TW201015752A - Light emitting diode chip and fabricating method thereof - Google Patents

Light emitting diode chip and fabricating method thereof Download PDF

Info

Publication number
TW201015752A
TW201015752A TW97139411A TW97139411A TW201015752A TW 201015752 A TW201015752 A TW 201015752A TW 97139411 A TW97139411 A TW 97139411A TW 97139411 A TW97139411 A TW 97139411A TW 201015752 A TW201015752 A TW 201015752A
Authority
TW
Taiwan
Prior art keywords
layer
type semiconductor
light
emitting diode
semiconductor layer
Prior art date
Application number
TW97139411A
Other languages
Chinese (zh)
Other versions
TWI446571B (en
Inventor
Chung-Chieh Yang
Chia-Feng Lin
Ren-Hao Jiang
Jenq-Dar Tsay
Chien-Jen Sun
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97139411A priority Critical patent/TWI446571B/en
Publication of TW201015752A publication Critical patent/TW201015752A/en
Application granted granted Critical
Publication of TWI446571B publication Critical patent/TWI446571B/en

Links

Abstract

A light emitting diode chip including a substrate, a first type semiconductor layer, an active layer and a second type semiconductor layer is provided. The first type semiconductor layer is disposed on the substrate. The active layer is disposed on the partial area of the first type semiconductor layer. The area of the first type semiconductor layer that the active layer is not disposed on has a first roughened surface. The mesa sidewall of the active layer has a second roughened surface. The first roughened surface and second roughened surface are the porous of the micro-roughened structure. The second type semiconductor layer is partially disposed on the active layer so as to make an undercut structure formed. A method for fabricating the light emitting diode chip through the photoelectrochemical process is also provided to replace with conventional dry etching method.

Description

2〇l〇15752TW289l7twfd〇c/n 九、發明說明: 【發明所屬之技術領域】 片及其製作方法。 本發明是有關於一種發光二極體晶 【先前技術】 發光二極體晶片具有諸如壽命長、體積小、高抗震 性、低熱產生及低功率消耗等優點,因此已 應 家用及各種設備中的指示器或光源。近年來,發光體2〇l〇15752TW289l7twfd〇c/n IX. Description of the invention: [Technical field to which the invention pertains] Sheet and its manufacturing method. The present invention relates to a light-emitting diode crystal. [Prior Art] A light-emitting diode wafer has advantages such as long life, small volume, high shock resistance, low heat generation, and low power consumption, and thus has been used in households and various devices. Indicator or light source. In recent years, illuminants

晶片的技術已朝多色彩及高亮度發展,因此其應用領域甚 至已擴展至大型戶外看板、交通號誌燈及相關領域。在未 來,發光二極體晶片可能成為兼具省電及環保功能的主要 照明光源。 圖1為S知之發光一極體晶片的結構示意圖。請參考 圖1’習知之發光二極體晶片100包括一基板11〇、一第一 型半導體層120、一發光層130、一第二型半導體層140 以及多個電極150。第一型半導體120層配置於基板11〇 上。發光層130配置於第一型半導體層12〇的局部區域上。 第二型半導體層14〇配置於發光層130上。多個電極15〇 配置於第一型半導體層120上以及第二型半導體層14〇 上,以分別電性連接第一型半導體層120與第二型半導體 層 140 〇 一般來說,形成第一型半導體層120、發光層13〇以 及第二型半導體層140的方式例如是先全面地依序形成一 第一型半導體材料層(未繪示)、一發光材料層(未繪示)以及 一第二型半導體材料層(未繪示)於基板11〇上。接著,將 oTW 28917twf.doc/n 201015752 第一型半導體材料層、發光材料層以及第二型半導體材料 層利用例如是電感耦合電漿(ICP)乾蝕刻或反應式離子蝕 刻(RIE)的方式來進行蝕刻製程,其中採用上述之非等向性 之蝕刻製程可直接地將第一型半導體材料層、發光材料層 以及第二型半導體材料層餘刻成圖1所繪示之第一型半導 體層120、發光層130以及第二型半導體層HO。 然而’採用電感耦合電漿乾蝕刻或反應式離子蝕刻的 製程係使用高能量的電漿對第一型半導體材料層、發光材 料層以及第二型半導體材料層進行轟擊,而以非等向性的 餘刻方式來形成如圖1所示的發光二極體晶片1〇〇的結 構。一般來說,以此高能量之電漿轟擊的方式通常會在第一 型半導體層120、發光層130以及第二型半導體層140的 表面造成損害,使得發光二極體晶片1〇〇被驅動時,容易產生 表面漏電流的問題,進而影響發光二極體晶片1〇〇的發光品 質。 【發明内容】 本發明提出一種發光二極體晶片,其包括一基板、一 第一型半導體層、一發光層以及—第二型半導體層。第一 型半導體層配置於基板上。發光層配置於第一型半導體層 的部分區域上’其中第一型半導體層未被發光層覆蓋的區 域具有一第一粗糙面,而發光層的侧壁具有一第二粗糙 面。弟一粗經面與第二粗链面係為多孔隙(porous)之微結構 (micro-roughened structure)。第二型半導體層配置於發光層 上’其中第二型半導體僅部份覆蓋於發光層上而具有一底 201015752 w vvw8TW 28917twf.d〇c/n 切(undercut)結構。 括提ΐ發提出—種發光二極體晶片的製作方法,盆包 ,於第二型半導體材料層:===:幕】外而The technology of wafers has evolved towards multi-color and high brightness, so its application has even expanded to large outdoor billboards, traffic lights and related fields. In the future, LED chips may become the main source of illumination for both power saving and environmental protection functions. FIG. 1 is a schematic view showing the structure of a light-emitting one-pole wafer of S. Referring to FIG. 1', a light-emitting diode wafer 100 includes a substrate 11A, a first semiconductor layer 120, a light-emitting layer 130, a second-type semiconductor layer 140, and a plurality of electrodes 150. The first type semiconductor 120 layer is disposed on the substrate 11A. The light emitting layer 130 is disposed on a partial region of the first type semiconductor layer 12A. The second type semiconductor layer 14 is disposed on the light emitting layer 130. The plurality of electrodes 15 〇 are disposed on the first type semiconductor layer 120 and the second type semiconductor layer 14 , to electrically connect the first type semiconductor layer 120 and the second type semiconductor layer 140 respectively, generally forming a first The semiconductor layer 120, the light-emitting layer 13A, and the second-type semiconductor layer 140 are formed by sequentially forming a first-type semiconductor material layer (not shown), a light-emitting material layer (not shown), and a first A second type of semiconductor material layer (not shown) is on the substrate 11A. Next, the oTW 28917twf.doc/n 201015752 first type semiconductor material layer, the luminescent material layer, and the second type semiconductor material layer are, for example, inductively coupled plasma (ICP) dry etching or reactive ion etching (RIE). An etching process is performed, wherein the first type of semiconductor material layer, the luminescent material layer, and the second type semiconductor material layer are directly etched into the first type semiconductor layer illustrated in FIG. 1 by using the above-described anisotropic etching process. 120, the light emitting layer 130 and the second type semiconductor layer HO. However, the process using inductively coupled plasma dry etching or reactive ion etching uses high energy plasma to bombard the first type semiconductor material layer, the luminescent material layer, and the second type semiconductor material layer, and is anisotropic. The remaining mode is to form the structure of the light-emitting diode wafer 1 as shown in FIG. In general, the high energy plasma bombardment generally causes damage on the surfaces of the first type semiconductor layer 120, the light emitting layer 130, and the second type semiconductor layer 140, so that the light emitting diode chip 1 is driven. At the time, the problem of surface leakage current is likely to occur, which in turn affects the light-emitting quality of the light-emitting diode wafer. SUMMARY OF THE INVENTION The present invention provides a light emitting diode chip including a substrate, a first type semiconductor layer, a light emitting layer, and a second type semiconductor layer. The first type semiconductor layer is disposed on the substrate. The light emitting layer is disposed on a partial region of the first type semiconductor layer. The region in which the first type semiconductor layer is not covered by the light emitting layer has a first rough surface, and the sidewall of the light emitting layer has a second rough surface. The young rough surface and the second thick chain surface are porous micro-roughened structures. The second type semiconductor layer is disposed on the light emitting layer' wherein the second type semiconductor is only partially covered on the light emitting layer and has a bottom structure of 201015752 w vvw8TW 28917twf.d〇c/n undercut. Including the method of making a light-emitting diode wafer, the pot package is on the second type semiconductor material layer: ===: screen]

