TW201013339A - Substrate processing method, substrate processing equipment, exposure method and device fabrication method - Google Patents

Substrate processing method, substrate processing equipment, exposure method and device fabrication method Download PDF

Info

Publication number
TW201013339A
TW201013339A TW098126526A TW98126526A TW201013339A TW 201013339 A TW201013339 A TW 201013339A TW 098126526 A TW098126526 A TW 098126526A TW 98126526 A TW98126526 A TW 98126526A TW 201013339 A TW201013339 A TW 201013339A
Authority
TW
Taiwan
Prior art keywords
processing
substrate
exposure
mark
detecting
Prior art date
Application number
TW098126526A
Other languages
Chinese (zh)
Inventor
Masaki Kato
Manabu Toguchi
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW201013339A publication Critical patent/TW201013339A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An exposure method which performs determined processes precisely in multiple regions set on a substrate is provided. The exposure method performs determined processes orderly in multiple processing regions set on a substrate at different positions in a first direction. The exposure method includes: a detection step to detect multiple marks set with respect to the multiple processing regions on the substrate; and a processing step to perform the following processes orderly on the multiple processing regions, i.e. to align locations of the processing regions based on the detected results in the detection step and to perform scanning and the determined processes simultaneously on the processing regions toward a second direction intersected with the first direction. The detection step includes: to move the processing regions to the scanning line in the processing step or adjacent to the scanning line in the processing step and to detect the marks set with respect to the processing regions among the multiple marks.

Description

201013339 32112pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種依序對設於基板上的多個處理 區域進行處理的基板處理方法、基板處理裝置、曝光方法 及元件製造方法。 【先前技術】 先前’液晶顯示元件或半導體元件等各種元件,是利 用將設於光罩(mask )等上的圖案(pattern )轉印至感光 基板上的光微影(photolithography)步驟來製造。該光微 影步驟中使用的曝光裝置’是例如一面對載置著光罩的光 罩載物台(mask stage)、以及載置著感光基板的基板載物 台進行同步掃描’一面經由投影光學系統(pr〇jecti〇n optical system)將形成於光罩上的圖案轉印至感光基板。 一般而言,針對液晶顯示元件的光微影步驟,是於一 片感光基板上設定多個曝光區域(圖案轉印區域),依序對 各曝光區域進行曝光後轉印圖案。此時,重複進行如下處 理,即,對設於各曝光區域附近的對準標記(alignment mark)進行檢測,並根據該檢測結果使每個曝光區域對準 (位置對準)’藉此對經設定的曝光區域進行重合曝光(例 如參照日本專利特開2006-195353號公報)。 [專利文獻1]曰本專利特開2006-195353號公報 • 液晶顯示元件等近年來其大型化備受期待,對此,曝 光裝置中支持感光基板的基板載物台的大型化得到促進發 展然而存在如下問題.因基板載物台變得大型化,故 201013339 32112pif 例如對應基板載物台的移動,曝光裝置的構造物(基座 (pedestal)等)上會產生變形,對基板上的曝光區域進行 重合曝光時’會因其變形而導致重合精度降低。 【發明内容】 本發明的目的在於提供一種可以對設定於基板上的 多個處理區域,高精度地進行規定處理的基板處理方法、 基板處理裝置、曝光方法及元件製造方法。 ❹ 本發明的第1態樣的基板處理方法,其依序對設於基 板上且在第1方向上相互不同的位置設置的多個處理區域 進行規定處理,其包括:檢測步驟,檢測對應著上述多個 處理區域設於上述基板上的多個標記;以及處理步驟,依 序對上述多個處理區域進行如下處理,即,一面根據上述 檢測步驟的檢測結果進行上述處理區域的位置對準朝著 與上述第1方向交又的第2方向對該處理區域進行掃描, =進行上述規定處理;上述檢測步驟包含依序對上述多 域進行如下處理,即,使上述處理區域移動至ί 的掃描路徑或者該掃描路徑的附近,對上述 多個標记帽應著該處理區域而設置的標記進行檢測。 含至= 個==的基板處理方法,其依序對包 對每一個上述第】及第2基板,依 5 201013339 32H2pif 序對上述多個處理區域進行如下處理,即,一面根據上述 檢測步驟的檢測結果進行上述處理區域的位置對準,朝著 與上述第1方向交又的第2方向掃描該處理區域,一面進 行上述規定處理;上述檢測步驟包括:第t檢測步驟,對 上述第1基板的上述多個處理區域進行如下處理,即,使 上述處理區域移動至上述處理步驟中的掃描路徑或者該掃 描路徑附近,對上述多個標記中對應著該處理區域設置的 標記進行檢測,第2檢測步驟,依序對上述第丨及第2基 板進行,-併檢測各個上述第i及第2基板的上述多個處 © 理區域對應設置的上述多個標記;以及算出步驟,算出對 於上述第1基板的上述第i及第2檢測步驟之各檢測結果 的關聯值。上述處理步驟一面根據上述關聯值、及上述第 2檢測步驟對於上述第2基板的檢測結果,進行該第2基 板的上述處理區域的位置對準,一面朝著上述第2方向掃 描該處理區域,進行上述規定處理。 而且,本發明第3態樣的曝光方法,其依序對基板上 的多個曝光區域進行曝光,其特徵在於包括:檢測步驟, ❹ 檢測對應著上述曝光區域設置於上述基板上的標記;以及 曝光步驟,根據上述檢測步驟的檢測結果,進行上述曝光 區域的位置對準,沿掃描方向對該曝光區域進行掃描曝 光,且,上述檢測步驟使上述曝光區域移動至上述曝光步 驟的掃描路徑上或者該掃描路徑的延長線上,對與該曝光 區域對應的上述標記進行檢測。 而且’本發明第4態樣的曝光方法,其依序對基板上 6 201013339 32112pif 的多個曝光區域進行曝光,其特徵在於包括:檢測步驟, 檢測對應著上述曝光區域設置於上述基板上的標記;以及 曝光步驟,根據上述檢測步驟的檢測結果,進行上述曝光 區域的位置對準,沿掃描方向對該曝光區域進行掃描曝 光’且,上述檢測步驟包括:第丨檢測步驟,使上述曝光 區域移動至上述曝光步驟中的掃描路徑上或者該掃描路徑 的延,線上,對與該曝光區域的第1端部鄰接而設置的上 ❹ f標記進行制;以及第2檢測步驟,—併檢騎應著多 固曝光區域而與該曝光區域的第2端部鄰接設置的多個上 述標記;上述曝光步驟根據上述第】及第2檢測步驟的各 檢測結果,進行上述曝光區域的位置對準。 而且本發明第5態樣的曝光方法,其依序對含有第 =及=2基板的多個基板的各基板上設置的多個曝光區域 ^曝光’其特徵在於包括:檢測步驟,檢騎應著上述 上、置於上述基板上的標記;以及曝光步驟,根據 上述_步_檢騎果進行上述曝光區域的位置對準, 驟^方^對該曝光區域進行掃描曝光;且,上述檢測步 牛·第1檢測步驟’使上述曝光區域移動至上述曝光 2中的掃描路徑上或者該掃描路徑的延長線上,對與該 f先,域對應的上述標記進行檢測,·第2檢測步驟,對與 *===多個上述標記一併進行檢測;以 其述第1及第2檢測步驟對於上述第1 值、及卜果的關聯值;上述曝光步驟根據上述關聯 述第2檢測步驟對於上述第2基板的檢測結果, 201013339 32112pif 進行該第2基板的上述曝光區域的位置對準。 而且,本發明第6態樣的基板處理裝置,其依序對設 於基板上且在第1方向之相互不同的位置上所設置的多個 處理區域進行規定處理,其包括:第i載物台,支持上述 基板,可朝著與上述第1方向交又的第2方向移動;標記 檢測裝置,檢測對應著上述多個處理區域設置於上述基板 上的多個標記;以及控制部,使用本發明第丨或第2 ^樣 的基板處理方法,對上述多個處理區域進行上述規定處理。 而且,本發明第7態樣的基板處理裝置,其依序對設 置於基板上且在第1方向上相互不_位 個處理區域進行規定處理,其包括1 i載物m二 述絲’可朝著與上述第1方向交又的第2方向移動;、至 ^一個基準構件,具有在上述第1方向上相互不同的位置 所設置的第1基準標記,且相對於上述第丨載物台中的 上通基板的支持空間,而配置於上述第2方向的至少一方 1第2載物台,保持形成著第2基準標記的第2基準構 及控制部’使用本發明的第i或第2態樣的基板處 方法’對上述多個處理區域進行上述規定處理。 此外’本發明第8態樣的元件製造方法,其包括:使 發明的第1或第2態樣的基板處理方法,對設置於上 上的上述多個處理區域進行上述規定處理;以及根 f該規定處理的結果,對經上述規定處理的上述基板進行 [發明效果] 201013339 32112pif 根據本發明的態樣,可以對設定於基板上的多個處理 區域高精度地進行規定處理。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 以下’參照圖式來說明本發明實施形態的曝光方法及 曝光裝置。圖1是本發明第i實施形態的曝光裝置的概略 φ 立體®,圖2是表邱純學緖及鱗魏的構成之 圖。圖1所示的曝光裝置ΕΧ,是使光罩¥與基板ρ相對 於曝光光線同步移動進行掃描曝光的掃描型曝光裝置。以 下說明中’將投影光學系統PL的光轴方向設為2轴方向, 將與Ζ軸方向垂直的方向上光罩Μ及基板ρ的同步移動 方向(掃描方向)設為X軸方向,將與ζ轴方向及X轴 方向正交的方向(掃描正交方向)設為γ轴方向,並將圍 繞X軸、圍繞γ轴、圍繞ζ軸的各旋轉方向設為π方向、 0Υ方向、0Ζ方向。 • _曝光裝置既具備:作為第2載物台的光罩載物台(未 圖示),其支持形成有圖案的作為圖案保持構件的光罩Μ ; 作為第1載物台的基板載物台PST,其介著基板載且 (hoWer) PH,支持例如於玻璃基板上塗佈光阻劑 (Photoresist)等而形成的基板p ;照明光學系統正,其利 用曝光光線來對光罩Μ進行照明;投影光皋系绩pL 將由帳細㈣糊絲 以及作為標記檢測裝置的對準系統A,其檢測基板p上的 9 201013339 32112pif 與曝光區域對應的標記。照明光學系統IL具有7個照明系 統模組(module)(未圖示)’且各照明系統模組分別於χ 軸方向及Υ軸方向上保持隔開規定間隔配置。自7個照明 系統模組中分別射出的曝光光線’分別對光罩Μ上的不'同 照明區域進行照明。 與基板載物台PST相對向的光罩載物台,與可進行一 維掃描曝光的Υ軸方向相比,在X轴方向具有較長的行程 (stroke) ’且藉由控制部CONT來控制其之驅動。投影光 學系統PL具有與照明系統模組數量相對應的多個(本實 © 施形態中為7個)的投影光學模組PLa〜PLg (其中,投影 光學模組PLd未圖示)。投影光學模組PLa〜PLg將圖案影 像投影於基板P上的投影區域中,使存在於光罩M的照^ 區域中的圖案影像成像於基板P上。如圖1所示,投影光 學系統PL中’投影光學模組PLa、PLc、PLe、PLg與投 影光學模組PLb、PLd、PLf分別於Y方向上以規定間隔 而配置,且全體配置成鋸齒狀。 如圖2所示,投影光學模組PLa〜PLg (圖2中僅表 ❹ 示投影光學模組PLa、pLb)分別具備影像位移機構19、 聚焦位置調整機構20、兩組反射折射型光學系統22、23、 視場光闌(visual field diaphragm ) 24、以及倍率調整機構 25 °影像位移機構19使基板P上的圖案影像移動至γ轴 方向或者X軸方向,聚焦位置調整機構20使圖案影像的 像面位置於Z軸方向上變化。穿透光罩Μ的曝光光線在穿 透影像位移機構19、聚焦位置調整機構20之後,將射入 10 201013339 32112pifBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate processing method, a substrate processing apparatus, an exposure method, and a device manufacturing method for sequentially processing a plurality of processing regions provided on a substrate. [Prior Art] Conventionally, various elements such as a liquid crystal display element or a semiconductor element are manufactured by a photolithography step of transferring a pattern provided on a mask or the like onto a photosensitive substrate. The exposure apparatus used in the photolithography step is, for example, a mask stage facing the photomask and a substrate stage on which the photoreceptor substrate is placed for simultaneous scanning. An optical system transfers a pattern formed on the photomask to the photosensitive substrate. In general, in the photolithography step of the liquid crystal display device, a plurality of exposure regions (pattern transfer regions) are set on one photosensitive substrate, and the exposure regions are sequentially exposed to the respective exposed regions. At this time, the following processing is repeated, that is, an alignment mark provided in the vicinity of each exposure region is detected, and each exposure region is aligned (positioned) according to the detection result. The set exposure area is subjected to overlap exposure (for example, refer to Japanese Laid-Open Patent Publication No. 2006-195353). [Patent Document 1] Japanese Laid-Open Patent Publication No. 2006-195353. The liquid crystal display device and the like have been expected to increase in size in recent years, and the size of the substrate stage supporting the photosensitive substrate in the exposure apparatus has been promoted. There is a problem in that the substrate stage is increased in size, so that 201013339 32112pif, for example, corresponds to the movement of the substrate stage, and the structure of the exposure apparatus (pedestal, etc.) is deformed, and the exposed area on the substrate is exposed. When the coincidence exposure is performed, the coincidence accuracy may be lowered due to the deformation thereof. SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate processing method, a substrate processing apparatus, an exposure method, and a device manufacturing method which can perform predetermined processing on a plurality of processing regions set on a substrate with high precision. The substrate processing method according to the first aspect of the present invention, wherein the plurality of processing regions provided on the substrate and disposed at positions different from each other in the first direction are sequentially subjected to predetermined processing, and includes: a detecting step, and the detecting corresponds to a plurality of markings provided on the substrate on the plurality of processing regions; and a processing step of sequentially performing processing on the plurality of processing regions, that is, performing alignment of the processing regions according to a detection result of the detecting step Scanning the processing area in the second direction intersecting with the first direction, and performing the predetermined processing; the detecting step includes sequentially performing the processing on the multi-domain, that is, moving the processing area to the scanning of ί The path or the vicinity of the scanning path detects the mark provided by the plurality of marking caps in the processing area. a substrate processing method including ====, which sequentially processes the plurality of processing regions according to a sequence of 5 201013339 32H2pif for each of the first and second substrates, that is, according to the detecting step The detection result is performed by aligning the processing region, and the predetermined processing is performed while scanning the processing region in a second direction intersecting the first direction. The detecting step includes a tth detecting step for the first substrate The plurality of processing regions are configured to move the processing region to a scanning path or a vicinity of the scanning path in the processing step, and detect a flag corresponding to the processing region among the plurality of markers, and second a detecting step of sequentially performing the plurality of marks on the first and second substrates, and detecting the plurality of marks corresponding to the plurality of processing regions of the i-th and second substrates; and calculating a step of calculating The correlation value of each detection result of the above-described i-th and second detection steps of the substrate. The processing step scans the processing region toward the second direction by performing alignment of the processing region of the second substrate based on the correlation value and the detection result of the second detecting step on the second substrate. , the above prescribed processing. Further, a third aspect of the present invention provides an exposure method for sequentially exposing a plurality of exposure regions on a substrate, comprising: a detecting step of: detecting a mark corresponding to the exposure region disposed on the substrate; In the exposing step, according to the detection result of the detecting step, performing alignment of the exposed area, scanning exposure of the exposed area along the scanning direction, and the detecting step moving the exposed area to the scanning path of the exposure step or The mark corresponding to the exposure area is detected on an extension line of the scan path. Further, in the exposure method of the fourth aspect of the present invention, the plurality of exposure regions on the substrate 6 201013339 32112pif are sequentially exposed, characterized by comprising: a detecting step of detecting a mark corresponding to the exposure region disposed on the substrate And an exposing step of performing alignment of the exposed area according to the detection result of the detecting step, and performing scanning exposure on the exposed area along the scanning direction, and the detecting step includes: a second detecting step of moving the exposed area To the scanning path in the exposure step or the extension line of the scanning path, the upper ❹ f mark provided adjacent to the first end of the exposure area is formed; and the second detecting step, and the detecting is performed a plurality of the marks provided adjacent to the second end of the exposure region in the multi-solid exposure region; and the exposing step performs alignment of the exposure regions based on the detection results of the first and second detection steps. Further, in the exposure method according to the fifth aspect of the present invention, the plurality of exposure regions provided on the respective substrates of the plurality of substrates including the first and second substrates are sequentially exposed, wherein the detection step includes: detecting the step, and detecting the riding And the exposing step, performing the scanning alignment of the exposed area according to the step _step detecting the riding angle, and performing scanning exposure on the exposed area; and the detecting step The cow first detecting step 'moves the exposure region to the scanning path in the exposure 2 or the extension line of the scanning path, and detects the mark corresponding to the domain of the f first, and the second detecting step, The detection is performed together with *=== a plurality of the above-mentioned markers; the first and second detection steps are related to the first value and the correlation value of the result; and the exposure step is performed according to the second detection step described above. As a result of detecting the second substrate, 201013339 32112pif performs alignment of the exposure region of the second substrate. Further, a substrate processing apparatus according to a sixth aspect of the present invention sequentially performs a predetermined process on a plurality of processing regions provided on a substrate and at positions different from each other in the first direction, and includes: an i-th load And supporting the substrate to move in a second direction that intersects the first direction; the mark detecting device detects a plurality of marks that are disposed on the substrate corresponding to the plurality of processing regions; and the control unit uses the present According to a third aspect or a second aspect of the substrate processing method, the predetermined processing is performed on the plurality of processing regions. Further, in the substrate processing apparatus according to the seventh aspect of the present invention, the processing unit provided on the substrate and not in the first direction in the first direction is subjected to a predetermined process, and includes a 1 m load m Moving in a second direction that intersects with the first direction; and a reference member having a first reference mark provided at a position different from each other in the first direction, and being opposed to the second stage At least one of the second stages disposed in the second direction, and the second reference structure and the control unit ′ that forms the second reference mark are used in the second or second aspect of the present invention. In the method of the substrate, the above-described predetermined processing is performed on the plurality of processing regions. Further, a method of manufacturing an element according to an eighth aspect of the present invention includes the substrate processing method according to the first or second aspect of the invention, wherein the predetermined processing is performed on the plurality of processing regions provided on the upper side; As a result of the predetermined processing, the substrate subjected to the above-described regulation is subjected to the effect of the invention. 201013339 32112pif According to the aspect of the invention, it is possible to perform predetermined processing on a plurality of processing regions set on the substrate with high precision. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Hereinafter, an exposure method and an exposure apparatus according to embodiments of the present invention will be described with reference to the drawings. Fig. 1 is a view showing the outline of an exposure apparatus according to an i-th embodiment of the present invention, and Fig. 2 is a view showing the configuration of a table of purely Xue Xuan and Wei Wei. The exposure apparatus 图 shown in Fig. 1 is a scanning type exposure apparatus that performs scanning exposure by moving a mask ¥ and a substrate ρ in synchronization with exposure light. In the following description, 'the optical axis direction of the projection optical system PL is set to the two-axis direction, and the synchronous movement direction (scanning direction) of the mask Μ and the substrate ρ in the direction perpendicular to the Ζ-axis direction is set to the X-axis direction, and The direction orthogonal to the x-axis direction (scanning orthogonal direction) is set to the γ-axis direction, and the respective rotation directions around the X-axis, around the γ-axis, and around the ζ-axis are set to the π direction, the 0 Υ direction, and the 0 Ζ direction. . The _exposure device includes a mask stage (not shown) as a second stage, and supports a mask 作为 as a pattern holding member in which a pattern is formed; and a substrate carrier as the first stage The stage PST supports a substrate p formed by coating a photoresist on a glass substrate, for example, on a substrate (hoWer) PH. The illumination optical system is used to expose the mask by exposure light. Illumination; projection pupil performance pL will be based on the fine (4) paste and the alignment system A as the mark detecting means, which detects the mark corresponding to the exposure area of 9 201013339 32112pif on the substrate p. The illumination optical system IL has seven illumination system modules (not shown), and each illumination system module is disposed at a predetermined interval in the x-axis direction and the x-axis direction. The exposure light rays respectively emitted from the seven illumination system modules respectively illuminate the non-irradiated areas on the mask. The reticle stage facing the substrate stage PST has a longer stroke in the X-axis direction than the Υ-axis direction in which one-dimensional scanning exposure is possible, and is controlled by the control unit CONT Its drive. The projection optical system PL has a plurality of projection optical modules PLa to PLg (the projection optical module PLd is not shown) corresponding to the number of illumination system modules. The projection optical modules PLa to PLg project the pattern image on the projection area on the substrate P, and form the pattern image existing in the photographing area of the mask M on the substrate P. As shown in FIG. 1, in the projection optical system PL, the projection optical modules PLa, PLc, PLe, and PLg and the projection optical modules PLb, PLd, and PLf are arranged at predetermined intervals in the Y direction, and are arranged in a zigzag manner as a whole. . As shown in Fig. 2, the projection optical modules PLa to PLg (only the projection optical modules PLa and pLb are shown in Fig. 2) respectively include an image shifting mechanism 19, a focus position adjusting mechanism 20, and two sets of catadioptric optical systems 22. 23, a visual field diaphragm 24, and a magnification adjustment mechanism 25° image displacement mechanism 19 moves the pattern image on the substrate P to the γ-axis direction or the X-axis direction, and the focus position adjustment mechanism 20 makes the pattern image The image plane position changes in the Z-axis direction. The exposure light penetrating through the mask 在 will penetrate the image displacement mechanism 19 and the focus position adjustment mechanism 20, and will be injected into the 10 201013339 32112pif

至第1組反射折射型光學系統22中。反射折射型光學系統 22將形成光罩Μ的圖案的中間影像(intermediate image), 藉由構成反射折射型光學系統22的偏轉光學構件,作為影 像旋轉機構,圍繞規定軸進行旋轉,可使中間影像及圖案 影像進行旋轉。於該中間影像位置上,配置有視場光閣 24。視場光闌24設定基板P上的投影區域,且配置於相 對基板P與光罩Μ大致共軛的位置上。穿透視場光闌24 的曝光光線將射入至第二組反射折射型光學系統23中。反 射折射型光學系統23具有與反射折射型光學系統22相同 的構成。自反射折射型光學系統23射出的曝光光線在穿透 倍率調整機構25之後,使光罩Μ的圖案影像以正像等倍 率成像於基板Ρ上。倍率調整機構25使投影於基板ρ上 的圖案影像的倍率產生變化。 支持基板Ρ的基板載物台pST,與可進行一維掃描曝 光的Y轴方向相比’在X軸方向上具有較長的行程,且藉 由控制部CONT來控制其驅動。再者,基板載物台為 可沿Z轴方向、及ΘΧ、0Υ、θΖ方向移動之構成。於基 板載物台PST上的X軸方向及丫轴方向各自的端緣,設 置著移動鏡34a、34b。在延伸於丫轴方向上的移動鏡34A 上’對向配置有兩個雷射干涉儀(w interferometer ) =1 Px+2 一而且’延伸於乂轴方向上的移動鏡3扑上對 射干涉儀pyl、p 分別對移動鏡仏照射雷射光,檢 ' a、立置。並且,雷射干涉儀Pyl〜Py3對移 11 201013339 32112pif 動鏡34b照射雷射光,檢測移動鏡34b的位置。雷射干涉 儀Pxl、Px2、Pyl〜Py3的檢測結果將被輸出至控制部 CONT,控制部CONT根據檢測結果’監視基板載物台PST 的位置(姿勢),並將基板載物台PST設定成所需位置(姿 勢)。再者,於光罩載物台上的X軸方向及Y轴方向各自 的端緣亦與基板載物台同樣地設置著移動鏡,且於各移動 鏡上對向配置有雷射干涉儀。雷射干涉儀的檢測結果將被 輸出至控制部CONT,控制部CONT根據雷射干涉儀的檢 測結果,監視光罩載物台的位置(姿勢),並將光罩載物台 設定成所需位置(姿勢)。 圖3是表示對準系統AL、7個投影區域50a〜50g、 基板P上的曝光區域PA1〜PA6及基板P上的標記mii〜 m46的配置關係之圖。如圖3所示,基板p上的投影光學 模組PLa〜PLg的投影區域50a〜50g分別設定成梯形形 狀。投影區域50a〜50g ’對應於投影光學模組PLa〜PLg 的配置而配置成鋸齒狀。而且,投影區域5〇a〜5〇g以相鄰 技影區域的端部(邊界部、接合部)彼此重合於γ轴方向 上的方式配置。 其次,說明對準系統AL。對準系統AL對設置於基板 P上的標記進行檢測,如圖丨及圖2所示,其與基板p相 對向設置於投影光學系統PL的投影光學模組pLb、似、 PLf的下部。對準系統AL是離轴(off axis)方式的對準 系統,如圖3所示,且具備排列配置於γ轴方向上的_ 對準檢測部AL1〜AL6。對準系統AL配置成使γ勒方向 201013339 32112pif 的中心位置,與投影光學系統PL的Y轴方向的中心位置 大致一致。而且’對準系統AL配置成沿X軸方向僅與投 影光學系統PL相距對應於基板載物台pST的所需的加速 距離及穩定距離之距離,以便於下述標記的檢測處理後, 不進行基板載物台PST的步進動作便可開始掃描曝光。另 一方面,於基板Ρ上設置著用於下述曝光區域的對準處理To the first group of catadioptric optical systems 22. The catadioptric optical system 22 forms an intermediate image of the pattern of the mask ,, and the deflecting optical member constituting the catadioptric optical system 22 is rotated as a video rotating mechanism around a predetermined axis to obtain an intermediate image. And the pattern image is rotated. At the intermediate image position, a field of view light chamber 24 is disposed. The field stop 24 sets the projection area on the substrate P, and is disposed at a position where the opposite substrate P is substantially conjugate with the mask Μ. The exposure light that passes through the see-through field stop 24 will be incident into the second set of catadioptric optical systems 23. The retroreflective optical system 23 has the same configuration as the catadioptric optical system 22. The exposure light emitted from the catadioptric optical system 23 is passed through the magnification adjustment mechanism 25, and the pattern image of the mask 成像 is imaged onto the substrate 以 at a magnification of a positive image. The magnification adjustment mechanism 25 changes the magnification of the pattern image projected on the substrate ρ. The substrate stage pST supporting the substrate ’ has a longer stroke in the X-axis direction than the Y-axis direction in which one-dimensional scanning exposure is possible, and is controlled by the control unit CONT. Further, the substrate stage is configured to be movable in the Z-axis direction and in the directions of ΘΧ, 0Υ, and θΖ. Moving mirrors 34a and 34b are provided on the respective edges of the substrate stage PST in the X-axis direction and the z-axis direction. On the moving mirror 34A extending in the direction of the x-axis, two laser interferometers (w interferometer) =1 Px+2 are disposed opposite to each other, and the moving mirror 3 extending in the direction of the x-axis is opposed to the radiation interference. The instruments pyl and p respectively irradiate the moving mirrors with laser light, and check 'a, stand upright. Further, the laser interferometers Pyl to Py3 illuminate the laser beam 34b, and detect the position of the moving mirror 34b. The detection results of the laser interferometers Px1, Px2, and Pyl to Py3 are output to the control unit CONT, and the control unit CONT monitors the position (posture) of the substrate stage PST based on the detection result, and sets the substrate stage PST to The desired position (posture). Further, a moving mirror is disposed on the end edge of each of the X-axis direction and the Y-axis direction of the reticle stage in the same manner as the substrate stage, and a laser interferometer is disposed opposite to each of the moving mirrors. The detection result of the laser interferometer is output to the control unit CONT, and the control unit CONT monitors the position (posture) of the reticle stage based on the detection result of the laser interferometer, and sets the reticle stage to a desired state. Position (posture). 3 is a view showing an arrangement relationship between the alignment system AL, the seven projection areas 50a to 50g, the exposure areas PA1 to PA6 on the substrate P, and the marks mii to m46 on the substrate P. As shown in Fig. 3, the projection areas 50a to 50g of the projection optical modules PLa to PLg on the substrate p are each set in a trapezoidal shape. The projection areas 50a to 50g' are arranged in a zigzag shape in accordance with the arrangement of the projection optical modules PLa to PLg. Further, the projection areas 5a to 5〇g are arranged such that the end portions (boundary portions, joint portions) of the adjacent technical regions overlap each other in the γ-axis direction. Next, the alignment system AL will be explained. The alignment system AL detects the mark provided on the substrate P, and as shown in Fig. 2 and Fig. 2, it is disposed opposite to the substrate p in the projection optical module pLb of the projection optical system PL, and the lower portion of the PLf. The alignment system AL is an off-axis alignment system, as shown in Fig. 3, and includes _ alignment detecting portions AL1 to AL6 arranged in the γ-axis direction. The alignment system AL is arranged such that the center position of the γ-direction 201013339 32112pif substantially coincides with the center position of the projection optical system PL in the Y-axis direction. Further, the 'alignment system AL is disposed so as to be spaced apart from the projection optical system PL in the X-axis direction by a distance corresponding to the required acceleration distance and the stable distance of the substrate stage pST, so that the detection of the following mark is not performed. The stepping action of the substrate stage PST can start scanning exposure. On the other hand, an alignment process for the exposure area described below is provided on the substrate Ρ

的多個標記,對準檢測部AL1〜AL6以能夠同時與上述多 個標記中排列於Υ軸方向上的6個標記相對向的方式,沿 Υ軸方向以規定間隔配置。具體而言,例如圖3所示,對 準檢測部AL1〜AL6以一對一地與設置於基板ρ的左端部 的標記mil〜ml6同時相對向的方式配置。同樣地,對準 檢測部AL1〜AL6,與標記m21〜m26、m31〜、m41 〜m46亦一對一地相對向。而且,於基板載物台pST的+乂 方向及-X方向的各自端部上,設置著具有規定的第〗基準 標記(未圖示)的基準構件9〇、91。於基準構件9〇、91 的下方设置著m像檢卿(未圖* ),該㈣像檢測部接 =穿透基準構件9G、91㈣。此處,第丨基準標記在z 2向上的位置(高度)狀成與基板p的表面(曝光面) 致。再者’空間像檢測部對投影於第丨基準標記上 =其附近的蚊的標記影像(空間像),進行例如圖像檢 進行tit形態中的對準系統AL是離軸方式,因此 光罩Μ與對準系統㈣’檢測The plurality of marks, the alignment detecting portions AL1 to AL6 are arranged at a predetermined interval in the z-axis direction so as to be able to face the six marks arranged in the z-axis direction of the plurality of marks at the same time. Specifically, for example, as shown in Fig. 3, the alignment detecting portions AL1 to AL6 are arranged one-to-one with respect to the marks mil to ml6 provided at the left end portion of the substrate ρ at the same time. Similarly, the alignment detecting portions AL1 to AL6 are also opposed to the marks m21 to m26, m31 to m41 to m46, one to one. Further, reference members 9A and 91 having predetermined reference marks (not shown) are provided at respective end portions of the substrate stage pST in the +? direction and the -X direction. Below the reference members 9A and 91, m image magnified (not shown) is provided, and the (4) image detecting unit is connected to the reference members 9G and 91 (4). Here, the position (height) of the second reference mark in the z 2 direction is formed to be the surface (exposure surface) of the substrate p. Further, the 'space image detecting unit performs, for example, image detection on the marker image (spatial image) of the mosquito projected on the second reference mark; the alignment system AL in the titer mode is off-axis, and therefore the mask Μ and alignment system (4) 'detection

J子目對位置。因而,控制部CONT 13 201013339 32112pif 利用所謂的透過透鏡(Through The Lens,TTL)方式,藉 由空間像檢測部來同時檢測形成於光罩M或者光罩載物 台上的第2基準標記(未圖示),與基板載物台pst上的 第1基準標記,而且’藉由對準系統AL來檢測第1基準 標記’並根據該等檢測結果,求出光罩Μ與對準系統AL 的相對位置。 接著,說明第1實施形態的曝光裝置ΕΧ的曝光方法。 本實施形態中,例如圖3所示,依序對對角長度為500mm ❹ 或500 mm以上的方型(矩形)的基板P上的多個曝光區 域(第1〜第6曝光區域PA1〜PA6)進行曝光,並轉印圖 案影像。此處’多個曝光區域PA1〜PA6中,第1〜第3 曝光區域PA1〜PA3三個沿Y轴方向排列於基板p的+χ 側,第4〜第6曝光區域PA4〜PA6三個沿Y轴方向排列 在基板P的-X側。標記mil〜ml6鄰接設置於第1〜第3 曝光區域PA1〜PA3的+X側端部,標記m2i〜m26鄰接設 置於第1〜第3曝光區域PA1〜PA3的-X側端部,標記m31 〜m36鄰接設置於第4〜第6曝光區域PA4〜PA6的+X側 ◎ 端部,標記m41〜m46鄰接設置於第4〜第6曝光區域PA1 〜PA6的-X侧端部。而且,將自包含多個基板卩的相同批 次中的前部起規定數一個或一個以上的基板p設為「樣品 基板(第1基板)」,將其後的基板p設為「實物基板(第 2基板)」,並按照各自不同的順序來進行曝光處理。再者, 樣品基板中並不限定於批次前部的數片基板p,而可使用 批次中規定的一個或一個以上的基板p。 14 201013339 32112pif 圖上4是ί示對基板?進行的曝光處理順序的流程圖, 圖5疋表讀樣品基行祕歧_序職程圖,圖J sub-to the position. Therefore, the control unit CONT 13 201013339 32112pif simultaneously detects the second reference mark formed on the mask M or the mask stage by the space image detecting unit by a so-called Through The Lens (TTL) method (not As shown in the figure, the first reference mark on the substrate stage pst and the 'first reference mark' are detected by the alignment system AL, and the mask Μ and the alignment system AL are obtained based on the detection results. relative position. Next, an exposure method of the exposure apparatus 第 according to the first embodiment will be described. In the present embodiment, for example, as shown in Fig. 3, a plurality of exposure regions (first to sixth exposure regions PA1 to PA6) on a square (rectangular) substrate P having a diagonal length of 500 mm 或 or 500 mm or more are sequentially applied. ) Perform exposure and transfer the pattern image. Here, among the plurality of exposure areas PA1 to PA6, three of the first to third exposure areas PA1 to PA3 are arranged on the +? side of the substrate p in the Y-axis direction, and three sides of the fourth to sixth exposure areas PA4 to PA6. The Y-axis direction is arranged on the -X side of the substrate P. The marks mil to ml6 are adjacent to the +X side end portions of the first to third exposure regions PA1 to PA3, and the marks m2i to m26 are adjacent to the -X side end portions of the first to third exposure regions PA1 to PA3, and the mark m31 is attached. 〜m36 is adjacent to the +X side ◎ end of the fourth to sixth exposure areas PA4 to PA6, and the marks m41 to m46 are adjacent to the -X side end portions of the fourth to sixth exposure areas PA1 to PA6. In addition, a predetermined number of one or more substrates p from the front portion of the same batch including a plurality of substrates 设为 is referred to as a "sample substrate (first substrate)", and the subsequent substrate p is set to "physical object" The substrate (second substrate) is subjected to exposure processing in a different order. Further, the sample substrate is not limited to the plurality of substrates p in the front portion of the lot, and one or more substrates p specified in the batch may be used. 14 201013339 32112pif 4 on the diagram is the substrate? Flow chart of the sequence of exposure processing performed, Figure 5: reading the sample base line secrets _ sequence diagram, map

^〜圖8疋7Γ意性表示曝光處理巾投影光學系統pL及對準 系統AL對於基板?的相對移動順序之圖。再者,該曝光 處理是按驗制部CX)NT的控制㈣行。首先,控制部 (^ONT進行上述基線測量之後,將基板載物台移動至未圖 示的基板更換位置,並自·χ方向將基板p搬人至基板載物 台pst上,從而將基板p載置於基板载具pH上(步驟 S10)其次,控制部c〇NT根據規定的曝光處理資訊(曝 光處理程式),來判定步驟S1G帽人及載置的基板p是 否為樣品基板(步驟su )。當步驟su中判定基板p為樣 品基板時,騎樣品基板進行曝歧理(樣品基板處理) (步驟S12)’當判定基板p並非樣品基板時,則對實物基 板進行曝光處理(實物基板處理)(步驟S13)。 於步驟S12的樣品基板處理中,如圖5的流程圖所 示,控制部CONT首先進行第4〜第6曝光區域pA4〜pA6 的標記檢測處理、即檢測對應著第4〜第6曝光區域pA4 PA6而5又置於基板P上的標記m31〜m36、m41〜m46 (步驟S20 )。具體而言,如圖6所示,控制部c〇NT藉由 使基板載物台PST自基板更換位置沿+x方向移動,而使 第5曝光區域PA5移動至其掃描曝光時的掃描路徑上,從 而使對準檢測部AL1〜AL6分別與標記m41〜m46相對向 (移動A1)。接著’藉由對準檢測部ali〜AL6,對第4 〜第6曝光區域PA4〜PA6的多個端部中,最接近基板p 15 201013339 32112pif 的x方向緣部的端部上所設置的標記m41〜m46 一併進行 檢測,並將該檢測結果記憶於連接於控制部c〇NT的記 部80中。 … 其次’控制部CONT藉由使基板載物台pST沿-X方 向移動’而使第5曝光區域pA5移動至其掃描曝光時的掃 描路徑上的不同位置’從而使對準檢測部AL1〜AL6分別 與標記m31〜m36相對向(移動A2)。接著,藉由對準檢 測a|5 AL1 AL6來對標|己m3i〜進行檢測,並將其檢 測結果s己憶於記憶部8〇中。其次,控制部c〇NT藉由使 〇 基板載物台pst沿_γ方向移動,而使第4曝光區域pA4 移動至其掃描曝光時的掃描路徑上,從而使對準檢測部 AL3、AL4分別_絲第4曝光區域pA4職置的標記 m31、m32相對向(移動A3)。並且,藉由對準檢測部al3、 AL4來檢測標記mM、m32,並將其檢測結果記憶於記憶 部80中。隨後,控制部c〇NT藉由使基板載物台psT沿 +x方向移動’而使第4曝光區域PA4移動至其掃描曝光 時的掃描路徑上的*同位置,從而使對準檢測部al3、al4 〇 为別與對應著第4曝光輯PA4而設置的標記 m41 ' m42 相對向(移動A4)。並且’藉由對準檢測部AU、AL4來 檢測標記m4卜m42,並將其檢職果記憶於記憶部8〇中。 而且’控制部CONT算出由對準檢測部AU所檢測 的標記m31的檢測結果、與由對準檢測部Au所檢測的 標記3丨的檢猶果賴聯值,並將算岐果記憶於記憶部 8〇中。同樣地’分別算出由對準檢測部Au所檢測的標 16 201013339 32112pif 記1η41的檢測結果與由對準檢測部心所檢測的標記_ 的檢測結果的_值、由對準檢測部AL2所檢測的標記 ㈣的檢猶果與由鱗檢測部AL4所檢_標記m3°2 的檢測結果賴聯值、以及由解檢測部AU所檢測的標 記m4 2的檢測結果與由對準檢測部AL4所檢測的標記㈣ 的檢測結果的_值,並將各算出結果記憶於記憶部8〇 中。 ❿ 其次,控制部C0NT藉由使基板載物台PST沿+Y方 向移動’而使第6曝光區域PA6移動至其掃描曝光時的掃 描路徑上,從而使對準檢測部AL3、AL4分別與對應著第 ό曝光區域PA6而設置的標記m45、m46相對向*(移動 A5)。接著,藉由對準檢測部AU、ΑΜ來檢測標記^、 m46 ’並將其檢測結果記憶於記憶部8〇中。隨後,控制部 CONT藉由使基板載物台PST沿_\方向移動而使第6 曝光區域PA6移動至其掃描曝光時的掃描路徑上的不同位 置’從而使對準檢測部AL3、AL4分別與對應著第6曝光 區域PA6而設置的標記m35、m36相對向(移動A6)。隨 後,藉由對準檢測部AL3、AL4來檢測標記m35、m36 , 並將其檢測結果記憶於記憶部8〇中。又,控制部c〇NT 为別算出由對準檢測部AL5所檢測的標記m35的檢測結 果與由對準檢測部AL3所檢測的標記m35的檢測結果的 關聯值、由對準檢測部AL5所檢測的標記m45的檢測結 果與由對準檢測部AL3所檢測的標記m45的檢測結果的 關聯值、由對準檢測部AL6所檢測的標記m36的檢測結 17 201013339 果與由對準檢卿AL4所檢義標記城^~Fig. 8疋7 is an indication of the exposure processing towel projection optical system pL and the alignment system AL for the substrate? A diagram of the relative movement order. Further, the exposure processing is in accordance with the control (four) line of the inspection unit CX) NT. First, after the control unit (^ONT performs the above-described baseline measurement, the substrate stage is moved to a substrate replacement position (not shown), and the substrate p is transferred from the substrate to the substrate stage pst, thereby mounting the substrate p. After being placed on the substrate carrier pH (step S10), the control unit c〇NT determines whether the step S1G cap and the mounted substrate p are sample substrates based on predetermined exposure processing information (exposure processing program) (step su When it is determined in step su that the substrate p is a sample substrate, the sample substrate is subjected to exposure ambiguity (sample substrate processing) (step S12) 'When it is determined that the substrate p is not a sample substrate, the physical substrate is exposed (physical substrate) (Step S13) In the sample substrate processing of the step S12, as shown in the flowchart of FIG. 5, the control unit CONT first performs the mark detection processing of the fourth to sixth exposure areas pA4 to pA6, that is, the detection corresponding 4 to 6th exposure areas pA4 to PA6 and 5 are further placed on the substrate P with marks m31 to m36 and m41 to m46 (step S20). Specifically, as shown in FIG. 6, the control unit c〇NT is carried by the substrate. Table PST from substrate replacement position The +x direction is moved, and the fifth exposure area PA5 is moved to the scanning path at the time of scanning exposure, so that the alignment detecting portions AL1 to AL6 are opposed to the marks m41 to m46 (moving A1), respectively. The quasi-detection portions ali to AL6 are collectively provided with the marks m41 to m46 provided on the end portions of the x-direction edge portions of the substrate p 15 201013339 32112pif among the plurality of end portions of the fourth to sixth exposure regions PA4 to PA6. The detection is performed, and the detection result is memorized in the recording unit 80 connected to the control unit c〇NT. Next, the 'control unit CONT moves the substrate stage pST in the −X direction to make the fifth exposure area pA5. Moving to a different position on the scanning path at the time of scanning exposure, the alignment detecting portions AL1 to AL6 are opposed to the marks m31 to m36, respectively (moving A2). Then, by detecting a|5 AL1 AL6 by alignment, The target |m3i~ is detected, and the detection result is recalled in the memory unit 8. Next, the control unit c〇NT causes the fourth exposure by moving the 〇 substrate stage pst in the _γ direction. The area pA4 is moved to the scan path when it is scanned for exposure, thereby enabling alignment inspection The marks m31 and m32 in which the measuring portions AL3 and AL4 are respectively placed in the fourth exposure region pA4 of the wire are opposed to each other (moving A3), and the marks mM and m32 are detected by the alignment detecting portions a13 and AL4, and the detection results are detected. It is stored in the memory unit 80. Subsequently, the control unit c〇NT moves the fourth exposure area PA4 to the same position on the scanning path at the time of scanning exposure by moving the substrate stage psT in the +x direction. Therefore, the alignment detecting portions a13 and a14 are opposed to each other with respect to the mark m41'm42 provided corresponding to the fourth exposure sequence PA4 (movement A4). Further, the mark m4 is m42 detected by the alignment detecting units AU and AL4, and the result of the job is stored in the memory unit 8A. Further, the control unit CONT calculates the detection result of the mark m31 detected by the alignment detecting unit AU and the detected value of the mark 3丨 detected by the alignment detecting unit Au, and memorizes the result in the memory unit. 8 〇. Similarly, the _ value of the detection result of the target 16 201013339 32112 pif 1 η 41 detected by the alignment detecting unit Au and the detection result of the mark _ detected by the alignment detecting unit is respectively calculated and detected by the alignment detecting unit AL2. The detection result of the mark (4) is detected by the scale detecting unit AL4, the detection result of the mark m3°2, and the detection result of the mark m4 2 detected by the solution detecting unit AU, and the result of the detection by the alignment detecting unit AL4. The _ value of the detection result of the detected mark (4) is stored in the memory unit 8〇. Next, the control unit C0NT moves the sixth exposure area PA6 to the scanning path at the time of scanning exposure by moving the substrate stage PST in the +Y direction, thereby causing the alignment detecting units AL3 and AL4 to correspond to each other. The marks m45 and m46 provided in the second exposure area PA6 are opposite to each other (moving A5). Next, the marks ^, m46' are detected by the alignment detecting portions AU and ΑΜ, and the detection results are memorized in the memory portion 8A. Subsequently, the control unit CONT moves the sixth exposure region PA6 to a different position on the scanning path at the time of scanning exposure by moving the substrate stage PST in the _\ direction, thereby causing the alignment detecting portions AL3 and AL4 to respectively The marks m35 and m36 provided corresponding to the sixth exposure area PA6 are opposed to each other (movement A6). Then, the marks m35 and m36 are detected by the alignment detecting units AL3 and AL4, and the detection results are memorized in the memory unit 8A. Further, the control unit c〇NT calculates the correlation value between the detection result of the mark m35 detected by the alignment detecting unit AL5 and the detection result of the mark m35 detected by the alignment detecting unit AL3, and is determined by the alignment detecting unit AL5. The detection result of the detected mark m45 and the correlation value of the detection result of the mark m45 detected by the alignment detecting unit AL3, and the detection result of the mark m36 detected by the alignment detecting unit AL6 17 201013339 and the alignment check AL4 Check mark city

