TW201015824A - Power supply module - Google Patents

Power supply module Download PDF

Info

Publication number
TW201015824A
TW201015824A TW97138570A TW97138570A TW201015824A TW 201015824 A TW201015824 A TW 201015824A TW 97138570 A TW97138570 A TW 97138570A TW 97138570 A TW97138570 A TW 97138570A TW 201015824 A TW201015824 A TW 201015824A
Authority
TW
Taiwan
Prior art keywords
magnetic
current limiting
voltage difference
power supply
output
Prior art date
Application number
TW97138570A
Other languages
Chinese (zh)
Inventor
Jiin-Cheng Jow
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW97138570A priority Critical patent/TW201015824A/en
Publication of TW201015824A publication Critical patent/TW201015824A/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power supply module with current-limiting capability is provided. The power supply module includes a magnetic capacitor device and a current limiting device. The magnetic capacitor device includes at least one magnetic capacitor, and is utilized for providing an output current. The current limiting device is coupled to the magnetic capacitor apparatus for limiting the output current provided by the magnetic capacitor device within a given range. By means of using the current limiting device to limit an output value of the output current, a load of the power supply module can therefore be protected from being damaged due to excess output current.

Description

201015824 九、發明說明: 【發明所屬之技術領域】 本發明係關於電源供應模組’尤指一種包含有磁性電容以及限 流裝置的電源供應模組,該電源供應模組可保有磁性電容所具有 的高能量儲存密度與快速充放電等優點,並且利用限流裝置來保 護電源供應模組之負載’使該電源供應模組可以廣泛地應用各種 領域。 ❹ ❹ 【先前技術】 常見的電麟存裝置中,電容與電池皆可額外制為電源供應 裝置。但若以電容做為-電驗應裝置,據電耗放電原理, 將有數十安培甚至上百安培的輸出電流。如此—來,造成實際應 用上’必麟貞載㈣轩祕雜施,使貞财倾電容過大 的輸出電流燒毀。細’電容除了耻暫時性與條件性地(備用) 供應電子電路巾-部分㈣能外,顯少作為大置之電力供應 來源,因為與習知的電源供絲置相較,其能量儲存密度並不夠 具有相當的魏供雜力時,則㈣料獅成的電源 將有相當龐大的體積與重量。此外,由於電池係透過化 =:為電能儲存與釋放的基礎,因此本身具有老化與充放 缺憾,使得電池用來作為電源供應模組時,存在應 【發明内容】 201015824 因此,本發明提供了一種結合磁性電容裝置與限 供應模組。藉由對磁性電容裝置的輸出電流作輸出範圍的限^ 使得追種_磁性電容作為電力輸出的電源供應裝置可以廣泛地 應用於各種電路中。 ” 依據本發明之—實施例,係揭露了—種電源供應模組。該電源 供應模組包含··-磁性電容裝置以及—限触置。該磁性電容裝 ❹置包含有至少-磁性電容,用以提供—輸出電流。該—限流裝置 祕於該雜餘裝置,抑親雜餘裝置所提供之該輸出 電流限制於一預定範圍之中。 此外,於一實施方式中’該限流裝置包含有一電壓差產生元 件、一限流元件以及一限流致能元件。該電壓差產生元件包含一 輸入端以及一輸出端,該輸入端耦接於該磁性電容裝置,該電壓 差產生元件用以於該輸出電流流過時在該輸出端與該輸入端之間 提供一電壓差。該限流元件具有一輸入端、一輸出端以及一第一 控制端,該限流元件之該輸入端耦接於該電壓差產生元件之該輸 出端。該限流致能元件耦接於該限流元件之該第一控制端與該電 壓差產生元件之該輸入端之間,用以依據該電壓差產生元件所產 生之該電壓差來選擇性地啟動該限流元件以限制自該限流元件之 該輸出端所輸出之電流。 於一較佳實施例中,該電壓差產生元件包含有一接成二極體形 201015824 * 式的電晶體(diode-connectedtransistor),其汲極與源極分別作為該 電壓差產生元件之該輸入端與該輸出端。該限流元件包含有一 P 型摻雜區、一第一N型摻雜區以及一第一絕緣層,該第一絕緣層 與該P型摻雜區分別接觸於該第一摻雜區之兩側,該第一絕 緣層係作為該限流元件之該第一控制端,以及該p型摻雜區係提 供一通道,其兩端分別作為該限流元件之該輸入端與該輸出端, 並且該限流元件另具有一第型摻雜區以及一第二絕緣層,該 〇 第二絕緣層與該P型摻雜區分別接觸於該第二N型摻雜區之兩 側,以及該第二絕緣層係作為該限流元件之一第二控制端而耗接 於該電壓差產生元件之該輸出端。該限流致能元件包含有一二極 體,其中該二極體之陽極耦接於該電壓差產生元件之該輸入端, 以及該二極體之陰極耦接於該限流元件之該第一控制端。 本發明中之限流裝置的主要精神魏過將輸出電流轉換為一 ❹電壓差,若該輸出電流越大,則該電壓差越大。因此,該限流元 件便依該電壓差來對触紐作P_ 輸出電流越大,限流元 件對輸出電流的限制作用也越強,以此可將輸出電流的大小限定 在一特定範圍内。201015824 IX. Description of the Invention: [Technical Field] The present invention relates to a power supply module, and more particularly to a power supply module including a magnetic capacitor and a current limiting device, the power supply module retaining a magnetic capacitor The high energy storage density and fast charge and discharge advantages, and the use of current limiting devices to protect the load of the power supply module' enables the power supply module to be widely used in various fields. ❹ ❹ [Prior Art] In the common electric memory device, both the capacitor and the battery can be additionally used as a power supply device. However, if the capacitor is used as a test device, according to the principle of power consumption discharge, there will be output currents of several tens of amps or even hundreds of amps. In this way, the actual application of the "Bei Lin" (four) Xuan secret miscellaneous application, so that the excessive output current of the 贞 倾 dumping capacitor burned. In addition to the shameful temporary and conditional (spare) supply of electronic circuit wipes - part (four) can be used as a source of power supply for large-scale power, because its energy storage density compared with the conventional power supply wire When it is not enough to have a Wei Wei supply, then (4) The power supply of the lion will have a considerable volume and weight. In addition, since the battery system is transparent: it is the basis for the storage and release of electric energy, and thus has its own aging and charging and discharging defects, so that when the battery is used as a power supply module, there is a need for the invention [2010]. Therefore, the present invention provides A combination of a magnetic capacitor device and a limited supply module. By limiting the output current of the magnetic capacitor device to the output range, the power supply device that uses the seed-magnet capacitor as the power output can be widely applied to various circuits. According to the embodiment of the present invention, a power supply module is disclosed. The power supply module includes a magnetic capacitor device and a touch-sensitive device. The magnetic capacitor device includes at least a magnetic capacitor. The current limiting device is secreted by the heterogeneous device, and the output current provided by the anti-missing device is limited to a predetermined range. Further, in an embodiment, the current limiting device The device includes a voltage difference generating component, a current limiting component, and a current limiting component. The voltage difference generating component includes an input end and an output end coupled to the magnetic capacitor device for generating the voltage difference component. A voltage difference is provided between the output terminal and the input terminal when the output current flows. The current limiting component has an input end, an output end, and a first control end, and the input end of the current limiting component is coupled An output terminal of the voltage difference generating component is coupled between the first control terminal of the current limiting component and the input terminal of the voltage difference generating component for The voltage difference generated by the voltage difference generating component selectively activates the current limiting component to limit current output from the output of the current limiting component. In a preferred embodiment, the voltage difference generating component includes There is a diode-connected transistor of the type 201015824, wherein the drain and the source respectively serve as the input terminal and the output terminal of the voltage difference generating component. The current limiting component includes a P-type doping. a first N-type doped region and a first insulating layer, the first insulating layer and the P-type doped region are respectively in contact with the two sides of the first doped region, the first insulating layer is used as the The first control end of the current limiting component, and the p-type doping region provide a channel, the two ends of which are respectively the input end and the output end of the current limiting component, and the current limiting component further has a first type a doped region and a second insulating layer, the second insulating layer and the P-type doped region are respectively in contact with the two sides of the second N-type doped region, and the second insulating layer serves as the current limiting element One of the second control terminals is consumed by the voltage difference The current-limiting component of the component includes a diode, wherein an anode of the diode is coupled to the input end of the voltage difference generating component, and a cathode of the diode is coupled to the diode The first control end of the current limiting component. The main spirit of the current limiting device of the present invention is to convert the output current into a voltage difference, and if the output current is larger, the voltage difference is larger. Therefore, the limit is The flow component makes the P_ output current according to the voltage difference, and the current limiting function of the current limiting component is stronger, so that the output current can be limited to a specific range.

