TW201007218A - Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module - Google Patents

Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module Download PDF

Info

Publication number
TW201007218A
TW201007218A TW97131074A TW97131074A TW201007218A TW 201007218 A TW201007218 A TW 201007218A TW 97131074 A TW97131074 A TW 97131074A TW 97131074 A TW97131074 A TW 97131074A TW 201007218 A TW201007218 A TW 201007218A
Authority
TW
Taiwan
Prior art keywords
microstructure
optical film
diffusing
substrate
backlight module
Prior art date
Application number
TW97131074A
Other languages
Chinese (zh)
Inventor
Te-Kuan Hsu
Chung-Nan Shih
Erh-Mei Hsieh
Original Assignee
Exploit Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exploit Technology Co Ltd filed Critical Exploit Technology Co Ltd
Priority to TW97131074A priority Critical patent/TW201007218A/en
Publication of TW201007218A publication Critical patent/TW201007218A/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Abstract

An optical film of the present invention mainly comprises a substrate, which includes an upper surface and a lower surface arranged opposed to each other, wherein the upper surface has a plurality of micro structures. Each micro structure has an arc surface. A long axis and a short axis of the micro structure are 20 um-50 um in length, and 10 um-35 um in height. According to a practical experimental result, within every square meter, the luminance of the hybrid optical film of the present invention is 12%-20% higher than that of a commonly used high-luminance diffusion film, its overall light transmittance is 55%-60%, and its haze is 85%-90%, thereby enhancing the optical luminance as well as increasing the light utilization efficiency.