果的關聯值, ’並將各算出結果記憶於記憶部80中。 m36的檢測結果的 則的標記m46的檢 票記m46的檢測結 控制部CONT算出例如差值來作為上述各關聯值。而 且,控制部CONT在處理多個基板p (樣品基板)之後, 將與該等多個基板P對應的各標記的關聯值的統計量算出 後記憶於記憶部8G中。本實施形態中,算出例如各標記的 關聯值的平均值(單純平均或者加權平均)來麟各敎 ❿ 的關聯值的統計量。再者,作為各標記的關聯值的統計量, 亦可使用各標記的關聯值的中位數、眾數(m〇de)等。 其次,控制部CONT根據步驟S2〇中第4〜第6曝光 區域PA4〜PA6的標記檢測處理結果,使第4〜第6曝光 區域PA4〜PA6的位置對準,實施依序對第4〜第6曝光 區域PA4〜PA6進行曝光的曝光處理(步驟S2i)。具體而 言’控制部CONT使基板載物台pst沿+X方向及_γ方向 移動’從而使投影區域50a〜50g移動至第5曝光區域ΡΑ5 Θ 的曝光開始位置(移動A7),並由該處使基板載物台pST 沿-X方向移動(移動A8),進行第5曝光區域PA5的曝光 處理。進行該第5曝光區域PA5的曝光處理時,控制部 CONT首先根據步驟S20中由對準檢測部AL3、AL4所檢 測的標記m33、m34、m43、m44的檢測結果的各標記位 置’視需要一面調整基板載物台PST的位置及姿勢、以及 投影光學系統PL的影像位移機構19、影像旋轉機構以及 18 201013339 32112pif 率調整機構25’對位移、縮放(seaiing)、及轉動(rotati〇n) 等的影像特性進行校正…面使第5曝光區域pA5的位置 對準投影區域50a〜5〇g。接著,一面使基板載物台psT沿 -X方向移動’-面對第5曝光區域撕進行掃描曝光。 其次,控制部C0NT以與第5曝光區域PA5的曝光處 理相同的方式,依序進行第4曝光區域PA4及第6曝光區 域PA6的曝光處理。即,使基板載物台pST沿_χ方向及 Φ Υ方向移動,使投影區域5〇a〜50g移動至第4曝光區域 PA4的曝光開始位置(移動A9),根據步驟s2〇中由對準 檢測部AL3、AL4所檢測的標記m31、m32、⑽卜_ 的檢測結果的各標記位置,一面使第4曝光區域pA4的位 置對準投影區域50a〜50g,使基板載物台PST沿+χ方向 移,’一面對第4曝光區域ρΑ4進行掃描曝光(移動Α1〇)。 接著,使基板載物台PST沿+Χ方向及+Υ方向移動,使投 影區域50a〜50g移動至第6曝光區域ΡΑ6的曝光開始位 置(移動A11),根據步驟S20中由對準檢測部AL3、AL4 所檢測的標記m35、m36、m45、m46的檢測結果的各標 記位置,一面使第6曝光區域PA6的位置對準投影區域5加 〜5〇g ’使基板載物台PST沿-X方向移動,一面對第6曝 光區域PA6進行掃描曝光(移動A12)。 其次’控制部CONT以與第4〜第6曝光區域pA4〜 PA6的標記檢測處理相同的方式,進行第1〜第3曝光巴 域PA1〜PA3的標記檢測處理(步驟S22)。即,如圖7所 示,控制部CONT使基板載物台PST沿-γ方向移動(移 19 201013339 32112pif 動A13),並藉由對準檢測部AL1〜AL6來—併檢測標圮 m21〜m26,使基板載物台PST沿.又方向移動(移動a), 且藉由對準檢測AL1〜AL6來對第i〜第3曝光區域的多 個端部中,最接近基板P的X方向緣部的端部上所設置的 標記mil〜ml6 —括進行檢測,並將各檢測結果記憶於記 憶部80中。接著,控制部C0NT使基板載物台psf沿 方向移動(移動Α15) ’藉由對準檢測部AL3、AL4來檢 測標記mil、ml2 ’使基板載物台pST沿+χ方向移動(移 動Α16),藉由對準檢測部AL3、AL4來檢測標記⑽卜 _ m22,並將各檢測結果記憶於記憶部8〇中。同樣地,使基 板載物台PST沿+Y方向移動(移動A17),藉由對準檢測 部AL3、AL4來檢測標記m25、m26,使基板載物台PST 沿-X方向移動(移動A18),藉由對準檢測部AL3、AL4 來檢測標記ml5、ml6’將各檢測結果記憶於記憶部8〇中。 隨後,控制部CONT算出由對準檢測部AU、AL3所檢測 的標記mll、m21的各關聯值(差值)、由對準檢測部AL2、 AL4所檢測的標記ml2、m22的各關聯值(差值)、由對 ❹ 準檢測部AL3、AL5所檢測的標記ml5、m25的各關聯值 (差值)、以及由對準檢測部AL4、AL6所檢測的標記 ml6、m26的各關聯值(差值),並將各算出結果記憶於記 憶部80中。又’在對多個基板p (樣品基板)進行處理之 後’算出與該多個基板P對應的各標記的關聯值的統計 量’並將各算出結果記憶於記憶部8〇中。 其次’控制部CONT以與第4〜第6曝光區域PA4〜 20 201013339 32112pif 同的方式,進行第1〜第3曝光區域PM :的曝光處理。即,控辦CONT藉由與對於第4〜 第6曝光區域PA4〜pA6的移動A7〜ai2相同的順序使 基板載物台PST移動(移動A19〜A24),依序進行第2曝 光區域PA2、第1曝光區域PA卜第3曝光區域PA3的位 f對準及掃描曝光處理(步驟奶)。接著,當第3曝光區 ❹ ❿ ΐΓ Γ曝光處理結束後,使基板載物台pst移動至基板 ,換位置(移動A25),結束對—片樣品基板的—系= 處理。 其次,控制部C0NT判定步驟S12中所處理的基板p =否為同-批次t的最終基板(批次最終基板)(步驟 S14)。步驟S14中狀並非批次最終基板時(步驟叫, No) ’則返回到步驟sl〇的處理,並重複步驟si〇〜si2、 直至自批次前部起至規定數的作為樣品基板 =基板P結束曝域理為止。另—方面,從批次前部起規 疋數的基板P的曝光處理結束後,於步驟S11中判定基板 =非樣品基板時(步驟su,NG),進行對實物 光處理(步驟S13)。 對實物基板的曝光處理,以與對圖5的流程圖所示的 樣品基板的曝光處理相同的方式,依序進行對第4〜第6 曝光區域PA4〜PA6的標記檢測處理及曝光處理、以及對 第1〜第3曝光區域PA1〜PA3的標記檢測處理及曝光處 理,而與樣品基板的不同之處在於標記檢測方 的位置對準方法。以下,說明不同之處。 汉嗥尤别 21 201013339 32112pif 如圖8所示,控制部c〇NT使基板載物台psT,自基 板更換位置沿+X方向移動(移動A3〇),藉由對準檢測部 AL1〜AL6來一併檢測標記m31〜m36,並使基板載物台 pst沿+x方向移動(移動A31),藉由對準檢測部Au〜 AL6來一併檢測標記m41〜m46。接著,以與對樣品基板 的第5曝光區域pA5的曝光處理相同的方式,對第5曝光 區域PA5進行掃描曝光(移動A32)。其次,控制部CONT 使基板載物台PST沿-X方向及_γ方向移動,使投影區域 5〇a〜50g移動至第4曝光區域ΡΑ4的曝光開始位置(移動 罾 Α33),根據藉由樣品基板處理而記憶於記憶部8〇中的每 一標記m31、m32、m4卜m42的關聯值的統計量、以及 移動A30、A31後由對準檢測部Au、AL2所檢測的標記 m31、m32、m41、m42的檢測結果的各標記位置,進行第 4曝光區域PA4的位置對準,對第4曝光區域PA4進行掃 描曝光(移動A34)。具體而言,使用在移動A30、am之 後所檢測的標記m31、m32、m41、m42的各標記位置分 別與對應的關聯值的統計量相加所得之值進行位置對準。 ❹ 其次’控制部CONT使基板載物台PST沿+X方向及 +Y方向移動,使投影區域50a〜50g移動至第6曝光區域 PA6的曝光開始位置(移動A35),並根據藉由樣品基板處 理而記憶於記憶部80中的每一標記m35、m36、m45、m46 的關聯值的統計量、以及移動A30、A31之後由對準檢測 部AL5、AL6所檢測的標記m35、m36、m45、m46的檢 測結果的各標記位置,進行第6曝光區域PA6的位置對 22 201013339 32112pif 準,對第6曝光區域PA6進行掃描曝光(移動A36)。具 幾而言’使用移動A30、A31之後所檢測的標記m35、m36、 m95、m46的各標記位置,分別與對應的關聯值的統計量 相加所得之值進行位置對準。 如此,使用由樣品基板處理所取得的每一標記的關聯 值的統计量、以及在實物基板處理中一併檢測的各標記的 檢測結果,進行實物基板的各曝光區域的位置對準,藉此 φ 可進行如下掃描曝光,該掃描曝光兼顧了因一併檢測各標 記時基板載物台PST與投影光學系統PL的相對位置、及 掃描曝光時基板載物台PST與投影光學系統PL的相對位 置不同而產生的各曝光區域(此處為第4曝光區域pA4及 第6曝光區域PA6)的位置對準誤差。 即,樣品基板處理中,分別求出藉由對準檢測部AL1 〜AL6,來對在第4〜第6曝光區域PA4〜;pA6對應設置的 標記m31〜36及m41〜m46 —併進行檢測時的各標記的檢 測結果、與在的第4、第6曝光區域PA4、PA6的掃描曝 • 光的掃描路徑上(或者掃描路徑的延長線上)對應的各標 記 m3卜 m32、m35、m36、m41、m42、m45、m46 進行 檢測時的檢測結果的關聯值(差值),藉此取得基板載物台 PST位於第5曝光區域PA5的掃描曝光的掃描路徑上的狀 態、與基板載物台PST位於第4或者第6曝光區域PA4或 者PA6的掃描曝光的掃描路徑上的狀態之間,所產生的裝 置構造物(基座等)變形而引起的各標記檢測結果之差(各 標記位置的相對值)。該標記檢測結果之差於上述裝置構造 23 201013339 32112pif 物變形為彈性變形時,對於基板載物台PST的位置的再現 性較高。因此,於實物基板處理中,對每個基板p分別藉 由對準檢測部AL1〜AL6來一併地檢測標記m3i〜36及 m41〜m46 ’並可藉由將該檢測結果的各標記位置與樣品 基板處理中取得的各標記的關聯值(差值)進行相加,而 迅速地求出第4及第6曝光區域PA4、PA6,分別設置於 择描曝光的掃描路徑上時的各標記m31、m32、m35、m36、 m4卜m42、m45、m46的位置,並且可以高精度地進行第 4及第6曝光區域PA4、PA6的位置對準及進行掃描曝光。 ⑮ 並且,如此般於樣品基板處理及實物基板處理中,進行對 應於裝置構造物變形的標記檢測處理及曝光區域的位置對 準,便可於第4〜第ό曝光區域PA4〜PA6中高精度地進 行重合曝光。 其次’控制部CONT使基板載物台pst沿-X方向及 +Υ方向移動(移動Α37),藉由對準檢測部AU〜似來 檢測標記mil〜mi6’並使基板載物台PST沿+χ方向移動 (移動A38)’藉由對準檢測部AL1〜AL6來檢測標記m21 ❹ m26。接著,以與第4〜第6曝光區域pA4〜pA6的掃描 曝光處理相同的方式,進行第1〜第3曝光區域PA1〜PA3 7曝光處理。即,控制部CONT藉由與對第4〜第6曝光 區域PA4〜PA6的移動A32〜A36相同的順序,使基板載 2台pst移動(移動A39〜A43),並對第2曝光區域pA2、 第曝光區域PA1、第3曝光區域PA3的依順序進行位置 對準及掃描曝光處理。當進行第1曝光區域PA1及第3曝 24 201013339 32112pif 光區域PA3的位置對準時,以與第4光區域pA4及第6曝 光區域PA6的位置對準相同的方式,將與各曝光區域對應 的各標記的關聯值的統計量進行相加。第3曝光區域pA3 的曝光處理結束之後,控制部c〇NT使基板載物台psT移 動至基板更換位置(移動A44),使對一片實物基板的一系 列曝光處理結束。隨後,返回至步驟sl〇的處理,重複進 行步驟S10、Sll、S13、S14的處理,直至判斷步驟S12 參 中經處理的基板P為批次最終基板為止(步驟S14,Yes)。 根據第1實施形態的曝光方法及曝光裝置,對基板p 上的各曝光區域PA1〜PA6進行重合曝光時,一面考慮到 各曝光區域PA1〜PA6進行掃描曝光時基板載物台pST與 投影光學系統PL的相對位置,一面進行各曝光區域PA1 〜PA64的位置對準,因此可以抑制因基板載物台psT移 動等而產生的裝置構造物(基座等)變形所引起的重合精 度降低’從而可以高精度地進行重合曝光。而且,除了基 板載物台PST移動之原因以外,同樣亦可抑制例如因設置 • 著曝光裝置EX的地板面(floor)的平面度,常年變化等 而產生的裝置構造物變形所引起的重合精度降低,從而可 以長期地高精度進行重合曝光。 其次’對本發明第2實施形態的曝光方法及曝光裝置 加以說明。再者,第2實施形態的曝光裝置的構成具有與 第1實施形態的曝光裝置EX相同的構成。因此,於第2 實施形態的說明中,對與第1實施形態的曝光裝置的構成 相同的構成標註相同符號,並省略其詳細說明。而且,於 25 201013339 32112pif 第2實施形態的曝光方法的說明中,將參照表示第1實施 形態的曝光方法之圖4及圖5的流程圖來進行說明。第2 實施形態中亦將依序對圖3所示的基板P上的6個曝光區 域PA1〜PA6進行曝光。又,第2實施形態中亦將自包含 多個基板P的同-批次中的前部起規定數的—個或一個以 上的基板P作為樣品基板,將其後的基板p作為實物基 板,進行曝光處理。 控制部CONT於圖4的流程圖所示的步驟sl〇中將基 板p搬入並載置於基板載物台PST上,並於步驟su中判 _ 定基板P為樣品基板時,進行對樣品基板的曝光處理(步 驟S12)。於對樣品基板的曝光處理中,如圖5的流程圖所 示,首先,進行第4〜第ό曝光區域PA4〜ΡΑό的標紀檢 測處理、即檢測對應著第4〜第6曝光區域ρΑ4〜ρΑ°6而 设置於基板Ρ上的標記m3i〜m36、m41〜m4汉步驟S2〇)。 圖9、圖1〇是示意性表示第2實施形態的曝光處理中 投影光學系統PL及對準祕AL對於基板p的相對移動 順序之圖。如圖9所示,控制部CONT使基板載物台pST @ 沿+x方向移動(移動A50),藉由對準檢測部AL1〜AL6 來一併檢測標記m31〜m36。接著,藉由使基板載物台pST 沿方向及-Y方向移動’而使其移動至第4曝光區域— 進行掃描曝光時的掃描路徑的延長線上(移動A51 ),並藉 由對準檢測部AL3、AL4來檢測對應著第4曝光區域pA4 而k置於基板P上的標記m4i、m42。接著,藉由择其杯 載物台PST沿+Y方向移動,而使其移動至第== 26 201013339 32112pif 進行掃鄕树的掃描路徑上(移動Μ】),並藉由對 ^檢^部AL3、AL4來檢測對應著第6曝光區域pA6而設 么It板/上的標記㈣、以46。其次,藉由使基板載物 ° /σ_Υ方向移動,而使其移動至第5曝光區域PA5 進行掃描曝光時的掃描路徑上(移動Α53),並藉由對準檢 測部AL1〜AL6來對包含對應於第5曝光區域ρΑ5而設置 於基板Ρ上的標記m43、m44的標記m41〜祕一併進行 參 檢測。並且,將各檢測結果記憶於記憶部8〇中。 而且,控制部CONT算出由對準檢測部AU所檢測 的標記m41的檢測結果,與由對準檢測部AL1所檢測的 標記m41的檢測結果的關聯值(差值);由對準檢測部al4 所檢測的標記m42的檢測結果,與由對準檢測部AL2所 檢測的標記m42的檢測結果的關聯值(差值)、由對準檢 測部AL3所檢測的標記m45的檢測結果與由對準AL5所 檢測的標記m45的檢測結果的關聯值(差值),以及由對 準檢測部AL4所檢測的標記m46的檢測結果,與由對準 ❹ 檢測部AL6所檢測的標記m46的檢測結果的關聯值(差 值),並將各算出結果記憶於記憶部80中。並且,控制部 CONT於多個基板P (樣品基板)經處理之後,算出與兮 夕個基板P對應的各標記的關聯值的統計量(平均值), 並將各算出結果記憶於記憶部80中。 其次’控制部CONT根據步驟S20中第4〜第6曝光 區域PA4〜PA6的標記檢測處理的各檢測結果,進行第4 〜第6曝光區域PA4〜PA6的位置對準,從而進行沿掃描 27 201013339 32112pifThe correlation value of the result is 'and the calculation result is stored in the memory unit 80. The detection knot control unit CONT of the check mark m46 of the flag m46 of the detection result of m36 calculates, for example, a difference value as each of the above-described correlation values. Further, after processing the plurality of substrates p (sample substrates), the control unit CONT calculates the statistic of the correlation values of the respective markers corresponding to the plurality of substrates P and stores them in the memory unit 8G. In the present embodiment, for example, the average value (simple average or weighted average) of the correlation values of the respective markers is calculated, and the statistic of the correlation value of each of the 。 ❿ is calculated. Further, as the statistic of the correlation value of each marker, the median, the mode (m〇de) of the correlation value of each marker, or the like may be used. Next, the control unit CONT aligns the positions of the fourth to sixth exposure areas PA4 to PA6 in accordance with the result of the mark detection processing of the fourth to sixth exposure areas PA4 to PA6 in step S2, and sequentially performs the fourth to the fourth The exposure processing in which the exposure areas PA4 to PA6 perform exposure (step S2i). Specifically, the control unit CONT moves the substrate stage pst in the +X direction and the _γ direction to move the projection areas 50a to 50g to the exposure start position (movement A7) of the fifth exposure area ΡΑ5 ,, and At the substrate stage pST, the substrate stage pST is moved in the -X direction (movement A8), and the exposure processing of the fifth exposure region PA5 is performed. When the exposure processing of the fifth exposure region PA5 is performed, the control unit CONT first selects the respective mark positions of the detection results of the marks m33, m34, m43, and m44 detected by the alignment detecting units AL3 and AL4 in step S20 as needed. Adjusting the position and posture of the substrate stage PST, the image displacement mechanism 19 of the projection optical system PL, the image rotation mechanism, and the displacement, scaling, and rotation of the 201013339 32112pif rate adjustment mechanism 25' The image characteristics are corrected to face the projection areas 50a to 5〇g. Next, the substrate stage psT is moved in the -X direction - and the fifth exposure area is torn to perform scanning exposure. Next, the control unit C0NT sequentially performs exposure processing of the fourth exposure region PA4 and the sixth exposure region PA6 in the same manner as the exposure processing of the fifth exposure region PA5. In other words, the substrate stage pST is moved in the χ χ direction and the Φ Υ direction, and the projection areas 5 〇 a to 50 g are moved to the exposure start position (movement A9) of the fourth exposure area PA 4 , and the alignment is performed according to the step s2 The respective mark positions of the detection results of the marks m31, m32, and (10) detected by the detecting units AL3 and AL4 are aligned with the projection areas 50a to 50g with respect to the position of the fourth exposure area pA4, and the substrate stage PST is placed along the +? The direction is shifted, and the scanning exposure (moving Α1〇) is performed on the fourth exposure area ρΑ4. Next, the substrate stage PST is moved in the +Χ direction and the +Υ direction, and the projection areas 50a to 50g are moved to the exposure start position (movement A11) of the sixth exposure area ΡΑ6, and the alignment detecting unit AL3 is used in step S20. And the respective mark positions of the detection results of the marks m35, m36, m45, and m46 detected by AL4, and the position of the sixth exposure area PA6 is aligned with the projection area 5 by 〜5 〇g ' to make the substrate stage PST along -X The direction is moved, and scanning exposure (moving A12) is performed toward the sixth exposure area PA6. Then, the control unit CONT performs the mark detection processing of the first to third exposure areas PA1 to PA3 in the same manner as the mark detection processing of the fourth to sixth exposure areas pA4 to PA6 (step S22). That is, as shown in Fig. 7, the control unit CONT moves the substrate stage PST in the -γ direction (shift 19 201013339 32112pif A13), and by the alignment detecting portions AL1 to AL6 - and detects the marks m21 to m26. The substrate stage PST is moved in the direction (movement a), and the X-direction edges of the substrate P are closest to the plurality of end portions of the i-th to third exposure regions by the alignment detections AL1 to AL6. The marks mil to ml6 provided on the end portions of the portion include detection, and the respective detection results are memorized in the memory unit 80. Next, the control unit C0NT moves the substrate stage psf in the direction (movement Α 15) 'detects the marks mil and ml2' by the alignment detecting units AL3 and AL4 to move the substrate stage pST in the +χ direction (movement Α 16). The mark (10) _ m22 is detected by the alignment detecting units AL3 and AL4, and the respective detection results are memorized in the memory unit 8A. Similarly, the substrate stage PST is moved in the +Y direction (movement A17), and the marks m25 and m26 are detected by the alignment detecting units AL3 and AL4, and the substrate stage PST is moved in the -X direction (moving A18). The detection marks AL5 and AL4 are detected by the alignment detecting units AL3 and AL4 to store the respective detection results in the memory unit 8A. Subsequently, the control unit CONT calculates the correlation values (difference values) of the markers m11 and m21 detected by the alignment detecting units AU and AL3, and the correlation values of the markers ml2 and m22 detected by the alignment detecting units AL2 and AL4 ( The difference value), the correlation value (difference value) of the marks ml5 and m25 detected by the alignment detecting units AL3 and AL5, and the correlation values of the marks ml6 and m26 detected by the alignment detecting units AL4 and AL6 ( The difference is calculated, and each calculation result is stored in the memory unit 80. Further, after the plurality of substrates p (sample substrates) are processed, 'the statistic of the correlation value of each of the marks corresponding to the plurality of substrates P' is calculated and the calculation results are stored in the memory unit 8A. Next, the control unit CONT performs exposure processing of the first to third exposure regions PM: in the same manner as the fourth to sixth exposure regions PA4 to 20201013339 and 32112pif. In other words, the control unit CONT moves the substrate stage PST (moving A19 to A24) in the same order as the movements A7 to ai2 of the fourth to sixth exposure areas PA4 to pA6, and sequentially performs the second exposure area PA2. The first f exposure area PA is aligned with the bit f of the third exposure area PA3 and the scanning exposure process (step milk). Next, after the third exposure area ❹ ΐΓ Γ Γ exposure processing is completed, the substrate stage pst is moved to the substrate, and the position is changed (movement A25), and the processing of the wafer sample substrate is terminated. Next, the control unit C0NT determines whether the substrate p = n which is processed in step S12 is the final substrate (batch final substrate) of the same-batch t (step S14). When the step S14 is not the batch final substrate (step: No), the process returns to the step sl1, and the steps si〇 to si2 are repeated until the predetermined number of samples from the front of the batch to the substrate = the substrate P ends the exposure. On the other hand, when the exposure processing of the substrate P from the front of the lot is completed, the substrate = non-sample substrate is determined in step S11 (steps su, NG), and the physical light processing is performed (step S13). The exposure processing of the physical substrate is performed in the same manner as the exposure processing of the sample substrate shown in the flowchart of FIG. 5, and the label detection processing and the exposure processing for the fourth to sixth exposure regions PA4 to PA6 are sequentially performed, and The mark detection processing and the exposure processing of the first to third exposure areas PA1 to PA3 differ from the sample substrate in the position alignment method of the mark detection side. The differences are explained below. Hankyu Yoube 21 201013339 32112pif As shown in Fig. 8, the control unit c〇NT moves the substrate stage psT from the substrate replacement position in the +X direction (moving A3〇) by the alignment detecting units AL1 to AL6. The marks m31 to m36 are collectively detected, and the substrate stage pst is moved in the +x direction (movement A31), and the marks m41 to m46 are collectively detected by the alignment detecting portions Au to AL6. Next, the fifth exposure region PA5 is subjected to scanning exposure (movement A32) in the same manner as the exposure processing for the fifth exposure region pA5 of the sample substrate. Next, the control unit CONT moves the substrate stage PST in the -X direction and the _γ direction, and moves the projection areas 5〇a to 50g to the exposure start position (movement 罾Α33) of the fourth exposure area ΡΑ4, based on the sample. The statistic of the correlation value of each of the marks m31, m32, m4, and m42 stored in the memory unit 8A by the substrate processing, and the marks m31 and m32 detected by the alignment detecting units Au and AL2 after the movements A30 and A31. The respective mark positions of the detection results of m41 and m42 are aligned in the fourth exposure region PA4, and the fourth exposure region PA4 is subjected to scanning exposure (movement A34). Specifically, the values of the respective mark positions of the marks m31, m32, m41, and m42 detected after the movement A30, am are added to the values of the corresponding correlation value statistics, respectively. ❹ Next, the control unit CONT moves the substrate stage PST in the +X direction and the +Y direction, and moves the projection areas 50a to 50g to the exposure start position (movement A35) of the sixth exposure area PA6, and according to the sample substrate. The statistic of the correlation value of each of the marks m35, m36, m45, and m46 memorized in the memory unit 80, and the marks m35, m36, and m45 detected by the alignment detecting units AL5 and AL6 after the movements A30 and A31, The respective mark positions of the detection result of m46 are subjected to the position pair 22 201013339 32112pif of the sixth exposure area PA6, and the sixth exposure area PA6 is subjected to scanning exposure (movement A36). In some cases, the respective mark positions of the marks m35, m36, m95, and m46 detected after the movements A30 and A31 are respectively aligned with the values obtained by adding the statistics of the corresponding associated values. In this manner, the statistic of the correlation value of each mark obtained by the sample substrate processing and the detection result of each mark collectively detected in the physical substrate processing are used to perform the alignment of the respective exposure regions of the physical substrate. φ can perform the following scanning exposure, which takes into consideration the relative position of the substrate stage PST and the projection optical system PL when the respective marks are collectively detected, and the relative positions of the substrate stage PST and the projection optical system PL at the time of scanning exposure The positional alignment error of each of the different exposure regions (here, the fourth exposure region pA4 and the sixth exposure region PA6). In other words, in the sample substrate processing, the marks m31 to 36 and m41 to m46 which are provided corresponding to the fourth to sixth exposure regions PA4 to pA6 are detected by the alignment detecting portions AL1 to AL6, respectively. The detection result of each mark, the mark m3 corresponding to the scanning path of the scanning exposure light of the fourth and sixth exposure areas PA4 and PA6 (or the extension line of the scanning path), m32, m35, m36, m41 And m42, m45, and m46, in association with the detection result (difference) of the detection result at the time of detection, the state in which the substrate stage PST is located on the scanning path of the scanning exposure of the fifth exposure area PA5, and the substrate stage PST are obtained. The difference between the detection results of the respective marks caused by the deformation of the generated device structure (base or the like) between the states on the scanning path of the scanning exposure of the fourth or sixth exposure region PA4 or PA6 (the relative position of each mark position) value). The difference in the mark detection result is higher in the reproducibility of the position of the substrate stage PST when the object structure 23 201013339 32112pif is deformed into elastic deformation. Therefore, in the physical substrate processing, the marks m3i to 36 and m41 to m46' are collectively detected by the alignment detecting portions AL1 to AL6 for each of the substrates p, and the respective mark positions of the detection result can be The correlation value (difference value) of each mark obtained in the sample substrate processing is added, and the fourth and sixth exposure areas PA4 and PA6 are quickly obtained, and each mark m31 is set on the scanning path of the selective exposure. The positions of m32, m35, m36, m4, m42, m45, and m46, and the alignment of the fourth and sixth exposure regions PA4 and PA6 and the scanning exposure can be performed with high precision. Further, in the sample substrate processing and the physical substrate processing, the mark detection processing corresponding to the deformation of the device structure and the alignment of the exposure regions can be performed in the fourth to third exposure regions PA4 to PA6 with high precision. Perform a coincident exposure. Next, the control unit CONT moves the substrate stage pst in the -X direction and the +Υ direction (movement Α37), and detects the marks mil~mi6' by the alignment detecting portion AU~ and causes the substrate stage PST to follow the + The movement in the χ direction (movement A38) 'detects the mark m21 ❹ m26 by the alignment detecting portions AL1 to AL6. Then, exposure processing of the first to third exposure regions PA1 to PA3 7 is performed in the same manner as the scanning exposure processing of the fourth to sixth exposure regions pA4 to pA6. In other words, the control unit CONT moves the two substrates pst (moving A39 to A43) in the same order as the movements A32 to A36 of the fourth to sixth exposure regions PA4 to PA6, and the second exposure region pA2. The first exposure area PA1 and the third exposure area PA3 are sequentially aligned and scanned. When the first exposure area PA1 and the third exposure 24 201013339 32112pif light area PA3 are aligned, the positions corresponding to the respective exposure areas are aligned in the same manner as the positional alignment of the fourth light area pA4 and the sixth exposure area PA6. The statistics of the associated values of the respective tags are added. After the exposure processing of the third exposure region pA3 is completed, the control unit c〇NT moves the substrate stage psT to the substrate replacement position (movement A44), and the series exposure processing for one physical substrate is completed. Then, the process returns to the step S1, and the processes of steps S10, S11, S13, and S14 are repeated until it is determined that the processed substrate P in the step S12 is the batch final substrate (step S14, Yes). According to the exposure method and the exposure apparatus of the first embodiment, when the exposure areas PA1 to PA6 on the substrate p are subjected to the overlap exposure, the substrate stage pST and the projection optical system are taken into consideration when scanning exposure is performed in consideration of each of the exposure areas PA1 to PA6. Since the relative positions of the PLs are aligned with each of the exposure regions PA1 to PA64, it is possible to suppress a decrease in the coincidence accuracy caused by deformation of the device structure (base or the like) caused by the movement of the substrate stage psT or the like. The coincidence exposure is performed with high precision. Further, in addition to the cause of the movement of the substrate stage PST, it is also possible to suppress the coincidence accuracy caused by the deformation of the device structure caused by, for example, the flatness of the floor surface of the exposure apparatus EX, the change in the structure of the exposure apparatus EX, and the like. The reduction is performed so that the coincidence exposure can be performed with high precision for a long period of time. Next, an exposure method and an exposure apparatus according to a second embodiment of the present invention will be described. In addition, the configuration of the exposure apparatus of the second embodiment has the same configuration as that of the exposure apparatus EX of the first embodiment. Therefore, in the description of the second embodiment, the same configurations as those of the exposure apparatus according to the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted. Further, in the description of the exposure method of the second embodiment, the description will be made with reference to the flowcharts of Figs. 4 and 5 showing the exposure method according to the first embodiment. In the second embodiment, the six exposure areas PA1 to PA6 on the substrate P shown in Fig. 3 are also sequentially exposed. Further, in the second embodiment, a predetermined number of one or more substrates P from the front portion of the same batch including the plurality of substrates P are used as the sample substrate, and the subsequent substrate p is used as the physical substrate. Perform exposure processing. The control unit CONT carries the substrate p onto the substrate stage PST in the step s1 shown in the flowchart of FIG. 4, and determines that the substrate P is the sample substrate in the step su, and performs the sample substrate. Exposure processing (step S12). In the exposure processing of the sample substrate, as shown in the flowchart of FIG. 5, first, the standard detection processing of the fourth to third exposure areas PA4 to 、, that is, the detection of the fourth to sixth exposure areas ρΑ4 is performed. The marks m3i to m36 and m41 to m4 which are provided on the substrate Α by Α6 are step S2). Fig. 9 and Fig. 1A are diagrams schematically showing the relative movement order of the projection optical system PL and the alignment secret AL with respect to the substrate p in the exposure processing of the second embodiment. As shown in FIG. 9, the control unit CONT moves the substrate stage pST@ in the +x direction (movement A50), and collectively detects the marks m31 to m36 by the alignment detecting units AL1 to AL6. Then, by moving the substrate stage pST in the direction and the -Y direction to move to the fourth exposure area, an extension line of the scanning path at the time of scanning exposure (movement A51) is performed, and the alignment detecting portion is used. AL3 and AL4 detect marks m4i and m42 which are placed on the substrate P corresponding to the fourth exposure region pA4. Then, by moving the cup stage PST in the +Y direction, it is moved to the == 26 201013339 32112pif to scan the path of the broom tree (moving Μ), and by checking the ^ part AL3 and AL4 detect the mark (4) on the It board/up corresponding to the sixth exposure area pA6, and set it to 46. Then, by moving the substrate load ° / σ_ Υ direction, it is moved to the fifth exposure region PA5 to perform scanning on the scanning path (movement Α 53), and is included by the alignment detecting portions AL1 to AL6. The marks m41 to M44 of the marks m43 and m44 provided on the substrate 对应 corresponding to the fifth exposure region ρΑ5 are subjected to parameter detection. Further, each detection result is stored in the memory unit 8A. Further, the control unit CONT calculates a correlation value (difference value) between the detection result of the mark m41 detected by the alignment detecting unit AU and the detection result of the mark m41 detected by the alignment detecting unit AL1, and the alignment detecting unit a14. The detection result of the detected mark m42, the correlation value (difference value) with the detection result of the mark m42 detected by the alignment detecting portion AL2, the detection result of the mark m45 detected by the alignment detecting portion AL3, and the alignment result The correlation value (difference value) of the detection result of the mark m45 detected by AL5, and the detection result of the mark m46 detected by the alignment detecting unit AL4, and the detection result of the mark m46 detected by the alignment detecting unit AL6 The values (differences) are associated, and the results of the calculations are stored in the storage unit 80. Further, after the plurality of substrates P (sample substrates) are processed, the control unit CONT calculates a statistic (average value) of the correlation values of the respective markers corresponding to the substrate P, and stores the calculation results in the storage unit 80. in. Next, the control unit CONT performs the alignment of the fourth to sixth exposure areas PA4 to PA6 based on the respective detection results of the mark detection processing of the fourth to sixth exposure areas PA4 to PA6 in step S20, thereby performing the edge scan 27 201013339. 32112pif