ΐ ’依序在該第二型半導體材料層、該發光材料層:及該 第-型半導體材未_案化罩幕層覆蓋的部份氧化^ 形成一氧化層,再進行濕式蝕刻以將該氧化層移除:。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉多個實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖2為本發明之發光二極體晶片的結構示意圖。請參 考圖2,本實施例之發光二極體晶片2〇〇包括一基板21〇、 一第一型半導體層220、一發光層230以及一第二型半導 體層240 〇第一型半導體層22〇配置於基板21〇上。發光 層230配置於第一型半導體層22〇的部分區域上,其中第 一型半導體層220未被發光層230覆蓋的區域具有一第一 粗糙面222,而發光層230的锏壁232具有一第二粗糙面 232a。第一粗糙面222與第二粗縫面232a係為多孔隙之微 結構。第二型半導體層240配置於發光層230上,其中第 二型半導體240具有一表面240a,其係透過部份之該表面 240a覆蓋於發光層230上而具有一底切結構230b。 在本實施例中,基板210的材質可以是選用氧化鋁 (Al2〇3)、矽(Si)、氮化鎵(GaN)和碳化矽(SiC)基板。本實施 例之基板210是用在發光二極體晶片中做為基底之用,且 5 TW 28917twf.doc/n 201015752 以氧化鋁(Al2〇3)基板為實施範例,或稱藍寶石基板,但 不以此為限。 在本實施例中’第一型半導體層220與第二型半導體 層240的材質可以是由氮化鎵(GaN)、氮化鋁鎵(A1GaN)、 氮化銦鎵(InGaN)、氮化鋁銦鎵(AiInGaN)至少其中之一摻 雜II族元素或IV族元素所構成。舉例來說,第一型半導 體層220可以是由氮化鎵摻雜Iv族元素,如矽(Si),以形ΐ 'In the second type of semiconductor material layer, the luminescent material layer: and the portion of the first-type semiconductor material that is covered by the mask layer is oxidized to form an oxide layer, and then wet etching to The oxide layer is removed: The above described features and advantages of the invention will be apparent from the following description. Embodiments Fig. 2 is a schematic view showing the structure of a light-emitting diode wafer of the present invention. Referring to FIG. 2, the LED device 2 of the present embodiment includes a substrate 21, a first semiconductor layer 220, a light emitting layer 230, and a second semiconductor layer 240. The first semiconductor layer 22 The crucible is disposed on the substrate 21A. The light-emitting layer 230 is disposed on a partial region of the first-type semiconductor layer 22, wherein the region of the first-type semiconductor layer 220 not covered by the light-emitting layer 230 has a first rough surface 222, and the sidewall 232 of the light-emitting layer 230 has a Second rough surface 232a. The first rough surface 222 and the second rough surface 232a are porous structures. The second type semiconductor layer 240 is disposed on the light emitting layer 230. The second type semiconductor 240 has a surface 240a which is covered by the surface 240a of the transparent portion and has an undercut structure 230b. In this embodiment, the material of the substrate 210 may be selected from the group consisting of alumina (Al 2 〇 3), yttrium (Si), gallium nitride (GaN), and tantalum carbide (SiC) substrates. The substrate 210 of the present embodiment is used as a substrate in a light-emitting diode wafer, and 5 TW 28917 twf.doc/n 201015752 is an alumina (Al 2 〇 3) substrate as an example, or a sapphire substrate, but not This is limited to this. In the present embodiment, the material of the first type semiconductor layer 220 and the second type semiconductor layer 240 may be made of gallium nitride (GaN), aluminum gallium nitride (A1GaN), indium gallium nitride (InGaN), aluminum nitride. At least one of indium gallium (AiInGaN) is doped with a Group II element or a Group IV element. For example, the first type semiconductor layer 220 may be doped with a group of Iv elements such as germanium (Si).

