TW201018065A - DC/DC converter - Google Patents

DC/DC converter Download PDF

Info

Publication number
TW201018065A
TW201018065A TW97140666A TW97140666A TW201018065A TW 201018065 A TW201018065 A TW 201018065A TW 97140666 A TW97140666 A TW 97140666A TW 97140666 A TW97140666 A TW 97140666A TW 201018065 A TW201018065 A TW 201018065A
Authority
TW
Taiwan
Prior art keywords
magnetic
power
conversion device
power conversion
dipole
Prior art date
Application number
TW97140666A
Other languages
Chinese (zh)
Inventor
Jiin-Cheng Jow
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97140666A priority Critical patent/TW201018065A/en
Publication of TW201018065A publication Critical patent/TW201018065A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The present invention provides a DC/DC converter for transforming an input DC power into an output DC power. The converter includes an input DC power module, an energy storage unit, a switch, and a frequency switching module. The input DC power module is utilized for providing the input DC power. The energy storage unit is utilized for storing energy of the input DC power and providing the output DC power to a load. The switch is coupled to the input DC power module, energy storage unit, and the load for coupling the energy storage unit to the input DC power module or the load according to a switching frequency. And frequency switching module is coupled to the switch and the load for controlling the switching frequency according to conditions of the output DC power.