$對第4〜第6曝光區域pA4〜pA6進行掃描曝光的曝 光處理(步驟S21)。首先,以與第i實施形態的曝光處理 相同的方式,進行第5曝光輯pA5 _域理(移動 A54)。接著,根據由對準檢測部AU、AL2所檢測的標記 m3卜m32的檢測結果的各標記位置、以及由對準檢測部 AL3、AL4所檢測的標記㈣、m42的檢測結果的各標記 位置,進行第4曝光區域PA4的位置對準,從而對第4曝 光區域PA4進行掃描曝光(移動A55、A56)。隨後,根據 由對準檢卿AL5、AL6所檢酬標記他、_的檢測 結果的各標記位置、以及由對準檢測部AL3、AL4所檢測 的標記m45、m46的檢測結果的各標記位置,進行第6曝 光區域PA6的位置對準,從而對第6曝光區域pA6進行掃 描曝光(移動A57、A58)、Exposure processing for scanning exposure of the fourth to sixth exposure regions pA4 to pA6 is performed (step S21). First, in the same manner as the exposure processing of the i-th embodiment, the fifth exposure series pA5_domain (movement A54) is performed. Then, the respective mark positions of the detection results of the marks m3 and m32 detected by the alignment detecting units AU and AL2, and the respective mark positions of the detection results of the marks (4) and m42 detected by the alignment detecting units AL3 and AL4 are The positional alignment of the fourth exposure region PA4 is performed, and the fourth exposure region PA4 is scanned and exposed (movements A55 and A56). Subsequently, the respective mark positions of the detection results of the detection results of the marks _, and the marks of the marks m45 and m46 detected by the alignment detecting units AL3 and AL4 are determined by the alignment marks AL5 and AL6, Performing the alignment of the sixth exposure region PA6 to perform scanning exposure (moving A57, A58) on the sixth exposure region pA6,