成一 N型半導體層(Gaisi:Si) ’而第二型半導體層240則可 以疋由氮化鎵摻雜II族元素’如鎂(Mg),以形成一 p型半 導體層(GaN:Mg)。本實施例係以第一型半導體層22〇為N 型半導體層與第二型半導體層240為P型半導體層作為實 施範例。 ' 另外’發光層230為一多重量子井發光層。詳細來說, 發光層230的材質例如以瓜_v族元素為主的多重量子井 (multi-quantum well)結構,其中發光層23〇例如是以氮 化鎵(GaN )、氮化銦(脇)、氮化銘(aiN )、三元組成之 ,化鎵銘(AlGaN)和氮化鎵銦(InGaN)、或是四元組成之 氮化紹鎵銦AlInGaN之掺雜半導體層。 在本實施例中,發光二極體晶片200更包括多個 250。具體而言,這些電極25〇其中之一配置於第二型半 體層240的部分區域上以電性連接第二型半導體層, 而這些電極250之另一則配置於未被發光層23〇所 二 第一型半導體層220上以電性連接第一型半導體芦= 如圖2所示。 《 ζυ’ 此外,發光二極體晶片200更包括一圖案化透明導電 201015752 -------> IW 28917twf.doc/n 層260。在本實施例中,圖案化透明導電層26〇配置於電 極250與第二型半導體層24〇之間’如圖2所示。圖案化 透明導電層260例如是一透明導電層,其中此透明導電層 的材質可以是銦錫氧化物(ITO)、氧化辞(Zn〇)、氧化鋁鋅 (AZO)、氧化鎵鋅(GZ〇)、或錄/金(Ni/Au)。詳細來說,圖 案化透明導電層260適於將來自電極250的電流分散導入 第一型半導體層240,以提升發光二極體晶片2〇〇的發光 效率。 + 承上述,由於第一型半導體層220未被發光層230覆 蓋的區域具有多孔隙之微結構的第一粗縫面222,以及發 光層230的侧壁232具有多孔隙之微結構的第二粗糙面 232a。如此一來’當發光二極體晶片200被驅動時,將可 有效地提高其整體的光取出效率,亦即是,發光二極體晶 片200可具有較佳的發光效率。究其原因在於,第一粗糙 面222與第二粗糙面232a為具有多孔隙之微結構,如此一 來’可破壞了光線出射表面的全反射角,而使出射發光二 φ 極體晶片200的光線較容易地透過不規則的表面而穿透出 去’進而提高其光取出率。 另外’由於第二型半導體240僅部分覆蓋發光層230, 如此一來’可使第一型半導體層220、第二型半導體層240 與發光層230形成如圖2所示之底切結構230b。而此底切 結構230b由於發光層被蝕刻而可有效地釋放發光層在膜 層堆疊時或是第一型半導體層220與基板210晶格不匹配 時所產生的應力,進而降低發光二極體晶片被驅動時所產 生之波長漂移的現象,並可提升内部量子化之效率。 8 TW 28917twf.doc/n 201015752 另外,本實施例亦提供一種製作出上述之發光二極體 晶片的製作方法,相關說明如下。The N-type semiconductor layer (Gaisi:Si)' and the second-type semiconductor layer 240 may be doped with a Group II element such as magnesium (Mg) by gallium nitride to form a p-type semiconductor layer (GaN: Mg). In this embodiment, the first type semiconductor layer 22 is an N type semiconductor layer and the second type semiconductor layer 240 is a P type semiconductor layer as an embodiment. The 'other' luminescent layer 230 is a multiple quantum well luminescent layer. In detail, the material of the light-emitting layer 230 is, for example, a multi-quantum well structure mainly composed of a melon-v element, wherein the light-emitting layer 23 is, for example, gallium nitride (GaN) or indium nitride. ), Niobium (aiN), ternary composition, AlGaN and InGaN, or a doped semiconductor layer of quaternary gallium indium AlInGaN. In the present embodiment, the LED array 200 further includes a plurality of 250. Specifically, one of the electrodes 25 is disposed on a partial region of the second type body layer 240 to electrically connect the second type semiconductor layer, and the other of the electrodes 250 is disposed on the unluminescent layer 23 The first type semiconductor layer 220 is electrically connected to the first type semiconductor reed = as shown in FIG. In addition, the LED wafer 200 further includes a patterned transparent conductive layer 201015752 -------> IW 28917twf.doc/n layer 260. In the present embodiment, the patterned transparent conductive layer 26 is disposed between the electrode 250 and the second type semiconductor layer 24' as shown in FIG. The patterned transparent conductive layer 260 is, for example, a transparent conductive layer, wherein the transparent conductive layer may be made of indium tin oxide (ITO), oxidized (Zn〇), aluminum zinc oxide (AZO), or gallium zinc oxide (GZ〇). ), or record / gold (Ni / Au). In detail, the patterned transparent conductive layer 260 is adapted to introduce a current from the electrode 250 into the first type semiconductor layer 240 to improve the light-emitting efficiency of the light-emitting diode wafer. In view of the above, since the region of the first type semiconductor layer 220 not covered by the light emitting layer 230 has the first rough surface 222 of the porous microstructure, and the side wall 232 of the light emitting layer 230 has the second structure of the porous structure Rough surface 232a. As a result, when the light-emitting diode wafer 200 is driven, the overall light extraction efficiency can be effectively improved, that is, the light-emitting diode wafer 200 can have better luminous efficiency. The reason is that the first rough surface 222 and the second rough surface 232a are porous structures having a porosity, so that the total reflection angle of the light exit surface can be destroyed, and the light emitting diode body 200 is emitted. Light penetrates easily through an irregular surface' to increase its light extraction rate. Further, since the second type semiconductor 240 only partially covers the light emitting layer 230, the first type semiconductor layer 220, the second type semiconductor layer 240 and the light emitting layer 230 can be formed into an undercut structure 230b as shown in FIG. The undercut structure 230b can effectively release the stress generated when the light emitting layer is stacked or the lattice of the first type semiconductor layer 220 and the substrate 210 are not matched due to the etching of the light emitting layer, thereby reducing the light emitting diode. The phenomenon of wavelength drift caused when the wafer is driven, and the efficiency of internal quantization can be improved. 8 TW 28917twf.doc/n 201015752 In addition, this embodiment also provides a method of fabricating the above-described light-emitting diode wafer, and the related description is as follows.