Description

201018065 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種直流電源轉換裝置,尤指一種利用電容 設計之直流電源轉換裝置。 【先前技術】 響 任何電子裝置的運作都需有電源的供應,電子裝置中通常包 3有不同的元件,每一元件所需的操作電壓可能都不同,且因應 即能的概念,在不同情況下(如待機狀態),可能會使用到不同的 操作電壓。因此,在電子裝置中,需要透過直流對直流電壓轉換 裝置,達到電壓準位的調冑(升壓或降壓),舰之穩定在所設定 的電壓數值。依不同的電源需求,可延伸出許多不同型態的直流 ❹對纽賴轉鋪,但其轉自崎壓捕㈣(⑽膽⑽麵 verter)及昇壓式轉換器(B〇〇svstep Up Converter)。顧名思義, 降壓式轉換器可將輸入端的直流電壓下降至一預設電壓準位,而 昇壓式轉換器則可提升輸入端的直流電壓。 對於電子裝置而言,可提供快速穩定及節能的電源供應使電 子裝置正確運作是非常重要的。 201018065 f發明内容】 本發明的目的之一即在於提供一種直流電源轉換裝 置,以解決上述之問題。 、_本發明之實施例,其係揭露—種直流電源轉換裝置,用 、輸人直流電源轉換為-輸出直流電源,該電源轉換裝置包 © — 輸人直電源模組,用以提供該輸人直流電源;-儲電 林,用以齡該輸人錢電源之能量,並提供職出直流電源 至一負載;、一切換開關,減於該輸入直流電源模組、該儲電單 凡及該負載’用來根據—切換鮮,職儲電單元連接至該輸入 直流電源模組或該負載;以及一頻率切換模組,耦接於該切換開 關及該負載,用來依據該輸出直流電源之變化,__換頻率。 【實施方式】 在本專利制f及後續的申請專利細當中觀了某些詞彙 來指稱特定的元件。所屬領域中具有通常知識者應可理解y硬體 製造商可能會用不_名崎稱詞—個元件。本朗書及後續 的申請專概科謂隨躲作為區分元制方式,而是 以讀在魏上的差異來作為區分的準則。在通篇說明書及後續 的請t項當中所提及的「包含」係為―開放式的用語’故應解釋 成包含但不限定於」。此外,「轉接」一詞在此係包含任何直接 201018065 4間接的電氣連接手段。因此,若文巾描述-第-裝置耦接於-第二裝置,則代表該第—裝置可直接電氣連接於該第二裝置,或 透過其他裝置或連接手段間接地電氣連接至該第二裝置。 請參考第1 ® ’第i圖係本發明直流電源轉換裝置1〇之一實 _的功能方塊示意圖。直流電源轉換裝置1G係用以將-輸入直 流電源Pi轉換為-輸出直流電源p〇,以滿足一負載⑽之電力需 ❹ m電轉換裝置ig包含有-輸人直流電源模組1G2、一儲 電單元104、一切換開關106及一頻率切換模組108。輸入直流電 源模組1〇2用以提供輸入直流電源pi。儲電單元】㈣以儲存輸 入直流電源Pi之能量,並提供輸出直流電源Po至負載110。切換 開關106輕接於輸入直流電源模组1〇2、儲電單元ι〇4及負載⑽, 用來根據-切換頻率fs ’將儲電單元1〇4連接至輸入直流電職 組102或負載11〇。頻率切換模組1〇8耦接於切換開關1〇6及負載 110 ’用來依據輸出直流電源P〇之變化,控制切換頻率fs。以下 將對直流電源轉換裝置10做進一步的說明,然而,此僅作為範例 說明,而並非為本發明之限制。 請繼續參考第i圖,在本實施例中,輸入直流電源模組脱 提供輸入直流電源Pi。較佳地,輸人直流電賴組1G2可由一磁 性電容(magnetic capacitor)模組實現,該磁性電容模組包含有複 數個磁性電容且係以電位能的形絲儲存電源能量。切換開關⑽ •可根據切換頻率fs,將儲電單元1〇4連接至輸入直流電源模組ι〇2 201018065 細軸廳賴輸刚電性連接至 時,儲電單元104會儲存輸入直流電源- 达對地,當切換開_將儲電單元104電性連接至負 載110時,儲電單元104摇 电丨逆接主負 + 純輪出直流電源P。至負載110。經由 切換開關⑽之切換動作,使得㈣單满可依需求提供負 載110所需之輸出錢電源Pg,而達職源轉換裝置作 電壓之目的。較佳地,儲電單元⑽可由—雜_組實現、作 _性電谷模組包含有複數個磁性電容且係以電位能的形式來儲 存電源能量。町將對針對雜電容做進—步的說明。 請參考第2圖,第2圖為本發明之一磁性電容的結構示 意圖。如第2圖所示,磁性電容測包含有—第—磁性電極⑽、 -第二磁性電極22〇以及位於其間之一介電層跡第一磁性電極 210與第-磁性電極22G均係由具有磁性的導電材料所構成,包含 冑磁佳導電材質(例如:稀土元素),並藉由適當的外加電場對 第…第二磁性電極21〇、22〇進行磁化,使第一、第二磁性電極 210 220内分別形成磁偶極(脱职咖出⑽215、奶磁偶極 215 225此於磁性電容2〇〇内部形成一磁場,該磁場可影響帶電 粒子的移動,從而抑制磁性電容2〇〇之漏電流;介電層23〇係由 一介電材質(例如··氧触(TK)3)、氧化鋇鈦(BaTi〇3))或-半導 體材料(例如:氧化石夕細c〇n〇xide》所構成,用來分隔第一磁性 電極210與第二磁性電極22〇,以於第一磁性電極21 〇與第二磁性 電極220處累積電荷而儲存電位能。以下將針對磁性電容之操作 201018065 原理作進一步說明。 磁性電容主要利用整齊排列的磁偶極215 、225來形成磁 % ’使第-磁性電極210與第二磁性電極no内部所儲存的電子 各自朝-自旋方向轉動而整齊排列,故可儲存大量的電荷,進而 大幅增加能量儲存密度。請注意,第2圖所示之磁偶極215、225 係分別指向減的方向,然而,此並非為本發明之限制,實作上, ❹磁偶極215與225的方向並無限定,舉例來說,磁偶極215與225 亦可指向一相同方向。 習知電容之電容值C係由電容之面積Α、介之介電常數 、er及厚度d決定,請參考式1 : η _ T~ Ui) 參 相較於習知電容’磁性電容200相當於藉由磁場之作用來改 變介電層’之介電常數以提升其電容值;此外,在本發明之一 實施例中’第-磁性_21〇與介電層23〇狀一第_介面如 以及第二磁性電極22〇與介電層23〇間之一第二介面攻均為一 不平坦的表面,因而藉由增加表面積A的來進-步提升磁性電容 200之電容值。 請參考第3圖,第3圖為本發明之磁性電容與其他習知能量 201018065 儲存媒介的比較圖。由第3圖可知,相較於傳統電容與超級電容, 磁性電容具有相當高的能量儲存密度。 請參考第4圖,第4圖為第2圖所示之第一磁性電極210之 一實施例的結構示意圖。如第4圖所示,第一磁性電極210係為 一三層結構,包含有一第一磁性層412、一隔離層414以及一第二 磁性層416,其中’隔離層414係由非磁性材料所構成,而第一磁 ❹ 性層412與第二磁性層416則包含有具磁性的導電材料,並藉由 不同的外加電場對第一、第二磁性層412、416進行磁化,使其第 一、第二磁性層412、416内分別形成磁偶極413、417,磁偶極 413、417 —起構成第一磁性電極21〇之磁偶極215。在本發明之 較佳實施例中,磁偶極413、417係分別指向相反之方向(如第 4圖所示),以抑制磁性電容2〇〇之漏電流。 值得注意的是’第一磁性電極21〇之結構並不限於前述之三 ❹層結構(第一、第二磁性層412、416與-隔離層414),在本發明 其他實施例中,第-磁性電極21〇可係為一多層結構,更明確地 說’第磁性電極210可由複數個磁性層與複數個隔離層不斷交 =堆疊而組成’再藉由調整各磁性層之磁偶極方向來抑制磁性電 谷200之漏電流’甚至達到幾乎無漏電流的效果,而此一設計變 化亦隸屬於本發明的範嘴。此外,第二磁性電極no之結構可採 用述4何第磁性電極21〇之結構因此為求說明書内容簡潔 •起t帛—磁性電極22G之結構的詳細說明便在此省略。 201018065 請參閱第5圖,第5圖為本發明之輸入直流電源模組1〇2之 -實施例的示意圖。如第頂所示,輸人直流電源模組1〇2係由 包含複數個磁性電容200之磁性電容模組實現,磁性電容2〇〇係 以-陣列的方式而互相電連接,然而,此並非為本發明之限制 實作上,複數個磁性電容200 ^以串聯或並聯的方式來互相電連 接’以滿足各種的電源供應需求。在本實施财,輸人直流電源 ❹模組脱係顧半導體製程於一妙基板上製作複數個小尺寸的磁 性電容200,並藉由適當的金屬化製程來電連接複數個磁性電容 200所構成。此外,儲電單元1〇4亦可由磁性電容模組實現,當然 其運作方式及原理同上述說明,在此不再贅述。 為進一步說明直流電源轉換裝置1〇的詳細運作方式,請參考 第6圖’第6圖本發明直流電源轉換裝置1〇之另一實施例的示意 圖。直流電源轉換裝置60包含有一輸入直流電賴組602、一儲 電單元604、一切換開關6〇6、一頻率切換模組6〇8及一濾波電容 cf。其中,輸入直流電源模組602及儲電單元6〇4係為一磁性電 容模組。值得注意的是’由於第6圖之直流電源轉換裝置6〇與第 1圖之直流電轉換裝置1〇中具有相同名稱之元件具有類似的運 作方式與魏’目此為求制書内容簡潔城,詳細說明便在此 省略,該些元件之連結關係如第6圖所示,在此不再贅述。輸入 直流電源模組602提供輸入直流電源pi。切換開關6〇6根據切換 .