當該限流元件、該電㈣產生元件與該限流致能元件以半導體 的形式實施時,則該電壓差產生元件係為一接成二極體形式的電 晶體,在祕分析上等效為1阻。魏將該輸出電流轉換為一 電壓差,接著該限流元件的作用機制透過對_ p型摻雜區、一 N 201015824 型摻雜區加諸一反向電壓,其中該反向電壓係由該電壓產生元件 將該輸出電流所轉換而來的該電壓差,並且該輸出電流亦流經該P 型摻雜區所形成的p型通道。又因其中的P_N接面被反向偏壓, 故對該輸出電流造成抑制(空乏區擴大的結果),進而將該輸出電 流限制在預設範圍内。而該限流致能元件則是以p_N接面為基礎 的一半導體二極體,用於當該輸出電流大過預設範圍時,啟動限 流元件限制該輸出電流的機制。 ❹ 由於磁性電容可透過半導體製程來製造,並且該限流裝置中的 各項元件亦可透過半導體製程來完成,因此本發明之電源供應模 組可以製造在單-晶粒(die)巾’制使本發明之可廣泛地運用 於不論是-般電路抑或積體電路中,使電路中的電源供應部分可 更有效地縮小β 【實施方式】 ❹ 相較於傳統電容與電池,本發明電源供應裝置中所採用的磁性 電容則具有令人滿意的體積與重量(甚至優於傳統電池的體積與 重量),再加上優秀的充放電速率與不會老化,因此排除了傳統電 容與電池可能具備的問題’所以磁性電容相當適合應用於電源供 應的領域’並且在顧4再只是做為暫時性與較小之電能規模 的健,而可作為-主要的電力來源,故對於負載之相關保護措 施就有其存在的必要性。 201015824 請參考第1圖,其係本發明電源供應模組之一實施例的功能方 塊示意圖。本實施例中,電源供應模組100包含有一磁性電容裝 置110以及一限流裝置120,其中磁性電容裝置110係用以提供一 輸出電流I—OUT,而限流裝置120係用以將磁性電容裝置! 1〇所 提供之輸出電流I_〇UT限制於一預定範圍之中。此外,限流裝置 120包含有一電壓差產生元件220、一限流元件320以及一限流致 月巨元件420。電壓差產生元件220用以於輸出電流j—ouj流過時 ❹提供一電壓差,而限流致能元件420係依據電壓差產生元件22〇 所產生之電壓差來選擇性地啟動限流元件320以限制自限流元件 320所輸出之電流ι_〇υτ’。 請參考第2圖,第2圖為第1圖所示之電源供應模組1〇〇之詳 細電路示意圖。本實施例中,磁性電容裝置11()包含有至少一磁 性電容112。電壓差產生元件220包含一輸入端Ν1以及一輸出端 ❹ Ν2 ’其中輸入端Ν1耦接於磁性電容裝置110。此外,限流元件 320具有一輸入端Ν5、一輸出端Ν6、一第一控制端320以及一第 二控制端328,而限流元件320之輸入端Ν5則耦接於電壓差產生 元件220之輸出端Ν2,並且第二控制端328耦接於輸入端Ν5。 限流致能元件420具有輸入端Ν3與輸出端Ν4,其中限流致能元 件420耦接於限流元件320之第一控制端326與電壓差產生元件 220之輸入端之間。而電源供應模組丨〇〇另耗接於一負載5⑽, 作為負載500運作時所需的電力來源,於第2圖中’負載5〇〇係 . 以一電阻R1來表示。 201015824 應注意的是,本實施例中之磁性電容裝置110僅包含有一磁性 電容112,但這並非本發明之限制,換句話說,本發明之電源供應 模組可以是包含一個或一個以上的磁性電容所構成的電源供應模 / 於本實施例中,電壓差產生元件220係由一個接成二極體形式 ❾ 的電晶體(diode-connected transistor)Ml來加以實作,其中沒極與 源極分別作為電壓差產生元件220之輸入端N1與輸出端N2。再 者’限流元件320具有一 p型摻雜區31卜一第一 N型摻雜區313、 一第二N型摻雜區315、一第一絕緣層317以及一第二絕緣層 319、一第一金屬層321以及一第二金屬層322。第二絕緣層319 與P型摻雜區311分別接觸於第二N型摻雜區315之兩側,以及 第二金屬層322與第二絕緣層319係作為限流元件320之一第二 ◎ 控制端328而耦接於電壓差產生元件22〇之輸出端N2;第一絕緣 層317與P型摻雜區311分別接觸於第一 N型摻雜區313之兩側, 其中第一絕緣層317與第一金屬層321係作為限流元件320之第 控制端326,並且p型摻雜區311係提供一通道(p channei), 其兩鳊为別作為限流元件之輸入端N5與輸出端。最後,限流 致月b元件42(H系由一二極體D1來加以實作,而如圖所示,二極體 D1之陽極輕接於電壓差產生元件22〇的輸入端犯,以及二極體 D1之陰極耦接於限流元件320之第一控制端326。 201015824 以下將說明第2圖所示之限流裝置12〇、磁性電容裝置n〇以 及負載500之間的運作關係。磁性電容裝置110係以輸出電流的 方式來提供負載500所需之電力,故限流裝置12〇便依據負載5〇〇 所能承受的最大電流值Amax來作為限流裝置120對磁性電容裝置 110之輸出電流I—OUT的限制。透過對電壓差產生元件220、限 流元件320以及限流致能元件420進行適當的參數設定,即可於 磁性電容裝置110之輸出電流I_〇UT高於Amax時,限制輸出電 Θ 流L0171而使其不超過Amax。當輸出電流I_OUT恰好達Αμαχ 時’此時限流致能元件420 (二極體D1)的兩端電壓差將達到導 通的門檻(經由半導體之物理參數的設計),因此二極體D1便因 為順向偏壓而導通。請注意,以下電路行為的分析將忽視導通電 壓的存在,亦即,二極體D1導通時,輸入端Ν3與輸出點Ν4之 間壓降忽略不計。 _ 故當限流致能元件420導通時,可視為電壓差產生元件220之 ❹ 電壓差(由流經的輸出電流I_〇UT所造成,並存在於輸入端Ν1 與輸出端N2之間)傳遞到限流元件320之輸入端N5與第一控制 端326 ’並且由於電壓差產生元件220的輸入端N1之電壓準位高 於輸出端N2之電壓準位,故限流元件320之輸入端N5的電壓準 位低於第一控制端326的電壓準位。請注意,上述之電壓差係由 輸出電流I_OUT之電流值乘上電壓差產生元件220本身所等效的 電阻值而得。 11 201015824 因此,以上的結果將造成第一 N型摻雜區313與P型摻雜區 311被反向偏壓,使得其P_N接面的空乏區擴大;第二N型摻雜 區315與P型摻雜區311則因第二控制端328與輸入端N5耦接, 故不存在有電壓差,使得其P-N接面不會產生任何變化。又因第 一 N型摻雜區313與P型摻雜區311間的P-N接面空乏區擴大, 使P型摻雜區3U所形成P型通道縮小,進而造成由限流元件32〇 之輸入端N5流入且自其輸出端N6流出之輸出電流[OUT,的電 〇 流量被抑制,而達到限流的目的。 以下另外敘述本發明電源供應模組i 00所採用之磁性電容的 運作原理。請參考第3圖,第3圖為本發明雜電容與其他習知 能量儲存媒介的味示意®。她於主要缝學能方式進行能量 儲存的其他習知能量儲存媒介(例如傳統電池或超級電容),其所能 產生之瞬間電力輸出亦會受限於化學反應速率,而無法快速的充 ❹放電或進行高功率輸出,且充放電次數有限,過度充放時易滋生 各種問題。反觀’由於磁性電容中儲存的能量全部係以電位能的 弋進行館存磁性電谷除了具有可匹配的高能量儲存密度外, =充分保有電容的特性,而具有壽命長(高充放電次數)、無記憶 二〜、可断高功輪出、快速歧電等特點,故可有效解決當 月IJ電池所遇到的各種問題。 請參考第4圖,第4圖為第2 例的結構示意圖。如第4圖所示 圖所示之磁性電容112之一實施 ’磁性電容112係包含有一第一 12 201015824 m 一第二磁性電極32以及位於其間之—介電層… ΓΓΓΓ31鄕二雜紐32細具雖的_料所構 成’並藉由適當的外加電場進行磁化,使第—磁性電極31血第二 :生電極32内分卿成磁條(magnetie d㈣鄉與37,以於磁 女電谷m内部構成一磁場’對帶電粒子的移動造成影響,從而 抑制磁性電容112之漏電流。 ❹ 所需要特職調的是’第顿t磁偶極35與37的箭頭方向僅 為範例說明。對熟習該項技藝者而言,應可瞭解到磁偶極^與^ 實際上係由多個整齊排列的微小磁偶極所疊加而成,且在本發明 中,磁触35與37最後形成的方向並無限定,可依磁性電容ιΐ2 之形狀進行調整,例如可指向同一方向或不同方向。介電層幻則 係用來分隔第-磁性電極3丨與第二磁性電極32,以於第一磁性電 極31與第二磁性電極32處累積電荷而儲存電位能。 在本發明之-實施例中,第一磁性電極31與第二磁性電極^ 係包含有磁性導電材質,例如稀土元素,介電層33係由氧化鈦 (Τι〇3)'軋化鋇鈦(BaTi〇3)或一半導體層,例如氧化石夕(silic〇n 〇xide) 所構成,然、而本發不限於此,第—磁性電極3卜第二磁性電 極32與介電層33均可視產品之需求而選用適當之其他材料。 進步S兒明磁性電容之操作原理如下。物質在一定磁場下電阻 改變的現象’稱為「磁阻效應」’磁性金屬和合金材料—般都有這 13 201015824 種磁電阻現象,通常情況下,㈣的電阻率在磁場帽產生輕微 的減小;在某種條件下,電阻率減小的幅度相當大,比通常磁性 金屬與合金材料的磁電阻值高幻G倍以上,而簡產生很魔大的 磁阻效應。若進-步結合Maxw抓Wagner電路模型,磁性顆粒複 合介質中也可能會產生很龐大的磁電容效應。 在習知電容中,電容值C係由電容之面積A、介電層之介電常 ❹ c = 數从及厚度d決定,如d。然而在本發明中,磁性電容 112主要利用第一磁性電極31與第二磁性電極对整齊排列的磁 偶極來形成磁場來’使内部齡的電子細—自旋方向轉動,進 行整齊的排列’故可在同樣條件下,容納更多的電荷,進而增加 能量的儲存密度。類比於習知電容,磁性電容112之運作原理相 當於藉由磁場之作用來改變介電層%之介電常數,故造成電容值 之大幅提升。 ❹ 此外,在本實施例中’第一磁性電極31與介電層^之間的介 面331以及第二磁性電極32與介電層33之間的介面均為一 不平坦的表面’以藉由增加表面積A的方式,進—步提升磁性電 容112之電容值c〇 接著,請參考第5圖,第5圖為第4圖所示之第一磁性電極 31之-實施例的結構示意圖。如第5圖所示,第一磁性電極μ 201015824 I層結構,包含有一第一磁性層412、— _層414以及-蘇爲ί層416,其中隔離層414係由非磁性材料所構成,而第一 ❹ 磁化i 1與第二磁性層416則包含有具磁性的導電材料,並在 :二藉由不同的外加電場’使得第一磁性層412與第二磁性 =一中的磁偶極413與417分別具有不同的方向,例如在本發 實崎,娜413與417恤輪向,而能 ' ,彳磁性電谷112之漏電流。此外,需要強調的是,第一 磁性電極31之結構並不限於前述之三層結構,而可以類似之方 式1複數個磁性層與非磁性層不斷交錯堆疊,再藉由各磁性層 内磁偶極方向的調整來進一步抑制磁性電容112之漏電流,甚至 達到幾乎無漏電流的效果。此外,第二磁性電極32之結構亦可採 用上述第-磁性電極31之結構’此一設計變化亦屬本發明的範嘴。 ,此外’由於習知儲能元件多半以化學能的方式進行儲存,因此 〇 冑要有$的尺寸,否則往往會造成效率的大幅下降。相較於 此’本發曰月之磁性電容112係以電位能的方式進行儲存,如此二 來可以提供更有效率的儲能方式,因而本發明之磁性 一個較佳的電力供應來源。 為 —請參考第6目’第6圖為第2圖所示之磁性電容裝置11〇之另 -實施例的示意圖。承前所述,在本實施例中,係_半導體製 =於-魏板上製作複數個小尺寸的磁性電容55,並藉由適告 屬化製程,於複數個磁性電容55間形成電連接,從而構成:個 15 201015824 包含有多個磁性電容55的磁性電容裝置11〇,再以磁性電容裝置 110作為能量儲存裝置或外部裝置的電力供應來源。在本實施例 中’磁性電容裝置110㈣複數個樹生電容55係以類似陣列的方 式電連接,然而本發明並不限於此,而可根據不同啟動裝置的電 力供應需求’來調整磁性電容㈣聯、並聯或串並聯的方式組成, 以滿足各種不同裝置的電力供應需求。 