圖3A〜圖3E為本發明之一種發光二極體晶片製作方 法的流程示意圖。請參考圖3A,首先提供一基板310,並 於基板310上依序形成一第一型半導體材料層322、一發 光材料層332以及一第二型半導體材料層342,如圖3A所 示。為了後續方便說明,茲將該基板310’該第一型半導 體材料層322、該發光;^料層332及該第二型半導體材料 層342合稱為半導體晶圓3A。在本實施例中,基板31〇 例如是採用上述之基板210,相關說明不再贅述。另外, 依序形成第一型半導體材料層322、發光材料層332以及 第二型半導體材料層342的方法可以是採用磊晶的方式來 進行膜層的堆疊。而第一型半導體材料層322、發光材料 層332以及第二型半導體材料層342的材質可以採用上述 之第一型半導體層220、發光層230以及第二型半導體層 240所使用之材料,相關描述不再贅述。 接著’於第二型半導體材料層342上形成一圖案化罩 幕層370,如圖3B所繪示。在本實施例中,形成圖案化罩 幕層370的方式例如是先形成一圖案化罩幕材料層(未緣 示)然後’對此圖案化罩幕材料層進行微影餘刻製程或其 他適當的圖案化方法以形成圖案化罩幕層370。此外,圖 案化罩幕層370的材質例如是使用鈦金屬,或其他適當金 屬。在一實施例中,圖案化罩幕層370的厚度例:是 100nm ° 然後’進行一光電化學製程與濕蝕刻製程以形成如圖 201015752_w 3C所示之結構,詳細的說明如下: ^參看圖4,其為進行—種光電化學製程的裝置示意 圖。睛搭配參考圖3C,在本實施例中,光電化學製程包括 下列步驟。首先,將半導體晶圓3A置於一第一溶液392 中,其中此第一溶液392例如是去離子水(DIwater)。 ,著’提供一光源394照射於該半導體晶圓3A上, 並於第二型半導體材料層342上施加一偏壓398以形成一 ⑩ 電迴路(未繪不)以利光電化學製程進行。如此,可依序 在第一型半導體材料層342、發光材料層3;32 α及第一型 半導體層幻2形成氧化層,而將氧化層使用一第二溶液(未 繪不)進行移除’其中第二溶液可為酸性溶液或鹼性溶液其 中之一,且本實施例以氣化氫(HC1)溶液作為實施範例,但 不限於此。在本實施例中,氯化氳溶液的濃度例如是 35%HCl:H2〇(l:l),且浸泡的時間例如是在5〜3〇分鐘之 間,最後形成如圖3C所繪示之結構。在一實施例中,光 源394的波長例如是1〇〇〜6()()nm,而其光強度例如 _ 丽〜5(){)陳之間’且其照射時間例如是再G.l〜_分鐘之 間。此外,偏壓的大小例如是_3〇v到+3〇v之直流或交流 電壓,且施加偏壓的時間例如是〇1〜6〇〇分鐘之間。爪 較佳地,反覆進行上述步驟數次,可有效地提升第二 型半導體層340、發光層33〇以及第一型半導體層32〇的 形成速率,並可形成膜層結構較佳的第二型半導體層 340、發光層33G以及第—型半導體層32()。上述僅為舉^ 說明,重複進行上述步驟的次數視使用者的需求而定,本 11 6rW28917twf.doc/n 201015752 發明並不特別限定。 請繼續參考圖3D,接著,移除圖案化罩幕層37〇,並 形成多個電極350於第二型半導體層綱的部分日區域上與 未被發光層330所覆蓋之第一型半導體層32〇上,以分^ 電性連接第二型半導體層揭與第一型半導體層no,如 圖3D所緣示。至此,大致完成一種發光二極^晶片則 的製作流程。 ❹ 在一實施例中,為了使發光二極體晶片300具有較佳 的發光品質,更可於形成上述電極35〇之前,先形成一圖 案化透明導電層360於電極350與第二型半導體層32〇之 間,如圖3E所示。接著,再形成上述之電極35〇,便可完 成一種發光二極體晶片300a的製作步驟,其中發光二極體 晶片300a具有上述之發光二極體晶片2〇〇所描述之特徵與 優點。 ^ 综上所述,本發明之發光二極體晶片及其製作方法至 少具有下列優點。首先,第一型半導體層的表面上與發光 ® 層的侧壁上皆具有多孔隙之微結構’如此一來,將可有效 地知:尚.發光一極體晶片的發光效率。此外,發光層位於第 型半導體層與第二型半導體層,並形成一底切結構,其 發光層蝕刻將可有效地釋放發光層膜層堆疊所產生的應 力,而改善發光二極體晶片被驅動而發光時,所產生波長 漂移的問題’並可有效地提升内部量子化之效率。另外, 發光二極體晶片係透過光電化學製程來形成上述之結構, 在製程實務上’可使用較低廉的設備來完成,並捨棄昂責 12 〇i'W28917twf.doc/n 201015752 電衆台,,並具有較簡易的製作步驟。 太二1已以多個實施例揭露如上、然其並非用以 限疋本發月,任何所屬技術領域巾 脫離本發明之精神和範圍内,當可;㈣許:更 ^本發明之保護賴#視後附之申請專利範_^者 【圖式簡單說明】 片的結構示意圖。 晶片的結構示意圖。 種發光二極體晶片製作方3A to 3E are schematic flow charts showing a method of fabricating a light-emitting diode wafer according to the present invention. Referring to FIG. 3A, a substrate 310 is first provided, and a first type semiconductor material layer 322, a light emitting material layer 332, and a second type semiconductor material layer 342 are sequentially formed on the substrate 310, as shown in FIG. 3A. For the convenience of subsequent description, the first semiconductor material layer 322, the light-emitting layer 332, and the second-type semiconductor material layer 342 of the substrate 310' are collectively referred to as a semiconductor wafer 3A. In the present embodiment, the substrate 31 is, for example, the substrate 210 described above, and the related description will not be repeated. In addition, the method of sequentially forming the first type semiconductor material layer 322, the luminescent material layer 332, and the second type semiconductor material layer 342 may be performed by epitaxial deposition of the film layers. The material of the first type semiconductor material layer 322, the luminescent material layer 332, and the second type semiconductor material layer 342 may be the materials used in the first type semiconductor layer 220, the light emitting layer 230, and the second type semiconductor layer 240 described above. The description will not be repeated. A patterned mask layer 370 is then formed over the second type of semiconductor material layer 342, as depicted in Figure 3B. In this embodiment, the patterning mask layer 370 is formed by, for example, forming a patterned mask material layer (not shown) and then performing a lithography process or other suitable for the patterned mask material layer. A patterning method to form a patterned mask layer 370. Further, the material of the patterned mask layer 370 is, for example, titanium metal or other suitable metal. In one embodiment, the thickness of the patterned mask layer 370 is 100 nm ° and then a photoelectrochemical process and a wet etching process are performed to form a structure as shown in FIG. 201015752_w 3C. The detailed description is as follows: ^ See FIG. 4 It is a schematic diagram of a device for performing a photoelectrochemical process. Referring to Figure 3C, in the present embodiment, the photoelectrochemical process includes the following steps. First, the semiconductor wafer 3A is placed in a first solution 392, wherein the first solution 392 is, for example, DI water. A light source 394 is provided on the semiconductor wafer 3A, and a bias voltage 398 is applied to the second type semiconductor material layer 342 to form a 10 electrical circuit (not shown) for photoelectrochemical processing. In this way, the first type semiconductor material layer 342, the luminescent material layer 3; 32α and the first type semiconductor layer can be sequentially formed into an oxide layer, and the oxide layer is removed using a second solution (not shown). 