其次,控制部CONT如圖1〇所示,以與第4〜第6 曝光區域PA4〜PA6的標記檢測處理相同的方式,使基板 載物台pst沿+x方向移動(移動A59),藉由對準檢測部 AL3、AL4來檢測標記ml5、ml6,並使基板載物台m 沿-Y方向移動(移動A60),藉由對準檢測部^丨〜八“ 來檢測標記mil〜ml6,使基板载物台psT沿_γ方向移動 (移動Α61),藉由對準檢測部AL3、AL4來檢測標記 mil、m12。並且,將各檢測結果記憶於記憶部8〇中。 而且,控制部CONT算出由對準檢測部AL1所檢測 的標記mil的檢測結果’與由對準檢測部AL3所檢測的 標記mil的檢測結果的關聯值(差值),由對準檢測部AL2 28 201013339 32112pif 所檢測的標記ml2的檢測結果,與由對準檢測部AL4所 檢測的標記m12的檢測結果的關聯值(差值),由對準檢 測部AL3所檢測的標記ml5的檢測結果與對準檢測部 AL5所檢測的標記ml5的檢測結果的關聯值(差值),以 及由對準檢測部AL4所檢測的標記ml6的檢測結果,與 由對準檢測部AL6所檢測的標記mi6的檢測結果的關聯 值(差值),並將各算出結果記憶於記憶部8〇中。並且, φ 控制部C0NT對多個基板P (樣品基板)算出各標記的關 聯值的統計量(平均值)’並將各算出結果記憶於記憶部 80中。接著,使基板載物台psT沿+χγ方向移動(移動 Α62)’藉由對準檢測部AL1〜AL6來檢測標記m21〜 m26,並將檢測結果記憶於記憶部8〇中。 其次,控制部CONT以與第4〜第ό曝光區域PA4〜 ΡΑ6的曝光處理相同的方式,進行第1〜第3曝光區域pA1 〜PA3的曝光處理。即’藉由與對第4〜第6曝光區域pA4 〜ΡΑό的移動A54〜A58同樣的順序,而使基板載物台PST ❹ 移動(移動A62〜A67),以依第2曝光區域PA2、第1嗓 光區域PA1、第3曝光區域PA3的順序進行位置對準及掃 描曝光處理(步驟S23)。當第3曝光區域PA3的曝光處理 結束之後’控制部CONT使基板載物台pst移動至基板更 換位置(移動A68) ’並結束對一片樣品基板進行的一系列 曝光處理。並且,當判斷步驟S12中經曝光處理的基板p 並非批次最終基板時(步驟S14、No),則重複步驟si〇 〜S12、S14的處理,直至自批次前部起規定數的基板p結 29 201013339 32ll2pif 束作為樣品基板的曝光處理為止。 f次’就步驟S13帽實物基板轉域理加以說 :。由於第2實施形態的實物基板的曝光處理中的投影光 學系統PL及對準系統Al相對基板p的相對移動順序, 與第1實施形態的此種相對移動順序相同, 來進行說m,由於移動·〜移動A33=;、處圖理8 與第1實施形態相同,故省略說明。Next, as shown in FIG. 1A, the control unit CONT moves the substrate stage pst in the +x direction (movement A59) in the same manner as the mark detection processing of the fourth to sixth exposure areas PA4 to PA6. The alignment detecting units AL3 and AL4 detect the marks ml5 and ml6, move the substrate stage m in the −Y direction (movement A60), and detect the marks mil to ml6 by the alignment detecting unit 丨8 to 八6. The substrate stage psT moves in the _γ direction (movement Α61), and the marks mil and m12 are detected by the alignment detecting units AL3 and AL4, and the respective detection results are stored in the memory unit 8A. Further, the control unit CONT The correlation value (difference value) between the detection result of the mark mil detected by the alignment detecting unit AL1 and the detection result of the mark mil detected by the alignment detecting unit AL3 is calculated by the alignment detecting unit AL2 28 201013339 32112pif The detection result of the mark ml2 and the correlation value (difference value) with the detection result of the mark m12 detected by the alignment detecting unit AL4, the detection result of the mark ml5 detected by the alignment detecting unit AL3 and the alignment detecting unit AL5 Correlation value of the detected result of the detected marker ml5 ( The value of the detection result of the marker ml6 detected by the alignment detecting unit AL4 and the correlation value (difference value) of the detection result of the marker mi6 detected by the alignment detecting unit AL6, and the calculation results are memorized in the memory. In addition, the φ control unit C0NT calculates a statistic (average value) of the correlation value of each mark for the plurality of substrates P (sample substrate), and stores each calculation result in the memory unit 80. Next, the substrate is made The stage psT moves in the +χγ direction (moving Α62)' to detect the marks m21 to m26 by the alignment detecting portions AL1 to AL6, and stores the detection result in the memory unit 8A. Next, the control unit CONT The exposure processing of the first to third exposure regions pA1 to PA3 is performed in the same manner as the exposure processing of the fourth to third exposure regions PA4 to ΡΑ6, that is, by the movement of the fourth to sixth exposure regions pA4 to AA54. In the same order as in A58, the substrate stage PST ❹ is moved (moved A62 to A67), and aligned and scanned in the order of the second exposure area PA2, the first light-emitting area PA1, and the third exposure area PA3. Exposure processing (step S23). When the third exposure After the exposure processing of the area PA3 is completed, the control unit CONT moves the substrate stage pst to the substrate replacement position (movement A68)' and ends the series of exposure processing for one sample substrate. And, when it is judged in step S12, the exposure processing is performed. When the substrate p is not the batch final substrate (steps S14 and No), the processes of steps si〇 to S12 and S14 are repeated until a predetermined number of substrates p-junction 29 from the front of the batch are used. 201013339 32ll2 pif beam is used as the exposure of the sample substrate. Processing until. f times' in the step S13, the physical substrate is transferred to the domain. The relative movement order of the projection optical system PL and the alignment system Al to the substrate p in the exposure processing of the physical substrate according to the second embodiment is the same as the relative movement order of the first embodiment, and m is performed. - Movement A33 =; and the diagram 8 is the same as that of the first embodiment, and thus the description thereof is omitted.

控制部CONT於第5曝光區域PA5的曝光處理結束之 後,使用由對準檢測部AL1、AL2所檢測的標記m41、m42 的檢測結果即各標記位置與樣品基板處理時所算出的標記 、m42的關聯值的統計量相加所得之值,以及由^ 檢測部AL卜AL2所檢測的標記m3卜m32的檢測結果, 進行第4曝光區域PA4的位置對準,並對第4曝光區域PA4 進行掃描曝光(移動A34)。接著,使基板載物台pST沿 +X方向及+Y方向移動(移動A35),並使用由對準檢測部 AL5、AL0所檢測的標記m45、m46的檢測結果即各標記 位置與樣品基板處理時所算出的標記m45〜m46的關聯值 的統計量相加所得之值、以及由對準檢測部AL5、AL6所 檢測的標記m35、m36的檢測結果即各標記位置,進行第 6曝光區域PA6的位置對準,並對第6曝光區域PA6進行 掃描曝光(移動A36)。 其次,控制部CONT使基板載物台PST沿-X方向及 -γ方向移動(移動A37),藉由對準檢測部AL1〜AL6來 檢測標記mil〜ml6,並使基板載物台PST沿+Χ方向移動 30 201013339 32112pif (移動A38)’藉由對準檢卿AU〜AL6來檢測標記咖 〜m26。接著’以與第4〜第6曝光區域pA4〜pA6的掃福 曝光處理相同的方式,進行第1〜第3曝光區域PA1〜pm 的曝光處理。即,控制部CONT藉由與對第4〜第6曝光 區域PA4〜PA6的移動A32〜A36相同的順序,而使基板 載物台PST移動(移動A39〜A43),並對第2曝光區域 PA2、第1曝光區域PA卜第3曝光區域pA3依順序進行 癱位置對準及掃描曝光處理。當進行第丨曝光區域pA1及第 3曝光區域PA3的位置對準時,以與第4曝光區域PA4及 第6曝光區域pA6的位置對準相同的方式,將標、 、m45、m46的關聯值的統計量相加。當第3曝光區 域PA3的曝光處理結束之後,控制部c〇NT使基板載物台 PST移動至基板更換位置(移動A44),結束對一片實物基 板的一系列曝光處理。並且,重複步驟S10、Sll、S13、 S14的處理,直至判斷為批次最終基板為止(步驟si4、 Yes)。 ❿ 其次,對本發明第3實施形態的曝光方法及曝光裝置 進行說明。再者,第3實施形態的曝光裝置的構成具有與 第1實施形態的曝光裝置EX相同的構成。因此,第3實 施形態的說明中,對與第1實施形態的曝光裝置的構成相 同的構成標註相同符號,並省略其詳細說明。又,於第3 實施形態的曝光方法的說明中,將參照表示第1實施形態 的曝光方法之圖4的流出圖來進行說明。 於第3實施形態中,例如圖11所示’為對對角線長 31 201013339 32112pif 度為500 mm或500 mm以上的矩形基板F上的4個曝光 區域PA11〜PA14依序進行曝光。此處,第丨、第2曝光 區域PA11、PA12是沿γ轴方向並列排列在基板p,的+χ 側’而第3、第4曝光區域ΡΑ13、ρα14則沿γ軸方向並 列排列在基板Ρ’的-X侧。分別於第卜第2曝光區域ρΑ11、 ΡΑ12的X轴方向上的+Χ侧鄰接設置有標記m51〜m56、 m61〜m68 ’於第1、第2曝光區域pAll、PA12的-X側鄰 接設置有標記m71〜m76,於第3、第4曝光區域PA13、 PA14的+X侧鄰接設置有標記^81〜m86,於第3、第4 ❹ 曝光區域PA13、PA14的-X側鄰接設置有標記m91〜m96、 mlOl〜ml08。標記m6l〜68相對於標記m5i〜m56的位 置、以及標記mlOl〜ml08相對於標記m9i〜m96的位置 預先記憶於記憶部80中。而且,第3實施形態中亦將自包 含多個基板P,的同一批次中的前部起規定數的一個或一個 以上的基板P作為樣品基板,將其後的基板p,作為實物基 板而進行曝光處理。 首先,控制部CONT於圖4的流程圖所示的步驟Sl〇 ❹ 中將基粒P’搬入並載置於基板載物台PST上,當步驟sii 中判疋基板P’為樣品基板時,進行對樣品基板的曝光處理 (步驟S12)。圖12是表示對樣品基板的曝光處理順序的 流程圖。於對樣品基板的曝光處理中,如ffi 12的流程圖所 示,首先,進行第3、第4曝光區域PA13、PA14的標記 檢測處理(步驟S3())。圖13是示意性表示對樣品基:的 曝光處理中的投影光學系統PL及對準系統AL相對基板 32 201013339 32112pif P’的相對移動順序之圖。 vc如圖13 (a)所示,控制部CONT使基板載物台PST /σ+χ、方向移動(移動A7〇),並藉由對準檢測部AU〜 =一併檢測標記m81〜m86。接著,藉由使基板載物台pST 沿+X方向及+Y方向移動,而使其移動至第4曝光區域 PA14的掃描曝光時的掃描路徑的延長線上(移動A7i), 並藉由對準檢測部AL2〜AL5來檢測對應著第4曝光區域 籲 PA14而設置於基板P上的標記ml05〜ml〇8。隨後,使基 板載物纟pst沿·γ杨鶴(移動A72),藉纟對準檢測 部AL1〜AL6來一併檢測標記m91〜m96。接著,藉由使 基板載物台PST沿·γ方向移動,而使其移動至第3曝光 區域ΡΑ13的掃描曝光時的掃描路徑上(移動Α73),並藉 由對準檢測部AL2〜AL5來檢測對應著第3曝光區域ρΑ13 而設置於基板Ρ上的標記mlOl〜ml〇4。並且,將各檢測 結果記憶於記憶部80中。 而且,控制部CONT根據記憶於記憶部8〇中的標記 參 mlOl相對於標記m91的位置、以及步驟S2〇中所檢測的 標記ml=的檢測結果的標記位置,算出標記m91的位 置,從而异出所算出的標記m9i的位置與步驟S3〇中所檢 測的標記m91的檢測結果的標記位置的關聯值(差值)。 同樣地,根據標記ml02〜ml08相對於標記m92〜m96的 各位置、以及作為步驟S30中所檢測的標記ml〇2〜ml〇8 的檢測結果的各標記位置,算出標記m92〜m96的位置, 從而分別算出所算出的標記m92〜m96的各位置與步驟 33 201013339 32112pif S3〇中所檢測的m92〜m96的檢測結果的各標記位置的關 聯值(差值)。而且,對多個基板P (樣品基板)算出各標 記的關聯值的統計量(平均值)。並且,將各算出結果記憶 於記憶部80中。 ^ 其次,控制部CONT進行如下曝光處理(步驟S31), 根據步驟S20中的第3、第4曝光區域PA13、pA14的標 記檢測處理結果,進行第3、第4曝光區域pA13、pA= 的位置對準,並沿掃描方向對第3、第4曝光區域pAi3、 PA14進行掃描曝光。即,根據由對準檢測部AU〜Au © 所檢測的標記m81〜m83的檢測結果的各標記位置、作為 由對準檢測部AL2〜AL5所檢測的標記ml〇1〜ml〇4的檢 測結果的各標記位置、以及記憶於記憶部8〇中的標記1〇1 〜ml04相對標記m9i〜m93的各位置,進行第3曝光區 域PA13的位置對準。並且,對第3曝光區域pA13進行掃 描曝光(移動A74)。同樣地,根據由對準檢測部AL4〜 AL6所檢測的標記m84〜m86的檢測結果的各標記位置、 由對準檢測部AL2〜AL5所檢測的標記ml〇5〜ml〇8的檢 ❹ 測結果的各標記位置、以及記憶於記憶部8〇中的標記1〇5 〜ml08相對標記m94〜m96的各位置,進行第4曝光區 域PA14的位置對準。並且,對第4曝光區域pAl4進行掃 描曝光(移動A75、A76)。 其次,控制部CONT以與第3、第4曝光區域PA13、 PA14的標記檢測處理相同的方式,如圖13⑴所示,使 基板載物台PST沿_x方向及_γ方向移動(移動A77),藉 34 201013339 32112pif 由對準檢測部ALl〜AL6來一併檢測標記m71〜m76,並 使基板載物台pst沿-X方向及+γ方向移動(移動A78), 藉由對準檢測部AL2〜AL5來檢測標記m65〜m68,且使 基板載物台pst沿-γ方向移動(移動A79),藉由對準檢 測部AL1〜AL6來一併檢測標記m51〜m56,使基板載物 台pst沿-γ方向移動(移動A80),藉由對準檢測部AL2 〜AL5來檢測標記m61〜m64 (步驟S32)。接著,將各檢 ^ 測結果記憶於記憶部80中。 又,控制部CONT根據標記m61相對標記m51的位 置、以及步驟S2中所檢測的標記m61的檢測結果的標記 位置,算出標記m51的位置,從而算出所算出的標記m51 的位置與步驟S32中所檢測的標記m51的檢測結果的標記 位置的關聯值(差值同樣地,根據標記m62〜m68相 對標記m52〜m56的各位置、以及步驟S32中所檢測的標 記m62〜m68的檢測結果的各標記位置,算出標記m52〜 m56的位置’從而分別算出所算出的標記m52〜瓜弘的各 • 位置與作為步驟S32中所檢測的標記m52〜m56的檢測結 果的各標記位置的關聯值(差值)。而且,對多個基板p (樣品基板)算出各標記的關聯值的平均值。並且,將各 算出結果記憶於記憶部80中。 其次’控制部CONT以與第3、第4曝光區域PA13、 PA14的曝光處理相同的方式,進行第丨及第2曝光區域 PA1、PA2的曝光處理。即,控制部c〇NT藉由與對於第 3及第4曝光區域PA3、PA4的移動A74〜A76相同的順 35 201013339 32112pif 序(其中’順序與X方向反向)而使基板載物台PST移動 (移動A81〜A83) ’並依第1曝光區域PA1卜第2曝光 區域PA12的順序進行位置對準及掃描曝光處理(步驟 S23)。此時’根據標記m71〜m76、m61〜m68、及標記 61〜m68相對標記m51〜m56的位置,進行第1、第2曝 光區域PA11、PA12的位置對準。當第2曝光區域PA12 的曝光處理結束之後,使基板載物台PST移動至基板更換After the exposure processing of the fifth exposure area PA5 is completed, the control unit CONT uses the detection results of the marks m41 and m42 detected by the alignment detecting units AL1 and AL2, that is, the respective mark positions and the marks calculated by the sample substrate processing, m42. The value obtained by adding the statistic of the correlation value, and the detection result of the marker m3, m32 detected by the detection unit AL, AL2, the alignment of the fourth exposure region PA4, and scanning of the fourth exposure region PA4 Exposure (moving A34). Next, the substrate stage pST is moved in the +X direction and the +Y direction (movement A35), and the detection results of the marks m45 and m46 detected by the alignment detecting units AL5 and AL0, that is, the respective mark positions and the sample substrate are processed. The sixth exposure area PA6 is obtained by adding the statistic values of the correlation values of the marks m45 to m46 calculated at the time and the detection results of the marks m35 and m36 detected by the alignment detecting units AL5 and AL6, that is, the respective mark positions. The position is aligned, and the sixth exposure area PA6 is scanned and exposed (movement A36). Next, the control unit CONT moves the substrate stage PST in the -X direction and the -γ direction (movement A37), detects the marks mil to ml6 by the alignment detecting portions AL1 to AL6, and causes the substrate stage PST to follow the + Χ Directions move 30 201013339 32112pif (Move A38) 'Detect markup coffee ~m26 by aligning the clerk AU~AL6. Then, exposure processing of the first to third exposure regions PA1 to pm is performed in the same manner as the baffle exposure processing of the fourth to sixth exposure regions pA4 to pA6. In other words, the control unit CONT moves the substrate stage PST (movements A39 to A43) in the same order as the movements A32 to A36 of the fourth to sixth exposure areas PA4 to PA6, and the second exposure area PA2. The first exposure area PA and the third exposure area pA3 are sequentially aligned and scanned. When the alignment of the second exposure region pA1 and the third exposure region PA3 is performed, the correlation values of the labels, m45, and m46 are set in the same manner as the alignment of the fourth exposure region PA4 and the sixth exposure region pA6. The statistics are added together. After the exposure processing of the third exposure area PA3 is completed, the control unit c〇NT moves the substrate stage PST to the substrate replacement position (movement A44), and ends the series of exposure processing for one physical substrate. Then, the processes of steps S10, S11, S13, and S14 are repeated until it is determined that the batch is the final substrate (steps si4, Yes). Next, an exposure method and an exposure apparatus according to a third embodiment of the present invention will be described. In addition, the configuration of the exposure apparatus of the third embodiment has the same configuration as that of the exposure apparatus EX of the first embodiment. Therefore, in the description of the third embodiment, the same configurations as those of the exposure apparatus according to the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted. In the description of the exposure method of the third embodiment, the flow chart of Fig. 4 showing the exposure method of the first embodiment will be described. In the third embodiment, for example, as shown in Fig. 11, the four exposure areas PA11 to PA14 on the rectangular substrate F having a diagonal length of 31 201013339 32112 pif of 500 mm or more are sequentially exposed. Here, the second and second exposure regions PA11 and PA12 are arranged side by side in the γ-axis direction on the +χ side of the substrate p, and the third and fourth exposure regions ΡΑ13 and ρα14 are arranged side by side in the γ-axis direction on the substrate Ρ. 'The -X side. The marks m51 to m56 and m61 to m68' are adjacently disposed on the +Χ side in the X-axis direction of the second exposure regions ρ11 and ΡΑ12, respectively, on the -X side of the first and second exposure regions pAll and PA12. Marks m71 to m76 are provided with marks ?81 to m86 adjacent to the +X side of the third and fourth exposure areas PA13 and PA14, and marks m91 are provided adjacent to the -X side of the third and fourth 曝光 exposure areas PA13 and PA14. ~m96, mlOl~ml08. The positions of the marks m61 to 68 with respect to the marks m5i to m56 and the positions of the marks mlO1 to ml08 with respect to the marks m9i to m96 are previously stored in the memory unit 80. Further, in the third embodiment, one or more substrates P of a predetermined number from the front portion of the same batch including the plurality of substrates P are used as the sample substrate, and the subsequent substrate p is used as the physical substrate. Perform exposure processing. First, the control unit CONT carries the substrate P' into the substrate stage PST in the step S1 shown in the flowchart of FIG. 4, and when the substrate P' is judged to be the sample substrate in the step sii, Exposure processing to the sample substrate is performed (step S12). Fig. 12 is a flow chart showing the procedure of exposure processing on the sample substrate. In the exposure processing of the sample substrate, as shown in the flowchart of ffi 12, first, the mark detection processing of the third and fourth exposure regions PA13 and PA14 is performed (step S3()). Fig. 13 is a view schematically showing the relative movement order of the projection optical system PL and the alignment system AL with respect to the substrate 32 201013339 32112 pif P' in the exposure processing of the sample base. As shown in FIG. 13(a), the control unit CONT moves the substrate stage PST / σ + χ in the direction (movement A7 〇), and detects the marks m81 to m86 by the alignment detecting unit AU 〜 。. Then, by moving the substrate stage pST in the +X direction and the +Y direction, the substrate stage pST is moved to the extension line (movement A7i) of the scanning path at the time of scanning exposure of the fourth exposure area PA14, and by alignment The detecting units AL2 to AL5 detect the marks ml05 to ml〇8 provided on the substrate P corresponding to the fourth exposure region PA47. Subsequently, the substrate load 纟pst is moved along the γ yang crane (moving A72), and the marks m91 to m96 are collectively detected by the alignment detecting portions AL1 to AL6. Then, by moving the substrate stage PST in the γ direction, it moves to the scanning path at the time of scanning exposure of the third exposure area ΡΑ13 (movement Α 73), and the alignment detecting units AL2 to AL5 Marks mlO1 to ml〇4 provided on the substrate stack corresponding to the third exposure region ρΑ13 are detected. Further, each detection result is stored in the memory unit 80. Further, the control unit CONT calculates the position of the mark m91 based on the position of the mark parameter mlO1 stored in the memory unit 8〇 with respect to the mark m91 and the mark position of the detection result of the mark ml= detected in the step S2, and thus the position of the mark m91 is different. The correlation value (difference value) of the calculated position of the mark m9i and the mark position of the detection result of the mark m91 detected in the step S3 is output. Similarly, the positions of the marks m92 to m96 are calculated based on the positions of the marks ml02 to ml08 with respect to the marks m92 to m96 and the respective mark positions of the detection results of the marks ml〇2 to ml〇8 detected in step S30. Then, the correlation value (difference value) of each of the calculated positions of the marks m92 to m96 and the respective mark positions of the detection results of m92 to m96 detected in step 33 201013339 32112pif S3〇 is calculated. Further, the statistic (average value) of the correlation value of each mark is calculated for the plurality of substrates P (sample substrates). Further, each calculation result is stored in the storage unit 80. Then, the control unit CONT performs the following exposure processing (step S31), and performs the positions of the third and fourth exposure regions pA13 and pA= based on the result of the mark detection processing of the third and fourth exposure regions PA13 and pA14 in step S20. The third and fourth exposure regions pAi3, PA14 are scanned and exposed in the scanning direction. In other words, the respective mark positions of the detection results of the marks m81 to m83 detected by the alignment detecting units AU to Au are the detection results of the marks ml〇1 to ml〇4 detected by the alignment detecting units AL2 to AL5. Each of the mark positions and the marks 1〇1 to ml04 stored in the memory unit 8〇 are aligned with the respective positions of the marks m9i to m93, and the third exposure area PA13 is aligned. Then, the third exposure region pA13 is subjected to scanning exposure (movement A74). Similarly, the detection marks of the detection results of the marks m84 to m86 detected by the alignment detecting units AL4 to AL6 and the marks ml〇5 to ml8 detected by the alignment detecting units AL2 to AL5 are detected. As a result, the respective mark positions and the marks 1〇5 to ml08 stored in the memory unit 8〇 are aligned with the respective positions of the marks m94 to m96, and the fourth exposure area PA14 is aligned. Then, the fourth exposure region pAl4 is subjected to scanning exposure (movements A75, A76). Then, the control unit CONT moves the substrate stage PST in the _x direction and the _γ direction (movement A77) as shown in Fig. 13 (1) in the same manner as the mark detection processing of the third and fourth exposure areas PA13 and PA14. By borrowing the detection units AL1 to AL6, the marks m71 to m76 are collectively detected, and the substrate stage pst is moved in the -X direction and the +γ direction (moving A78) by the alignment detecting portion AL2. 〜55 detects the marks m65 to m68, moves the substrate stage pst in the -γ direction (moves A79), and collectively detects the marks m51 to m56 by the alignment detecting portions AL1 to AL6, so that the substrate stage pst Moving in the -γ direction (moving A80), the marks m61 to m64 are detected by the alignment detecting portions AL2 to AL5 (step S32). Next, each test result is stored in the memory unit 80. Further, the control unit CONT calculates the position of the mark m51 based on the position of the mark m61 with respect to the mark m51 and the mark position of the detection result of the mark m61 detected in step S2, and calculates the position of the calculated mark m51 and the position of step S32. The correlation value of the mark position of the detection result of the detected mark m51 (the difference is similarly the respective marks of the respective marks of the marks m62 to m68 with respect to the marks m52 to m56 and the detection results of the marks m62 to m68 detected in the step S32) At the position, the position of the marks m52 to m56 is calculated, and the correlation values of the respective positions of the calculated marks m52 to guahong and the respective mark positions of the detection results of the marks m52 to m56 detected in step S32 are calculated. Further, an average value of the correlation values of the respective marks is calculated for the plurality of substrates p (sample substrates), and the respective calculation results are stored in the memory unit 80. Next, the control unit CONT and the third and fourth exposure regions are used. In the same manner as the exposure processing of PA13 and PA14, the exposure processing of the second and second exposure areas PA1 and PA2 is performed. That is, the control unit c〇NT is used for the third and fourth exposures. The movements A74 to A76 of the regions PA3 and PA4 are the same as the order of 35 201013339 32112pif (in which the 'sequence is reversed from the X direction), and the substrate stage PST is moved (moving A81 to A83)' and according to the first exposure area PA1 (2) The alignment of the exposure area PA12 is performed in the order of alignment and scanning exposure (step S23). At this time, the first and the first are performed based on the positions of the marks m71 to m76, m61 to m68, and the marks 61 to m68 with respect to the marks m51 to m56. 2 Positioning of the exposure areas PA11, PA12. After the exposure processing of the second exposure area PA12 is finished, moving the substrate stage PST to the substrate replacement