Ο 、總結來說’本發明之電源供應模組利用了磁性電容具備擁有快 速充放魏力與不易老化以及舰量儲存密度等優點,辅以限流 裝置來對貞鶴行賴’且將所有元件於半導體製財來製作, 因而提供一種優秀的電源供應模組。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 ❹ 【目賴單說明】 圖為本發明電源供模組之—實施例的功能方塊示意圖。 第2圖為第1圖所示之電源供應模組的詳細電路示意圖。 =3圖為本發明磁性電容與其他習知能量儲存媒介的比較示意圖。 笛4圖為第2圖所示之磁性電容之一實施例的結構示意圖。 5圖為第4圖所示之第—磁性電極之—實施例的結構示意圖。 6圖為第2圖所示之磁性電容裝置之另一實施例的示意圖。 16 201015824 【主要元件符號說明】 100 電源供應模組 110 磁性電容裝置 55、112 磁性電容 120 限流裝置 220 電壓差產生元件 311 P型摻雜區 313、315 N型摻雜區 317、319 絕緣層 321 > 322 金屬層 326、328 控制端 320 限流元件 420 限流致能源件 500 負載 31 ' 32 磁性電極 33 介電層 35、37、413、417 磁偶極 331、332 介面 412、416 磁性層 414 隔離層 17When the current limiting element, the electric (four) generating element and the current limiting enabling element are implemented in the form of a semiconductor, the voltage difference generating element is a transistor in the form of a diode, which is equivalent in secret analysis. It is 1 resistance. Wei converts the output current into a voltage difference, and then the action mechanism of the current limiting element applies a reverse voltage to the _p-type doped region and a N201015824-type doped region, wherein the reverse voltage is The voltage generating component converts the voltage difference from the output current, and the output current also flows through the p-type channel formed by the P-type doping region. Further, since the P_N junction is reverse biased, the output current is suppressed (the result of the expansion of the depletion region), and the output current is limited to a preset range. The current limiting component is a semiconductor diode based on the p_N junction, and is used to activate the current limiting component to limit the output current when the output current is greater than a predetermined range. ❹ Since the magnetic capacitor can be manufactured through a semiconductor process, and the components in the current limiting device can also be completed through a semiconductor process, the power supply module of the present invention can be fabricated in a single die. The invention can be widely applied to the circuit or the integrated circuit, so that the power supply portion in the circuit can be more effectively reduced by β. [Embodiment] 电源 Compared with the conventional capacitor and battery, the power supply of the present invention The magnetic capacitor used in the device has a satisfactory volume and weight (even superior to the volume and weight of a conventional battery), coupled with excellent charge and discharge rates and does not age, thus eliminating the need for conventional capacitors and batteries. The problem 'so the magnetic capacitor is quite suitable for the field of power supply' and in the case of Gu 4 is only as a temporary and smaller power scale, but can be used as the main source of power, so the relevant protection measures for the load There is a need for its existence. 201015824 Please refer to Fig. 1, which is a functional block diagram of an embodiment of a power supply module of the present invention. In this embodiment, the power supply module 100 includes a magnetic capacitor device 110 and a current limiting device 120. The magnetic capacitor device 110 is used to provide an output current I-OUT, and the current limiting device 120 is used to connect the magnetic capacitor. Device! The output current I_〇UT provided by 1〇 is limited to a predetermined range. In addition, the current limiting device 120 includes a voltage difference generating component 220, a current limiting component 320, and a current limiting mega element 420. The voltage difference generating component 220 is configured to provide a voltage difference when the output current j_ouj flows, and the current limiting enabling component 420 selectively activates the current limiting component 320 according to the voltage difference generated by the voltage difference generating component 22〇. The current ι_〇υτ' output from the current limiting element 320 is limited. Please refer to Figure 2, which is a detailed circuit diagram of the power supply module 1 shown in Figure 1. In this embodiment, the magnetic capacitor device 11 () includes at least one magnetic capacitor 112. The voltage difference generating component 220 includes an input terminal Ν1 and an output terminal ❹ Ν2 ′, wherein the input terminal Ν1 is coupled to the magnetic capacitor device 110. In addition, the current limiting component 320 has an input terminal Ν5, an output terminal Ν6, a first control terminal 320, and a second control terminal 328, and the input terminal Ν5 of the current limiting component 320 is coupled to the voltage difference generating component 220. The output terminal Ν2 and the second control terminal 328 are coupled to the input terminal Ν5. The current limiting component 420 has an input terminal Ν3 and an output terminal Ν4, wherein the current limiting enabling component 420 is coupled between the first control terminal 326 of the current limiting component 320 and the input terminal of the voltage difference generating component 220. The power supply module is additionally consumed by a load 5 (10) as a source of power required for the operation of the load 500. In Figure 2, the load is 5 .. It is represented by a resistor R1. 