'The second solution may be one of an acidic solution or an alkaline solution, and the present embodiment uses a gasified hydrogen (HC1) solution as an example, but is not limited thereto. In this embodiment, the concentration of the ruthenium chloride solution is, for example, 35% HCl:H 2 〇 (l:1), and the immersion time is, for example, between 5 and 3 〇 minutes, and finally formed as shown in FIG. 3C. structure. In one embodiment, the wavelength of the light source 394 is, for example, 1 〇〇 to 6 () () nm, and the light intensity thereof is, for example, between _ 丽 〜 5 () {) and its illumination time is, for example, Gl 〜 _ Between minutes. Further, the magnitude of the bias voltage is, for example, a direct current or an alternating current voltage of _3 〇 v to +3 〇 v, and the time during which the bias voltage is applied is, for example, 〇1 to 6 〇〇 minutes. Preferably, the steps are repeated several times to effectively increase the formation rate of the second type semiconductor layer 340, the light emitting layer 33A, and the first type semiconductor layer 32, and form a second film structure. The semiconductor layer 340, the light-emitting layer 33G, and the first-type semiconductor layer 32 (). The above is only a description of the above, and the number of times of repeating the above steps depends on the needs of the user, and the invention is not particularly limited. Referring to FIG. 3D, the patterned mask layer 37 is removed, and a plurality of electrodes 350 are formed on a partial day region of the second semiconductor layer and a first type semiconductor layer covered by the non-emitting layer 330. On the 32 ,, the second type semiconductor layer is electrically connected to the first type semiconductor layer no, as shown in FIG. 3D. So far, the fabrication process of a light-emitting diode chip has been completed. In an embodiment, in order to provide the LED product 300 with better illumination quality, a patterned transparent conductive layer 360 is formed on the electrode 350 and the second type semiconductor layer before the electrode 35 is formed. Between 32〇, as shown in Figure 3E. Then, the electrode 35 is formed to form a step of fabricating the LED wafer 300a. The LED array 300a has the features and advantages described above for the LED wafer. In summary, the light-emitting diode chip of the present invention and the method of fabricating the same have at least the following advantages. First, the surface of the first type semiconductor layer and the sidewall of the light-emitting layer have a porous microstructure. Thus, the luminous efficiency of the light-emitting one-pole wafer can be effectively known. In addition, the light-emitting layer is located on the first-type semiconductor layer and the second-type semiconductor layer, and forms an undercut structure, and the light-emitting layer etching can effectively release the stress generated by the stack of the light-emitting layer film layer, and the light-emitting diode wafer is improved. When driving and emitting light, the problem of wavelength drift is generated' and the efficiency of internal quantization can be effectively improved. In addition, the light-emitting diode chip is formed by the photoelectrochemical process to form the above structure, and can be completed by using low-cost equipment in the process practice, and the abandonment of the 12 〇i'W28917twf.doc/n 201015752 electric station is abandoned. And has a simpler production steps. The present invention has been disclosed in the above embodiments, and is not intended to be limited to the present invention. Any technical field of the invention may be omitted from the spirit and scope of the present invention. #视附附专利专利范_^ [Simplified illustration] The structure of the film. Schematic diagram of the structure of the wafer. Light-emitting diode chip maker