位置(移動A84),結束對一片樣品基板的一系列曝光處 理。 其次,對實物基板的曝光處理加以說明。圖14是示 意性表示對實物基板的曝光處理中投影光學系統PL及對 準系統AL對基板P’的相對移動順序之圖。如圖14所示, 控制部CONT使基板載物台PST沿+χ方向移動(移動 Α90),藉由對準檢測部AL1〜似來檢測標記㈣〜Position (Move A84) to end a series of exposure processing on a sample substrate. Next, the exposure processing of the physical substrate will be described. Fig. 14 is a view schematically showing the relative movement order of the projection optical system PL and the alignment system AL to the substrate P' in the exposure processing of the physical substrate. As shown in Fig. 14, the control unit CONT moves the substrate stage PST in the +χ direction (moving Α90), and detects the mark (4) by the alignment detecting unit AL1~

m86,並使基板載物台PST沿+χ方向移動(移動A9i) 藉由對準檢測部AL1〜AL6來檢測標記m91〜m96^ 著,使基板載物台PST沿-γ方向移動(移動A92),並j 用由對準檢測部AL1〜AL3所檢測的標記m81〜m83… 測結果即各標記位置、以及由對準檢測部ali〜al3所才 測的標記m91〜m93的檢測結果即各標記位置,與樣以 板處理時算出後記憶於記憶部8G中的標記⑽卜娜^ 關聯值的統計量相加所得之值,進行第3曝光 Μ :位置對準,並對第3曝光區域PA13進行掃描曝光^ 動A93)。同樣地’使基板載物台pST沿乂方向及+γ方# 36 201013339 32112pif 移動(移動A94),並使用由對準檢測部AL4〜AL6所檢 測的標記m84〜86的檢測結果即各標記位置、以及由對準 檢測部AL4〜AL6所檢測的標記m94〜m96的檢測結果即 各標記位置,分別與樣品基板處理時算出後記憶於記憶部 8〇中的標記m94〜m96的關聯值的統計量相加所得之值, 進行第4曝光區域pah的位置對準,並對第4曝光區域 PA14進行掃描曝光(移動a%)。 _ 其次,控制部CONT使基板載物台PST沿-XY方向 移動(移動A96) ’藉由對準檢測部Ali〜AL6來檢測標 記m71〜m76’並使基板載物台PST沿-X方向移動(移動 A97)’藉由對準檢測部AL1〜AL6來檢測標記m51〜 m56。接著’以與第3、第4曝光區域pA13、pA14的掃描 曝光處理相同的方式,進行第丨及第2曝光區域pA1、pA2 的曝光處理。即,控制部c〇NT藉由與對於第3及第4曝 光區域PA3、PA4的移動A92〜A95相同的順序(其中順 序與X方向反向)而使基板載物台PST移動(移動Λ98 〜A101),並以第2曝光區域pA12、第丨曝光區域ρΑΐι 的順序進行掃描曝光處理。此時,使用標記m61〜66、及 標記m51〜m56的關聯值的統計量,進行第1、第2曝光 區域PA11、PA12的位置對準。當第2曝光區域伙12的曝 光處理結束之後’控制部c〇NT使基板載物台pST移動至 基板更換位置(移動A1〇2),結束對一片實物基板的一系 列曝光處理。並且,重複步驟sl〇、su、S13、S14的處 理’直至步驟S12中所處理的基板p被判斷為批次最終基 37 201013339 32112pif 板為止(步驟S14,Yes)。 根據第2及第3實施形態的曝光方法,由於對基板上 的各曝光區域進行重合曝光時,一面考慮到基板載物台 PST相對投影光學系統PL沿四角方向移動時基板載物台 PST與投影光學系統PL的相對位置,一面進行各曝光區 域的位置對準,因此可以抑制基板载物台PST沿四角方向 移動時產生的裝置構造物(基座等)變形、或設置著曝光 裝置EX的地板面的平面度的長年變化等所引起的構造物 的變形而造成的重合精度降低。此處,裝置構造物的變形 在基板載物台PST沿四角方向移動時較為顯著,藉由抑制 因此時的裝置構造物變形而造成的重合精度降低,而與先 前技術相比’可使基板P整體的重合精度達到較高精度。 而且’與第1實施形態的曝光方法相比,可縮短對樣品基 板的標記檢測處理的時間,因此亦可抑制生產量 (throughput)降低。因而,根據第2及第3實施形態的曝 光方法,可一面抑制生產量降低,一面長期高精度地進行 重合曝光。 其次,對本發明第4實施形態的曝光方法及曝光裝置 加以說明。再者,第4實施形態的曝光裝置的構成具有與 第1實施形態的曝光裝置Εχ相同的構成。因此,於第4 實施形態的說明中’對與第1實施形態的曝光裝置的構成 相同的構成標註相同符號,並省略其詳細說明。 、一於第4實施形·4的曝光方法中,在對批次前部的基板 進打曝光處理之前’進行調整投影光學系統PL對基板的 201013339 32112pif 才又影位置的透鏡校準(lens calibration),以及對光罩M與 對準系統AL的相對位置進行檢測的基線測量。再者,本 實施形態中進行曝光處理的基板’設為圖11所示的基板 Ρ,。 首先’對掃描曝光基板Ρ'的第1曝光區域ΡΑ11 (參照 圖11)時的投影光學系統PL的透鏡校準加以說明。圖15 (a)及圖16(a)是用來說明掃描曝光第1曝光區域ΡΑ11 φ 時的投影光學模組PLa、PLc、PLe、PLg的透鏡校準相關 的光罩載物台MST、投影光學系統PL、及基板載物台PST 的位置關係之圖。如圖15 (a)所示,於光罩載物台MST 的掃描方向兩侧(+χ方向及_χ方向的各端部),設置著具 有對應著投影光學模組PLa〜;PLg而設置的第2基準標記 (未圖示)之圖案保持構件92、93。而且,於基板載物台 PST的掃描方向兩側(+χ方向及_χ方向的各端部),設置 有具有對應著第1〜第4曝光區域ΡΑ11〜ΡΑ14而設置的 第1基準標記(未圖示)的基準構件9〇、91。即,第1基 參 準標記對應著投影光學模組PLa〜PLg及對準檢測部AL1 〜AL6而設置。 使光罩載物台MST及基板載物台PST移動至圖15(a) 及圖16 (a)所示的位置,並藉由設置於基準構件9〇下方 的空間像檢測部’來檢測基準構件9〇、91中接近第1曝光 區域PA11侧的基準構件90所具有的第1基板標記。即移 動基板載物台PST,使與第1曝光區域pA11對應的第1 基準標記,位於基板P,的第1曝光區域PA11的掃描路徑 39 201013339 32112pif 上’對基準構件9g的第1基準標記進行檢測。而 Μ! 5=朱件92所具有的第2基準標記對基板載物 。ST (基準構件90)上的投影像進機測。即,對與經 j的第1基準標記對應,且投影於掃描路徑的延長線上 的第2基特記的投影像進行檢測。此時,使第i基準標 =(基板載物台PST)移動至第2基準標記的投影像内或 者投影像附近,對第i基準標記與第2基準標記的投影像 一併進行檢測。M86, and the substrate stage PST is moved in the +χ direction (moving A9i). The marks m91 to m96 are detected by the alignment detecting portions AL1 to AL6, and the substrate stage PST is moved in the -γ direction (moving A92) And the detection results of the marks m81 to m93 detected by the alignment detecting units AL1 to AL3, that is, the respective mark positions and the marks m91 to m93 measured by the alignment detecting units ali to al3 are each The position of the mark is added to the value obtained by adding the statistic of the value of the mark (10) of the mark (10) which is calculated in the memory portion 8G after the sheet processing, and the third exposure Μ is positioned and aligned, and the third exposure area is formed. PA13 performs scanning exposure (A93). Similarly, 'the substrate stage pST is moved in the 乂 direction and the +γ side # 36 201013339 32112pif (movement A94), and the detection results of the marks m84 to 86 detected by the alignment detecting units AL4 to AL6, that is, the respective mark positions are used. And the respective values of the detection results of the marks m94 to m96 detected by the alignment detecting units AL4 to AL6, respectively, and the correlation values of the marks m94 to m96 stored in the memory unit 8A after the sample substrate processing is calculated. The value obtained by the addition is added, and the alignment of the fourth exposure region pah is performed, and the fourth exposure region PA14 is subjected to scanning exposure (movement a%). _ Next, the control unit CONT moves the substrate stage PST in the -XY direction (movement A96) 'detects the marks m71 to m76' by the alignment detecting portions Ali to AL6 and moves the substrate stage PST in the -X direction. (Moving A97) 'The marks m51 to m56 are detected by the alignment detecting units AL1 to AL6. Then, the exposure processing of the second and second exposure regions pA1, pA2 is performed in the same manner as the scanning exposure processing of the third and fourth exposure regions pA13 and pA14. In other words, the control unit c〇NT moves the substrate stage PST in the same order as the movements A92 to A95 for the third and fourth exposure areas PA3 and PA4 (the order is reversed from the X direction) (moving Λ 98 〜 A101), scanning exposure processing is performed in the order of the second exposure region pA12 and the second exposure region ρΑΐι. At this time, the alignment of the first and second exposure regions PA11 and PA12 is performed using the statistics of the correlation values of the marks m61 to 66 and the marks m51 to m56. After the exposure processing of the second exposure area group 12 is completed, the control unit c〇NT moves the substrate stage pST to the substrate replacement position (movement A1〇2), and ends the series exposure processing for one piece of the physical substrate. Then, the processing of steps sl, su, S13, and S14 is repeated until the substrate p processed in step S12 is judged as the batch final base 37 201013339 32112 pif board (step S14, Yes). According to the exposure method of the second and third embodiments, when the exposure exposure is performed on each of the exposed regions on the substrate, the substrate stage PST and the projection are considered in consideration of the substrate stage PST moving in the four-corner direction with respect to the projection optical system PL. Since the relative position of the optical system PL is aligned with each exposure region, it is possible to suppress deformation of the device structure (base or the like) generated when the substrate stage PST moves in the four-corner direction, or to provide the floor of the exposure device EX. The accuracy of the coincidence caused by the deformation of the structure caused by the long-term change in the flatness of the surface is lowered. Here, the deformation of the device structure is remarkable when the substrate stage PST moves in the four-corner direction, and the coincidence precision caused by the deformation of the device structure at this time is suppressed, and the substrate P can be made in comparison with the prior art. The overall coincidence accuracy achieves high precision. Further, as compared with the exposure method of the first embodiment, the time for detecting the mark on the sample substrate can be shortened, so that the throughput can be suppressed from being lowered. Therefore, according to the exposure method of the second and third embodiments, the overlap exposure can be performed with high precision for a long period of time while suppressing a decrease in the throughput. Next, an exposure method and an exposure apparatus according to a fourth embodiment of the present invention will be described. Further, the configuration of the exposure apparatus of the fourth embodiment has the same configuration as that of the exposure apparatus 第 of the first embodiment. Therefore, in the description of the fourth embodiment, the same configurations as those of the exposure apparatus according to the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted. In the exposure method of the fourth embodiment, the lens calibration of the 201013339 32112pif position of the substrate of the projection optical system PL is performed before the exposure processing of the substrate at the front of the batch is performed. And a baseline measurement of the relative position of the reticle M and the alignment system AL. Further, the substrate ??? which was subjected to the exposure processing in the present embodiment is a substrate 所示 shown in Fig. 11 . First, the lens alignment of the projection optical system PL when the first exposure region ΡΑ11 (see Fig. 11) of the substrate Ρ is scanned is described. 15(a) and 16(a) are diagrams for explaining lens alignment related to lens alignment of the projection optical modules PLa, PLc, PLe, and PLg when the first exposure region ΡΑ11 φ is scanned and exposed, and projection optics. Diagram of the positional relationship between the system PL and the substrate stage PST. As shown in Fig. 15 (a), on both sides (the end portions in the +χ direction and the _χ direction) of the scanning stage MST in the scanning direction, the projection optical modules PLa1 to PLG are provided. The pattern holding members 92 and 93 of the second reference mark (not shown). Further, on both sides in the scanning direction of the substrate stage PST (each end portion in the +χ direction and the _χ direction), a first reference mark provided corresponding to the first to fourth exposure regions ΡΑ11 to ΡΑ14 is provided ( Reference members 9A and 91 which are not shown). That is, the first reference mark is provided corresponding to the projection optical modules PLa to PLg and the alignment detecting units AL1 to AL6. The mask stage MST and the substrate stage PST are moved to the positions shown in FIGS. 15(a) and 16(a), and the reference is detected by the aerial image detecting unit ' provided under the reference member 9A. Among the members 9A and 91, the first substrate mark included in the reference member 90 on the side of the first exposure region PA11 is obtained. In other words, the substrate stage PST is moved, and the first reference mark corresponding to the first exposure region pA11 is placed on the scan path 39 201013339 32112pif of the first exposure region PA11 of the substrate P, and the first reference mark of the reference member 9g is performed. Detection. And Μ! 5 = the second reference mark on the substrate 92 to the substrate carrier. The projection image on the ST (reference member 90) is measured. In other words, the projection image of the second base corresponding to the first reference mark of j is projected on the extension line of the scanning path. At this time, the i-th reference mark = (substrate stage PST) is moved to the vicinity of the projected image of the second reference mark or the vicinity of the projected image, and the projected image of the i-th reference mark and the second reference mark is collectively detected.

接著,异出藉由空間像檢測部所檢測的第丨基準標記 與第2基準標記的相對值(相對位置關係),並根據所算出 的相對值來調整投影光學系統PL的影像位移機構19、影 像旋轉機構、倍率調整機構25等,藉此進行與第丨曝光區 域PA11相對應的投影光學模組pLa、pLc、pLe、的 透鏡校準。Then, the relative value (relative positional relationship) between the second reference mark and the second reference mark detected by the aerial image detecting unit is different, and the image shifting mechanism 19 of the projection optical system PL is adjusted based on the calculated relative value. The image rotation mechanism, the magnification adjustment mechanism 25, and the like perform lens alignment of the projection optical modules pLa, pLc, and pLe corresponding to the second exposure region PA11.