201015824 It should be noted that the magnetic capacitor device 110 in this embodiment only includes a magnetic capacitor 112, but this is not a limitation of the present invention. In other words, the power supply module of the present invention may include one or more magnetic materials. A power supply mode formed by a capacitor / In the present embodiment, the voltage difference generating element 220 is implemented by a diode-connected transistor M1 in the form of a diode, wherein the pole and the source are implemented. The input terminal N1 and the output terminal N2 of the voltage difference generating element 220 are respectively used. Furthermore, the current limiting element 320 has a p-type doping region 31, a first N-type doping region 313, a second N-type doping region 315, a first insulating layer 317 and a second insulating layer 319. A first metal layer 321 and a second metal layer 322. The second insulating layer 319 and the P-type doping region 311 are respectively in contact with the two sides of the second N-type doping region 315, and the second metal layer 322 and the second insulating layer 319 are used as one of the current limiting elements 320. The control terminal 328 is coupled to the output terminal N2 of the voltage difference generating element 22; the first insulating layer 317 and the P-type doping region 311 are respectively in contact with the two sides of the first N-type doping region 313, wherein the first insulating layer 317 and the first metal layer 321 are used as the first control end 326 of the current limiting element 320, and the p-type doping region 311 provides a channel, the two of which are the input terminals N5 and the output of the current limiting element. end. Finally, the current limiting monthly b element 42 (H is implemented by a diode D1, and as shown, the anode of the diode D1 is lightly connected to the input of the voltage difference generating element 22, and The cathode of the diode D1 is coupled to the first control terminal 326 of the current limiting element 320. 201015824 The operational relationship between the current limiting device 12A, the magnetic capacitor device n〇, and the load 500 shown in FIG. 2 will be described below. The magnetic capacitor device 110 supplies the power required by the load 500 in a manner of outputting current. Therefore, the current limiting device 12 acts as the current limiting device 120 on the magnetic capacitor device 110 according to the maximum current value Amax that the load 5 承受 can withstand. The output current I_OUT is limited. By appropriately setting the voltage difference generating element 220, the current limiting element 320, and the current limiting element 420, the output current I_〇UT of the magnetic capacitor device 110 can be higher than At Amax, the output current LL0171 is limited so as not to exceed Amax. When the output current I_OUT is exactly Αμαχ, the voltage difference between the two ends of the current limiting element 420 (diode D1) will reach the conduction threshold (via Physical parameters of semiconductor Design), therefore diode D1 is turned on due to forward bias. Please note that the following circuit behavior analysis will ignore the existence of the on-voltage, that is, when the diode D1 is turned on, the input terminal Ν3 and the output point Ν4 The voltage drop is negligible. _ Therefore, when the current limiting element 420 is turned on, it can be regarded as the voltage difference of the voltage difference generating element 220 (caused by the output current I_〇UT flowing through, and exists at the input terminal Ν1 and The output terminal N5 is transmitted to the input terminal N5 of the current limiting component 320 and the first control terminal 326' and the voltage level of the input terminal N1 of the component 220 is higher than the voltage level of the output terminal N2. The voltage level of the input terminal N5 of the stream element 320 is lower than the voltage level of the first control terminal 326. Please note that the voltage difference described above is multiplied by the current value of the output current I_OUT by the voltage difference generating component 220 itself. Therefore, the above result will cause the first N-type doping region 313 and the P-type doping region 311 to be reverse biased, so that the depletion region of the P_N junction is enlarged; the second N-type doping The impurity region 315 and the P-type doping region 311 are second The terminal 328 is coupled to the input terminal N5, so that there is no voltage difference, so that the PN junction does not change, and the PN junction between the first N-type doping region 313 and the P-type doping region 311 The expansion of the depletion region causes the P-type channel formed by the P-doped