頻率fs,將儲電單元6〇4連接至輸入直流電源模組6〇2或負載 12 201018065 610 〇當切換_ 606將儲電單s 6G4電連接至輸人直流電源模組 時,儲電單元6〇4會儲存輸入直流電源pi之能量;相對地, 當切換開關6〇6將儲電單元_電連接至負載61〇時,儲電單元 6〇4提供輸出直流電源P〇至負載⑽,由於儲電單元6〇4係為一 磁性電容模組,若電容之時間常數為此(其中R為一等效電阻 值’ C為儲電單元604之電容值)、輸入直流電源pi之電壓值% 及輸出直流電源Po之電壓值乂〇,而且假設儲電單元_供應之 ❻ f流大部份供應至負載⑽(IcsI〇),則經由式2運算峨雷嚴 6〇4之等效電阻R,再由式3之運算式可運算出流經負載⑽之電 流1〇:201018065 IX. Description of the Invention: [Technical Field] The present invention relates to a DC power conversion device, and more particularly to a DC power conversion device using a capacitor design. [Prior Art] The operation of any electronic device requires the supply of power. In electronic devices, there are usually three different components. The operating voltage required for each component may be different, and the concept of instant energy can be used in different situations. Under (such as standby), different operating voltages may be used. Therefore, in the electronic device, it is necessary to pass the DC-to-DC voltage conversion device to achieve the voltage level adjustment (boost or step-down), and the ship is stabilized at the set voltage value. According to different power requirements, many different types of DC ❹ 纽 纽 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . As the name suggests, the buck converter reduces the DC voltage at the input to a predetermined voltage level, while the boost converter boosts the DC voltage at the input. For electronic devices, it is important to provide a fast, stable, and energy-efficient power supply that allows the electronic device to function properly. 201018065 f SUMMARY OF THE INVENTION One object of the present invention is to provide a DC power conversion device to solve the above problems. According to an embodiment of the present invention, a DC power conversion device is disclosed, which converts and converts a DC power supply into an output DC power supply, and the power conversion device package © - a direct power supply module for providing the input Human DC power supply; - Storage forest, used to measure the energy of the power source, and provide DC power to a load; a switch, minus the input DC power module, the storage battery and The load is used to connect to the input DC power module or the load according to the switch, and a frequency switching module coupled to the switch and the load for using the output DC power Change, __ change frequency. [Embodiment] In the patent system f and the subsequent patent application, some words are referred to to refer to specific elements. Those with ordinary knowledge in the field should be able to understand that the y hardware manufacturer may use the _ _ _ _ _ _ _ _. This Langshu and subsequent application specializations refer to the method of distinguishing between meta-systems and the difference in reading Wei as the criterion for distinguishing. The term "including" as used throughout the specification and subsequent t-items is "open-ended" and should be interpreted as including but not limited to. In addition, the term "transfer" is used herein to include any direct electrical connection means of 201018065. Therefore, if the article describes that the device is coupled to the second device, it means that the device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. . Please refer to the 1 ® ' i-th diagram for a functional block diagram of the DC power conversion device of the present invention. The DC power conversion device 1G is used to convert the input DC power supply Pi into an output DC power supply p〇 to meet the power demand of a load (10). The electric power conversion device ig includes a DC power supply module 1G2 and a storage device. The electric unit 104, a switch 106 and a frequency switching module 108. The input DC power supply module 1〇2 is used to provide an input DC power supply pi. The power storage unit (4) stores the energy input to the DC power source Pi and provides an output DC power source Po to the load 110. The switch 106 is lightly connected to the input DC power module 1〇2, the storage unit 〇4, and the load (10) for connecting the storage unit 1〇4 to the input DC unit 102 or the load 11 according to the switching frequency fs′. Hey. The frequency switching module 1〇8 is coupled to the switching switch 1〇6 and the load 110′ for controlling the switching frequency fs according to the change of the output DC power source P〇. The DC power conversion device 10 will be further described below, however, this is merely illustrative and not a limitation of the present invention. Please continue to refer to the i-th diagram. In this embodiment, the input DC power module is provided to provide an input DC power source Pi. Preferably, the input DC power supply group 1G2 can be realized by a magnetic capacitor module, which comprises a plurality of magnetic capacitors and stores the power of the power source with a potential energy. Switch (10) • According to the switching frequency fs, the power storage unit 1〇4 can be connected to the input DC power module ι〇2 201018065 When the fine shaft hall is connected to the power supply, the power storage unit 104 stores the input DC power supply - When the switch is turned on, the power storage unit 104 