圖1為習知之發光二極體晶 圖2為本發明之發光二極體 圖3A〜圖3E為本發明之— 法的流程示意圖。 圖4為進行一種光電化學製程的裝置示意圖 【主要元件符號說明】 3A :半導體晶圓 100、200、300、300a :發光二極體晶片 110、210、310 ··基板 120、220、320 :第一型半導體層 130、230、330 :發光層 140、240、340 :第二型半導體層 150、250、350 :電極 222 :第一粗糙面 232 :側壁 232a :第二粗糖面 240a :表面積 13 〇iW28917twf.doc/n 230b :底切結構 260、360 :圖案化透明導電層 322 :第一型半導體材料層 332 :發光材料層 342 :第二型半導體材料層 370 :圖案化罩幕層 392 :第一溶液 394 :光源 398 :偏壓1 is a conventional light-emitting diode crystal. FIG. 2 is a light-emitting diode of the present invention. FIG. 3A to FIG. 3E are schematic flowcharts of the method of the present invention. 4 is a schematic view of a device for performing a photoelectrochemical process [main element symbol description] 3A: semiconductor wafer 100, 200, 300, 300a: light emitting diode wafer 110, 210, 310 · · substrate 120, 220, 320: One type semiconductor layer 130, 230, 330: light emitting layer 140, 240, 340: second type semiconductor layer 150, 250, 350: electrode 222: first rough surface 232: side wall 232a: second rough side 240a: surface area 13 〇 iW28917twf.doc/n 230b: undercut structure 260, 360: patterned transparent conductive layer 322: first type semiconductor material layer 332: luminescent material layer 342: second type semiconductor material layer 370: patterned mask layer 392: One solution 394: light source 398: bias