region 3U to be shrunk, thereby causing the output current [OUT, which is flown from the input terminal N5 of the current limiting element 32〇 and flowing out from the output terminal N6, to be suppressed. The purpose of the current limiting is achieved. The operation principle of the magnetic capacitor used in the power supply module i 00 of the present invention is also described below. Please refer to FIG. 3, which is a schematic diagram of the taste capacitor of the present invention and other conventional energy storage media. Other conventional energy storage media (such as conventional batteries or supercapacitors) that perform energy storage in the main suture mode can also be limited by the chemical reaction rate and cannot be quickly charged. Or high power output, and the number of charge and discharge times is limited, and it is easy to breed various problems when overcharged. On the other hand, since all the energy stored in the magnetic capacitor is stored in the magnetic potential of the magnetic energy, in addition to having a high energy storage density that can be matched, the capacitance is fully retained, and the life is long (high number of charge and discharge times). , no memory two ~, can break high power round, fast electric and other characteristics, it can effectively solve the various problems encountered by the IJ battery in the month. Please refer to Figure 4, which is a schematic diagram of the structure of the second example. As shown in FIG. 4, one of the magnetic capacitors 112 is embodied as a magnetic capacitor 112 comprising a first 12 201015824 m-second magnetic electrode 32 and a dielectric layer therebetween. ΓΓΓΓ31鄕二杂纽32细The magnetic material is formed by the appropriate applied electric field, so that the first magnetic electrode 31 is blood second: the raw electrode 32 is divided into magnetic strips (magnetie d (four) township and 37, in order to magnetic female electricity valley The internal magnetic field of m constitutes an influence on the movement of the charged particles, thereby suppressing the leakage current of the magnetic capacitor 112. ❹ The special adjustment required is that the direction of the arrow of the magnetic poles 35 and 37 is merely an example. As is familiar to those skilled in the art, it should be understood that the magnetic dipoles ^ are actually superposed by a plurality of closely arranged micro magnetic dipoles, and in the present invention, the magnetic contacts 35 and 37 are finally formed. The direction is not limited, and may be adjusted according to the shape of the magnetic capacitor ι 2 , for example, may be directed in the same direction or in different directions. The dielectric layer is used to separate the first magnetic electrode 3 丨 and the second magnetic electrode 32 for the first Magnetic electrode 31 and second magnetic electrode 32 In the embodiment of the present invention, the first magnetic electrode 31 and the second magnetic electrode comprise a magnetic conductive material such as a rare earth element, and the dielectric layer 33 is made of titanium oxide (Τι〇3). 'rolled titanium (BaTi〇3) or a semiconductor layer, such as oxidized stone (silic〇n 〇xide), but the present invention is not limited thereto, the first magnetic electrode 3 the second magnetic electrode 32 Both the dielectric layer 33 and the dielectric layer 33 can be selected according to the needs of the product. The operation principle of the magnetic capacitor is as follows: The phenomenon that the resistance of the substance changes under a certain magnetic field is called "magnetoresistance effect" 'magnetic metal and alloy The material generally has the 13 201015824 magnetoresistance phenomenon. Under normal circumstances, the resistivity of (4) is slightly reduced in the magnetic field cap; under certain conditions, the resistivity is reduced by a considerable amount, compared with the usual magnetic metal. The magnetoresistance value of the alloy material is more than G times higher than that of the phantom, and the simplification produces a very large magnetoresistance effect. If the step-by-step combination with Maxw grasps the Wagner circuit model, a large magnetic capacitance effect may also occur in the magnetic particle composite medium. In the conventional capacitor, the capacitance value C is determined by the area A of the capacitor, the dielectric constant of the dielectric layer c = the number and the thickness d, such as d. However, in the present invention, the magnetic capacitor 112 mainly utilizes the first magnetic The magnetic dipoles of the electrodes 31 and the second magnetic electrode pair form a magnetic field to 'rotate the electrons in the inner age and rotate in the direction of the spin, and arrange them neatly', so that more charges can be accommodated under the same conditions. Increasing the storage density of energy. Analogous to the conventional capacitor, the operation principle of the magnetic capacitor 112 is equivalent to changing