is electrically connected to the load 110, and the power storage unit 104 is connected to the main negative + pure round output DC power P. To load 110. Through the switching action of the switch (10), (4) the single full can supply the output power Pg required for the load 110, and the duty conversion device is used for the purpose of voltage. Preferably, the power storage unit (10) can be implemented by a group, and the power grid module includes a plurality of magnetic capacitors and stores power energy in the form of potential energy. The town will explain the steps for the capacitors. Please refer to Fig. 2, which is a schematic view showing the structure of a magnetic capacitor of the present invention. As shown in FIG. 2, the magnetic capacitance measurement includes a -first magnetic electrode (10), a second magnetic electrode 22A, and a dielectric trace between the first magnetic electrode 210 and the first magnetic electrode 22G. The magnetic conductive material comprises a neodymium conductive material (for example, a rare earth element), and the second magnetic electrodes 21〇, 22〇 are magnetized by a suitable applied electric field to make the first and second magnetic electrodes A magnetic dipole is formed in 210 220 (disengaged coffee (10) 215, milk magnetic dipole 215 225. This forms a magnetic field inside the magnetic capacitor 2〇〇, which can affect the movement of charged particles, thereby suppressing the magnetic capacitance. Leakage current; dielectric layer 23 is made of a dielectric material (such as · oxygen contact (TK) 3), titanium oxide (BaTi〇3) or - semiconductor material (for example: oxidized stone fine c〇n〇 Xide" is configured to separate the first magnetic electrode 210 and the second magnetic electrode 22A to accumulate charge at the first magnetic electrode 21 〇 and the second magnetic electrode 220 to store potential energy. The following will be directed to the operation of the magnetic capacitor. The principle of 201018065 is further explained. The magnetic capacitor mainly uses the magnetic poles 215 and 225 arranged neatly to form the magnetic % 'the electrons stored in the first magnetic electrode 210 and the second magnetic electrode no are respectively arranged in the spin-direction and arranged neatly, so that a large amount of storage can be stored. The electric charge, in turn, greatly increases the energy storage density. Note that the magnetic dipoles 215, 225 shown in Fig. 2 are respectively directed in the direction of the subtraction, however, this is not a limitation of the present invention, in practice, the magnetic dipole The directions of 215 and 225 are not limited. For example, the magnetic dipoles 215 and 225 can also point in the same direction. The capacitance value of the conventional capacitor C is the area of the capacitor, the dielectric constant, the er and the thickness d. For the decision, please refer to Equation 1: η _ T~ Ui) Compared with the conventional capacitor 'magnetic capacitor 200 is equivalent to changing the dielectric constant of the dielectric layer by the action of the magnetic field to increase its capacitance value; In one embodiment of the present invention, the first magnetic interface between the first magnetic layer and the dielectric layer 23, and the second interface between the second magnetic electrode 22 and the dielectric layer 23 are both a flat surface, thus by stepping up by increasing the surface area A 200 l of the magnetic capacitance of the capacitor. Please refer to FIG. 3, which is a comparison diagram of the magnetic capacitor of the present invention and other conventional energy 201018065 storage media. As can be seen from Fig. 3, the magnetic capacitor has a relatively high energy storage density compared to the conventional capacitor and the super capacitor. Please refer to FIG. 4, which is a schematic structural view of an embodiment of the first magnetic electrode 210 shown in FIG. As shown in FIG. 4, the first magnetic electrode 210 is a three-layer structure including a first magnetic layer 412, an isolation layer 414, and a second magnetic layer 416, wherein the isolation layer 414 is made of a non-magnetic material. The first magnetic layer 412 and the second magnetic layer 416 comprise magnetically conductive materials, and the first and second magnetic layers 412 and 416 are magnetized by different applied electric fields to make them first. Magnetic dipoles 413 and 417 are formed in the second magnetic layers 412 and 416, respectively, and