Description

201007218 九、發明說明: * 【發明所屬之技術領域】 本發明係一種兼具聚光及擴散之複合型光學膜片之微 結構,尤指一種用於背光模組之光學膜片,可減少膜片使 用數、降低成本,以及具有光學輝度提升與增加光利用率 之功能。 【先前技術】 ❿ 按,目前在平面顯示器中,主要包含有TFT-LCD顯示 器、PDP電漿顯示器及背投影顯示器。由於日、韓及台灣 大廠積極投入TFT-LCD液晶顯示器發及採用大型化的生產 設備,液晶顯示器的品質不斷精進下,價格亦不斷下滑, 帶動了液晶顯示器的需求,如此使TFT-LCD顯示器成為目 前平面顯示器的主流。 而液晶面板本身無法發出光線,需要藉由背光模組來 提供顯示器之光源,一般而言,液晶顯示器的背光源主要 Q 是採直下式,而直下式背光源可以藉由燈管的增加,或使 用擴散片來達到大尺寸液晶顯示器的亮度要求;其中,擴 散片分為内部擴型及表面擴散型。内部擴散型是在一壓克 .力樹脂板内分散有不同折射率的光學顆粒,使光線均勻性 地反射,此時光線因光學顆粒之折射率不同以及混合的百 分比等因素,進行晝面亮度及輝度不均勻性的調整;而表 面擴散型則為使用一透明之樹脂板之表面粗糙化,使光線 反射及折射。 請參閱台灣專利公告第M266466號『增加亮度之光擴 201007218 散板之結構』,其中揭露出習知之直下式背光模組之結構, '一般直下式模組,其構造包含了一反射片、複數個光源、 一光擴散片、一第一棱鏡片、一第二棱鏡片、一光擴散膜 等。目前在背光模組中,常見的增亮技術是搭配一片或兩 片不同方向的棱鏡片,其原理乃是利用稜鏡之折射率以及 棱鏡角度將入射光線折射後,通過鋸齒狀的光出射面控制 其射出角度,讓原先經由擴散片而擴散開來的光線再度集 中,並減少光耗損率,而達到增加亮度之目的。棱鏡片一 ❹般是用PET聚酯或聚碳酸脂材料製成75〜230 /zm的薄片, 在薄片的表面形成間距為24〜110//m,頂角為90〜110度的 長條狀稜鏡陣列,因其光學結構以及折射率,而具有聚光 的作用。當使用一片直角形狀的棱鏡片時,則正面亮度可 改善1. 6倍以上,若使用兩片呈垂直排列的稜鏡片,則正 面亮度可改善2倍以上;相關專利尚可參閱美國已公告專 利第 5175030、5183597、6280063、627747卜 5592332 號, 皆對增亮、擴散技術有進一步描述。 ❹ 然而,稜鏡片表面呈直角狀之頂角極容易在製造、運 送時不慎被碰撞而受損,而頂角任一部位受損即會在顯示 器面板上形成亮點等重大瑕疵,無法被使用者所接受’且 製造良率較低,亦造成製造業者極大困擾;因此又有一種 習知作法係於了員角最尖端部分以削平或導圓角方式來處 理,使頂角較不容易受損,從而提升製作良率,但此種作 法又會使該棱鏡片之聚光效果大打折扣’無法提供足夠亮 度之背光源;立習知技術係將增光及光擴散分開處理,分 別以一擴散片以及一或二片增光板之組合,來同時達成增 201007218 光及擴散之目的,無法將其整合在一起,亦大幅提高製造 成本。 【發明内容】 本發明,其主要目的係為提供一種用於背光模組之光 學膜片,可減少膜片使用數、降低成本,以及具有光學輝 度提升與增加光利用率之功能。 為達上述目的,本發明之光學膜片主要設有一基材, ❹該基材設有相對設置之上、下表面,該上表面設有複數微 結構;其中,各微結構係具有弧形表面,且該微結構之長 軸及短軸長度係介於20 μ m〜50 # m,而高度則介於 10 〜35//m,在每米平方依實際試驗結果此複合型光學膜 輝度值可比一般業界所使用之高輝度擴散膜增加約 12%〜20%之輝度,全線透光率為55%〜60%的範圍,霧度為 85%〜90%的範圍,以具有光學輝度提升以及增加光利用率之 功能。 【實施方式】 為了讓本發明之上述之目的、功能特徵、和優點能更 明確被暸解,下文將本發明以較佳之實例,並配合所附圖 式,作詳細說明如下: 本創作「兼具聚光及擴散複合型光學膜片之微結構及 背光模組」該光學膜片1如第一圖之第一實施例所示,主 要設有一基材11,該基材11設有相對設置之上、下表面 111、112,該上表面111設有複數微結構12,各微結構12 201007218 分佈比例可以為92%以上,其中各微結構12係具有弧形表 面121 ’各微結構12係凸出(或凹入)該上表面111,而各 微結構弧形表面121之曲率可介於0. 015〜0. 025之間,請 同時參閱第二圖及第三圖所示,且該微結構12之長軸[及 短轴W長度係介於20 // m〜50 /zm,而高度Η則介於 10//in〜35/z m ;當然,該基材11可進一步設有一抗靜電密 著層13,如第四圖之第二實施例所示,該抗靜電密著層13 係設置於該基材11之下表面112 ;另外’亦可於該基材u ❿之下表面112進一步設有複數微結構12,如第五圖之第三 實施例所示。 再者’亦可於上述各實施例之微結構及/或抗靜電密著 層中設有複數擴散粒子,以第二實施例為例,該基材上下 表面111設有複數微結構12,而下表面112則設有—抗靜 電密著層13 ’如第六圖之第四實施例所示,各微結構12 及抗靜電密著層13中係設有複數擴散粒子14,該擴散粒 子Η可以為球狀(亦可以為非球狀),該擴散粒子14係選 ❿自但不限於卯、?8、?1^八、尼龍、矽膠之材質,而該擴散 粒子14平均粒徑可以為0· lnm〜lOOOnm,各擴散粒子14係 部份埋設或凸設於微結構12及抗靜電密著層13,藉由各 擴散粒子14之設置可進一步增加光學膜片之擴散能力;备 然,該擴散粒子亦可以為高分子材料所構成之中空球: #球狀之結構體’如第七圖之第五實施例所示,該擴^ 子14係為高分子材料所構成之中空球狀結構體,誃: 子14係由二種不同折射率的材料所構成4 ^過^ 散粒子14時,會形成四次光折射路徑,使通過之光 201007218 更均勻化。 ‘ 另外,各微結構12之排列方式可如第一圖所示,係沿 長軸方向,以彼此平行、相鄰而不連續之方式排列,亦可 以如第八圖之第六實施例所示,各微結構12係沿長軸方 向,以彼此垂直、相鄰而不連續之方式排列。 當然,除了上述各實施例中增加擴散粒子來增加擴散 能例外,亦可於光學膜片上增加增光層以達到增亮之效 果,如第九圖之第七實施例所示,該基材之下表面112進 © —步設有一增光層15,該增光層15設有複數稜鏡結構 151,用以增加光學膜片之亮度。 其中,本發明光學膜片之製造方法,如第十圖所示可 以包含下列步驟: 步驟A :提供一第一基材31,如第十一圖(A)所示,該 第一基材31可以為PET材質; 步驟B :於該第一基材31其中一表面形成有複數微結 構32 ; ❹ 步驟C :於各微結構32表面覆蓋一層UV膠33,如第 十一圖(B)所示; 步驟D :於該UV膠33表面設置一第二基材34而形成 一半成品,如第十一圖(C)所示; 步驟E :進行硬化步驟,將步驟D之半成品照射紫外 線使該UV膠33形成硬化作用,令該UV膠33形成與各微 結構32相對應之成型層35,如第十一圖(D)所示; 步驟F :最後由微結構32與該成型層35相互分離, 而形成有二片光學膜片,如第十一圖(E)所示,其中一光學 201007218 膜片係具有第一基材31,該第一基材31表面形成有複數 * 凸出表面之微結構32,另外一光學膜片則具有第二基材 34,該第二基材34表面之成型層35形成有複數凹入表面 之微結構36;藉由上述製造方法可同時製造出二個光學膜 片,其製程較為簡便。 本發明之光學膜片係可應用於背光模組中,如第十二 圖所示係為本發明應用於側光式背光模組,該背光模組2 至少包含有;一載具21、一光源裝置22、導光板23以及 © 至少一光學膜片1,該載具21係可供承載光源22或光學 膜片1之結構體,該光源裝置22係包括至少一光源221並 裝設於載具21側邊,而該導光板23則設置於光源裝置22 側邊,該光學膜片1係設於該載具21上並設於導光板23 上方,該光學膜片1之結構可以為上述各實施例所述之結 構,而本圖係以第一實施例為例;本發明之光學膜片亦可 應用於直下式背光模組,如第十三圖所示,該背光模組2 同樣至少包含有;一載具21、一光源裝置22、導光板23 〇 以及至少一光學膜片1,該光源裝置22係裝設於載具21 上方,而該導光板23及光學膜片1則依序設置於光源裝置 22上方;當然,可視所需增加光學膜片之數量,且各光學 膜片可以相同形式或不同形式,例如各光學膜片可以均為 設有凸出表面或凹入表面之微結構,或者可以為設有凸出 表面以及凹入表面之微結構,亦或者於該光學膜片上方進 一步設有至少一增光膜及/或擴散膜(圖中未標示),來增加 背光模組之亮度及/或光擴散效果。 本發明之光學膜片相較於習有係具有下列優點: 201007218 1、 該光學膜片應用於背光模組中可減少膜片使用數, 降低成本,具有光均勻與增加光之利用率之功能。 2、 在每米平方依實際試驗結果此光學膜片之輝度值可 比一般業界所使用之高輝度擴散膜增加約12%〜20%之輝 度,全線透光率為55%〜60%的範圍,霧度為85%〜90%的範 圍’若高於或低於此範圍輝度值則會降低。 3、該光學膜片之單位面積上微結構分佈比例為92%以 上’以使整體光均勻度為80%〜92%。 ❹ 如上所述,本發明提供一種較佳可行之兼具聚光及擴 散複合型光學膜片之微結構,爰依法提呈發明專利之申 t惟二上之實施說明及圖式所示’係本發明較佳實施 裝置、特徵等近似、雷因* “ f 〃本發月之構&、 申請專利範圍之内。°者鏡屬本發明之創設目的及 【圖式簡單說明】 g。第—圖係為本發明中光學膜片第-實施例之結構立體 匕=本發明中微結構之放大結構示意圖。 圖。 糸為本發明中光學膜片第—實施例之結構示意 圖 圖 第四圖係為本發明中光學膜片第二實施例之結構示意 圖係為本發明中光學膜片第三實施例之結構示意 201007218 第六圖係為本發明中光學膜片第四實施例之結構示意 圖。 第七圖係為本發明中光學膜片第五實施例之結構示意 圖 圖 ❹ 意圖 第八圖係為本發明中光學膜片第六實施例之結構示 第九圖係為本發明中光學膜片第七實施例之結構示 第十圖係為本發明中光學W製造方法之流程方塊 意 意 苐十一圖(A)〜(E)係為本發曰月 流程結構示意圖。 +光學膜片製造方法 之 第十二圖係為本發明中光學腺H 組之結構示意圖。 學W應用於侧光式背光模 第十三圖係為本發明中光學滕 組之結構示意圖。 ,心應用於直下式背光模 ❹ 【主要元件代表符號說明201007218 IX. Description of the invention: * Technical field of the invention The present invention relates to a microstructure of a composite optical film having both light collecting and diffusion, and more particularly to an optical film for a backlight module, which can reduce the film. The number of pieces used, the cost reduction, and the function of optical brightness enhancement and increased light utilization. [Prior Art] ❿ Press, currently in the flat panel display, mainly includes a TFT-LCD display, a PDP plasma display, and a rear projection display. As Japanese, Korean and Taiwanese manufacturers actively invest in TFT-LCD liquid crystal displays and use large-scale production equipment, the quality of liquid crystal displays continues to improve, and prices continue to decline, driving the demand for liquid crystal displays, thus enabling TFT-LCD displays. Become the mainstream of current flat panel displays. The liquid crystal panel itself cannot emit light, and the backlight module is required to provide the light source of the display. Generally, the backlight of the liquid crystal display is mainly a direct type, and the direct type backlight can be increased by a light tube, or Diffusion sheets are used to achieve the brightness requirements of large-size liquid crystal displays; among them, the diffusion sheets are classified into an internal expansion type and a surface diffusion type. The internal diffusion type is an optical particle in which a different refractive index is dispersed in a pressure resin plate, so that the light is uniformly reflected. At this time, the light is subjected to the brightness of the surface due to the difference in refractive index of the optical particles and the percentage of mixing. And the adjustment of the luminance unevenness; and the surface diffusion type is the surface roughening using a transparent resin plate to reflect and refract light. Please refer to Taiwan Patent Publication No. M266466, "Enhanced Brightness Light Expansion 201007218 Dispersion Plate Structure", which reveals the structure of the conventional direct type backlight module, 'general direct type module, whose structure contains a reflection sheet, plural a light source, a light diffusing sheet, a first prism sheet, a second prism sheet, a light diffusing film, and the like. At present, in the backlight module, the common brightening technique is to match one or two prism sheets in different directions. The principle is to refract incident light by using the refractive index of the crucible and the prism angle, and pass the jagged light exit surface. Controlling the angle of the shot, so that the light diffused through the diffuser is again concentrated, and the light loss rate is reduced, thereby increasing the brightness. The prism sheet is made of a sheet of 75 to 230 /zm made of PET polyester or polycarbonate material, and a strip having a pitch of 24 to 110 / / m and a vertex angle of 90 to 110 degrees is formed on the surface of the sheet. The tantalum array has a function of collecting light due to its optical structure and refractive index. When a rectangular prism sheet is used, the front luminance can be improved by 1.6 times or more. If two vertically arranged cymbals are used, the front luminance can be improved by more than 2 times; Further, the highlighting and diffusion techniques are further described in Nos. 5175030, 5183597, 6280063, 627747, and 5592332. ❹ However, the apex angle of the surface of the cymbal is extremely easy to be damaged by collision during manufacturing and transportation. If any part of the apex is damaged, it will form a bright spot on the display panel and cannot be used. The acceptance is 'and the manufacturing yield is low, which also causes great trouble to the manufacturers; therefore, there is a conventional practice in which the tip end of the staff corner is treated by flattening or rounding, so that the top angle is less susceptible. Loss, thereby improving the production yield, but this method will greatly reduce the concentrating effect of the prism sheet 'can not provide a sufficient brightness backlight; the learning technology is to separate the addition and light diffusion, respectively, to spread The combination of a film and one or two brightness-increasing plates simultaneously achieves the goal of increasing 201007218 light and diffusion, and cannot be integrated together, which also greatly increases manufacturing costs. SUMMARY OF THE INVENTION The present invention is mainly directed to an optical film for a backlight module, which can reduce the number of diaphragms used, reduce the cost, and has the functions of enhancing optical brightness and increasing light utilization. In order to achieve the above object, the optical film of the present invention is mainly provided with a substrate, and the substrate is provided with opposite upper and lower surfaces, and the upper surface is provided with a plurality of microstructures; wherein each of the microstructures has a curved surface And the length of the long axis and the short axis of the microstructure is between 20 μm and 50 # m, and the height is between 10 and 35//m, and the luminance of the composite optical film is obtained according to the actual test result per square meter. It can increase the brightness of the high-luminance diffusing film used by the general industry by about 12%~20%, the whole line transmittance is in the range of 55%~60%, and the haze is in the range of 85%~90%, so as to have the optical brightness enhancement and Increase the function of light utilization. The above-described objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. The microstructure and backlight module of the concentrating and diffusing composite optical film. The optical film 1 is mainly provided with a substrate 11 as shown in the first embodiment of the first figure, and the substrate 11 is provided with a relative arrangement. Upper and lower surfaces 111, 112, the upper surface 111 is provided with a plurality of microstructures 12, each of the microstructures 12 201007218 may have a distribution ratio of 92% or more, wherein each of the microstructures 12 has a curved surface 121' each microstructure 12 system convex The radii of the curved surface 121 may be between 0. 015~0. 025, please refer to the second and third figures at the same time, and the micro The long axis [and the short axis W length of the structure 12 are between 20 // m~50 /zm, and the height Η is between 10//in and 35/zm; of course, the substrate 11 can be further provided with an antistatic The adhesion layer 13, as shown in the second embodiment of the fourth figure, the antistatic adhesion layer 13 is disposed on the 11 below material surface 112; additional 'u also to the substrate surface under ❿ 112 is further provided with a plurality of microstructures 12, as shown in the third example of the fifth embodiment of FIG. Furthermore, a plurality of diffusion particles may be provided in the microstructure and/or antistatic adhesion layer of the above embodiments. In the second embodiment, the upper and lower surfaces 111 of the substrate are provided with a plurality of microstructures 12, and The lower surface 112 is provided with an antistatic adhesion layer 13'. As shown in the fourth embodiment of the sixth figure, the plurality of diffusion particles 14 are disposed in each of the microstructures 12 and the antistatic adhesion layer 13, and the diffusion particles are It may be spherical (or non-spherical), and the diffusing particles 14 are selected from, but not limited to, 卯,? 8,? 1^8, nylon, silicone material, and the average particle diameter of the diffusion particles 14 may be 0·lnm~lOOOnm, each diffusion particle 14 is partially embedded or protruded from the microstructure 12 and the antistatic adhesion layer 13, The diffusing ability of the optical film can be further increased by the arrangement of the respective diffusing particles 14; in addition, the diffusing particles can also be hollow spheres composed of a polymer material: #spherical structure" as the fifth embodiment of the seventh figure In the example, the expansion 14 is a hollow spherical structure composed of a polymer material, and the 誃: 14 is composed of two materials having different refractive indices. The secondary light refraction path makes the passing light 201007218 more uniform. In addition, the arrangement of the microstructures 12 may be arranged in parallel, adjacent and discontinuous manner along the long axis direction as shown in the first figure, or may be as shown in the sixth embodiment of the eighth figure. Each of the microstructures 12 is arranged in a direction perpendicular to the long axis, perpendicular to each other, adjacent to each other. Of course, in addition to the above embodiments, the diffusion particles are added to increase the diffusion energy, and the brightness enhancement layer may be added to the optical film to achieve the brightness enhancement effect. As shown in the seventh embodiment of the ninth embodiment, the substrate is The lower surface 112 is provided with a light-increasing layer 15, and the light-increasing layer 15 is provided with a plurality of germanium structures 151 for increasing the brightness of the optical film. The method for manufacturing the optical film of the present invention, as shown in the tenth figure, may comprise the following steps: Step A: providing a first substrate 31, as shown in FIG. 11(A), the first substrate 31 The material may be PET; Step B: a plurality of microstructures 32 are formed on one surface of the first substrate 31; ❹ Step C: a surface of each microstructure 32 is covered with a layer of UV glue 33, as shown in FIG. 11(B) Step D: a second substrate 34 is disposed on the surface of the UV adhesive 33 to form a semi-finished product, as shown in FIG. 11(C); Step E: performing a hardening step, and irradiating the semi-finished product of the step D with ultraviolet rays to make the The UV glue 33 forms a hardening effect, so that the UV glue 33 forms a molding layer 35 corresponding to each microstructure 32, as shown in FIG. 11(D); Step F: Finally, the microstructure 32 and the molding layer 35 are mutually Separating, and forming two optical films, as shown in FIG. 11(E), wherein one optical 201007218 film has a first substrate 31, and the surface of the first substrate 31 is formed with a