the dielectric constant of the dielectric layer by the action of the magnetic field, thereby causing a substantial increase in the capacitance value. ❹ In addition, in this embodiment In the example, the interface between the first magnetic electrode 31 and the dielectric layer 331 and the interface between the second magnetic electrode 32 and the dielectric layer 33 are both an uneven surface to increase the surface area A. The capacitance value of the magnetic capacitor 112 is further increased. Next, please refer to FIG. 5. FIG. 5 is a schematic structural view of the first magnetic electrode 31 shown in FIG. 4. As shown in FIG. 5, the first magnetic electrode μ 201015824 I layer structure includes a first magnetic layer 412, a layer 414, and a layer 416, wherein the isolation layer 414 is made of a non-magnetic material. The first 磁 magnetization i 1 and the second magnetic layer 416 comprise a magnetic conductive material, and the magnetic pole 413 in the first magnetic layer 412 and the second magnetic=one are made by two different applied electric fields. It has different directions from 417, for example, in this Shisaki, Na 413 and 417 shirts, and can't leak current in the magnetic valley 112. In addition, it should be emphasized that the structure of the first magnetic electrode 31 is not limited to the foregoing three-layer structure, and in a similar manner, a plurality of magnetic layers and non-magnetic layers are continuously staggered and stacked, and magnetic couples in each magnetic layer are further The adjustment of the polar direction further suppresses the leakage current of the magnetic capacitor 112, and even achieves an effect of almost no leakage current. Further, the structure of the second magnetic electrode 32 can also adopt the structure of the above-mentioned first magnetic electrode 31. This design change is also a standard nozzle of the present invention. In addition, since most of the conventional energy storage components are stored in a chemical energy manner, there is a size of $, which may cause a significant drop in efficiency. Compared to this, the magnetic capacitor 112 of the present invention is stored in a potential energy manner, so that a more efficient energy storage mode can be provided, and thus the magnet of the present invention is a better source of power supply. For example, please refer to Fig. 6 and Fig. 6 is a schematic view showing another embodiment of the magnetic capacitor device 11 shown in Fig. 2. As described above, in the present embodiment, a plurality of small-sized magnetic capacitors 55 are formed on the semiconductor chip, and an electrical connection is formed between the plurality of magnetic capacitors 55 by means of a suitable process. Thus, a 15 201015824 magnetic capacitor device 11 including a plurality of magnetic capacitors 55 is used, and the magnetic capacitor device 110 is used as a power supply source for the energy storage device or the external device. In the present embodiment, the magnetic capacitor device 110 (four) of the plurality of tree capacitors 55 are electrically connected in an array-like manner. However, the present invention is not limited thereto, and the magnetic capacitors (four) may be adjusted according to the power supply requirements of different starting devices. Parallel or series-parallel to meet the power supply requirements of various devices.总结 In summary, the power supply module of the present invention utilizes magnetic capacitors to have the advantages of fast charging and unloading of Wei force and aging, and storage density of the ship, supplemented by a current limiting device to The components are fabricated in semiconductor manufacturing, thus providing an excellent power supply module. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. ❹ [Description] The figure is a functional block diagram of an embodiment of the power supply module of the present invention. Figure 2 is a detailed circuit diagram of the power supply module shown in Figure 1. The =3 diagram is a schematic diagram comparing the magnetic capacitor of the present invention with other conventional energy storage media. The flute 4 is a schematic structural view of an embodiment of the magnetic capacitor shown in FIG. 5 is a schematic structural view of an embodiment of a first magnetic electrode shown in FIG. 4. 6 is a schematic view showing another embodiment of the magnetic capacitor device shown in FIG. 2. 16 201015824 [Description of main components] 100 power supply module 110 magnetic capacitor device 55, 112 magnetic capacitor 120 current limiting device 220 voltage difference generating element 311 P-type doping region 313, 315 N-type doping region 317, 319 insulating layer 321 > 322 metal layer 326, 328 control terminal 320 current limiting element 420 current limiting energy source 500 load 31 ' 32 magnetic electrode 33 dielectric layer 35, 37, 413, 417 magnetic dipole 331, 332 interface 412, 416 magnetic Layer 414 isolation layer 17