the magnetic dipoles 413 and 417 together form a magnetic dipole 215 of the first magnetic electrode 21〇. In the preferred embodiment of the invention, the magnetic dipoles 413, 417 are respectively directed in opposite directions (as shown in Figure 4) to suppress leakage current of the magnetic capacitor 2〇〇. It is to be noted that the structure of the first magnetic electrode 21 is not limited to the aforementioned three-layer structure (the first and second magnetic layers 412, 416 and the isolation layer 414). In other embodiments of the present invention, the first The magnetic electrode 21A can be a multi-layer structure, more specifically, the 'the magnetic electrode 210 can be composed of a plurality of magnetic layers and a plurality of isolation layers continuously intersecting = stacking' and then adjusting the magnetic dipole direction of each magnetic layer. In order to suppress the leakage current of the magnetic valley 200, even the effect of almost no leakage current is achieved, and this design change is also pertaining to the nozzle of the present invention. Further, the structure of the second magnetic electrode no can be adopted as the structure of the fourth magnetic electrode 21, so that the contents of the description are simple. The detailed description of the structure of the magnetic electrode 22G is omitted here. 201018065 Please refer to FIG. 5, which is a schematic diagram of an embodiment of an input DC power supply module 1〇2 of the present invention. As shown in the top, the input DC power supply module 1〇2 is realized by a magnetic capacitor module including a plurality of magnetic capacitors 200, and the magnetic capacitors 2 are electrically connected to each other in an array manner. However, this is not For the limitation of the present invention, a plurality of magnetic capacitors 200^ are electrically connected to each other in series or in parallel to meet various power supply requirements. In this implementation, the input DC power supply module is used to fabricate a plurality of small-sized magnetic capacitors 200 on a semiconductor substrate, and is electrically connected to a plurality of magnetic capacitors 200 by an appropriate metallization process. In addition, the power storage unit 1〇4 can also be implemented by a magnetic capacitor module. Of course, the operation mode and principle are the same as those described above, and details are not described herein again. In order to further explain the detailed operation of the DC power conversion device 1A, please refer to Fig. 6 and Fig. 6 for a schematic view of another embodiment of the DC power conversion device 1 of the present invention. The DC power conversion device 60 includes an input DC power group 602, a power storage unit 604, a switch 6〇6, a frequency switching module 6〇8, and a filter capacitor cf. The input DC power module 602 and the power storage unit 6〇4 are a magnetic capacitor module. It is worth noting that 'the DC power conversion device 6〇 of Fig. 6 has a similar operation mode to the component with the same name in the DC conversion device 1〇 of Fig. 1 and it is a simple city for the content of the book. The detailed description is omitted here, and the connection relationship of these components is as shown in FIG. 6, and details are not described herein again. The input DC power module 602 provides an input DC power source pi. The switch 6〇6 connects the power storage unit 6〇4 to the input DC power module 6〇2 or the load 12 201018065 610 according to the switching frequency fs. When the switch _ 606 electrically connects the storage list s 6G4 to the input DC In the power module, the power storage unit 6〇4 stores the energy of the input DC power source pi; in contrast, when the switch 6〇6 electrically connects the power storage unit_ to the load 61〇, the power storage unit 6〇4 provides an output. The DC power source P〇 is connected to the load (10). Since the power storage unit 6〇4 is a magnetic capacitor module, if the time constant of the capacitor is this (where R is an equivalent resistance value 'C is the capacitance value of the storage unit 604) , input the voltage value of the DC power supply pi and the voltage value of the output DC power supply Po, and assume that most of the storage unit_supply ❻f flow is supplied to the load (10) (IcsI〇), then the operation is performed via the equation 2 Strict 6〇4 equivalent resistance R, and then the expression of Equation 3 can calculate the current flowing through the load (10):