同樣地,對第1曝光區域PA11掃描曝光時,進行投 影光學模組PLb、PLd、PLf的透鏡校準。圖15 (b)及圖 16 (b)是用來說明掃描曝光第1曝光區域pA11時,投影 光學模組PLb、PLd、PLf的透鏡校準的相關光罩載物台 MST、投影光學系統pl、基板載物台psT的位置關係之 圖。使光罩載物台MST及基板載物台PST移動至圖i5(b) 及圖16(b)所示的位置,與進行對應於第1曝光區域pA11 的投影光學模組PLa、PLc、PLe、PLg的透鏡校準時相同 地,藉由空間像檢測部來檢測第1基準標記及第2基準標 s己’並算出第1基準標記與第2基準標記的相對值,且根 40 201013339 ΜΙΥΖψίϊ 據相對值來進行與第1曝光區域ΡΑ11對應的投影光學模 組PLa、PLc、PLe、PLg的透鏡校準。 其次,對掃描曝光第1曝光區域PA11時的基線測量 加以說明。圖15 (e)及圖16 (e)是用來說明掃描曝光第 1曝光區域PA11時’基線測量相關的光罩載物台MST、 ,影光學系統PL、基板載物台pst的位置關係之圖。使 光罩載物台MST及基板載物台PST移動至圖15(C)及圖 參 16 (C)所示的位置,藉由空間像檢測部來檢測基準構件 90所具有的第1基準標記。即移動基板載物台pST,使與 第1曝光區域PA11·對應的第1基準標記位於第1曝光區 域PA11的掃描路徑的延長線上,並檢測第丨基準標記。 接著’根據預先在透鏡校準時所檢測的投影光學系統PL 與光罩Μ (光罩載物台MST)的相對位置、以及由空間像 檢測部所檢測的第1基準標記的位置,算出光罩M與對準 系統AL的相對位置,藉此進行基線測量。 同樣地,進行在掃描曝光基板P,的第3曝光區域PA13 • 時的投影光學系統PL的透鏡校準及基線測量。圖17 (a)Similarly, when the first exposure area PA11 is scanned and exposed, lens alignment of the projection optical modules PLb, PLd, and PLf is performed. 15(b) and 16(b) are diagrams for explaining the lens mask MST and the projection optical system pl of the lens alignment of the projection optical modules PLb, PLd, and PLf when the first exposure region pA11 is scanned and exposed. A diagram showing the positional relationship of the substrate stage psT. The mask stage MST and the substrate stage PST are moved to the positions shown in FIGS. i5(b) and 16(b), and the projection optical modules PLa, PLc, and Pe corresponding to the first exposure area pA11 are performed. In the same manner as the lens calibration of PLg, the first image marker and the second reference marker are detected by the aerial image detecting unit, and the relative values of the first reference marker and the second reference marker are calculated, and the root 40 201013339 ΜΙΥΖψίϊ The lens alignment of the projection optical modules PLa, PLc, PLe, and PLg corresponding to the first exposure region ΡΑ11 is performed with respect to the relative value. Next, the baseline measurement at the time of scanning and exposing the first exposure area PA11 will be described. 15(e) and 16(e) are diagrams for explaining the positional relationship between the photomask stage MST, the shadow optical system PL, and the substrate stage pst related to the baseline measurement when the first exposure area PA11 is scanned and exposed. Figure. The mask stage MST and the substrate stage PST are moved to the positions shown in FIG. 15(C) and FIG. 16(C), and the first reference mark of the reference member 90 is detected by the aerial image detecting unit. . Namely, the substrate stage pST is moved so that the first reference mark corresponding to the first exposure area PA11· is located on the extension line of the scanning path of the first exposure area PA11, and the second reference mark is detected. Then, the mask is calculated based on the relative position of the projection optical system PL and the mask Μ (mask stage MST) detected at the time of lens calibration, and the position of the first reference mark detected by the aerial image detecting unit. The relative position of M to the alignment system AL, whereby baseline measurements are made. Similarly, lens alignment and baseline measurement of the projection optical system PL at the time of scanning the third exposure area PA13 of the substrate P are performed. Figure 17 (a)

疋用來說明投影光學模組PLa、PLc、PLe、PLg在對第3 曝光區域PA13’進行掃描曝光時的透鏡校準相關的光罩載 物台MST、投影光學系統PL、及基板載物台pST的位置 關係之圖,圖17(b)是用來說明投影光學模組PLb、PLd、 PLf在對第3曝光區域PA13進行掃描曝光時的透鏡校準的 相關光罩載物台MST、投影光學系統pL、基板載物台psT 的位置關係之圖。使光罩載物台MST及基板載物台PST 201013339 32112pif 依序移動至圖17 (a)及圖Π (b)所示的位置,並根據藉 由空間像檢測部所檢測的第1基準標記及第2基準標記的 相對值,進行投影光學系統PL的透鏡校準。 其-人,對掃描曝光第3曝光區域pai3時的基線測量 加以說明。圖17 (c)是用來說明掃描曝光第3曝光區域 PA13時的基線測量相關的光罩載物台、投影光學系 統PL、基板載物台PST的位置關係之圖。使光罩載物台 MST及基板載物台PST移動至圖17 (c)所示的位置並 藉由空間像檢測部來檢測基準構件90所具有的第1基準標 ❹ 記。接著,根據預先在透鏡校準時所檢測的投影光學系統 PL與光罩Μ (光罩載物台MST)的相對位置、及由空間 像檢測部所檢測的第i基準標記的位置,進行基線測量。 與掃描曝光第1曝光區域PA11及第3曝光區域PA13 時的投影光學系統PL的透鏡校準及基線測量同樣地,進 行掃描曝光第2、第4曝光區域pA12、PA14時的投影光 學系統PL的透鏡校準及基線測量。此時移動基板載物台 PST ’使與第2、第4曝光區域PA12、PA14對應的第1基 ❹ 準標記(基構件90、90中接近第2、第4曝光區域PA12、 PA14之側的基準構件91的第1基準標記)位於基板p,的 第2、第4曝光區域PA12、PA14的掃描路徑的延長線上。 接者’藉由設置於基準部91下方的空間像檢測部來檢測第 1基準標s己及第2基準標記,並算出第1基準標記與第2 基準標記的相對值’再根據相對值來進行投影光學系統pL 的透鏡校準及基線測量。 42 201013339 32112ρίί 於與各曝光區域ΡΑΠ〜PA14對應的透鏡校準及基線 測量之後,進行各曝光區域ΡΑ11〜ΡΑ14的曝光處理。即, 根據對第1曝光區域ΡΑ11的透鏡校準及基線測量結果, 來調整投影光學系統PL的影像位置及光罩μ與對準系統 AL的相對位置,進行第1曝光區域ρΑ11的位置對準,並 對第1曝光區域ΡΑ11進行掃描曝光。同樣地,根據對第2 〜第4曝光區域ΡΑ12〜ΡΑ14各別的透鏡校準及基線測量 φ 結果,來調整投影光學系統PL的影像位置及光罩Μ與對 準系統AL的相對位置,從而進行第2〜第4曝光區域ρΑ12 〜ΡΑ14的位置對準,並對第2〜第4曝光區域ρΑ12〜ρΑ14 進行掃描曝光。 根據第4實施形態的曝光方法,由於一面考慮到基板 載物台PST對投影光學系統PL沿四角方向移動^,基板 載物台PST與投影光學系統PL的相對位置,一面進行與 各曝光區域對應的透鏡校準及基線測量,因此可抑制因基 板載物台PST沿四角方向移動時產生的裝置構造物(基座 # 冑)變形、或設置有曝光裝置EX的地板面的平面度長年 變化等,所引起的裝置構造物變形而造成的重合精度降 低,從而可長期高精度地進行重合曝光。 再者,第4實施形態中,表示例如,即,光罩載物台 MST具有圖案保持構件%、%,且藉由空間像檢測部來 ,測圖:保持構件92所具有的第2基準標記的示例,但亦 可藉由空間像檢測部來檢測圖案保持構件93所具有的第2 準標己且亦可藉由空間像檢測部來檢測設置於光罩Μ 43 201013339 32112pif 上的第2基準標記。而且,亦可藉由空間像檢測部來檢測 設置於光罩載物台MST的+X方向的端部的圖案保持構件 92所具有的第2基準標記、以及設置於光罩輸台mst 的-X方向的端部的圖案保持構件93所具有的第2基準標 記兩者,並根據檢測結果來校正光罩M的位置。此時, 抑制因光罩載物台MST、投影光學系統pL、基板載物a PST的相對位置不同而產生的光罩M變形等所引起的重二 曝光的偏移,從而可高精度地進行重合曝光。 再者,上述第1〜第4實施形態中,對作為感光基板 的基板P、P’為方型(矩形)基板的情形進行了說明但 並不限定於方型基板,本發明亦可應用於例如半導體晶圓 (wafer)等的圓型基板(局部具有切口等),對於直徑為 450 mm或450 mm以上的圓型基板,本發明可以發揮顯著 的效果。 再者,上述第1〜第4實施形態中,就對設置於感光 ,板上的多娜域(上述實施形態中為多個曝光區域)進 仃曝光處理進行了說明,但本發明並非限定於對設置於基 板上的多個區域(處理區域)進行曝光處理的情形,除了 ,光處理之外’例如亦可應用對設置於基板上的多個處理 ,域進行檢測或麵4的處料。該進行檢測或者測量的 理,例如包含對各處理區域中所形成的圖案進行檢測或 者測量。 曰其次’對使用上述曝光方法的元件製造方法加以說 明。圖18是表示液晶元件或者半導體元件等的製造步驟的 201013339 32112pif光 used to describe the reticle stage MST, the projection optical system PL, and the substrate stage pST related to the lens alignment when the projection optical modules PLa, PLc, PLe, and PLg perform scanning exposure on the third exposure area PA13'. FIG. 17(b) is a related reticle stage MST for explaining lens alignment when the projection optical modules PLb, PLd, and PLf perform scanning exposure on the third exposure area PA13, and a projection optical system. Diagram of the positional relationship between pL and substrate stage psT. The mask stage MST and the substrate stage PST 201013339 32112pif are sequentially moved to the positions shown in FIGS. 17(a) and (b), and based on the first reference mark detected by the aerial image detecting unit. And the relative value of the second reference mark is used to perform lens calibration of the projection optical system PL. The person-to-person describes the baseline measurement when the third exposure area pai3 is scanned and exposed. Fig. 17 (c) is a view for explaining the positional relationship between the mask stage, the projection optical system PL, and the substrate stage PST related to the baseline measurement when the third exposure area PA13 is scanned and exposed. The mask stage MST and the substrate stage PST are moved to the position shown in Fig. 17 (c), and the first reference mark of the reference member 90 is detected by the aerial image detecting unit. Next, the baseline measurement is performed based on the relative position of the projection optical system PL and the mask Μ (mask stage MST) detected at the time of lens calibration, and the position of the i-th reference mark detected by the aerial image detecting unit. . The lens of the projection optical system PL when the second and fourth exposure regions pA12 and PA14 are scanned and exposed is scanned in the same manner as the lens calibration and the baseline measurement of the projection optical system PL when the first exposure region PA11 and the third exposure region PA13 are scanned and exposed. Calibration and baseline measurements. At this time, the substrate stage PST' is moved to the first reference mark corresponding to the second and fourth exposure areas PA12 and PA14 (the base members 90 and 90 are close to the side of the second and fourth exposure areas PA12 and PA14). The first reference mark of the reference member 91 is located on the extension line of the scanning path of the second and fourth exposure regions PA12 and PA14 of the substrate p. The receiver detects the first reference mark and the second reference mark by the aerial image detecting unit provided below the reference unit 91, and calculates the relative value of the first reference mark and the second reference mark, and then based on the relative value. Perform lens calibration and baseline measurement of the projection optics pL. 42 201013339 32112ρίί After the lens alignment and the baseline measurement corresponding to the respective exposure areas ΡΑΠ to PA14, the exposure processing of each of the exposure areas ΡΑ11 to ΡΑ14 is performed. In other words, the image position of the projection optical system PL and the relative position of the mask μ and the alignment system AL are adjusted based on the lens alignment and the baseline measurement result of the first exposure region ΡΑ11, and the first exposure region ρΑ11 is aligned. The first exposure region ΡΑ11 is scanned and exposed. Similarly, the image position of the projection optical system PL and the relative position of the mask Μ and the alignment system AL are adjusted based on the lens calibration and the baseline measurement φ results for the second to fourth exposure regions ΡΑ12 to ΡΑ14, thereby performing the relative position of the mask Μ and the alignment system AL. The positions of the second to fourth exposure regions ρΑ12 to ΡΑ14 are aligned, and the second to fourth exposure regions ρΑ12 to ρ14 are scanned and exposed. According to the exposure method of the fourth embodiment, the substrate stage PST is moved in the four-corner direction with respect to the projection optical system PL, and the relative positions of the substrate stage PST and the projection optical system PL are made to correspond to the respective exposure areas. Since the lens alignment and the baseline measurement are performed, it is possible to suppress deformation of the device structure (base #胄) generated when the substrate stage PST moves in the four-corner direction, or the flatness of the floor surface on which the exposure apparatus EX is provided, and the like. The coincidence accuracy caused by the deformation of the device structure caused by the device structure is lowered, so that the coincidence exposure can be performed with high precision for a long period of time. In the fourth embodiment, for example, the mask stage MST has the pattern holding members % and %, and the second image mark of the holding member 92 is measured by the aerial image detecting unit. As an example, the second image referenced by the space image detecting unit may be detected by the space image detecting unit, and the second image set on the mask Μ 43 201013339 32112pif may be detected by the aerial image detecting unit. mark. Further, the space image detecting unit can detect the second reference mark of the pattern holding member 92 provided at the end portion of the mask stage MST in the +X direction, and the - Both of the second reference marks included in the pattern holding member 93 at the end portion in the X direction are corrected for the position of the mask M based on the detection result. In this case, it is possible to suppress the shift of the double exposure caused by the deformation of the mask M due to the difference in the relative positions of the mask stage MST, the projection optical system pL, and the substrate load a PST, thereby performing high-precision Repeat exposure. In addition, in the above-described first to fourth embodiments, the case where the substrates P and P' as the photosensitive substrates are square (rectangular) substrates has been described, but the present invention is not limited to the square substrate, and the present invention is also applicable to the present invention. For example, a circular substrate such as a semiconductor wafer (having a slit or the like locally) can exhibit a remarkable effect on a circular substrate having a diameter of 450 mm or more. Further, in the above-described first to fourth embodiments, the Donovan field (the plurality of exposure regions in the above embodiment) provided on the photosensitive plate is exposed, and the exposure process is not limited thereto. In the case where the plurality of regions (processing regions) provided on the substrate are subjected to the exposure processing, in addition to the light processing, for example, a plurality of processes, domains, or areas 4 disposed on the substrate may be applied. The detection or measurement process includes, for example, detecting or measuring a pattern formed in each processing region. Next, the method of manufacturing a component using the above exposure method will be described. 18 is a view showing a manufacturing step of a liquid crystal element or a semiconductor element, etc. 201013339 32112pif

=圖。於該元件製造步驟巾,在基板(玻璃基板、晶圓 上蒸錢金屬膜等(步驟S4〇),並於該金屬膜等上塗佈 ^法性材料(光阻等)(步驟S42)。接著,使用上述曝光 、某利用經由光罩Μ上所形成的圖案的曝光光線,對設 ^基板上的多個曝光區域進行曝光(步驟S44:曝光步 驟’並使經該曝光的基板顯影(光阻顯影)(步驟S46: 顯影步驟)。隨後’經由藉由步驟S46而生成於基板上的 光阻圖案,對基板的表面進行蝕刻(Etching)等的加工(步 騾S48 :加工步驟)。此處,所謂光阻圖案,是指形狀與光 罩Μ的圖案相對應的形成凹凸之光阻層(轉印圖案層), 且其凹部貫穿於光阻層。 '、 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術區域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 體圖 圖。 之圖 圖1是表示第1實施形態的曝光裝置的概略構成的立 〇 圖2是表示第1實施形態的投影光學系統之構成之 圖3是表示基板、投影區域及對準檢測部的配置關係 〇 圖4是表示第1實施形態的曝光處理順序的流程圖。 圖5是表示對於樣品基板的曝光處理順序的流程圖。° 45 201013339 32ll2pif 圖6是表示樣品基板曝光處理中基板與投影區域的相 對移動順序之圖。 圖7是表示樣品基板曝光處理中基板與投影區域的相 對移動順序之圖。 圖8是表示實物基板曝光處理中基板與投影區域的相 對移動順序之圖。 圖9是表示樣品基板曝光處理中基板與投影區域的相 對移動順序之圖。 圖10是表示樣品基板曝光處理中基板與投影區域的 相對移動順序之圖。 圖11是表示基板、投影區域及對準檢測部的配置關 係之圖。 圖12是表示對於樣品基板的曝光處理順序的流程圖。 圖13⑻圖13(b)是表示樣品基板曝光處理中基板與投 影區域的相對移動順序之圖。 ^ 圖14是表示實物基板曝光處理中基板與投影區域的 相對移動順序之圖。 圖15(a)圖15(b)圖i5(c)是表示透鏡校準或者基線測 量中光罩載物台、投影光學系統及基板載物台的位置關係 之圖。 圖16⑻圖16(b)圖16(c)是表示第1曝光區域所對應 的透鏡校準或者基線測量中的光罩載物台、投影光學系統 及基板載物台的位置關係之圖。 圖17(a)圖17(b)圖17(c)是表示與第3曝光區域對應 201013339 32112pif 的透鏡校準或者基線測量中的光罩載物台、投影光學系統 及基板載物台的位置關係之圖。 圖18是表示本發明實施形態中的元件製造方法的流 程圖。 【主要元件符號說明】 19 :影像位移機 20 :聚焦位置調整機構 22、23 :反射折射型光學系統 瞻 24:視場光闌 25 :倍率調整機構 34a、34b :移動鏡 50a〜50g :投影區域 80 :記憶部 90、91 :基準構件 92、93 :圖案保持構件 AL :對準系統 • AL1〜AL6 :對準檢測部 A1〜A102 :移動 CONT :控制部 EX :曝光裝置 IL :照明裝置 Μ :光罩 MST :光罩載物台 Ρ、F:基板 47 201013339 sznj.pn PL:投影光學系統 PLa〜PLg :投影光學模組= map. In the component manufacturing step, a metal film or the like is evaporated on a substrate (a glass substrate or a wafer) (step S4), and a legal material (photoresist or the like) is applied onto the metal film or the like (step S42). Next, using the exposure, a plurality of exposure regions on the substrate by exposure light passing through the pattern formed on the mask (step S44: exposure step) and developing the substrate through the exposure (light Resistance development) (Step S46: development step). Then, the surface of the substrate is subjected to etching (Etching) or the like via the photoresist pattern formed on the substrate by the step S46 (step S48: processing step). The term "resistance pattern" refers to a photoresist layer (transfer pattern layer) having a shape corresponding to the pattern of the mask ,, and a concave portion penetrating the photoresist layer. ', although the present invention has been described by way of example The above disclosure is not intended to limit the invention, and any one of ordinary skill in the art will be able to make some modifications and refinements without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a schematic configuration of an exposure apparatus according to a first embodiment of the present invention. FIG. 1 is a perspective view showing a configuration of an exposure apparatus according to a first embodiment. Fig. 3 is a view showing an arrangement relationship between a substrate, a projection area, and an alignment detecting unit. Fig. 4 is a flowchart showing an exposure processing procedure of the first embodiment. Fig. 5 is a view showing an exposure processing procedure for a sample substrate. Fig. 6 is a view showing the relative movement order of the substrate and the projection area in the exposure process of the sample substrate. Fig. 7 is a view showing the relative movement order of the substrate and the projection area in the exposure process of the sample substrate. This is a view showing the relative movement order of the substrate and the projection area in the exposure process of the physical substrate. Fig. 9 is a view showing the relative movement order of the substrate and the projection area in the exposure process of the sample substrate. Fig. 10 is a view showing the substrate and projection in the exposure process of the sample substrate. A diagram showing the relative movement order of the regions. Fig. 11 is a view showing the arrangement relationship between the substrate, the projection area, and the alignment detecting unit. Fig. 12 is a flow chart showing the procedure of the exposure processing for the sample substrate. Fig. 13 (8) Fig. 13 (b) is a view showing the relative movement order of the substrate and the projection area in the exposure processing of the sample substrate. ^ Fig. 14 is a view showing the exposure processing of the physical substrate. Figure 15 (a) Figure 15 (b) Figure i5 (c) shows the reticle stage, projection optical system and substrate stage in lens calibration or baseline measurement Fig. 16 (8) Fig. 16 (b) Fig. 16 (c) is a view showing the positional relationship between the mask stage, the projection optical system, and the substrate stage in lens calibration or baseline measurement corresponding to the first exposure region. Figure 17 (a) Figure 17 (b) Figure 17 (c) is a reticle stage, projection optical system, and substrate stage in lens alignment or baseline measurement corresponding to the third exposure area 201013339 32112pif The map of the positional relationship. Fig. 18 is a flow chart showing a method of manufacturing a device in an embodiment of the present invention. [Main component symbol description] 19: Image shifter 20: Focus position adjustment mechanism 22, 23: catadioptric optical system view 24: Field stop 25: magnification adjustment mechanism 34a, 34b: moving mirror 50a to 50g: projection area 80: Memory unit 90, 91: Reference member 92, 93: Pattern holding member AL: Alignment system • AL1 to AL6: Alignment detecting units A1 to A102: Moving CONT: Control unit EX: Exposure device IL: Illumination device Μ : Photomask MST: reticle stage Ρ, F: substrate 47 201013339 sznj.pn PL: projection optical system PLa~PLg: projection optical module

Pxl、Px2、Pyl、Py2 :雷射干涉儀 PST :基板載物台 PA1〜PA6 :曝光區域 PA11〜PA14:曝光區域 PH :基板載具Pxl, Px2, Pyl, Py2: Laser Interferometer PST: Substrate Stage PA1~PA6: Exposure Area PA11~PA14: Exposure Area PH: Substrate Carrier

mil〜ml6、m21 〜m26、…、m51 〜m56、m61 〜m68、 m71 〜m76、…、m91 〜m96、mlOl〜ml08 :標記 S10〜S14、S20〜S23、S30〜S33、S40〜S48 :步驟 X、Y、Z:方向Mil~ml6, m21 to m26, ..., m51 to m56, m61 to m68, m71 to m76, ..., m91 to m96, mlO1 to ml08: marks S10 to S14, S20 to S23, S30 to S33, S40 to S48: X, Y, Z: direction

4848

Claims (1)

