TW201004259A - Method and apparatus for high rate data transmission in wireless communication - Google Patents

Method and apparatus for high rate data transmission in wireless communication Download PDF

Info

Publication number
TW201004259A
TW201004259A TW98130976A TW98130976A TW201004259A TW 201004259 A TW201004259 A TW 201004259A TW 98130976 A TW98130976 A TW 98130976A TW 98130976 A TW98130976 A TW 98130976A TW 201004259 A TW201004259 A TW 201004259A
Authority
TW
Taiwan
Prior art keywords
carriers
carrier
base station
data
terminal
Prior art date
Application number
TW98130976A
Other languages
Chinese (zh)
Other versions
TWI510044B (en
Inventor
Aleksandar Damnjanovic
Joseph P Odenwalder
Stein Arne Lundby
yong-bin Wei
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201004259A publication Critical patent/TW201004259A/en
Application granted granted Critical
Publication of TWI510044B publication Critical patent/TWI510044B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Techniques for utilizing multiple carriers to substantially improve transmission capacity are described. For multi-carrier operation, a terminal receives an assignment of multiple forward link (FL) carriers and at least one reverse link (RL) carrier. The carriers may be arranged in at least one group, with each group including at least one FL carrier and one RL carrier. The terminal may receive packets on the FL carrier(s) in each group and may send acknowledgements for the received packets via the RL carrier in that group. The terminal may send channel quality indication (CQI) reports for the FL carrier(s) in each group via the RL carrier in that group. The terminal may also transmit data on the RL carrier(s). The terminal may send designated RL signaling (e.g., to originate a call) on a primary RL carrier and may receive designated FL signaling (e.g., for call setup) on a primary FL carrier.

Description

201004259 六、發明說明: 【發明所屬之技術領域】 本揭示内容大體而言係關於通信,且更具體言之係關於 用於高速率資料傳輸之技術。 【先前技術】 廣泛佈署無線通彳§糸統以提供諸如語音、封包資料、廣 播、訊息等各種通信服務。此等系統可為能夠支援多個使 用者藉由共用可用系統資源進行通信之多向近接系統。此 種多向近接系統之實例包括分碼多工存取(CDMA)系統、 劃時多向近接(TDMA)系統' 分時多工存取(FDMA)系統及 正交分時多工存取(OFDMA)系統。 無線通信系統之資料用途由於增加之使用者數目以及具 有更高資料要求之新應用的出現而連續增長 '然而,給定 系統通常具有有限之傳輸容量,其係由系統設計決定。常 藉由佈署新一代或新設計之系統來實現傳輸容量的實質增 加。舉例而言,蜂巢系統中第二代(2G)至第三代(3G)的^ 渡提供資料速率及特徵之實質改良。然而,新系統佈署係 資本密集的且經常係複雜的。 因此,此項技術中需要以有效且節約成本之方式改良無 線通信系統傳輸容量之技術。 【發明内容】 本文中描述在前向及/或反向鏈路上利用多個載波來顯 著改良傳輸容量之技術。此等技術可用於諸如Cdma2000系 統之各種無線通信系統。此等技術可對設計用於單載波操 14319I.doc 201004259 作之現有頻道結構進行相對較小改變來提供各種益處。 . 根據本發明一實施例,描述一裝置,該裝置包括至少一 4理器及一記憶體。該(該等)處理器接收多個前向鏈路(FL) 載波及至少一反向鏈路(RL)載波之一指派。該(該等)處理 器隨後在多個FL載波之一或多者上接收資料傳輸。 根據另一實施例,提供一方法,其中接收多個凡載波及 至少一 RL載波的一指派。其後在多個几載波之一或多者 上接收資料傳輸。 C ' 根據又一實施例,描述一裝置,該裝置包括:用於接收 多個FL載波及至少一尺[載波的一指派之構件;及用於在 多個FL载波之一或多者上接收資料傳輸之構件。 根據又一實施例,描述一裝置,該裝置包括至少一處理 器及一記憶體。該(該等)處理器獲得對在多個資料頻道(例 如F-PDCH)上接收之封包之確認,使用指派給每一資料頻 道之正交碼來頻道化該資料頻道之確認以產生該資料頻道 〇 之一符號序列,且基於多個資料頻道之符號序列產生一確 認頻道(例如’ R-ACKCH)之調變符號。 根據又一實施例’提供一方法,其中獲得對在多個資料 頻道上接收之封包之確認。使用指派給每一資料頻道之正 交碼來頻道化該資料頻道之確認以產生該資料頻道之一符 號序列。基於多個資料頻道之符號序列產生一確認頻道之 調變符號。 根據又一實施例,描述一裝置,該裝置包括:用於獲得 對在多個資料頻道上接收之封包的確認之構件;用於使用 143191.doc 201004259 指派給每一資料頻道之正交碼來頻道化該資料頻道之確認 以產生該貧料頻道之一付说序列的構件;及用於基於多個 資料頻道之符號序列產生一確認頻道之調變符號之構件。 根據又一實施例,描述一裝置,該裝置包括至少一處理 器及一記憶體。該(該等)處理器獲得多個FL載波之完全頻 道品質指示(CQI)報告,每一完全CQI報告指示一FL載波之 已接收信號品質。該(該等)處理器在一 CQI頻道(例如,R-CQICH)上在同時間間隔中發送多個fl載波之完全CQI報 告。 根據又一實施例’提供一方法’其中獲得多個FL載波之 完全CQI報告’每一CQI報告指示一FL載波之已接收信號 品質。在一 CQI頻道上在不同時間間隔中發送多個FL載波 之該等完全CQI報告。 根據又一實施例,描述一裝置,該裝置包括:用於獲得 多個FL載波之完全CQI報告之構件,每一完全cq〗報告指 示一 FL載波之已接收信號品質;及用於在一匚卩〗頻道上在 不同時間間隔中發送多個FL載波之該等完全CQI報告之構 件。 根據又一實施例,描述一裝置,該裝置包括至少一處理 器及一記憶體。該(該等)處理器在一允許傳輸閘極導頻之 控制保持模式中運作,當在該控制保持模式中時接收一在 如向鏈路上發送之資料頻道(例如,p_pDCH),若沒有其它 t輸正在一反向鏈路上發送則在該反向鏈路上傳輸一閘控 導頻,且若該反向鏈路上正發送一傳輸則在該反向鏈路上 H3191.doc -6 - 201004259 傳輸一完全導頻。 根據又-實施例,提供-方法,其中—終端機係在一允 許傳輸閘極導頻之控制料模式巾運作。#在該控制保持 模式中時減在-前向鏈路上發送之諸頻道。若沒有其 它傳輸正在-反向鏈路上發送則在該反向鏈路上傳輸一閑 控導頻。若該反向鏈路上正發送_傳輸則在該反向鍵路上 傳輪一完全導頻。201004259 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to techniques for high rate data transmission. [Prior Art] Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, broadcast, and messaging. Such systems may be multi-directional proximity systems capable of supporting multiple users to communicate by sharing available system resources. Examples of such multi-directional proximity systems include code division multiplex access (CDMA) systems, timed multidirectional proximity (TDMA) systems, time division multiplex access (FDMA) systems, and orthogonal time division multiplex access ( OFDMA) system. The data usage of wireless communication systems continues to grow due to the increased number of users and the emergence of new applications with higher data requirements. However, given systems typically have limited transmission capacity, which is determined by system design. A substantial increase in transmission capacity is often achieved by deploying a new generation or new design system. For example, the second generation (2G) to the third generation (3G) in the honeycomb system provides substantial improvements in data rates and characteristics. However, new system deployments are capital intensive and often complex. Therefore, there is a need in the art for techniques to improve the transmission capacity of wireless communication systems in an efficient and cost effective manner. SUMMARY OF THE INVENTION Techniques for utilizing multiple carriers on a forward and/or reverse link to significantly improve transmission capacity are described herein. These techniques are applicable to various wireless communication systems such as the Cdma2000 system. These techniques provide various benefits to the relatively small changes to the existing channel structure designed for single carrier operation 14319I.doc 201004259. In accordance with an embodiment of the invention, a device is described that includes at least one processor and a memory. The (the) processor receives one of a plurality of forward link (FL) carriers and at least one reverse link (RL) carrier. The (the) processor then receives the data transmission on one or more of the plurality of FL carriers. In accordance with another embodiment, a method is provided in which a plurality of WTRUs and an assignment of at least one RL carrier are received. Thereafter, data transmission is received on one or more of a plurality of carriers. C ' according to yet another embodiment, an apparatus is described, the apparatus comprising: means for receiving a plurality of FL carriers and at least one ft [an assignment of a carrier; and for receiving on one or more of a plurality of FL carriers The component of data transmission. According to yet another embodiment, a device is described that includes at least one processor and a memory. The processor obtains an acknowledgment of packets received on a plurality of data channels (e.g., F-PDCH), and uses an orthogonal code assigned to each data channel to channel the acknowledgment of the data channel to generate the data. A channel sequence of one of the channels, and a modulation symbol based on a plurality of data channels produces a modulation channel (eg, 'R-ACKCH). According to yet another embodiment, a method is provided in which an acknowledgment of packets received on a plurality of data channels is obtained. The confirmation of the data channel is channelized using the orthogonal code assigned to each data channel to generate a sequence of symbols for the data channel. A modulation symbol of a confirmed channel is generated based on a sequence of symbols of a plurality of data channels. According to yet another embodiment, an apparatus is described, the apparatus comprising: means for obtaining a confirmation of a packet received on a plurality of data channels; for using an orthogonal code assigned to each data channel using 143191.doc 201004259 Channelizing the confirmation of the data channel to generate a component of the sequence of the poor channel; and means for generating a modulation symbol for the confirmation channel based on the sequence of symbols of the plurality of data channels. According to yet another embodiment, a device is described that includes at least one processor and a memory. The (the) processor obtains a full channel quality indication (CQI) report for a plurality of FL carriers, each full CQI report indicating the received signal quality of an FL carrier. The (these) processors transmit a full CQI report of a plurality of fl carriers in a simultaneous interval on a CQI channel (e.g., R-CQICH). According to yet another embodiment, a method is provided in which a full CQI report for a plurality of FL carriers is obtained. Each CQI report indicates the received signal quality of an FL carrier. These full CQI reports for multiple FL carriers are transmitted in different time intervals on a CQI channel. According to yet another embodiment, an apparatus is described, the apparatus comprising: means for obtaining a full CQI report for a plurality of FL carriers, each full cq report indicating a received signal quality of an FL carrier; The means for transmitting the complete CQI reports of the plurality of FL carriers in different time intervals on the channel. According to yet another embodiment, a device is described that includes at least one processor and a memory. The (these) processors operate in a control hold mode that allows transmission of the gate pilots, and when in the control hold mode, receive a data channel (e.g., p_pDCH) that is transmitted on the link, if no other The t-transmission is transmitted on a reverse link, and a gating pilot is transmitted on the reverse link, and if a transmission is being transmitted on the reverse link, H3191.doc -6 - 201004259 transmits one on the reverse link. Full pilot. According to yet another embodiment, a method is provided wherein the terminal device operates in a control mode mode that allows transmission of the gate pilot. #In the control hold mode, the channels transmitted on the forward link are decremented. If there is no other transmission on the reverse link, a idle pilot is transmitted on the reverse link. If the transmission is being transmitted on the reverse link, a full pilot is transmitted on the reverse key.

根據又-實施例,描述—裝置,該裝置包括:用於在一 允許傳輸閘極導頻之控龍龍式中運作之構件;用於當 在該彳工制保持模式中時接收在該前向鏈路上發送之一資料 頻道之構件’用於若沒有其它傳輸正在—反向鏈路上發送 則在該反向鏈路上傳輸一閘控導頻之構件;及若該反向鏈 路上正發送一傳輸則在該反向鏈路上傳輸一完全導頻之構 件。 以下進一步詳細描述本發明之各種態樣及實施例。 【實施方式】 。本文中使用詞語「例示性」來表示「充當一實例、例子 或兒月」。本文中描述為「例示性」之任一實施例不一定 理解為比其它實施例更佳或有利。 圖1展不具有多個基地台110及多個終端機120之無線通 L系、’先1 00。基地台一般係與終端機通信之固定台且亦 可%為存取點、節點B、基地收發器子系統(BTS)及/或一 些其它術語。每—基地台110為一特定地理區域102提供通 L覆I。術語"小區”視使用該術語之情形而定可指基地台 143191.d, 201004259 及/或其覆蓋區域。為故肖多^ + 區物i成二,可將一基地台覆蓋 及104 域’例如三個較小區域_、軸 C術語「扇區」視使用該術語 —軔,丨^ 】Q疋h形而定可指服務 、區域之固定台及/或並霜荖F A 吃而‘ /、復盍£域。對於經分區之小 。°而3 ,基地台通常服務該小區 之億所有扇區。本文中描述 之傅輸技術可用於具有經分 分^沾,r 刀匕的小^之糸統以及具有未經 刀£的小區之系統。為簡單 美 ” 在以下描述令,術語” 固定台。 □疋口以及服務一小區之 終端機120通常分散於整個夺 糸統上,且母一終端機可為 〇行動終端機。終端機亦可稱為行動台、使用者裝備 或一些其它術語。終端機可為蜂巢式電話、個人數位助理 (PDA)、無線設備、手持式設備、無線數據機等等。終端 機可在任—給定時刻在前向及/或反向鏈路上與零個、、一 個或多個基地台通信。前向鏈路(或下行鏈路)係指自基地 台至終端機之通信鏈路’且反向鍵路(或上行鍵路)係指自 終端機至基地台之通信鏈路。 系統控制器130搞接至基地台11〇並為此等基地台提供協 調及控制。系統控制器130可為單個網路實體或網路實體 之集合。 、a 本文中描述之傳輪技術可用於諸如Cdma、TDMA、 FDMA及OFDMA系統之各種無線通信系統。cdma系統可 實施一或多個無線電技術,諸如cdma2〇〇〇、寬頻 CDMA(W- CDMA)等等。edma2_涵蓋 IS_2_、is_85/、、 143191.doc 201004259 IS-95及其它標準。TDMA系統可實施諸如全球行動通信系 統(GSM)之無線電技術。此等各種無線電技術及標準在此 項技術中為人所熟知。W-CDMA及GSM描述於來自名為 「3rd Generation Partnership Project」(3GPP)之協會之文 獻中。cdma2000描述於來自名為 「3rd Generation Partnership Project 2」(3GPP2)之協會之文獻中。3GPP及 3GPP2文獻係公眾可用的。為清楚起見,以下對於 cdma2000系統具體描述該等傳輸技術,cdma2000系統可 為”CDMA lx-EVDV”、"CDMA lx”、"CDMA lx-EVDO"及 / 或「1 x」系統。 cdma2000定義支援前向及反向鏈路上之資料傳輸的各種 資料及控制頻道。表1為該等前向及反向鏈路列出一些資 料及控制頻道並為每一頻道提供簡短描述。在本文之描述 中,前綴"F-"表示前向鏈路之頻道,且前綴「R-」表示反 向鏈路之頻道。該等頻道詳細描述於「TIA/EIA IS-2000.2 Physical Layer Standard for cdma2000 Spread Spectrum Systems, Release D」(下文中為 TIA/EIA IS-2000.2)及 「TIA/EIA IS-2000.3 Medium Access Control (MAC) Standard for cdma2000 Spread Spectrum Systems, Release D」(下文中為TIA/EIA IS-2000.3)中,兩者皆來自通信工 業協會,日期為2004年且係公眾可用的。cdma2000版本D 亦稱為IS-2000版本D,或簡稱為"Rev D"。該等資料及控 制頻道亦描述於cdma2000之其它標準文獻中。 143191.doc 201004259 表1 鏈路 頻道 --- 描述 前向 鍵路 F-PDCH 前向封包資料頻道-用來以劃時多工(TDM)方式發送封包資料至 端機 F-PDCCH 前向封包資料控制頻道-載運相關F-PDCH之控制資料 F-ACKCH 前向確認頻道-載運在R-PDCH上接收之傳輸之回饋 F-GCH 前向允許頻道-由基地台用來允許終端機在該R-PDCH上傳輸 反向 鏈路 R-PDCH 反向封包資料頻道-用來發送封包資料至基地台 R-ACKCH 反向確認頻道-載運在F-PDCH上接收之傳輸之回饋 R-CQICH R-PICH 反向頻道品質指示頻道-載運前向鏈路之頻道品質量測 反向導頻頻道-載運反向鏈路上之導頻 R-REQCH 反向請求頻道-由終端機用來為R_PDCH請求更高資料速率 一般而言,F-PDCH、F-PDCCH、R-ACKCH及 R-CQICH 用於前向鏈路上之資料傳輸。r_PDCH、R-REQCH、R-PICH、F-ACKCH及F-GCH用於反向鍵路上之資料傳輸。 一般而言’每一頻道可載運控制資訊、資料、導頻、其它 傳輸或其任何組合。 圖2展示cdma2000中之前向鏈路上一例示性資料傳輸。 基地台具有待發送至終端機之資料封包。基地台處理每一 資料封包以產生已編碼封包並進一步將已編碼封包分割成 多個子封包。每一子封包含有足夠資訊以允許終端機在良 好頻道狀態下解碼並恢復該封包。 基地台在開始於時間T!的兩個時槽中在f_pdcH上傳輸 封包A之第一子封包A1。在Cdma2000中一時槽具有1.25毫 秒(ms)持續時間。該基地台亦在F-PDCCH上傳輸一指示F- 143191.doc 201004259 PDCH上之傳輸係至終端機之2時槽訊息。終端機接收並解 . 碼子封包A1,確定封包A遭錯誤解碼’且在時間丁2在R- . ACKCH上發送否定確認(NAK)。在此實例中,ACK延遲為 1時槽。基地台在開始於時間τ3之四個時槽中在F-PDCH上 傳輸封包Β之第一子封包Β1。基地台亦在F-PDCCH上傳輸 一指示F-PDCH上之傳輸係至該終端機的4時槽訊息。終端 機接收並解碼子封包Β 1,確定封包Β得以正確解碼’且在 時間Τ4在R-ACKCH上發送確認(ACK)。基地台在開始於時 () 間Τ5之一時槽中在F-PDCH上傳輸封包Α之第二子封包Α2。 終端機接收子封包A2,解碼子封包A1及A2,確定封包A遭 錯誤解碼,且在時間T6在R-ACKCH上發送NAK。 終端機亦週期性地量測可潛在地傳輸資料至該終端機的 基地台之頻道品質。如下文所描述,終端機識別最佳基地 台並在R-CQICH上發送完全及差動(Diff)頻道品質指示 (CQI)報告。CQI報告用以選擇最適宜之基地台來發送資料 〇 至該終端機以及為資料傳輸選擇適宜之資料速率。 在cdma2000中,基地台使用偽隨機數(PN)序列以1.2288 百萬碼片/秒(Mcps)之速率對資料進行展頻。基地台用已展 頻資料來調變載波信號並產生具有1.2288 MHz頻寬之射頻 (RF)調變信號。基地台隨後在前向鏈路上以特殊中心頻率 傳輸該RF調變信號。因為用資料調變單個載波,所以此稱 為單載波CDMA。前向鏈路之容量由可在1.2288 MHz RF 調變信號中可靠發送之資料位元數目決定。在反向鏈路 上,終端機亦使用PN序列以1,2288 Mcps之速率對資料進 143191.doc 201004259 行展頻並以特殊載波頻率傳輸已展頻資料。反向鏈路之容 量由可在指派給該終端機之資料頻道上可靠發送之資料位 兀> 數目決定。 在一態樣中,在一鏈路上利用多個載波來達成該鏈路之 顯著容量改良。在一實施例中’將1.2288 Mcps之碼片速 率用於多個載波之每一者,該碼片速率與用於單載波 CDMA之碼片速率相同。此允許為單載波cdmA設計之硬 體亦支援多載波CDMA。 圖3展示一多載波結構3〇〇的一實施例之圖。在此實施例 中,前向鏈路上有K個載波可用,且反向鏈路上有μ個載 波可用’其中K>1且Μ21。前向鏈路(FL)載波為前向鏈路 上之載波’且反向鏈路(RL)載波為反向鏈路上之載波。載 波亦可稱為RF頻道、CDMA頻道等等。κ個FL載波及Μ個 RL載波排列於G個組中’其中G21。一般而言,可形成任 何數目之載波組’且每一組可包括任何數目之FL載波及任 何數目之RL載波。 在圖3中所示之實施例中,每一載波組包括至少一 fl載 波及一 RL載波’使得G=M且Κ2Μ。如圖3中所示,載波組 1包括FL載波1至載波1,載波組2包括FL載波Ν! + 1 至Ν〗+Ν2及RL載波2 ’等等,且載波組μ包括FL載波Κ-NM+1至K及RL載波M。一般而言,]^1至>^可相同或不 同。在一實施例中,對於m=l,…,μ,Nm$4,且每一載波 組中高達四個FL載波可與單個rl載波相關聯。 多載波結構3 00支援各種系統組態。具有多個fl載波及 143191.doc -12- 201004259 多個RL載波之組態可用於前向及反向鏈路兩者上之高速率 資料傳輸。具有多個FL載波及單個RL載波之組態可用於 ' 前向鏈路上之高速率資料傳輸。具有單個FL載波及多個 RL載波之組態可用於反向鏈路上之高速率資料傳輸。可基 於諸如可用系統資源、資料要求、頻道狀態等等之各種因 素為終端機選擇適宜組態。 在一實施例中,FL及RL載波具有不同重要性。對於每 〇 一組而言,該組中一(例如,第一載波被指定為組几主 要波,且該組中每一剩餘FL載波(若存在)被指定為組^^輔 助波。K個FL載波中的一(例如,第一)孔載波被指定為主 要FL載波。同樣地,河個尺!^載波中的一(例如,第一识乙載 波被指定為主要RL載波。 可向-終端機指派任一數目之几載波,該等凡載波之 一者被指定為該終端機之主要孔載波。亦可向終端機指派 任-數目之RL載波’肖等RL載波之_者被指^為該終端 〇 機之主要1^載波。可向不同終端機指派FL及RL載波之不 同集σ °此外’ p遺著時間流逝可基於諸如上文注明之因素 的各種因素向給定終端機指派F L及R L載波之不同集合/、 在一實施例中,終端機將主要FL及RL載波用於以下功 能: •在主要RL載波上發出_ D乎叫, •在呼叫設定_在主要FL載波上接收信號, •在主要FL載波上執行層3信號交遞程序,及 •基於主要FL載波桃傳輸選擇—服務基地台。 143191.doc -13· 201004259 在一實施例中,每一載波組中之組FL主要波控制該組中 之RL載波。組FL主要波可用於以下功能: .發送R-PICH之功率控制, •發送R-PDCH之速率控制, •發送反向鏈路傳輸之確認(在F-ACKCH上), •發送MAC控制訊息(在F-PDCCH上)至終端機,及 •發送前向允許訊息(在F-GCH上)至終端機。 cdma2000版本D中之資料及控制頻道經設計用於單個載 波上之資料傳輸。可修改該等控制頻道中之一些以支援多 個載波上之資料傳輸。該修改可使得(1)經修改之控制頻道 與cdma2000版本D中之控制頻道向後相容且(2)可容易地以 例如軟體及/或韌體來實施新改變,此可降低對硬體設計 之影響。 基地台可在任一數目之載波組中之任一數目之FL載波上 的前向鏈路上,向終端機傳輸資料。在一實施例中,每一 組中之RL載波載運支援該組中所有FL載波之R-ACKCH及 R-CQICH。在此實施例中,R-ACKCH載運對該組中所有 FL載波於F-PDCH上接收之封包的確認。According to yet another embodiment, a device is described, the device comprising: means for operating in a control dragon that allows transmission of a pilot pilot; for receiving in the foreclosed mode The means for transmitting one of the data channels to the link 'for transmitting if there is no other transmission is on the reverse link, transmitting a gating pilot on the reverse link; and if the reverse link is transmitting a The transmission then transmits a component of a complete pilot on the reverse link. Various aspects and embodiments of the invention are described in further detail below. [Embodiment] The term "exemplary" is used herein to mean "serving as an instance, instance, or child." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous. Fig. 1 shows a wireless communication system L and a first 100 that do not have a plurality of base stations 110 and a plurality of terminal units 120. A base station is typically a fixed station that communicates with the terminal and may also be an access point, a Node B, a Base Transceiver Subsystem (BTS), and/or some other terminology. Each base station 110 provides a specific geographic area 102 with a coverage I. The term "cell" may refer to base station 143191.d, 201004259 and/or its coverage area depending on the terminology used. For this reason, the number of zones is 2, and a base station coverage and 104 domain can be used. 'For example, three smaller areas _, axis C terms "sectors" depending on the use of the term - 轫, 丨 ^ 】 Q疋h shape may refer to service, regional fixed stations and / or frost 荖 FA eat and ' /, 盍 盍 域 domain. For small partitions. °, 3, the base station usually serves all sectors of the community. The transfer technique described herein can be used in systems with small divisions, r-knife, and systems with unknocked cells. For the sake of simplicity, the term "fixed table" is used in the following description. □ 疋 以及 and the terminal 120 serving a cell are usually distributed over the entire system, and the parent terminal can be a mobile terminal. A terminal can also be called a mobile station, user equipment, or some other terminology. The terminal can be a cellular phone, a personal digital assistant (PDA), a wireless device, a handheld device, a wireless data device, and the like. The terminal can communicate with zero, one or more base stations on the forward and/or reverse link at any given time. The forward link (or downlink) refers to the communication link from the base station to the terminal and the reverse link (or uplink) refers to the communication link from the terminal to the base station. The system controller 130 interfaces to the base station 11 and provides coordination and control for such base stations. System controller 130 can be a collection of single network entities or network entities. , a The routing technology described herein can be used in various wireless communication systems such as Cdma, TDMA, FDMA, and OFDMA systems. The cdma system can implement one or more radio technologies, such as cdma2, wideband CDMA (W-CDMA), and the like. Edma2_ covers IS_2_, is_85/, 143191.doc 201004259 IS-95 and other standards. A TDMA system can implement a radio technology such as the Global System for Mobile Communications (GSM). These various radio technologies and standards are well known in the art. W-CDMA and GSM are described in a document from an association called "3rd Generation Partnership Project" (3GPP). Cdma2000 is described in the literature from an association named "3rd Generation Partnership Project 2" (3GPP2). The 3GPP and 3GPP2 documents are publicly available. For clarity, the following describes the transmission techniques specifically for the cdma2000 system, which may be "CDMA lx-EVDV", "CDMA lx", "CDMA lx-EVDO" and / or "1 x" systems. Cdma2000 defines various data and control channels that support data transmission on the forward and reverse links. Table 1 lists some of the data and control channels for these forward and reverse links and provides a short description for each channel. In the description of this document, the prefix "F-" indicates the channel of the forward link, and the prefix "R-" indicates the channel of the reverse link. These channels are described in detail in "TIA/EIA IS-2000.2 Physical Layer Standard for cdma2000 Spread Spectrum Systems, Release D" (hereinafter TIA/EIA IS-2000.2) and "TIA/EIA IS-2000.3 Medium Access Control (MAC) Standard for cdma2000 Spread Spectrum Systems, Release D (hereafter TIA/EIA IS-2000.3), both from the Communications Industry Association, dated 2004 and available to the public. Cdma2000 version D is also known as IS-2000 version D, or simply ""Rev D". These data and control channels are also described in other standard documents of cdma2000. 143191.doc 201004259 Table 1 Link Channels --- Description Forward Keyway F-PDCH Forward Packet Data Channel - Used to send packet data to the F-PDCCH forward packet data in time-multiplexed (TDM) mode Control Channel - Control Data for Carrying Related F-PDCH F-ACKCH Forward Acknowledgment Channel - Carrying Feedback for Transmission Received on R-PDCH F-GCH Forward Allowed Channel - Used by the base station to allow the terminal to be in the R- Reverse link R-PDCH on the PDCH Reverse packet data channel - used to send packet data to the base station R-ACKCH Reverse acknowledgement channel - Transport feedback received on the F-PDCH Receiver R-CQICH R-PICH To the channel quality indicator channel - carry the forward link channel quality reversal pilot channel - carry the pilot on the reverse link R-REQCH reverse request channel - used by the terminal to request a higher data rate for the R_PDCH For example, F-PDCH, F-PDCCH, R-ACKCH, and R-CQICH are used for data transmission on the forward link. r_PDCH, R-REQCH, R-PICH, F-ACKCH, and F-GCH are used for data transmission on the reverse key path. In general, 'each channel can carry control information, data, pilots, other transmissions, or any combination thereof. Figure 2 shows an exemplary data transfer on the forward link in cdma2000. The base station has a data packet to be sent to the terminal. The base station processes each data packet to produce an encoded packet and further splits the encoded packet into multiple sub-packets. Each sub-package contains enough information to allow the terminal to decode and recover the packet in a good channel state. The base station transmits the first sub-packet A1 of packet A on f_pdcH in two time slots starting at time T!. The one-time slot in Cdma2000 has a duration of 1.25 milliseconds (ms). The base station also transmits a 2-time slot message indicating the transmission system on the F-143191.doc 201004259 PDCH to the terminal on the F-PDCCH. The terminal receives and resolves the code packet A1, determines that packet A is erroneously decoded' and sends a negative acknowledgment (NAK) on time R2. ACKCH. In this example, the ACK delay is 1 slot. The base station transmits the first sub-packet Β1 of the packet on the F-PDCH in four time slots starting at time τ3. The base station also transmits on the F-PDCCH a 4-time slot message indicating the transmission on the F-PDCH to the terminal. The terminal receives and decodes the sub-packet Β 1, determines that the packet is correctly decoded' and sends an acknowledgment (ACK) on the R-ACKCH at time Τ4. The base station transmits the second sub-packet Α2 of the packet on the F-PDCH at the beginning of the time interval Τ5. The terminal receives the sub-packet A2, decodes the sub-packets A1 and A2, determines that packet A is erroneously decoded, and transmits the NAK on the R-ACKCH at time T6. The terminal also periodically measures the channel quality of the base station that can potentially transmit data to the terminal. As described below, the terminal identifies the best base station and transmits a full and differential (Diff) channel quality indication (CQI) report on the R-CQICH. The CQI report is used to select the most suitable base station to send data to the terminal and to select the appropriate data rate for data transmission. In cdma2000, the base station uses a pseudo-random number (PN) sequence to spread the data at a rate of 1.2288 million chips per second (Mcps). The base station uses the spread spectrum data to modulate the carrier signal and produce a radio frequency (RF) modulated signal with a bandwidth of 1.2288 MHz. The base station then transmits the RF modulation signal at a particular center frequency on the forward link. Since a single carrier is modulated with data, this is called single carrier CDMA. The capacity of the forward link is determined by the number of data bits that can be reliably transmitted in the 1.2288 MHz RF modulated signal. On the reverse link, the terminal also uses the PN sequence to spread the data at a rate of 1,2288 Mcps and transmit the spread spectrum data at a special carrier frequency. The capacity of the reverse link is determined by the number of data bits that can be reliably transmitted on the data channel assigned to the terminal. In one aspect, multiple carriers are utilized on a link to achieve significant capacity improvements for the link. In one embodiment, a chip rate of 1.2288 Mcps is used for each of a plurality of carriers, the chip rate being the same as the chip rate for single carrier CDMA. This hardware, which is designed for single-carrier cdmA, also supports multi-carrier CDMA. 3 shows a diagram of an embodiment of a multi-carrier structure 3A. In this embodiment, there are K carriers available on the forward link and μ carriers are available on the reverse link where K>1 and Μ21. The forward link (FL) carrier is the carrier on the forward link and the reverse link (RL) carrier is the carrier on the reverse link. Carrier waves can also be referred to as RF channels, CDMA channels, and the like. κ FL carriers and RL RL carriers are arranged in G groups 'where G21. In general, any number of carrier groups can be formed and each group can include any number of FL carriers and any number of RL carriers. In the embodiment shown in Figure 3, each carrier group includes at least one fl carrier and an RL carrier ' such that G = M and Κ 2 Μ. As shown in FIG. 3, carrier group 1 includes FL carrier 1 to carrier 1, carrier group 2 includes FL carrier Ν! + 1 to Ν Ν + Ν 2 and RL carrier 2 ', etc., and carrier group μ includes FL carrier Κ - NM+1 to K and RL carrier M. In general, ]^1 to >^ may be the same or different. In one embodiment, for m = 1, ..., μ, Nm $ 4, and up to four FL carriers in each carrier group can be associated with a single rl carrier. The multi-carrier architecture 300 supports various system configurations. Configuration with multiple fl carriers and 143191.doc -12- 201004259 multiple RL carriers can be used for high rate data transmission on both forward and reverse links. Configurations with multiple FL carriers and a single RL carrier can be used for 'high rate data transmission on the forward link. A configuration with a single FL carrier and multiple RL carriers can be used for high rate data transmission on the reverse link. The appropriate configuration can be selected for the terminal based on various factors such as available system resources, data requirements, channel status, and the like. In an embodiment, the FL and RL carriers have different importance. For each group, one of the groups (eg, the first carrier is designated as a group of primary waves, and each remaining FL carrier in the group (if present) is designated as a group of auxiliary waves. K One (e.g., first) hole carrier in the FL carrier is designated as the primary FL carrier. Similarly, one of the rivers is used (e.g., the first known E-carrier is designated as the primary RL carrier. The terminal assigns any number of carriers, one of which is designated as the primary hole carrier of the terminal. It is also possible to assign any number of RL carriers to the terminal, such as XI and other RL carriers. ^ is the main carrier of the terminal downtime. Different sets of FL and RL carriers can be assigned to different terminals σ ° In addition, the 'p remaining time lapse can be based on various factors such as the factors noted above to a given terminal The machine assigns a different set of FL and RL carriers. In one embodiment, the terminal uses the primary FL and RL carriers for the following functions: • Issues on the primary RL carrier, • Call settings _ in the primary FL Receive signals on the carrier, • perform layer 3 signals on the primary FL carrier The delivery procedure, and • based on the primary FL carrier transmission selection-service base station. 143191.doc -13· 201004259 In an embodiment, the group FL primary wave in each carrier group controls the RL carrier in the group. The main wave can be used for the following functions: • Power control for transmitting R-PICH, • Rate control for transmitting R-PDCH, • Acknowledgement for transmitting reverse link transmission (on F-ACKCH), • Sending MAC control message (in F - PDCCH) to the terminal, and • Send forward grant message (on the F-GCH) to the terminal. The data and control channels in cdma2000 version D are designed for data transmission on a single carrier. Controlling some of the channels to support data transmission on multiple carriers. This modification may result in (1) the modified control channel being backward compatible with the control channel in cdma2000 version D and (2) easily capable of, for example, software and/or Or firmware to implement new changes, which can reduce the impact on the hardware design. The base station can transmit data to the terminal on the forward link on any number of any of the number of carrier groups. In the embodiment, each The RL carrier in a group carries R-ACKCH and R-CQICH for all FL carriers in the group. In this embodiment, the R-ACKCH carries the acknowledgement of the packets received by the F-PDCH for all FL carriers in the group. .

1. R-ACKCH1. R-ACKCH

在另一態樣中,描述一可支援多個FL載波上之資料傳輸 的新R-ACKCH結構。如圖3中所示,終端機可於單個RL載 波上傳輸時,監視一給定組中之多個FL載波。終端機可在 此等多個FL載波上發送的多個F-PDCH上,接收多個封 包。終端機可經由該單個RL載波上發送之單個R-ACKCH 143191.doc -14- 201004259 來確認此等多個封包。視所接收之FL載波數目而定,R-ACKCH可被設計具有載運對一或多個封包之確認的能 力。 圖4A展示用於cdma2000版本D中之R-ACKCH結構410之 方塊圖。在每一 1.25 ms訊框中產生一 R-ACKCH位元’該 訊框係一時槽。(1)若封包受到正確解碼,則此R-ACKCH 位元可為ACK,(2)若封包遭錯誤解碼,則此R-ACKCH位 元可為NAK,或(3)若不存在待確認之封包,則此R-ACKCH位元可為空位元。符號重複單元412將該R-ACKCH 位元重複24次以產生24個相同調變符號,進一步處理並在 該R-ACKCH上傳輸該等調變符號。 圖4B展示可支援高達四個FL載波之高達四個R-ACKCH 之新R-ACKCH結構420的實施例。四個R-ACKCH亦可認為 是單個R-ACKCH之四個子頻道,且可稱為反向確認子頻 道(R-ACKSCH)。在以下描述中,對每一 FL·載波之確認頻 道被稱為R-ACKCH而非R-ACKSCH。 圖4B展示其中將三個R-ACKCH用於三個FL載波之情 形,其被稱為CDMA頻道〇、1及2。以信號點映射單元 422、沃爾什(Walsh)覆蓋單元424及重複單元426的一個別 集合來實施每一 CDMA頻道之R-ACKCH。分別向CDMA頻 道0、1及2指派4碼片沃爾什碼w〇4、W/及w24。該等沃爾 什碼亦被稱為沃爾什函數或沃爾什序列且定義於TIA/EIA IS-2000.2 中。 在每一 1.25 ms訊框(或時槽)中為每一CDMA頻道產生一 143191.doc -15- 201004259 R-ACKCH位元。對於CDMA頻道0而言,信號點映射單元 422a視該R-ACKCH位元是ACK、ΝΑΚ或空位元而定,分 別將CDMA頻道0之R-ACKCH位元映射成值+1、-1或0。沃 爾什覆蓋單元424a用指派給CDMA頻道0之4碼片沃爾什碼 W〇4覆蓋映射值。藉由(1)將映射值重複四次及(2)將四個相 同值乘以沃爾什碼W〇4之四個碼片以產生四個符號之一序 列,達成該沃爾什覆蓋。重複單元426a將該4符號序列重 複6次且為CDMA頻道0產生24個符號之一序列。CDMA頻 道1及2之處理以類似於CDMA頻道0之方式進行。 在每一時槽中,加法器428將分別來自CDMA頻道0、1 及2之重複單元426a、426b及426c的三個24符號序列相 加,且為該時槽提供24個調變符號。進一步處理並傳輸此 等調變符號。基地台能夠藉由用指派給每一 CDMA頻道之 沃爾什碼執行互補解覆蓋(decovering)來恢復該CDMA頻道 之R-ACKCH位元。 圖4C展示可支援例如高達8個FL載波之高達8個R-ACKCH的新R-ACKCH結構430的一實施例之方塊圖。圖4C 展示其中將7個R-ACKCH用於7個FL載波之情形,其被稱 為CDMA頻道0至6。使用信號點映射單元432、沃爾什覆 蓋單元434及重複單元436之一個別集合來實施每一 CDMA 頻道之R-ACKCH。分別向CDMA頻道0至6指派8碼片沃爾 什碼W〇8至W68,其定義於TIA/EIAIS-2000.2中。 對於每一 CDMA頻道而言,信號點映射單元432將該 CDMA頻道之R-ACKCH位元映射成值+ 1、-1或0。沃爾什 143191.doc -16· 201004259 覆蓋單元434用指派給該CDMA頻道之8碼片沃爾什碼覆蓋 映射值並提供8個符號之一序列。重複單元43 6將該8符號 序列重複三次且為該CDMA頻道產生24個符號的一序列。 在每一時槽中,加法器438將分別來自CDMA頻道0至6之 重複單元436a至436g的7個24符號序列相加,且為該時槽 提供24個調變符號。進一步處理並傳輸此等調變符號。 圖4B及圖4C展不支援多個R-ACKCH且與圖4A中所示之 當前R-ACKCH結構410向後相容之例示性r_AckCH結構 420及430。若僅接收一 CDMA頻道,則可用沃爾什碼w04 或WQ8處理此CDMA頻道之R-ACKCH位元,且可將所有其 它CDMA頻道之R-ACKCH位元設定為空位元。加法器428 或438之輸出則將與圖4A中之重複單元41 2之輸出相同。可 藉由發送使用其它沃爾什碼之額外CDMA頻道之R-ACKCH 位元來支援此等額外CDMA頻道。視沃爾什碼長度而定, 將重複因子自24降低至6或3。 圖4B及圖4C中所示之R-ACKCH結構允許使用經設計用 於圖4A中所示之R-ACKCH結構的硬體來恢復R-ACKCH位 元。該硬體可在每一時槽中為R-ACKCH產生24個已接收 符號。可在軟體及/或韌體中用沃爾什碼執行對此等24個 已接收符號之解覆蓋,此可降低升級基地台以支援多載波 操作之影響。 亦可用其它結構來實施多個R-ACKCH,且此係在本發 明之範疇内。舉例而言,多個R-ACKCH可進行劃時多工 且在一給定時槽之不同間隔中進行發送。 143191.doc •17- 201004259In another aspect, a new R-ACKCH structure that supports data transmission on multiple FL carriers is described. As shown in Figure 3, the terminal can monitor multiple FL carriers in a given group as it travels over a single RL carrier. The terminal can receive a plurality of packets on a plurality of F-PDCHs transmitted on the plurality of FL carriers. The terminal can acknowledge the multiple packets via a single R-ACKCH 143191.doc -14-201004259 transmitted on the single RL carrier. Depending on the number of FL carriers received, the R-ACKCH can be designed to carry the ability to acknowledge the acknowledgement of one or more packets. 4A shows a block diagram of an R-ACKCH structure 410 for use in cdma2000 version D. An R-ACKCH bit is generated in each 1.25 ms frame. The frame is a time slot. (1) If the packet is correctly decoded, the R-ACKCH bit may be ACK, (2) if the packet is erroneously decoded, the R-ACKCH bit may be NAK, or (3) if there is no pending For the packet, the R-ACKCH bit can be a null bit. The symbol repeating unit 412 repeats the R-ACKCH bit 24 times to generate 24 identical modulated symbols, further processing and transmitting the modulated symbols on the R-ACKCH. 4B shows an embodiment of a new R-ACKCH structure 420 that can support up to four R-ACKCHs of up to four FL carriers. The four R-ACKCHs can also be considered as four sub-channels of a single R-ACKCH and can be referred to as a reverse acknowledgement sub-channel (R-ACKSCH). In the following description, the acknowledgment channel for each FL·carrier is referred to as R-ACKCH instead of R-ACKSCH. Figure 4B shows a situation in which three R-ACKCHs are used for three FL carriers, which are referred to as CDMA channels 〇, 1 and 2. The R-ACKCH of each CDMA channel is implemented with a different set of signal point mapping unit 422, Walsh coverage unit 424, and repetition unit 426. Four chip Walsh codes w〇4, W/, and w24 are assigned to CDMA channels 0, 1, and 2, respectively. These Walsh codes are also referred to as Walsh functions or Walsh sequences and are defined in TIA/EIA IS-2000.2. A 143191.doc -15-201004259 R-ACKCH bit is generated for each CDMA channel in each 1.25 ms frame (or time slot). For CDMA channel 0, signal point mapping unit 422a maps the R-ACKCH bit of CDMA channel 0 to a value of +1, -1 or 0 depending on whether the R-ACKCH bit is an ACK, a ΝΑΚ or a null bit. . The Walsh overlay unit 424a overwrites the mapped value with a 4-chip Walsh code W〇4 assigned to CDMA channel 0. The Walsh coverage is achieved by (1) repeating the mapping values four times and (2) multiplying four identical values by four chips of Walsh code W〇4 to produce a sequence of four symbols. Repeat unit 426a repeats the 4-symbol sequence 6 times and generates a sequence of 24 symbols for CDMA channel 0. The processing of CDMA channels 1 and 2 is performed in a manner similar to CDMA channel 0. In each time slot, adder 428 adds the three 24-symbol sequences from repeating units 426a, 426b, and 426c of CDMA channels 0, 1, and 2, respectively, and provides 24 modulation symbols for the time slot. These modulation symbols are further processed and transmitted. The base station can recover the R-ACKCH bit of the CDMA channel by performing complementary decovering with a Walsh code assigned to each CDMA channel. 4C shows a block diagram of an embodiment of a new R-ACKCH structure 430 that can support up to eight R-ACKCHs, for example up to eight FL carriers. Figure 4C shows the case where 7 R-ACKCHs are used for 7 FL carriers, which are referred to as CDMA channels 0 through 6. The R-ACKCH of each CDMA channel is implemented using an individual set of one of the signal point mapping unit 432, the Walsh overlay unit 434, and the repetition unit 436. Eight chip Walsh codes W 〇 8 to W 68 are assigned to CDMA channels 0 through 6, respectively, which are defined in TIA/EIAIS-2000.2. For each CDMA channel, signal point mapping unit 432 maps the R-ACKCH bits of the CDMA channel to a value of + 1, -1 or 0. Walsh 143191.doc -16· 201004259 Coverage unit 434 overwrites the mapped value with an 8-chip Walsh code assigned to the CDMA channel and provides a sequence of 8 symbols. Repeating unit 436 repeats the 8-symbol sequence three times and produces a sequence of 24 symbols for the CDMA channel. In each time slot, adder 438 adds the seven 24-symbol sequences from repeating units 436a through 436g of CDMA channels 0 through 6, respectively, and provides 24 modulation symbols for the time slot. These modulation symbols are further processed and transmitted. 4B and 4C show exemplary r_AckCH structures 420 and 430 that do not support multiple R-ACKCHs and are backward compatible with the current R-ACKCH structure 410 shown in FIG. 4A. If only one CDMA channel is received, the R-ACKCH bit of the CDMA channel can be processed with Walsh code w04 or WQ8, and the R-ACKCH bits of all other CDMA channels can be set to null bits. The output of adder 428 or 438 will be the same as the output of repeating unit 41 2 in Figure 4A. These additional CDMA channels can be supported by transmitting R-ACKCH bits of additional CDMA channels using other Walsh codes. Depending on the length of the Walsh code, the repetition factor is reduced from 24 to 6 or 3. The R-ACKCH structure shown in Figures 4B and 4C allows the R-ACKCH bit to be recovered using the hardware designed for the R-ACKCH structure shown in Figure 4A. The hardware can generate 24 received symbols for the R-ACKCH in each time slot. The coverage of these 24 received symbols can be performed with Walsh codes in the software and/or firmware, which reduces the impact of upgrading the base station to support multi-carrier operation. A plurality of R-ACKCHs may be implemented with other structures, and are within the scope of the present invention. For example, multiple R-ACKCHs can be time-multiplexed and transmitted in different intervals of a given time slot. 143191.doc •17- 201004259

2. R-CQICH 在又一態樣中,描述一可支援多個FL載波之CQI回饋之 新R-CQICH結構。如圖3中所示,終端機可在於單個RL載 波上傳輸時監視一給定組中之多個FL載波。此等多個FL 載波可具有不同頻道狀態(例如,不同衰減特徵)且可在終 端機處達成不同接收信號品質。需要終端機為盡可能多的 已指派FL載波提供CQI回饋,以便系統可選擇適宜FL載波 來發送資料以及為每一選定FL載波選擇適宜速率。若系統 組態包括單個RL載波,則終端機可經由該單個RL載波在 單個R-CQICH上發送所有FL載波之CQI回饋。R-CQICH可 經設計具有載運一或多個FL載波之CQI回饋之能力。 在cdma2000版本D中,R-CQICH在每一 1.25 ms訊框(或 時槽)中可運作於兩個模式之一者(完全模式或差動模式) 中。在完全模式中,在R-CQICH上發送包括4位元值之完 全CQI報告。此4位元CQI值傳達一 CDMA頻道之接收信號 品質。在差動模式中,在R-CQICH上發送包括1位元值之 差動CQI報告。此1位元值傳達一 CDMA頻道之當前時槽與 先前時槽之間的接收信號品質差異。可如TIA/EIA IS-2000.2中所描述產生完全及差動CQI報告。 圖5八展示用於〇(1〇^2000版本0中之一11-0〇1(:11結構510 之方塊圖。視選擇完全還是差動模式而定,可在每一 1.25 ms訊框(或時槽)中為一 CDMA頻道產生4位元或1位元值。4 位元CQI值亦稱為CQI值符號。1位元CQI值亦稱為差動CQI 符號。塊編碼器512可用(12, 4)區塊碼對4位元CQI值進行 143191.doc -18 - 201004259 編碼以產生具有12個符號之碼字 冲 ^ a- rnu± ^ 、 付號重複單元514將1 以產生12個符號。切換器-為完全模 =塊編碼器512之輸出或為差動模式選擇重複單元514 之輸出。 可藉由使用指派給一特定基地台 + _ 之/天爾什碼覆蓋該報告 來發送CQI報告至該基地台。 兩什覆盍早元518為經選擇 以服務該終端機之基地台接收3 叹位凡沃爾什碼並產生相應2. R-CQICH In another aspect, a new R-CQICH structure that supports CQI feedback for multiple FL carriers is described. As shown in Figure 3, the terminal can monitor multiple FL carriers in a given group while transmitting on a single RL carrier. These multiple FL carriers can have different channel states (e.g., different attenuation characteristics) and can achieve different received signal qualities at the terminal. The terminal is required to provide CQI feedback for as many assigned FL carriers as possible so that the system can select the appropriate FL carrier to transmit the data and select the appropriate rate for each selected FL carrier. If the system configuration includes a single RL carrier, the terminal can transmit CQI feedback for all FL carriers on a single R-CQICH via the single RL carrier. The R-CQICH can be designed to have the ability to carry CQI feedback for one or more FL carriers. In cdma2000 version D, the R-CQICH can operate in one of two modes (full mode or differential mode) in every 1.25 ms frame (or time slot). In full mode, a full CQI report including a 4-bit value is sent on the R-CQICH. This 4-bit CQI value conveys the received signal quality of a CDMA channel. In the differential mode, a differential CQI report including a 1-bit value is transmitted on the R-CQICH. This 1-bit value conveys the difference in received signal quality between the current time slot of a CDMA channel and the previous time slot. Full and differential CQI reports can be generated as described in TIA/EIA IS-2000.2. Figure 5 shows a block diagram for 〇(1〇^2000 version 0, 11-0〇1 (:11 structure 510. Depending on whether the selection is complete or differential mode, it can be in every 1.25 ms frame ( Or a time slot) generates a 4-bit or 1-bit value for a CDMA channel. A 4-bit CQI value is also referred to as a CQI value symbol. A 1-bit CQI value is also referred to as a differential CQI symbol. Block encoder 512 is available ( 12, 4) The block code performs 143191.doc -18 - 201004259 encoding on the 4-bit CQI value to generate a codeword with 12 symbols. ^ a- rnu± ^, and the repeating repeating unit 514 sets 1 to generate 12 The switch - is the output of the full mode = block encoder 512 or the output of the repeating unit 514 for the differential mode. The report can be sent by overwriting the report with a specific base station + _ / Hz code The CQI report to the base station. The two 盍 盍 元 518 is the base station selected to serve the terminal to receive 3 sighs of Walsh code and generate corresponding