plurality of * convex surfaces. The microstructure 32, the other optical film has a second substrate 34, and the molding layer 35 on the surface of the second substrate 34 There are recessed into the plurality of microstructured surface 36; at the same time by the above-described method for producing an optical film produced two sheets, which process is simple. The optical film of the present invention can be applied to a backlight module. As shown in FIG. 12, the present invention is applied to an edge-lit backlight module, and the backlight module 2 includes at least one carrier 21 and one The light source device 22, the light guide plate 23, and the at least one optical film 1 are used to carry the structure of the light source 22 or the optical film 1. The light source device 22 includes at least one light source 221 and is mounted on the carrier. The light guide plate 23 is disposed on the side of the light source device 22, and the optical film 1 is disposed on the carrier 21 and disposed above the light guide plate 23. The structure of the optical film 1 may be the above The structure described in each embodiment, and the figure is taken as an example in the first embodiment; the optical film of the present invention can also be applied to a direct type backlight module, as shown in the thirteenth figure, the backlight module 2 is the same The light source device 22 is mounted on the carrier 21, and the light guide plate 23 and the optical film 1 are included in the vehicle 21, a light source device 22, a light guide plate 23, and at least one optical film 1. Sequentially disposed above the light source device 22; of course, the number of optical films may be increased as needed, and Each of the optical films may be in the same form or in different forms. For example, each of the optical films may be a microstructure having a convex surface or a concave surface, or may be a microstructure having a convex surface and a concave surface, or Further, at least one brightness enhancement film and/or a diffusion film (not shown) is disposed on the optical film to increase the brightness and/or light diffusion effect of the backlight module. The optical film of the present invention has the following advantages compared with the conventional system: 201007218 1. The optical film is applied to the backlight module to reduce the number of diaphragms used, reduce the cost, and have the function of uniformity of light and increase utilization of light. . 2. In the square test per square meter, the luminance value of the optical film can be increased by about 12% to 20% than that of the high-intensity diffusion film used in the industry, and the full-line transmittance is in the range of 55% to 60%. The range of haze is 85% to 90% 'if the brightness value is higher or lower than this range, it will decrease. 3. The microstructure distribution ratio per unit area of the optical film is 92% or more so that the overall light uniformity is 80% to 92%. ❹ As described above, the present invention provides a preferred and feasible micro-structure of a concentrating and diffusing composite optical film, and an implementation specification and a schematic diagram of the invention are provided in accordance with the law. The preferred embodiment of the present invention, the features and the like are similar, the Rayin* "f 〃 发 发 之 & & 、 、 、 、 、 ° ° ° 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者- The figure is the structure of the optical film of the first embodiment of the present invention. FIG. 3 is a schematic view showing the enlarged structure of the microstructure of the present invention. FIG. 4 is a schematic view of the structure of the optical film of the present invention. The structural schematic view of the second embodiment of the optical film of the present invention is the structural schematic of the third embodiment of the optical film of the present invention 201007218. The sixth figure is a schematic structural view of the fourth embodiment of the optical film of the present invention. 7 is a schematic structural view of a fifth embodiment of an optical film in the present invention. FIG. 8 is a view showing the structure of a sixth embodiment of the optical film of the present invention. FIG. 9 is an optical film of the present invention. Seventh reality The tenth embodiment of the structure of the embodiment is the flow block of the optical W manufacturing method of the present invention. The eleventh figure (A) to (E) are schematic diagrams of the flow structure of the present invention. The twelfth figure is a schematic view of the structure of the optical gland group H in the present invention. The thirteenth figure applied to the edge-light type backlight mode is a schematic structural view of the optical tanning group in the present invention. The core is applied to the direct-type backlight mode. ❹ [Main component representative symbol description