Claims (1)

201015824 十、申請專利範圍·· 1. 一種電源供應模組,包含: 一磁性電容裝置,包含有至少一磁性電容,用以提供一輸出電 流;以及 一限流裝置,耦接於該磁性電容裝置,用以將該磁性電容裝置 所提供之該輸出電流限制於一預定範圍之中。 ❹2.如申請專利範圍第1項所述之電源供應模組,其中該限流裝置 包含有: 一電壓差產生元件,包含一輸入端以及一輸出端,該輸入端耦 接於該磁性電容裝置,該電壓差產生元件用以於該輸出電 流流過時在該輸出端與該輸入端之間提供一電壓差; 一限流元件,具有一輸入端、一輸出端以及一第一控制端,該 限流元件之該輸入端耦接於該電壓差產生元件之該輸出 端;以及 ❹ 一限流致能元件’耦接於該限流元件之該第一控制端與該電壓 差產生元件之該輸入端之間,用以依據該電壓差產生元件 所產生之該電壓差來選擇性地啟動該限流元件以限制自 該限流元件之該輸出端所輸出之電流。 3.如申請專利範圍第2項所述之電源供應模組,其中該電壓差產 生元件包含有一接成二極體形式的電晶體(diode_connected transistor) ’其汲極與源極分別作為該電壓差產生元件之該輸入 18 201015824 端與該輸出端。 4. 如申請專利範圍第1項所述之電源供應模組,其中該限流元件 包含有一 P型摻雜區、一第一 N型摻雜區以及一第一絕緣層, 該第一絕緣層與該P型摻雜區分別接觸於該第一 N型摻雜區 之兩侧,該限流元件之該第一控制端包含該第一絕緣層,以及 該P型摻雜區係提供一通道,其兩端分別作為該限流元件之該 © 輸入端與該輸出端。 5. 如申請專利範圍第4項所述之電源供應模組,其中該限流元件 另具有一第二N型摻雜區以及一第二絕緣層,該第二絕緣層 與該P型摻雜區分別接觸於該第二N型摻雜區之兩側,該限 流元件之一第二控制端耦接於該電壓差產生元件之該輸出端 且包含該第二絕緣層。 〇 6. 如申請專利範圍第2項所述之電源供應模組,其中該限流致能 元件包含有一二極體,該二極體之陽極耦接於該電壓差產生元 件之該輸入端,以及該二極體之陰極耗接於該限流元件之該第 一控制端。 7·如申請專利範圍第1項所述之電源供應模組,其中該磁性電容 裝置與該限流裝置均設置於同一晶粒(die)中。 19 201015824 8. 如申請專娜圍第丨賴述之電源供顧組,其巾觸性電容包 含有: -第:磁性修,錢由具有雖之導紐料構成,用以形成 一第一磁偶極(magnetic dipole); -第-磁性電極’其係由具有磁性之導電材料構成,用以形成 具有一第二磁偶極;以及 ❹ ❹ 一介電層’設置於該第-磁性電極與該第二磁性電極之間。 9. 如申請專利範圍第8項所述之電源供應模組,其中該第一磁偶極 之方向係相異於該第二磁偶極之方向。 10. 如申請專利制第8項所述之供顧組,其巾該第一雜 電極係包含有: -第-磁性層’其係由具磁性的導電材料構成,用以形成具有 一第三磁偶極; 第一磁性層,其係由具磁性的導電材料構成,用以形成 四磁偶極;以及 一隔離層’其係轉磁性物f所構成並設置於該第—磁性層與 ::二磁性層之間,其令該第一磁偶極係由該第三磁偶極 該第四磁偶極所構成。 11偶軸源供應馳,㈣第三磁 门係相異於該第四磁偶極之方向。 20 201015824 12. —種限流元件,具有一輪入端、一輸出端以及一第一控制端以 及一第二控制端’該限流元件包含有: 一P型摻雜區、一第一N型摻雜區以及一第一絕緣層,該苐 一絕緣層與該P型摻雜區分別接觸於該第一 N型摻雜區 之兩侧,該限流元件之該第一控制端包含該第一絕緣 層,以及該P型摻雜區係提供一通道,其兩端分別作為 該限流元件之該輸入端與該輸出端; G 其中該限流元件依據存在於該輸入端與該第一控制端的—電 壓差來改變流經該輪入端與該輸出端間的一電流大小。 13.如申請專利範圍第12項所述之電源供應模組,其中該限流元 件另具有一第二N型摻雜區以及一第二絕緣層,該第二絕緣 層與該P型摻雜區分別接觸於該第二N型摻雜區之兩侧,該 限流元件之一第二控制端包含該第二絕緣層。 ❹ 十一、圖式: 21201015824 X. Patent Application Range·· 1. A power supply module comprising: a magnetic capacitor device including at least one magnetic capacitor for providing an output current; and a current limiting device coupled to the magnetic capacitor device And limiting the output current provided by the magnetic capacitor device to a predetermined range. The power supply module of claim 1, wherein the current limiting device comprises: a voltage difference generating component, comprising an input end and an output end coupled to the magnetic capacitor device The voltage difference generating component is configured to provide a voltage difference between the output terminal and the input terminal when the output current flows; a current limiting component having an input end, an output end, and a first control end, The input end of the current limiting component is coupled to the output end of the voltage difference generating component; and the first current limiting component is coupled to the first control terminal of the current limiting component and the voltage difference generating component The input terminal is configured to selectively activate the current limiting component to limit the current output from the output terminal of the current limiting component according to the voltage difference generated by the voltage difference generating component. 3. The power supply module of claim 2, wherein the voltage difference generating element comprises a diode (connected transistor) in the form of a diode (the drain and the source are respectively used as the voltage difference) The input of the component is 18 201015824 and the output. 4. The power supply module of claim 1, wherein the current limiting element comprises a P-type doping region, a first N-type doping region, and a first insulating layer, the first insulating layer And the P-type doping region is respectively in contact with the two sides of the first N-type doping region, the first control end of the current limiting element comprises the first insulating layer, and the P-type doping region provides a channel The two ends serve as the © input terminal and the output terminal of the current limiting component, respectively. 5. The power supply module of claim 4, wherein the current limiting element further has a second N-type doping region and a second insulating layer, the second insulating layer and the P-type doping The second control end of the current limiting component is coupled to the output end of the voltage difference generating component and includes the second insulating layer. The power supply module of claim 2, wherein the current limiting component comprises a diode, and an anode of the diode is coupled to the input of the voltage difference generating component And the cathode of the diode is consumed by the first control end of the current limiting component. 7. The power supply module of claim 1, wherein the magnetic capacitor device and the current limiting device are disposed in the same die. 19 201015824 8. If you apply for the power supply group of the company, the towel touch capacitor includes: - the first: magnetic repair, the money consists of a guide material to form a first magnetic a magnetic dipole; a first magnetic electrode constituting a magnetically conductive material for forming a second magnetic dipole; and a 介 ❹ a dielectric layer disposed on the first magnetic electrode Between the second magnetic electrodes. 9. The power supply module of claim 8, wherein the direction of the first magnetic dipole is different from the direction of the second magnetic dipole. 10. The method according to claim 8, wherein the first hetero-electrode comprises: a first magnetic layer formed of a magnetic conductive material for forming a third a magnetic dipole; a first magnetic layer formed of a magnetic conductive material for forming a four magnetic dipole; and an isolation layer 'which is composed of a magnetic material f and disposed on the first magnetic layer and: Between the two magnetic layers, the first magnetic dipole is formed by the third magnetic dipole and the fourth magnetic dipole. 11 The even axis source is supplied, and (4) the third magnetic gate system is different from the direction of the fourth magnetic dipole. 20 201015824 12. A current limiting component having a wheel input end, an output end, and a first control end and a second control end. The current limiting component comprises: a P-type doping region, a first N-type a doped region and a first insulating layer, the first insulating layer and the P-doped region are respectively in contact with the two sides of the first N-type doping region, and the first control terminal of the current limiting component includes the first An insulating layer, and the P-type doping region provides a channel, the two ends of which serve as the input end and the output end of the current limiting component respectively; wherein the current limiting component is based on the input end and the first The voltage difference of the control terminal changes the magnitude of a current flowing between the input terminal and the output terminal. 13. The power supply module of claim 12, wherein the current limiting element further has a second N-type doping region and a second insulating layer, the second insulating layer and the P-type doping The regions are respectively in contact with the two sides of the second N-type doping region, and the second control terminal of the current limiting element comprises the second insulating layer.十一 XI, schema: 21
TW97138570A 2008-10-07 2008-10-07 Power supply module TW201015824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97138570A TW201015824A (en) 2008-10-07 2008-10-07 Power supply module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97138570A TW201015824A (en) 2008-10-07 2008-10-07 Power supply module