Ic = Vi~~V〇 _ Vi - V〇 了 = (式 3) 接著,根據歐姆定律公式V〇=I〇xR〇 (假設負载61〇之等效電 阻為Ro),即可運算出直流電源轉換褒置6〇_換之輪出直流電 源電壓Vo’以滿足負載610之電力需求。請繼續參考式2及式3, 在本實施财’若輸人歧輯龍Pi、㈣單元604之電"容值 C及負載610之等效電阻為R〇為一定值時,可以透過調整切換開 關606之切換頻率fs來改變電流1〇以達到所需之輸出直流電壓Ic = Vi~~V〇_ Vi - V〇 = (Equation 3) Next, according to Ohm's law formula V〇=I〇xR〇 (assuming the equivalent resistance of the load 61〇 is Ro), the DC power supply can be calculated. The conversion device 6 _ is replaced by the DC power supply voltage Vo' to meet the power demand of the load 610. Please continue to refer to Equations 2 and 3, in this implementation, if the input resistance of the input capacitor Long Pi, (four) unit 604 " capacitance C and load 610 equivalent R R is a certain value, you can adjust Switching frequency FS of switch 606 to change current 1 〇 to achieve the desired output DC voltage

Vo ;此外,若負載61〇有變化時’亦可透過調㈣換頻率色來改 變電流1〇以達到所需之輸出直流電壓v〇。 13 201018065 請繼續參考第6圖,如第6圖所示,頻率切換模組6〇8包含 有一電流偵測單元612、一電壓偵測單元614及一控制單元616。 其中’電流偵測單元612,耦接於切換開關606及負載610,用來 價測輸出直流電源P〇之電流變化情形。電壓偵測單元614並聯於 S亥負載,用來偵測輸出直流電源P〇之電壓變化情形。控制單元616 耗接於電流偵測單元612、電壓偵測單元614及切換開關606,用 來依據輸出直流電源之電流變化情形及電壓變化情形,控制該切· ❹ 換頻率。控制單元610透過電壓偵測單元614與控制單元616來 即時監測負載610之電力狀況,以調整控制切換開關6〇6之切換 頻率’來達到所需輸出直流電源Po,滿足負載610之電力需求。 值得注意的是,第1圖之直流電源轉換裝置1〇及第6圖之直 々π·電源轉換裝置60係為本發明之實施例,本領域具通常知識者當 可據以做不同之變化,而不限於此。任何可使用前述揭露之元件 φ 與架構達到相同效果之直流電源轉換裝置與電子裝置皆屬於本發 明的保護範疇之中。 综上所述,在本發明中,直流電源轉換裝置之儲電單元,使 用電容之設計可避免使用電阻之耗能缺點,以節省系統電能,更 重要的是,經由使用具有能量密度大、體積小與重量輕之磁性電 容,可快速穩定的提供不同的電力需求與縮小裝置體積設計。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 201018065 圍所做之均㈣化與修飾,皆應屬本伽之涵蓋範圍。 【圖式簡單說明】 第1圖本發明直流電源轉換裝置之—實施例的示意圖。 第2圖為本發明之-磁性電容的結構示意圖。 第3圖為本發明之磁性電容與其他習知能量儲存媒介的比較圖。 〇 =4圖為第2圖所示之第—磁性電極之—實施例的結構示意圖。 第5圖為树明德人纽電賴轉魏單元之— 意圖。 第6圖本發明直流電源轉換裝置之另—實施例的示意圖。 【主要元件符號說明】 10 直流電源轉換裝置 102 、 602 輪入直流電源模組 104 、 604 儲電單元 106、606 切換開關 108 、 608 頻率切換模組 110、610 負载 200 磁性電容 210 、 220 磁性電極 215、225、413、417 磁偶極 201018065 230 介電層 231 ' 232 介面 412、416 磁性層 414 隔離層 612 電流偵測單元 614 電壓偵測單元 616 ❹ 控制單元 ❹ 16Vo; in addition, if the load 61〇 changes, the current can be changed by adjusting the frequency (4) to achieve the desired output DC voltage v〇. 13 201018065 Please continue to refer to FIG. 6. As shown in FIG. 6, the frequency switching module 6〇8 includes a current detecting unit 612, a voltage detecting unit 614 and a control unit 616. The current detecting unit 612 is coupled to the switch 606 and the load 610 for measuring the current change of the output DC power source P. The voltage detecting unit 614 is connected in parallel to the S-heavy load to detect the voltage change of the output DC power source P〇. The control unit 616 is consuming the current detecting unit 612, the voltage detecting unit 614, and the switching switch 606 for controlling the switching frequency according to the current change condition of the output DC power source and the voltage change condition. The control unit 610 monitors the power condition of the load 610 through the voltage detecting unit 614 and the control unit 616 to adjust the switching frequency of the control switching switch 6〇6 to achieve the required output DC power Po, which satisfies the power demand of the load 610. It should be noted that the DC power conversion device 1A of FIG. 1 and the 々 π power conversion device 60 of FIG. 6 are embodiments of the present invention, and those skilled in the art can make different changes according to the present invention. Not limited to this. Any DC power conversion device and electronic device that can achieve the same effect as the above-described disclosed component φ and the architecture are all within the protection scope of the present invention. In summary, in the present invention, the power storage unit of the DC power conversion device uses a capacitor design to avoid the energy consumption disadvantage of using the resistor to save system power and, more importantly, to have a large energy density and volume. Small and lightweight magnetic capacitors provide fast and stable power supply and reduced device size. The above description is only the preferred embodiment of the present invention, and all the (four)izations and modifications made in accordance with the patent application scope of the present invention are all covered by the present. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an embodiment of a DC power conversion device of the present invention. Fig. 2 is a schematic view showing the structure of a magnetic capacitor of the present invention. Figure 3 is a comparison of magnetic capacitors of the present invention with other conventional energy storage media. 〇 = 4 is a schematic view showing the structure of the first magnetic electrode shown in Fig. 2. The fifth picture shows the intention of the Ming Dynasty. Figure 6 is a schematic view showing another embodiment of the DC power conversion device of the present invention. [Main component symbol description] 10 DC power conversion device 102, 602 Wheeled DC power module 104, 604 Power storage unit 106, 606 Switch 108, 608 Frequency switching module 110, 610 Load 200 Magnetic capacitor 210, 220 Magnetic electrode 215, 225, 413, 417 magnetic dipole 201018065 230 dielectric layer 231 '232 interface 412, 416 magnetic layer 414 isolation layer 612 current detection unit 614 voltage detection unit 616 ❹ control unit ❹ 16