1414

Claims (1)

TW 28917twf.doc/n 201015752 ο 十、申請專利範圍: 1·種發光一極體晶片’包括: 一基板, 一第一型半導體層’配置於該基板上; 一發光層,配置於該第一型半導體層的部分區域上, 其中該弟一型半導體層未被該發光層覆蓋的區域具有一第 一粗糙面,而該發光層的侧壁具有一第二粗糙面,該第一 ❹ 粗糙面與該第二粗糙面係為多孔隙(porous)之微結構 (mioro-roughened structure);以及 一第二型半導體層,具有一第一表面,其中該第二型 半導體層係透過部份之該第一表面覆蓋於該發光層上而具 有一底切(undercut)結構。 2. 如申請專利範圍第1項所述之發光二極體晶片,更 包括多個電極,該些電極其中之一配置於該第二型半導體 層的部分區域上以電性連接該第二型半導體層,而該些電 極之另一配置於未被該發光層所覆蓋之該第一型半導體層 參 上以電性連接該第一型半導體層。 3. 如申請專利範圍第2項所述之發光二極體晶片更 包括一圖案化透明導電層,配置於該些電極與該第二型半 導體層之間。 4. 如申請專利範圍第3項所述之發光二極體晶片,其 中該圖案化透明導電層的材質為銦錫氧化物(IT〇)、氧化鋅 (ΖηΟ)、氧化鋁鋅(ΑΖ〇)、氧化鎵辞(GZ〇)、或鎳/金 (Ni/Au) 〇 15 oTW 28917twf.doc/n 201015752 5.如申請專利範圍第i項所述之發光二極體晶片,其 中該第一型半導體層為一N型半導體層,而該第二型半導 體層為一P型半導體層。 6·如申請專利範圍第1項所述之發光二極體晶片,其 中該第一型半導體層與該第二型半導體層的材質係由 GaN、AlGaN、InGaN、AlInGaN 至少其中之一摻雜 η 族 元素或IV族元素所構成。 7. 如申請專利範圍第1項所述之發光二極體晶片,其 中s亥發光層為一多重量子井發光層。 8. —種發光二極體晶片的製作方法,包括: 提供一基板; 於該基板上依序形成一第一型半導體材料層、一發光 材料層以及一第二型半導體材料層; 於該第二型半導體材料層上形成一圖案化罩幕層;以 及依序將該第一型半導體材料層、該發光材料層、及該第 二型半導體材料層未被該圖案化罩幕層覆蓋的部份氧化以 〇 形成一氧化層;以及蝕刻該氧化層。 9. 如申請專利範圍第8項所述之奋光二極體晶片的製 作方法’其中’形成該氧化層的方法係利用一光電化學 (photo-electrochemical,PEC)製程,包括將具有該第一型半 導體材料層、該發光材料層以及該第二型半導體材料層的 該基板置於一第一溶液中,並照射一波長範圍介於100奈米 至600奈米間之光源;以及於該第二型半導體材料層上外加 偏壓範圍:-30V到+30V之直流或交流電壓形成一電流迴 16 〇fW28917twf.doc/n 路。 10. 如申請專利範圍第8項所述之發光二極體晶片的 製作方法,其中’形成該氧化層的方法係利用一光電化學 (photo-electrochemical,PEC)製程,包括於該第一型、第二 型半導體材料層上外加偏壓範圍在_3〇v到+30V之直流或 交流電壓,並將具有該第一型半導體材料層、該發光材料 層以及該第二型半導體材料層的該基板置於一第一溶液中 ❹ 並照射一波長範圍介於100奈米至600奈米間之光源。 11. 如申請專利範圍第8項所述之發光二極體晶片的 製作方法,係利用一濕蝕刻製程以蝕刻該些氧化層,其為 使用一第二溶液進行移除。 12·如申請專利範圍第9項所述之發光二極體晶片的 製作方法,其中該第一溶液為去離子水(dei〇nized water,DI water)。 】13.如申請專利範圍第1〇項所述之發光二極體晶片的 製作方法’其中該第一溶液為去離子水(dei〇nize(jwater di ❹ water)。 〆14]如申請專利範圍第n項所述之發光二極體晶片的 製作方法,其中,該第二溶液為酸性溶液或鹼性溶液其中 15.如申請專利範圍第8項所述之發光二極體晶片 製作方法’更包括: 形成< 多個電極於該第二型半導體層的部分區域上以 及未被该發光層覆蓋的該第一型半導體層上以分別電性 17 201015752 * W 28917twf.doc/n 連接該第二型半導體層與該第一型半導體層。 16. 如申請專利範圍第15項所述之發光二極體晶片的 製作方法,更包括形成一圖案化透明導電層於該些 盥 該第二塑半導體層之間。 '、 17. 如申請專利範圍第8項所述之發光二極體晶片的 製作方法,其中該第一型半導體材料層與該第二型半筹體 材料層的材質為係由GaN、AlGaN、inGaN、AlInGaN至 少其中之一摻雜Π族元素或IV族元素所構成。TW 28917twf.doc/n 201015752 ο. Patent application scope: 1. A light-emitting one-pole wafer 'includes: a substrate, a first-type semiconductor layer' disposed on the substrate; a light-emitting layer disposed at the first a portion of the semiconductor layer, wherein the region of the semiconductor layer not covered by the luminescent layer has a first rough surface, and the sidewall of the luminescent layer has a second rough surface, the first rough surface And the second rough surface is a porous structure (mioro-roughened structure); and a second type semiconductor layer having a first surface, wherein the second type semiconductor layer is transparent to the portion The first surface covers the luminescent layer and has an undercut structure. 2. The light-emitting diode chip of claim 1, further comprising a plurality of electrodes, one of the electrodes being disposed on a portion of the second type semiconductor layer to electrically connect the second type a semiconductor layer, and the other of the electrodes is disposed on the first type semiconductor layer not covered by the light emitting layer to electrically connect the first type semiconductor layer. 3. The light emitting diode chip of claim 2, further comprising a patterned transparent conductive layer disposed between the electrodes and the second type semiconductor layer. 4. The light-emitting diode chip according to claim 3, wherein the patterned transparent conductive layer is made of indium tin oxide (IT〇), zinc oxide (ΖηΟ), and aluminum zinc oxide (ΑΖ〇). , gallium oxide (GZ〇), or nickel/gold (Ni/Au) 〇15 oTW 28917twf.doc/n 201015752 5. The light-emitting diode wafer according to claim i, wherein the first type The semiconductor layer is an N-type semiconductor layer, and the second type semiconductor layer is a P-type semiconductor layer. 6. The light-emitting diode chip according to claim 1, wherein the material of the first type semiconductor layer and the second type semiconductor layer is doped with at least one of GaN, AlGaN, InGaN, and AlInGaN. It is composed of a group element or a group IV element. 7. The light-emitting diode wafer according to claim 1, wherein the s-light emitting layer is a multiple quantum well light-emitting layer. 8. A method of fabricating a light-emitting diode wafer, comprising: providing a substrate; sequentially forming a first type semiconductor material layer, a light emitting material layer, and a second type semiconductor material layer on the substrate; Forming a patterned mask layer on the layer of the second type semiconductor material; and sequentially, the first type semiconductor material layer, the luminescent material layer, and the portion of the second type semiconductor material layer not covered by the patterned mask layer The oxidation is performed to form an oxide layer by ruthenium; and the oxide layer is etched. 9. The method for fabricating a photodiode wafer as described in claim 8 wherein the method of forming the oxide layer utilizes a photo-electrochemical (PEC) process, including the first type The substrate of the semiconductor material layer, the luminescent material layer and the second type semiconductor material layer are placed in a first solution and irradiated with a light source having a wavelength ranging from 100 nm to 600 nm; and the second The applied semiconductor material layer has a bias voltage range: -30V to +30V DC or AC voltage to form a current back to 16 〇fW28917twf.doc/n. 10. The method for fabricating a light-emitting diode wafer according to claim 8, wherein the method of forming the oxide layer utilizes a photo-electrochemical (PEC) process, including the first type, Applying a DC or AC voltage having a bias voltage ranging from _3 〇v to +30 V on the second type semiconductor material layer, and having the first type semiconductor material layer, the luminescent material layer, and the second type semiconductor material layer The substrate is placed in a first solution and irradiated with a source of light having a wavelength ranging from 100 nm to 600 nm. 11. The method of fabricating a light-emitting diode wafer according to claim 8, wherein the oxide layer is etched by a wet etching process for removing using a second solution. 12. The method of fabricating a light-emitting diode wafer according to claim 9, wherein the first solution is dei〇nized water (DI water). 13. The method for fabricating a light-emitting diode wafer according to the first aspect of the invention, wherein the first solution is deionized water (dewatering water). 〆14] The method for fabricating a light-emitting diode wafer according to item n, wherein the second solution is an acidic solution or an alkaline solution, wherein the method for fabricating a light-emitting diode wafer according to claim 8 is further The method includes: forming a plurality of electrodes on a portion of the second type semiconductor layer and on the first type semiconductor layer not covered by the light emitting layer to electrically connect the first layer to each of the electrical layers 17 201015752 * W 28917twf.doc/n The method of fabricating a light-emitting diode wafer according to claim 15, further comprising forming a patterned transparent conductive layer on the second plastic film The method of fabricating a light-emitting diode wafer according to claim 8, wherein the material of the first type semiconductor material layer and the second type semiconductor material layer is From GaN, AlGaN inGaN, AlInGaN wherein at least one doping element or Π Group IV elements of the composition. 1818
TW97139411A 2008-10-14 2008-10-14 Light emitting diode chip and fabricating method thereof TWI446571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139411A TWI446571B (en) 2008-10-14 2008-10-14 Light emitting diode chip and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139411A TWI446571B (en) 2008-10-14 2008-10-14 Light emitting diode chip and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW201015752A true TW201015752A (en) 2010-04-16
TWI446571B TWI446571B (en) 2014-07-21