Publications (1)

Publication Number Publication Date
TW201015824A true TW201015824A (en) 2010-04-16

Family

ID=44830198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138570A TW201015824A (en) 2008-10-07 2008-10-07 Power supply module

Country Status (1)

Country Link
TW (1) TW201015824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9652012B2 (en) 2014-07-01 2017-05-16 Asustek Computer Inc. Electronic device and power supplying method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9652012B2 (en) 2014-07-01 2017-05-16 Asustek Computer Inc. Electronic device and power supplying method thereof

Similar Documents

Publication Publication Date Title
TWI381526B (en) Two - way PNPN silicon - controlled rectifier
TWI224851B (en) Electrostatic discharge protection element
TWI241010B (en) Electrostatic discharge clamping circuit for interface circuit of the mixed voltage source
US10164641B2 (en) Magnetoelectric computational devices
CN104521001A (en) Thermoelectric conversion element and manufacturing method for same
CN106653752A (en) Semiconductor device
CN101373812A (en) Element for storing electrical energy
US20100046122A1 (en) Fault protection device
CN104716135A (en) Electrostatic protection circuit
CN105074825A (en) Integrated capacitor based power distribution
CN109937483B (en) Perpendicular magneto-electric spin orbit logic
TW201015824A (en) Power supply module
CN109935582B (en) Bidirectional thyristor electrostatic discharge protection structure and SOI structure
TW201244048A (en) ESD protection circuit
WO2019066820A1 (en) Cascaded magnetoelectric spin orbit logic
CN103531585B (en) Diode string
CN109273532B (en) Silicon controlled rectifier without hysteresis effect for high-voltage circuit anti-static protection
TW201004110A (en) Backup power device
CN215580553U (en) High-energy quantum battery
EP2306626A1 (en) Voltage conversion circuit
CN107425514A (en) A kind of enhanced ESD power clamps circuit for duplexer controller
CN113328529A (en) High-energy quantum battery
TW201015818A (en) Power supply system
TW201023217A (en) An energy storage element having programmable magnetic capacitor
CN207184049U (en) A kind of enhanced ESD power clamps circuit for duplexer controller