長軸L 短軸W 高度fi 光學膜片1 上表面111 下表面112 微結構12 201007218 弧形表面121 . 抗靜電密著層13 擴散粒子14 增光層15 載具21 光源裝置22 光源221 導光板23 ❹第一基材31 微結構32 UV 膠 33 第二基材34 成型層35 微結構36Long axis L Short axis W Height fi Optical film 1 Upper surface 111 Lower surface 112 Microstructure 12 201007218 Curved surface 121. Antistatic adhesion layer 13 Diffusion particles 14 Lightening layer 15 Carrier 21 Light source device 22 Light source 221 Light guide plate 23 ❹ first substrate 31 microstructure 32 UV glue 33 second substrate 34 molding layer 35 microstructure 36

Claims (1)

201007218 十、申請專利範園: #與 種兼具聚光及擴散複合型光學膜片之微結構,該 表=,、該主要設有一基材,該基材設有相對設置之上、下 該上表面設有複數微結構;其特徵在於: e *从微構係具有弧形表面’且該微結構之長軸及短軸 長度係介於90 ,, Γη 、〜50/ζιη,而高度則介於lOem〜35/zm,且 u •子膜片之全線透光率為55%〜60%,霧度為85%〜90%。201007218 X. Application for patent garden: #与种 has a microstructure of a concentrating and diffusing composite optical film, the table =, the main body is provided with a substrate, the substrate is provided with a relative arrangement above and below The upper surface is provided with a plurality of microstructures; wherein: e* has a curved surface from the microstructure system and the lengths of the major and minor axes of the microstructure are between 90, Γη, 〜50/ζιη, and the height is The ratio is from 10% to 60%, and the haze is from 85% to 90%. ❹ ,2如申睛專利範圍第1項所述兼具聚光及擴散複合型 光予膜片之微結構,其中’該基材之下表面進一步設有複 數微結構。 ,3、如申請專利範圍第1或2項所述兼具聚光及擴散複 合型光學膜片之微結構,其中,各微結構中進一步設有複 數擴散粒子。 4、 如申請專利範圍第3項所述兼具聚光及擴散複合型 光學膜片之微結構’其中,該擴散粒子係選自但不限於PU、 PS、PMMA、尼龍、矽膠之材質。 5、 如申請專利範圍第3項所述兼具聚光及擴散複合型 光學膜片之微結構,其中,該擴散粒子平均粒徑可以為 0.lnm〜lOOOnm。 6、 如申請專利範圍第3項所述兼具聚光及擴散複合型 光學膜片之微結構’其中’各擴散粒子係部份埋設或凸設 於微結構。 7、 如申請專利範圍第3項所述兼具聚光及擴散複合型 光學處片之微結構’其中’該擴散粒子可以為球狀。 8、 如申請專利範圍第7項所述兼具聚光及擴散複合型 201007218 體其中,該擴散粒子可以為高分子材料 光學㈣散複合型 10、 如申請專利範圍第9項所述兼:;:非球狀。 型光學膜片之微結構’其中,該擴散板j光及,散複合 料所構成之中空結構體。 、 可以為尚分子材 Ο 魯 11、 如申請專利範圍第1或2項所试|目 複合型光學膜片之微結構,其 述兼具聚光及擴散 為92%以上。 、 微結構分佈比例可以 12、 如申請專利範圍第u項所 型光學膜片之微結構,Μ :聚先及擴散複合 〇·015〜0.025之間。 妓、、、。構曲率可介於 13、 如申請專利範圍第u_ 型光學膜片之微結構,其中,各;複: 彼此平行、相鄰而不連續之方式排列構係"口長軸方向,以 14、 如申請專利範圍第12項所述兼| 型光學膜片之微結構,其中,各微社構值、聚先及擴散複S 上*冉丹甲谷微、、Ό構係沿長軸方向,以 攸此垂直、相鄰而不連續之方式排列。 15、 如申請專利範圍第丨項所述兼具聚光及擴散複合 型光學膜片之微結構,其中,該基材進一步設有一抗靜電 密著層,該抗靜電密著層係設置於該基材之下表面。 16、 如申請專利範圍第15項所述兼具聚光及擴散複合 型光學膜片之微結構,其中,該抗靜電密著層中混入擴散 粒子。 15 201007218 型光第=匕聚光及擴散複合 0. 015〜0. 025之間。 -、、·《構曲率可介於 18、 如申請專利範圍第15項所 型光學膜片之微結構,其中 :聚先及擴散複合 彼此平行、相鄰而不連續之方式排^ 長軸方向’以 19、 如申請專利範圍第15 ❹ ❹ 型光學膜片之微結構,其中,卻士先及擴散複合 彼此垂直、相鄰而不連續:方構係沿長軸方向,以 型二=:=:=具聚光及擴散複合 -增光層。W $中,該基材之下表面進-步設有 型光與膜利範圍第20項所述兼具聚光及擴散複合 5、由…構,其中,該增光層設有複數稜鏡結構。 型光範【:1項所述兼具聚光及擴散複合 、、σ構其中’各微結構可以凸出或凹入該 上表面。 、種背光模組,該背光模組至少包含有; —載具’係可供承載光源或光學膜片之結構體; 片 $源裝置’包括至少一光源裝設於載具上方或側邊; 至少一如申請專利範圍第1、2、15或20項之光學膜 該光學膜片係設於該載具上。 24、 如申請專利範圍第23項所述之背光模組,其中, 該光學膜片係設於光源裝置上方。 25、 如申請專利範圍第23項所述之背光模組,其中, 16 201007218 該背光模組更包含有導光板,其導光板設置於光源裝置側 邊或上方’而光學膜片係設於導光板上方。 26、 如申請專利範圍第23項所述之背光模組,其中, 該光學膜片上方進一步設有至少一增光膜及/或擴散膜。 27、 如申請專利範圍第23項所述之背光模組,其中, 各微結構中進一步設有複數擴散粒子。 28、 如申請專利範圍第23項所述之背光模組,其中, 各微結構分佈比例可以為92%以上。 ❹ 29、如申請專利範圍第23項所述之背光模組,其中, 該背光模組設有複數光學膜片,而各光學膜片可以均為設 有凸出表面或凹入表面之微結構。 30、 如申請專利範圍第23項所述之背光模組,其中, 該背光模組設有複數光學膜片,而各光學膜片可以為設有 凸出表面以及凹入表面之微結構。 31、 一種兼具聚光及擴散複合型光學膜片之微結構製 造方法’其至少包含有下列步驟; ❹ A、提供一第一基材; B、 於該第一基材其中一表面形成有複數微結構·, C、 於各微結構表面覆蓋一層uv膠; D、 於該UV膠表面設置一第二基材而形成一半成品; ㈣1从進行硬化步驟,將半成品照射紫外線使該uv°膠形 成作^ ’令該υν膠形成與各微結構相對應之成型廣; F、最後由微結構與該成型層相互分離,而形成有二片 光學膜片。 犯、如申請專利範圍第31項所述之兼具聚光及擴散複 201007218 合型光學膜片之微結構製造方法,其中,該第一基材可以 為PET材質。 33、如申請專利範圍第31項所述之兼具聚光及擴散複 合型光學膜片之微結構製造方法,其中一光學膜片係具有 第一基材,該第一基材表面形成有複數凸出表面之微結 構,另外一光學膜片則具有第二基材,該第二基材表面之 成型層形成有複數凹入表面之微結構。❹ 2, as described in claim 1 of the scope of the patent application, has a microstructure of a concentrating and diffusing composite photo-adhesive film, wherein the lower surface of the substrate is further provided with a plurality of microstructures. 3. The microstructure of the concentrating and diffusing composite optical film as described in claim 1 or 2, wherein the plurality of diffusing particles are further provided in each of the microstructures. 4. The microstructure of the concentrating and diffusing composite optical film as described in claim 3, wherein the diffusion particles are selected from the group consisting of, but not limited to, PU, PS, PMMA, nylon, and silicone. 5. The microstructure of the concentrating and diffusing composite optical film as described in claim 3, wherein the average particle diameter of the diffusing particles may be from 0.1 nm to 100 Å. 6. The microstructure of the concentrating and diffusing composite optical film as described in claim 3, wherein the respective diffusing particles are partially embedded or protruded from the microstructure. 7. The microstructure of a concentrating and diffusing composite optical sheet as described in claim 3, wherein the diffusing particles may be spherical. 8. As disclosed in claim 7, the concentrating and diffusing composite type 201007218, wherein the diffusing particles may be a polymer material optical (four) loose composite type 10, as described in claim 9; : Non-spherical. The microstructure of the optical film, wherein the diffusing plate j is a hollow structure composed of a light-scattering composite. It can be a molecular material Ο 11 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The microstructure distribution ratio can be as follows: 12. The microstructure of the optical film of the type U of the patent application, 聚: poly first and diffusion composite 〇·015~0.025. prostitute,,,. The curvature of the structure may be between 13, as in the patent application, the microstructure of the u_ type optical film, wherein each; complex: parallel to each other, adjacent and discontinuously arranged in a "long axis direction" to 14, For example, the microstructure of the optical film of the type [12] of the patent application scope, wherein each micro-construction value, the poly-precipitation and the diffusion complex S are in the direction of the long axis, and This is arranged vertically, adjacently and discontinuously. 