之8碼片沃爾什序列。單元5 j 8 ^ J騎β亥8碼片沃爾什序列重 複12次且在每一時槽令提供96個 1U,天爾什碼片。模2加法器 (modiilo-2 adder)520將來自切換哭+々々咕匕 〇〇 吳·111 5 16之符號與沃爾什覆蓋 單元518之輸出相加,且在每一時槽中提供外個調變符 號。對於選定基地台而言,》爾什覆蓋單元518及加法器 5 2 0用3位元沃爾什碼有效地覆蓋來自切換器5 i 6之每一符 號。信號點映射單元522將每一調變符號映射成值+1或_ 1。沃爾什覆蓋單元524用沃爾什碼Wi严覆蓋來自單元522 之每一映射值並提供輸出符號,進一步處理並在r_cqich 上傳輸該等輸出符號。 新R-CQICH結構可支援一或多個FL載波之完全及差動模 式。在一實施例中,以TDM方式在不同時槽中發送一組中 不同之FL載波之完全CQI報告。在一實施例中,在一給定 時槽中共同地編碼且一起發送對於該時槽之組中的所有 載波之差動CQI報告。差動Cqj報告之共同編碼比個別差 動CQI報告之單獨編碼更為有效。以更有效之編碼代替方 塊5 14中之重複。 143191.doc •19· 201004259The 8 chip Walsh sequence. Unit 5 j 8 ^ J rides the β Hai 8 chip Walsh sequence repeats 12 times and provides 96 1U, Tiers chips at each time slot. A modulo-2 adder 520 adds the symbol from the switching cry + 々々咕匕〇〇 · 111 5 16 to the output of the Walsh overlay unit 518 and provides a separate one in each time slot. Modulation symbol. For the selected base station, the Ershi cover unit 518 and the adder 520 effectively cover each symbol from the switch 5 i 6 with a 3-bit Walsh code. Signal point mapping unit 522 maps each modulated symbol to a value of +1 or _1. Walsh overlay unit 524 strictly covers each mapped value from unit 522 with a Walsh code Wi and provides output symbols for further processing and transmission of the output symbols on r_cqich. The new R-CQICH architecture supports full and differential modes of one or more FL carriers. In one embodiment, a full CQI report for a different set of FL carriers is transmitted in different time slots in a TDM manner. In one embodiment, a differential CQI report for all carriers in the set of time slots is co-encoded and transmitted together in a given time slot. The common coding of the differential Cqj report is more efficient than the separate coding of the individual differential CQI report. The repetition in block 5 14 is replaced by a more efficient encoding. 143191.doc •19· 201004259

圖5B展示可提供多個CDMA CQICH結構530之一實施例之方塊圖。在此實施例中,塊 編碼器532用(12,4)區塊碼對一 CDMA頻道之4位元CQI值 進行編碼以產生具有12個符號之碼字組。塊編碼器534用 (12,N)區塊碼對N個CDMA頻道之N個1位元CQI值進行共 同編碼以產生具有12個符號之碼字組。區塊碼之速率(R) 等於輸入位元除以輸出位元之數目,或(12,4)之區塊碼為 R=4/12而(12, N)之區塊碼為r=n/12。不同碼率產生不同冗 餘!’且對於可靠接收而言要求不同接收信號品質。因 此,視CDMA頻道之數目N而定,可將不同量之傳輸功率 用於來自塊編碼器534之碼字組。 切換536為完全模式選擇塊編碼器532之輸出或為差動 模式選擇塊編碼器534之輸出。沃爾什覆蓋單元538、加法 态54〇、信號點映射單元542及沃爾什覆蓋單元544分別以 上文對於圖5Λ中之單元518、52〇、522及524所描述之方 ^來自㈣器536之符號。沃爾什覆蓋單元提供輸出 付〜,進一步處理並在R_CQICH上傳輸該等輸出符號。 編碼器534所進行之塊編碼可以矩陣形式表達' y=u»G r 'FIG. 5B shows a block diagram of one embodiment of a plurality of CDMA CQICH structures 530 that may be provided. In this embodiment, block encoder 532 encodes the 4-bit CQI value of a CDMA channel with a (12, 4) block code to produce a codeword set having 12 symbols. The block encoder 534 co-codes the N 1-bit CQI values of the N CDMA channels with the (12, N) block code to generate a codeword group having 12 symbols. The rate of the block code (R) is equal to the number of input bits divided by the number of output bits, or the block code of (12,4) is R=4/12 and the block code of (12,N) is r=n /12. Different code rates produce different redundancy! And different received signal qualities are required for reliable reception. Thus, depending on the number N of CDMA channels, different amounts of transmission power can be used for the block of code from block encoder 534. Switch 536 is the output of full mode select block encoder 532 or the output of block encoder 534 for differential mode selection. The Walsh cover unit 538, the adder state 54〇, the signal point mapping unit 542, and the Walsh cover unit 544 are respectively described above for the units 518, 52A, 522, and 524 in FIG. Symbol. The Walsh overlay unit provides an output payout, further processing and transmitting the output symbols on the R_CQICH. The block coding performed by the encoder 534 can express ' y=u»G r ' in a matrix form.

Eq(l) 中a = [U〇 Ul…〜1]係1位元CQI值序列的i xk列向旦, 為向量ϋ中之第一輸入位元, 里而U〇 之^^川係編碼器輸出碼字組的卜口列向 向量γ中之而y〇為 J里之第一輸出位元,且 立係塊編碼之k X n生成矩陣。 J43191.doc •20- 201004259 區塊碼通常係按照其生成矩陣來指定。可為2至7的不同 N值定義不同區塊碼以支援高達7個CDMA頻道。可選擇每 一 N值之區塊碼以達成良好效能,效能可由碼字組間最小 距離加以量化。表2列出N=2至7的例示性區塊碼。對於線 性區塊碼而言,表2中之區塊碼具有最大可能之碼字組間 最小距離。 表2 區塊碼 生成矩陣 區塊碼 生成矩陣 (12, 2) G = '110' Oil (12,3) G = '100110111100' 010011011110 001001101111 (12, 4) G = '000011111111' 111100001111 001100110011 010101010101 (12, 5) G = '101001110000' 010100111000 001010011100 000101001110 000010100111 (12, 6) G = '101110100000' 010111010000 001011101000 000101110100 000010111010 000001011101_ (12, 7) G = '100111000000' 010011100000 001001110000 000100111000 000010011100 000001001110 000000100111 對於N=1,塊編碼可對應於圖5A中之單元514所執行之 1 2X位元重複。在表2中所示之實施例中,(12,2)區塊碼包 括一(3,2)區塊碼繼之以4χ序列重複。用於編碼器534中之 (12, 4)區塊碼之生成矩陣與用於編碼器512及532中之(12, 143191.doc -21 - 201004259 4)區塊碼之生成矩陣相同。表2中之(12, 2)、(12, 3)、(12, 4)、(12, 5)、(12, 6)及(12, 7)區塊碼分別具有最小距離8、 6、6、4、4及4。亦可定義其它生成矩陣且將其用於差動 C QI報告之區塊碼。 圖5B展示支援多個CDMA頻道之CQI回饋且與圖5A中所 示之當前11-€(^1(:11結構510向後相容之例示性11-€(^1匚11結 構530。若僅接收一個CDMA頻道,則可用(12, 4)區塊碼處 理此CDMA頻道之完全CQI報告,可用12χ位元重複來處理 差動CQI報告,且沃爾什覆蓋單元544之輸出將與圖5A中 之沃爾什覆蓋單元524之輸出相同。藉由(1)在不同時槽中 發送CDMA頻道之完全CQI報告及(2)在相同時槽中共同發 送CDMA頻道之差動CQI報告,可支援額外CDMA頻道。 圖5B中所示之R-CQICH結構允許對圖5A中所示之R-CQICH結構做出極少改變而恢復多個CDMA頻道之完全及 差動CQI報告。用於實體層之硬體可執行完全CQI報告之 塊解碼。可在媒體存取控制(MAC)層執行不同CDMA頻道 的完全CQI報告之解多工。可在實體層或MAC層執行差動 CQI報告之塊解碼。 亦可用其它結構來實施多個CDMA頻道之R-CQICH,且 此係在本發明之範疇内。舉例而言,可對多個CDMA頻道 之完全CQI報告進行塊編碼且在相同時槽中發送多個 CDMA頻道之完全CQI報告。作為另一實例,可在一時槽 中發送CDMA頻道之一子集之差動CQI報告。 如圖3中所示,可向一終端機指派多組FL及RL載波。對 143191.doc -22- 201004259 於每一載波組而言,如上文對於圖5B所描述,在該組中 • RL載波上發送之R-CQICH可載運該組中之FL載波之CQI報 - 告。可以各種方式發送該等CQI報告。 圖6A至圖6E展示R-CQICH上之一些例示性傳輸。在此 等圖中’較高方框(box)代表完全CQI報告,且較短方框代 表差動CQI報告。方框之高度粗略指示用以發送CQI報告 之功率的量。每一方框内之號碼指示在該方框中發送之 f CQI報告所報告之FL載波。 c 圖6A展示兩個FL載波1及2之完全及差動CQI報告在R-CQICH上之傳輸。在此實例中,在一時槽中發送fl載波1 之完全CQI報告,隨後在某一數目之時槽中發送FL載波1 及2之差動CQI報告,隨後在一時槽中發送FL載波2之完全 CQI報告,隨後在某一數目之時槽中發送FL載波1及2之差 動CQI報告,隨後在一時槽中發送FL載波1之完全CQI報 告,等等。一般而言,可以任一速率發送每一 FL載波之完 Q 全CQI報告,且可將相同或不同報告速率用於該等FL載 波。在一實施例中,在每一 20 ms訊框之一(例如,第一)時 槽中發送完全CQI報告,且在該訊框中15個剩餘時槽中發 送差動CQI報告。可如圖6A中所示交替FL載波1及2之完全 CQI報告或以其它方式進行多工。 圖6B展示兩個FL載波1及2之完全CQI報告在R-CQICH上 之傳輸。在此實例中,在一時槽中發送FL載波1之完全 CQI報告,隨後在下一時槽中發送FL載波2之完全CQI報 告,隨後在後繼時槽中發送FL載波1之完全CQI報告,等 143191.doc •23· 201004259 等。 圖6C展示三個FL載波1、2及3之完全及差動CQI報告在 具有重複因子2或REP = 2之R-CQICH上之傳輸。在此實例 中,在一 20 ms訊框之前兩個時槽中發送FL載波1之完全 CQI報告,隨後在該訊框之每一剩餘時槽中發送FL載波 1、2及3之差動CQI報告,隨後在下一 20 ms訊框之前兩個 時槽中發送FL載波2之完全CQI報告,隨後在該訊框之每 一剩餘時槽中發送FL載波1、2及3之差動CQI報告,隨後 在後繼之20 ms訊框的前兩個時槽中發送FL載波3之完全 CQI報告,隨後在該訊框的每一剩餘時槽中發送FL載波 1、2及3之差動CQI報告,隨後在下一 20 ms訊框之前兩個 時槽中發送FL載波1之完全CQI報告,等等。差動CQI報告 可類似於完全CQI報告在兩個連續時槽中發送,或可在單 個時槽中發送。 圖6D展示三個FL載波1、2及3之完全CQI報告在具有重 複因子2之R-CQICH上之傳輸。在此實例中,在兩個時槽 中發送FL載波1之完全CQI報告,隨後在下兩個時槽中發 送FL載波2之完全CQI報告,隨後在後繼兩個時槽中發送 FL載波3之完全CQI報告,隨後在後兩個時槽中發送FL載 波1之完全CQI報告,等等。 圖6E展示三個FL載波1、2及3之完全CQI報告在具有重 複因子2及兩個切換時槽之R-CQICH上的傳輸。在此實例 中,以上文對於圖6D所描述之方式發送FL載波1、2及3之 完全CQI報告。然而,使用在20 ms訊框中之最後四個時槽 143191.doc -24- 201004259 來發送一切換時槽圖案(在圖6E中表示為”S”),該切換時槽 圖案切換至新服務基地台之訊息。 如圖6A至圖6E中所示,對所有FL載波之完全CQI報告之 劃時多工導致給定FL載波之完全CQI報告的報告速率隨著 一組中之FL載波數目增加而降低。舉例而言,若一組包括 7個FL載波,則對於每—FL載波而言可以每隔7χ2〇 ms=140 ms—次之速率發送完全CQI報告。對所有几載波In Eq(l), a = [U〇Ul...~1] is the i xk column of the 1-bit CQI value sequence, which is the first input bit in the vector ,, and the U 〇 ^ ^ 川 encoding The port of the output code block is listed in the vector γ and y is the first output bit in J, and the k X n of the stereo block code generates a matrix. J43191.doc •20- 201004259 Block codes are usually specified according to their generator matrix. Different block codes can be defined for different N values of 2 to 7 to support up to 7 CDMA channels. The block code for each N value can be selected to achieve good performance, and the performance can be quantified by the minimum distance between the codeword groups. Table 2 lists exemplary block codes for N = 2 to 7. For linear block codes, the block code in Table 2 has the smallest possible distance between the codeword groups. Table 2 Block code generation matrix block code generation matrix (12, 2) G = '110' Oil (12,3) G = '100110111100' 010011011110 001001101111 (12, 4) G = '000011111111' 111100001111 001100110011 010101010101 (12 , 5) G = '101001110000' 010100111000 001010011100 000101001110 000010100111 (12, 6) G = '101110100000' 010111010000 001011101000 000101110100 000010111010 000001011101_ (12, 7) G = '100111000000' 010011100000 001001110000 000100111000 000010011100 000001001110 000000100111 For N=1, block coding This may correspond to a 1 2X bit repetition performed by unit 514 in Figure 5A. In the embodiment shown in Table 2, the (12, 2) block code includes a (3, 2) block code followed by a 4 χ sequence repetition. The generator matrix for the (12, 4) block code used in the encoder 534 is the same as the generator matrix for the block codes (12, 143191.doc - 21 - 201004259 4) in the encoders 512 and 532. The (12, 2), (12, 3), (12, 4), (12, 5), (12, 6), and (12, 7) block codes in Table 2 have minimum distances of 8, 6, respectively. 6, 4, 4 and 4. Other generation matrices can also be defined and used for the block code of the differential C QI report. Figure 5B shows CQI feedback supporting multiple CDMA channels and is the same as the current 11-€(^1(:11 structure 510 backward compatible example 11-€(^1匚11 structure 530 shown in Figure 5A. If only Receiving a CDMA channel, the full CQI report of the CDMA channel can be processed with the (12, 4) block code, the differential CQI report can be processed with a 12-bit repeat, and the output of the Walsh cover unit 544 will be the same as in FIG. 5A. The output of the Walsh overlay unit 524 is the same. Additional support can be supported by (1) transmitting a full CQI report of the CDMA channel in different time slots and (2) transmitting a differential CQI report of the CDMA channel in the same time slot. CDMA channel. The R-CQICH structure shown in Figure 5B allows for complete and differential CQI reporting of multiple CDMA channels to be recovered with minimal changes to the R-CQICH structure shown in Figure 5A. Block decoding of full CQI reporting can be performed. Demultiplexing of full CQI reporting of different CDMA channels can be performed at the Medium Access Control (MAC) layer. Block decoding of differential CQI reporting can be performed at the physical layer or the MAC layer. Other structures to implement R-CQICH of multiple CDMA channels, and this is in the present invention In the context, for example, a full CQI report for multiple CDMA channels can be block coded and a full CQI report for multiple CDMA channels can be sent in the same time slot. As another example, a CDMA channel can be transmitted in a time slot. A subset of differential CQI reports. As shown in Figure 3, multiple sets of FL and RL carriers can be assigned to a terminal. For 143191.doc -22- 201004259 for each carrier group, as above for Figure 5B As described, the R-CQICH transmitted on the RL carrier in the group can carry the CQI report of the FL carrier in the group. The CQI reports can be sent in various ways. Figures 6A-6E show the R-CQICH Some exemplary transmissions. In these figures, the 'higher box' represents the full CQI report and the shorter squares represent the differential CQI report. The height of the box roughly indicates the amount of power used to transmit the CQI report. The number in each box indicates the FL carrier reported by the f CQI report sent in this box. c Figure 6A shows the transmission of the full and differential CQI reports for two FL carriers 1 and 2 on the R-CQICH. In this example, a full CQI report of fl carrier 1 is sent in a time slot. Sending a differential CQI report for FL carriers 1 and 2 in a certain number of slots, then transmitting a full CQI report for FL carrier 2 in a time slot, and then transmitting FL carriers 1 and 2 in a certain number of slots The differential CQI reports, then sends a full CQI report for FL carrier 1 in a time slot, etc. In general, the Q full CQI report for each FL carrier can be sent at any rate, and the same or different reporting rate can be used. Used for these FL carriers. In one embodiment, a full CQI report is sent in one of the 20 ms frames (e.g., the first) slot, and a differential CQI report is sent in the 15 remaining slots in the frame. The full CQI reporting of FL carriers 1 and 2 may be alternated or otherwise multiplexed as shown in Figure 6A. Figure 6B shows the transmission of the full CQI report of two FL carriers 1 and 2 on the R-CQICH. In this example, a full CQI report for FL carrier 1 is sent in a time slot, then a full CQI report for FL carrier 2 is sent in the next slot, followed by a full CQI report for FL carrier 1 in the subsequent slot, 143191. Doc •23· 201004259 and so on. Figure 6C shows the transmission of the full and differential CQI reports for three FL carriers 1, 2 and 3 on the R-CQICH with repetition factor 2 or REP = 2. In this example, a full CQI report for FL carrier 1 is sent in two time slots before a 20 ms frame, and then a differential CQI for FL carriers 1, 2, and 3 is transmitted in each remaining time slot of the frame. Reporting, then transmitting a full CQI report of FL carrier 2 in two time slots before the next 20 ms frame, and then transmitting a differential CQI report of FL carriers 1, 2 and 3 in each remaining time slot of the frame, The full CQI report of FL carrier 3 is then transmitted in the first two time slots of the subsequent 20 ms frame, and then the differential CQI reports of FL carriers 1, 2 and 3 are transmitted in each remaining time slot of the frame, The full CQI report for FL carrier 1 is then sent in two time slots before the next 20 ms frame, and so on. The differential CQI report can be sent in two consecutive time slots similar to a full CQI report, or can be sent in a single time slot. Figure 6D shows the transmission of a full CQI report for three FL carriers 1, 2 and 3 on an R-CQICH with a repetition factor of two. In this example, the full CQI report for FL carrier 1 is sent in two time slots, followed by the full CQI report for FL carrier 2 in the next two time slots, followed by the complete transmission of FL carrier 3 in the next two time slots. The CQI reports, then sends a full CQI report for FL carrier 1 in the last two time slots, and so on. Figure 6E shows the transmission of the full CQI report for three FL carriers 1, 2 and 3 on the R-CQICH with repetition factor 2 and two handover time slots. In this example, the full CQI report for FL carriers 1, 2, and 3 is transmitted as described above for Figure 6D. However, using the last four time slots 143191.doc -24-201004259 in the 20 ms frame to send a switching slot pattern (denoted as "S" in Figure 6E), the switching slot pattern switches to the new service. Base station information. As shown in Figures 6A-6E, the time division multiplexing of a full CQI report for all FL carriers results in a decrease in the reporting rate of a full CQI report for a given FL carrier as the number of FL carriers in a group increases. For example, if a group includes 7 FL carriers, a full CQI report can be sent every 7 χ 2 〇 ms = 140 ms-times for each -FL carrier. For all carriers

之差動CQI報告的共同編碼導致該等差動CQI報告之報告 速率獨立於該組中之FL載波數目且不受其影響。當切換至 新小區時,切換時槽圖案「擊穿」(或取代)完全€(^報 告。此擊穿可能不會同等地影響所有FL載波。在圖6E中所 示之貫例中切換時槽圖案影響FL載波1及2但不影響FL 載波3。 在貫施例中’終^機選擇單個基地台用於前向鏈路上 之貝料傳輸。可基於為主要FL載波、所有已指派載波 或已指派FX載波的_子集在該終端機處量測之接收信號品 質來選擇此單個基地台。所有RL載波之r_cqich使用選定 基地口之沃爾什覆盖且因此指向相同小區。選擇單個基地 台避免了前向鏈路上夕 越叫上之無序傳輸及其對無線電鏈路協定 (RLP)之潛在不利影氅 〜〜響。在珂向方向上,通常在基地台控 制器(BSC)處預先封驻以 政RLP訊框且隨後將其轉遞至基地台 供傳輸至終端機。因此,MI & π , 口此,糟由自單個基地台傳輸,可避免 RLP訊框之無序傳輸。 在另一實施例中,钦 〜知》機可選擇多個基地台用於前向鏈 143191.doc -25- 201004259 路上之資料傳輸。如上文所注明’由於對於不同fl載波而 έ衰減特徵可不同,因此此實施例允許終端機為每一 fl載 波或母一組F L載波選擇一適宜之基地台,此可改良總通 量。The common coding of the differential CQI reports results in the reporting rate of the differential CQI reports being independent of and independent of the number of FL carriers in the group. When switching to a new cell, the slot pattern "breakdown" (or replacement) is completely switched when the switch is switched. This breakdown may not affect all FL carriers equally. When switching in the example shown in Figure 6E The slot pattern affects FL carriers 1 and 2 but does not affect FL carrier 3. In the embodiment, a single base station is selected for the feed transmission on the forward link. It can be based on the primary FL carrier, all assigned carriers. Or the _ subset of the FX carrier has been assigned to measure the received signal quality at the terminal to select the single base station. The r_cqich of all RL carriers uses the Walsh coverage of the selected base port and thus points to the same cell. The station avoids the out-of-order transmission of the forward link and its potential adverse effects on the Radio Link Protocol (RLP). In the direction of the direction, usually at the base station controller (BSC) The RLP frame is pre-blocked and then forwarded to the base station for transmission to the terminal. Therefore, MI & π, this is transmitted from a single base station, which avoids the disordered transmission of RLP frames. In another embodiment, Qin ~ The machine can select multiple base stations for data transmission on the forward chain 143191.doc -25- 201004259. As noted above, 'this embodiment allows the terminal because the attenuation characteristics can be different for different fl carriers. The machine selects a suitable base station for each fl carrier or parent group FL carrier, which improves the total throughput.

3 R-PICH 需要降低前向鏈路上之資料傳輸之反向鏈路額外負擔。 此可藉由向終端機指派包括多個FL載波及單個rL載波之 單個載波組來達成。可在該等多個FL載波上發送資料,且 可在s亥單個RL載波上有效地發送確認及c QI回館。 在某些實例中’可利用多個RL載波。舉例而言,基地台 可能不支援上文描述之新R-ACKCH及R-CQICH結構。在 此情形中,每一FL載波可與支援該FL載波之r_aCkCH及 R-CQICH的一 RL載波相關聯。 在cdma2000版本D中,終端機在R_pICIi上傳輸一導頻以 幫助基地台偵測反向鏈路傳輸。若指派單個RL載波,則在 與此RL載波相關聯之所有FL載波間分擔導頻額外負擔。 然而,若指派多個RL載波且若在每一 rl載波上發送R_ PICH以支援R-ACKCH及R-CqiCh,則導頻額外負擔對於 反向鏈路上之如此低資料速率而言可係顯著的。可藉由使 用一控制保持模式來達成導頻額外負擔之降低。 圖7展示完全及閘控導頻在R_piCH上之傳輸。完全導頻 係每一時槽中之導頻傳輸且被稱為導頻閘控率丨。定義於 cdma2000版本D中之控制保持模式(或簡寫為"Rev D控制保 持模式”)支援1/2及1/4之導頻閘控率。如圖7中所示,閘控 143191 .doc • 26 - 201004259 導頻,時槽之一些t的導頻傳輸,或更具體言之,對 :叫頻閘控率係每隔一個時槽—次的導頻傳輸,且對 :1/4導頻開控率係每四個時槽—次的導頻傳輪。 版本D中,基地台通常在控制保持計時器截 t:Γ由發:—層3訊息來將終端機置於控制保持模式 +例而s,若基地台在特定時間週期中不自終端機接 :任何資料且不向終端機發送任何資料,則基地台可發送 -層3訊息至終端機以將其置於控制保持模式中。新資料 到達基地台或終端機處會觸發退出控制保持模式。若新資 料到達終端機處,則終端機自動退出控龍持模式並開始 在反向鏈路上傳輸完全導頻以及資料。基地台偵測到終端 機退出控制保持模式並解碼與完全導頻—起發送之資料。 若新資料到達基地台處’則基地台首先藉由在1叩咖上 發送-MAC訊息來喚醒終端機。#在控制保持模式令時, 終端機不處理F-PDCH以便節省功率。 ϋ 許多應用均以對稱資料訊務為特徵,且此等應用可能需 要多個FL載波上之多個F-PDCH。結果,需要在多個㈣ 波上發送多個反向導頻以支援多個F_pDCH。除反向導頻 以外,輔助RL載波上之訊務可僅由R_CQICH上之cqi報告 及R-ACKCH上之確認組成。在此情形中,使用控制保持 模式可顯著降低辅助RL載波上之反向鏈路額外負擔。 然而,由於以下原因,Rev D控制保持模式不可直接應 用於輔助RL載波。首先,終端機在Rev 〇控制模式中時, 不對F-PDCH進行解碼。其次,要求終端機在R_ACKCH上 143191.doc -27- 201004259 進行傳輸之前退出Rev 0控 “ s… 持权式,且需要來自基地 口…“,以使終端機返回控制保持模 機在r-ackch上進行值終R主仏 母人、,、如 4仃傳輸時均必須發送層3訊息係不良 的。此外,由於基地台在抻去丨 在技制保持计時器截止(其通常約 為數百耄秒)後發送層3气自, 路上傳輸完全導頻。…此在此時間期間於反向鍵 中,一”輔助,|控制保持模式經定義用於輔助 載波上。在-實施例中,輔助控制保持模式在以下方式 中不同於Rev D控制保持模式: •終端機在輔助控制保持模式時可處難PDCH, •終端機可在不退出辅助控制保持模式的情況下,於R_ ACKCH上傳輸確認, •若F-PDCH得以成功解碼’則終端機可自動在 ACKCH上傳輸完全導頻及確認,及 •終端機可在完成R-ACKCH傳輸後重新開始導頻閘 控。 亦可用不同及/或額外特徵來定義輔助控制保持模式。 為降低反向鏈路上之導頻額外負擔,可在主壯载波上使 用Rev D控制保持模式,且可在每一輔助壯載波上使用辅 助控制保持模式。控制保持模式的兩個版本可支援多载波 操作之多個RL載波的有效操作。 ' 在-實施例中’可為每一 RL載波獨立地定義控制保持模 式。可能有以下情形: 、 •主要RL載波在作用中模式下,且任何數目之輔助壯 I43191.doc -28. 201004259 載波可在控制保持模式下。終端機可處理輔助RL載波之F_ PDCH ’且可在不離開控制保持模式的情況下,於R_ ACKCH上進行傳輸。 •所有RL載波在控制保持模式下。終端機在不離開控制 保持模式的情況下’不處理F_pdch且不在R-ACKCH上進 行傳輸。此係功率節省模式。3 R-PICH requires an additional burden on the reverse link for data transmission on the forward link. This can be achieved by assigning a single carrier group comprising a plurality of FL carriers and a single rL carrier to the terminal. The data can be transmitted on the plurality of FL carriers, and the acknowledgment and cQI can be effectively transmitted on a single RL carrier. In some instances, multiple RL carriers may be utilized. For example, the base station may not support the new R-ACKCH and R-CQICH structures described above. In this case, each FL carrier can be associated with an RL carrier supporting the r_aCkCH and R-CQICH of the FL carrier. In cdma2000 version D, the terminal transmits a pilot on R_pICIi to help the base station detect reverse link transmission. If a single RL carrier is assigned, the pilot extra burden is shared among all FL carriers associated with this RL carrier. However, if multiple RL carriers are assigned and if R_PICH is transmitted on each rl carrier to support R-ACKCH and R-CqiCh, the pilot extra burden can be significant for such low data rates on the reverse link. . A reduction in the additional burden of the pilot can be achieved by using a control hold mode. Figure 7 shows the transmission of the full and gated pilot on R_piCH. The full pilot is the pilot transmission in each time slot and is referred to as the pilot gating rate 丨. The control hold mode (or abbreviated as "Rev D control hold mode) defined in cdma2000 version D supports 1/2 and 1/4 pilot gating rates. As shown in Figure 7, gate control 143191 .doc • 26 - 201004259 Pilot, pilot transmission of some t-time slots, or more specifically, pairs: called frequency gating rate is every other time slot-time pilot transmission, and: 1/4 lead The frequency control rate is every four time slots - the first pilot transmission. In version D, the base station usually controls the timer to intercept t: Γ by sending: - layer 3 message to put the terminal into the control hold mode + For example, if the base station does not connect to the terminal during a certain period of time: any data and does not send any data to the terminal, the base station can send a layer-3 message to the terminal to place it in the control hold mode. When the new data arrives at the base station or the terminal, the exit control hold mode will be triggered. If the new data arrives at the terminal, the terminal will automatically exit the control mode and start transmitting the complete pilot and data on the reverse link. Detecting terminal exit control hold mode and decoding with full pilot From the information sent. If the new data arrives at the base station, the base station first wakes up the terminal by sending a -MAC message on the coffee machine. # When controlling the hold mode command, the terminal does not process the F-PDCH to save Power ϋ Many applications are characterized by symmetric data traffic, and these applications may require multiple F-PDCHs on multiple FL carriers. As a result, multiple reverse pilots need to be sent on multiple (four) waves to support multiple F_pDCH. In addition to the reverse pilot, the traffic on the secondary RL carrier can consist only of the cqi report on the R_CQICH and the acknowledgment on the R-ACKCH. In this case, using the control hold mode can significantly reduce the secondary RL carrier. The reverse link has an additional burden. However, the Rev D control hold mode cannot be directly applied to the secondary RL carrier for the following reasons. First, when the terminal is in the Rev 〇 control mode, the F-PDCH is not decoded. Second, the terminal is required. Exit R_ACKCH on 143191.doc -27- 201004259 before exiting Rev 0 control "s... hold-on, and need to come from the base port...", so that the terminal returns to control to keep the die machine on r-ackch In the end of the value R main parent, if, for example, 4 仃 transmission must send Layer 3 message system is bad. In addition, because the base station is in the 丨 丨 技 technical maintenance timer cutoff (which is usually about hundreds After the leap second), the layer 3 gas is transmitted, and the complete pilot is transmitted on the road.... During this time, in the reverse key, an "auxiliary, | control hold mode is defined for the auxiliary carrier. In an embodiment, the auxiliary control hold mode is different from the Rev D control hold mode in the following manner: • The terminal can be in a difficult PDCH in the auxiliary control hold mode, • the terminal can be in the case of not exiting the auxiliary control hold mode , transmit acknowledgment on R_ ACKCH, • if F-PDCH is successfully decoded 'the terminal can automatically transmit full pilot and acknowledgment on ACKCH, and • terminal can restart pilot control after R-ACKCH transmission is completed . Different and/or additional features may also be used to define the auxiliary control hold mode. To reduce the extra pilot burden on the reverse link, the Rev D control hold mode can be used on the primary carrier and the secondary control hold mode can be used on each of the secondary strong carriers. Two versions of the control hold mode can support the efficient operation of multiple RL carriers for multi-carrier operation. The 'in the embodiment' can define a control hold mode independently for each RL carrier. There may be the following situations: • The primary RL carrier is in active mode, and any number of secondary swells can be in control hold mode. The terminal can process the F_PDCH' of the secondary RL carrier and can transmit on the R_ACKCH without leaving the control hold mode. • All RL carriers are in control hold mode. The terminal does not process F_pdch and does not transmit on the R-ACKCH without leaving the control hold mode. This is the power saving mode.

4. R-REQCH 終端機可在R_rEqCH上發送各種類型之資訊至基地台。 在cdma2000版本D中用於發送RREQCH訊息之觸發亦可用 作發送多載波操作的R_REQCH訊息之觸發。在一實施例 中,終端機在主要RL載波上發送R_REQCH訊息以傳達有 關服務之資讯至基地台。可為所有RL載波上之資料傳輸的 每一服務維持單個緩衝器。有關服務之資訊可包括緩衝器 大小及水印穿越(watermark crossing)。在一實施例中,終 端機在主要及輔助RL載波兩者上發送R_REQCH訊息以傳 達此等RL載波之功率保留空間(headr〇〇m)。可使用每一 rl 載波之功率報告觸發來傳達該RL載波之功率保留空間。 5·排程 可以各種方式執行用於前向及反向鏈路上之資料傳輸的 、,冬端機排程。可為多個載波集中該排程或為每—載波分佈 該排程。在一實施例中,集中式排程器為跨越多個載波之 資料傳輸排料端機1中式排程器可支援靈活之排程算 法旦忒等排程算法可利用跨越所有載波之CQI資訊來改良 通量及/或提供所要之服務品質(QOS)。在另一實施例中, 143191.doc -29- 201004259 為每-載波提供-分佈式排程器,且該分佈排程器排程該 載波上之終端機。不同載波之分佈式排程器可彼此獨立地 運作且可重新使用cdma2000版本D之現有排程算法。 可向終端機指派基地台處之單個頻道插件或多個頻道插 件可支援之多個載波。若藉由不同頻道插件來處理多個叮 載波,則存在可為約數毫秒之㈣插件通信延遲。即使此 延遲較小’但其通常大於丨.25 ms,h25 ms制來解敬_ ackch,且較佳亦解碼R_CQICH並排程F_PDCH上— 輸之時間。 、 若將多個頻道插件用於不同FL載波,則集中式排程写可 引發額外排程延遲。此額外延遲包括兩個分量。第一分量4. The R-REQCH terminal can send various types of information to the base station on R_rEqCH. The trigger for transmitting RREQCH messages in cdma2000 version D can also be used as a trigger for transmitting R_REQCH messages for multi-carrier operation. In one embodiment, the terminal transmits an R_REQCH message on the primary RL carrier to convey information about the service to the base station. A single buffer can be maintained for each service of data transmission on all RL carriers. Information about the service may include buffer size and watermark crossing. In one embodiment, the terminal transmits R_REQCH messages on both the primary and secondary RL carriers to communicate the power reserve (header 〇〇m) of the RL carriers. The power reporting trigger for each rl carrier can be used to convey the power reserve space of the RL carrier. 5. Scheduling Winter end machine scheduling can be performed in a variety of ways for data transmission on the forward and reverse links. The schedule can be centralized for multiple carriers or distributed for each carrier. In one embodiment, the centralized scheduler is a data transmission machine that spans multiple carriers. The Chinese scheduler supports a flexible scheduling algorithm. The scheduling algorithm can utilize CQI information across all carriers. Improve throughput and / or provide the desired quality of service (QOS). In another embodiment, 143191.doc -29-201004259 provides a distributed scheduler per carrier, and the distribution schedule schedules the terminals on the carrier. The distributed schedulers of different carriers can operate independently of each other and can reuse the existing scheduling algorithms of cdma2000 version D. A single channel plug-in at the base station or multiple carriers supported by multiple channel plug-ins can be assigned to the terminal. If multiple 叮 carriers are handled by different channel plug-ins, there is a (4) plug-in communication delay that can be on the order of a few milliseconds. Even if this delay is small 'but it is usually greater than 丨.25 ms, h25 ms is used to resolve _ ackch, and it is better to decode R_CQICH and schedule the time on F_PDCH. If multiple channel plug-ins are used for different FL carriers, centralized scheduling writes can cause additional scheduling delays. This extra delay consists of two components. First component

係將來自處理反向鏈路解碼之頻道插件之CQI回饋傳H ㈣式排程器的R-CQICH延遲。第二分量係選定編碼器封 =到達處❹视Η傳輸之㈣插件之㈣。額外延遲可 衫響糸㈣量,但其效果應餘於相對較窄範圍 頻道模型。 :如’若反向料解碼及前向料傳輸係由單個頻道插 ^里,則分佈式排程器可能不會引發上文對於集中式排 =^額_W助凡載波, 財哭订的。然而’右在每一頻道插件上實施一分佈式 戸紅。〇' ’則可為每一頻道插件 οη 仵维持—早獨緩衝器以便資料 器共同定位(—)。此插件緩衝器可較小, 里=衝器可位於基地台之其他位置。分佈式排程器應 之貝枓以排程訊務。自較大緩衝器獲得額外資料 143l91.doc -30- 201004259 之延遲可約為數毫秒。插件緩衝器大小應考慮到最高可能 之無線電㈣速率以避免緩衝器下溢。即使該等頻道插件 處之緩衝器可相對較小’但終端機處存在無序㈣訊框接The R-CQICH delay of the C(I) scheduler from the CQI feedback channel plug-in that handles the reverse link decoding is delayed. The second component is the selected encoder seal = (four) plug-in (four) plug-in. The extra delay can be stunned (four), but the effect should be less than the relatively narrow range of channel models. : If 'reverse material decoding and forward material transmission are inserted by a single channel, the distributed scheduler may not trigger the above for the centralized row = ^ amount _W help the carrier, . However, the right implementation of a distributed blush on each channel plugin. 〇' ' can be maintained for each channel plug-in οη — - early single buffer for the data to co-locate (-). This plug-in buffer can be small, and the rusher can be located elsewhere in the base station. Distributed schedulers should be used to schedule traffic. Additional data from larger buffers 143l91.doc -30- 201004259 The delay can be on the order of a few milliseconds. The plug-in buffer size should take into account the highest possible radio (four) rate to avoid buffer underflow. Even if the buffers at these channel plug-ins can be relatively small', there is an unordered (four) frame connection at the terminal.

收的可能性更大。田fE 口此 了將較長之偵測窗用於RLP訊 由於4知之早期NAK技術無法解釋訊務即使在首次傳 輸中仍可能無序之事實’因此其係無益的。RLP中之較長 延遲㈣窗可對TCP具有較大影響。可使用多個—實例It is more likely to be received. The field fE port used a longer detection window for RLP. Because of the early knowledge that NAK technology could not explain the fact that the message may be disordered even in the first transmission, it is not beneficial. Longer delay (4) windows in RLP can have a greater impact on TCP. Multiple can be used - instance

(例如,每一F_PDCH一個),但其會產生Tcp片段之無序到 達。 RLP „fl框般在BSC處被預先封裝,且被附上Μυχ額外 負擔。包括MUX額外負擔之每一 RLp訊框在cdma2〇〇〇中含 有3 84位元且藉由12位元之序號加以識別。以以32〇〇〇^^^ 標頭為RLP訊框序號分配12個位元,該等序號用以在終端 機處重新組裝RLP訊框。考虞到此較小RLp訊框大小,在 间速率下序列空間可能不夠,該等高速率諸如在多載波組 態中可達成之速率。為了以現有RLP支援高資料速率,可 將RLP訊框進行預先分段,以使得可重新使用用於經分段 RLP訊框之額外12位元序列空間。由於RLp訊框不需被預 先封裝,因此序列空間並非反向鏈路上之問題。 多載波操作之呼叫設定程序可實施如下。終端機自前向 同步頻道(F-SYNCH)獲取系統資訊並自在主要FL載波上發 送之前向尋呼頻道(F-PCH)或前向廣播控制頻道(F-BCCH) 獲得額外負擔訊息。終端機隨後在主要rL頻道上發出一呼 叫。基地台可藉由在主要FL載波上發送之延伸頻道指派訊 143l91.doc -31 - 201004259 向終端機指派訊務頻道。終端機獲得訊務頻道 亚過渡至訊務頻道上之行動台控制狀態,該二(For example, one for each F_PDCH), but it will produce an out-of-order arrival of Tcp fragments. RLP is pre-packaged at the BSC and is attached with an additional burden. Each RLp frame including the MUX extra load contains 3 84 bits in cdma2〇〇〇 and is numbered by 12-bit number. Identification: assigns 12 bits to the RLP frame number with the 32〇〇〇^^^ header, which is used to reassemble the RLP frame at the terminal. Considering the smaller RLp frame size, The sequence space may not be sufficient at inter-rates, such as the rate achievable in a multi-carrier configuration. To support high data rates with existing RLPs, the RLP frames can be pre-segmented for reuse. The additional 12-bit sequence space of the segmented RLP frame. Since the RLp frame does not need to be pre-packaged, the sequence space is not a problem on the reverse link. The call setup procedure for multi-carrier operation can be implemented as follows. Obtaining system information from the synchronization channel (F-SYNCH) and obtaining an additional burden message to the paging channel (F-PCH) or forward broadcast control channel (F-BCCH) before transmitting on the primary FL carrier. The terminal is then in the primary rL Issue one on the channel The base station can assign a traffic channel to the terminal by extending the channel assignment message 143l91.doc -31 - 201004259 sent on the main FL carrier. The terminal obtains the mobile channel sub-transition to the mobile station control on the traffic channel. State, the second

Cdma2000中之仃動台操作狀態之一。在一實施例中僅為 ==定義該等操作狀態。其後基地台例如可藉由通用 二二=_)來指派多航视載波。當在新載 波上起始訊務頻道時,基地台可在發送UHdm後在前向丘 用功率控制頻道(F_CPCCH)上開始傳輸命令。終端機可在 接收到UHDM時開始傳輸R_piCH。終端機可在主要壯載 波亡發送交遞完成訊息(HCM)至基地台以便用信號通知已 獲仔F-CPCCH,HCM為Cdma2000層3協定訊息。 6·流程及系統 圖8展示-終端機為多載波操作而執行之—過程_之實 施例。終端機接收多個前向鏈路(FL)載波及至少一反向鏈 路(叫載波之指派(步驟812)。終端機可在該等多個几載 m多者上接收資料傳輪(步驟814)。終端機可單獨為 母一 FL載波解調變及解碼所接收之資料傳輪(步陳十 終端機亦可在至少一壯載波上傳輸資料(步驟818)。可基 於諸如系統資源之可用性、待發送資料之數量、頻道狀態 等等之各種因素為前向及/或反向鏈路上之資料傳輸排程 該終端機。One of the operating states of the turret in Cdma2000. In an embodiment only these operational states are defined as ==. Thereafter, the base station can assign multiple multi-view carriers, for example, by universal two-two = _). When the traffic channel is started on the new carrier, the base station can start transmitting commands on the forward power control channel (F_CPCCH) after transmitting the UHdm. The terminal can start transmitting R_piCH when it receives UHDM. The terminal can send a Handover Complete Message (HCM) to the base station in the main carrier to signal that the F-CPCCH has been obtained, and the HCM is a Cdma2000 Layer 3 protocol message. 6. Process and System Figure 8 shows the implementation of the process - the terminal is implemented for multi-carrier operation. The terminal device receives a plurality of forward link (FL) carriers and at least one reverse link (called carrier assignment (step 812). The terminal device can receive the data transmission wheel on the plurality of multiple carriers. 814) The terminal device can separately demodulate and decode the received data transmission wheel for the parent-FL carrier (the terminal device can also transmit data on at least one strong carrier (step 818). It can be based on, for example, system resources. Various factors such as availability, number of data to be sent, channel status, etc., are scheduled for data transmission on the forward and/or reverse link.

終端機可在主要壯載波上發送指机信號,該主要此 載波可在至少一 RL載波中指定(步驟82〇)。、終端機可在主 要FL載波上接收指定FL信號,該主訊載波可在多個几 載波中指以步驟822)。舉例而t,終端機可在該主要RL 143I91.doc •32· 201004259 載波上發出一呼叫且可該在主要FL載波上接收用於呼叫設 定之信號。終端機可基於主要FL載波之接收信號品質來為 前向鏈路上之資料傳輸選擇基地台。The terminal can transmit a finger signal on the primary strong carrier, the primary of which can be specified in at least one RL carrier (step 82). The terminal can receive the designated FL signal on the primary FL carrier, which can be referred to in step 822) in a plurality of carriers. By way of example, the terminal can place a call on the primary RL 143I91.doc • 32· 201004259 carrier and can receive a signal for call setup on the primary FL carrier. The terminal can select a base station for data transmission on the forward link based on the received signal quality of the primary FL carrier.

可將多個FL載波及至少一 RL載波排列於至少一組中。 如圖3中所示,每一組可包括至少一 FL載波及一 RL載波。 終端機可接收每一組中之該(該等)FL載波上之封包且可經 由該組中之該(該等)RL載波發送對所接收之封包之確認。 終端機亦可經由每一組中之尺1載波來發送該組中的該(該 %)FL載波之CQI報告。可將每一組中一FL載波指定為組 主要FL載波。終端機可經由組主要FL載波來接收每一組 中RL載波之信號。 圖9展示用於發送確認之過程9〇〇之一實施例。終端機在 多個資料頻道(例如’ F_PDCH)上接收經由多個前向鍵路 (FL)載波發送之封包(步驟912)。終端機確定對在資料頻道 上接收之封包之確認(步驟914)。終端機使用指派給每一資 料頻道之正交碼(例如,沃爾什碼)來頻道化該資料頻道之 確認,以產生該資料頻道之符號序列(步驟916)。终端機將 每-資料頻道之符號序列複製多次(步驟918)。終 多個資料頻道之經複製符號序列產生確認頻道(例如二 ACKCH)之調變符號(步驟920)。 資料頻道之數目可為可組態的。若例如為與edma2_版 本D向後相容而僅為一資料頻道發送確認,則可使用全零 或全一之正交碼。繼頻道之數目小於第-值(例如, 4),則可使用具有第—長度(例如,四個碼&正交碼。 143191.doc -33- 201004259 若資料頻道之怒θ H 4於或大於第一值,則可使用具有第二 長度(例如,八彳m μ μ \ ,’、、月)之正交碼。重複因子亦可視資料頻 逼之數目而定。 圖10展示用协欲、,, — ;發运頻道品質指示(CQI)報告之過程1000 之一貫施例。故各山_uu分 〜柒栈獲得多個前向鏈路(FL)載波之完全 t»/ 等艮告,jfe. _ ^ ,, 凡王CQi報告指示一 fl載波之接收信號品 質(步驟1012)。故#地,+ 機使用選定基地台之正交碼(例如,沃 爾什碼)來頻道化每_ + 疋全CQI報告(步驟1〇14)。終端機在 办入 在不同蛉間間隔(或時槽)中發送多個FL載波之 〇王CQI報告(步驟1〇16)。終端機可循環穿過該等多個ft 載波’在—時刻選擇—FL載波,且在為發送完全卿報告 ^曰疋之時間間隔中發送每—選定凡載波之完全c㈣ 告0A plurality of FL carriers and at least one RL carrier may be arranged in at least one group. As shown in FIG. 3, each group may include at least one FL carrier and one RL carrier. The terminal can receive the packet on the (the) FL carrier in each group and can send an acknowledgment of the received packet via the (the) RL carrier in the group. The terminal can also transmit the CQI report of the (%) FL carrier in the group via the 1 carrier in each group. One FL carrier in each group can be designated as the group primary FL carrier. The terminal can receive signals from the RL carriers in each group via the group primary FL carrier. Figure 9 shows an embodiment of a process 9 for transmitting an acknowledgment. The terminal receives packets transmitted via a plurality of forward link (FL) carriers on a plurality of data channels (e.g., 'F_PDCH) (step 912). The terminal determines the confirmation of the packet received on the data channel (step 914). The terminal uses the orthogonal code (e.g., Walsh code) assigned to each of the data channels to channel the acknowledgment of the data channel to generate a sequence of symbols for the data channel (step 916). The terminal copies the symbol sequence of each data channel a plurality of times (step 918). The replicated symbol sequence of the final plurality of data channels produces a modulation symbol for the acknowledgment channel (e.g., two ACKCHs) (step 920). The number of data channels can be configurable. If, for example, it is backward compatible with edma2_version D and only an acknowledgment is sent for a data channel, an all zero or all-one orthogonal code can be used. If the number of channels is less than the first value (for example, 4), then the first length can be used (for example, four codes & orthogonal codes. 143191.doc -33 - 201004259 if the data channel is θ H 4 or If it is greater than the first value, an orthogonal code having a second length (for example, eight 彳m μ μ \ , ', , and month) may be used. The repetition factor may also be determined by the number of data frequencies. ,,, —; The consistent example of the process of the Shipping Channel Quality Indication (CQI) Report 1000. Therefore, each mountain has a complete t»/ equal report for multiple forward link (FL) carriers. , jfe. _ ^ ,, Van King CQi report indicates the received signal quality of a fl carrier (step 1012). Therefore, the #, + machine uses the orthogonal code of the selected base station (for example, Walsh code) to channel each _ + 疋 full CQI report (steps 1 〇 14). The terminal is in the process of sending multiple CQI reports of multiple FL carriers in different inter-turn intervals (or time slots) (steps 1〇16). The terminal can cycle Passing through the plurality of ft carriers 'at-time selection' - FL carrier, and transmitting in the time interval for transmitting the complete report Every - select the complete c (four) of the carrier

^端機在—特定時間間隔中獲得多個FL載波之差動CQI 報口 ^1018)。終端機共同編碼多個FL載波之差動CQI報告 以獲得一碼字組(步驟1〇2〇)。終端機可基於π載波之數目The terminal machine obtains the differential CQI report port of the multiple FL carriers ^1018 in a specific time interval. The terminal unit encodes the differential CQI reports of the plurality of FL carriers to obtain a codeword group (step 1〇2〇). The terminal can be based on the number of π carriers

選擇一區塊碼且可使用選定區塊碼共同編碼該等差動CQI 報。。終端機用選定基地台之正交碼來頻道化該碼字組 (1 022)。終端機隨後在特定時間間隔中在吻頻道上發送 該石馬字組(1024)。 。圖"展示用於降低例如多載波操作之導頻額外負擔的過 11〇〇之-實施例。終端機在允許傳輸問控導頻之控制保 持模式中運作(步驟1112)。終端機當在控制保持模式中時 接收在前向鏈路上發送之資料頻道(例如,F-PDCH)(步驟 143191.doc '34- 201004259 1114)。右反向鏈路上未發送其它傳輸,則終端機在反向 鏈路上傳輸閘控導頻(步驟1116)。若反向鏈路上正發送傳 • 輸,則終端機在反向鏈路上傳輸完全導頻(1118)。舉例而 吕,終端機可產生在資料頻道上接收之封包之確認,在反 向鏈路上發送該等確認以及完全導頻,且在完成該等確認 在反向鏈路上之傳輸後重新開始傳輸閘控導頻。終端機回 應一退出事件而退出控制保持模式,該退出事件可能係接 C" 收到退出控制保持模式之信號、在反向鏈路上傳輸資料等 等(步驟1 120)。 圖8至圖11展示一終端機為多載波操作而執行之過程。 基地台執行互補處理以支援多載波操作。 圖12展示一基地台11〇及一終端機12〇之實施例之方塊 圖。對於前向鏈路而言,在基地台11〇處,編碼器121〇接 收用於終端機之訊務資料及信號。編碼器121〇處理(例 如,編碼、交錯及符號映射)訊務資料及信號,且產生用 J 於例如 F-PDCH、F-PDCCH、F-ACKCH及 F-GCH之各種前 向鏈路頻道之輸出資料。調變器1212處理(例如,頻道 化展頻及擾頻(scramble))用於各種前向鏈路頻道之輸出 資料,並產生輸出碼片。傳輸器(TMTR)1214調節(例如, 轉換成類比、放大、過濾及增頻變換)該等輸出碼片且產 生一前向鏈路信號,經由天線1216傳輸該前向鏈路信號。 在終端機120處,天線1252接收來自基地台11〇之前向鏈 路信號以及來自其它基地台之信號,且將所接收信號提供 至接收态(RCVR)1254。接收器1254調節(例如,過淚、放 143191.doc -35- 201004259 大、降頻變換及數位化)所接 )所接收之仏旎且提供資料樣本。 解調變器(Demod)1256處理(例如,觫傅 V』如解擾頻、解展頻及解頻 道^該等資料樣本且提供符號估計。在一實施例中,接 收器12 5 4及/或解調變5| 1 2 5 6、占 心56執仃過濾以通過所有相 波。解碼器1258處理(例如’解映射、解交錯及解碼)該等 符號估計且為由基地台11()發送至終端機i2Q的訊務資料及 信號提供解碼資料。解調變器1256及解碼器1258可為每— FL載波單獨執行解調變及解碼。 … 在反向鏈路上,在終端機12〇處,編碼器127〇處理訊務 資料及信號(例如’確認及CQI報告)且產生用於例如L PDCH、R-ACKCH、R_CQICH、R piCH 及 r reqch 之各 種反向鏈路頻道之輸出資料。解調變器咖進—步處理輸 出資料並產生輸出石馬片。傳輪器1274調節該等輸出碼片: 產生一反向鏈路信號,經由天線1252傳輸該反向鏈路信 號。在基地台110處,該反向鏈路信號經天線1216接收, 經接收器1230調節、經解調變器1232處理,且進一步經解 碼器1234處理以恢復終端機12〇所發送之資料及信號。 控制器/處理器122〇及126〇分別指導基地台i 1〇及終端機 120處之操作。記憶體1222及1262分別儲存用於控制器/處 理器1220及1260之資料及程式碼。排程器1224可向終端機 指派FL及/或RL载波且可為前向及反向鏈路上之資料傳輸 排程該等終端機。 & 本文中描述之多載波傳輸技術具有以下所要特徵: •與Rev D前向鏈路向後相容之多載波前向鏈路-不改變 143191.doc -36- 201004259A block code is selected and the differential CQI messages can be encoded together using the selected block code. . The terminal channelizes the code block (1 022) with the orthogonal code of the selected base station. The terminal then transmits the stone horse block (1024) on the kiss channel during a particular time interval. . Figure " shows an embodiment for reducing the extra burden of pilots such as multi-carrier operation. The terminal operates in a control hold mode that allows transmission of the challenge pilot (step 1112). The terminal receives the data channel (e.g., F-PDCH) transmitted on the forward link when in the control hold mode (step 143191.doc '34-201004259 1114). If no other transmissions are sent on the right reverse link, the terminal transmits a gating pilot on the reverse link (step 1116). If the transmission is being transmitted on the reverse link, the terminal transmits the full pilot on the reverse link (1118). For example, the terminal can generate an acknowledgment of the packet received on the data channel, send the acknowledgment and the complete pilot on the reverse link, and restart the transmission gate after completing the transmission of the acknowledgment on the reverse link. Control pilot. The terminal exits the control hold mode in response to an exit event, which may be coupled to C" a signal to exit the control hold mode, transmit data on the reverse link, etc. (step 1 120). 8 through 11 illustrate a process in which a terminal is executed for multi-carrier operation. The base station performs complementary processing to support multi-carrier operation. Figure 12 shows a block diagram of an embodiment of a base station 11 and a terminal unit 12A. For the forward link, at the base station 11, the encoder 121 receives the traffic data and signals for the terminal. The encoder 121 processes (e.g., encodes, interleaves, and symbol maps) the traffic data and signals, and generates various forward link channels for, for example, F-PDCH, F-PDCCH, F-ACKCH, and F-GCH. Output data. Modulator 1212 processes (e. g., channelized spread spectrum and scramble) for output data for various forward link channels and produces output chips. Transmitter (TMTR) 1214 conditions (e.g., converts to analog, amplifies, filters, and upconverts) the output chips and generates a forward link signal that is transmitted via antenna 1216. At terminal 120, antenna 1252 receives the forward link signals from base station 11 and signals from other base stations and provides the received signals to receive state (RCVR) 1254. Receiver 1254 adjusts (eg, tears, 143191.doc -35-201004259 large, down-converted, and digitized) to receive the data samples. Demodulation transformers (Demod) 1256 process (e.g., VV) such as descrambling, despreading, and de-channeling the data samples and providing symbol estimates. In one embodiment, the receivers 12 5 4 and/or Or demodulation 5| 1 2 5 6. The core 56 performs filtering to pass all phase waves. The decoder 1258 processes (eg, 'demapping, deinterleaving, and decoding') the symbol estimates and is used by the base station 11() The traffic data and signals sent to the terminal i2Q provide decoded data. The demodulation transformer 1256 and the decoder 1258 can perform demodulation and decoding separately for each FL carrier. ... On the reverse link, at the terminal 12 The encoder 127 processes the traffic data and signals (eg, 'acknowledgement and CQI reports') and generates output data for various reverse link channels such as L PDCH, R-ACKCH, R_CQICH, R piCH, and r reqch . The demodulation processor processes the output data and produces an output stone. The wheeler 1274 adjusts the output chips: generates a reverse link signal, and transmits the reverse link signal via the antenna 1252. At station 110, the reverse link signal is received via antenna 1216, via receiver 1 The 230 is adjusted, processed by the demodulation transformer 1232, and further processed by the decoder 1234 to recover the data and signals transmitted by the terminal device 12. The controller/processors 122 and 126 指导 respectively guide the base station i 1 and the terminal The operations are performed at the machine 120. The memories 1222 and 1262 respectively store data and code for the controllers/processors 1220 and 1260. The scheduler 1224 can assign FL and/or RL carriers to the terminal and can be forward and The data transmission on the reverse link schedules these terminals. & The multi-carrier transmission technique described in this paper has the following characteristics: • Multi-carrier forward link compatible with the Rev D forward link - no change 143191.doc -36- 201004259

Rev D實體層, ' •與Rev D反向鏈路向後相容之多載波反向鏈路-不會影 - 響硬體實施之新的向後相容性R-ACKCH及R-CQICH結 構,及 •靈活之可組態系統-K個FL載波及Μ個RL載波,其中 KSNxM且 Κ2Μ。 本文中描述之傳輸技術可提供各種優點。首先,該等技 術允許cdma2000版本D僅使用或主要使用軟體/韌體升級來 支援多個載波。對一些RL頻道(例如,R-ACKCH及R-CQICH)進行相對少量改變以支援多載波操作。可藉由基 地台處之軟體/韌體升級來處理此等改變,以使得可重新 使用諸如頻道插件之現有硬體。其次,可在前向及反向鏈 路上支援更高峰值資料速率。第三’在多個FL載波上使用 多個F-PDCH可改良多樣性,此可改良q〇s。靈活之載波結 構允許資料速率隨著VLSI技術之進步逐漸增加。 (J 本文中包括標題以供參考並用以幫助定位某些章節。此 專‘通並非思欲限制本文中所描述的概念之範缚,且此等 概念可應用於整個說明書之其它章節。 热習此項技術者將明白,可使用多種不同技術及方法令 之任一者來表示資訊及信號。舉例而言,在整個以上描述 u中可此引用之資料、指令、命令、資訊、信號、位元、符 號及碼片可藉由電壓、電流、電磁波、磁場或磁粒子、光 場或光粒子或其任—組合來表示。 热習此項技術者將進—步瞭冑,結纟本文所揭示之實施 143191.doc •37· 201004259 例加以描述的各種說明性邏輯塊、模組、電路及算法步驟 可實施為電子硬體、電腦軟體或兩者之組合。為清楚說明 硬體及軟體的此可互換性,上文已大體上就其功能性描述 了各種說明性組件、塊、模組、電路及步驟。此功能性係 實施為硬體還是軟體取決於施加於整個系統上之特定應用 及設計限制。對於每一特定應用而言,熟習此項技術者可 以不同方法來實施所描述之功能性,但此實施決策不應被 理解為導致脫離本發明之範疇。 可使用通用處理器、數位信號處理器(DSP)、特殊應用 積體電路(ASIC)、場可程式閘極陣列(FPGA)或其它可程式 邏輯設備、離散閘極或電晶體邏輯、離散硬體組件或經設 計以執行本文所描述功能的其任何組合來實施結合本文所 揭示之實施例而描述之各種說明性邏輯塊、模組及電路。 通用處理器可為微處理器,但作為替代,該處理器可為任 一習知處理器、控制器、微控制器或狀態機。處理器亦可 實施為計算設備之組合,例如,一 DSP及一微處理器之組 合、複數個微處理器之組合、結合一 DSP核心之一或多個 微處理器之組合,或任一其它此種組態。 結合本文中所揭示之實施例而描述的方法或算法之步驟 可直接體現於硬體、由處理器執行之軟體模組或兩者之組 合中。軟體模組可位於RAM記憶體、快閃記憶體、ROM記 憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、 抽取式碟片、CD-ROM或此項技術中熟知的任何其它形式 之儲存媒體中。例示性儲存媒體耦接至處理器,使得處理 143191.doc •38· 201004259 器可自儲存媒體讀取資訊且可向儲存媒體寫入資訊。或 者,儲存媒體可整合於處理器。處理器及儲存媒體可位於 ASIC中。ASIC可位於使用者終端機中。或者,處理器及 儲存媒體可作為離散組件位於使用者終端機中。 提供所揭示實施例之先前描述以使得熟習此項技術者能 夠製作或使用本發明。對於熟習此項技術者而言,對此等 實施例之各種修改將係顯而易見的,且在不脫離本發明之 精神及範疇的情況下,本文中所定義之基本原理可應用於 其它實施例。因此,本發明並非意欲受限於本文中所展示 之實施例,而是與符合本文所揭示之原理及新穎特徵的最 寬廣範疇相一致。 【圖式簡單說明】 圖1展示一無線通信系統; 圖2展示cdma2000中之前向鏈路上一例示性資料傳輸; 圖3展示一例示性多載波結構; 圖4A展示cdma2000版本D中一 R-ACKCH結構; 圖4B及圖4C展示對於多個FL載波而言分別可支援高達 三個及七個R-ACKCH之新R-ACKCH結構; 圖5A展示cdma2000版本D中一 R-CQICH結構; 圖5B展示可支援多個FL載波之新R-CQICH結構; 圖6A至圖6E展示新R-CQICH上之例示性傳輸; 圖7展示一 R-PICH上之完全及閘控導頻之傳輸; 圖8展示一終端機為多載波操作而執行之一過程; 圖9展示一用於發送確認之過程; 143191.doc -39- 201004259 圖10展示一用於發送CQI報告之過程; 圖11展示一用於為多載波操作降低導頻額外負擔之過 程;及 圖12展示一基地台及一終端機之方塊圖。 【主要元件符號說明】 100 無線通信系統 104a ' 104b、104c 110 120 130 300 410 412 420 422 424 426 428 432 434 436 510 512 514 扇區 基地台 終端機 系統控制器 多載波結構 R-ACKCH 結構 符號重複單元 新R-ACKCH結構 信號點映射單元 沃爾什覆蓋單元 重複單元 加法器 信號點映射單元 沃爾什覆蓋單元 重複單元 R-CQICH 結構 塊編碼器 重複單元 143191.doc -40- 201004259 516 切換器 5 18 沃爾什覆蓋單元 520 模2加法器 522 信號點映射單元 524 沃爾什覆蓋單元 530 新R-CQICH結構 532 塊編碼器 534 塊編碼器 536 切換器 538 沃爾什覆蓋單元 540 加法器 542 信號點映射單元 544 沃爾什覆蓋單元 1210 編碼 1212 調變器 1214 傳輸器 1216 天線 1220 、 1260 控制器/處理器 1222 > 1262 記憶體 1224 排程器 1230 接收器 1232 解調變器 1234 解碼器 1252 天線 -41 - 143191.doc 201004259 1254 接收器 1256 解調變器 1258 解碼器 1270 編碼器 1272 調變器 1274 傳輸器 14319I.doc -42-Rev D physical layer, ' • Multi-carrier reverse link compatible with the Rev D reverse link backwards - does not affect the new backward compatibility R-ACKCH and R-CQICH structures implemented by the hardware, and • Flexible configurable system - K FL carriers and RL RL carriers, where KSNxM is Κ2Μ. The transmission techniques described herein can provide various advantages. First, these technologies allow cdma2000 version D to support multiple carriers using only or primarily software/firmware upgrades. A relatively small number of changes are made to some RL channels (eg, R-ACKCH and R-CQICH) to support multi-carrier operation. These changes can be handled by software/firmware upgrades at the base station so that existing hardware such as channel plug-ins can be reused. Second, higher peak data rates can be supported on the forward and reverse links. The third 'using multiple F-PDCHs on multiple FL carriers improves diversity, which improves q〇s. The flexible carrier architecture allows data rates to increase with the advancement of VLSI technology. (J This article contains headings for informational purposes and to help locate certain sections. This is not intended to limit the scope of the concepts described herein, and such concepts may apply to other sections throughout the specification. Those skilled in the art will appreciate that a variety of different techniques and methods can be used to represent information and signals. For example, the information, instructions, commands, information, signals, bits that may be referenced throughout the above description. The elements, symbols and chips can be represented by voltage, current, electromagnetic wave, magnetic field or magnetic particles, light field or light particles or any combination thereof. Those who are eager to learn this technology will step forward and conclude The implementation of the disclosure 143191.doc • 37· 201004259 The various illustrative logic blocks, modules, circuits, and algorithm steps described in the examples can be implemented as an electronic hardware, a computer software, or a combination of both, for clarity of hardware and software. This interchangeability has been described above generally in terms of its various illustrative components, blocks, modules, circuits, and steps. Whether the functionality is implemented as a hardware or a software depends on the application. Specific application and design limitations of the entire system. For each particular application, those skilled in the art can implement the described functionality in different ways, but this implementation decision should not be construed as causing a departure from the scope of the invention. Can use general purpose processors, digital signal processors (DSPs), special application integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic, discrete hard The various components, modules, and circuits described in connection with the embodiments disclosed herein are implemented in a body component or any combination thereof that is designed to perform the functions described herein. A general purpose processor may be a microprocessor, but instead The processor can be any conventional processor, controller, microcontroller or state machine. The processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors Combination of one, one or a combination of a plurality of microprocessors, or any other such configuration. Combined with the embodiments disclosed herein The method or algorithm steps can be directly embodied in a hardware, a software module executed by a processor, or a combination of the two. The software module can be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, EEPROM memory, scratchpad, hard drive, removable disc, CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that processing 143191.doc 38· 201004259 The device can read information from the storage medium and can write information to the storage medium. Alternatively, the storage medium can be integrated into the processor. The processor and the storage medium can be located in the ASIC. The ASIC can be located in the user terminal. The processor and the storage medium may be located as a discrete component in the user terminal. The previous description of the disclosed embodiments is provided to enable a person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the basic principles defined herein may be applied to other embodiments without departing from the spirit and scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments disclosed herein, but rather the broad scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a wireless communication system; FIG. 2 shows an exemplary data transmission on a forward link in cdma2000; FIG. 3 shows an exemplary multi-carrier structure; FIG. 4A shows an R-ACKCH in cdma2000 version D. Figure 4B and Figure 4C show a new R-ACKCH structure supporting up to three and seven R-ACKCHs for multiple FL carriers; Figure 5A shows an R-CQICH structure in cdma2000 version D; Figure 5B shows A new R-CQICH structure supporting multiple FL carriers; Figures 6A-6E show exemplary transmissions on the new R-CQICH; Figure 7 shows the transmission of full and gated pilots on an R-PICH; A terminal performs a process for multi-carrier operation; Figure 9 shows a process for transmitting a acknowledgment; 143191.doc -39- 201004259 Figure 10 shows a process for transmitting a CQI report; Figure 11 shows a process for The multi-carrier operation reduces the extra burden of the pilot; and Figure 12 shows a block diagram of a base station and a terminal. [Main component symbol description] 100 wireless communication system 104a '104b, 104c 110 120 130 300 410 412 420 422 424 426 428 432 434 436 510 512 514 sector base station terminal system controller multi-carrier structure R-ACKCH structure symbol repetition Unit new R-ACKCH structure signal point mapping unit Walsh cover unit repeat unit adder signal point mapping unit Walsh cover unit repeat unit R-CQICH structure block encoder repeat unit 143191.doc -40- 201004259 516 switcher 5 18 Walsh Covering Unit 520 Modal 2 Adder 522 Signal Point Mapping Unit 524 Walsh Covering Unit 530 New R-CQICH Structure 532 Block Encoder 534 Block Encoder 536 Switch 538 Walsh Covering Unit 540 Adder 542 Signal Point mapping unit 544 Walsh overlay unit 1210 code 1212 modulator 1214 transmitter 1216 antenna 1220, 1260 controller/processor 1222 > 1262 memory 1224 scheduler 1230 receiver 1232 demodulator 1234 decoder 1252 Antenna-41 - 143191.doc 201004259 1254 Receiver 1256 Demodulation Transformer 1258 Decoding The encoder 1272 1270 1274 transmitter modulator 14319I.doc -42-

Claims (1)

201004259 七、申請專利範圍: 1 _ 一種使用多载波來增加鏈結容量之方法,該方法之步驟 包括: 選擇一基地台; 使用一個單一載波傳輸至該基地台; 從該基地台接收一組二個載波或多個載波之指派;及 從該基地台在該組二個載波或多個載波上接收資料。 2 ·如凊求項1之方法,進一步包括: 接收一第二組二個載波或多個載波之一指派;及 從該基地台在該第二組二個載波或多個載波上傳輪資 料。 3 .如請求項1之方法,進一步包括: 傳輪一種用於在該組兩個載波或多個載波内的每一栽 波之確認。 4.如請求項1之方法,進一步包括: 產生一個指示用於該組兩個載波或多個載波内的每一 載波之接收信號品質之一通道品質指示(CQI)報告。 5 ·如請求項1之方法,其中該多載波對應於在一正交分頻 多工系統内之多個通道。 6. —種使用多載波來增加鏈結容量之裝置,該裝置包括: 一適用於選擇一基地台之處理器; 一適用於使用一單一載波來傳輸資料至該基地台之傳 輸器;及 一適用於從該基地台接收資料及從該基地台接收—級 143191.doc 201004259 -個載波或多個載波之一指派。 7. 如請求項6之裝置,其中: /收°。進一步適用於接收一第二組二個載波或多個 載波之指派;及 、忒傳輪器進一步適用於在該第二組二個載波或多個載 波上傳輪資料至該基地台。 8. 如°月求項6之裝置,#中該傳輸器進-步適用於傳輸用 於在4組二個載波或多個載波内之每一載波之一確認。 9_如請求項6之裝置,其中該處理器進一步適用於產生— 個才曰不用於該組兩個載波或多個載波内的每一載波之爷 接收k號品質之通道品質指示(CQI)報告。 10.如請求項6之裝置,其中該等多載波對應於—正交分頻 多工系統内之多個通道。 11’ 一種使用多載波來增加鏈結容量之裝置,該裝置包括. 用於選擇一基地台之構件; 用於使用一單一載波來傳輸資料至該基地台之構件· 用於從該基地台接收之一組二個載波或多個栽波之— 指派之構件; 用於在該組二個載波或多個載波上接收資料至該義地 台之構件。 12·如请求項11之裝置,進一步包括: 用於接收一第二組二個載波或多個載波之—指派 件;及 用於在該第二組二個載波或多個載波上傳輸資料 、卞主s亥 143I91.doc 201004259 基地台之構件。 • 13.如請求項11之裝置’進一步包括: - 用於傳輸一用於在該組二個載波或多個載波内之每一 載波之確認之構件。 14. 如請求項u之裝置,進一步包括: 用來產生一通道品質指示(CQI)報告之構件,該報告係 指示用於該組兩個載波或多個載波内的每一載波之該接 收信號品質。 15. 如請求項u之裝置,其中該等多載波對應於在一正交分 頻多工系統内之多個通道。 16. —種嵌入在電腦可讀取媒體之電腦程式產品,該電腦程 式具有多個指令用於: 選擇一基地台; 使用一單一載波傳輸資料至該基地台; 從該基地台接受一組兩個載波或多個載波之一指 J ;及 從該基地台在該組二個載波或多個載波上接收資料。 17_如請求項16之電腦可讀取媒體,進一步包含多個指令用 於: 接收一第二組二個載波或多個載波之一指派;及 在該第二組二個載波或多個載波上傳輸資料至該基地 台。 18.如請求項16之電腦可讀取媒體,進一步包含多個指令用 於: 143191.doc 201004259 傳輸一用於在該組二個載波或多個載波内之每—載波 之確認。 19. 20. 如清求項16之電腦可讀取媒體,進一步包含多個指令用 於: 產生一個指示用於該組兩個載波或多個載波内的每— 載波之接收信號品質之—通道品質指示(CQI)報告。 如請求項1 6之電腦可讀取媒體,其中該電腦程式產品是 適用於提供一可在正交分頻多工系統内操作之處理器之 指令。 143191.doc201004259 VII. Patent application scope: 1 _ A method for increasing the link capacity by using multiple carriers, the method comprises the steps of: selecting a base station; transmitting to the base station by using a single carrier; receiving a group of two from the base station Assignment of one carrier or multiple carriers; and receiving data from the base station on the set of two carriers or multiple carriers. 2. The method of claim 1, further comprising: receiving a second set of two carriers or one of a plurality of carriers; and uploading round information from the base station to the second set of two carriers or carriers. 3. The method of claim 1, further comprising: transmitting an acknowledgment for each of the two carriers or the plurality of carriers in the set. 4. The method of claim 1, further comprising: generating a channel quality indication (CQI) report indicating a received signal quality for each of the two carriers or the plurality of carriers. 5. The method of claim 1, wherein the multicarrier corresponds to a plurality of channels within an orthogonal frequency division multiplexing system. 6. A device for using a multi-carrier to increase link capacity, the device comprising: a processor adapted to select a base station; a transmitter adapted to transmit data to the base station using a single carrier; and a Applicable to receive data from the base station and receive from the base station - level 143191.doc 201004259 - one carrier or one of multiple carriers. 7. The device of claim 6, wherein: / is °. Further suitable for receiving an assignment of a second set of two carriers or a plurality of carriers; and, the passer is further adapted to upload data to the base station in the second set of two carriers or a plurality of carriers. 8. In the case of the device of the month 6, the transmitter is further adapted to transmit for confirmation on one of each of the four groups of two carriers or multiple carriers. 9. The apparatus of claim 6, wherein the processor is further adapted to generate a channel quality indicator (CQI) of the quality of the k-th quality that is not used for each of the two carriers or the plurality of carriers of the group. report. 10. The apparatus of claim 6, wherein the plurality of carriers correspond to a plurality of channels within the orthogonal frequency division multiplexing system. 11' A device for increasing link capacity using multiple carriers, the device comprising: means for selecting a base station; means for transmitting data to the base station using a single carrier, for receiving from the base station A set of two carriers or a plurality of carriers - an assigned component; means for receiving data onto the set of two carriers or a plurality of carriers to the platform. 12. The apparatus of claim 11, further comprising: an assignment for receiving a second set of two carriers or a plurality of carriers; and for transmitting data on the second set of two carriers or carriers,卞主s shai 143I91.doc 201004259 The components of the base station. 13. The apparatus of claim 11 further comprising: - means for transmitting an acknowledgment for each of the two carriers or the plurality of carriers in the set. 14. The apparatus of claim 9, further comprising: means for generating a channel quality indication (CQI) report, the report indicating the received signal for each of the two carriers or the plurality of carriers of the group quality. 15. The apparatus of claim 9, wherein the plurality of carriers correspond to a plurality of channels within a quadrature frequency division multiplexing system. 16. A computer program product embedded in a computer readable medium, the computer program having a plurality of instructions for: selecting a base station; transmitting data to the base station using a single carrier; receiving a set of two from the base station One of the carriers or one of the plurality of carriers refers to J; and receives data from the set of two carriers or a plurality of carriers from the base station. 17_ The computer readable medium of claim 16, further comprising: a plurality of instructions for: receiving a second set of two carriers or one of a plurality of carriers; and wherein the second set of two carriers or carriers Transfer data to the base station. 18. The computer readable medium of claim 16 further comprising a plurality of instructions for: 143191.doc 201004259 transmitting an acknowledgment for each carrier in the set of two carriers or carriers. 19. 20. The computer readable medium of claim 16, further comprising a plurality of instructions for: generating a channel indicating the quality of the received signal for each of the two carriers or the plurality of carriers in the group Quality Indicator (CQI) report. The computer readable medium of claim 16, wherein the computer program product is adapted to provide a processor operable in an orthogonal frequency division multiplexing system. 143191.doc
TW098130976A 2005-03-29 2006-03-29 Method and apparatus for high rate data transmission in wireless communication TWI510044B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66646105P 2005-03-29 2005-03-29

Publications (2)

Publication Number Publication Date
TW201004259A true TW201004259A (en) 2010-01-16
TWI510044B TWI510044B (en) 2015-11-21

Family

ID=39449529

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098130976A TWI510044B (en) 2005-03-29 2006-03-29 Method and apparatus for high rate data transmission in wireless communication
TW95110962A TWI319951B (en) 2005-03-29 2006-03-29 Method and apparatus for high rate data transmission in wireless communication

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW95110962A TWI319951B (en) 2005-03-29 2006-03-29 Method and apparatus for high rate data transmission in wireless communication

Country Status (3)

Country Link
CN (1) CN101185278B (en)
MY (4) MY154841A (en)
TW (2) TWI510044B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360100B1 (en) 1998-09-22 2002-03-19 Qualcomm Incorporated Method for robust handoff in wireless communication system
US8982835B2 (en) 2005-09-19 2015-03-17 Qualcomm Incorporated Provision of a move indication to a resource requester
US8509799B2 (en) 2005-09-19 2013-08-13 Qualcomm Incorporated Provision of QoS treatment based upon multiple requests
US9736752B2 (en) 2005-12-22 2017-08-15 Qualcomm Incorporated Communications methods and apparatus using physical attachment point identifiers which support dual communications links
US8830818B2 (en) 2007-06-07 2014-09-09 Qualcomm Incorporated Forward handover under radio link failure
EP2359557B1 (en) * 2008-10-31 2017-08-30 InterDigital Patent Holdings, Inc. Method and apparatus for wireless transmissions using multiple uplink carriers
US9374749B2 (en) 2008-11-14 2016-06-21 Qualcomm Incorporated Methods and systems using same base station carrier handoff for multicarrier support
WO2010095992A1 (en) * 2009-02-20 2010-08-26 Telefonaktiebolaget L M Ericsson (Publ) A multicarrier transmission method and apparatus
US8620334B2 (en) 2009-03-13 2013-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for carrier assignment, configuration and switching for multicarrier wireless communications
US9001777B2 (en) 2009-03-17 2015-04-07 Qualcomm Incorporated Scheduling information for wireless communications
TWI392392B (en) * 2009-06-18 2013-04-01 Ind Tech Res Inst Carrier configuration method for multi-carrier communication system
US8767797B2 (en) * 2009-10-05 2014-07-01 Qualcomm Incorporated Apparatus and method for providing HARQ feedback in a multi-carrier wireless communication system
US8559950B2 (en) 2010-02-01 2013-10-15 Intel Mobile Communications GmbH Radio base stations, radio communication devices, methods for controlling a radio base station, and methods for controlling a radio communication device
US8615241B2 (en) 2010-04-09 2013-12-24 Qualcomm Incorporated Methods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726978A (en) * 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
US6621809B1 (en) * 1998-07-12 2003-09-16 Samsung Electronics Co., Ltd. Device and method for gating transmission in a CDMA mobile communication system
US6940827B2 (en) * 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
KR100547848B1 (en) * 2002-01-16 2006-02-01 삼성전자주식회사 Method and apparatus for transmitting and receiving status information of forward channel in multiple carrier mobile telecommunication system
AU2003221423A1 (en) * 2002-03-29 2003-10-13 Matsushita Electric Industrial Co., Ltd. Method of data retransmission in multi-carrier transmission and communication apparatus having data retransmission control device
US7551546B2 (en) * 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
US8400979B2 (en) * 2003-01-07 2013-03-19 Qualcomm Incorporated Forward link handoff for wireless communication systems with OFDM forward link and CDMA reverse link

Also Published As

Publication number Publication date
CN101185278B (en) 2012-10-10
CN101185278A (en) 2008-05-21
MY154839A (en) 2015-07-31
TW200708018A (en) 2007-02-16
TWI319951B (en) 2010-01-21
MY149491A (en) 2013-09-13
TWI510044B (en) 2015-11-21
MY154804A (en) 2015-07-31
MY154841A (en) 2015-07-31

Similar Documents

Publication Publication Date Title
TWI510044B (en) Method and apparatus for high rate data transmission in wireless communication
US10944533B2 (en) Method and apparatus for high rate data transmission in wireless communication
CN112368966A (en) Flexible repetition of PUSCH mini-slots within a slot