201013339 32112pif 七、申請粵利範園: L 一種基板處理方法,其依序對設於基板上且在第1 方向上相互不同的位置所設置的多個處理區域進行規定處 理,其特徵在於包括: 檢測步驟’檢測對應著上述多個處理區域設於上述基 板上的多個標記;以及201013339 32112pif VII. Application for Yueli Fanyuan: L A substrate processing method for sequentially performing processing on a plurality of processing regions provided on a substrate and at positions different from each other in the first direction, characterized in that: Step 'detecting a plurality of marks corresponding to the plurality of processing regions disposed on the substrate; and 處理步驟,依序對上述多個處理區域進行如下處理, 即,一面根據上述檢測步驟的檢測結果進行上述處理區域 的位置對準,朝著與上述第!方向交叉的第2方向對該處 理區域進行掃描,一面進行上述規定處理; 且,上述檢測步驟包含依序對上述多個處理區域進行 如下處理即,使上述處理區域移動至上述處理步驟中的 掃描路徑或者該掃描路徑的附近,對上述多個標記令對應 著該處理區域而設置的標記進行檢測。 2.如申請專利範圍第1項所述之基板處理方法,其中 上述檢測步驟包含依序對上述多個處理區域進行處理, 即’使上述處理區域移動至上述掃描路徑或者該掃描路徑 附近,對上述多储記中與該處理區域的上述第2方 第1端部及第2端部分卿接而設置的標記進行檢測。 3.如申請專利㈣第2項所述之基板處理 上述檢測步驟包括: 第1檢測步驟,依序對上述多個處理區域進行如 理域移動至其掃描路徑或者該掃描路 徑附近,對上述多個標記t與該處理區域的上述第i端部 49 201013339 32112pif 鄰接而設置的第1標記進行檢測;以及 多個標第二多區域-併檢測,上述 第2標記。 4的上4第2端轉接而設置的 >3 基板處理方法,其依序對包含至少一個第1 第2基板的多個基板_,在上述每—個基板的第!方向 =不同的位置設置的多個處理區域進行規 徵在於包括: WIn the processing step, the plurality of processing regions are sequentially processed in such a manner that the alignment of the processing region is performed based on the detection result of the detecting step, and the first step is achieved! The predetermined processing is performed while scanning the processing region in the second direction in which the directions intersect; and the detecting step includes sequentially performing the processing on the plurality of processing regions, that is, moving the processing region to the scanning in the processing step The path or the vicinity of the scan path detects the mark set corresponding to the processing area by the plurality of marks. 2. The substrate processing method according to claim 1, wherein the detecting step comprises sequentially processing the plurality of processing regions, that is, moving the processing region to the scanning path or the scanning path, In the multi-storage, a mark provided in the second end portion and the second end portion of the processing region is detected. 3. The substrate processing as described in claim 2, wherein the detecting step comprises: performing a first detecting step of sequentially moving the plurality of processing regions to the scanning path or the scanning path, for the plurality of The plurality of marks t are detected by the first mark provided adjacent to the i-th end portion 49 201013339 32112pif of the processing region, and the plurality of second multi-regions are detected and detected by the second mark. The >3 substrate processing method provided by transferring the upper 4 and the second ends of 4, sequentially to the plurality of substrates _ including at least one first and second substrates, in each of the above-mentioned substrates! Direction = Multiple processing areas set in different locations are defined as: W ,測步驟,依序對上述第i及第2基板,檢測對應著 上述夕個處理區域^置於上述基板上的多個標記;以及 處理步驟,依序每一個上述第!及第2基板中的 =個處理區域進行如下處理,即’―面根據上述檢測步驟 的檢測結果使上述處理區域對準,朝著與上述第i方向交 又的第2方向掃減處縣域,—面進行上述規定處理; 上述檢測步驟包括:And measuring, sequentially detecting the plurality of marks on the substrate corresponding to the processing area of the first and second substrates; and processing steps, in the order of each of the above! And the processing area in the second substrate is processed such that the surface is aligned in the second direction that intersects the i-th direction according to the detection result of the detection step, and the surface is swept away. - performing the above specified processing; the above detecting steps include: 。第/檢測步驟,依序對上述第丨基板的上述多個處理 區域進行如下處理,即,使上述處理區域移動至上述處理 步驟中的掃描路徑或者該掃描路徑附近,對上述多個標記 中對應著該處理區域而設置的標記進行檢測; 第2檢測步驟’依序對上述第丨及第2基板,對每一 個上述第1及第2基板的對應上述多個處理區域而設置的 上述多個標記一併進行檢測;以及 算出步驟’算出對於上述第i基板的上述第1及第2 檢測步驟各檢測結果的關聯值; 50 201013339 όζιιζριι 且,上述處理步驟一面根據上述關聯值、 檢測步驟胁上㈣2基板的檢職果,進㈣2 =處,域的位置對準,朝著上述第2方向掃描該處 理區域,一面進行上述規定處理。 、5_如巾請專概㈣4項所述之基板處理方法, 上述關聯值’包含上述第丨檢測步驟的檢測 ^ 測步驟的檢縣果的差值^ 兴弟2檢 ❿ 如’請專利範㈣4項或第5項所述之基板處理方 、’其中上述第1及第2檢測步驟,對多個 檢測上述錢標記, ^ 絲對應的上述 上述處理步驟一面根據上述統計量、及上述第2檢測 步驟對於上述第2基板的檢測結果,進行該第2基板的上 述處理區域的位置解,上述第2方向掃描該處理區 域,一面進行上述規定處理。 7.如申請專利範圍第4至第6項中任一項所述之基板 處理方法’其巾上述第1基板是藉由該基板處理方法而依 序處理的上述多個基板中,從開頭起規定數的一個或一個 以上的基板。 8.如申請專利範圍第4至第7項中任一項所述之基板 處理方法,其中上述第1及第2檢測步驟,包含對與上述 處理區域的上述第2方向的第丨端部,鄰接設置的上述標 記進行檢測, 51 201013339 sznzpit 上述算出步驟,算出對應於與上述處理區域的上述第 1端部鄰接設置的上述標記的上述關聯值。 、、,9.如申請專鄕圍第2項或第8項所述之基板處理方 法’其中上述第1端部,是上述處理區域的多個端部中與 上述基板的上述第2方向的緣部最接近的端部。 1〇.如申請專利範圍第1至第9項中任-項所述之基 板處理方法,其中包括: 第1基準檢測步驟,檢測在載置有上述基板的第1載 物台上’對應於上述多個處理區域而設置的多 標記; 第2基準檢測步驟,檢測設於與上述第〗載物台不同 的第2載物台上的第2基準標記,對上述第丨載物台的投 影像;以及 各檢值算出上述第1及第2基準檢測步称的 、且,上述第1基準檢測步驟,依序對上述多個處理區 ,進行如下處理,即’使上述處理區域移動至上述掃描路 ❹ 徑或者該掃描路徑的附近,對上述多個第】基準標記中與 該處理區域對應設置的基準標記進行檢測, 、"、 —上述第2基準檢測步驟,依序對上述多個處理區域進 打如下處理,即,使上述處理區域移動至上述掃插路徑或 者該掃描路徑的附近,對上述投影像進行檢測, 對值上述相對算出步驟,對每-上述處理區域算出上述相 52 201013339 上述處理步驟’對每一上述處理區域根據上述檢測步 驟的檢測結果及上述相對值,進行該處理區域的位置對準。 11. 如申請專利範圍第10項所述之基板處理方法,其 中上述第2基準檢測步驟,使上述第1基準標記移動至上 述第2基準標記的投影像内或者該投影像附近,對上述第 1基準標記、上述第2基準標記的投影像一併進行檢測。 12. 如申請專利範圍第^項所述之基板處理方法,其 中上述第1基準檢測步驟,檢測相對上述處理區域設於上 述第2方向兩側的上述第丨基準標記中,接近該處理區域 一侧的基準標記。 13. 如申請專利範圍第1〇至第12項中任一項所述之 基板處理方法,其中上述第2基準檢測步驟,對載置於上 述第2載物台上的圖案保持構件上,形成的上述第2基 標記的投影像進行檢測。 14. 如申請專利範圍第丨至第13項中任—項所述之美 板處理方法’其中上述第i及第2方向相互正交,土 上述多個處理區域沿著上述第2方向進行排列。 15·如申請專利範圍第i至第14項中任—項所述之 法’其中上述規定處理,包含將上述處理區域曝 如申請專利範圍第15項所述之基板處理方法,直 =亡f處理區域,包含經由沿著上述第1方向而配置的^ 個投衫光學祕,將圖案影像投影於上述處理區域中。 17. 一種基域縣置,其依稍設置於基板中且在 53 201013339 jznzpn 第1方向相互不同的位置上所設置的多個處理區域進行規 定處理,其特徵在於包括: 第1載物台,支持上述基板,可朝著與上述第1方向 交叉的第2方向移動; 標記檢測裝置,檢測對應於上述多個處理區域而設置 於上述基板上的多個標記;以及 控制部’其使用如申請專利範圍第i至14項中任一 Φ 項,述之基板處理方法,對上述多個處理區域進行上述規 定處理。 笛】基板處理裝置,其依序對設置於基板中且在 頻定虚:不同的位置上所設置的多個處理區域進行 規疋處理,其特徵在於包括: 交叉^ ’支持上述基板’可朝著與上述第1方向 父又的第2方向移動; 位晋基準構件,具有在上述第1方向相互不同的 ❹ 中的上述If^1基準標記’且相對於上述第1載物台 一方侧Γ '支持空間,而配置於上述第2方向的至少 件;2載物台’保持形成著第2基準標記的第2基準構 項所使用如中請專利範圍第1至第13項中任一 定處理。處理方法,對上述多個處理區域進行上述規 19.如申請專利範固第17項或第18項所述之基板處 54 201013339 JZl JLZpiX 理裝置’其具備對±述基板投影圖案影像的投影絲裝置, 上述規定處理,包含經由上述投影光學裝置對上述處 理區域投影上述圖案影像。 20. 如申凊專利範圍第19項所述之基板處理裝置,其 中上述投影光學裝置,包含沿著上述第i方向而配置的 個投影光學系統。 21. —種元件製造方法,其包括: 使用如申請專利範圍第丨至第16項中任一項所述之 基板處理方法,對設於上述基板上的上述多個處理區域進 行上述規定處理;以及 根據該規定處理的結果,對經上述規定處理的上述基 板進行加工。 22. -種曝光方法’其依序對基板上的多個曝光區域進 行曝光,其特徵在於包括: 檢測步驟’檢測對應著上述曝光區域而設置於上述基 板上的標記;以及 曝光步驟’根據上述檢測步称的檢測結果,進行上述 曝光區域驗置對準,沿掃描方向對轉光區域進 曝光; 且,上述檢測步驟,使上述曝光區域移動至上述曝光 步驟中的掃描路#上或者該掃描路徑的延長線上對與該 曝光區域對應的上述標記進行檢測。 〃 23.-種曝光方法’其依序對基板上的多個曝光區域進 行曝光’其特徵在於包括: 55 201013339 wiupit 板上驟以Γ對應著上述曝光區域而設置於上述基 2區域的位輯準,鱗財㈣糾紐域 上述檢測步驟包括: 中的者域移動至上述曝光步驟 參 區域的第的延長線上,對與該曝光 域=1端部鄰接而設置的上述標記進行檢測;以及 曝光驟,對應著多個曝光區域,-併檢測與該 曝先S域的第2端部鄰接設置的多個上述標記; 各檢:結曝第;及第2檢測步驟的 工地嗓尤區域的位置對準。 個基基板的多 徵在於包括.板上所設置的多個曝光區域進行曝光’其特 Q 起μ ^步驟’檢崎應著上述曝光11域而設置於上述基 板上的標記;以及 成土,光步驟’根據上述檢測步驟的檢測結果,進行上述 曝光品域的位置對準’沿掃描方向_曝光區域進行掃描 上述檢測步驟包括: 1檢測步称,使上述曝光區域移動至上述曝光步驟 、描路徑上或者該掃描路徑的延長線上,對與該曝光 56 201013339 sziupn 區域對應的上述標記進行檢測; 第2檢測步驟, 多個上述標記;以及 -併檢測與上述多個曝光區域對應的 !基=^ ’算出上料1及第2檢測步驟對於上述第 1基板的各檢測結果的關聯值; Φ 且,上述曝光步驟,根據上述關聯值、及上述第2檢 ’貝J步驟對於上述第2基板的檢測結果,進行該第2基板的 上述曝光區域的位置對準。. a first detecting step of sequentially processing the plurality of processing regions of the second substrate, that is, moving the processing region to a scanning path or a vicinity of the scanning path in the processing step, corresponding to the plurality of markers The mark provided in the processing area is detected; the second detecting step is sequentially performed on the second and second substrates, and the plurality of the first and second substrates are provided corresponding to the plurality of processing regions The detection unit performs the detection together; and the calculation step 'calculates the correlation value for each of the first and second detection steps of the i-th substrate; 50 201013339 όζιιζριι, and the processing step is based on the correlation value and the detection step (4) The inspection result of the two substrates is carried out at the (4) 2 = position, the position of the domain is aligned, and the processing area is scanned in the second direction, and the predetermined processing is performed. 5_如巾, please refer to the four (4) substrate processing method described above, the above-mentioned correlation value 'includes the difference between the inspection results of the detection step of the above-mentioned third detection step ^ Xingdi 2 inspection, such as 'please patent (4) The substrate processing method according to item 4 or item 5, wherein the first and second detecting steps are performed on the plurality of the above-mentioned processing steps corresponding to the money mark, and the second statistical step and the second In the detecting step, the positional solution of the processing region of the second substrate is performed on the detection result of the second substrate, and the predetermined processing is performed while scanning the processing region in the second direction. 7. The substrate processing method according to any one of claims 4 to 6, wherein the first substrate is the plurality of substrates sequentially processed by the substrate processing method, from the beginning A predetermined number of one or more substrates. The substrate processing method according to any one of claims 4 to 7, wherein the first and second detecting steps include a second end portion of the processing region in the second direction. The above-described flag provided adjacent to each other is detected, 51 201013339 sznzpit The above calculation step calculates the correlation value corresponding to the marker provided adjacent to the first end portion of the processing region. The substrate processing method according to Item 2, wherein the first end portion is the plurality of end portions of the processing region and the second direction of the substrate The closest end of the rim. The substrate processing method according to any one of claims 1 to 9, wherein: the first reference detecting step detects that the first stage on which the substrate is placed is 'corresponding to a plurality of marks provided in the plurality of processing regions; and a second reference detecting step of detecting a second reference mark provided on the second stage different from the first stage, and projecting the projection on the second stage And calculating the first and second reference detection step numbers for each of the detection values, and the first reference detection step sequentially processes the plurality of processing regions, that is, moving the processing region to the Scanning the path or the vicinity of the scan path, detecting a reference mark provided corresponding to the processing area among the plurality of first reference marks, and ", the second reference detecting step, sequentially The processing area is processed by moving the processing area to the sweeping path or the vicinity of the scanning path to detect the projected image, and the relative value calculating step is - calculating the above-described processing region 52201013339 above process steps with the above-described 'above-described processing for each region based on the detection result of the detecting step and the relative value of the position alignment processing region. 11. The substrate processing method according to claim 10, wherein the second reference detecting step moves the first reference mark to a projection image of the second reference mark or a vicinity of the projection image, The reference mark and the projection image of the second reference mark are collectively detected. 12. The substrate processing method according to the above aspect, wherein the first reference detecting step detects that the first reference mark is provided on both sides of the second direction with respect to the processing region, and is close to the processing region Side reference mark. The substrate processing method according to any one of claims 1 to 12, wherein the second reference detecting step is formed on a pattern holding member placed on the second stage The projection image of the second base marker is detected. 14. The method of processing a sheet according to any one of the preceding claims, wherein the i-th and the second directions are orthogonal to each other, and the plurality of processing regions are arranged along the second direction. 15. The method of claim 1, wherein the processing of the above-mentioned provisions includes exposing the above-mentioned processing area to the substrate processing method as recited in claim 15 of the patent application, The processing area includes a projection image that is projected along the first direction and projected onto the processing area. 17. A base area county unit that performs predetermined processing on a plurality of processing areas that are disposed in a substrate and are disposed at positions different from each other in a first direction of 53 201013339 jznzpn, and are characterized by: a first stage, The substrate is supported to move in a second direction intersecting the first direction; the mark detecting device detects a plurality of marks provided on the substrate corresponding to the plurality of processing regions; and the control unit is used as an application The substrate processing method according to any one of the items Φ to 14 of the patent range, wherein the predetermined processing is performed on the plurality of processing regions. a flute substrate processing apparatus, which sequentially processes a plurality of processing regions disposed in a substrate and disposed at different positions: a different position, including: intersecting 'supporting the substrate' Moving in the second direction parallel to the first direction parent; the positioning reference member has the If^1 reference mark ' in the ❹ different from each other in the first direction and is opposite to the first stage side Γ 'Support space, at least one of the above-mentioned second directions; 2, the second stage of the stage to which the second reference mark is formed, and the first to third items of the patent range. . The processing method is to perform the above-mentioned regulation on the plurality of processing regions. 19. The substrate according to claim 17 or claim 18, wherein the substrate has a projection wire for the projection image of the substrate. In the device, the predetermined processing includes projecting the pattern image onto the processing region via the projection optical device. The substrate processing apparatus according to claim 19, wherein the projection optical device includes a projection optical system arranged along the ith direction. A method of manufacturing a device, comprising: performing the predetermined processing on the plurality of processing regions provided on the substrate, using a substrate processing method according to any one of claims 6 to 16; And processing the substrate processed as described above based on the result of the predetermined treatment. 22. An exposure method of sequentially exposing a plurality of exposed regions on a substrate, comprising: a detecting step 'detecting a mark disposed on the substrate corresponding to the exposed region; and an exposing step 'according to the above Detecting the detection result of the step, performing the exposure area inspection alignment, and exposing the light conversion area along the scanning direction; and the detecting step moves the exposure area to the scan path # in the exposure step or the scan The above-mentioned mark corresponding to the exposure area is detected on the extension line of the path. 〃 23. The exposure method 'which sequentially exposes a plurality of exposed regions on the substrate' is characterized by: 55 201013339 wiupit The on-board sequence is set in the above-mentioned base 2 region corresponding to the above-mentioned exposure region. The above detection step includes: moving the middle domain to the extension line of the exposure step reference area, detecting the mark set adjacent to the end of the exposure field = 1; and exposing a plurality of exposure regions corresponding to the plurality of exposure regions, and detecting a plurality of the markers disposed adjacent to the second end portion of the exposure S region; each inspection: junction exposure; and the location of the site of the second detection step alignment. The plurality of base substrates are characterized in that: a plurality of exposure regions provided on the board are used for exposure, and the mark is set on the substrate in the above-mentioned exposure 11 field; and the soil is formed. The light step 'according to the detection result of the above-mentioned detecting step, performing the positional alignment of the above-mentioned exposure product field' scanning in the scanning direction_exposure area. The detecting step includes: 1 detecting the step number, moving the exposure area to the exposure step, and describing Detecting the mark corresponding to the area of the exposure 56 201013339 sziupn on the path or the extension line of the scan path; the second detecting step, the plurality of the marks; and detecting the base of the plurality of exposed areas ^ 'calculating the correlation value of the detection results of the first substrate and the second detection step with respect to the first substrate; Φ and the exposure step, based on the correlation value and the second detection step, for the second substrate As a result of the detection, the alignment of the exposed regions of the second substrate is performed. 5757
TW098126526A 2008-08-07 2009-08-06 Substrate processing method, substrate processing equipment, exposure method and device fabrication method TW201013339A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204620 2008-08-07

Publications (1)

Publication Number Publication Date
TW201013339A true TW201013339A (en) 2010-04-01

Family

ID=41663763

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126526A TW201013339A (en) 2008-08-07 2009-08-06 Substrate processing method, substrate processing equipment, exposure method and device fabrication method

Country Status (2)

Country Link
TW (1) TW201013339A (en)
WO (1) WO2010016550A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759174B (en) * 2020-06-16 2022-03-21 日商日立全球先端科技股份有限公司 Position matching device and optical device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108121162B (en) * 2016-11-29 2019-09-17 上海微电子装备(集团)股份有限公司 A kind of projection aligner and exposure method
US10809629B2 (en) * 2018-08-31 2020-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for computing feature kernels for optical model simulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630334B2 (en) * 1986-02-07 1994-04-20 キヤノン株式会社 Exposure method
JP4760019B2 (en) * 2005-01-17 2011-08-31 株式会社ニコン Exposure apparatus and device manufacturing method
JP2006285144A (en) * 2005-04-05 2006-10-19 Sharp Corp Exposure device and exposure control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759174B (en) * 2020-06-16 2022-03-21 日商日立全球先端科技股份有限公司 Position matching device and optical device

Also Published As

Publication number Publication date
WO2010016550A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
US6481003B1 (en) Alignment method and method for producing device using the alignment method
JP2008263194A (en) Exposure apparatus, exposure method, and method for manufacturing electronic device
TW200935026A (en) Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
EP2158521A1 (en) Exposure method and electronic device manufacturing method
JP2008042194A (en) Lithography method and patterning device
KR102191685B1 (en) Projection exposure apparatus and method
EP2135137A1 (en) Exposure method and electronic device manufacturing method
TW200401997A (en) Distortion measurement method and exposure apparatus
TWI668732B (en) Projection exposure device, projection exposure method, photomask for projection exposure device, and method of manufacturing substrate
TW200941162A (en) Exposure apparatus and device manufacturing method
JPH10223528A (en) Projection aligner and aligning method
US8964173B2 (en) Maskless exposure apparatus and spot beam position measurement method using the same
KR20150114894A (en) Exposure apparatus and method for manufacturing article
TW201013339A (en) Substrate processing method, substrate processing equipment, exposure method and device fabrication method
JP2004006892A (en) Lithography apparatus, manufacturing method of device, and device manufactured thereby
JP6343524B2 (en) Projection exposure equipment
TW200533887A (en) Lithographic apparatus, method of calibration, calibration plate, device manufacturing method, and device manufactured thereby
JP2003100599A (en) Method for adjusting aligner and exposure system
JP2013236074A (en) Surface position measuring device, exposure equipment, and device manufacturing method
TW202041977A (en) Exposure apparatus, manufacturing method of flat panel display, device manufacturing method, and exposure method
JP2020177149A (en) Exposure apparatus and method for manufacturing article
JP2010283157A (en) Aligner and device manufacturing method
TW200905409A (en) Exposure method and manufacturing method for electronic device
JP2014160780A (en) Exposure device and method for manufacturing commodity
US20010031406A1 (en) Photomask and exposure method