Family

ID=44830159

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139411A TWI446571B (en) 2008-10-14 2008-10-14 Light emitting diode chip and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI446571B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790045A (en) * 2011-05-18 2012-11-21 展晶科技(深圳)有限公司 Light emitting diode array and manufacturing method thereof
CN102881781A (en) * 2011-07-14 2013-01-16 隆达电子股份有限公司 Light emitting diode and forming method thereof
CN102956765A (en) * 2011-08-23 2013-03-06 隆达电子股份有限公司 Light emitting diode and forming method thereof
TWI420706B (en) * 2011-03-03 2013-12-21 Advanced Optoelectronic Tech Led and method for manufacturing the same
CN113614933A (en) * 2020-03-03 2021-11-05 东莞市中麒光电技术有限公司 Light emitting diode and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420706B (en) * 2011-03-03 2013-12-21 Advanced Optoelectronic Tech Led and method for manufacturing the same
CN102790045A (en) * 2011-05-18 2012-11-21 展晶科技(深圳)有限公司 Light emitting diode array and manufacturing method thereof
CN102881781A (en) * 2011-07-14 2013-01-16 隆达电子股份有限公司 Light emitting diode and forming method thereof
TWI447950B (en) * 2011-07-14 2014-08-01 Lextar Electronics Corp Leds and methods for manufacturing the same
CN102881781B (en) * 2011-07-14 2015-02-18 隆达电子股份有限公司 Light emitting diode and forming method thereof
CN102956765A (en) * 2011-08-23 2013-03-06 隆达电子股份有限公司 Light emitting diode and forming method thereof
TWI501419B (en) * 2011-08-23 2015-09-21 Lextar Electronics Corp Leds and methods for manufacturing the same
CN113614933A (en) * 2020-03-03 2021-11-05 东莞市中麒光电技术有限公司 Light emitting diode and preparation method thereof

Also Published As

Publication number Publication date
TWI446571B (en) 2014-07-21

Similar Documents

Publication Publication Date Title
JP5165276B2 (en) Vertical structure gallium nitride based light-emitting diode device and method of manufacturing the same
US8198114B2 (en) Vertical nitride semiconductor light emitting diode and method of manufacturing the same
TWI363440B (en) Light-emitting device, light-emitting diode and method for forming a light-emitting device
US8791480B2 (en) Light emitting device and manufacturing method thereof
TWI353068B (en) Semiconductor light-emitting element and process f
CN101969089B (en) Method for manufacturing gallium nitride-based light-emitting diode with current barrier layer
TW200828642A (en) Electroluminescent device, and fabrication method thereof
TWI434433B (en) Method for fabricating light-emitting diode
CN101350389A (en) Nitrifier semiconductor light emitting element and method for fabricating the same
WO2010020069A1 (en) METHOD FOR FABRICATING InGaAlN LIGHT-EMITTING DIODES WITH A METAL SUBSTRATE
CN105023984B (en) A kind of preparation method of the light emitting diode (LED) chip with vertical structure based on GaN thick films
WO2012130115A1 (en) Flip-chip light emitting diode and manufacturing method thereof
TW201208116A (en) Light emitting diode and fabricating method thereof
CN112018223A (en) Thin film flip structure Micro-LED chip with transfer printing of bonding layer and preparation method thereof
TW201015752A (en) Light emitting diode chip and fabricating method thereof
TW200933936A (en) Optoelectronic semiconductor body and method for production of optoelectronic semiconductor body
KR100762003B1 (en) Method of manufacturing vertically structured nitride type light emitting diode
KR101018280B1 (en) Vertical Light Emitting Diode and manufacturing method of the same
CN102655195B (en) Light-emitting diode and manufacturing method thereof
CN110808319B (en) Reverse polarity vertical light emitting diode and preparation method thereof
TWI288492B (en) Light emitting diode and the method for manufacturing the same
TW201244162A (en) Light emitting diode and method for making it
TW201232809A (en) Method for manufacturing light emitting chip
JP6260159B2 (en) Nitride semiconductor light emitting diode and manufacturing method thereof
CN212542467U (en) High-brightness LED