TW201012541A - Dispersions and methods of producing dispersions having predetermined optical properties - Google Patents

Dispersions and methods of producing dispersions having predetermined optical properties Download PDF

Info

Publication number
TW201012541A
TW201012541A TW098118928A TW98118928A TW201012541A TW 201012541 A TW201012541 A TW 201012541A TW 098118928 A TW098118928 A TW 098118928A TW 98118928 A TW98118928 A TW 98118928A TW 201012541 A TW201012541 A TW 201012541A
Authority
TW
Taiwan
Prior art keywords
emulsion
droplets
liquid
average radius
molecules
Prior art date
Application number
TW098118928A
Other languages
Chinese (zh)
Inventor
Thomas G Mason
Sara M Graves
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California filed Critical Univ California
Publication of TW201012541A publication Critical patent/TW201012541A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/808Filtering the mixture

Abstract

A method of producing an emulsion includes producing a first emulsion comprising a first plurality of droplets of a first liquid dispersed in a second liquid, the first plurality of droplets having a first ensemble average radius; and removing a plurality of droplets from the first emulsion that each have larger radii than the first ensemble average radius to obtain a second emulsion comprising a second plurality of droplets having a second ensemble average radius that is less than about 100 nm. The first liquid is at least partially immiscible with the second liquid and the second emulsion is more transparent to visible light than the first emulsion. An emulsion includes a first liquid, and a plurality of droplets of a second liquid dispersed in the first liquid. The second liquid is at least partially immiscible with the first liquid. The plurality of droplets have an ensemble average radius that is less than about 100 nm and a standard deviation about the ensemble average radius of that is less than about 25% such that the emulsion is substantially transparent to visible light.

Description

201012541 六、發明說明: 相關申請案之交互參考 本申請案主張2008年6月6曰提出申請之美國臨時 申sra案第61/129,142號之優先權’該案全文內容係以提及 的方式倂入本文中。 【發明所屬之技術領域】 β 本發明有關分散液之製造方法,更明確地說,係有關 分散液及具有預定光學性質之分散液的製造方法。 【先前技術】 奈米乳液係一種液體在另一種不溶混液體中之介穩液 滴之分散液’該液滴半徑小於100 nm ( Meleson, Κ.;201012541 VI. INSTRUCTIONS: Cross-Reference of Related Applications This application claims the priority of US Provisional Application Sra No. 61/129,142 filed on June 6, 2008. The full text of the case is mentioned in the manner mentioned. Into this article. TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a dispersion, and more particularly to a method for producing a dispersion and a dispersion having predetermined optical properties. [Prior Art] A nanoemulsion is a dispersion of a liquid-stable liquid droplet in another immiscible liquid. The droplet radius is less than 100 nm (Mereson, Κ.;

Graves, S.; Mason, T. G. So/,Λ/aier. 2 004,2,109)。彼 等係藉由在液滴界面之間提供強力安定化斥力的界面活性 〇 劑而動力抑制聚結。通常,極限剪切或伸長流動是產生奈 米乳液的必要條件,此係因在液滴表面上的黏性應力τν必 須克服拉普拉斯壓力(Laplace pressure) nL = 2a/fl,其中 σ爲球形母液滴的界面張力(Mason, T. G. Cwrr. Colloid Interface Sci. 1999, 4, 23 1 )。因此,達到 108 s*1 之極高應變率ί通常是產生水爲底質奈米乳液的必要條件 (Meleson, K.; Graves, S.; Mason, T. G. Soft Mater. 2004, 2,109)。該連續相中該分散油相的較強界面活性劑與低 溶解性對於製造經過奧斯特瓦爾德催熟不會粗粒化之使用 -5- 201012541 期限長的奈米乳液而言至爲關鍵(Durian,D_ J.; Weitz, D . A ·; Pine, D. J. Science 1991, 252, 6 8 6; Gopal, A. D.; Durian ,D. J • Phys · Rev. Lett. 2003, 91; Mason, T. G.; Krall, A. H •; Gang , H. ;Bibette, J .; Weitz , D. A. Encyclopedia of Emulsion Technology \ Marcel D ekk er:Graves, S.; Mason, T. G. So/, Λ/aier. 2 004, 2, 109). They motivate the coalescence by an interfacial agent that provides a strong retentive repulsion between the droplet interfaces. In general, the ultimate shear or elongation flow is a necessary condition for the production of nanoemulsions because the viscous stress τν on the surface of the droplets must overcome the Laplace pressure nL = 2a/fl, where σ is Interfacial tension of spherical mother droplets (Mason, TG Cwrr. Colloid Interface Sci. 1999, 4, 23 1 ). Therefore, achieving a very high strain rate of 108 s*1 is usually a necessary condition for producing water as a base nanoemulsion (Meleson, K.; Graves, S.; Mason, T. G. Soft Mater. 2004, 2, 109). The strong surfactant and low solubility of the dispersed oil phase in the continuous phase are critical for the manufacture of nanoemulsions with a long period of -5 to 201012541, which is not coarsened by Ostwald ripening. (Durian, D_J.; Weitz, D. A.; Pine, DJ Science 1991, 252, 6 8 6; Gopal, AD; Durian, D. J • Phys Rev. Lett. 2003, 91; Mason, TG; Krall, A. H •; Gang, H. ; Bibette, J .; Weitz , DA Encyclopedia of Emulsion Technology \ Marcel D ekk er:

New York,1996; Vol. 4)。(此處使用之用語油相與連續 相係指可用以製造乳液的兩種不溶混材料。某些具體實例 中,該連續相可爲其中分散有油液滴以形成水中油乳液之 @ 水性材料。換言之,這兩種不溶混材料每一者有時可簡稱 爲「相」)。 奈米乳液液滴的大小分布取決於彼所經歷的流動歷程 。兩種具有相同組成的乳液可視其流動歷程而具有迥異之 液滴大小分布(1^^168011,艮.;〇1&丫68,8.;\138011,1'.0·New York, 1996; Vol. 4). (The term oil phase and continuous phase as used herein refers to two immiscible materials that can be used to make an emulsion. In some embodiments, the continuous phase can be an @aqueous material in which oil droplets are dispersed to form an oil emulsion in water. In other words, each of the two immiscible materials may sometimes be referred to simply as "phase"). The size distribution of the nanoemulsion droplets depends on the flow history that they experience. Two emulsions with the same composition can have a different droplet size distribution depending on their flow history (1^^168011, 艮.; 〇1&丫68,8.;\138011,1'.0·

Soft Mater. 2004, 2, 109; Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys.: Condens. Matter 2006, 18, R635 ) 。 Taylor 氏對於受至tf 所 φ 施加之黏性應力的乳液之尺度預測(scaling prediction ) (Taylor,G. I. Procr. Soc. 1 934,A146)可用以估計所 形成液滴的平均半徑:{—Ιτν»σΙ、ιφ ,其中η。爲連續相 之黏度(Taylor,G. I. Proc. R. Soc. 19 34, A146; Taylor, G. I. /Voc. 7?· Soc· 735,41)。對於處於稀釋體積分 率0之乳液而言該尺度預測精確,惟其忽略該分散相之黏 度…與取決於歷程細節之因素値。已對種種實例進行許多 超越該簡單尺度表達的基本預測之改良(Mason, T. G·; -6- 201012541Soft Mater. 2004, 2, 109; Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys.: Condens. Matter 2006, 18, R635). Taylor's scaling prediction (Taylor, GI Procr. Soc. 1 934, A146) for emulsions subjected to viscous stress applied to φ of tf can be used to estimate the average radius of the formed droplets: {—Ιτν» σΙ, ιφ, where η. It is the viscosity of the continuous phase (Taylor, G. I. Proc. R. Soc. 19 34, A146; Taylor, G. I. / Voc. 7? Soc 735, 41). This scale is accurate for emulsions with a dilution volume fraction of 0, except that it ignores the viscosity of the dispersed phase... and the factors that depend on the details of the process. Many improvements have been made to various examples beyond the basic scale of expression (Mason, T. G.; -6- 201012541)

Bibette, J.; Weitz, D. A. J. Colloid Interface Sci. 1 996, J7P,43 9)。然而,普遍缺乏濃縮乳液之製造方法的詳細 認識,包括當相鄰液滴界面強烈相互作用時聚結所扮演的 角色(Mason, T. G. Curr. O pin. Colloid Interface Sci. 1999, 4, 231) 〇 任何膠態分散液的光學透明度係取決於該等分散物體 (折射率nd )與該連續相(折射率„。)之間的折射率差値 〇 。因爲許多種油在水中之Δ« = 0.1,大部分濃縮微 米級乳液(微米級emulsion)因在可見光譜中廣範圍波長 λ的多重散射而呈白色。爲使微米級乳液透明,可添加可 溶於連續相但不溶於分散相之折射率匹配材料以使得至少 在給定溫度之特定波長下有效消除Δη。例如,在水中聚矽 氧油乳液中,可將甘油添加於水相以使室溫下之折射率匹 配(Mason, T. G.; Krall,A. H.·; Gang, Η.; Bibette,J.;Bibette, J.; Weitz, D. A. J. Colloid Interface Sci. 1 996, J7P, 43 9). However, there is a general lack of detailed understanding of the manufacturing methods of concentrated emulsions, including the role of coalescence when the adjacent droplet interfaces interact strongly (Mason, TG Curr. O pin. Colloid Interface Sci. 1999, 4, 231) The optical transparency of any colloidal dispersion depends on the refractive index difference between the dispersed object (refractive index nd) and the continuous phase (refractive index „.) because many oils are in the water Δ« = 0.1 Most concentrated micron emulsions (micron emulsions) appear white due to multiple scattering of a wide range of wavelengths λ in the visible spectrum. To make the micron-sized emulsion transparent, a refractive index soluble in the continuous phase but insoluble in the dispersed phase can be added. The materials are matched such that Δη is effectively eliminated at at least a particular wavelength of a given temperature. For example, in a polyoxyphthalole emulsion in water, glycerin can be added to the aqueous phase to match the refractive index at room temperature (Mason, TG; Krall ,AH·; Gang, Η.; Bibette, J.;

Weitz, D. A. Encyclopedia of Emulsion Technology', Θ Marcel Dekker: New York,1 996; Vol. 4 )。 當微米級乳液中之相斥液滴被破裂成奈米級大小時可 發生有趣變化:該乳液可從多重散射所形成的白色外觀改 變成高度透明的奈米乳液(Mason, T. G.; Wilking,J. N·; Meleson, K.; Chang, C.B.; Graves, S. Μ. J. Phys.: Conc/ens. Maner 2006,73,R635)。雖然折射率匹配係令 乳液透明的一種方式,但另一種可能途徑係將液滴破打成 此種小尺寸,如此整體可見光譜中的光不會被多重散射。 確實,<fl><50 nm之水中油奈米乳液的樣本檢測展現出其 201012541 具有與更常見微米級乳液截然不同的光學性質。即使在高 卢與大Δ/ι下,奈米級液滴之分散液可相當透明。 瑞立散射(Rayleigh scattering )說明遠小於A之來自 可偏振介質體的光散射。已詳知分子剖面的瑞立散射與又4Weitz, D. A. Encyclopedia of Emulsion Technology', Θ Marcel Dekker: New York, 1 996; Vol. 4). An interesting change can occur when the repellent droplets in the micron-sized emulsion are broken to nanometer size: the emulsion can be changed from a white appearance formed by multiple scattering to a highly transparent nanoemulsion (Mason, TG; Wilking, J) N·; Meleson, K.; Chang, CB; Graves, S. Μ. J. Phys.: Conc/ens. Maner 2006, 73, R635). While index matching is one way to make the emulsion transparent, another possible way is to break the droplets into such small dimensions that the light in the overall visible spectrum is not multiple scattered. Indeed, a sample test of the <fl><50 nm water nanoemulsion demonstrates that its 201012541 has distinct optical properties from the more common micron emulsions. Even at high lux and large Δ/ι, the dispersion of nano-sized droplets can be quite transparent. Rayleigh scattering illustrates light scattering from a polarizable dielectric body that is much smaller than A. The Rayleigh scattering of the molecular profile has been known in detail

Co//oii/ <Sc*·· 1996,779,439 )。瑞立散射解釋爲 何朝太陽以外方向觀看時天空呈藍色;較短波長遠遠更強 烈被大氣中可偏振物體散射。反之,當日落時朝太陽觀看 @ ,大部分短波長光已被散射,只有帶紅色光通過大氣之遠 距離,因而產生紅色夕陽。由於瑞立散射之故,奈米乳液 即使在高卢下亦具有相似特徵(van de Hulst,H. C. scattering by small particles \ Dover Publications: New York,1981 )。當從側邊以白光照射時,因較短波長光在 更大角度下散射得更強烈,奈米乳液顯示出淺淺的淡藍色 調。反之,當透過奈米乳液直接朝白色光源看時,其顯示 出輕微淡紅色調。 _ 先前已硏究球形膠體、可變形液滴與氣泡的多相分散 液之光學性質多年。例如,漫射波光譜學(DWS )仰賴漫 射光子模型以描述遍佈膠態懸浮液中之多重散射光(Pine, D . J.; Wei tz ,D. A·; Chaikin, P. Μ.; H erbolzheimer, E. Phys. Rev. L ett. 1 98 8,60, 1 1 34; Weitz » D. A.; Pi] tie, D. J.; Pusey, P. N .; Tough, R. J. A_ Phys. Rev .Lett. 1 989, 63, 1747) o 在其他實例中,在 —^ 嘗試中已對 a~0.1 μιη 之 多分散性球形粒子進行固定入射波長;1 = 436 nm、546 nm -8- 201012541 與578 nm的不對稱性與濁度測量以推演出粒子大小分布 (Atherton, E.; Peters, R. H. Br. J. Appl. Phys. 1953, 4, 3 44 )。從具有^ = 0.23 μιη之相互作用聚合物球體的濃縮 懸浮液在Α = 5 14 nm之多重光散射測量比包括穿過該結構 因素*S來自緊鄰之干擾效應的計算更佳(Fraden, S.; Maret, G.尸Λβν. Zeii. 1990,65,512)。此外,已針 對粒子形狀、大小與折射率對透明度的影響進行理論硏究 (Johnsen,S.; Widder, E. A. J. Theor. Biol. 1999, 199, 181)。回散射實驗已用以測定單散射與多重散射在¢)範圍 之直徑爲0.14 μιη與1.0 μιη的聚苯乙烯乳膠球體之大小( Clapper, M. F.; Collura, J. S.; Harrison, D.; Fisch, M. R. Phys. £ 1999, 5 9, 3631)。傳輸平均自由徑與受到 具有可調相互作用勢之次100 nm帶電荷聚苯乙烯球體多 重散射之光的透射強度之強波長相依性亦經硏究爲/至高 達約 0.1 6 ( Roj as - Ocho a, L. F .; Mendez-A1 caraz, J. M.; Θ Saenz, J . J .; S chur t e nb erge r, P .; Scheffold, F. Phys. Rev. lew. 2004,93)。來自經由氣體擴散粗粒化之泡沫的多重 散射已造成相鄰氣泡之位相動力學(topological dynamics )的較佳理解(〇01^311,〇.1.;\\^“2,〇.八.;?11^,〇.<1· •Sc/ence 1991,252,686 )。對於以射線光學法則爲基礎之 模擬光子穿過泡沬之傳輸的穿過二維與三維結構之擴散傳 輸理論硏究已提供對於泡沫內光子之擴散的見識(Miri, M.; Madadi, E.; Stark, H. Physical Review E 2 005, 72;Co//oii/ <Sc*·· 1996, 779, 439). Rayleigh scattering is interpreted as the blue sky when viewed from outside the sun; shorter wavelengths are far more strongly scattered by polarizable objects in the atmosphere. Conversely, when watching the sun at sunset, most of the short-wavelength light has been scattered, and only red light passes through the atmosphere, resulting in a red sunset. Due to Rayleigh scattering, nanoemulsions have similar characteristics even under Gaulu (van de Hulst, H. C. scattering by small particles \ Dover Publications: New York, 1981). When irradiated with white light from the side, the light of the shorter wavelength scatters more strongly at a larger angle, and the nanoemulsion exhibits a pale light blue tone. Conversely, when viewed directly toward the white light source through the nanoemulsion, it shows a slight reddish hue. _ The optical properties of multiphase dispersions of spherical colloids, deformable droplets and bubbles have been studied for many years. For example, Diffuse Wave Spectroscopy (DWS) relies on a diffuse photon model to describe multiple scattered light throughout a colloidal suspension (Pine, D. J.; Wei tz, D. A.; Chaikin, P. Μ.; H erbolzheimer, E. Phys. Rev. L ett. 1 98 8,60, 1 1 34; Weitz » DA; Pi] tie, DJ; Pusey, P. N .; Tough, RJ A_ Phys. Rev .Lett. 1 989, 63, 1747) o In other examples, a fixed incident wavelength has been applied to the polydispersive spherical particles of a~0.1 μιη in the -^ attempt; 1 = 436 nm, 546 nm -8-201012541 and 578 nm Symmetry and turbidity measurements to derive particle size distribution (Atherton, E.; Peters, RH Br. J. Appl. Phys. 1953, 4, 3 44 ). The multiplexed light scattering measurement from a concentrated suspension of interacting polymer spheres with ^ = 0.23 μηη at Α = 5 14 nm is better than the calculation of the interference effect from the immediate vicinity including the structural factor *S (Fraden, S. Maret, G. corpse βν. Zeii. 1990, 65, 512). In addition, theoretical studies have been conducted on the effects of particle shape, size and refractive index on transparency (Johnsen, S.; Widder, E. A. J. Theor. Biol. 1999, 199, 181). Backscattering experiments have been used to determine the size of polystyrene latex spheres with a diameter of 0.14 μηη and 1.0 μιη in the range of single and multiple scattering (Clapper, MF; Collura, JS; Harrison, D.; Fisch, MR Phys £ 1999, 5 9, 3631). The strong wavelength dependence of the transmission mean free path and the transmission intensity of light multi-scattered by a sub-100 nm charged polystyrene sphere with an adjustable interaction potential is also considered to be up to about 0.1 6 ( Roj as - Ocho a, L. F.; Mendez-A1 caraz, JM; Θ Saenz, J. J.; S chur te n erge r, P .; Scheffold, F. Phys. Rev. lew. 2004, 93). Multiple scattering from foams coarsely granulated via gas diffusion has led to a better understanding of the topological dynamics of adjacent bubbles (〇01^311, 〇.1.;\\^“2, 〇.8. ;?11^,〇.<1· •Sc/ence 1991, 252, 686). Diffusion propagation theory through two-dimensional and three-dimensional structures for the transmission of simulated photons through the bubble based on ray optics The study has provided insights into the diffusion of photons within the foam (Miri, M.; Madadi, E.; Stark, H. Physical Review E 2 005, 72;