15. The microstructure of a concentrating and diffusing composite optical film as described in the scope of claim 2, wherein the substrate further comprises an antistatic adhesion layer, wherein the antistatic adhesion layer is disposed on the substrate The surface below the substrate. 16. The microstructure of a concentrating and diffusing composite optical film according to the fifteenth aspect of the patent application, wherein the antistatic adhesion layer is mixed with diffusion particles. 15 201007218型光第=匕聚光和扩散复合。 0. 015~0. 025 between. -, · · "The curvature can be between 18, as in the patent application of the fifteenth type of optical film microstructure, wherein: poly first and diffusion composite parallel to each other, adjacent and discontinuous way to the long axis direction '19, as in the patent application, the 15th ❹ 光学 type optical film microstructure, in which the shixian and diffusion composites are perpendicular to each other, adjacent and discontinuous: the keel is along the long axis, and the type II =: =: = with concentrating and diffusing composite - brightness enhancement layer. In W $ , the lower surface of the substrate is provided with a type of light and a film and a diffusion composite 5 according to the 20th item, wherein the brightness enhancement layer is provided with a plurality of structures. . The type of light can be convex or concave, and the microstructure can be convex or concave on the upper surface. a backlight module, the backlight module includes at least; a carrier' is a structure for carrying a light source or an optical film; and a sheet source device includes at least one light source mounted on the side or the side of the carrier; At least as in the optical film of claim 1, 2, 15 or 20, the optical film is attached to the carrier. The backlight module of claim 23, wherein the optical film is disposed above the light source device. The backlight module of claim 23, wherein the backlight module further comprises a light guide plate, the light guide plate is disposed at a side or above the light source device, and the optical film is disposed on the guide Above the light board. The backlight module of claim 23, wherein the optical film is further provided with at least one brightness enhancement film and/or a diffusion film. The backlight module of claim 23, wherein the plurality of diffusion particles are further disposed in each of the microstructures. 28. The backlight module of claim 23, wherein the microstructure distribution ratio may be 92% or more. The backlight module of claim 23, wherein the backlight module is provided with a plurality of optical films, and each of the optical films may be a microstructure having a convex surface or a concave surface. . The backlight module of claim 23, wherein the backlight module is provided with a plurality of optical films, and each of the optical films may be a microstructure having a convex surface and a concave surface. 31. A microstructure manufacturing method for a concentrating and diffusing composite optical film, comprising at least the following steps; ❹ A, providing a first substrate; B, forming a surface of the first substrate a plurality of microstructures, C, a layer of uv glue on the surface of each microstructure; D, a second substrate is formed on the surface of the UV glue to form a semi-finished product; (4) 1 from the hardening step, the semi-finished product is irradiated with ultraviolet rays to make the uv glue Forming the mold to form the υν glue to form a plurality of moldings corresponding to the respective microstructures; F, finally separating the microstructures from the molding layer to form two optical films. The micro-structure manufacturing method of the concentrating and diffusing composite 201007218 optical film according to claim 31, wherein the first substrate may be made of PET. 33. The microstructure manufacturing method of the concentrating and diffusing composite optical film according to claim 31, wherein the optical film has a first substrate, and the first substrate has a plurality of surfaces formed thereon. The microstructure of the convex surface, the other optical film has a second substrate, and the molding layer of the surface of the second substrate is formed with a plurality of concave surface microstructures. 1818
TW97131074A 2008-08-15 2008-08-15 Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module TW201007218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97131074A TW201007218A (en) 2008-08-15 2008-08-15 Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97131074A TW201007218A (en) 2008-08-15 2008-08-15 Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module

Publications (1)

Publication Number Publication Date
TW201007218A true TW201007218A (en) 2010-02-16

Family

ID=44826962

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131074A TW201007218A (en) 2008-08-15 2008-08-15 Micro-structure with a light-converging and light-diffusing hybrid optical film, manufacturing method thereof, and backlight module

Country Status (1)

Country Link
TW (1) TW201007218A (en)

Similar Documents

Publication Publication Date Title
JP5379162B2 (en) Optical sheet
TWI408405B (en) Optical film composite
TWI406014B (en) Composite optical film
JP5554885B2 (en) LCD module
TWI460499B (en) An optical element
US7740945B2 (en) Brightness enhancement film
KR101781206B1 (en) Microlens optical sheet, and backlight unit and liquid crystal display using same
KR101450020B1 (en) Diffusion sheet and back lighting unit using same
JP5937357B2 (en) Light diffusing sheet and backlight using the same
KR20090088438A (en) Lens sheet, surface light source device and liquid crystal display device
JP2008102497A (en) Optical film
JP2007065160A (en) Substrate film for optical sheet, optical sheet and backlight unit
TWI572949B (en) Side light type backlight device and light diffusion component
US7776424B2 (en) Optical sheet
CN101006307A (en) Direct backlight device
CN204314492U (en) A kind of diffusion brightening film
CN101738649A (en) Composite optical film structure with multiple coatings
KR20130036205A (en) Liquid crystal display device
CN101435884A (en) Diffusing plate and backlight module unit using the same
CN103389531A (en) Reflecting film manufacturing method and backlight module
US20070126074A1 (en) Optical sheet
WO2018225463A1 (en) Upper-side light diffuser sheet and backlight unit equipped with same
JP2007179035A (en) Diffusion sheet and backlight unit using the same
TW201015159A (en) Structure for multi-layer coating composite optical film
TWI594022B (en) Edge type backlight device and light diffusion member