Claims (1)

201018065 十、申請專利範圍: 1. -種直流電源轉魏置,用以將—輸人直流電源轉換為一輪出 直流電源,該電源轉換裝置包含有: 一輸入直流電源模組’肋提供該輸人直流電源; 儲電單7G,用以儲存該輸入直流電源之能量,並提供該輪出 直流電源至一負載; 一切換開關’祕於該輸人直流電賴組、該儲電單元及該負 載’用來根據-切換頻率,將該儲電單元連接至該輸入 直流電源模組或該負載;以及 一頻率切換模組,_於該切換_及該負載,时依據該輸 出直流電源之變化,控制該切換頻率。 2.如申請專利範圍第!項所述之直流電源轉換裝置,其中該輸 入直"IL電源模組係為一磁性電容模組。 3·如申=專利範圍® 2項所述之直流電源轉換裝置,其中該磁 性電容模組包含有複數個磁性電容。 4. 如申請專利範圍第3項所述之直流電源轉換裝置’其中該複 數個磁|1電谷包含有以串聯方式電連接之磁性電容。 5. 如申請專利範圍第3項所述之直流電源轉換裝置,其中該複 17 201018065 數個磁性電容包含有以並聯方式電連接之磁性電容。 6.如申請專利範圍第3項所述之直流電源轉換裝置,其中每一磁 性電容包含有: 第一磁性電極,其係由具有磁性之導電材料構成,用以形成 一第一磁偶極; 第一磁性電極,其係由具有磁性之導電材料構成,用以形成 〇 一第二磁偶極;以及 一介電層,設置於該第一磁性電極與該第二磁性電極之間。 7·如申請專利範圍帛6項所述之直流電源轉換裝置,其中該第 一磁偶極之方向係相異於該第二磁偶極之方向。 8_如申請專利範圍第6項所述之直流電源轉換裝置,其中該第一 ^ 磁性電極係包含有: 一第-磁性層,其係由具磁性的導電材料構成,㈣形成具有 一第三磁偶極; -第二磁性層’其係由具磁性的導電材料構成,用以形成一第 四磁偶極;以及 -隔離層’其係由_性物f所構成並設置於該第一磁性層與 該第二磁性層之間’其中該第—磁偶極係由該第三磁偶極 與該第四磁偶極所構成。 18 201018065 9. 如申請專利範圍第8項所述之直流電源轉換裝置,其中該第 二磁偶極之方向係相異於該第四磁偶極之方向。 10. 如申請專利範圍第丨項所述之直流電源轉換裝置,其中該儲 電單元係為一磁性電容模組。 11. 如申請專利範圍第10項所述之直流電源轉換裝置 ,其中該磁 © 性電容模組包含有複數個磁性電容。 12. 如申請專利範圍第u項所述之直流電源轉換裝置,其中該複 數個磁性電容包含有以串聯方式電連接之磁性電容。 13·如申請專纖圍第11項所述之直流電轉換裝置 ,其中該複 數個磁性電容包含有以並聯方式電連接之磁性電容。 ® Η如申請專利範圍第u項所述之直流電源轉換震置,其中每一 磁性電容包含有: 第一磁性電極,其係由具有磁性之導電材料構成,用以形成 —第一磁偶極; 一第二磁性電極,其係由具有磁性之導電材料構成,用以形成 —第二磁偶極;以及 —介電層,設置於該第一磁性電極與該第二磁性電極之間。 15.如申請專利範圍第14項所述之直流電源轉換裝置,其中該第 201018065 一磁偶極之方向係相異於該第二磁偶極之方向。 此如申請專利範圍第14項所述之直流電源轉換褒置,其_ 一磁性電極係包含有: 一第一磁性層,其係由具磁性的導電材料構成,用以形成具有 一第三磁偶極; 一第二磁性層,其係由具磁性的導電材料構成,用以形成一第 ❹ 四磁偶極,·以及 隔離層,其係㈣雖物f所構成並設置於对—雜層與 該第一磁性層之間,其中該第—磁偶極係由該第三磁偶極 與該第四磁偶極所構成。 π_如申睛專利範圍帛10項所述之直流電源轉換裝置,其中該第 三磁偶極之方向係相異於該第四磁偶極之方向。 參 *申°月專利範圍第1項所述之直流電轉換裝置,其中該儲 電早减___將雜料元電性連接找輸入直流 電源模組時,儲存該輸入直流電源之能量。 19·如申請專利範圍第1項所述之直流電源轉換裝置,其中該儲 電單7C係於該切換開關將該儲電單元電性連接至該負載時, 提供該輸出直流電源至該負載。 20 201018065 20. 如申請專利範圍第1項所述之直流電源轉換裝置,其中該頻 率切換模組包含有: 一電流偵測單元,耦接於該切換開關及該負載,用來偵測該輸 出直流電源之電流變化情形; 一電壓偵測單元,並聯於該負載,用來偵測該輸出直流電源之 電壓變化情形;以及 一控制單元,耦接於該電流偵測單元、該電壓偵測單元及該切 φ 換開關,用來依據該輸出直流電源之電流變化情形及電 壓變化情形,控制該切換頻率。 21. 如申請專利範圍第1項所述之直流電源轉換裝置,另包含一 濾波電容,耦接於該負載。 十一、圖式:201018065 X. Patent application scope: 1. A kind of DC power supply is turned into a set, which is used to convert the input and output DC power into one round of DC power supply. The power conversion device includes: an input DC power supply module' rib provides the input a DC power supply; a storage battery 7G for storing the energy of the input DC power supply, and providing the DC power supply to a load; a switch switch is secreted by the input DC power supply group, the power storage unit and the load 'for connecting the power storage unit to the input DC power module or the load according to the switching frequency; and a frequency switching module, according to the switching _ and the load, according to the change of the output DC power, Control the switching frequency. 2. If you apply for a patent scope! The DC power conversion device of the present invention, wherein the input direct "IL power module is a magnetic capacitor module. 3. The DC power conversion device of claim 2, wherein the magnetic capacitor module comprises a plurality of magnetic capacitors. 4. The DC power conversion device of claim 3, wherein the plurality of magnetic |1 electric valleys comprise magnetic capacitors electrically connected in series. 5. The DC power conversion device of claim 3, wherein the plurality of magnetic capacitors comprise magnetic capacitors electrically connected in parallel. 6. The DC power conversion device of claim 3, wherein each magnetic capacitor comprises: a first magnetic electrode, which is made of a conductive material having magnetic properties for forming a first magnetic dipole; a first magnetic electrode formed of a conductive material having magnetic properties for forming a second magnetic dipole; and a dielectric layer disposed between the first magnetic electrode and the second magnetic electrode. 7. The DC power conversion device of claim 6, wherein the direction of the first magnetic dipole is different from the direction of the second magnetic dipole. The DC power conversion device of claim 6, wherein the first magnetic electrode comprises: a first magnetic layer, which is made of a magnetic conductive material, and (4) formed with a third a magnetic dipole; - a second magnetic layer 'which is made of a magnetically conductive material for forming a fourth magnetic dipole; and - an isolation layer 'which is composed of a smudge f and is disposed at the first Between the magnetic layer and the second magnetic layer, wherein the first magnetic dipole is composed of the third magnetic dipole and the fourth magnetic dipole. The power conversion device of claim 8, wherein the direction of the second magnetic dipole is different from the direction of the fourth magnetic dipole. 10. The DC power conversion device of claim 2, wherein the storage unit is a magnetic capacitor module. 11. The DC power conversion device of claim 10, wherein the magnetic capacitor module comprises a plurality of magnetic capacitors. 12. The DC power conversion device of claim 5, wherein the plurality of magnetic capacitors comprise magnetic capacitors electrically connected in series. 13. The direct current conversion device of claim 11, wherein the plurality of magnetic capacitors comprise magnetic capacitors electrically connected in parallel. ® The DC power conversion as described in the scope of claim 5, wherein each of the magnetic capacitors comprises: a first magnetic electrode, which is made of a magnetic conductive material for forming a first magnetic dipole And a second magnetic electrode formed of a magnetic conductive material for forming a second magnetic dipole; and a dielectric layer disposed between the first magnetic electrode and the second magnetic electrode. 15. The DC power conversion device of claim 14, wherein the direction of the magnetic polarization of the 201018065 is different from the direction of the second magnetic dipole. The DC power conversion device of claim 14, wherein the magnetic electrode comprises: a first magnetic layer formed of a magnetic conductive material for forming a third magnetic a dipole; a second magnetic layer formed of a magnetically conductive material for forming a fourth magnetic dipole, and an isolation layer, the system (4) being formed by the material f and disposed on the opposite layer And the first magnetic layer, wherein the first magnetic dipole is composed of the third magnetic dipole and the fourth magnetic dipole. The dc power conversion device of claim 10, wherein the direction of the third magnetic dipole is different from the direction of the fourth magnetic dipole. The direct current conversion device according to item 1 of the patent scope of the present invention, wherein the storage is reduced early ___ when the impurity element is electrically connected to the input DC power module, the energy of the input DC power source is stored. The DC power conversion device of claim 1, wherein the power storage unit 7C provides the output DC power to the load when the switch electrically connects the power storage unit to the load. The invention relates to a DC power conversion device according to claim 1, wherein the frequency switching module comprises: a current detecting unit coupled to the switching switch and the load for detecting the output a current detecting condition of the DC power supply; a voltage detecting unit connected in parallel to the load for detecting a voltage change of the output DC power supply; and a control unit coupled to the current detecting unit and the voltage detecting unit And the cut φ switch is used to control the switching frequency according to the current change condition of the output DC power source and the voltage change situation. 21. The DC power conversion device of claim 1, further comprising a filter capacitor coupled to the load. XI. Schema: 21twenty one
TW97140666A 2008-10-23 2008-10-23 DC/DC converter TW201018065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97140666A TW201018065A (en) 2008-10-23 2008-10-23 DC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97140666A TW201018065A (en) 2008-10-23 2008-10-23 DC/DC converter

Publications (1)

Publication Number Publication Date
TW201018065A true TW201018065A (en) 2010-05-01

Family

ID=44831072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97140666A TW201018065A (en) 2008-10-23 2008-10-23 DC/DC converter

Country Status (1)

Country Link
TW (1) TW201018065A (en)

Similar Documents

Publication Publication Date Title
Meng et al. Ultrasmall integrated 3D micro‐supercapacitors solve energy storage for miniature devices
JP6512511B2 (en) COMPOSITE ELECTRONIC COMPONENT, ITS MOUNTING SUBSTRATE AND POWER SUPPLY STABILITY UNIT COMPRISING THE SAME
KR101701799B1 (en) Low frequency converters having electrochemical capacitors
US9859486B2 (en) Thermoelectric conversion element and manufacturing method for same
WO2011155078A1 (en) Electrical energy storage device
TW200832464A (en) Apparatus and method to store electrical energy
JP5394987B2 (en) Electric energy storage device
TW201037952A (en) Global-type switching power supply and serial-parallel DC-DC power converting circuit thereof
JP4996775B1 (en) Thin film capacitor device
TWI575857B (en) Step up dc converter
TW201004110A (en) Backup power device
TW201018065A (en) DC/DC converter
US20160163443A1 (en) Embedded thin film magnetic carrier for integrated voltage regulator
US20150035621A1 (en) Composite electronic component
JP2016207994A (en) High capacity capacitor device
TW201011514A (en) Discharging control device for adjusting output current
TW201019566A (en) Balance module for power and method thereof
JP5317884B2 (en) Piezoelectric power converter
TWI303920B (en)
TW201019561A (en) Power system
TW201023475A (en) A power supply device having various voltage outputs
TW201010252A (en) Discharging device and method therof
TW201015818A (en) Power supply system
TW201013381A (en) System-on-chip (SoC) and power supply method thereof
TW201015834A (en) DC circuit with adjustable output voltage