Miri, M.; Stark, H. Physical Review E 2003, 68; Miri, M. 201012541 F·; Stark, H. Europhysics Letters 2004, 6 5, 567) 〇 雖然 已習知有關許多複雜流體之光學性質,但在廣範圍0之各 種液滴相互作用勢之<α>< 100 nm的可變形液滴之濃縮系 統的透明度仍不清楚。 控制乳液(亦習知爲雙液體分散液)之可見光與紫外 線波長範圍的不透光度對於影響此等材料的外觀與防曬力 可能相當重要。亦詳知消費者受到食物的外觀與個人保養 產品(諸如化粧水、防曬劑、化粧品與潤膚劑)之外觀的 _ 影響。因此需要產生具有備受需要與可控制光學性質的雙 液體分散液之系統方法。 【發明內容】 一種根據本發明一具體實例的乳液之製造方法,包括 製造包含分散在第二液體中之第一液體的第一複數液滴之 第一乳液,該第一複數液滴具有第一整體平均半徑;及從 該第一乳液移除分別具有大於該第一整體平均半徑之半徑 @ 的複數液滴,以製得包含具有小於約100 ηχη之第二整體 平均半徑的第二複數液滴之第二乳液。該第一液體至少部 分與該第二液體不溶混,且該第二乳液比第一乳液對於可 見光更透明。 一種根據本發明某些具體實例之具有預定光學性質之 材料的製造方法,包括提供包含整體平均半徑小於約100 nm之複數液滴的第一乳液;及摻合添加劑與該第一乳液 以提供第二乳液。該添加劑包括整體平均半徑大於約100 -10- 201012541 nm之複數液滴或是尺寸大於約50 nm之複數粒子中至少 一者。該第一乳液比該第二乳液對於可見光而言更透明。 一種根據本發明某些具體實例之透明材料的製造方法 ,包括製造奈米乳液,其包含第一體積分率的整體平均半 徑小於約1〇〇 nm之奈米液滴,該體積分率小於約10% ; 及將該奈米液滴之密度提高至第二體積分率。該第二體積 分率大於約1〇%,且該奈米乳液比該具有該第一體積分率 φ 之奈米乳液對於可見光而言更透明。 根據本發明另外之具體實例,乳液包括第一液體與分 散在該第一液體中之第二液體的複數液滴。該第二液體至 少部分與該第一液體不溶混。該複數液滴具有小於約100 nm之整體平均半徑與小於約25%的相對於整體平均半徑 之標準差,使得該乳液對可見光而言爲實質上透明。 【實施方式】 ❹ 其他目的與優點茲將由考量說明、圖式與實例而變得 顯而易見。 下文茲詳細討論本發明之某些具體實例。在說明具體 實例中,爲求清楚起見而使用特定術語。不過,不希望本 發明受到所選用之特定術語限制。熟悉本相關技術之人士 將會承認在不違背本發明廣義槪念情況之下可使用其他等 效組份以及發展其他方法。本文所引用的所有參考資料係 分別以提及的方式個別倂入本文中。 奈米乳液提供在紫外線波長範圍中之顯著散射,同時 -11 - 201012541 保有可見光波長範圍之高度透明度。反之,平均液滴半徑 <α>大於100 nm之均勻乳液可明顯散射可見光,導致造成 典型乳液(諸如美乃滋)之白色外觀的多重散射。 藉由慘合大小分布爲<α>$ 100 nm之奈米乳液(其可 使用各種方法(詳見例如T.G. Mason,J.N. Wilking,K. Meleson, C.B. Chang, and S.M. Graves, Nanoemulsions: Formation, Structure, and Physical Properties, J. Phys.: C ondens. Μα ί i e r 18 R635-R666(2006)製得)與至少一種 <α> >100 nm之不同乳液,吾等可連續調整根據本發明某 些具體實例之奈米乳液的光學散射性質以將外觀從透明改 變成半透明,至在光譜的紫外線與可見光區下極不透明。 通常,吾等可在該光譜的紫外光部分維持顯著之散射作用 ,同時控制根據本發明某些具體實例之電磁輻射光譜之可 見光部分下的透明度。 根據本發明某些具體實例之製造方法包括取固定體積 分率心的體積匕之奈米乳液(其可安定地抗粗粒化), 並將其與固定體積分率6之體積匕的較大乳液摻合,如 此透過諸如機械性混合的過程將不同大小之液滴係均勻分 散。該經分散液滴液相材料與該連續非液滴液相材料之間 的折射率差値Δ«大於0.001適合本發明某些應用。此外, 該經分散液滴液相材料與該連續非液滴液相材料之間的折 射率差値Δη大於0.01適合本發明之特定具體實例。就乳 液與奈米乳液中所使用的大部份液體而言,0.01 <Δη<1。 控制本發明某些具體實例之雙液體分散液之外觀的方法係 -12- 201012541 是因奈米乳液與乳液的摻合物之光散射形成。雖然雙液體 分散液在通篇說明中係作爲實例,但本發明之一般槪念希 望包括多液體分散液。可將額外染料、反射粒子、吸收粒 子、折射粒子、分子、色料、顏料與其他添加劑摻合入該 經分散及/或連續相’以進一步改變根據本發明某些具體 實例所製之材料的光學性質。 該方法可以根據某些具體實例於連續流動製造環境進 〇 行’其中使用混合裝置將含有奈米乳液(例如藉由管路、 管子或微流體通道導向)之材料流與含有不同大小分布之 乳液或奈米乳液的不同材料流結合並摻合。此種實例中, 兩種不同流之體積流率、該兩種不同流中之大小分布,以 及該不同流中之體積分率會設定最終經摻合雙液體分散液 的有效散射性質與光學外觀。 奈米乳液之光學性質可視該等液滴之間的相互作用是 否以會導致聚集但無明顯聚結的方式吸引而定。例如,若 Ο 作爲兩種液滴之間的分離函數之該對相互作用勢中具有二 級最小値(其較熱能深),則該等液滴可在無聚結下變得 聚集。就說明中所示之實例具體實例而言,該等液滴之間 無如此深的二級位勢最小値,以及該等液滴之間的相互作 用勢主要爲排斥,使得該等液滴不會聚集。如此,該實例 具體實例中之所示的光學性質爲主要係非聚集且未經歷吸 引相互作用之排斥性相互作用液滴所構成的奈米乳液之特 徵。 可合理地預期,在修改本發明人已說明之液滴半徑大 -13- 201012541 小分布之第一與第二矩之外,可藉由修改該奈 於液滴界面之間的排斥及/或吸引程度而進一 乳液之消光係數。可改變光學性質(諸如消光 液滴之間導入吸引相互作用的一方式係添加單 類,諸如氯化鈉或氯化鎂,其溶解於水中油奈 性連續相中。爲了降低該光譜中可見光區的消 常不希望任何分開之液滴的界面之間具有任何 互作用。就這點而言,具有界面活性之陰離子 兩性離子與非離子材料通常爲需要在可見光光 顯著透明度同時在該光譜之UV部分中保有較 奈米乳液所需。 在本發明具體實例之一中,奈米乳液之光 由提高該奈米乳液的體積分率而加以調整。當 的初始液滴體積分率爲約15百分比且最終液 爲約20百分比時,則因該散射作用中該結構 緣故,該奈米乳液在可見光光譜中的消光係數 同時,於濃縮該奈米乳液時,可能同時改變不 、該奈米乳液之切變彈性,其變成占優勢之彈 可以製造在可見光光譜中之消光係數小於在紫 之消光係數以及使該奈米乳液具有似凝膠剛性 的凝膠狀材料(亦詳見"Elastic Vitrification ο by Droplet Rupturing," PCT/2008/0008 00,該 係以提及的方式倂入本文中)。該彈性似凝膠 光學散射性質結合使得可能產生具有所需流變 米乳液內介 步調整奈米 係數)的在 價或多價鹽 米乳液的水 光係數,通 殘留吸引相 、陽離子、@ 譜下具有極 大散射度的 學性質係藉 該奈米乳液 滴體積分率 因素的角色 通常較低。 ❹ 同物理性質 性。如此, 外線光譜中 的彈性性質 f Emulsions 文整體內容 流變性質與 反應(包括 -14- 201012541 在1 rad/s以下彈性剪切模數(即,貯存模數)爲大於約1 帕斯卡)以及抑制UV射線透射至皮虜同時維持透明視覺 外觀的光學性質之防曬或遮光產品。 修改該大小分布的方法之一係使用涉及具有不同分子 量之油的混合物之液滴大小縮減方案。該等方法亦可用以 製造液滴大小分布之平均半徑約10 nm的極小奈米乳液( 亦詳見"Process for Reducing Sizes of Emulsion Droplets," 參 美國臨時申請案序號第61/129,2 94號,該案全文係以提及 的方式倂入本文中)。 根據某些其他具體實例,固態粒子(例如二氧化鈦奈 米粒子或微米粒子)可與該奈米乳液摻合以製造在光譜之 可見光部分顯現出更強烈光學散射同時增加導致該光譜中 紫外線部分之太陽防護的散射量之材料。只有極少部分該 等固體粒子需要添加至奈米乳液以提供非常白之外觀。或 者或是此外,可摻合、混合或分散其他材料與該奈米乳液 〇 以使得所得之組成物具有預定色彩。換言之,根據本發明 某些具體實例之奈米乳液可提供用於製造具有預定光學性 質之廣範圍產品的成份。 視需要,該摻合物之光學性質的即時監控可藉由安裝 藉由網路或無線連接至中央處理控制設施的電腦控制之 UV-可見光光譜儀而達成。 用於控制根據本發明之雙液體(或多液體)分散液的 光學外觀之另外具體實例基本上與上述具體實例相反;即 ,採用多分散性雙液體分散液及經由分離程序分級該大小 -15- 201012541 分布。例如,大小分布中具有顯著量之半徑趨近與超過 100 nm之較大液滴的多分散性奈米乳液造成光譜中可見光 區內更多散射。藉由大小分級該多分散性奈米乳液以消除 該等較大液滴(即,經由過濾、乳油化或沈降),可能使 所得奈米乳液具有更均勻大小分布以使得看起來更具光學 透明度。其可應用於諸如例如通常希望具有澄徹外觀(例 如看起來半透明或幾近透明而無過多散射)的化粧品、防 曬劑、護唇膏、軟胥與香水等產品。 @ 雙液體分散液之實例油乳液、油中水乳液、水中油奈 米乳液以及油中水奈米乳液。多液分散液可包括雙重分散 液,諸如例如水中油中水分散液或油中水中油分散液。所 有此等系統通常包含安定該等液滴以抗聚結之界面活性劑 。該界面活性劑分子通常遠小於該等液滴,因此通常可忽 視在許多應用會加以考慮的波長範圍內的從該等分子之散 射。該等分子可多少改變折射率,但在大部分儘可能使用 愈少量界面活性劑之水中油乳液的經濟調配物中通常= φ 〇之折射率匹配條件很罕見。各式各樣的油(包括天然油 、食用油、植物衍生之油與動物衍生之油)與界面活性劑 可用於根據本發明具體實例之雙液體分散液。在本發明某 些具體實例中’雙液體(或多液)分散液之被分散相材料 及/或該連續相材料亦可爲混合物、摻合物或複數種材料 之分散液。 —@根據本發明之一具體實例的乳液之製造方法包括 製造包含分散在第二液體中之第一液體的第一複數液滴之 -16- 201012541 第一乳液’該第一複數液滴具有第一整體平均半徑 該第一乳液移除分別具有大於該第一整體平均半徑 的複數液滴,以製得包含具有小於約1 00 nm之第 平均半徑的第二複數液滴之第二乳液。該第一液體 分與該第二液體不溶混,且該第二乳液比第一乳液 見光更透明。從該第一乳液移除一些半徑大於該第 之整體平均半徑的較大液滴形成多分散性低於該第 ® 之第二乳液。本說明書全文中,本發明人係以半徑 液中之液滴特徵。某些實例中,該等液滴基本上爲 不過’本發明不受限於具有球形液滴之乳液。在液 形的實例中’ 「半徑」一辭應視爲表示該等液滴大 徵的有效半徑。 根據本發明某些具體實例,該第二乳液的第二 均半徑可大於約1 〇 nm以使得該第二乳液在可見光 紫外線下更透明。根據本發明某些具體實例,該第 〇 之第二複數液滴具有相對於第二乳液的第二整體平 標準差爲小於該第二整體平均半徑之約25%。根據 某些具體實例,該第二乳液之第二複數液滴具有相 二乳液的第二整體平均半徑標準差爲小於該第二整 半徑之約15%。根據本發明某些具體實例,該第二 第二複數液滴具有相對於第二乳液的第二整體平均 標準差爲小於約20 nm。 根據本發明某些具體實例之去除作用包括過濾 、場流分級、乳油分離(creaming)、沈降、凝聚 :及從 之半徑 二整體 至少部 對於可 一乳液 一乳液 說明乳 球形。 滴非球 小之特 整體平 下比在 二乳液 均半徑 本發明 對於第 體平均 乳液之 半徑的 、透析 、或離 -17- 201012541 心方法之至少一者。根據本發明某些具體實例之製造乳液 的方法另外包括混合添加劑與該第一液體、該第二液體、 該第一'乳液或該第一·乳液中至少一者。根據本發明某&具 體實例,該添加劑包含紫外線阻擋分子、濕潤分子、去角 質分子、抗微生物分子、抗真菌分子、抗痤瘡分子、抗雛 分子、抗腐敗分子、驅蟲分子、染料、顔料、顆粒物質、 奈米粒子、黏土、脂質、蛋白質、脂蛋白、維生素、多肽 、嵌段共聚多肽、生物聚合物、香料、pH調節劑,或拒 ❹ 水分子中至少一者。 根據本發明某些具體實例之製造乳液的方法亦包括在 從該第一乳液移除該複數液滴之後測量該第二乳液之光學 透明度以及根據該測量決定是否從該第二乳液移除液滴。 此可容許例如反饋性製造途徑及/或即時品質控制。 一種根據本發明某些具體實例之具有預定光學性質之 材料的製造方法包括提供包含整體平均半徑小於約100 nm 之複數液滴的第一乳液;與摻合添加劑與該第一乳液以提 參 供第二乳液。該添加劑包括整體平均半徑大於約100 nm 之複數液滴或是尺寸大於約50 nm之複數粒子中至少一者 。在該特定具體實例之情況下,該第一乳液比該第二乳液 對於可見光而言更透明。 一種根據本發明某些具體實例之透明材料的製造方法 包括製造奈米乳液,其包含第一體積分率的整體平均半徑 小於約1〇〇 nm之奈米液滴’該體積分率小於約10%;及 將該奈米液滴之密度提高至第二體積分率。該第二體積分 -18- 201012541 率大於約15%,且在該第二體積分率下之奈米乳液比該在 該第一體積分率之奈米乳液對於可見光而言更透明。因此 ,根據本發明某些具體實例,一種具有較高液滴之體積分 率的乳液比另一乳液對於可見光而言更透明。 根據本發明另外之具體實例,乳液包括第一液體與分 散在該第一液體中之第二液體的複數液滴。該第二液體至 少部分與該第一液體不溶混。該複數液滴具有小於約1〇〇 β nm之整體平均半徑與小於約25%的相對於整體平均半徑 之標準差,因此該乳液對可見光而言爲實質上透明。根據 本發明某些具體實例,相對於整體平均半徑之標準差小於 約15%。根據本發明某些具體實例,該整體平均半徑大於 約15 nm,使得該乳液對於可見光比對於紫外線而言更透 明。 根據本發明某些具體實例之乳液亦包括與該乳液混合 之添加劑,因此該添加劑至少造成該乳液的光學性質修改 〇 。根據本發明某些具體實例,該第一液體爲水性液體且該 第二液體爲油,以使得該第一與第二液體在可見光波長下 具有大於約0.01之折射率差値。根據本發明其他具體實 例’該第二液體爲水性液體且該第一液體爲油,以使得該 第一與第二液體在可見光波長下具有大於約0.01之折射 率差値。根據本發明另外之具體實例,該複數液滴之至少 部分包含與該第二液體不溶混的液體之內部液滴,使得該 乳液爲雙乳液。 根據本發明某些具體實例,該整體平均半徑小於約50 -19- 201012541 nm。根據本發明某些具體實例,該整體平均半徑小於約 20 nm 〇 根據本發明某些具體實例之乳液包括與該乳液混合之 添加劑。該添加劑可包含紫外線阻擋分子、濕潤分子、抗 微生物分子、抗真菌分子、抗痤瘡分子、抗皺分子、抗腐 敗分子、染料、顏料、顆粒物質、奈米粒子、氧化鋅顆粒 、二氧化鈦顆粒、黏土、脂質、蛋白質、多肽、嵌段共聚 多肽、生物聚合物、pH調節劑、香料,或拒水分子中至 參 少一者。根據本發明某些具體實例,該顆粒物質可爲微米 級或奈米級二氧化鈦或氧化鋅粒子以加強諸如防曬劑與遮 光劑之紫外線阻擋作用。 根據本發明某些具體實例,該乳液對於透射光之消光 係數係對低於約400 nm之紫外線波長爲高於約1 mm·1, 且對於高於約400 nm之可見光波長的消光係數低於約1 mnr1。根據本發明某些具體實例,該等條件對應於該奈米 乳液固有之紫外線遮光能力之數値測量,同時保有希望之 φ 阻擋較少可見光的透明視覺外觀。由於某些人不能接受遮 光劑在他們身體與臉部的白色層外觀,可能需要透明視覺 外觀。不過,良好遮光劑仍必須在紫外線下具有強力阻擋 作用。更高消光係數對應於更高光阻擋力。雖然許多UV-可見光光譜計可測量側僅約250 nm波長之消光係數,但 可合理預期就在可見光波長範圍中提供顯著透明度的奈米 乳液而言,此等乳液的消光係數在低於250 nm之更深紫 外線波長下更大,相當於更強之UV阻擋功效。 -20- 201012541 理論 藉由膠態分散液散射電磁輻射之理論的許多方面已爲 人詳知(Fraden,S_; Maret,G. PAy·?· Λβν. Ze". 1 990,65, 512; Gate, L. F. J. Opt. Soc. Am. 1 973, 63, 3 1 2; Kaplan, P. D.; Yodh, A. G.; Pine, D. J. Phys. Rev. Lett. 1 992, 68, 3 93 ),且該理論的某些特徵可作爲粗略導引以供與奈米 Θ 乳液之測得光學性質比較。當光子移動通過介質體之均勻 分散液時,其可被透射、吸收或從位於該來源正對面之偵 測器散射: Λτ»ι« 十 Abs + /scatt = (1) 其中八rans係透射通過該樣本之光的強度,/abs係被該 樣本吸收之光的強度,/seau係被該樣本散射之光的強度, Θ 且八係來自該來源之光的總強度。就非吸光性油液滴而言 ,/abs可忽略,且等式(1)變成: /trans + Acatt _ 1〇. (2) 穿透樣本厚度(或「徑長」Z)之透射光的強度可以Miri, M.; Stark, H. Physical Review E 2003, 68; Miri, M. 201012541 F·; Stark, H. Europhysics Letters 2004, 6 5, 567) 〇Although the optical properties of many complex fluids are known, However, the transparency of a concentrated system of deformable droplets of <α><100 nm in a wide range of droplet interaction potentials is still unclear. The opacity of the visible and ultraviolet wavelength ranges of controlled emulsions (also known as two-liquid dispersions) may be important to influence the appearance and sunscreen of such materials. It is also known that consumers are affected by the appearance of food and the appearance of personal care products such as lotions, sunscreens, cosmetics and emollients. There is therefore a need to create a systemic process having a dual liquid dispersion that is highly desirable and controllable in optical properties. SUMMARY OF THE INVENTION A method of making an emulsion according to an embodiment of the present invention includes manufacturing a first emulsion comprising a first plurality of droplets of a first liquid dispersed in a second liquid, the first plurality of droplets having a first An overall average radius; and removing, from the first emulsion, a plurality of droplets each having a radius @ greater than the first overall average radius to produce a second plurality of droplets comprising a second overall average radius of less than about 100 ηχη The second emulsion. The first liquid is at least partially immiscible with the second liquid, and the second emulsion is more transparent to the visible light than the first emulsion. A method of making a material having predetermined optical properties in accordance with certain embodiments of the present invention, comprising providing a first emulsion comprising a plurality of droplets having an overall average radius of less than about 100 nm; and blending the additive with the first emulsion to provide Two emulsions. The additive comprises at least one of a plurality of droplets having an overall average radius greater than about 100 -10- 2010 12541 nm or a plurality of particles having a size greater than about 50 nm. The first emulsion is more transparent to visible light than the second emulsion. A method of making a transparent material according to some embodiments of the present invention, comprising making a nanoemulsion comprising a first volume fraction of nanodroplets having an overall average radius of less than about 1 〇〇 nm, the volume fraction being less than about 10%; and increasing the density of the nanodroplets to a second volume fraction. The second volume fraction is greater than about 1%, and the nanoemulsion is more transparent to visible light than the nanoemulsion having the first volume fraction φ. According to another embodiment of the invention, the emulsion comprises a plurality of droplets of a first liquid and a second liquid dispersed in the first liquid. At least a portion of the second liquid is immiscible with the first liquid. The plurality of droplets have an overall average radius of less than about 100 nm and a standard deviation of less than about 25% relative to the overall average radius such that the emulsion is substantially transparent to visible light. [Embodiment] Other objects and advantages will be apparent from the description, drawings and examples. Some specific examples of the invention are discussed in detail below. In the specific examples, specific terms are used for clarity. However, it is not intended that the invention be limited by the specific terms used. Those skilled in the art will recognize that other equivalent components can be used and other methods can be developed without departing from the broad scope of the invention. All references cited herein are individually incorporated herein by reference. Nanoemulsions provide significant scattering in the UV wavelength range while -11 - 201012541 maintains a high degree of transparency in the visible wavelength range. Conversely, a uniform emulsion having an average droplet radius <α> greater than 100 nm can significantly scatter visible light, resulting in multiple scattering of the white appearance of a typical emulsion such as mayon. Nanoparticles with a size distribution of <α>$100 nm (which can be used in various ways (see for example TG Mason, JN Wilking, K. Meleson, CB Chang, and SM Graves, Nanoemulsions: Formation, Structure) , and Physical Properties, J. Phys.: C ondens. Μα ί ier 18 R635-R666 (2006)) and at least one different emulsion of <α>> 100 nm, we can continuously adjust according to the invention The optical scattering properties of the nano emulsions of these specific examples are such that the appearance changes from transparent to translucent to extremely opaque in the ultraviolet and visible regions of the spectrum. Typically, we maintain significant scattering in the ultraviolet portion of the spectrum. While controlling the transparency under the visible light portion of the electromagnetic radiation spectrum according to some embodiments of the present invention. The manufacturing method according to some embodiments of the present invention includes taking a volume of a fixed volume fraction of the core of the nano emulsion (which is safely Anti-coarse granulation), and blend it with a larger emulsion of a fixed volume fraction of 6 by volume, so that different sizes of liquid will be passed through processes such as mechanical mixing Dispersing uniformly. The refractive index difference 値Δ« between the dispersed liquid material and the continuous non-drop liquid material is suitable for some applications of the present invention. Further, the dispersed liquid phase material is The refractive index difference 値 Δη between the continuous non-droplet liquid phase materials greater than 0.01 is suitable for a particular embodiment of the invention. 0.01 < Δη < 1 for most of the liquid used in the emulsion and nanoemulsion. The method for controlling the appearance of the two-liquid dispersion of some specific examples of the present invention is -12-201012541 which is formed by light scattering of a blend of a nanoemulsion and an emulsion. Although the two-liquid dispersion is used as an example throughout the description However, the general complication of the present invention is intended to include a multi-liquid dispersion. Additional dyes, reflective particles, absorbing particles, refractive particles, molecules, pigments, pigments, and other additives may be incorporated into the dispersed and/or continuous phase. To further alter the optical properties of materials made in accordance with certain embodiments of the present invention. The method can be carried out in a continuous flow manufacturing environment according to certain embodiments. A material stream containing a nanoemulsion (for example, guided by a pipe, tube or microfluidic channel) is combined and blended with a different material stream containing emulsions or nanoemulsions of different size distributions. In this example, two The volumetric flow rate of the different streams, the size distribution in the two different streams, and the volume fraction in the different streams set the effective scattering properties and optical appearance of the final blended two-liquid dispersion. Optical properties of the nanoemulsion It can be seen whether the interaction between the droplets is attracted in such a way as to cause aggregation but no significant coalescence. For example, if 对 has a second-order minimum enthalpy (which is deeper than the thermal energy) in the pair of interaction potentials as a function of separation between the two droplets, the droplets can become agglomerated without agglomeration. For the example embodiment shown in the description, there is no such deep second potential between the droplets, and the interaction between the droplets is mainly repellent, so that the droplets are not Will gather. Thus, the optical properties shown in the specific examples of this example are characteristic of nanoemulsions consisting essentially of non-aggregating and undulating interaction droplets that do not undergo an absorbing interaction. It is reasonable to expect that by modifying the first and second moments of the small droplet radius 13-201012541, which has been described by the inventors, the repulsion between the droplet interfaces and/or The degree of attraction and the extinction coefficient of the emulsion. One way in which optical properties can be altered (such as the introduction of an attractive interaction between matting droplets) is to add a single species, such as sodium chloride or magnesium chloride, which is dissolved in the oily continuous phase of the water. To reduce the visible light region in the spectrum. It is often undesirable to have any interaction between the interfaces of any separate droplets. In this regard, the anionic zwitterionic and nonionic materials with interfacial activity are typically required to have significant transparency in visible light while in the UV portion of the spectrum. In order to maintain the nanoemulsion, in one of the specific examples of the present invention, the light of the nanoemulsion is adjusted by increasing the volume fraction of the nanoemulsion. When the initial droplet volume fraction is about 15% and finally When the liquid is about 20%, the extinction coefficient of the nanoemulsion in the visible light spectrum at the same time due to the structure in the scattering effect, and the shearing of the nanoemulsion may be simultaneously changed when the nanoemulsion is concentrated. Elasticity, which becomes the dominant bomb can be made in the visible light spectrum, the extinction coefficient is smaller than the purple extinction coefficient and the nano-emulsion Gel-like gelatinous material (see also "Elastic Vitrification ο by Droplet Rupturing, " PCT/2008/0008 00, which is incorporated herein by reference.) The combination of scattering properties makes it possible to produce a hydro-light coefficient of a valence or multivalent salt rice emulsion with a desired nanometer coefficient within the desired rheological rice emulsion, with a large degree of scattering under the residual attraction phase, cation, @ spectrum The nature of the nature of the nanoemulsion droplet volume fraction factor is usually lower. ❹ Same physical nature. Thus, the elastic properties of the outer spectrum f Emulsions the overall content of rheological properties and reactions (including -14- 201012541 elastic shear modulus below 1 rad / s (ie, storage modulus) is greater than about 1 Pascal) and inhibition A sunscreen or shading product that transmits UV rays to the skin while maintaining the optical properties of a clear visual appearance. One method of modifying this size distribution is to use a droplet size reduction scheme involving a mixture of oils having different molecular weights. These methods can also be used to make very small nanoemulsions with an average radius of droplet size distribution of about 10 nm (see also "Process for Reducing Sizes of Emulsion Droplets, " US Provisional Application Serial No. 61/129, 2 On the 94th, the full text of the case is incorporated herein by reference. According to certain other specific examples, solid particles (e.g., titanium dioxide nanoparticles or microparticles) can be blended with the nanoemulsion to produce a more intense optical scattering in the visible portion of the spectrum while increasing the sun that causes the ultraviolet portion of the spectrum. The amount of material that protects the amount of scattering. Only a very small fraction of these solid particles need to be added to the nanoemulsion to provide a very white appearance. Alternatively or additionally, other materials may be blended, mixed or dispersed with the nanoemulsion 〇 such that the resulting composition has a predetermined color. In other words, nanoemulsions according to some embodiments of the present invention can provide ingredients for making a wide range of products having predetermined optical properties. Immediate monitoring of the optical properties of the blend can be accomplished by installing a computer controlled UV-Vis spectrometer connected to the central processing control facility via a network or wirelessly, as desired. Further specific examples for controlling the optical appearance of the two-liquid (or multi-liquid) dispersion according to the present invention are substantially opposite to the above specific examples; that is, using a polydisperse two-liquid dispersion and grading the size via a separation procedure - 15 - 201012541 Distribution. For example, a polydisperse nanoemulsion having a significant amount of radius in the size distribution that approximates larger droplets over 100 nm causes more scattering in the visible region of the spectrum. By sizing the polydisperse nanoemulsion to eliminate such larger droplets (ie, via filtration, emulsification or sedimentation), it is possible to have a more uniform size distribution of the resulting nanoemulsion to make it look more optically transparent. . It can be applied to products such as, for example, cosmetics, sunscreens, lip balms, soft palate and perfumes which are generally desired to have a clear appearance (e.g., appear translucent or nearly transparent without excessive scattering). @Examples of two-liquid dispersions, oil emulsions, oil-in-water emulsions, and water-in-water emulsions. The multi-liquid dispersion may comprise a dual dispersion such as, for example, an aqueous dispersion in oil or an oil dispersion in water. All such systems typically contain a surfactant that stabilizes the droplets against coalescence. The surfactant molecules are typically much smaller than the droplets, so scattering from such molecules in the wavelength range that would be considered for many applications is generally negligible. These molecules can change the refractive index somewhat, but in most economical formulations of oil emulsions in water using as little surfactant as possible, it is often rare to have an index matching condition of φ 〇. A wide variety of oils (including natural oils, edible oils, plant derived oils and animal derived oils) and surfactants can be used in the two liquid dispersions according to specific examples of the present invention. In some embodiments of the invention, the dispersed phase material of the two-liquid (or multi-liquid) dispersion and/or the continuous phase material may also be a mixture, blend or dispersion of a plurality of materials. -@Manufacture method of an emulsion according to an embodiment of the present invention, comprising: manufacturing a first plurality of droplets comprising a first liquid dispersed in a second liquid - 16 - 201012541 First emulsion 'The first plurality of droplets having a An overall average radius of the first emulsion removes a plurality of droplets each having a greater than the first overall average radius to produce a second emulsion comprising a second plurality of droplets having a first average radius of less than about 100 nm. The first liquid component is immiscible with the second liquid, and the second emulsion is more transparent than the first emulsion. Removing a larger droplet having a radius greater than the overall average radius from the first emulsion forms a polydispersity that is lower than the second emulsion of the first. Throughout the specification, the inventors have characterized droplets in a radius liquid. In some instances, the droplets are substantially but the invention is not limited to emulsions having spherical droplets. In the case of a liquid form, the term 'radius' shall be taken as the effective radius representing the droplet eigenvalues. According to some embodiments of the invention, the second emulsion may have a second average radius greater than about 1 〇 nm such that the second emulsion is more transparent under visible light ultraviolet light. According to some embodiments of the invention, the second plurality of droplets of the second plurality of droplets have a second overall flat standard deviation relative to the second emulsion that is less than about 25% of the second overall average radius. According to some embodiments, the second plurality of droplets of the second emulsion has a second overall average radius standard deviation of the second emulsion that is less than about 15% of the second full radius. According to some embodiments of the invention, the second second plurality of droplets have a second overall average standard deviation relative to the second emulsion of less than about 20 nm. Removal according to some embodiments of the present invention includes filtration, field flow fractionation, creaming, sedimentation, agglomeration: and a radius from the entirety of at least one emulsion to one emulsion. Drip Asphere Small Integer Ratio The average radius of the two emulsions The present invention is at least one of the radius of the first body average emulsion, dialysis, or the -17-201012541 heart method. The method of making an emulsion according to some embodiments of the present invention additionally includes mixing the additive with at least one of the first liquid, the second liquid, the first 'emulsion, or the first emulsion. According to a certain embodiment of the present invention, the additive comprises ultraviolet blocking molecules, moist molecules, exfoliating molecules, antimicrobial molecules, antifungal molecules, anti-acne molecules, anti-matter molecules, anti-corruption molecules, deworming molecules, dyes, pigments At least one of a particulate matter, a nanoparticle, a clay, a lipid, a protein, a lipoprotein, a vitamin, a polypeptide, a block copolypeptide, a biopolymer, a perfume, a pH adjuster, or a water-repellent molecule. A method of making an emulsion according to some embodiments of the present invention also includes measuring optical clarity of the second emulsion after removing the plurality of droplets from the first emulsion and determining whether to remove droplets from the second emulsion based on the measurement . This may allow, for example, a feedback manufacturing approach and/or immediate quality control. A method of making a material having predetermined optical properties in accordance with certain embodiments of the present invention includes providing a first emulsion comprising a plurality of droplets having an overall average radius of less than about 100 nm; and blending the additive with the first emulsion for providing Second emulsion. The additive comprises at least one of a plurality of droplets having an overall average radius greater than about 100 nm or a plurality of particles having a size greater than about 50 nm. In the particular embodiment, the first emulsion is more transparent to visible light than the second emulsion. A method of making a transparent material according to some embodiments of the present invention includes making a nanoemulsion comprising a first volume fraction of nanodroplets having an overall average radius of less than about 1 〇〇 nm. The volume fraction is less than about 10 %; and increasing the density of the nanodroplets to a second volume fraction. The second volume fraction -18-201012541 is greater than about 15%, and the nanoemulsion at the second volume fraction is more transparent to visible light than the nanoemulsion at the first volume fraction. Thus, according to some embodiments of the invention, an emulsion having a higher volume fraction of droplets is more transparent to visible light than another emulsion. According to another embodiment of the invention, the emulsion comprises a plurality of droplets of a first liquid and a second liquid dispersed in the first liquid. At least a portion of the second liquid is immiscible with the first liquid. The plurality of droplets have an overall average radius of less than about 1 〇〇 β nm and a standard deviation of less than about 25% relative to the overall average radius, such that the emulsion is substantially transparent to visible light. According to some embodiments of the invention, the standard deviation from the overall average radius is less than about 15%. According to some embodiments of the invention, the overall average radius is greater than about 15 nm such that the emulsion is more transparent to visible light than to ultraviolet light. Emulsions according to some embodiments of the invention also include an additive that is mixed with the emulsion, such that the additive causes at least an optical modification of the emulsion. According to some embodiments of the invention, the first liquid is an aqueous liquid and the second liquid is an oil such that the first and second liquids have a refractive index difference of greater than about 0.01 at visible wavelengths. According to another embodiment of the invention, the second liquid is an aqueous liquid and the first liquid is an oil such that the first and second liquids have a refractive index difference of greater than about 0.01 at visible wavelengths. According to another embodiment of the invention, at least a portion of the plurality of droplets comprise internal droplets of a liquid immiscible with the second liquid such that the emulsion is a double emulsion. According to some embodiments of the invention, the overall average radius is less than about 50 -19-201012541 nm. According to some embodiments of the invention, the overall average radius is less than about 20 nm. The emulsion according to some embodiments of the invention comprises an additive mixed with the emulsion. The additive may comprise ultraviolet blocking molecules, moist molecules, antimicrobial molecules, antifungal molecules, anti-acne molecules, anti-wrinkle molecules, anti-corruption molecules, dyes, pigments, particulate matter, nanoparticles, zinc oxide particles, titanium dioxide particles, clay, Lipids, proteins, peptides, block copolypeptides, biopolymers, pH adjusters, perfumes, or water-repellent molecules are among the few. According to some embodiments of the invention, the particulate material may be micron or nano titanium dioxide or zinc oxide particles to enhance ultraviolet blocking such as sunscreens and light barriers. According to some embodiments of the invention, the extinction coefficient of the emulsion for transmitted light is greater than about 1 mm·1 for ultraviolet wavelengths below about 400 nm, and the extinction coefficient for visible wavelengths above about 400 nm is lower than About 1 mnr1. According to some embodiments of the invention, the conditions correspond to the measurement of the amount of ultraviolet light opacity inherent to the nanoemulsion while maintaining the desired visual appearance of φ blocking less visible light. Since some people cannot accept the white layer appearance of the mask on their body and face, a transparent visual appearance may be required. However, good opacifiers must still have a strong barrier to UV light. A higher extinction coefficient corresponds to a higher light blocking force. Although many UV-Vis spectrometers measure the extinction coefficient of a wavelength of only about 250 nm on the side, it is reasonable to expect that for emulsions that provide significant transparency in the visible wavelength range, the extinction coefficient of these emulsions is below 250 nm. The deeper UV wavelength is greater, which is equivalent to a stronger UV blocking effect. -20- 201012541 Theory Many aspects of the theory of scattering electromagnetic radiation by colloidal dispersions are well known (Fraden, S_; Maret, G. PAy··· Λβν. Ze". 1 990, 65, 512; Gate , LFJ Opt. Soc. Am. 1 973, 63, 3 1 2; Kaplan, PD; Yodh, AG; Pine, DJ Phys. Rev. Lett. 1 992, 68, 3 93 ), and certain features of the theory It can be used as a rough guide for comparison with the measured optical properties of the nanopigment emulsion. When a photon moves through a uniform dispersion of a dielectric body, it can be transmitted, absorbed, or scattered from a detector located directly opposite the source: Λτ»ι« Ten Abs + /scatt = (1) where eight rans are transmitted through The intensity of the light of the sample, /abs is the intensity of the light absorbed by the sample, /seau is the intensity of the light scattered by the sample, and the total intensity of the light from the source. For non-absorbent oil droplets, /abs is negligible, and equation (1) becomes: /trans + Acatt _ 1〇. (2) Transmitted light through the sample thickness (or "path length" Z) Strength can

Beer 氏定律說明(van de Hulst,H. C. Z/fgAi 6少 small particles', Dover Publications: New York, 1981): -21 - 201012541 /咖=/〆", ⑶ 其中y係取決於波長與該樣本材料性質之消光係數。 雖然Beer氏定律通常用以發明光吸收方法,其亦可 用以說明假設所有經散射光子離開該樣本而未被偵測到時 光子的損失。在此藉由沿著入射光方向之偵測器而有效對 應於極小接受立體角的限制下’消光係數與透射強度之入 射強度比之自然對數成比例: @ γ{φ,λ) = L-] In [7〇(A)/W^A)]. (4) 就高度稀釋溶液而言,「單散射」佔有優勢。在以相 對於入射光束之角度0在0W180"之範圍離開樣本之前( 從前散射至回散射),進入該樣本的每一光子最多被散射 一次(Johnsen,S·; Widder,Ε· A. «/· F/ieor. 1 999, 199, 181)。不過,於卢提高時,當光子離開該樣本之前被 U 散射兩次時會發生雙重散射。當光子在離開該樣本之前被 散射許多次時會發生多重散射。由於Η系強度性質,測試 多重散射的方式之一係檢測同一樣本不同厚度下之光譜透 射測得的消光係數;若測得之八I)充分重疊,則有少許多 重散射。 該散射橫斷面CS(:att係每一經分離之液滴的有效散射 面積,不包括干擾效應: -22- 201012541Beer's Law Description (van de Hulst, HC Z/fgAi 6 Less Small Particle', Dover Publications: New York, 1981): -21 - 201012541 /Caf =/〆", (3) where y is dependent on wavelength and the sample The extinction coefficient of the material properties. Although Beer's law is commonly used to invent light absorption methods, it can also be used to account for the loss of photons assuming that all scattered photons leave the sample without being detected. Here, by the detector along the direction of the incident light, which effectively corresponds to the minimum acceptance of the solid angle, the extinction coefficient is proportional to the natural logarithm of the incident intensity ratio of the transmission intensity: @ γ{φ,λ) = L- ] In [7〇(A)/W^A)]. (4) For highly diluted solutions, “single scattering” is advantageous. Each photon entering the sample is scattered at most once before leaving the sample at an angle 00180" relative to the incident beam (from front to back scattering) (Johnsen, S·; Widder, Ε·A. «/ · F/ieor. 1 999, 199, 181). However, when Lu is raised, double scattering occurs when the photons are scattered twice by U before leaving the sample. Multiple scattering occurs when a photon is scattered many times before leaving the sample. Due to the strength properties of the lanthanide system, one of the ways to test multiple scattering is to detect the extinction coefficient measured by spectral transmission at different thicknesses of the same sample; if the measured I I) is sufficiently overlap, there is much less re-scattering. The scattering cross section CS (:att is the effective scattering area of each separated droplet, excluding the interference effect: -22- 201012541

Cscatt(A) 2scatt(^) (5) 其中係液滴之幾何橫斷面面積,且2seatt係散 射效率,或者習知爲每一液滴之無因次橫斷面(van de Hulst, Η. C. Light scattering by small particles' Dover Publications: New York, 1981; Johnsen, S.; Widder, E. A. ·/. Γ/ieor· 1 999,199,181)。具有經完善界定之半徑 Φ 的球體的匕cau計算可使用軟體程式MIETAB 8.34版根據 W. J. Lentz’s Mie計算常式在2之廣泛且適用範圍內進行 。若Cseatt已知且液滴稀釋爲0,則可簡單地測得消光係數 其中N(彡)=3彡/(4以3)係球形液滴之數量密度。就總是 〇 將光從該偵測器完全散射開的非吸光性液滴而言, Cscatt=Cext,其中Cext係每一液滴的消光橫斷面(Fraden, S.; Maret, G. Phys. Rev. Lett. 1 990,65,512)。Cscatt(A) 2scatt(^) (5) where is the geometric cross-sectional area of the droplet and the 2seatt scattering efficiency, or known as the dimensionless cross section of each droplet (van de Hulst, Η. C. Light scattering by small particles' Dover Publications: New York, 1981; Johnsen, S.; Widder, EA ·/. Γ/ieor·1 999,199,181). The 匕cau calculation of a sphere with a perfectly defined radius Φ can be performed using the software program MIETAB 8.34 according to the W. J. Lentz’s Mie calculation routine in the broad and applicable range of 2. If Cseatt is known and the droplets are diluted to zero, the extinction coefficient can be simply measured where N(彡) = 3彡 / (4 to 3) is the number density of spherical droplets. For example, Cscatt=Cext, where Cext is the extinction cross section of each droplet (Fraden, S.; Maret, G. Phys) Rev. Lett. 1 990, 65, 512).

Mie散射理論說明從均勻介質中均質球體的散射光強 度之分布(van d e Huist, H. C. Light scattering by small particles·, Dover Publications: New York,19 81; Mie, G· Ann. Phys. 1 908, 25, 377 )。雖然Mie散射預測可直接用 以計算低0之球體的分散液、濃縮分散液之/ ’相鄰液滴之 界面效應變得重要且該樣本途徑變得不適當。因此’消光 -23- 201012541 係數必須包括結構因素之效應(Rojas-Ochoa,L. F.; Mendez-Alcaraz, J. M.; Saenz, J. J.; Schurtenberger, P.; Scheffold, F. Phys. Rev. Lett. 2004, 93 ): 雙 Ifcsca—S(她 dq ⑺ 其中g = M;r«e///;l)sin(0/2)係散射波數,0係相對於入 射光子傳遞之方向的散射角度,且neff代表該分散液的有 @ 效折射率,其係假設爲連續相與分散相之體積加權平均( Johnsen, S.; Widder, E. A. J. Theor. Biol. 1 999, 1 99, 1 8 1 )。此處,散射波數之數値範圍Α:〇 = 2πηε///λ,而角度相依 散射橫斷面爲cscatt(q) =(2;z7“2)F(?),其中F(g)係說明從 經分離液滴散射之無因次形式因數。該積分包含整體範圍 之前散射至回散射:就給定之波長而 言,在所有可達之ί的cseatt ( g )積分提供總散射橫斷面 :⑷响。就乳液而言,只要該等液滴仍保持 ® 球形且不會顯著變形,將散射作用分成Mie型因素與結構 因素係有效的。等式(7)中之單散射的消光係數與多重 散射方式中所說明之散射平均自由徑倒數Ι/f相等( Rojas-Ochoa, L, F.; Mendez-Alcaraz, J . Μ.; Saenz, J . J.; Schurtenberger, P.; Scheffold, F. Phys. Rev · Lett. 2 0 0 4, 93 )。 結構因素會對於濃縮分散液(包括奈米乳液)的光透 射具有深刻影響(Rojas-Ochoa, L. F.; Mendez-Alcaraz,J. -24- 201012541 M.; Saenz, J. J.; Schurtenberger, P.; Scheffold, F. Phys. Rev. Lett. 2004, 9; Graves, S.; Meleson, K.; Wilking, J.; Lin, Μ. Y.; Mason, T. G. J. C h e m · P hy s · 2QQ 5,122 )。在 稀釋限制中’ srto, 9 = 0) =1。不過’於0提高時’與s (Φ-0, 7 = 0)成比例之低Θ散射強度因液滴之間的最近相 鄰液滴相互作用之故而降低。因此,r亦朝較大4而降低。 介於粒子之間的相互作用勢ί/在測定該結構因素中扮演重 φ 要角色。就硬質球體之無序玻璃而言,當該分散液形成非 各態歷經系統之轉變時已計算出。硬質球體的s有可 能提供開始暸解透射穿過保有球形之濃縮奈米乳液液滴的 光強度中的濃度材料影響之良好出發點。不過,就可變形 奈米乳液液滴而言,由於該等液滴之形狀會在相當高卢( 其中該奈米乳液爲彈性)下變成非球形,分成形式因素( 即,cseatt)與結構因素之消光係數可能不絕對有效( W i 1 k i n g,J · N.; M a s ο η,T. G · P A γ s.及 e v · E 2 0 0 7,7 5 )。在 Θ 此限制下,等式(7)僅爲近似値。 實施例 本發明人使用多步驟乳化方法製造均勻分級之水中油 奈米乳液(Meleson,K.; Graves, S.; Mason, T. G. Soft Λί a ier. 2004,2, 109)。本發明人先藉由緩慢將聚砂氧油 (聚二甲基矽氧烷或PDMS :黏度vd=10 cSt)添加於濃度 CSDS = 1 16 mM之十二烷基硫酸鈉的水溶液中,同時使用高 速分散棒(IK A )剪切5分鐘期間而製造微米大小液滴之 -25 - 201012541 預混合乳液。通常,該液滴體積分率爲#=0.20。然後該預 混合乳液在高壓「猛烈」微流體均質機(Micro fluidics M-110S MICROFLUIDIZER® Processor)中進行激烈流動。 本發明人藉由將該乳液重複通過該均質機使其經歷激烈流 動;通過大約六次之後,本發明人發現因所有液滴經歷過 最強流動區之故,<β>並無顯著改變。所得之奈米乳液通 常具有之半徑大小多分散性爲約 30% ( Meleson,Κ.; Graves, S.; Mason, T. G. Soft Mater. 2004,2,109)。 ⑩ 經由重複離心分級,本發明人提高該液滴大小分布之 均句度及去除非常罕見會導致顯著光散射之大液滴(The Mie scattering theory illustrates the distribution of scattered light intensity from homogeneous spheres in a homogeneous medium (van de Huist, HC Light scattering by small particles·, Dover Publications: New York, 19 81; Mie, G. Ann. Phys. 1 908, 25 , 377). Although the Mie scattering prediction can be directly used to calculate the dispersion of the spheres of the low 0, the interface effect of the concentrated dispersion / 'adjacent droplets becomes important and the sample route becomes inappropriate. Therefore the 'extinction-23- 201012541 coefficient must include the effect of structural factors (Rojas-Ochoa, LF; Mendez-Alcaraz, JM; Saenz, JJ; Schurtenberger, P.; Scheffold, F. Phys. Rev. Lett. 2004, 93) : Double Ifcsca—S (she dq (7) where g = M; r«e///; l) sin(0/2) is the number of scattered waves, 0 is the scattering angle relative to the direction of incident photon transfer, and neff represents The dispersion has an @ refractive index which is assumed to be a volume weighted average of the continuous phase and the dispersed phase (Johnsen, S.; Widder, EAJ Theor. Biol. 1 999, 1 99, 1 8 1 ). Here, the number of scattered wave numbers Α: 〇 = 2πη ε / / / λ, and the angular dependent scattering cross section is cscatt (q) = (2; z7 "2) F (?), where F (g) Describes the dimensionless form factor of the scattering from the separated droplets. The integral contains the overall range before scattering to backscattering: for a given wavelength, the cseatt(g) integral at all ί provides the total scattering crossover Face: (4) Ring. As far as the emulsion is concerned, as long as the droplets remain spherical and do not deform significantly, the scattering is divided into Mie-type factors and structural factors. The single-scattering extinction in equation (7) The coefficient is equal to the reciprocal mean reciprocal Ι/f of the scattering method described in the multiple scattering method (Rojas-Ochoa, L, F.; Mendez-Alcaraz, J. Μ.; Saenz, J. J.; Schurtenberger, P.; Scheffold , F. Phys. Rev · Lett. 2 0 0 4, 93 ). Structural factors can have a profound effect on the light transmission of concentrated dispersions (including nanoemulsions) (Rojas-Ochoa, LF; Mendez-Alcaraz, J. - 24-201012541 M.; Saenz, JJ; Schurtenberger, P.; Scheffold, F. Phys. Rev. Lett. 2004, 9; Graves, S.; Meleson, K.; Wi Lking, J.; Lin, Μ. Y.; Mason, TGJ C hem · P hy s · 2QQ 5,122 ). In the dilution limit 'srto, 9 = 0) =1. However, 'when increasing at 0' s (Φ-0, 7 = 0) The proportional low Θ scattering intensity is reduced by the interaction of the nearest neighbor droplets between the droplets. Therefore, r also decreases toward a larger 4. The interaction ί/ plays a heavy role in determining the structural factor. In the case of a disordered glass of hard spheres, it has been calculated when the dispersion forms a transition of non-states through the system. It may be a good starting point to begin to understand the effect of the concentration of light in the light intensity transmitted through the concentrated nanoemulsion droplets holding the sphere. However, in the case of deformable nanoemulsion droplets, the shape of the droplets will Quite high (where the nanoemulsion is elastic) becomes non-spherical, and the extinction coefficient divided into formal factors (ie, cseatt) and structural factors may not be absolutely effective (W i 1 king, J · N.; M as ο η , T. G · PA γ s. and ev · E 2 0 0 7, 7 5 ). Under this constraint, equation (7) is only approximate 値. EXAMPLES The inventors used a multi-step emulsification process to produce a uniformly classified oil-in-water nanoemulsion (Meleson, K.; Graves, S.; Mason, T. G. Soft Λί a ier. 2004, 2, 109). The present inventors first added a polysand oil (polydimethyl methoxy oxane or PDMS: viscosity vd = 10 cSt) to an aqueous solution of sodium dodecyl sulfate having a concentration of CSDS = 1 16 mM while using A high-speed dispersing rod (IK A ) was cut for 5 minutes to make a micron-sized droplet of -25 - 201012541 pre-mixed emulsion. Typically, the droplet volume fraction is #=0.20. The premixed emulsion then flows vigorously in a high pressure "Micro fluidics M-110S MICROFLUIDIZER® Processor". The inventors experienced intense flow by repeating the emulsion through the homogenizer; after about six times, the inventors found that <β> did not change significantly because all of the droplets experienced the strongest flow zone. The resulting nanoemulsion typically has a radius and polydispersity of about 30% (Meleson, Κ.; Graves, S.; Mason, T. G. Soft Mater. 2004, 2, 109). 10 Through repeated centrifugation grading, the inventors increased the uniformity of the droplet size distribution and removed very large droplets that would result in significant light scattering (

Mason, T. G.; Wilking,J · N.; Meleson,K.; Chang, C. B .; Graves, S. M. J. Phys.: Condens. Matter 2006, 1 8,R63 5 ) 。此時,本發明人亦藉由以備用溶液而非水稀釋,將該 SDS濃度重設爲10 mM。藉由將該奈米乳液稀釋成#=〇.1〇 且使用搖擺斗在25,000 RPM下離心1〇小時,本發明人獲 得降低之大小多分散性’其在三次分級步驟之後通約爲約 參 15%。爲了控制#,本發明人僅以10 mM SDS溶液稀釋該 濃縮備用奈米乳液。使用此種工作方式,本發明人製造三 種不同分級之奈米乳液,以動態光散射測得彼等具有 &lt;a&gt; = 32±7 nm、47±11 nm 與 89±18 nm。每一種備用奈米乳 液在經由蒸發小部分該樣本測量#之前得以均衡至少1週 。在溫度『=22°C且於A = 633 nm下,含水10 mM SDS溶液 之折射率爲《。=1.332,而油之折射率爲„d=1.398。 由於奈米乳液具有顯著光學透明度(Mason,T. G.; -26- 201012541Mason, T. G.; Wilking, J. N.; Meleson, K.; Chang, C. B.; Graves, S. M. J. Phys.: Condens. Matter 2006, 1 8, R63 5). At this time, the inventors also reset the SDS concentration to 10 mM by diluting with a backup solution instead of water. By diluting the nanoemulsion to #=〇.1〇 and centrifuging at 25,000 RPM for 1 hour using a swing bucket, the inventors obtained reduced size polydispersity, which passed about three parameters after the three-stage step. 15%. To control #, the inventors diluted the concentrated spare nanoemulsion with only 10 mM SDS solution. Using this mode of operation, the inventors produced three different graded nanoemulsions which were measured by dynamic light scattering to have &lt;a&gt; = 32 ± 7 nm, 47 ± 11 nm and 89 ± 18 nm. Each of the alternate nanoemulsions was equilibrated for at least one week before evaporating a small portion of the sample to measure #. At a temperature of </ 22 ° C and at A = 633 nm, the refractive index of the aqueous 10 mM SDS solution is ". =1.332, and the refractive index of the oil is „d=1.398. Because the nanoemulsion has significant optical transparency (Mason, T. G.; -26- 201012541

Wilking,J· Ν·; Meleson,K.; Chang,C. B.; Graves, S. Μ. J, Phys.: Condens. Matter 2006, 1 8, R63 5 ),本發明人發 現即使當彡遠非該稀釋狀態時’其更便於與直接進行單散 射限制中之光傳輸的測量。該涉及使用小徑長Z之光室的 單散射方式係使用較厚光室且需要模型化受到特定邊界條 件限制之光子的擴散傳輸之多重散射方式的非典型者。本 發明人顯示該單散射方式提供一種測量消光係數y (或在 φ 多重散射方式中以散射平均自由徑倒數1以表示)之波長 相依性的實用方法。 爲測量250 mn&lt;A&lt;800 nm之透射強度,本發明人使用 配備有直接附裝光析管固定器與氘-鎢光源之Ocean Optics UV/VIS 光譜計(USB-2000 )。使用窄 25 μπιχΐ mm 偵測 狹縫減少因多重散射進入該偵測器的作用。整體光譜計系 統保持微保溫器/冷藏機內部爲恆定Γ=22°C以最小化會依 隨外部溫度變化而改變之/trans的波動。該燈與CCD偵測 © 器係開啓並在取得資料之前使其平衡至少90分鐘。爲了 確使該燈與電組件安定化,本發明人監測在六個不同;L下 之/trans爲時30分鐘。在該準備期間,/trans中的變異小於 〇·5 % °爲了取得每一測量,本發明人樣本載入事先以異丙 醇與甲醇清潔然後使用加壓室內空氣乾燥之£ = 〇.;! mm、 0· 5 mm與i.o mm的可拆卸石英光析管。 結果 該&lt;0 = 32 nm且1 = 0.1 mm的奈米乳液所測得作爲;L與 -27- 201012541 卢之函數的透射強度係示於圖1A。就所有4而言,本發明 人在低;I下觀察到當開始;I接近&lt;β&gt;時有相當可觀之散射, 以及當Α提高超過450 nm朝向800 nm時,透射增加至高 達/trans=l〇〇%。當多從散射最小的稀釋限制朝_〇·15提高 時,透射降低,在最低;I下之UV範圍內最爲明顯。其反 映出在奈米乳液中更強烈散射之液滴的數量密度提高。不 過’就#&gt;0.15而g » i\rans提闻且奈米乳液再次變得更透 明。本發明人繪製在又= 250 nm下之/trans at 2 = 250 nm作 _ 爲&lt;〇&gt; = 32 nm且1 = 0.1 mm之0的函數(見圖1B)以強調 就數種不同多所觀察到之/trans(幻中的最小値。在&lt;«&gt; = 32 nm所觀察到之J,rans(A,幻中的整體趨勢亦可在較大液滴大 小中發現,且該傾向在低;I下之透射強度中更爲顯著。 爲了證實本發明人之測量在單散射限制內,本發明人 使用等式(4)在0=0.10下針對1 = 0.1 mm、0_5 mm與1.0 mm計算三種不同奈米乳液的消光係數,如圖2所示。本 發明人選擇該4係因爲其接近Arans中之最小値,如此若在 ❿ 任何#下存在多重散射的話,很容易看到該多重散射。就 &lt;α&gt; = 32 nm之最小液滴而言,不論I如何,/(A)的優異重 疊表示本發明人確實測量到所有A之單散射。&lt;a&gt; = 47 nm 之奈米乳液顯示在;l&gt;3 7 5 nm之下所有Z之γ的良好重疊。 不過,當义&lt;3 75 nm時,Z = 0.5 mm與1.0 mm之消光係數不 與1 = 0.1 mm之資料重疊。因此,只有最薄樣本管1 = 0.1 mm之γ(Α)代表;I低至250 nm時之整體範圍的真正單散射 。就最大液滴&lt;a&gt; = 89 nm而言,在低A下較厚I變異之γ有 -28- 201012541 更大範圍,其再此表示僅有1=0.1 mm係在所有測得之2下 與本發明人探索之液滴大小整體範圍內確保單散射之夠薄 樣本管。 由於可使用來自較薄徑長樣本之單散射透射強度測定 來自較厚徑長樣本之多重散射’本發明人對於本實施例其 餘部分焦點只放在相當於1 = 0.1 單散射很顯然地 ,在較低波長下之多重散射會進一步排列光透射通過厚樣 φ 本。從圖2來看,液滴大小僅縮小到三分之一可造術該消 光係數降低兩個數量級°因此’該奈米級液滴之半徑較小 改變可造成奈米乳液引人注目的不同視覺外觀。 分析 探索液滴之體積分率對於奈米乳液之消光係數的影響 ,且r的實驗測定値係示於圖3A至3F。爲求簡化起見, 實線係符合含有似Ray leigh冪定律加上常數項之等式: ,=”0(鳥)〜《, ⑻ 其中η。係在所測得最低波長幻。=250 nm下之消光係 數,而p說明在高波長下可能發生之殘留散射。即使大小 分布明顯大於&lt;α&gt;之液滴的總數非常小’可能仍存在此種 殘留散射。由於若容許改變Ν之値’則Ν係實質上之未知 數,且因低殘留散射之故不必要假設Ν ’所以就&lt;fl&gt; = 89 nm與ο·ιο&lt;^&lt;〇.4〇而言,r〇〇已設爲等於〇。冪定律指數θ -29 - 201012541 說明在本發明人之受限測量窗內/隨著A降低得有多迅速。 在簡單Rayleigh散射情況下,因該散射強度之波長相依性 緣故,預期θ = 4之値。 符合三種不同奈米乳液之來自該冪定律的η。値係示 於圖4Α。產生一尖峰之η。的提高與隨後降低對所有&lt;α&gt; 而言均很明顯。就最小奈米乳液樣本而言’ ^。之最大値 發生在接近彳=〇.1〇,而兩個較大大小則發生在接近彡=0·20 處。每一 &lt;^&gt;之γ(幻的一般形狀與此尖峰的位置係與使用 SANS對於具有相似半徑奈米乳液的低9強度/λ(幻之結構 硏究所發現的尖峰合理地相符(Graves,S.; Meleson,Κ.; Wilking, J.; Lin, Μ. Y.; Mason, T. G. J. Chem. Phys. 2005, 122\ Mason, T. G.; Graves, S. M.; Wilking, J. N.;Wilking, J. Ν·; Meleson, K.; Chang, CB; Graves, S. Μ. J, Phys.: Condens. Matter 2006, 1 8, R63 5 ), the inventors found that even when 彡 far from the dilution In the case of state, it is more convenient to measure the light transmission directly in the single scattering limit. This single scattering approach involving the use of a light path with a small length Z is atypical for multiple scattering methods that use thicker light chambers and that require diffusion of photons that are limited by specific boundary conditions. The inventors have shown that this single scattering mode provides a practical method of measuring the wavelength dependence of the extinction coefficient y (or the inverse of the scattering mean free path in the φ multiple scattering mode). To measure the transmission intensity of 250 mn &lt; A &lt; 800 nm, the inventors used an Ocean Optics UV/VIS spectrometer (USB-2000) equipped with a direct attached phototube holder and a xenon-tungsten source. Using a narrow 25 μπι mm detection slit reduces the effects of multiple scattering into the detector. The overall spectrometer system maintains a constant Γ = 22 °C inside the micro-incubator/refrigerator to minimize fluctuations in /trans that change depending on external temperature changes. The lamp and CCD detection © are turned on and balanced for at least 90 minutes before the data is acquired. In order to ensure that the lamp and the electrical component were stabilized, the inventors monitored at six different times; /trans at L was 30 minutes. During this preparation, the variation in /trans was less than 〇·5 % ° In order to obtain each measurement, the inventors' samples were loaded with isopropyl alcohol and methanol previously cleaned and then dried using pressurized indoor air £ = 〇.; Detachable quartz photoreactor with mm, 0·5 mm and io mm. Results The nanoemulsions of &lt;0 = 32 nm and 1 = 0.1 mm were measured as; the transmission intensity of L and -27-201012541 lux is shown in Fig. 1A. For all 4, the inventors observed that when starting at low; I; there is considerable scattering when I is close to &lt;β&gt;, and as high as /trans when the enthalpy increases above 450 nm towards 800 nm. =l〇〇%. When the dilution limit from the least scattering increases toward _〇·15, the transmission decreases, which is most pronounced in the UV range at the lowest; I. It reflects an increase in the number density of droplets that are more strongly scattered in the nanoemulsion. However, it is #####5 and g»i\rans, and the nano-emulsion becomes more transparent again. The inventors have drawn a function of _ being &lt;〇&gt; = 32 nm and 1 = 0.1 mm at 0 = 250 nm (see Fig. 1B) to emphasize that there are several different Observed /trans (the smallest 幻 in the illusion. J, rans observed in &lt;«&gt; = 32 nm (A, the overall trend of the illusion can also be found in the larger droplet size, and The tendency is more pronounced in the transmission intensity at low; I. To confirm that the inventors' measurements are within the single scattering limit, the inventors used equation (4) for 0 = 0.10 for 1 = 0.1 mm, 0_5 mm and The extinction coefficient of three different nanoemulsions was calculated at 1.0 mm, as shown in Fig. 2. The inventors chose this 4 series because it is close to the minimum enthalpy in Arans, so if there is multiple scattering under # any #, it is easy to see This multiple scattering. For the smallest droplet of &lt;α&gt; = 32 nm, regardless of I, the excellent overlap of /(A) indicates that the inventors did measure the single scattering of all A. &lt;a&gt; = 47 nm The nanoemulsion shows a good overlap of all Z gamma below; l &gt; 3 7 5 nm. However, when it is &lt; 3 75 nm, Z = 0.5 mm and 1.0 mm The coefficient does not overlap with the data of 1 = 0.1 mm. Therefore, only the γ (Α) of the thinnest sample tube 1 = 0.1 mm represents the true single scattering of the entire range from I down to 250 nm. The largest droplet &lt;a&gt ; = 89 nm, the γ of the thicker I variation at low A has a larger range of -28-201012541, which in turn means that only 1 = 0.1 mm is explored by the inventors at all measured 2 A thin sample tube that ensures a single scattering over the entire droplet size. Since multiple scattering from a thicker diameter sample can be determined using a single scattering transmission intensity from a thinner path length sample, the inventors focus on the rest of this embodiment. Place only the equivalent of 1 = 0.1 single scattering. Obviously, multiple scattering at lower wavelengths will further align the light transmission through the thick sample φ. From Figure 2, the droplet size is only reduced to one-third. The extinction coefficient is reduced by two orders of magnitude. Therefore, 'the smaller radius of the nano-droplet droplets can cause different visual appearances of the nano-emulsion. The volume fraction of the droplets is analyzed to investigate the extinction of the nano-emulsion. The influence of the coefficient and the experimental measurement of r The lanthanides are shown in Figures 3A through 3F. For the sake of simplicity, the solid line conforms to the equation containing the Ray leigh power law plus a constant term: , = "0 (bird) ~ ", (8) where η. The lowest wavelength is measured. = extinction coefficient at 250 nm, and p indicates residual scattering that may occur at high wavelengths. Even if the size distribution is significantly larger than the total number of droplets of &lt;α&gt; is very small scattering. Since it is allowed to change the Ν Ν ' Ν Ν Ν 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 实质上 不必要 不必要 不必要 不必要 不必要 不必要 不必要 不必要 不必要 不必要 不必要Words, r〇〇 has been set equal to 〇. The power law index θ -29 - 201012541 illustrates how quickly the A decreases in the inventor's limited measurement window. In the case of simple Rayleigh scattering, θ = 4 is expected due to the wavelength dependence of the scattering intensity. η from the power law of three different nanoemulsions. The tether is shown in Figure 4. Produces a spike of η. The increase and subsequent decrease are obvious for all &lt;α&gt;. For the smallest nanoemulsion sample, '^. The largest 値 occurs close to 彳=〇.1〇, while the two larger sizes occur close to 彡=0.20. γ of each &lt;^&gt; (the general shape of the phantom and the position of this peak are reasonably consistent with the use of SANS for the low 9 intensity/λ of a similar radius nanoemulsion (the phantom found by the illusion of structure) Graves, S.; Meleson, Κ.; Wilking, J.; Lin, Μ. Y.; Mason, TGJ Chem. Phys. 2005, 122\ Mason, TG; Graves, SM; Wilking, JN;

Lin, Μ. Y. J. Phys. Chem. B 2006, 11 0, 22097 ) 。 &lt;e&gt; = 89 nm ' 47 nm 與 32 nm 的夕値分別爲··夕=3.72±0.55、 4.20土 0.27與5.66±0.56。由於本發明人能配合γ之波長動態範圍 極爲有限,故所有Α値具有較大不確定性。不過,來自該 @ 等配合的平均Θ與&lt;«&gt; = 47 nm與 89 nm之奈米乳液的 Raleigh散射預測一致。就&lt;fl&gt; = 32 nm而言,來自該等配 合的平均Θ遠大於4。該意料外之高値大部分可歸因於冪 定律指數對於高A、配合參數h及冪定律所支配之極有限又 範圍的敏感度。爲了更精確測定&lt;a&gt; = 32 nm之夕,本發明 人需要測量超過本發明人之光譜計的更低A之透射及進一 步減少因多分散性所致之殘留散射量。就所有奈米乳液樣 本而言,N爲約1(Γ2,此表示在較高波長下有少許殘留散 -30 - 201012541 射。就未經分級且具有較大多分散性之奈米乳液而言,r〇〇 可顯著較大。即使在分級之後’隨著0提高’ N稍微增加 ,此反映出仍存在該大小分布上尾部之液滴數量密度提高 〇 雖然η。(彳)定量顯示單分散硬質球體的預期尖峰趨勢 (Ashcroft, N. W.; Lekner, J. Phys. Rev · 1 9 6 6, 145, 83 ) ,即使當所有樣本的Debye屏蔽長度實質上相同(即CSDS 〇 固定在10 mM)時,該等尖峰的位置實際上取決於液滴大 小。圖4A中之實線表示相當於Percus-Yevick閉合關係( mod-PY-HS)之經修改硬質球體結構因素的配合,並藉由 隨著&lt;α&gt;改變之乘法因數重標體積分率而使广。之尖峰位置 移位(Ashcroft,N. W.; Lekner, J. Phys. Rev. 1966,145, 83; Baxter, R. J. Aust. J. Phys. 1 968, 21, 563 )。該 mod-PY-HS配合意外地完善說明該資料;當該理論係以硬相互 作用之假設而非Debye屏蔽排斥爲基礎時尤甚。電荷安定 Ο 化之奈米乳液可表現得與硬質球體不同,在Debye屏蔽長 度(10 mM SDS之10 = 3.5 nm)開始顯著影響支配液滴干 擾與變形以及影響液滴之間的空間相關性之有效體積分率 的小&lt;α&gt;時尤甚。事實上,由排斥性液滴組成之奈米乳 液可展現出之剪切彈性(Wilking,J. N.; Mason,Τ. G. Phys. Rev. E 2007, 75 ),其明顯低於最大隨機受干擾 體積分率多mrjcO.M ( Torquato,S.; Truskett,Τ· Μ·; Debenedetti, Ρ. G. Phys. Rev. Lett. 2000,84,2 0 6 4 ),但 仍具有0eff 2 0MRj。缺乏可變形帶電荷體之濃縮分散液的 -31 - 201012541 理論結構因素,本發明人以方式修改硬質球體形 式’並認清此種工作方式僅能對於濃縮奈米乳液中存在的 相互作用與結構之實質豐富性提供粗略解釋。 爲了說明具有不同&lt;α&gt;在紫外線中的ri。趨勢之特徵, 本發明人顯示兩個從mod-PY-HS配合(圖4B)所得之配 合參數:广。〃^ (在該配合(圖4B)之尖峰處的最大値) 與#peak (相當於該配合尖峰之&lt;4値)。整體而言,因較大 液滴散射更多光,故隨著&lt;α&gt;提高。正規PY-HS理 @ 論獲得預測卢peak = 0.13 (Mason, T. G.; Lin,Μ. Υ.尸 Ayr Rev. E 2003, 67 ' 050401 (R)/1) 。&lt;a&gt; = 3 2 nm 之液滴的 0peak = 〇· 11 ±0.01,略小於硬質球體之預測値。該較低値可 能係因造成在明顯低於0MR;之#下相當令人厭惡之干擾的 Debye屏蔽排斥所致。Rojas-Ochoa等人測得帶電荷聚苯 乙烯粒子在低9散射強度中之最大値爲0peak = 〇.074,亦低 於硬質球體的預期feak。因此,介於本發明人之液滴表面 之間的電荷排斥可能降低#peak。反之,&lt;a&gt; = 47 nm與 &lt;α&gt; = 89 run之〆eak値較接近0.2且大於硬質球體預測之 0.13。雖然該較大0peak値亦已在來自具有類似大小( &lt;a&gt; = 75 nm)之高度單分散性分級奈米乳液的低g小角度 中子散射(SANS)強度中看到(\138〇11,1'.0.;〇13乂63,8· M.; Wilking, J. N.; Lin, Μ. Y. J. Phys. Chem. B 2006, 110, 22097 ),但引起使用SANS或此處使用UV/Vis觀察 到之較大奈米乳液的^peak=:0.2的機制尙未經理論確認。殘 留吸引作用可能造成較大0peak値’但在本發明人探索的所 -32- 201012541 有&lt;α&gt;與〇下可能是Debye屏蔽排斥作用支配液滴相互作 用。因膠微胞扮演主要角度之故,界面活性劑濃度未大到 足供任何殘餘耗盡吸引作用使用。 其次,本發明人比較實驗,値與使用MIETAB軟體與 近似簡化等式(7)計算出之Η直,其中只考慮結構因素之 〇-《限制:7(卢,义)=^(#)Cscatt(;l) = 。由於 Cscatt(《)朝 較高9迅速降低超過約液滴大小的倒數,等式(7)之完 ❹ 全積分最主要係由產品Cs&lt;:att(g)*S(g)接近或低於液滴大小 倒數的表現決定。在較高彳下,該產品大部分受到低g下 之支配,因此本發明人簡單地以低g限制替換SU)獲 得近似値,SU = 〇)有效地從該積分中取出5。Csea„U)的剩 餘積分只降至“,獲得近似値:Cseatt(A) S(&lt;/&gt;,q = 〇)。 爲了査看該近似値是否至少能提供所測得之消光係數 的合理估計,本發明人在圖5A至5F中顯示在0.01至 G 0.40六種^値下之&lt;〇&gt; = 32 nm的結果。整體而言,本發明 人之實驗資料與該計算之估計之間的符合度意外的良好; 特別是因爲該計算中並無可調整參數以及因爲經由Debye 屏蔽排斥相互作用之可變形帶電荷奈米液滴並非硬質球體 。該實驗與計算値之間的最大値重疊發生在;I的中間値處 。該實驗與計算値之間的最大變異發生在當A開始趨近&lt;α&gt; 且/trans趨近1〇〇%時接近較大^的低波長處。在高;I處之變 異可能係因不良儀器敏感度與該強度趨近1 〇〇%透射之限 制時的動力範圍所致。與接近高义之理想預測的r較高測得 -33- 201012541 値亦爲造成的殘餘液滴多分散性所致。因此,根據Mie 散射理論實驗測定之4直與該硬質球體結構因素提供估算 通過濃縮奈米乳液之透射的方法。爲了獲得具有習知大小 與體積分率之奈米乳液的更精確但實驗預測,可能從圖 4A與4B之曲線推演出y1()Peak與yeak,且將彼等與等式( 3 )和(8 ) —起使用以預測透射強度。 討論 φ 奈米乳液的一種有趣且可能有用特徵係其在廣範圍可 見光光譜的透明度。即使該連續相與分散相之間的折射率 差値很顯著時,仍可能藉由分級與控制特定奈米乳液之 &lt;α&gt;與0而精確控制散射程度,因此精確控制r。本發明人 已顯示當經分級以去除該大小分布上尾部中之較大液滴時 ,具有&lt;a&gt; = 32 nm之液滴形成在所有卢之下幾乎透明之樣 本。即使就此等小奈米乳液而言,在紫外線中之散射仍很 顯著。根據該等測量以及與有可能針對&lt;fl&gt;&lt;30 nm液滴的 φ 說明結構因素影響之散射模型的適宜比較,即使在低或高 卢下該紫外線散射可能顯著減少。確實,即使需要其他理 論工作以解釋該等參數的測得相依性,但本發明人在 广。(彡)發現之尖峰仍可藉由經修改PY-HS模型而完善地說 明(Ashcroft,N. W.; Lekner, J. Phys. Rev. 1966,145,83; Baxter, R. J . Aust. J. Phys . 1 968, 2 1, 563; Russel, W. B .; Saville, D. A.; Schowalter, W. R. Colloidal dispersions; Cambridge University Press: Cambridge ; New York, 1989 -34- 201012541 )。本發明人注意到η。與來自該奈米乳液之整體測得散 射的降低亦與意外低#下當&lt;fl&gt;降低且開始趨近1〇時之彈 性開始相關(Wilking,J. N.; Mason,T. G.尸办少·?. Λβν·五 2007,75)。整體而言,來自奈米乳液之散射可藉由僅改 變&lt;«&gt;與卢而細微地調整。摻合具有不同&lt;a&gt;與卢之奈米乳液 亦提供訂製其光學性質的方式。 由於每一奈米乳液之平均半徑的配合參數n。、n〇peak Φ 與#peak係清楚地不同,原則上可能使用此資訊從均勻排斥 性奈米乳液液滴的未知樣本非破壞性推演&lt;α&gt;。例如,藉 由測量不破壞也不需要大量樣本之實驗的快凝中之透射曲 線/trans(X,幻,吾人可測定(幻的特定値,從該値可獲得 與〆eak。藉由該等配合參數,吾人可藉由在圖4A 與4B中所提供之資料之間內插而便利且非破壞性地推演 出該奈米乳液的&lt;α&gt;。若吾人希望保存該奈米乳液而非經 由使用蒸發之方法破壞彼,以及若無法取得動態光散射和 ❹ SANS時,此做法極有用。當然,該工作方式受限於主要 由排斥性液滴所組成之均勻奈米乳液;若存在顯著液滴吸 引作用或大小多分散性,則透射強度可能與本發明人於此 處所呈現者大不相同。 奈米乳液隨著時間過去之光學透明度亦可提供液滴安 定性的定量快速試驗。最初呈透明之&lt;α&gt;低於1 00 nm的奈 米乳液樣本會因其若經歷Ostwald熟化作用或聚結而存在 較大液滴而顯得渾濁或不透明。因此,樣本視覺試驗使得 吾人可以驗證該乳液的安定性。 -35- 201012541 仍需要理解該結構因素與在廣泛4範圍之來自奈米乳 液的散射之理論或至少較佳模型中諸如7lt)peak與0peak之參 數如何取決於可變形液滴界面之間的排斥或吸引程度。此 外,發展可預測具有顯著大小多分散性之濃縮奈米乳液的 散射性質之理論對於未經分級之奈米乳液可能具有重要實 際推論。 雖然氣態泡沬在界面結構方面與奈米乳液相似,但因 該氣體與該液體之間的折射率差値大以及氣泡大小與該波 _ 長相比相當大之故,通常無法避免可見光之多重散射( Durian, D. J.; Weitz, D. A.; Pine, D. J. Science 1991, 252, 686; Vera, M. U.; Saint-Jalmes, A.; Durian, D. J. Applied Optics 200 1,40,4210 )。因此,就泡沬而言,較明智做 法係檢驗與測量擴散光學傳輸性質,諸如傳輸平均自由徑 。不過,就液滴大小經常比泡沬中之氣泡小幾個數量級且 折射率差値亦小於泡沫中之折射率差値的奈米乳液而言, 測定單散射光學性質,諸如實質上係該散射平均自由徑之 ❹ 消光係數則更直接且簡單明暸。如本發明已顯示,單一 UV-可見光光譜可提供濃縮奈米乳液之散射平均自由徑之 靈敏測量。該等結果可能與傳輸平均自由徑有關聯’然後 用以建立在極高彳下由低於多面泡沫之限制遠遠較大球形 氣泡所組成的濕泡沬之模型。 總之,&lt;α&gt;遠低於100 m&lt;之單分散性奈米乳液因無可 見光光譜中之散射之故’即使在大0且不使用折射率匹配 改良劑之下亦顯得非常透明。該物理特徵區分奈米乳液與 -36- 201012541 具有微米甚至次微米液滴大小之典型乳液。就相當均勻乳 液而言,簡易透射測量組可產生有關該視需要平均液滴半 徑的資訊。吾人亦可檢驗液滴間之相互作用勢是如何影響 其光學性質。整體而言,在紫外線波長下之顯著散射、在 可見光光譜中之相對透明度,以及控制通過該液滴大小分 布與#之散射的能力產生根據本發明某些具體實例之由排 斥性液滴所組成之用於藥學與個人保養產品的長使用期限 φ 奈米乳液。 液滴半徑大小分布對於奈米乳液之光學透明度的影響 圖6顯示根據本發明一具體實例使用UV-可見光光譜 術看穿0.5 mm徑長之室時整體平均半徑&lt;α&gt;&lt;100 nm之數 種不同PDMS聚矽氧水中油奈米乳液。就這三種樣本而言 ,水相中之SDS濃度爲10 mM,且液滴體積分率爲户0.05 〇 〇 具有&lt;a&gt; = 57 nm但h = 40 nm之大半徑標準差(包括 高百分比大於平均半徑之液滴)的奈米乳液實例係示於圖 6 (空心圓)。由於與該奈米乳液材料之液滴半徑大小分 布具有超出較大液滴大小的較長尾部,在較長可見光波長 下之透射強度僅爲波長爲700 nm下之約25%。&lt;α&gt; = 57 nm 且多分散性大(即,其中其中da趨近&lt;α&gt;)的奈米乳液可 爲藉由令液滴不均勻破碎之裝置所製造之奈米乳液的代表 〇 相反的,圖6中所顯示之兩種其他奈米乳液,較大液 -37- 201012541 滴已被選擇性去除,且液滴半徑多分散性明顯較低。整體 而言,與&lt;a&gt; = 57 urn且較多分散性之奈米乳液相較, &lt;ii&gt; = 47 nm且具有較小半徑標準差nm (實心方塊) 之奈米乳液的透射強度明顯較高。就&lt;«&gt; = 4 7 nm之奈米乳 液而言,在7〇〇 nm波長下之透射強度高於75%。因此, &lt;«&gt; = 4 7 nm且多分散性低之奈米乳液比&lt;α&gt; = 57 nm且多分 散性明顯較大之奈米乳液明顯顯得更透明。同樣地,就 &lt;a&gt; = 8 9 nm且半徑標準差nm (實心三角形)之奈米 φ 乳液而言,在高於約500 nm之波長範圍內其透射強度仍 高於&lt;a&gt; = 5 7 nm之奈米乳液。此顯示即使與具有較大整體 平均半徑但較小多分散性因而較少較大液滴的奈米乳液相 比時,即使奈米乳液半徑大小分布中的較大液滴數量較少 亦會造成其在可見光光譜中之透明度顯著降低。 在本發明之說明具體實例中,爲求清楚起見使用特定 術語。不過,不希望本發明受到所選用之特定術語限制。 如熟悉本技術之人士按照上述教示的理解,在不違背本發 @ 明情況下,本發明上述具體實例可經修改或變更。因此, 應暸解在主張權項與其等效物之範圍內,可以具體說明以 外之方式實施本發明。 【圖式簡單說明】 圖1A顯示根據本發明一具體實例的平均半徑&lt;α&gt; = 32 nm之奈米乳液在徑長l = 〇.i mm之光析管內的透射強度 /trans(%),其爲波長;I與體積分率0之函數。圖1B顯示根據 -38- 201012541 本發明一具體實例之透射強度Aran〆%),其爲乂= 250 nm, &lt;α&gt; = 32 nm且1 = 0.1 mm之^的函數。以線導引該眼。 圖2顯示根據本發明一具體實例的體積分率~ 〇·1〇之 奈米乳液在徑長l = 、〇.5mm(_)與1.0 mm (▲)之光析管內的消光係數r,其爲波長;I之函數。 實線符合等式。***:平均奈米乳液半徑 。爲了容易觀看,&lt;fl&gt; = 89 nm資料已乘以因數 10,而 ❹ &lt;a&gt; = 3 2 nm已除以因數10。&lt;α&gt; = 47 nm之資料未移位且對 應於左軸。箭頭標出朝較低;I之單散射與多重散射的偏差 〇 圖3A至3F顯示根據本發明一具體實例的奈米乳液在 徑長Z: = 0.1 mm之光析管內的消光係數y,其爲波長;I之函 數。實線符合等式mJA/Au) ^+卜。平均奈米乳液半徑: &lt;a&gt;= ( Η 3 A )、(圖 3B)32nm、(圖 3C)、(圖 3D) 47nm、(圖3E)、(圖3F)89nm。液滴體積分率: © φ=0.01 ( φ ) 、 0.05 ( ▼ ) 、 0.10 ( ) 、 0.15 (図)、 〇-2〇 ( ▲ ) 、〇.25(半塡方塊)、〇.30(命),0.40(歐) ' 0.50 ( A )。 圖斗八顯不將來自等式广仏丨又/^-^+〜之配合參數;^。 ,其用以配合根據本發明一具體實例在徑長1 = 0.1 mm之 光析管內平均半徑&lt; α &gt; = 3 2 n m (鲁)、&lt; α &gt; = 4 7 n m ( ) 、&lt;α&gt; = 8 9 nm(A)之奈米乳液的消光函數等式,(其爲波 長;I之函數(見圖3))之圖。實線配合使用該經改良硬質 球形之結構因素(percus-Yevick閉合)ri&lt;)(0)〜rupeak -39- 201012541 hffSHS(多eff),其中卢eff=卢/卢peak。圖4B顯示從圖4A所得 之結構因素參數n〇peak ( _ ) and yeak (參)。水平虛線 表示與硬質球體之預期尖峰相關的體積分率之期測値: &lt;eak = 0.13。實線爲通過該資料之實驗平滑曲線。 圖5A至5F顯示根據本發明具體實例之&lt;fl&gt; = 32 nm的 在徑長1 = 0.1 mm光析管內且體積分率:0=〇·〇1 (圖5A) 、0.05 (圖 5B) 、0.10 (圖 5C) 、0.15 (圖 5D) 、0.25 (圖5E) 、0.40 (圖5F)(爲求清楚起見以分別之畫面 φ 顯示)之奈米乳液的計算出(參)與實驗(〇)消光係數 厂其爲波長A之函數。實線導引該眼通過Mie散射計算値 〇 圖6提供根據本發明具體實例之三種不同奈米乳液的 透射強度/trans (其爲波長;I之函數)的比較。該較大多分 散性奈米乳液的平均半徑&lt;cz&gt; = 57 nm且半徑大小分布的標 準差h = 4〇 nm(空心圓)。顯示兩種其他奈米乳液,其 中已從其大小分布中去除較液滴,形成較小多分散性: 參 &lt;α&gt; = 47 nm &gt; 其 δα=\\ nm (實心方塊)與 &lt;fl&gt; = 89 nm,其 h=18nm (實心三角形)。 -40-Lin, Μ. Y. J. Phys. Chem. B 2006, 11 0, 22097 ). &lt;e&gt; = 89 nm ' 47 nm and 32 nm are respectively · = = 3.72 ± 0.55, 4.20 ± 0.27 and 5.66 ± 0.56. Since the inventors can match the dynamic range of the wavelength of γ to a very limited extent, all defects have large uncertainties. However, the average enthalpy from this @ et al. is consistent with the Raleigh scattering prediction of &lt;«&gt; = 47 nm and 89 nm nanoemulsions. For &lt;fl&gt; = 32 nm, the average enthalpy from these combinations is much greater than 4. Most of this unexpected sorghum can be attributed to the extremely limited and range sensitivity of the power law index to the high A, the mating parameter h, and the power law. In order to more accurately measure &lt;a&gt; = 32 nm, the inventors of the present invention need to measure the transmission of lower A than the spectrometer of the present inventors and further reduce the amount of residual scattering due to polydispersity. For all nanoemulsion samples, N is about 1 (Γ2, which means that there is a slight residual -30 - 201012541 at higher wavelengths. For ungraded and highly polydisperse nanoemulsions, R〇〇 can be significantly larger. Even after the classification, 'increasing with 0' N slightly increases, this reflects the increase in the number density of the droplets at the tail of the size distribution, although η. (彳) quantitatively shows monodisperse hardness The expected spike trend of the sphere (Ashcroft, NW; Lekner, J. Phys. Rev · 1 9 6 6, 145, 83 ), even when the Debye shield lengths of all samples are substantially the same (ie CSDS 〇 fixed at 10 mM) The position of the peaks actually depends on the droplet size. The solid line in Figure 4A represents the fit of the modified hard sphere structure factor corresponding to the Percus-Yevick closure relationship (mod-PY-HS), and by &lt;;α&gt; Change the multiplication factor to re-scale the volume fraction to shift the peak position (Ashcroft, NW; Lekner, J. Phys. Rev. 1966, 145, 83; Baxter, RJ Aust. J. Phys. 1 968, 21, 563). The mod-PY-HS cooperates unexpectedly to perfect This data; especially when the theory is based on the assumption of hard interaction rather than Debye shielding rejection. The charge-stabilized nano-emulsion can behave differently from hard spheres in Debye shielding length (10 mM SDS 10) = 3.5 nm) is particularly small when it starts to significantly affect the effective droplet fraction of dominant droplet interference and deformation and the spatial correlation between droplets. In fact, the nanoparticle consisting of repellent droplets The emulsion exhibits shear elasticity (Wilking, JN; Mason, Τ. G. Phys. Rev. E 2007, 75), which is significantly lower than the maximum random interference volume fraction mrjcO.M (Torquato, S.; Truskett, Τ· Μ·; Debenedetti, Ρ. G. Phys. Rev. Lett. 2000, 84, 2 0 6 4 ), but still has 0 eff 2 0MRj. Lack of a concentrated dispersion of deformable charged bodies -31 - 201012541 Theoretical structural factors, the inventors modify the hard sphere form in a way and recognize that this mode of operation can only provide a rough explanation for the interactions and the substantial richness of the structure in the concentrated nanoemulsion. To illustrate the difference &lt;&&gt; in ultraviolet light . Wherein RI trend, the present inventors have shown two from the mod-PY-HS complex (FIG. 4B) obtained from the fit parameters: wide. 〃^ (the maximum 値 at the peak of the fit (Fig. 4B)) and #peak (corresponding to the matching peak &lt;4値). Overall, as more droplets scatter more light, they increase with &lt;α&gt;. Regular PY-HS rationale @on the prediction Lupeak = 0.13 (Mason, T. G.; Lin, Μ. Υ. corpse Ayr Rev. E 2003, 67 ' 050401 (R) / 1). &lt;a&gt; = 3 2 nm droplets 0peak = 〇· 11 ± 0.01, slightly less than the predicted 値 of the hard sphere. This lower enthalpy may be due to Debye shielding rejection caused by a rather disgusting interference at significantly lower than 0MR; Rojas-Ochoa et al. measured the maximum enthalpy of charged polystyrene particles in the low 9 scattering intensity to be 0peak = 〇.074, which is also lower than the expected feak of the hard sphere. Therefore, the charge repulsion between the droplet surfaces of the inventors may reduce #peak. Conversely, &lt;a&gt; = 47 nm and &lt;α&gt; = 89 run 〆eak値 is closer to 0.2 and greater than 0.13 of the hard sphere prediction. Although the larger 0peak値 has also been seen in low-g small-angle neutron scattering (SANS) intensities from highly monodisperse graded nanoemulsions of similar size (&lt;a&gt; = 75 nm) (\138〇) 11,1'.0.;〇13乂63,8· M.; Wilking, JN; Lin, Μ. YJ Phys. Chem. B 2006, 110, 22097 ), but caused the use of SANS or UV/Vis used here The mechanism of ^peak=:0.2 of the larger nanoemulsion observed was not confirmed by theory. Residual attraction may result in a larger 0peak値&apos; but the inventors explored -32-201012541 having &lt;[alpha]&gt; and the underarm may be Debye shielding rejection to dominate the droplet interaction. Because the micelles play a major role, the surfactant concentration is not large enough for any residual depletion attraction. Secondly, the inventors compared experiments, using the MIETAB software and the approximate simplified equation (7) to calculate the straightness, which only considers the structural factors - "Limit: 7 (Lu, Yi) = ^ (#) Cscatt (;l) = . Since Cscatt (") rapidly decreases toward a higher 9 than the reciprocal of the droplet size, the total integral of equation (7) is mainly due to the product Cs &lt;:att(g)*S(g) being close to or lower than The performance of the reciprocal of the droplet size is determined. At higher temperatures, the product is mostly dominated by low g, so the inventors simply replaced SU with a low g limit to obtain an approximate enthalpy, SU = 〇) effectively taking 5 out of the integral. The remaining points of Csea „U) are only reduced to “, and the approximate 値: Cseatt(A) S(&lt;/&gt;, q = 〇) is obtained. In order to see if the approximation can provide at least a reasonable estimate of the measured extinction coefficient, the inventors show in Figs. 5A to 5F the &lt;〇&gt; = 32 nm under six kinds of 0.01 to G 0.40 result. Overall, the agreement between the inventor's experimental data and the calculated estimate is unexpectedly good; in particular, because there are no adjustable parameters in the calculation and because of the deformable charged nanoparticle via the Debye shielding rejection interaction The droplets are not hard spheres. The maximum 値 overlap between this experiment and the calculation 値 occurs at the middle I of I; The largest variation between this experiment and the calculated enthalpy occurs at a low wavelength near the larger ^ when A begins to approach &lt;α&gt; and /trans approaches 1〇〇%. The variation at high; I may be due to the poor instrument sensitivity and the dynamic range at which the intensity approaches the limit of 1% transmission. The higher the r predicted from the ideal prediction of Gaoyi, -33- 201012541 値 is also caused by the polydispersity of the residual droplets. Therefore, the method of estimating the transmission by concentrating the nanoemulsion is provided by the experimental determination of the linear sphere structure according to the Mie scattering theory. In order to obtain a more accurate but experimental prediction of a nano-emulsion with a conventional size and volume fraction, it is possible to derive y1()Peak and yeak from the curves of Figures 4A and 4B, and to compare them with equations (3) and ( 8) Use to predict transmission intensity. Discussion An interesting and potentially useful feature of φ nanoemulsions is their transparency in a wide range of visible light spectra. Even if the refractive index difference between the continuous phase and the dispersed phase is significant, it is possible to precisely control the degree of scattering by classifying and controlling the &lt;α&gt; and 0 of the specific nanoemulsion, thereby precisely controlling r. The inventors have shown that droplets having &lt;a&gt; = 32 nm form a nearly transparent sample under all of the luminescence when fractionated to remove larger droplets in the tail of the size distribution. Even in the case of such small nanoemulsions, the scattering in the ultraviolet rays is still remarkable. Based on such measurements and a suitable comparison of the scattering models that are likely to account for structural factors for &lt;fl&gt;&lt;30 nm droplets, the UV scattering may be significantly reduced even at low or high temperatures. Indeed, even though other theoretical work is required to explain the measured dependencies of these parameters, the inventors are broad. (彡) The spikes found can still be fully illustrated by the modified PY-HS model (Ashcroft, NW; Lekner, J. Phys. Rev. 1966, 145, 83; Baxter, R. J. Aust. J. Phys 1 968, 2 1, 563; Russel, W. B.; Saville, DA; Schowalter, WR Colloidal dispersions; Cambridge University Press: Cambridge; New York, 1989-34-201012541). The inventors have noticed η. The decrease in the measured scatter from the whole of the nanoemulsion was also related to the unexpected decrease in the elasticity when &lt;fl&gt; decreased and began to approach 1 ( (Wilking, JN; Mason, TG corpse less??. Λβν·五 2007, 75). Overall, the scattering from the nanoemulsion can be finely adjusted by changing only &lt;«&gt; with Lu. Blending with different &lt;a&gt; and Lu's nanoemulsions also provides a way to customize their optical properties. Due to the matching parameter n of the average radius of each nanoemulsion. , n〇peak Φ is clearly different from the #peak system. In principle, this information may be used to nondestructively derivate &lt;α&gt; from unknown samples of uniformly repellent nanoemulsion droplets. For example, by measuring the transmission curve/trans in the fast coagulation of an experiment that does not destroy or require a large number of samples (X, illusion, we can determine (a specific singularity from which 〆eak can be obtained. By virtue of such With the parameters, we can conveniently and non-destructively infer the &lt;α&gt; of the nanoemulsion by interpolating between the materials provided in Figures 4A and 4B. If we wish to preserve the nanoemulsion instead of This is extremely useful by using evaporation to destroy one, and if dynamic light scattering and ❹ SANS are not available, of course, this mode of operation is limited by a uniform nanoemulsion consisting mainly of repellent droplets; The droplet attraction or size polydispersity, the transmission intensity may be quite different from what the inventors present here. The optical transparency of the nanoemulsion over time can also provide a quantitative rapid test of droplet stability. A sample of nanoemulsion that is transparent &lt;α&gt; below 100 nm will appear cloudy or opaque due to the presence of larger droplets if subjected to Ostwald ripening or coalescence. Therefore, the sample visual test This allows us to verify the stability of the emulsion. -35- 201012541 Still need to understand how this structural factor differs from the theoretical or at least preferred model of the broad range of 4 from the scattering of nanoemulsions such as 7lt)peak and 0peak The degree of repulsion or attraction between the deformable droplet interfaces. Furthermore, the development of a theory predicting the scattering properties of concentrated nanoemulsions with significant size polydispersity may have important practical inferences for unfractionated nanoemulsions. Gaseous foam is similar to nanoemulsion in terms of interfacial structure, but due to the large refractive index difference between the gas and the liquid and the bubble size is quite large compared with the wave length, it is generally impossible to avoid multiple scattering of visible light ( Durian, DJ; Weitz, DA; Pine, DJ Science 1991, 252, 686; Vera, MU; Saint-Jalmes, A.; Durian, DJ Applied Optics 200 1,40, 4210). Therefore, in terms of foaming, It is wise to test and measure the diffusion optical transmission properties, such as the transmission mean free path. However, the droplet size is often a few smaller than the bubble in the bubble. For the nanoemulsion which has a refractive index difference 小于 which is also smaller than the refractive index difference 泡沫 in the foam, the measurement of the single scattering optical property, such as the 消 extinction coefficient which is substantially the average free diameter of the scattering, is more straightforward and simple. The invention has shown that a single UV-visible spectrum can provide a sensitive measure of the scattering mean free path of a concentrated nanoemulsion. These results may be related to the transport mean free path' and then used to build up at very high temperatures from below the multi-faceted foam. The limitation is much larger than the model of the wet bubble composed of spherical bubbles. In summary, &lt;α&gt; is much less than 100 m&lt;1&gt; of a monodisperse nanoemulsion which is very transparent due to scattering in the invisible light spectrum even at large zeros and without the use of an index matching modifier. This physical feature distinguishes between nanoemulsions and -36-201012541 typical emulsions with micron or even submicron droplet sizes. For fairly homogeneous emulsions, the simple transmission measurement set produces information about the average droplet radius as needed. We can also examine how the interaction between droplets affects its optical properties. Overall, significant scattering at ultraviolet wavelengths, relative transparency in the visible spectrum, and the ability to control scattering through the droplet size distribution and # produce a retentive droplet in accordance with certain embodiments of the present invention. Long-life φ nanoemulsion for pharmaceutical and personal care products. Effect of droplet radius size distribution on optical transparency of nanoemulsions Figure 6 shows the overall average radius &lt;[alpha]&gt;&lt;100 nm when looking through a chamber of 0.5 mm diameter length using UV-visible spectroscopy according to an embodiment of the invention Different kinds of PDMS polyoxylized water oil nanoemulsion. For these three samples, the SDS concentration in the aqueous phase was 10 mM, and the droplet volume fraction was 0.05 〇〇 with a large radius standard deviation of &lt;a&gt; = 57 nm but h = 40 nm (including high percentage) An example of a nanoemulsion of droplets larger than the average radius is shown in Figure 6 (open circles). Since the droplet radius distribution with the nanoemulsion material has a longer tail that exceeds the larger droplet size, the transmission intensity at longer visible wavelengths is only about 25% at a wavelength of 700 nm. &lt;α&gt; = 57 nm and a polydispersity (i.e., wherein da is closer to &lt;α&gt;) may be a representative of a nanoemulsion produced by a device which causes uneven droplet breakage. In contrast, the two other nanoemulsions shown in Figure 6, the larger liquid -37-201012541 drops have been selectively removed, and the droplet radius polydispersity is significantly lower. Overall, the transmission intensity of a nanoemulsion with &lt;ii&gt; = 47 nm and a smaller radius standard deviation nm (solid square) compared to a &lt;a&gt; = 57 urn and more dispersible nanoemulsion Significantly higher. For the &lt;«&gt; = 4 7 nm nanoemulsion, the transmission intensity at 7 〇〇 nm is higher than 75%. Therefore, the nanoemulsion with &lt;«&gt; = 4 7 nm and low polydispersity is significantly more transparent than the nanoparticle emulsion having &lt;α&gt; = 57 nm and having a large dispersibility. Similarly, for a nanometer φ emulsion of &lt;a&gt; = 8 9 nm and a standard deviation of the radius nm (solid triangle), the transmission intensity is still higher than &lt;a&gt; = in the wavelength range higher than about 500 nm. 5 7 nm nanoemulsion. This shows that even when compared to a nanoemulsion having a larger overall average radius but less polydispersity and therefore less large droplets, even a smaller number of larger droplets in the nanoemulsion radius size distribution would result in Its transparency in the visible light spectrum is significantly reduced. In the specific examples of the invention, specific terminology is used for the sake of clarity. However, it is not intended that the invention be limited by the specific terms used. The above specific examples of the present invention may be modified or changed without departing from the scope of the present invention. Therefore, it is to be understood that within the scope of the claims and their equivalents, the invention may be practiced otherwise. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A shows a transmission intensity/trans (%) of a nanoemulsion having an average radius &lt;α&gt;=32 nm in a cuvette having a diameter of l = 〇.i mm according to an embodiment of the present invention. ), which is a function of wavelength; I and volume fraction 0. Fig. 1B shows a transmission intensity Aran〆%) according to an embodiment of the invention according to -38-201012541, which is a function of 乂 = 250 nm, &lt;α&gt; = 32 nm and 1 = 0.1 mm. Guide the eye with a line. 2 shows an extinction coefficient r in a cuvette having a volume fraction of ~1·1〇 in a diameter of l = , 〇.5 mm (_) and 1.0 mm (▲) according to an embodiment of the present invention. It is a function of wavelength; I. The solid line conforms to the equation. Insert: Average nanoemulsion radius. For ease of viewing, the &lt;fl&gt; = 89 nm data has been multiplied by a factor of 10, and ❹ &lt;a&gt; = 3 2 nm has been divided by a factor of 10. &lt;α&gt; = 47 nm The data is not shifted and corresponds to the left axis. The arrows are marked as being lower; the deviation between single scattering and multiple scattering of I. Figures 3A to 3F show the extinction coefficient y of a nanoemulsion in a cuvette having a diameter of Z: = 0.1 mm according to an embodiment of the present invention, It is a function of wavelength; I. The solid line conforms to the equation mJA/Au) ^+ Bu. The average nanoemulsion radius: &lt;a&gt;= ( Η 3 A ), (Fig. 3B) 32 nm, (Fig. 3C), (Fig. 3D) 47 nm, (Fig. 3E), (Fig. 3F) 89 nm. Drop volume fraction: © φ=0.01 ( φ ) , 0.05 ( ▼ ) , 0.10 ( ) , 0.15 (図), 〇-2〇 ( ▲ ), 〇.25 (half-square), 〇.30 (life) ), 0.40 (Europe) '0.50 (A). Figure 8 shows that it will not come from the parameters of the equation and /^-^+~; And it is used to fit the average radius in the cuvette with a diameter of 1 = 0.1 mm according to an embodiment of the present invention &lt; α &gt; = 3 2 nm (Lu), &lt; α &gt; = 4 7 nm ( ), &lt;α&gt; = 8 9 nm (A) nanometer emulsion extinction function equation, (which is the wavelength; a function of I (see Figure 3)). The solid line fits the structural factor of the modified hard sphere (percus-Yevick closure) ri&lt;)(0)~rupeak -39- 201012541 hffSHS (multiple eff), where Lu eff = Lu / Lu peak. Fig. 4B shows the structural factor parameters n 〇 peak ( _ ) and yeak (parameter) obtained from Fig. 4A. The horizontal dashed line indicates the period of the volume fraction associated with the expected spike of the hard sphere: &lt;eak = 0.13. The solid line is the experimental smooth curve through this data. Figures 5A through 5F show the &lt;fl&gt; = 32 nm in a cuvette with a diameter of 1 = 0.1 mm according to an embodiment of the present invention and the volume fraction: 0 = 〇 · 〇 1 (Fig. 5A), 0.05 (Fig. 5B) ), 0.10 (Fig. 5C), 0.15 (Fig. 5D), 0.25 (Fig. 5E), 0.40 (Fig. 5F) (for the sake of clarity, the difference between the screens φ) of the nanoemulsion calculation (parameter) and experiment (〇) The extinction coefficient factory is a function of wavelength A. The solid line directs the eye to calculate by Mie scattering. Figure 6 provides a comparison of the transmission intensity /trans (which is a function of wavelength; I) of three different nanoemulsions in accordance with an embodiment of the present invention. The larger radius of the larger multi-dispersed nanoemulsion &lt;cz&gt; = 57 nm and the standard deviation of the radius distribution h = 4 〇 nm (open circles). Two other nanoemulsions have been shown in which the smaller droplets have been removed from their size distribution to form less polydispersity: &&lt;α&gt; = 47 nm &gt; δα=\\ nm (solid squares) and &lt; Fl &gt; = 89 nm, h = 18 nm (solid triangle). -40-

Claims (1)

.201012541 七、申請專利範圍: 1·—種乳液的製造方法,其包含: 製造包含分散在第二液體中之第一液體的第一複數液 滴之第一乳液,該第一複數液滴具有第一整體平均半徑; 及 從該第一乳液移除分別具有大於該第一整體平均半徑 之半徑的複數液滴,以製得包含具有小於約100 nm之第 〇 二整體平均半徑的第二複數液滴之第二乳液, 其中該第一液體至少部分與該第二液體不溶混,且 其中該第二乳液比該第一乳液對於可見光而言更透明 〇 2. 如申請專利範圍第1項之乳液的製造方法,其中 該第二乳液之第二整體平均半徑大於約10 nm,使得該第 二乳液對於可見光比對於紫外線而言更透明。 3. 如申請專利範圍第1項之乳液的製造方法,其中 © 該第二乳液之第二複數液滴具有相對於第二乳液的第二整 體平均半徑的標準差爲小於該第二整體平均半徑之約25% 〇 4. 如申請專利範圍第1項之乳液的製造方法,其中 該第二乳液之第二複數液滴具有相對於第二乳液的第二整 體平均半徑的標準差爲小於該第二整體平均半徑之約15% 〇 5. 如申請專利範圍第1項之乳液的製造方法,其中 該第二乳液之第二複數液滴具有相對於第二乳液的第二整 -41 - 201012541 體平均半徑的標準差爲小於約20 nm。 6. 如申請專利範圍第1項之乳液的製造方法,其中 該移除作用包含過濾、透析、場流分級(flOW field fractionation )、凝聚、乳油分離(creaming )、沈降或 離心方法之至少一者。 7. 如申請專利範圍第1項之乳液的製造方法,其另 包含混合添加劑與該第一液體、該第二液體、該第一乳液 或該第二乳液中至少一者,其中該添加劑包含紫外線阻擋 分子、濕潤分子、去角質分子、抗微生物分子、抗真菌分 子、抗痤瘡分子、抗皺分子、抗腐敗分子、驅蟲分子、染 料、顏料、顆粒物質、奈米粒子、黏土、脂質、蛋白質、 脂蛋白、維生素、多肽、嵌段共聚多肽、生物聚合物、香 料、pH調節劑,或拒水分子中至少一者。 8. 如申請專利範圍第1項之乳液的製造方法,在從 該第一乳液移除該複數液滴之後,其另包含: 測量該第二乳液之光學透明度;及 _ 根據該測量決定是否從該第二乳液移除液滴。 9. 一種具有預定光學性質之材料的製造方法,其包 含: 提供包含整體平均半徑小於約100 nm之複數液滴的 第一乳液; 摻合添加劑與該第一乳液以提供第二乳液,該添加劑 包含整體平均半徑大於約100 nm之複數液滴或是尺寸大 於約50 nm之複數粒子中至少一者, -42- 201012541 # Φ該第一乳液比該第二乳液對於可見光而言更透明 0 1(3’ %申請專利範圍第9項之具有預定光學性質之材 ,其中該第一乳液的該複數液滴之整體平均 1〇Ilm,使得該第一乳液對於可見光比對於紫 外線而言更透明。 11· $α申請專利範圍第9項之具有預定光學性質之材 Ο #胃方法,其中該第一乳液的該複數液滴具有相對於 _整體2^均半徑的標準差爲小於該整體平均半徑之約25% 〇 ΐ2· 申請專利範圍第η項之具有預定光學性質之 造方法,其中該第一乳液的該複數液滴具有相對 平均半徑的標準差爲小於該整體平均半徑之約 15%。 13. 串請專利範圍第9項之具有預定光學性質之材料 ® 的製造方法,其中該第一乳液的該複數液滴具有相對於該 整體平均半徑的標準差爲小於約20 nm。 14. 如申請專利範圍第9項之具有預定光學性質之材 料的製造方法,其中該提供第一乳液包含: 製造包含整體平均半徑小於約1〇〇 nm之複數液滴與 分別具有大於約1 〇〇 nm的半徑之複數液滴之乳液;及 從該乳液移除至少一部分該具有大於約100 nm的半 徑之複數液滴,以製得該第一乳液。 1 5 .如申請專利範圍第1 4項之具有預定光學性質之 -43- 201012541 材料的製造方法’其中該移除作用包含過濾、透析、場流 分級、乳油分離、沈降、凝聚或離心方法之至少—者。 16. 如申請專利範圍第9項之具有預定光學性質之材 料的製造方法’其中該添加劑包括一種包含具有預定的整 體平均半徑或相對於該整體平均半徑之標準差的至少一者 的複數液滴的乳液,以對該所製造材料之該預定光學性質 提供至少一些助益。 17. 如申請專利範圍第9項之具有預定光學性質之材 @ 料的製造方法,其中該添加劑包含一含有整體平均半徑大 於約100 nm之複數液滴的乳液。 18. 如申請專利範圍第9項之具有預定光學性質之材 料的製造方法,其中該添加劑包含紫外線阻擋分子、濕潤 分子、去角質分子、抗微生物分子、抗真菌分子、抗痤瘡 分子、抗皺分子、抗腐敗分子、驅蟲分子、染料、顏料、 顆粒物質、奈米粒子、黏土、脂質、蛋白質、脂蛋白、維 生素 '多肽、嵌段共聚多狀、生物聚合物、香料、pH調 @ 節劑,或拒水分子中至少一者。 19. 如申請專利範圍第9項之具有預定光學性質之材 料的製造方法,其中該添加劑包含生物活性劑、治療劑、 診斷劑、營養劑、化粧劑、氣味(scent )分子或風味( flavor)化合物。 20·—種透明材料的製造方法,其包含: 製造奈米乳液,其包含第一體積分率的整體平均半徑 小於約100 nm之奈米液滴,該體積分率小於約10% ;及 -44 - 201012541 將該奈米液滴之密度提高至第二體積分率’ 其中該第二體積分率大於約1〇%,且 其中該具有該第二體積分率奈米液滴之奈米乳液比該 具有該第一體積分率之奈米乳液對於可見光而言更透明。 21. —種材料,其係依申請專利範圍第1-20項中任 一項之方法製造。 22· —種乳液,其包含: 〇 第一液體;及 分散在該第一液體之第二液體的複數液滴,該第二液 體至少部分與該第一液體不溶混, 其中該複數液滴具有小於約100 nm之整體平均半徑 與小於約25%的相對於該整體平均半徑之標準差,使得該 乳液對可見光而言爲實質上透明。 23-如申請專利範圍第22項之乳液,其中該相對於 該整體平均半徑之標準差小於約1 5 %。 β 24·如申請專利範圍第22項之乳液,其中該整體平 均半徑大於約1 0 nm,使得該乳液對於可見光比對於紫外 線而言更透明。 25. 如申請專利範圍第22項之乳液,其另包含與該 乳液混合之添加劑’該添加劑導致至少修飾該乳液之光學 性質。 26. 如申請專利範圍第22項之乳液,其中該第一液 體爲水性液體且該第二液體爲油,該第一與第二液體在可 見光波長下具有大於約0.01之折射率差値。 -45- 201012541 27. 如申請專利範圍第22項之乳液,其中該第二液 體爲水性液體且該第一液體爲油,該第一與第二液體在可 見光波長下具有大於約0.01之折射率差値。 28. 如申請專利範圍第22項之乳液,其中該複數液 滴之至少部分包含與該第二液體不溶混的液體之內部液滴 ’使得該乳液爲雙乳液。 29_如申請專利範圍第22項之乳液,其中該整體平 均半徑小於約50 nm。 @ 30. 如申請專利範圍第22項之乳液,其中該整體平 均半徑小於約20 nm。 31. 如申請專利範圍第22項之乳液,其另包含與該 乳液混合之添加劑,該添加劑包含紫外線阻擋分子、濕潤 分子、去角質分子、抗微生物分子、抗真菌分子、抗痤瘡 分子、抗皺分子、抗腐敗分子、驅蟲分子、染料、顏料、 顆粒物質、奈米粒子、黏土、脂質、蛋白質、脂蛋白、維 生素、多肽、嵌段共聚多肽、生物聚合物、香料、pH調 · 節劑,或拒水分子中至少一者。 3 2 ·如申請專利範圍第3 1項之乳液,其中該顆粒物 質爲加強阻擋紫外線之二氧化鈦粒子。 33.如申請專利範圍第22項之乳液,其中該乳液對 於透射光之消光係數係對低於約400 rim之紫外線波長爲 高於約1 mm·1,且對高於約400 nm之可見光波長的消光 係數低於約1 m πΓ 1。 3 4 .如申請專利範圍第3 3項之乳液,其中在2 5 °C下 -46- .201012541 貯存兩個月期間後,該對於高於約400 nm之光的可見光 波長之消光係數提高小於1 〇 %。.201012541 VII. Patent Application Range: 1. A method for producing an emulsion comprising: manufacturing a first emulsion comprising a first plurality of droplets of a first liquid dispersed in a second liquid, the first plurality of droplets having a first overall average radius; and removing, from the first emulsion, a plurality of droplets each having a radius greater than the first overall average radius to produce a second plurality comprising a second overall average radius of less than about 100 nm a second emulsion of droplets, wherein the first liquid is at least partially immiscible with the second liquid, and wherein the second emulsion is more transparent to visible light than the first emulsion. 2. As claimed in claim 1 A method of making an emulsion, wherein the second emulsion has a second overall average radius greater than about 10 nm such that the second emulsion is more transparent to visible light than to ultraviolet light. 3. The method of manufacturing the emulsion of claim 1, wherein the second plurality of droplets of the second emulsion have a standard deviation from the second overall average radius of the second emulsion that is less than the second overall average radius The method of manufacturing the emulsion of claim 1, wherein the second plurality of droplets of the second emulsion have a standard deviation from the second overall average radius of the second emulsion that is less than the first The method of manufacturing the emulsion of claim 1, wherein the second plurality of droplets of the second emulsion have a second integral -41 - 201012541 body relative to the second emulsion The standard deviation of the average radius is less than about 20 nm. 6. The method of producing an emulsion according to claim 1, wherein the removing comprises at least one of filtration, dialysis, floOW field fractionation, coagulation, creaming, sedimentation or centrifugation. . 7. The method of producing an emulsion according to claim 1, further comprising a mixed additive and at least one of the first liquid, the second liquid, the first emulsion or the second emulsion, wherein the additive comprises ultraviolet rays Blocking molecules, moist molecules, exfoliating molecules, antimicrobial molecules, antifungal molecules, anti-acne molecules, anti-wrinkle molecules, anti-corruption molecules, deworming molecules, dyes, pigments, particulate matter, nanoparticles, clay, lipids, proteins, At least one of a lipoprotein, a vitamin, a polypeptide, a block copolypeptide, a biopolymer, a fragrance, a pH adjuster, or a water repellent molecule. 8. The method of manufacturing an emulsion according to claim 1, after removing the plurality of droplets from the first emulsion, further comprising: measuring an optical transparency of the second emulsion; and _ determining whether to The second emulsion removes the droplets. 9. A method of making a material having predetermined optical properties, comprising: providing a first emulsion comprising a plurality of droplets having an overall average radius of less than about 100 nm; blending an additive with the first emulsion to provide a second emulsion, the additive Included in the plurality of droplets having an overall average radius greater than about 100 nm or at least one of a plurality of particles having a size greater than about 50 nm, -42- 201012541 # Φ the first emulsion is more transparent to visible light than the second emulsion 0 1 (3'% of the material of claim 9 having the predetermined optical properties, wherein the entirety of the plurality of droplets of the first emulsion is on average 1 〇 Ilm, such that the first emulsion is more transparent to visible light than to ultraviolet light. 11. The method of claim 9, wherein the plurality of droplets of the first emulsion have a standard deviation from the overall radius of the entire emulsion that is less than the overall average radius. About 25% 〇ΐ2· The method of claim n, having a predetermined optical property, wherein the plurality of droplets of the first emulsion have a relatively average half The standard deviation is less than about 15% of the overall average radius. 13. The method of manufacturing a material having predetermined optical properties according to item 9 of the patent scope, wherein the plurality of droplets of the first emulsion have a relative to the whole The standard deviation of the average radius is less than about 20 nm. 14. The method of manufacturing a material having predetermined optical properties according to claim 9 wherein the providing the first emulsion comprises: manufacturing comprising an overall average radius of less than about 1 〇〇 nm a plurality of droplets and an emulsion having a plurality of droplets each having a radius greater than about 1 〇〇 nm; and removing at least a portion of the plurality of droplets having a radius greater than about 100 nm from the emulsion to produce the first emulsion </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; At least - 16. A method of manufacturing a material having predetermined optical properties as set forth in claim 9 wherein the additive comprises an inclusion An emulsion of a predetermined overall average radius or a plurality of droplets relative to at least one of a standard deviation of the overall average radius to provide at least some benefit to the predetermined optical properties of the fabricated material. A method of producing a material having a predetermined optical property, wherein the additive comprises an emulsion comprising a plurality of droplets having an overall average radius of greater than about 100 nm. 18. The predetermined optical property of claim 9 a method of producing a material, wherein the additive comprises ultraviolet blocking molecules, moist molecules, exfoliating molecules, antimicrobial molecules, antifungal molecules, anti-acne molecules, anti-wrinkle molecules, anti-corruption molecules, deworming molecules, dyes, pigments, particulate matter, At least one of nanoparticle, clay, lipid, protein, lipoprotein, vitamin 'polypeptide, block copolymer polymorph, biopolymer, perfume, pH adjuster, or water repellent molecule. 19. A method of producing a material having predetermined optical properties according to claim 9 wherein the additive comprises a bioactive agent, a therapeutic agent, a diagnostic agent, a nutrient, a cosmetic agent, a scent molecule or a flavor. Compound. 20. A method of making a transparent material, comprising: producing a nanoemulsion comprising a first volume fraction of nanodroplets having an overall average radius of less than about 100 nm, the volume fraction being less than about 10%; 44 - 201012541 increasing the density of the nanodroplet to a second volume fraction 'where the second volume fraction is greater than about 1%, and wherein the nanoemulsion having the second volume fraction of nanodroplets The nanoemulsion having the first volume fraction is more transparent to visible light. 21. A material produced by the method of any one of claims 1-20. An emulsion comprising: a first liquid; and a plurality of liquid droplets dispersed in the second liquid of the first liquid, the second liquid being at least partially immiscible with the first liquid, wherein the plurality of liquid droplets have An overall average radius of less than about 100 nm and a standard deviation of less than about 25% relative to the overall average radius are such that the emulsion is substantially transparent to visible light. 23- The emulsion of claim 22, wherein the standard deviation from the overall average radius is less than about 15%. The emulsion of claim 22, wherein the overall average radius is greater than about 10 nm, such that the emulsion is more transparent to visible light than to ultraviolet light. 25. The emulsion of claim 22, further comprising an additive mixed with the emulsion&apos; which causes at least modification of the optical properties of the emulsion. 26. The emulsion of claim 22, wherein the first liquid is an aqueous liquid and the second liquid is an oil, the first and second liquids having a refractive index difference greater than about 0.01 at a visible light wavelength. The emulsion of claim 22, wherein the second liquid is an aqueous liquid and the first liquid is an oil, the first and second liquids having a refractive index greater than about 0.01 at visible wavelengths Rates. 28. The emulsion of claim 22, wherein at least a portion of the plurality of liquid droplets comprise internal droplets of the liquid immiscible with the second liquid such that the emulsion is a double emulsion. 29_ The emulsion of claim 22, wherein the overall average radius is less than about 50 nm. @ 30. The emulsion of claim 22, wherein the overall average radius is less than about 20 nm. 31. The emulsion of claim 22, further comprising an additive mixed with the emulsion, the additive comprising a UV blocking molecule, a moistening molecule, an exfoliating molecule, an antimicrobial molecule, an antifungal molecule, an anti-acne molecule, an anti-wrinkle molecule , anti-corruption molecules, deworming molecules, dyes, pigments, particulate matter, nanoparticles, clay, lipids, proteins, lipoproteins, vitamins, peptides, block copolymers, biopolymers, perfumes, pH regulators, Or at least one of the water-repellent molecules. 3 2 . The emulsion of claim 31, wherein the particulate matter is a titanium dioxide particle that enhances ultraviolet blocking. 33. The emulsion of claim 22, wherein the emulsion has an extinction coefficient for transmitted light that is greater than about 1 mm·1 for ultraviolet wavelengths less than about 400 rim and for visible wavelengths above about 400 nm. The extinction coefficient is less than about 1 m π Γ 1. 3 4. The emulsion of the third paragraph of claim 3, wherein the extinction coefficient of the visible light wavelength for light above about 400 nm is less than that after the storage period of -46-.201012541 at 25 ° C for two months. 1 〇%. -47--47-
TW098118928A 2008-06-06 2009-06-06 Dispersions and methods of producing dispersions having predetermined optical properties TW201012541A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12914208P 2008-06-06 2008-06-06

Publications (1)

Publication Number Publication Date
TW201012541A true TW201012541A (en) 2010-04-01

Family

ID=41398581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118928A TW201012541A (en) 2008-06-06 2009-06-06 Dispersions and methods of producing dispersions having predetermined optical properties

Country Status (2)

Country Link
TW (1) TW201012541A (en)
WO (1) WO2009149449A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242558B2 (en) 2020-04-15 2022-02-08 Enumerix, Inc. Systems and methods for generation of emulsions with suitable clarity with applications of use
EP4351788A1 (en) 2021-06-04 2024-04-17 Enumerix, Inc. Compositions, methods, and systems for single cell barcoding and sequencing
US11834714B2 (en) 2021-12-20 2023-12-05 Enumerix, Inc. Detection and digital quantitation of multiple targets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730932B1 (en) * 1995-02-27 1997-04-04 Oreal TRANSPARENT NANOEMULSION BASED ON FLUID NON-IONIC AMPHIPHILIC LIPIDS AND USE IN COSMETICS OR DERMOPHARMACY
FR2747321B1 (en) * 1996-04-16 1998-07-10 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF AN EMULSION
GB0406037D0 (en) * 2004-03-18 2004-04-21 Ici Plc Metal oxide dispersion

Also Published As

Publication number Publication date
WO2009149449A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
Gharibzahedi et al. Optimization and characterization of walnut beverage emulsions in relation to their composition and structure
Luo et al. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability
Nesseem Formulation of sunscreens with enhancement sun protection factor response based on solid lipid nanoparticles
Jores et al. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy
Abdel-Hafez et al. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs
Zhao et al. The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification
Gibaud et al. New routes to food gels and glasses
Carvalho et al. Development and in vitro evaluation of surfactant systems for controlled release of zidovudine
KR101792929B1 (en) Oil-in-water cosmetic
Khlebtsov et al. Observation of extra-high depolarized light scattering spectra from gold nanorods
JP7228250B2 (en) Method and apparatus for analyzing fluid samples with dispersed particles
Helgason et al. Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance
Chiari et al. Cosmetics’ quality control
TW201012541A (en) Dispersions and methods of producing dispersions having predetermined optical properties
Graves et al. Transmission of visible and ultraviolet light through charge-stabilized nanoemulsions
Frueh et al. Direct measurement of thermophoretic and photophoretic force acting on hot micromotors with optical tweezers
EP3729050B1 (en) Method and apparatus for in-process particle size determination of nanosuspensions under flow
Cengiz et al. Sunblocking efficiency of various TiO2‐loaded solid lipid nanoparticle formulations 1
Herzog et al. Physical properties of organic particulate UV absorbers used in sunscreens: II. UV-attenuating efficiency as function of particle size
Berkman et al. Solid lipid nanoparticles: A possible vehicle for zinc oxide and octocrylene
JP2015086157A (en) External preparation for skin
US20220062833A1 (en) Ultrastable nanoemulsions in disordered and ordered states
Markova et al. Study of Emulsion Morphology by Electron Spectroscopy
JPH1121223A (en) Uv reflecting powder and cosmetic containing the same
Chandran et al. Coherent X-ray scattering reveals nature of dynamical transitions in nanoparticle–polymer suspensions