TW201010964A - Sintering additive and microwave dielectric ceramic using the same - Google Patents

Sintering additive and microwave dielectric ceramic using the same Download PDF

Info

Publication number
TW201010964A
TW201010964A TW97133737A TW97133737A TW201010964A TW 201010964 A TW201010964 A TW 201010964A TW 97133737 A TW97133737 A TW 97133737A TW 97133737 A TW97133737 A TW 97133737A TW 201010964 A TW201010964 A TW 201010964A
Authority
TW
Taiwan
Prior art keywords
mol
sintering
dielectric
ceramic
temperature
Prior art date
Application number
TW97133737A
Other languages
Chinese (zh)
Other versions
TWI377187B (en
Inventor
Hsing-I Hsiang
Tai-How Chen
Yu-Lun Chang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97133737A priority Critical patent/TWI377187B/en
Publication of TW201010964A publication Critical patent/TW201010964A/en
Application granted granted Critical
Publication of TWI377187B publication Critical patent/TWI377187B/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

A sintering additive is provided in accordance with the present invention. A dielectric ceramic powder can be sintered at a low temperature of 900 DEG C with the addition of the sintering additive to obtain a microwave dielectric ceramic. The microwave dielectric ceramic has a relative density of higher than 90%, a relative dielectric constant ( ε r at 5 GHz)) of 70 to 80, a quality factor (Qxf) of 2000 to 3000 GHz and a temperature coefficient (TCF) of 20 to 60 ppm/K.

Description

201010964 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種燒結助劑,尤指—種低溫燒 結助劑與使用此燒結助劑之微波介電陶瓷。 【先前技術】 近年來由於通訊科技如手機通訊及衛星通訊的迅 速發展’使得應用於無線通訊之微波介電陶瓷材料之 應用及小型化漸受重視。微波介電陶瓷材料對介電性 質之需求為高介電常數及高品質因子(Q fact〇r, 介電損失的倒數、tan 6 )。由於微波共振器的尺寸係 與介電常數平方的倒數成正比,因此提高介電常數可 縮!、微波共振器的尺寸’而尚品質因子可增加高頻選 擇性及穩定性。 近二十年來許多微波介電材料已經被研究及應 用,經常被使用之微波介電陶瓷材料為201010964 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a sintering aid, and more particularly to a low-temperature sintering aid and a microwave dielectric ceramic using the sintering aid. [Prior Art] In recent years, the rapid development of communication technologies such as mobile communication and satellite communication has made the application and miniaturization of microwave dielectric ceramic materials used for wireless communication more and more important. The dielectric properties of microwave dielectric ceramic materials are high dielectric constant and high quality factor (Q fact〇r, reciprocal of dielectric loss, tan 6). Since the size of the microwave resonator is proportional to the reciprocal of the square of the dielectric constant, the dielectric constant can be increased, and the size of the microwave resonator can be increased by the quality factor to increase the high frequency selectivity and stability. In the past two decades, many microwave dielectric materials have been researched and applied. The microwave dielectric ceramic materials that are often used are

Ba3Ta2Me09(Me=Zn/Mg/Ni)> (Zr.^SnJTiO^ BaTi4〇9 . Ba2Ti9O20 及 Ba6.3xR8+2xTils054 等,其中 Ba 6 · 3XR8 + 2xTi1}!054系統内之一個成分點為BaO · Nd203 · 4Ti〇2(BNT)系統,其具有相對較高的介電常數,有助 於微波介電元件之小型化,近來已被廣泛地研究與應 用。 在一般介電陶究元件中所使用的電極材料通常為 金屬銀(Ag),因此希望在共燒時’陶瓷體的燒結溫度 能夠限制在900。(:以下[1,2],但是BNT系統的材料其 5 201010964 燒結溫度卻往往高於1 3〇〇 〇c[2,3]。 早期有學者添加熔點較低的氧化物,如b2o3[3_6] 或是仏2〇3[7’8]等,期望能降低BNT系統材料的燒結 溫度’但效果並不顯著,燒結溫度僅降低約1 〇〇。匸左 右’且添加B2〇3容易導致產生二次相。於是,有其 他學者嘗試添加玻璃來降低燒結溫度,park等人利用 添加不同比例之Li-B-Si-Ca-Al玻璃於MBRT-90(Fuji ❹ Chemical Industry Co. Ltd.,japan)在 875 °C 下達到燒 結緻密化⑼’ Cho等人利用添加u_B_si_Ca_A1玻璃於Ba3Ta2Me09(Me=Zn/Mg/Ni)> (Zr.^SnJTiO^ BaTi4〇9. Ba2Ti9O20 and Ba6.3xR8+2xTils054, etc., wherein a component in the Ba 6 · 3XR8 + 2xTi1}! 054 system is BaO · Nd203 · 4Ti〇2 (BNT) system, which has a relatively high dielectric constant, contributes to the miniaturization of microwave dielectric components, and has been widely studied and applied recently. It is used in general dielectric ceramic components. The electrode material is usually metallic silver (Ag), so it is desirable that the sintering temperature of the ceramic body can be limited to 900 during co-firing. (: The following [1, 2], but the material of the BNT system is 5 201010964. The sintering temperature is often high. At 1 3〇〇〇c[2,3]. Early scholars added oxides with lower melting points, such as b2o3[3_6] or 仏2〇3[7'8], etc., which are expected to reduce the sintering of BNT system materials. Temperature 'but the effect is not significant, the sintering temperature is only reduced by about 1 〇〇. 匸 around 'and the addition of B2 〇 3 is easy to cause secondary phase. So, other scholars try to add glass to reduce the sintering temperature, Park et al. Different proportions of Li-B-Si-Ca-Al glass in MBRT-90 (Fuji ❹ Chemical Industry Co. L) Td., japan) achieved densification at 875 °C (9)' Cho et al. used u_B_si_Ca_A1 glass

BaO · (Nd。8Bi。2)2〇3 . 4Ti〇2 在 900 °C 下達到燒結緻 在、化[2]’Cheng等人則添加Ba_B_Si玻璃於仏_>^-BaO · (Nd. 8Bi. 2) 2〇3 . 4Ti〇2 is sintered at 900 °C. [2]'Cheng et al. added Ba_B_Si glass to 仏_>^-

Sm-Bl_Ti_〇 (BRTm)在950。(:下達到燒結緻密化 [1〇]。但玻璃的添加卻又會導致介電常數及品質因子 的下降。 為了彳寸到南介電常數、高品質因子及接近於零之 〇 共振頻率溫度係數’添加異種元素之取代常被使用作 為改善的方式。Sol〇m〇n等人在研究改良BaRe2Ti4〇12 (Re -稀土族元素)之結果中顯示,添加別元素會使介 電常數上升,品質因子下降並改善共振頻率之溫度係 數【】。〇kaWa等人添加Bi元素於Ba4Nd9+1/3Ti18〇54系 統之研究結果顯示,添加Bi成份會使得介電常數上 升’ 〇〇質因子下降’但在添加適量之情況下,有助於 改善共振頻率之溫度係數⑴等人改變不同扪 的3 Ϊ ’並探討其中介電性質之改變,其結果顯示, 201010964 介電常數隨著Bi +量之增加而增加,但品質因子卻 會被劣化,共振頻率之溫度係數則是有下降之趨勢, 在x=0.2時有最低值⑺。綜合以上之結論,可以發現 添加適量之Bi元素有助於降低燒結溫度,並可改善 介電性質,雖然會使得品質因子劣化,但可得到接近 於零之共振頻率溫度係數。Sm-Bl_Ti_〇 (BRTm) is at 950. (: The sintering densification is achieved [1〇]. However, the addition of glass leads to a decrease in dielectric constant and quality factor. In order to reduce the dielectric constant and high quality factor, and the resonance frequency temperature close to zero. The substitution of the coefficient 'addition of heterogeneous elements is often used as an improvement. As a result of studying the improved BaRe2Ti4〇12 (Re-rare earth element), Sol〇m〇n et al. showed that the addition of other elements increases the dielectric constant. The quality factor decreases and the temperature coefficient of the resonance frequency is improved.] The results of the addition of Bi element to the Ba4Nd9+1/3Ti18〇54 system by 〇kaWa et al. show that the addition of Bi component causes the dielectric constant to increase 'the decrease of the tantalum factor' However, in the case of adding an appropriate amount, it is helpful to improve the temperature coefficient of the resonance frequency (1) and the like to change the different 扪 3 Ϊ ' and to investigate the change in dielectric properties therein. The results show that the dielectric constant of 201010964 varies with the amount of Bi + Increase and increase, but the quality factor will be degraded, the temperature coefficient of the resonance frequency will have a downward trend, and the lowest value (7) when x=0.2. Adding an appropriate amount of the element Bi helps to lower the sintering temperature, and to improve the dielectric properties, although the deterioration of the quality factor will be such, but is obtained close to the resonant frequency temperature coefficient of zero.

/雖然許多不同之材料與方法已應用於降低BNT 1波介電陶瓷材料的燒結溫度,但如何降低ΒΝτ微 波介電陶瓷材料的燒結溫度同時又維持材料的介電性 質,仍是目前學界與業界所極力研究的課題。 【發明内容】 有鑑於現有用以降低微波介電陶瓷之燒結溫度的 材料往往對於陶究本身之介電性質造成不利影響,本 發明之目的在於提供一種低溫燒結助劑,其可幫助介 電陶竟於低溫下進行燒、结’且仍可維持介電陶究之良 好介電性質。 分為 為達成以上的目的,本發明之低溫燒結助劑其成 wH3B03,XBi203-ySi(VzZn〇,其中 2〇 m〇1% “ ^ 40 m〇1〇/〇 , 〇 m〇1〇/〇 ^ x g 45 m〇1% 45讯〇1%以及2111〇1%$2^2〇〇1〇1%, 較佳的是,2 5 m o 1 % ,25 mol% S y $ 且 w+x+y+z=l 0 客 x S 35 mol%。 本發明另包含-種使用上述低溫燒結助劑之微波 介電陶瓷,其係包含: —介電陶瓷,其組成為 Β^〇 * (Nd0.8Bi〇.2)2〇3 · 7 201010964 4Ti02 ;以及 一低溫燒結助劑,其成分為wH3B〇3-XBi2〇3_ ySi02-zZn0,其中 20 mol%$ 40 m〇l〇/0,〇 m〇1%$ xS 45 mol% ’ 25 mol%S yS 45 mol%以及 2 mol%$ z S 20 mol%,且w+x+y+z=l,該低溫燒結助劑佔整體 微波介電陶瓷之重量比例m為〇 wt%<m $ 25 wt%。 較佳的是,25 mol%Sx$35 mol%。 較佳的是,20 wt% S m $ 25 wt0/〇。 本發明可達成的具體功效包括: 1 .利用本發明之低溫燒結助劑添加於介電陶究 後’介電陶瓷可於900 °C之低燒結溫度下燒結形成微 波介電陶瓷,因此有利於與金屬電極材料銀進行共燒 結。 2 ·本發明於低溫燒結下所獲得的微波介電陶免 依然保持良好的介電性質’包括高介電常數、高品質 因子及低溫度係數。 【實施方式】 本發明所使用之介電陶瓷其組成為Ba〇 . (Nd0 8Bi0 2)2〇3 . 4Ti〇2(以下簡稱bnBT),燒結助劑之 成分則為 wH3B03-xBi203-ySi02-zZn0(以下簡稱 BBxSZ) ’ 其中 20 mol%S 40 mol%,〇 mol%$ 45 mol%,25 mol% $ y S 45 mol% 及 2 mol% g z g 20 mol〇/0,且 w+x+y + z=1。 以下特舉幾個實例以使本發明之特徵及優點更為 201010964 清楚,但以下之實例並非用來限制發明的範圍,而是 用來指示實施本發明的方法及材料,本發明的範圍$ 以所附之申請專利耗圍為準。 實例一 :BNBT陶瓷粉末之製備 以 BaC〇3、Nd2〇3、Bi2〇j Ti〇2 為起始原料, 將其以 Ba〇 . (Nd^Bi。2)2〇3 . 4Ti〇2 之比例合成 陶瓷粉末,其合成步驟如下所示:/ Although many different materials and methods have been applied to reduce the sintering temperature of BNT 1 wave dielectric ceramic materials, how to reduce the sintering temperature of ΒΝτ microwave dielectric ceramic materials while maintaining the dielectric properties of materials is still the current academic and industry The subject of intense research. SUMMARY OF THE INVENTION In view of the fact that materials used to reduce the sintering temperature of microwave dielectric ceramics often have an adverse effect on the dielectric properties of ceramics itself, it is an object of the present invention to provide a low temperature sintering aid which can help dielectric ceramics. It burns and knots at low temperatures and still maintains good dielectric properties of dielectric ceramics. Divided into the above purpose, the low-temperature sintering aid of the present invention is made into wH3B03, XBi203-ySi (VzZn〇, wherein 2〇m〇1% "^ 40 m〇1〇/〇, 〇m〇1〇/〇 ^ xg 45 m〇1% 45 signals 1% and 2111〇1%$2^2〇〇1〇1%, preferably, 2 5 mo 1 % , 25 mol% S y $ and w+x+y +z=l 0 guest x S 35 mol%. The invention further comprises a microwave dielectric ceramic using the above low-temperature sintering aid, which comprises: - a dielectric ceramic, the composition of which is Β^〇* (Nd0.8Bi 〇.2)2〇3 · 7 201010964 4Ti02 ; and a low-temperature sintering aid, the composition of which is wH3B〇3-XBi2〇3_ ySi02-zZn0, of which 20 mol%$ 40 m〇l〇/0, 〇m〇1 %$ xS 45 mol% ' 25 mol% S yS 45 mol% and 2 mol%$ z S 20 mol%, and w+x+y+z=l, the low-temperature sintering aid occupies the weight of the whole microwave dielectric ceramic The ratio m is 〇wt% < m $ 25 wt%. Preferably, 25 mol% Sx$35 mol%. Preferably, 20 wt% S m $ 25 wt0 / 〇. The specific efficacy that can be achieved by the present invention. Including: 1. Using the low-temperature sintering aid of the present invention to be added to the dielectric ceramics, the dielectric ceramic can be sintered at a low sintering temperature of 900 ° C. Sintering forms a microwave dielectric ceramic, thus facilitating co-sintering with the metal electrode material silver. 2 · The microwave dielectric ceramics obtained by the invention under low temperature sintering still maintain good dielectric properties' including high dielectric constant and high [Quality] The dielectric ceramic used in the present invention has a composition of Ba〇. (Nd0 8Bi0 2) 2〇3 . 4Ti〇2 (hereinafter referred to as bnBT), and the composition of the sintering aid is wH3B03-xBi203-ySi02-zZn0 (hereinafter referred to as BBxSZ) 'where 20 mol% S 40 mol%, 〇mol%$ 45 mol%, 25 mol% $ y S 45 mol% and 2 mol% gzg 20 mol〇/0, And w + x + y + z = 1. The following examples are presented to make the features and advantages of the present invention more apparent to 201010964, but the following examples are not intended to limit the scope of the invention, but are used to indicate the practice of the invention. The method and material of the present invention are based on the scope of the appended patent application. Example 1: Preparation of BNBT ceramic powder starting from BaC〇3, Nd2〇3, Bi2〇j Ti〇2, It is Ba〇. (Nd^Bi. 2) The ratio of 2〇3. 4Ti〇2 to the synthesis of ceramic powder, the synthesis steps are as follows:

(1)將依劑量配置之原料粉末以球磨濕混方式混 合24小時,而後得到一樣品; Λ (2)樣品乾燥後以4 〇C/min之升溫速率升至 1200 °C並持溫2小時,隨後以自然爐冷方式降溫, 得到一粉末; (3)得到之粉末以 XRD(Siemems D5000, Cu_K α ) 進行相態之鑑定,掃瞄速度為0.04 Vsec.,掃晦角戶(2 0 }為20。至5〇。’ XRD鑑定結果如第一圖所示广為 純相之 BaNd2Ti40丨2 (44-0061)。 實例二:燒結助劑之製備 以H3B〇3、Bi203、Si〇2及ZnO為起始原料,依 BBxSZ(x=0,25,35 and 45)成分比例合成燒結助劑粉 末,製備步驟如下如述: (1) 以瑪腦研蛛利用加入酒精的方式將原料粉末 進行濕式混合,得到一樣品; (2) 樣品乾燥後,將樣品置入白金掛鋼中以 1〇 °C/min之升溫速率升至1〇〇〇。(:,持溫3〇分鐘後 9 201010964 取出並於水中進行淬冷,得到一玻璃質燒結助劑粉 末; (3) 燒結助劑粉末以球磨方式進行4 8小時之細 化; (4) 利用比重儀(Micromeritics, AccuPyc 1340)量 測燒結助劑粉末之密度,量測結果介於3.6至6.9 g/cm3 間,如下表一所示。 表一各成份燒結助劑之密度 成分編號 密度(g/cm3) Bi203:H2B03:ZnO:Si02(mol%) BB0SZ 3.6418 0:38:44:18 BB25SZ 6.5808 25:30:35:10 BB35SZ 6.702 35:27:32:6 BB45SZ 6.9505 45:24:29:2 (5)利用DTA(Netzsch STA 409PC)量測燒結助劑 粉末之熔點(Tm),粉末係承載於氧化鋁坩堝中,並以(1) Mixing the raw material powder according to the dose configuration in a ball mill wet mixing manner for 24 hours, and then obtaining a sample; Λ (2) After the sample is dried, it is raised to 1200 ° C at a heating rate of 4 〇 C / min and held for 2 hours. Then, it is cooled by natural furnace cooling to obtain a powder; (3) The obtained powder is identified by XRD (Siemems D5000, Cu_K α ), the scanning speed is 0.04 Vsec., Broom angle household (2 0 } It is 20 to 5 〇. ' XRD identification results are as pure as the first phase BaNd2Ti40 丨 2 (44-0061). Example 2: Preparation of sintering aids with H3B〇3, Bi203, Si〇2 and ZnO is used as a starting material, and the sintering aid powder is synthesized according to the ratio of BBxSZ (x=0, 25, 35 and 45). The preparation steps are as follows: (1) The raw material powder is prepared by adding alcohol to the brain. Wet mixing to obtain a sample; (2) After the sample is dried, the sample is placed in a platinum-plated steel and raised to 1 以 at a heating rate of 1 ° C/min. (:, after holding the temperature for 3 minutes, 9 201010964 Take out and quench in water to obtain a glass sintering aid powder; (3) Sintering additive powder by ball milling 4 hours of refinement; (4) The density of the sintering aid powder was measured by a pycnometer (Micromeritics, AccuPyc 1340), and the measurement result was between 3.6 and 6.9 g/cm3, as shown in Table 1 below. Density component number density (g/cm3) of each component sintering aid Bi203:H2B03:ZnO:SiO2(mol%) BB0SZ 3.6418 0:38:44:18 BB25SZ 6.5808 25:30:35:10 BB35SZ 6.702 35:27: 32:6 BB45SZ 6.9505 45:24:29:2 (5) Using DTA (Netzsch STA 409PC) to measure the melting point (Tm) of the sintering aid powder, the powder is carried in the alumina crucible, and

純度99.99%之α-Α1203粉末作為標準樣品,於空氣 氣氛中以10 °C/min之升溫速率由室溫升至900 〇C, 量測結果如第二圖所示,熔點介於600 °C至950 °C 間。 (6)將BBxSZ燒結助劑生胚置於BNBT胚體之頂 部,於高溫爐中以4 °C/min之升溫速率升溫至900 °C, 再利用數位相機觀察不同玻璃系統所造成之潤濕角, 請參見第三圖所示,當燒結助劑成分中之X大於25 10 201010964 時,胚體表面可以被潤濕。 實例三:BBxSZ燒結助劑與BNBT介電陶瓷之燒 結 將製得之 BNBT介電陶瓷粉末與細化後之 BB25SZ、BB35SZ與BB45SZ燒結助齊J分另】J以15 wt%、 20 wt%與25 wt°/〇的比例混合及成形,以進行燒結試 驗,試驗步驟如下所述: (1) 混合之樣品先以70 MPa持壓90秒製得生 胚,並再以冷均壓加壓至1 80 MPa以提升生胚密度; (2) 生胚以4 °C/min之升溫速率升溫至900。(:並 持溫2小時,而後以自然爐冷之方式冷卻,得到含有 不同成分與重量比例之燒結助劑的微波介電陶瓷樣 品。 (3) 陶瓷樣品之XRD結果顯示,BB25SZ與 BB35SZ的添加並不會產生二次相,而BB45SZ的添 加則是會產生Nd2Ti207的二次相,第四圖所示為 BB45SZ 的 XRD 結果。 (4) 陶瓷樣品之熱膨脹量測係使用熱膨脹儀 (Netzsch DIL 402C)對陶瓷樣品進行燒結收縮測試, 於空氣氣氛中,以4 °C/min升溫至1000 °C觀察陶瓷 樣品之收縮量。量測結果如第五圖所示,BB25SZ與 BB35SZ以25 wt%添加之陶瓷樣品,其最大收縮速率 都在所期望之燒結溫度900 °C左右。 (5 )陶究樣品之相對密度之里測’係先將樣品放 201010964 入純水中連續煮沸8小時,再進行以阿基米德法量測 體密度,而相對密度=(體密度/理論密度)χ 100 %。 其中,BNBT介電陶瓷粉末添加BBxSZ玻璃燒結助劑 後之理論密度係使用混合法則進行計算: _^BNBT + ^BBSZs_As a standard sample, α-Α1203 powder with a purity of 99.99% was raised from room temperature to 900 〇C at a heating rate of 10 °C/min in an air atmosphere. The measurement results are shown in the second figure, and the melting point is 600 °C. Up to 950 °C. (6) Place the BBxSZ sintering aid green embryo on top of the BNBT embryo body, heat it to 900 °C at a heating rate of 4 °C/min in a high temperature furnace, and observe the wetting caused by different glass systems with a digital camera. Angle, as shown in the third figure, when the X in the sintering aid composition is greater than 25 10 201010964, the surface of the embryo body can be wetted. Example 3: Sintering of BBxSZ sintering aid and BNBT dielectric ceramic The BNBT dielectric ceramic powder prepared by sintering and the refined BB25SZ, BB35SZ and BB45SZ sintering assisted J. J is 15 wt%, 20 wt% and The ratio of 25 wt ° / 〇 is mixed and formed for sintering test. The test procedure is as follows: (1) The mixed sample is firstly subjected to a holding pressure of 70 MPa for 90 seconds to obtain a green embryo, and then pressurized by cold pressure equalization. 1 80 MPa to increase the density of green embryos; (2) The raw embryos are heated to 900 at a heating rate of 4 °C/min. (: Hold the temperature for 2 hours, then cool it in a natural furnace to obtain a microwave dielectric ceramic sample containing sintering aids with different composition and weight ratio. (3) XRD results of ceramic samples show the addition of BB25SZ and BB35SZ The secondary phase is not produced, and the addition of BB45SZ produces the secondary phase of Nd2Ti207, and the fourth figure shows the XRD result of BB45SZ. (4) The thermal expansion measurement of ceramic samples uses a thermal dilatometer (Netzsch DIL 402C). The ceramic sample was subjected to a sintering shrinkage test, and the shrinkage amount of the ceramic sample was observed by heating to 4 ° C/min to 1000 ° C in an air atmosphere. The measurement results are shown in the fifth figure, and BB25SZ and BB35SZ are added at 25 wt%. The maximum shrinkage rate of the ceramic sample is about 900 °C at the desired sintering temperature. (5) The relative density of the sample of the ceramic sample is measured by placing the sample in 201010964 and boiling it continuously for 8 hours in pure water. The bulk density is measured by Archimedes method, and the relative density = (body density / theoretical density) χ 100%. Among them, the theoretical density of BNBT dielectric ceramic powder after adding BBxSZ glass sintering aid is the mixing rule. Line calculated: _ ^ BNBT + ^ BBSZs_

胃BNBT I DBNBT + W^BSZ i DBBSZ WBNBT : ΒΝΒΤ介電陶瓷粉末之重量 WBBSZ : BBSZ玻璃助燒結劑之重量Stomach BNBT I DBNBT + W^BSZ i DBBSZ WBNBT : Weight of ΒΝΒΤ dielectric ceramic powder WBBSZ : Weight of BBSZ glass sintering aid

Dbnbt · BNBT介電陶曼粉末之选度Dbnbt · BNBT dielectric Taoman powder selection

Dbbsz . BBSZ玻璃助燒結劑之进度 量測結果如第六圖所示,BB25SZ與BB35SZ添 加20 wt°/。之陶瓷樣品,其燒結後之相對密度達9 1至 92 %。 (6) 陶瓷樣品之微結構觀察以掃描式電子顯微鏡 (Hitachi, 4100)進行,先將陶瓷樣品進行拋光,再將 陶瓷樣品置於去離子水中以超音波震盪1 0分鐘,在 ❿ 低於燒結溫度50 °C的溫度下,持溫30分鐘進行熱蝕 刻,將樣品以碳膠帶附著於載台上並塗佈導電銀膠。 SEM觀察結果如第七圖之圖,BB25SZ與BB35SZ添 加20 wt°/〇之陶瓷樣品,其燒結後之胚體相當緻密,鮮 少孔洞。 (7) 陶瓷樣品之介電性質(ε r、Qxf及TCF)均採 用間接之方式量測,即透過量測與介電性質相關的電 氣參數再反算出介電參數值。本實驗所採用的量測方 12 201010964 法是將圓柱型介電共振器,夾在兩個平行金屬板中 間,構成一個傳輸型共振器,經由HP 8759D scalar network analyzer 及 HP 8350B sweep oscillator 於 1GHz 至10GHz之量測,得到TE〇n及TEG12 mode之頻率、 3db頻寬及insertion loss等數值,所得之數值利用TE mode推導公式,可計算出介電共振器之介電常數值(ε r)及品質因子值(Qxf)。另外,關於共振頻率溫度係數 (TCF)之量測,是將介電共振器置於量測模組中,然 後置於恆溫箱内,緩慢改變其溫度使得胚體之溫度與 恆溫箱内部之溫度相同,並每隔 10 °C(30 °C~80 °C) 即紀錄於該溫度之TEG15 mode之共振頻率,然後利 用公式計算可得TCF值。 量測結果如第八圖所示,BB25SZ與BB35SZ添 加20 wt°/。之樣品,其相對介電常數ε r(5GHz)為70至 80,品質因子Qxf為2000至3000 GHz以及溫度係數 TCF約在20至60 ppm/K左右。Dbbsz . BBSZ Glass Sintering Agent Progress Measurement results are shown in Figure 6, BB25SZ and BB35SZ adding 20 wt ° /. The ceramic samples have a relative density of from 9 1 to 92% after sintering. (6) Microstructure observation of ceramic samples was carried out by scanning electron microscopy (Hitachi, 4100). The ceramic samples were first polished, and then the ceramic samples were placed in deionized water for ultrasonic vibration for 10 minutes, at ❿ lower than sintering. The film was thermally etched at a temperature of 50 ° C for 30 minutes, and the sample was attached to the stage with a carbon tape and coated with a conductive silver paste. SEM observation results As shown in the seventh figure, BB25SZ and BB35SZ were added with a ceramic sample of 20 wt°/〇, and the sintered body was quite dense and had few pores. (7) The dielectric properties (ε r, Qxf and TCF) of ceramic samples are measured indirectly, that is, the dielectric parameters are inversely calculated by measuring the electrical parameters related to the dielectric properties. The measurement method used in this experiment 12 201010964 is to sandwich a cylindrical dielectric resonator sandwiched between two parallel metal plates to form a transmission type resonator, which is connected to the HP 8759D scalar network analyzer and the HP 8350B sweep oscillator at 1 GHz. 10 GHz measurement, the frequency of TE〇n and TEG12 mode, 3db bandwidth and insertion loss are obtained. The value obtained by TE mode can be used to calculate the dielectric constant value (ε r) of the dielectric resonator and Quality factor value (Qxf). In addition, regarding the measurement of the temperature coefficient of resonance frequency (TCF), the dielectric resonator is placed in the measurement module, and then placed in the incubator, and the temperature is slowly changed so that the temperature of the embryo body and the temperature inside the incubator The same, and every 10 °C (30 °C ~ 80 °C) is recorded in the temperature of the TEG15 mode resonance frequency, and then use the formula to calculate the TCF value. The measurement results are shown in Figure 8. The BB25SZ and BB35SZ add 20 wt°/. The sample has a relative dielectric constant ε r (5 GHz) of 70 to 80, a quality factor Qxf of 2000 to 3000 GHz, and a temperature coefficient TCF of about 20 to 60 ppm/K.

由上述實例之樣品量測結果可知,BB0SZ所形成 之燒結助劑後其潤濕效果不佳,使得陶瓷樣品之燒結 相對密度不高。添加BB25SZ、BB35SZ及BB45SZ之 燒結陶瓷體均具有較高的相對密度,惟使用BB45SZ 之燒結陶瓷體會額外產生Nd2Ti207之二次相。對於添 加BB25SZ及BB35SZ而言,添加比例為20 wt%時, 陶瓷樣品於900 °C左右具有最大收縮率,其燒結體亦 具有最高的相對密度。添加比例為20 wt%之BB25SZ 13 201010964 :BB而的微波介f陶㈣品有優良的 其相對介電常I伽Hz)為7G至8G,品質質 為 2000 至 3〇〇〇 GHz n ^It can be seen from the sample measurement results of the above examples that the sintering aid formed by the BB0SZ has a poor wetting effect, so that the relative density of the sintering of the ceramic sample is not high. The sintered ceramic bodies with the addition of BB25SZ, BB35SZ and BB45SZ have higher relative densities, but the sintered ceramic body using BB45SZ will additionally produce a secondary phase of Nd2Ti207. For the addition of BB25SZ and BB35SZ, when the addition ratio is 20 wt%, the ceramic sample has a maximum shrinkage at around 900 °C, and the sintered body also has the highest relative density. Adding a ratio of 20 wt% to BB25SZ 13 201010964 : BB and microwave dielectric f (four) products have excellent relative dielectric constant I Hz) 7G to 8G, quality quality 2000 to 3 〇〇〇 GHz n ^

Hz从及溫度係數TCF約在20泛 60 ppm/K 左右。 綜上所述,兹士 % 稽田添加本發明之低溫燒結助劑, BNBT介電陶Γ γ 无泰末可於900 〇C之低燒結溫度下燒結The Hz and temperature coefficient TCF is about 20 ppm 60 ppm/K. In summary, ZSK% Shida added the low-temperature sintering aid of the present invention, and BNBT dielectric ceramic γ-free sinter can be sintered at a low sintering temperature of 900 〇C.

形成微波介電陶替,B ^ 且依然保持良好的介電性質。Microwave dielectric ceramics are formed, B ^ and still maintain good dielectric properties.

【圖式簡單說明】 第圖係為於12〇〇 °c下燒結所獲得之BNBT粉 末的XRD圖譜。 第一圖係為各成分之燒結助劑之DTA熔點量測 結果。 燒結助劑於BNBT介電陶瓷 上的潤濕結果((a) BB〇Sz、(b) BB25SZ、⑷ bb35sz、 (d) BB45SZ)。 第四圖係為添加BB45SZ之陶瓷樣品的XRD圖 譜。 第五圖係為陶瓷樣品的收縮速率量測結果。 第六圖係為陶瓷樣品的相對密度量測結果。 第七圖係為陶瓷樣品的SEM圖((a) BB25SZ、(b) BB35SZ)〇 第八圖係為陶瓷樣品的介電性質量測結果。 【主要元件符號說明】[Simple description of the drawing] The figure is an XRD pattern of the BNBT powder obtained by sintering at 12 ° C. The first figure shows the DTA melting point measurement results of the sintering aids of the respective components. Wetting results of sintering aids on BNBT dielectric ceramics ((a) BB〇Sz, (b) BB25SZ, (4) bb35sz, (d) BB45SZ). The fourth figure is the XRD pattern of the ceramic sample to which BB45SZ was added. The fifth graph is the measurement of the shrinkage rate of the ceramic sample. The sixth graph is the relative density measurement of the ceramic sample. The seventh picture is the SEM image of the ceramic sample ((a) BB25SZ, (b) BB35SZ) 第八 The eighth picture shows the dielectric quality measurement results of the ceramic sample. [Main component symbol description]

Ml 201010964 【參考文獻】 1. K.M. Cruickshank, X. Jing, G, Wood, E.E. Lachowski, and A.R. West, “Barium neodymium titanate electrocreamics: phase equilibria studies of Ba6.3xNd8+2xTi18054 solid solution,,5 J. Am. Cream. Soc., 79 [6] 1605 (1996) 2. I.S. Cho, D.W. Kim, J.R. Kim, and K.S. Hong, uLow-temperature sintering and microwave dielectric properties of BaO · (Ndtx Bix)203* 4Ti02 by the glass additions,5, Ceram. Inter., 30, 1181, (2004) 3. J.M. Yoon, J.A. Lee, J.H. Lee, J.J. Kim, and S.H. Cho,“Sintering behaveior and microware dielectric characteristics of Ba0-Sm203-4Ti02 ceramics with B203 and BaB204 addition,5, J. Eur. Ceram. Soc. 26, 2129,(2006) 4. Y. Ota, K.I. Kakimoto, H. Ohsato, and T. Okawa, ^Low-temperature sintering of Ba^Smg+hTiuOy microwave dielectric ceramics by B203 and Ge02 addition,’’ J. Eur. Ceram. Soc.,24, 1755,(2004) 5. C.H. Lu, Y.H. Huang, ^Densification and dielectric properties of barium neodymium titanium oxide ceramics,5, Mater. Sci. Engin. B98, 33,(2003) ❹ 6. L.C· Chang, B.S. Chiou.,“Effect of B203 Nano-Coating on the sintering behaviors and electrical microwave properties of Ba(Nd2_^Sm;c)Ti4〇12 ceramics,M J. Electroceramics, 13, 829, (2004) 7. S. Solomon, N. Santha, I.N. Jawahar, H. Sreemoolanadhan, and Μ. T. Sebastian, “Tailoring the microwave dielectric properties of BaRe2Ti4012 an BaRe2Ti5014 ceramics by compositional variations,55 J. Mater. Sci.: Materials in Electronics 11, 595, (2000) 8. Y.J. Wu,X.M. Chen, “Modified Ba6.3xNd8+2xTiI8054 microwave dielectric ceramics,” J· Eur. Ceram. Soc., 19, 1123,(1999) 9. J.H. Park, Y.J. Choi, J.H. Park, and J.G. Park, JiLow-fire dielectric compositions with permittivity 20-60 for LTCC applications,55 Mater. 15 201010964Ml 201010964 [References] 1. KM Cruickshank, X. Jing, G, Wood, EE Lachowski, and AR West, "Barium neodymium titanate electrocreamics: phase equilibria studies of Ba6.3xNd8+2xTi18054 solid solution,, 5 J. Am. Cream. Soc., 79 [6] 1605 (1996) 2. IS Cho, DW Kim, JR Kim, and KS Hong, uLow-temperature sintering and microwave dielectric properties of BaO · (Ndtx Bix)203* 4Ti02 by the glass additions , 5, Ceram. Inter., 30, 1181, (2004) 3. JM Yoon, JA Lee, JH Lee, JJ Kim, and SH Cho, “Sintering behaveior and microware dielectric characteristics of Ba0-Sm203-4Ti02 ceramics with B203 and BaB204 addition,5, J. Eur. Ceram. Soc. 26, 2129, (2006) 4. Y. Ota, KI Kakimoto, H. Ohsato, and T. Okawa, ^Low-temperature sintering of Ba^Smg+hTiuOy microwave Dielectric ceramics by B203 and Ge02 addition,'' J. Eur. Ceram. Soc., 24, 1755, (2004) 5. CH Lu, YH Huang, ^Densification and dielectric properties of barium neodymium titanium oxide ceramics, 5, Mater. Sci. E Ngin. B98, 33, (2003) ❹ 6. LC· Chang, BS Chiou., “Effect of B203 Nano-Coating on the sintering behaviors and electrical microwave properties of Ba(Nd2_^Sm;c)Ti4〇12 ceramics,M J. Electroceramics, 13, 829, (2004) 7. S. Solomon, N. Santha, IN Jawahar, H. Sreemoolanadhan, and Μ. T. Sebastian, “Tailoring the microwave dielectric properties of BaRe2Ti4012 an BaRe2Ti5014 ceramics by compositional variations, 55 J. Mater. Sci.: Materials in Electronics 11, 595, (2000) 8. YJ Wu, XM Chen, “Modified Ba6.3xNd8+2xTiI8054 microwave dielectric ceramics,” J. Eur. Ceram. Soc., 19, 1123 , (1999) 9. JH Park, YJ Choi, JH Park, and JG Park, JiLow-fire dielectric compositions with permittivity 20-60 for LTCC applications, 55 Mater. 15 201010964

Chem. Phys·,88, 308,(2004) 10. C.C. Cheng, T.E. Hsieh, and I.N. Lin, uMicrowave dielectric properties of glass-ceramic composites for low temperature co-fire ceramics,5, J. Eurp. Ceram. Soc., 23, 2553, (2003) 11. T. Okawa, M. Imaeda, and Ohsato, uMicroware dielectric properties of Bi-Added Ba4Nd9+1/3Ti18054 solid solutions,55 Jpn. J. Appl. Phys., 39, 5645, (2000) oChem. Phys., 88, 308, (2004) 10. CC Cheng, TE Hsieh, and IN Lin, uMicrowave dielectric properties of glass-ceramic composites for low temperature co-fire ceramics, 5, J. Eurp. Ceram. Soc. , 23, 2553, (2003) 11. T. Okawa, M. Imaeda, and Ohsato, uMicroware dielectric properties of Bi-Added Ba4Nd9+1/3Ti18054 solid solutions, 55 Jpn. J. Appl. Phys., 39, 5645, (2000) o

1616

Claims (1)

201010964 十、申請專利範圍: 1 . 一種低溫燒結助劑,其成分為 wH3B03-xBi203-ySi02-zZn0,其中 20 mol% S w S 40 mol%, 0 mol% S x S 45 mol%,25 mol% S y S 45 mol% 以及 2 mol% S z S 20 mol%,且 w+x+y+z=l o 2 ·如申請專利範圍第1項所述之低溫燒結助 劑,其中 25 mol% S X S 3 5 mol%。 3 · —種微波介電陶瓷,其係包含: β 一介電陶瓷,其組成為BaO · (NduBkAC^ · 4Ti02 ;以及 一低温燒結助劑,其成分為 wH3B03-xBi203- ySi02-zZnO,其中 20 mol%S 40 mol%,0 mol%$ 45 mol%,25 mol%$ yS 45 mol%以及 2 mol%$ z S 20 mol%,且w+x+y+z=l,該低溫燒結助劑佔整體 微波介電陶竟之重量比例m為0 wt°/〇<m S 25 wt%。 _ 4 ·如申請專利範圍第3項所述之微波介電陶 ❹ 究,其中 25mol%Sx$35 mol%。 5 ·如申請專利範圍第3或4項所述之微波介電 陶究,其中 20 wt%$ 25 wt%。 十一、圖式: 如次頁 17201010964 X. Patent application scope: 1. A low-temperature sintering aid whose composition is wH3B03-xBi203-ySi02-zZn0, of which 20 mol% S w S 40 mol%, 0 mol% S x S 45 mol%, 25 mol% S y S 45 mol% and 2 mol% S z S 20 mol%, and w+x+y+z=lo 2 · The low-temperature sintering aid according to claim 1, wherein 25 mol% of SXS 3 5 mol%. 3 · A microwave dielectric ceramic comprising: β-dielectric ceramic, the composition of which is BaO · (NduBkAC^ · 4Ti02; and a low-temperature sintering aid, the composition of which is wH3B03-xBi203-ySi02-zZnO, of which 20 Mol% S 40 mol%, 0 mol% $ 45 mol%, 25 mol% $ yS 45 mol% and 2 mol% $ z S 20 mol%, and w+x+y+z=l, the low temperature sintering aid The weight ratio m of the total microwave dielectric ceramics is 0 wt ° / 〇 < m S 25 wt%. _ 4 · The microwave dielectric ceramics according to claim 3, 25 mol% Sx$35 Mol%. 5 · Microwave dielectric ceramics as described in claim 3 or 4, of which 20 wt% $ 25 wt%. XI. Schema: as shown on page 17
TW97133737A 2008-09-03 2008-09-03 Sintering additive and microwave dielectric ceramic using the same TWI377187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133737A TWI377187B (en) 2008-09-03 2008-09-03 Sintering additive and microwave dielectric ceramic using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133737A TWI377187B (en) 2008-09-03 2008-09-03 Sintering additive and microwave dielectric ceramic using the same

Publications (2)

Publication Number Publication Date
TW201010964A true TW201010964A (en) 2010-03-16
TWI377187B TWI377187B (en) 2012-11-21

Family

ID=44828423

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133737A TWI377187B (en) 2008-09-03 2008-09-03 Sintering additive and microwave dielectric ceramic using the same

Country Status (1)

Country Link
TW (1) TWI377187B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825446A (en) * 2020-07-03 2020-10-27 成都宏科电子科技有限公司 Dielectric ceramic material for BT-BRT composite ultra-low loss multilayer ceramic dielectric capacitor and preparation method and application thereof
CN111943673A (en) * 2020-07-03 2020-11-17 成都宏科电子科技有限公司 Low-temperature sintered BNT microwave dielectric material and preparation method thereof
CN112851347A (en) * 2021-03-09 2021-05-28 陕西师范大学 Low-temperature sintered low-loss oxyfluoride microwave dielectric ceramic and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825446A (en) * 2020-07-03 2020-10-27 成都宏科电子科技有限公司 Dielectric ceramic material for BT-BRT composite ultra-low loss multilayer ceramic dielectric capacitor and preparation method and application thereof
CN111943673A (en) * 2020-07-03 2020-11-17 成都宏科电子科技有限公司 Low-temperature sintered BNT microwave dielectric material and preparation method thereof
CN112851347A (en) * 2021-03-09 2021-05-28 陕西师范大学 Low-temperature sintered low-loss oxyfluoride microwave dielectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
TWI377187B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Xiang et al. A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure
US6743744B1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
Fang et al. Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8 ceramic
Chu et al. A new high-Q× f Li4NbO4F microwave dielectric ceramic for LTCC applications
JP5580870B2 (en) Dielectric ceramic composition
CN100393666C (en) Environmental protection low temperature sintered microwave medium ceramic material and its preparation method
KR20170061755A (en) Alumina complex ceramics composition and manufacturing method thereof
JP2023520615A (en) Frequency stable low dielectric microwave dielectric ceramic material and its preparation method
Wu et al. Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant
Wang et al. Low-Temperature Sintering Li 3 Mg 1.8 Ca 0.2 NbO 6 Microwave Dielectric Ceramics with LMZBS Glass
JP2017071550A (en) Glass ceramic as dielectric in high-frequency range
Gu et al. Low temperature sintering and microwave dielectric properties of 0.2 Ca0. 8Sr0. 2TiO3–0.8 Li0. 5Sm0. 5TiO3 ceramics with BaCu (B2O5) additive and TiO2 dopant
Ding et al. Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0. 7Mg0. 3) TiO3 ceramics with LBSCA glass
Bijumon et al. Influence of glass additives on the microwave dielectric properties of Ca5Nb2TiO12 ceramics
TW201010964A (en) Sintering additive and microwave dielectric ceramic using the same
CN116854472B (en) Microwave dielectric material and preparation method thereof
CN106278192B (en) A kind of preparation method of the multi-phase microwave dielectric ceramic with jujube cake model structure
KR101849470B1 (en) Low temperature co-fired microwave dielectric ceramics and manufacturing method thereof
Tseng The effect CuO additive on the microwave dielectric properties of Mg (Zr0. 05Ti0. 95) O3 ceramics
Li et al. Low-Temperature Sintering Behavior and Dielectric Properties of Li 2 O-Nb 2 O 5-TiO 2 Ceramics with Li-B-Si-O Glass
Agathopoulos Influence of B2O3 on sintering behavior and the dielectric properties of Li2MgSiO4 ceramics
TW201012775A (en) Ceramic composite material with both dielectric and magnetic properties
CN112608144A (en) Lithium-based microwave dielectric ceramic material, preparation method thereof and lithium-based microwave dielectric ceramic
JP2003146752A (en) Dielectric ceramic composition
JP4468155B2 (en) Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees