477442B (en) Method for making carbon nanotube film
TWI585039B (en) Method for making transparent carbon nanotube composite film
CN102207575B (en) Polarizing element and manufacturing method thereof
CN109958379B (en) Hydrophobic window and house and automobile using same
TWI462872B (en) Method for making carbon nanotube film
TWI344981B (en) Conductive tape and method for making the same
KR20110046102A (en) Carbon nano tubes film and method for manufacturing the same
TW201408585A (en) Method for manufacturing carbon nanotubes substrate and carbon nanotubes substrate
TW201040105A (en) Carbon nanotube film precursor, carbon nanotube film, method for fabricating same, and light source having carbon nanotube film
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure