TW201010585A - Heat-dissipation structure and manufacturing method thereof - Google Patents

Heat-dissipation structure and manufacturing method thereof Download PDF

Info

Publication number
TW201010585A
TW201010585A TW97131673A TW97131673A TW201010585A TW 201010585 A TW201010585 A TW 201010585A TW 97131673 A TW97131673 A TW 97131673A TW 97131673 A TW97131673 A TW 97131673A TW 201010585 A TW201010585 A TW 201010585A
Authority
TW
Taiwan
Prior art keywords
layer
carbonaceous
metal
heat dissipation
particles
Prior art date
Application number
TW97131673A
Other languages
Chinese (zh)
Inventor
Ying-Tung Chen
Wei-En Chen
Original Assignee
Ying-Tung Chen
Wei-En Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ying-Tung Chen, Wei-En Chen filed Critical Ying-Tung Chen
Priority to TW97131673A priority Critical patent/TW201010585A/en
Publication of TW201010585A publication Critical patent/TW201010585A/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention discloses a heat-dissipation structure and manufacturing method thereof which is applied to a heat-generation portion in an electronic device. The heat-dissipation structure comprises a metal substrate and a carbon composite material layer. The carbon composite material layer is formed on the metal substrate. The sintered carbon composite material layer is constituted by plural carbon particles coated with the metal layer. The carbon composite material layer also can be mutually sintered by metal particles and carbon particles. When using the heat-dissipation structure of the present invention, it has the heat-dissipation effect of the traditional vapor chamber and heat spreader. The heat-dissipation structure comprises a carbon composite material layer and a high-thermal conductive metal plate, which is brought into contact with a heating electronic component for heat dissipation, so the heat dissipation effect can be enhanced.

Description

201010585 凡、贫"月說明: ‘【發明所屬之技術領域】 -本發明係有關於一種散熱技術,更詳而言之,係有關 •一種應用於電子裝置内部之熱能產生處,以迅速吸收熱能 *及釋放熱能之散熱結構及其製造方法。 【先前技術】 - t子t置的構件巾具有很多會產生高溫高熱之構 件’包括如中央處理器、雷射二極體、發光二極體、微波 ❹么生源等,並隨著電腦效能的提昇,該等構件之功率將越 來越高,而其線路也將越來越密集,使該些構件所產生的 熱量越來越高,i熱量越來越難以騎,以致該些構件的 溫度逐漸超過容許的上限,而有燒毀之虞。 、以中央處理盗為例,目冑一般的中央處理器還勉強可 以用銅製的散熱片排除多餘的熱能,但更高功率的中央處 一器/、熱月匕將更大且會在瞬間產生,若仍以銅片散熱則 密集的線路將很容易被損毁。 ^現*7吊用的散熱結構係利用熱管或平板型熱管進行 政熱’其結構係於該熱管内部設有銅網格,使直且有多孔 性結構,且内部具有蒸發部,該蒸發部係位於熱能集中處 (即中央處㈣)的上方’其卫作原理和虹吸式熱管原理 目同’所不同的是工作流體返回蒸發部的方式。在基發部 戶:需要之欲被蒸發的工作流體,完全靠多孔性結構的驅動 2,此毛細壓力能將冷凝之液體朝向蒸發部推送,使工作 W體再次蒸發,如此不斷地循環,可使熱管不斷地工作, 110961 5 201010585 疋叩1C到散熱之功效。 ‘由於傳統之熱管或平板型熱管也是利用鋼所製成之 -銅網格作成多孔性結構,雖然銅本身之散熱效率已缓相备 • 但隨著中央處理器功率的提昇,漸漸地,銅網格: J似之銅溝槽、銅燒結等結構,已無法負荷高功率之 f處理器所產生之熱能。因此,近來有高導熱複合材料之 .2結構的問世’通常該高導熱複合材料必須具備高執傳 導率、低密度及低膨脹係數等特性,以使電子裝置中之敎 〇能::儘快排除,並能迅速將瞬間所產生之高溫傳導出去’: 2能真正有效達到散熱之目的。符合上述特性的以鑽石複 二材料最為常見,由於鑽石複合材料的熱傳導性遠高於純 其他材料,且其密度與熱膨脹係數又低於叙、鋼等, 所以是極佳的散熱材料。 。請參閱第1A圖及第1B圖,係為我國第〇931 諕發明專利申請案之熱傳導結構之示意圖,其係使用 用鑽石作為該熱傳導結構之主要基材,如圖所示,該春 •導結構ίο之實施方式’係於一圓筒狀的容器η内堆疊放 置複數鑽石顆粒12,然後再放置無氧高傳導性銅13於該 複數鑽石顆粒12的最上方,再透過高溫高㈣作業^ 去兄’例如以2刚㈣壓力加|於該無氧高傳導性銅13 的上方,並通以電流提供加熱,使溫度高達1150。(:以上, 該無氧高傳導性銅13會因高溫而融化,並渗透到複數鑽 石顆粒12之間,再經加壓使無氧高傳導性銅13與鑽石顆 粒12結合成—體’再者’可另外再加入少許的金屬粉末, 1】096] 6 201010585 1夕如.鈴、銀等,以提昇滲透能力或熱傳導性,俾形成— . 圓柱狀之熱傳導塊。 乂 ; 該熱傳導結構10係利用鑽石與銅結合成一體而可形 •成具有良好熱傳導性之結構,因鑽石的熱傳導性高達 * 230⑽/m.K,相當於銅的六倍,更遠大於其他金屬,:以 是極佳的熱傳導材料。 惟,上述習知技術中,該熱傳導結構1〇雖以具 好的熱傳導特性,但其製作過程需要在高溫高壓之環境中 ❹m造成製作成本的大幅增加’並且溫度及壓力控制 不易^溫度過高及壓力過大時,皆會有損害鑽石顆粒 題二“:以控制溫度及壓力不僅具有成本增加之問 10 /力有製程困難之問題。再者,該熱傳導結構 1 u係加壓形成塊狀實 力、古麟、亡“ 冓其内部並無空隙’因此, 通的環境中,該熱傳導結構 散熱結構,進而無法達到預期之散熱功效 ©处構單纯、易二f1供—種散熱技術,具有良好散熱效果、 述習知—也降低成本之設計,以改善前 【發二Γ失,貫為本產業a需待解決之問題。 提供餐=::述習知技術之問題,本發明之-目的係在 果:^ —。構及其製造方法,以具有良好之散熱效 本發明之另—曰 構及其製造方法。 '糸在提供—種易於製作之散熱結 110961 7 201010585 的係在提供一種降低成本之散熱結 个货明之再一目 - 構及其製造方法。 本發明之又一 構及其製造方法。 目的係在提供一種結構單純之散熱結 為達成上4目的及其他目的,本發明係提供—種散熱 結構,係至少包括碳質複合料層,該碳質複合料層係由表 面刀別披覆有金屬層之複數碳質顆粒相互燒結所構成。 為達成上述目的及其他目的,本發明係又提供一種散 ❹熱結構’係至少包括金屬製基體以及碳質複合料層,該碳 質複合料層係形成於該金屬製基體上,且係由表面披覆有 金屬層之複數石反質顆粒相互燒結所構成,該碳質複合料層 内形成有多孔性結構。 於一較佳實施例中,該散熱結構,係至少包括金屬製 基體以及碳質複合料層,該金屬製基體具有一腔室,該碳 質複合料層亦可由複數金屬顆粒及碳質顆粒相互結合所 構成,该碳質複合料層係形成有多孔性結構於該腔室之内 ❹壁面。 本發明亦提供一種散熱結構之製造方法,係至少包括 如下步驟:提供金屬製基體;提供表面被覆有金屬層之複 數碳質顆粒;將表面披覆有金屬層之複數碳質顆粒燒結成 碳質複合料層;以及利用燒結之方式將碳質複合料層結合 於該金屬製基體上。 前述散熱結構中,該碳質複合料層内係具有多孔性結 構。於一實施態樣中,該金屬層係選自銅層、鋁層、銀層、 110961 8 201010585 絲狀姑層所組成群組之其中一者。該碳質顆粒係選自鑽 石及石墨所組成群組之其中一者,該金屬顆粒係選自銅、 :二銀及輯組成群組之其中—者。並且,該碳質顆 .粒大小对圍係為,較佳範圍係為 // m ° 較於習知技術’本發明之散熱結構及其製造方法, •係使該碳質祕外表披覆有金屬層,再透過燒*之 使複數碳質顆粒相互結合而形成碳質複合料層,藉由石二 ❹顆粒提昇熱傳導效果及散熱效果,且該碳質複合料声二 成有多孔性結構,應用於流體散熱機構時,可藉由^孔性 結構提供流體之毛細作用及产動 …… 利及机動空間,以提昇散熱效果, 因=,已確貫解決習知散熱效果不彰、製作成本高昂、製 私控制不易及結構複雜等問題。 【實施方式】 以下係藉由特定的具體實施例說 熟習此技藝之人士可由本說明書所揭示二:: 的明之其他優點與功效。本發明亦可藉由其他不同 的…體貫施例加以施行或應用,本說明書 可基於不同觀點與應用,在不棒離本發明之精神下員進: 種修飾與變更。 退仃各 以下參照圖式說明本發明之實施例,應注意的是 發明係應用於具有發熱能之構件上方,例如電子裝置 之中央處理器的上方(或L E D發熱源),以迅速傳導熱Ρ 釋放熱此’進而達到散熱之功效,其實際實施時之型態、 13096] 9 201010585 数里汉tG例並非以圖示為限,可依實際設計需要作變化, 合先敛明。 '〜請參閱第2圖及第3圖,係為本發明之散熱結構第一 .實施例之示意圖及第二實施例之示意圖。如圖所示,本發 。明實施例之散熱結構20係包括一碳質複合料層21,該碳 質複合料層21係由表面披覆有金屬| 212之碳質顆粒 • 211相互燒結所構成。另外’如第3圖所示,本發明之碳 質複合料層21亦可由複數碳質顆粒211及金屬顆粒213 相互燒結所構成。 、在此需說明的是,該燒結成形之技術係為一般傳統粉 末口金a私,或係為一種結合傳統粉末冶金與塑夥射出成 形技術的製程,此製程主要是將碳質顆粒2ιι與高分子黏 結劑混合,使其在加熱後具有類似塑膠材料的流動性,而 可藉由1又射出成型機製造出具複雜形狀之零件,射出成 =的生:經過脫脂過程,以去除高分子黏結劑後,再經 、α卩可彳寸到同祖度且具有優異機械與物理性質的燒結 零件。 -土明參閱第4圖’料本發明之散熱結構第三實施例之 不思圖’如圖所示,該散熱結構2〇係包括一金屬製基體 :::一碳質複合料層21。該金屬製基體以係選自高導 ::於:亥八眉::·銅、鋁及鎳。該碳質複合料層21係燒 ΐ顆;ΠηΓ上’該碳質複合料層21係由複數碳 零右冬厘目互^結所構成’該碳質顆/粒211之表面並披 4 ㉟212,並且,各該碳質顆粒211因燒結而表面 110961 10 201010585 料融化,使彼此之間相互結合,並因此使各該碳質 顆粒211之間具有多孔性結構213。 此外,在其他實施例中,該碳質複合料層21亦可由 -複數金屬難213及複數碳質帅211相互燒結所構成, 2樣的,各該金屬顆粒214及碳質難⑴因燒結而表面 邊緣融化,使彼此之間相互結合,並因此使各該 214與碳質顆粒211之間具有 “ % 9Ί1 ^ 男夕扎性、·,口構213。該碳質顆 ’ 為鑽石或石墨等,該金屬層212係選自銅層、 ❹銘層、銀層、錄層及钻層所組成群組之其中—者,曰— 施財,該碳質顆粒211主要係以工業鑽石為例進行=尤 明,戎金屬層212係以銅層為例進行說明。 值得注意的是,在其他實施例中, 21之碳質顆粒211亦可為石黑,科層 门為石墨,该金屬層212亦可為鋁 曰銀層,而可構成例如:鑽石顆粒加上銅顆粒、石 粒加上銅顆粒、鑽石顆粒鍍銅(如附 二^ :ir:r)或…成分之—燒結::成 9 由於業鑽石之熱傳導性高達2300 (W/m. K),麵夕201010585 凡,贫"月说明: '[Technical field to which the invention belongs] - The present invention relates to a heat dissipating technique, and more specifically, to a thermal energy generating device applied inside an electronic device for rapid absorption Thermal energy* and heat dissipation structure for releasing thermal energy and a method of manufacturing the same. [Prior Art] - The t-t-shaped component towel has many components that generate high temperature and high heat, including such as a central processing unit, a laser diode, a light-emitting diode, a microwave, and the like, and with the performance of the computer. Ascending, the power of these components will be higher and higher, and the lines will be more and more dense, so that the heat generated by these components is getting higher and higher, and the heat of i is more and more difficult to ride, so that the temperature of the components Gradually exceed the allowable upper limit, and there is a burnout. Take the central processing of thieves as an example. The general CPU is still barely able to use copper heat sinks to remove excess heat, but the higher power central unit/heater will be larger and will be generated in an instant. If the copper is still dissipated, the dense lines will be easily damaged. The current heat dissipation structure of the *7 suspension uses a heat pipe or a flat-plate heat pipe for heating. The structure is provided with a copper mesh inside the heat pipe, which has a straight and porous structure, and has an evaporation portion inside, and the evaporation portion It is located at the top of the thermal energy concentration (ie, at the center (four)). The difference between the principle of the guard and the principle of the siphon heat pipe is the way the working fluid returns to the evaporation section. In the base hair unit: the working fluid to be evaporated is completely driven by the porous structure 2, and the capillary pressure can push the condensed liquid toward the evaporation portion, so that the working W body evaporates again, so that the circulation is continued. Make the heat pipe work continuously, 110961 5 201010585 疋叩1C to the heat dissipation effect. 'Because the traditional heat pipe or flat heat pipe is also made of steel - the copper mesh is made into a porous structure, although the heat dissipation efficiency of the copper itself has been slowed down. But as the power of the central processor increases, gradually, copper Grid: J-like copper trench, copper sintered and other structures, can not load the heat generated by the high-power f processor. Therefore, the recent introduction of the structure of the high thermal conductivity composite material '2' usually requires high conductivity, low density and low expansion coefficient to enable the electronic device to: And can quickly transmit the high temperature generated by the moment out: '2 can really achieve the purpose of heat dissipation. Diamond composite materials that meet the above characteristics are the most common. Because the thermal conductivity of diamond composites is much higher than that of pure other materials, and its density and thermal expansion coefficient are lower than those of steel and steel, it is an excellent heat dissipation material. . Please refer to FIG. 1A and FIG. 1B, which are schematic diagrams of the heat conduction structure of the No. 931 諕 invention patent application in China, which uses diamond as the main substrate of the heat conduction structure, as shown in the figure, the spring guide The structure ίο is configured to stack a plurality of diamond particles 12 in a cylindrical container η, and then place the anaerobic high-conductivity copper 13 at the top of the plurality of diamond particles 12, and then pass through the high-temperature high (four) operation ^ The brother's pressure is applied to the oxygen-free high-conductivity copper 13 by, for example, 2 (4) pressure, and the current is supplied with heating to make the temperature as high as 1150. (: Above, the anaerobic high-conductivity copper 13 melts due to high temperature, and penetrates between the plurality of diamond particles 12, and then pressurizes the anaerobic high-conductivity copper 13 and the diamond particles 12 into a body- 'You can add a little more metal powder, 1] 096] 6 201010585 1 eve, such as bell, silver, etc., to enhance the permeability or thermal conductivity, 俾 formation -. Cylindrical heat conduction block. 乂; The heat conduction structure 10 It is a combination of diamond and copper to form a structure with good thermal conductivity. The thermal conductivity of diamonds is as high as * 230(10)/mK, which is equivalent to six times that of copper and much larger than other metals. Heat conduction material. However, in the above-mentioned prior art, although the heat conduction structure 1 has good heat conduction characteristics, the manufacturing process requires a large increase in manufacturing cost in a high temperature and high pressure environment, and temperature and pressure control are not easy. When the temperature is too high and the pressure is too high, there will be damage to the diamond particles. Title 2: The problem of controlling the temperature and pressure not only has the cost increase, but also the process is difficult. Furthermore, the heat transfer The guiding structure 1 u is pressurized to form a block-shaped strength, Gu Lin, and death. “There is no gap in the interior of the structure. Therefore, in the environment, the heat-conducting structure has a heat-dissipating structure, and thus the expected heat dissipation effect cannot be achieved. Yi Er f1 provides a kind of heat dissipation technology, which has a good heat dissipation effect, a description of the knowledge - and also reduces the cost of the design, in order to improve the problem before the development of the industry, the need to be solved. Provide meals =:: The problem of the prior art, the object of the present invention is to provide a good heat dissipation effect of the present invention and a manufacturing method thereof. The heat-dissipating junction 110961 7 201010585 is a further embodiment of the present invention and a manufacturing method thereof for providing a heat-reducing heat-dissipating structure. The object of the present invention is to provide a structurally simple heat-dissipating junction. In order to achieve the above and other objects, the present invention provides a heat dissipating structure comprising at least a carbonaceous composite layer, the carbonaceous composite layer being covered with a plurality of carbonaceous particles of a metal layer. In order to achieve the above object and other objects, the present invention further provides a heat dissipation structure comprising at least a metal substrate and a carbon composite layer formed on the metal substrate. And forming a porous structure by sintering a plurality of stone anti-quality particles having a metal layer on the surface thereof, wherein the carbonaceous composite layer is formed with a porous structure. In a preferred embodiment, the heat dissipation structure includes at least a metal. a substrate and a carbon composite layer, the metal substrate having a chamber, the carbon composite layer being further composed of a plurality of metal particles and carbonaceous particles combined with each other, the carbon composite layer being formed with a porous structure The invention also provides a method for manufacturing a heat dissipating structure, comprising at least the steps of: providing a metal substrate; providing a plurality of carbonaceous particles having a surface coated with a metal layer; and coating the surface with a metal layer The plurality of carbonaceous particles are sintered into a carbonaceous composite layer; and the carbonaceous composite layer is bonded to the metal substrate by sintering. In the heat dissipation structure, the carbonaceous composite layer has a porous structure. In one embodiment, the metal layer is selected from the group consisting of a copper layer, an aluminum layer, a silver layer, and a filament layer of 110961 8 201010585. The carbonaceous particles are selected from the group consisting of diamond and graphite, the metal particles being selected from the group consisting of copper, two silver, and a group. Moreover, the carbonaceous particle size is preferably in the range of // m ° compared to the prior art 'the heat dissipating structure of the present invention and the manufacturing method thereof, and the carbonaceous surface is covered with The metal layer is further combined with the carbonaceous particles to form a carbon composite layer, and the heat transfer effect and the heat dissipation effect are enhanced by the stone bismuth particles, and the carbon composite material has a porous structure. When applied to a fluid heat dissipating mechanism, the capillary action and fluidization of the fluid can be provided by the pore structure. The maneuvering space is utilized to enhance the heat dissipating effect. Because of the fact, the conventional heat dissipating effect is not solved and the manufacturing cost is reduced. High, difficult to control private control and complex structure. [Embodiment] The following is a description of the other advantages and effects of those skilled in the art from the detailed description of the present invention. The present invention may be embodied or applied by other different embodiments, and the present invention may be modified and modified in light of the spirit and scope of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, and it should be noted that the invention is applied to a member having heat generating energy, for example, above a central processing unit (or a LED heat source) of an electronic device to rapidly conduct heat. Release the heat this to achieve the effect of heat dissipation, the actual implementation of the type, 13096] 9 201010585 The number of cases is not limited to the illustration, can be changed according to the actual design needs, and the first convergence. '~ Please refer to FIG. 2 and FIG. 3 for the first embodiment of the heat dissipation structure of the present invention. The schematic diagram of the embodiment and the schematic diagram of the second embodiment. As shown in the figure, this issue. The heat dissipation structure 20 of the embodiment includes a carbon composite layer 21 composed of carbonaceous particles having a surface coated with metal | 212 and 211 sintered with each other. Further, as shown in Fig. 3, the carbonaceous composite layer 21 of the present invention may be formed by sintering a plurality of carbonaceous particles 211 and metal particles 213. It should be noted that the sintering forming technology is generally a traditional powder, or a process combining traditional powder metallurgy and plastic injection molding technology. The process mainly involves carbonaceous particles 2 ιι and high. The molecular bonding agent is mixed to make it have the fluidity similar to that of the plastic material after heating, and the part with the complicated shape can be manufactured by the injection molding machine, and the raw material is injected into the raw material: the degreasing process is performed to remove the polymer bonding agent. After that, the α, 卩 can be spliced to the same ancestor and has excellent mechanical and physical properties of the sintered parts. -Tuming, referring to Fig. 4, the third embodiment of the heat dissipation structure of the present invention is not shown. As shown, the heat dissipation structure 2 includes a metal substrate ::: a carbon composite layer 21. The metal substrate is selected from the group consisting of high conductivity :: Yu: Hai Bamei:: · copper, aluminum and nickel. The carbonaceous composite layer 21 is a calcined crucible; the carbonaceous composite layer 21 is composed of a plurality of carbon zero-right-right-mesh cross-links. The surface of the carbonaceous particle/particle 211 is covered with 4 35212 And, each of the carbonaceous particles 211 is melted by the surface 110961 10 201010585 to be bonded to each other, and thus the porous structure 213 is provided between the respective carbonaceous particles 211. In addition, in other embodiments, the carbonaceous composite layer 21 may be formed by sintering a plurality of metal refractories 213 and a plurality of carbonaceous materials 211, and each of the metal particles 214 and the carbonaceous material (1) is sintered. The surface edges are melted to be bonded to each other, and thus each of the 214 and the carbonaceous particles 211 has "% 9Ί1 ^ male stagnation, · mouth structure 213. The carbonaceous particles are diamonds or graphite, etc. The metal layer 212 is selected from the group consisting of a copper layer, an enamel layer, a silver layer, a recording layer and a drill layer, and the carbonaceous particles 211 are mainly made of industrial diamonds. = You Ming, the base metal layer 212 is described by taking a copper layer as an example. It is noted that in other embodiments, the carbonaceous particles 211 of 21 may also be stone black, and the gate of the metal layer is graphite, and the metal layer 212 It may also be an aluminum bismuth silver layer, but may be composed of, for example, diamond particles plus copper particles, stone particles plus copper particles, diamond particles plated with copper (such as attached ii:ir:r) or ...-sintering:: 9 Due to the thermal conductivity of diamonds up to 2300 (W/m. K), face

Si:也有4〇1 (W/m.K),兩者之熱傳導性皆遠大於 -、屬,所以,使得本發明之高導熱複合材料散埶处 具有良好之熱傳導性·,其中,該碳質顆粒大小範圍係、= 心化111,而又以〜15〇em為較佳範圍。 睛蒼閱第5圖所示,係為本發明散熱結構第四 之結構示意圖,如圖所示,本發明第四實施例献 2〇亦包括:一金屬製基體22以及一碳質複合料層,2ι= Π0961 11 201010585 _ ^ ^ ^ .外二及第三實施例不同的是,該碳質複合料層21 >之棱數碳質顆粒211係單層排列於該金屬製基體22上, =然於其他實施例亦可為雙層或多層排列於該金屬製基 組22上,並相互燒結所構成,由於該碳質複合料層u ’之碳質顆粒211小,且碳質顆粒211本身具有良好無方向 限制的熱傳導性,而碳質顆粒21之表面積又大,因此, 可有效提昇散熱效率,並可取代習知散熱石墨片之功用, 更能提昇實用性。 ❹ 如第6圖所示,係為本發明散熱結構之使用狀態參考 圖如圖所示本發明之散熱結構2 0於使用時,可於其上 方進一步設置散熱鰭片30,該散熱鰭片3〇係貼覆於該金 屬製基體22之上方,用以增進散熱效果,當然,於其他 只施例中,亦可用冷凝器或其他等效裝置取代該散熱鰭片 3〇。值得注意的是,該金屬製基體22係置放於該熱能產 生處的上方,該熱能產生處可為電子裝置内之中央處理器 40或其他會產生熱能之組件上方,在本實施例中,係以 ©中央處理器40為例進行說明,由於該中央處理器4〇於運 作1會產生很南的溫度’即產生大量熱能。係將本發明之 散熱結構20直接設置於該中央處理器4〇的上方。 本發明之散熱結構20於使用時,係在金屬製基體22 製作成具有真空封閉之腔室220,於該腔室220内填充有 超導介質221,該超導介質221通常係例如為純水或酒 精’該中央處理器產生40之熱能係通過金屬製基體22, 並藉由該碳質複合料層21的迅速吸收並傳遞到超導介質 12 110961 201010585n ^ ^ ’场处%·;丨質221因液相氣化的現象,即產生高溫之 *水蒸氣222’該高溫之水蒸氣222並充滿於整個腔室220, 當該高溫之水蒸氣222接觸到比較冷的冷凝區223時,便 會產生凝結的現象,藉由凝結的現象將熱能透過碳質複合 料層21傳遞至金屬製基體22及散熱鰭片3〇並朝向外界 釋放’而凝結後的液相流體224,則透過碳質複合料層21 之多孔性結構214的毛細作用而流回到底部(即熱能產生 處的上方)’如此週而復始的循環運作及可達成迅速且良 A好之散熱效果。Si: also has 4〇1 (W/mK), both of which have much higher thermal conductivity than -, genus, so that the high thermal conductive composite material of the present invention has good thermal conductivity, wherein the carbonaceous particles The size range is == cardiacization 111, and ~15〇em is the preferred range. The fourth embodiment of the heat dissipation structure of the present invention is shown in Fig. 5. As shown in the figure, the fourth embodiment of the present invention also includes a metal base 22 and a carbon composite layer. 2ι = Π0961 11 201010585 _ ^ ^ ^ . The second and third embodiments are different in that the carbonaceous composite layer 21 > the carbonaceous particles 211 are arranged in a single layer on the metal substrate 22, However, in other embodiments, the two or more layers may be arranged on the metal base group 22 and sintered to each other, since the carbonaceous particles 211 of the carbon composite layer u' are small, and the carbonaceous particles 211 are It has good thermal conductivity without direction limitation, and the surface area of the carbonaceous particles 21 is large, so that the heat dissipation efficiency can be effectively improved, and the function of the conventional heat-dissipating graphite sheet can be replaced, and the utility can be improved. As shown in FIG. 6, the heat dissipation structure of the present invention is shown in the figure. As shown in the figure, the heat dissipation structure 20 of the present invention is further provided with a heat dissipation fin 30, which is further disposed above the heat dissipation structure 20 of the present invention. The lanthanum is attached to the metal substrate 22 to enhance the heat dissipation effect. Of course, in other embodiments, the heat dissipation fins 3 can be replaced by a condenser or other equivalent device. It should be noted that the metal substrate 22 is placed above the heat energy generating portion, and the heat energy generating portion may be above the central processing unit 40 or other components that generate heat energy in the electronic device. In this embodiment, Taking the central processing unit 40 as an example, since the central processing unit 4 operates at a level 1, a very south temperature is generated, that is, a large amount of thermal energy is generated. The heat dissipation structure 20 of the present invention is directly disposed above the central processing unit 4''. When the heat dissipating structure 20 of the present invention is used, the metal base 22 is formed into a vacuum sealed chamber 220, and the chamber 220 is filled with a superconducting medium 221, which is usually pure water, for example. Or alcohol 'the central processor generates 40 thermal energy through the metal substrate 22, and is rapidly absorbed by the carbon composite layer 21 and transferred to the superconducting medium 12 110961 201010585n ^ ^ 'field%·; 221 due to the phenomenon of liquid phase gasification, that is, the high temperature of water vapor 222', the high temperature water vapor 222 is filled in the entire chamber 220, when the high temperature water vapor 222 contacts the relatively cold condensation zone 223, Condensation occurs, and the heat is transmitted through the carbonaceous composite layer 21 to the metal substrate 22 and the heat dissipating fins 3 by the condensation phenomenon, and is released toward the outside, and the liquid phase fluid 224 is condensed, and then passes through the carbonaceous material. The capillary structure of the porous structure 214 of the composite layer 21 flows back to the bottom (i.e., above the heat energy generation). The cycle operation is repeated so that a rapid and good heat dissipation effect can be achieved.

® 二主 & A 請蒼閱第7圖,係為本發明第五實施例之結構示意 圖’如圖所示’本發明之散熱結構20之金屬製基體22 係為圓筒體,其内部具有一圓筒形之腔室22〇,該複數碳 質複合料層21係置放於該腔室220内,再燒結成一具有 多孔性結構214之散熱結構2 0。並且,該碳質複合料層 21亦可以複數碳質顆粒211及金屬顆粒213所構成。藉 此,即可得多孔性的碳質複合結構,若加以流體(水或空 〇氣)流動,亦可提昇散熱效果。值得注意的是金屬製基體 21的形狀除了為圓筒形外,亦可為視需求而製作方形或 其他任意形狀之金屬製基體22。 凊參閱第8圖及第9圖所示,係為本發明散熱結構之 製造方法之流程圖及結構示意圖,係包括如下步驟。 於步驟S10中,提供金屬製基體22及表面彼覆有金 屬層212之複數碳質顆粒211。接著進至步驟S11。 於步驟sii中,將表面坡覆有金屬層212之複數碳質 110961 13 201010585 驛川燒結成碳質複合料層2卜接著進至步驟川。 . 於步驟S12中,利用燒結之方式 -料層21結合於該金屬製基體22上。兀、“之石厌質複合 * =本實施例中’較佳者,將複數披覆有金屬層212 之石反貝顆粒211設置於該金屬製基體22上之前 =該金屬層212表面披覆抗氧化層之步驟。該抗氧化層係 •以防止金屬層氧化。該抗氧化層係選自銀層及鎳層所组 成群組之其中一者。 Ο 並且,該碳質顆粒211係可為鑽石或石墨等,該金屬 層2U係選自銅層、銘層、銀層、鎳層及銘層所組成群組 之其中-者,該礙質顆粒211大小範圍係為 而又以l〇〇//m〜150/zm為較佳範圍。 在此需說明的是,該碳質複合料層21亦可由複數碳 質顆粒211及複數金屬顆粒213相互燒結所構成。 並且,上述各實施例之燒結方式包括有減壓燒結、真 空燒結、微波燒結等能造成孔隙之燒結方式。再者,該燒 ❹結溫度係低於11 〇(TC以避免影響或損害鑽石之特性。 且’上述各實施例之碳質顆粒金屬披覆方式包括一般電 鍍、化學鍍、滾鍍、溶膠凝膠法等。 在此需說明的是’碳質顆粒批覆金屬之技術,因碳元 素無法直接和銅、铭、錄等金屬產生化學鍵結,因此需要 在批覆金屬層前作適當的表面碳化處理,如在碳質顆粒上 先塗覆一層Ti(鈥)、W(鎮)、Cr(鉻)、Si(石夕)等金屬,使 其與碳質顆粒形成碳化物,如TiC、WC、CrxCx、SiC等, 110961 14 201010585 取伋丹孤覆一層金屬層。 * 並且一般的石墨具有方向性,其 -是垂直方向的十倍,本發明在;。,傳導係數 .的方向性,以利熱的傳導; 离了以千均熱 石墨球上批覆金屬層,因為口㈣ 導是等向的。 U”、、方向性,因此其熱傳 ' 相較於習知技術,本發明之散熱結槿® LV主 金屬層之複數碳質顆粒相互燒 覆有 〇之間具有多孔性結構,因此,形成具有極 發明之散熱結之製造方法’係直;;同時,本 披覆形成金屬層,再以燒社之方二將貝顆粒之表面以 ^ 几…之方式將各該碳質顆粒結合在 一起’使被此之間具有多孔性結構,所以 =粒本身具有良好傳導性之特性,而可達到良好= 果,並且,本發明於製作過程中不需要精密的控制、、1及 二冓戶::製程簡單並可降低製作成本,,本 本一發明之熱結構及其製造方法實已解決 S知之種種缺失,實具有高度產業利用價值。 ▲上述之具體實施例,僅係用以例示本發明之特點及功 效,'而非用以限定本發明。任何所屬技術領域中具有通常 知識者均可在不違背本發明之精神及範嘴下,對於上述之 實施例進行修飾與改變。因此,本發明之權利保護範圍, 應如後述之申請專利範圍所列。 【圖式簡單說明】 ]]096] 15 201010585 乐ιλ及1B圖係為我國第〇931 1 736〇號發明專利申言主 案所揭示熱傳導結構之示意圖; ^ 第2圖係為本發明之散熱結構第一實施例之結構示 意圖; 第3圖係為本發明之散熱結構第二實施例之結構示 意圖; 第4圖係為本發明之散熱結構第三實施例 之示意圖; _第5圖係為本發明之散熱結構之第四實施例之結構 ^示意圖; 第6圖係為本發明之散熱結構之使用狀態參考圖; θ第7圖係為本發明之散熱結構之第五實施例之結構 是意圖; 第8圖係為本發明之散熱結構之製造方法之流程 圖;以及 第9圖係為本發明之散熱結構之製造方法之結構示 意圖。 ©【主 要元件符號說明】 10 熱傳導結構 11 容器 12 鑽石顆粒 13 無氧高傳導性銅 20 散熱結構 21 碳質複合料層 211 碳質顆粒 16 110961 L \ L 金屬層 213 金屬顆粒 214 多孔性結構 22 金屬製基體 220 腔室 221 超導介質 222 水蒸氣 223 冷凝區 224 i 液相流體 30 散熱鰭片 40 中央處理器 S10〜S12 步驟®二主& A Please refer to Fig. 7, which is a schematic structural view of a fifth embodiment of the present invention. As shown in the figure, the metal base 22 of the heat dissipation structure 20 of the present invention is a cylindrical body having an inner portion thereof. A cylindrical chamber 22 is disposed in the chamber 220 and sintered into a heat dissipation structure 20 having a porous structure 214. Further, the carbonaceous composite layer 21 may be composed of a plurality of carbonaceous particles 211 and metal particles 213. As a result, a porous carbon composite structure can be obtained, and if a fluid (water or air enthalpy) flows, the heat dissipation effect can be improved. It is to be noted that the shape of the metal base 21 may be a cylindrical shape or a metal base 22 of any other shape as desired, in addition to being cylindrical. Referring to Figures 8 and 9, a flow chart and a structural diagram of a method for manufacturing a heat dissipation structure of the present invention includes the following steps. In the step S10, the metal base 22 and the plurality of carbonaceous particles 211 whose surface is covered with the metal layer 212 are provided. Then it proceeds to step S11. In step sii, the surface is coated with a plurality of carbonaceous layers of the metal layer 212. 110961 13 201010585 Sasakawa is sintered into a carbonaceous composite layer 2 and then proceeds to step Chuan. In step S12, the material layer 21 is bonded to the metal base 22 by means of sintering.兀, “Stone anaerobic composite* = in the present embodiment, preferably, before the plurality of stone smear particles 211 coated with the metal layer 212 are disposed on the metal base 22, the surface of the metal layer 212 is overlaid. The step of controlling the oxidation layer is to prevent oxidation of the metal layer. The oxidation resistant layer is selected from the group consisting of a silver layer and a nickel layer. Ο And, the carbonaceous particle 211 can be Diamond or graphite, etc., the metal layer 2U is selected from the group consisting of a copper layer, an inscription layer, a silver layer, a nickel layer and a layer of inscriptions, and the size of the intrusive particles 211 is in the range of l〇〇 It is to be noted that the carbonaceous composite layer 21 may be composed of a plurality of carbonaceous particles 211 and a plurality of metal particles 213 sintered with each other. The sintering method includes a method of sintering the pores such as vacuum sintering, vacuum sintering, microwave sintering, etc. Further, the sintering temperature is lower than 11 〇 (TC to avoid affecting or impairing the characteristics of the diamond. Examples of carbonaceous particle metal coating methods include general plating and chemistry. Plating, barrel plating, sol-gel method, etc. What needs to be explained here is the technique of 'carbon-based particle-coated metal. Because carbon cannot directly bond with metals such as copper, Ming, and recorded metals, it is necessary to make appropriate before coating the metal layer. The surface carbonization treatment, such as coating a layer of Ti (鈥), W (town), Cr (chromium), Si (Shi Xi) and other metals on the carbonaceous particles to form carbides with carbonaceous particles, such as TiC. , WC, CrxCx, SiC, etc., 110961 14 201010585 Take a layer of metal layer of 汲丹. * And general graphite has directionality, which is - ten times in the vertical direction, the invention is in the direction of the conductivity coefficient. , the conduction of heat; the metal layer is superimposed on the thousand-thick graphite ball, because the mouth (four) is isotropic. U", directional, so its heat transfer' compared to the prior art, the present invention The plurality of carbonaceous particles of the heat-dissipating 槿® LV main metal layer are mutually fired and have a porous structure, so that a manufacturing method having the extremely invented heat-dissipating junction is formed straight;; at the same time, the cladding forms a metal Layer, and then the square of the burning society The surface of the carbonaceous particles is bonded together in such a manner as to have a porous structure therebetween, so that the particles themselves have good conductivity characteristics, and good results can be achieved, and the present invention can be achieved. No need for precise control during the production process, 1 and 2 households:: The process is simple and the production cost can be reduced. The heat structure and the manufacturing method of the invention have solved the various defects of S, and have high industrial utilization. The specific embodiments described above are merely illustrative of the features and functions of the present invention, and are not intended to limit the present invention. Any person having ordinary skill in the art can do without departing from the spirit and scope of the present invention. Modifications and changes to the above embodiments are made under the mouth. Therefore, the scope of protection of the present invention should be as set forth in the appended claims. [Simple description of the diagram] ]]096] 15 201010585 Leιλ and 1B are the schematic diagrams of the heat conduction structure disclosed in the main case of the invention patent No. 931 1 736 ; in China; ^ Figure 2 is the heat dissipation of the invention. FIG. 3 is a schematic structural view of a second embodiment of the heat dissipation structure of the present invention; FIG. 4 is a schematic view showing a third embodiment of the heat dissipation structure of the present invention; The structure of the fourth embodiment of the heat dissipation structure of the present invention is shown in FIG. 6; FIG. 6 is a reference view of the state of use of the heat dissipation structure of the present invention; FIG. 7 is a structure of the fifth embodiment of the heat dissipation structure of the present invention. 8 is a flow chart of a method for manufacturing a heat dissipation structure of the present invention; and FIG. 9 is a schematic structural view of a method for manufacturing a heat dissipation structure of the present invention. ©【Main component symbol description】 10 Heat conduction structure 11 Container 12 Diamond particles 13 Oxygen-free high conductivity copper 20 Heat dissipation structure 21 Carbon composite layer 211 Carbonaceous particles 16 110961 L \ L Metal layer 213 Metal particles 214 Porous structure 22 Metal substrate 220 chamber 221 superconducting medium 222 water vapor 223 condensation zone 224 i liquid phase fluid 30 heat sink fins 40 central processing unit S10 ~ S12 steps

Claims (1)

201010585 丁、甲砑專利範圍: • 1 · 一種散熱結構,係至少包括: 碳質複合料層,其係由表面分別披覆有金屬層之 複數碳質顆粒相互燒結所構成。 2.如申請專利範圍第1項之散熱結構,其中,該碳質複 合料層係由複數金屬顆粒及碳質顆粒相互燒結所構 成。 3 · 一種散熱結構,係至少包括: 0 金屬製基體;以及 碳質複合料層,係形成於該金屬製基體上,其係 由表面披覆有金屬層之複數碳質顆粒相互燒結所構 成’該碳質複合料層内形成有多孔性結構。 4·如申請專利範圍第3項之散熱結構,其中,該碳質複 合料層係由複數金屬顆粒及碳質顆粒相互燒結所構 成之多孔性結構。 5. —種散熱結構,係至少包括: 參 金屬製基體,係具有一腔室;以及 碳質複合料層,係由表面分別披覆有金屬層之複 數碳質顆粒相互連結所構成,該碳質複合料層係形成 於該金屬製基體之腔室的内壁面。 6. 如申請專利範圍第5項之散熱結構,其中該碳質複合 料層係由複數金屬顆粒及碳質顆粒相互連結所構成。 7·如申請專利範圍第1或3或5項之散熱結構,其中, 5玄金屬層係選自銅層、鋁層、銀層及鎳層所組成群組 18 ]]096】 201010585 ι兴中一者。 .8.如申請專利範圍第2或4或6項之散熱結構,其中, - 該金屬顆粒係選自銅、鋁、銀及鎳所組成群組^其中 一者。 9.如申請專利範圍第1或2或3或4或5或6項之散熱 ,結構,其中,該碳質顆粒係選自鑽石及石墨所組成^ -組之其中一者。 、 10. 如申請專利範圍第3或5項之散熱結構,其中,該碳 ❹ 質複合料層以燒結之方式結合於該金屬製基體上。 11. 如中請專利範圍第1或2或3或4或5或6項之散熱 結構,其中,該碳質顆粒大小範圍係為〜Wm。 12. 如申請專利範圍第u項之散熱結構’其中,該碳質 顆粒大小較佳範圍係為100//ιη〜150/ζιη。 、 13. 一種散熱結構之製造方法’係至少包括如下步驟: 提供金屬製基體及表面披覆有金屬層之複數碳 質顆粒; _ 將表面披覆有金屬層之複數碳質顆粒燒結成碳 質複合料層;以及 利用燒結之方式將燒結後之碳質複合料層結合 於該金屬製基體上。 14. 如申请專利範圍第13項之散熱結構之製造方法,其 中,提供表面披覆有金屬層之複數碳質顆粒之前,更 包括於該披覆金屬層之碳質顆粒表面披覆抗氧化層 之步驟。 110961 19 201010585 n別r睛專利範圍第13項之熱結構之製造方法,其中, ' 該抗氧化層係選自銀層及鈦層所組成群組之其中_ - 者。 16.如申請專利範圍第丨3項之散熱結構之製造方法,其 中,該金屬層係選自銅層、鋁層、銀層、鎳層及鈷層 所組成群組之其中一者。 17·如申請專利範圍第13項之散熱結構之製造方法,其 中,該碳質顆粒係選自鑽石及石墨所組成群組之其中 ❹一者。 18. 如申請專利範圍第13項之散熱結構之製造方法,其 中,該碳質顆粒大小範圍係為i 〜2mm。 19. 如申請專利範圍第13項之散熱結構之製造方法,其 中,該妷質顆粒大小較佳範圍係為100从m〜150从m。 〇· 一種散熱結構,係至少包括: 金屬製基體,係具有一腔室;以及 碳質複合料層,係由表面分別披覆有金屬層之複 炭貝顆粒相互燒結所構成,該碳質複合料層係於該 銅製基體之腔室内形成多孔性結構。 21=中請專利範圍第2G項之散熱結構,其中該碳質複 合料層係由複數金屬顆粒及碳質顆粒相互燒結所構 成之多孔性結構。 110961 20201010585 Ding, Jiayi patent range: • 1 · A heat dissipation structure consists of at least: a carbon composite layer consisting of a plurality of carbonaceous particles coated with a metal layer on each surface. 2. The heat dissipation structure of claim 1, wherein the carbonaceous composite layer is formed by sintering a plurality of metal particles and carbonaceous particles. 3) A heat dissipating structure comprising at least: a metal substrate; and a carbon composite layer formed on the metal substrate, wherein the plurality of carbonaceous particles having a metal layer coated on the surface are sintered with each other. A porous structure is formed in the carbonaceous composite layer. 4. The heat dissipation structure of claim 3, wherein the carbonaceous composite layer is a porous structure formed by sintering a plurality of metal particles and carbonaceous particles. 5. A heat dissipating structure comprising at least: a metal substrate having a chamber; and a carbon composite layer comprising a plurality of carbonaceous particles each having a metal layer coated on the surface, the carbon The composite layer is formed on the inner wall surface of the chamber of the metal substrate. 6. The heat dissipation structure of claim 5, wherein the carbonaceous composite layer is composed of a plurality of metal particles and carbonaceous particles being linked to each other. 7. The heat dissipation structure of claim 1 or 3 or 5, wherein the 5 metal layer is selected from the group consisting of a copper layer, an aluminum layer, a silver layer and a nickel layer 18]]096] 201010585 ι兴中One. 8. The heat dissipation structure according to claim 2, wherein the metal particles are selected from the group consisting of copper, aluminum, silver and nickel. 9. The heat dissipation structure of claim 1 or 2 or 3 or 4 or 5 or 6 wherein the carbonaceous particles are selected from the group consisting of diamonds and graphite. 10. The heat dissipation structure of claim 3 or 5, wherein the carbon tantalum composite layer is bonded to the metal substrate in a sintered manner. 11. The heat dissipation structure of claim 1 or 2 or 3 or 4 or 5 or 6, wherein the carbonaceous particle size ranges from 〜Wm. 12. The heat dissipating structure of claim u, wherein the carbonaceous particle size is preferably in the range of 100//ιη to 150/ζιη. 13. A method of manufacturing a heat dissipation structure includes at least the steps of: providing a metal substrate and a plurality of carbonaceous particles having a metal layer coated thereon; _ sintering a plurality of carbonaceous particles having a metal layer on the surface thereof to form a carbonaceous material a composite layer; and a sintered carbonaceous composite layer is bonded to the metal substrate by sintering. 14. The method for manufacturing a heat dissipation structure according to claim 13, wherein the surface of the carbonaceous particles covered with the metal layer is coated with an anti-oxidation layer before the plurality of carbonaceous particles having a metal layer coated on the surface is provided. The steps. 110961 19 201010585 The manufacturing method of the thermal structure of the thirteenth patent range, wherein the anti-oxidation layer is selected from the group consisting of a silver layer and a titanium layer. 16. The method of fabricating a heat dissipation structure according to claim 3, wherein the metal layer is selected from the group consisting of a copper layer, an aluminum layer, a silver layer, a nickel layer, and a cobalt layer. 17. The method of manufacturing a heat dissipation structure according to claim 13, wherein the carbonaceous particles are selected from the group consisting of diamonds and graphite. 18. The method of manufacturing a heat dissipation structure according to claim 13, wherein the carbonaceous particle size ranges from i to 2 mm. 19. The method of manufacturing a heat dissipating structure according to claim 13, wherein the enamel particle size is preferably in the range of 100 m from 150 to m. 〇· A heat dissipating structure comprising at least: a metal substrate having a chamber; and a carbon composite layer consisting of mutually sintered carbon particles coated with a metal layer on the surface, the carbon composite The layer is formed into a porous structure in the chamber of the copper substrate. 21 = The heat dissipation structure of the second aspect of the patent scope, wherein the carbonaceous composite layer is a porous structure composed of a plurality of metal particles and carbonaceous particles sintered to each other. 110961 20
TW97131673A 2008-08-20 2008-08-20 Heat-dissipation structure and manufacturing method thereof TW201010585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97131673A TW201010585A (en) 2008-08-20 2008-08-20 Heat-dissipation structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97131673A TW201010585A (en) 2008-08-20 2008-08-20 Heat-dissipation structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201010585A true TW201010585A (en) 2010-03-01

Family

ID=44828232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131673A TW201010585A (en) 2008-08-20 2008-08-20 Heat-dissipation structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201010585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208377A (en) * 2010-03-30 2011-10-05 陈盈同 Radiating unit with antioxidant nano-film and deposition method of antioxidant nano-film
CN110364498A (en) * 2019-05-28 2019-10-22 广东省智能制造研究所 A kind of porous flat plate formula radiator, system and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208377A (en) * 2010-03-30 2011-10-05 陈盈同 Radiating unit with antioxidant nano-film and deposition method of antioxidant nano-film
CN102208377B (en) * 2010-03-30 2013-05-15 陈盈同 Radiating unit with antioxidant nano-film and deposition method of antioxidant nano-film
CN110364498A (en) * 2019-05-28 2019-10-22 广东省智能制造研究所 A kind of porous flat plate formula radiator, system and manufacturing method

Similar Documents

Publication Publication Date Title
CN105722375B (en) A kind of graphene heat abstractor and preparation method thereof
JP4972640B2 (en) System and method for thermal management of electronic components
TW201113494A (en) Heat dissipation structure and manufacturing method thereof
CN104943223B (en) There is graphite flake and the preparation method of high thermal conductivity coefficient along plane and thickness direction simultaneously
Lim et al. Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings
TW200523518A (en) Flat plate heat transfer device and method for manufacturing the same
JP2011091106A (en) Thermally conductive member and method of manufacturing the same, heat dissipating component, and semiconductor package
TWM246562U (en) Heat pipe
CN110243213A (en) A kind of the plate liquid-sucking core and its manufacturing method of composite construction
JP2010192661A (en) Heat radiation component and method of manufacturing the same, and device and method for radiating heat using the heat radiation component
TW201111734A (en) Heat dissipation module and manufacturing method thereof
Hu et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding
CN109592988A (en) A kind of preparation method of diamond microtrabeculae enhancing high-heat conductivity graphite material
TW201219520A (en) Bonding material, method, and structure
CN103966533B (en) A kind of diamond heat-conducting composite and preparation method thereof
TWM300003U (en) Improved circuit board structure capable of combining heat sink
CN203719484U (en) Soaking plate based on artificial graphite film
CN201413076Y (en) Heat dissipation structure
Chang et al. Sustainable dropwise condensation enabled ultraefficient heat pipes
CN106565263A (en) Preparation method for carbon nano-tube/silicon carbide heat-conducting composite material
TW201010585A (en) Heat-dissipation structure and manufacturing method thereof
CN110933899A (en) Composite heat conducting sheet, preparation method thereof and heat radiating piece
CN110579126A (en) heat conductor with three-dimensional grid channels inside and manufacturing method thereof
Guo et al. Super-thick highly thermally conductive graphite/Sn laminated composites assembled by active Ti-containing Sn-Ag-Ti filler metals
JP6313547B2 (en) Interlayer thermal connection member, method for manufacturing interlayer thermal connection member, and interlayer thermal connection method