TW201003222A - Optical sheet and backlight assembly and liquid crystal display comprising the same - Google Patents

Optical sheet and backlight assembly and liquid crystal display comprising the same Download PDF

Info

Publication number
TW201003222A
TW201003222A TW098118903A TW98118903A TW201003222A TW 201003222 A TW201003222 A TW 201003222A TW 098118903 A TW098118903 A TW 098118903A TW 98118903 A TW98118903 A TW 98118903A TW 201003222 A TW201003222 A TW 201003222A
Authority
TW
Taiwan
Prior art keywords
pattern
optical film
pattern layer
transparent substrate
light
Prior art date
Application number
TW098118903A
Other languages
Chinese (zh)
Inventor
Seung-Kyu Choi
Cheol-Heung Ahn
Suk-Jun Kim
Je-Min Yeoun
Young-Shin Choi
Chan-Kyu Park
Ka-Young Son
Hyun-Ee Yang
Original Assignee
Shinwha Intertek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwha Intertek Corp filed Critical Shinwha Intertek Corp
Publication of TW201003222A publication Critical patent/TW201003222A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are an optical sheet, and a backlight assembly and a liquid crystal display including the optical sheet. The optical sheet includes a transparent base, and at least one three-dimensional pattern layer disposed on each of one side and the other side of the transparent base. A single optical sheet has a multi-function of photo refractivity, condensing and light diffusion, and requires neither a masking film nor a protective film to thereby be excellent in cost reduction, productivity and workability. Also, lighter, thinner, simpler and smaller liquid crystal display can be accomplished.

Description

201003222 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學膜片及包含該光學膜片之一背光總成及 一液晶顯示器,更具體而言係關於一種藉由一單一膜片實現一漫 射膜片、一棱鏡膜片及一保護膜片之複數功能之光學膜片、及包 含該光學膜片之一背光總成及一液晶顯示器。 【先前技術】 液晶具有液體與固體之中間特性,而液晶顯示器係為利用液晶 之電及光學特性顯示影像之平板顯示裝置其中之一。液晶顯示器 較之其他顯示裝置要薄且輕,並具有一更低之驅動電壓及更低之 功率消耗,因此被廣泛用於整個工業領域。因為用於顯示影像之 顯示面板係為一不發光裝置,本身不能發光,故而液晶顯示器需 要單獨提供光之一背光總成。 【發明内容】 通常,一背光總成包含一燈單元、引導來自該燈單元之光之一 光導構件、設置於該光導構件之一上表面用以漫射光之一漫射膜 片、用以聚集自該漫射膜片射出之光之一棱鏡膜片、用以遮罩該 稜鏡膜片之一保護膜片等。構成該背光總成之部件之數量因該漫 射膜片、該稜鏡膜片及該保護膜片分開安裝而增加。部件之數量 增加導致難以製造更輕、更薄、更簡單及更小之背光總成。此外, 總成步驟之數量增加,進而增加次品率,提高總製造成本。 本發明提供一種光學膜片、及具有一多功能之包含該光學膜片 之一背光總成及一液晶顯示器。 201003222 在本發明之該光學膜片及包含該光學膜片之該背光總成及該液 晶顯示器中,該單一光學膜片具有光折射、光彙聚及光漫射之多 功能,並且既不需要一掩膜亦不需要一保護膜,從而於成本降低、 生產率及可加工性上表現極佳,同時可達成更輕、更薄、更簡單 及更小之液晶顯示器。 【實施方式】 根據本發明一實施例,提供一種光學膜片,包含:一透明基底; 及設置於該透明基底之一側與另一側中之每一者上之至少一三維 (three-dimensional,下稱 “3D”)圖案層。 功能珠可夾置於該透明基底與至少一 3D圖案之間。另外,一預 定表面粗糙度可形成於設置於該透明基底之一側上之一最上3D 圖案層之頂面上。 設置於該透明基底之該一側及該另一側上之該等3D圖案層至 少其中之一中的一最上3D圖案層包含矽丙烯酸酯(silicon acrylate ) 〇 1 根據本發明之另一實施例,提供一種光學膜片,包含:一透明 基底;設置於該透明基底之一側上之一第一 3D圖案層;及設置於 該透明基底之另一側上之一第二3D圖案層。 該第一 3D圖案層包含至少一種圖案,該至少一種圖案係選自一 稜鏡圖案、一透鏡狀圖案、一微透鏡圖案、及一菲涅爾(Fresnel) 圖案。 該第二3D圖案層可被造型為壓紋(embossing )。 5 201003222 該第一 3D圖案層可於其頂面上包含一預定表面粗糙度,該表面 粗糙度係介於0.05微米至0.5微米之間。 舉例而言,該第一 3D圖案層之頂面上具有該表面粗糙度之一面 積相對於該第一 3D圖案層之3D圖案之一總面積之比係為10%至 100%。 而且,該第一和該第二3D圖案層其中之至少一 3D圖案層包含 石夕丙稀酸醋。 而且,功能珠可夾置於該透明基底與該第一和該第二3D圖案層 其中之至少一 3D圖案層之間,其中該等功能珠係為光漫射珠。 根據本發明之另一實施例,提供一種背光總成,包含:一燈單 元;一光導構件,用以向上引導來自該燈單元之光;以及如請求 項1至13中任一項所述之光學膜片,設置於該光導構件之一上表 面上。 根據本發明之又一實施例,提供一種液晶顯示器,包含:一顯 示面板;及用以提供光至該顯示面板之該背光總成。 本發明之實施例詳述於實施方式及附圖中。本發明之優勢及特 徵以及一種實現本發明之方法將參照具體實施例予以闡述,現將 參照附圖對該等具體實施例予以更全面地描述。然而,本發明可 以許多不同形式體現且不應被視為限於本文中給出之實施例,而 是該等實施例之提供可使本發明全面而完整,並將向熟習此項技 術者完整地傳達本發明之概念。本發明僅由申請專利範圍中引述 之定義界定。在本說明書中,圖中之類似參考數字表示類似之元 201003222 件0 空間相對詞「......之下(below)」、「在……下方(beneath)」、「下 (lower)」、「在......上方(above)」或「上(upper)」可用於容易 地闡述如圖中所示之一構成元件與另一構成元件間之關係。當用 於除圖中所示一方向之外之方向時,該等空間相對詞必須被理解 為包含該等構成元件之不同方向。舉例而言,當圖中顯示之一構 成元件被翻轉時,描述為在另一構成元件之下或下方之構成元件 可位於該另一構成元件之上方或上部。因此,例示性詞語「之下 或下方(below or beneath)」可同時包含向下及向上之方向。該構 成元件可設置於一不同方向上,該等空間相對詞可根據該方向相 應地解釋。 下文將參照第1圖至第4圖闡述根據本發明之一實施例之光學 膜片。第1圖至第4圖係為闡述根據本發明之一實施例之光學膜 片之剖面圖。 除一光漫射功能、及繞射和聚光以提高亮度之一彙聚功能外, 根據本發明之實施例之光學膜片100、110、120及130更具有一 保護功能,防止與靠近光學膜片100、110、120及130之其他構 件之間發生刮擦。 根據本發明之一實施例之光學膜片100可包含一透明基底10及 各自設置於透明基底10之一側12及另一側14上之至少一 3D圖 案層20及30。如第1圖中所示,第一 3D圖案層20可包含於透 明基底10之一側12上,而第二3D圖案層30可包含於透明基底 10之另一側14上。 7 201003222 透明基底ίο被造型為由允許光透過之一無色透明合成樹脂形成 之板。 形成透明基底10之合成樹脂並無特別限制,但可包含聚對苯二 甲酸乙二酯、聚萘二甲酸乙二酯、丙烯酸樹脂、聚碳酸酯、聚苯 乙稀、聚烯烴、乙酸纖維素(cellous acetate)、对候性聚氣乙稀, 舉例而言。在該等材料中,以具有一極佳之透明度之聚對苯二甲 酸乙二酯或聚碳酸酯以及具有一增強之翹曲性能之聚對苯二甲酸 乙二S旨為佳。 透明基底10之厚度並無特殊規定,但可係為0至1000微米, 較佳25至600微米,舉例而言。在上述之厚度範圍内,透明基底 10在機械強度及熱穩定性上表現極佳,且具有一適宜之撓性,同 時透射光之損失小。 第一 3D圖案層20設置於透明基底10之一側12上。第一 3D 圖案層20藉由漫射或彙聚光而起增強亮度之作用。 第一 3D圖案層20可沿其上表面具有一系列稜鏡圖案。該稜鏡 圖案可係為一線形佈置之三角稜鏡圖案、一四角錐稜鏡圖案、或 一三角稜鏡圖案,舉例而言。由上述稜鏡圖案構成之第一 3D圖案 層20可增加被一觀察者藉助一顯示裝置監視之影像之亮度。如第 3圖中所示,一第一 3D圖案層40可於其一上表面上具有一透鏡 狀圖案或一微透鏡圖案。第一 3D圖案層40可用於,例如,垂直 於該透鏡狀圖案或該微透鏡圖案之凹槽一維地漫射光。 如第4圖所示,一第一 3D圖案層50可於其一上表面上具有一 201003222201003222 VI. Description of the Invention: [Technical Field] The present invention relates to an optical film and a backlight assembly including the same, and a liquid crystal display, and more particularly to a single film An optical film for realizing a plurality of functions of a diffusing film, a prism film and a protective film, and a backlight assembly including the optical film and a liquid crystal display. [Prior Art] Liquid crystal has an intermediate property of liquid and solid, and liquid crystal display is one of flat panel display devices that display images using electrical and optical characteristics of liquid crystal. Liquid crystal displays are thinner and lighter than other display devices, have a lower driving voltage and lower power consumption, and are therefore widely used in the entire industrial field. Since the display panel for displaying an image is a non-light emitting device and cannot emit light by itself, the liquid crystal display needs to separately provide a light backlight assembly. SUMMARY OF THE INVENTION Generally, a backlight assembly includes a lamp unit, a light guiding member guiding light from the lamp unit, and an upper surface of one of the light guiding members for diffusing a diffusing film for collecting One of the prisms of light emitted from the diffusing film, a protective film for covering the enamel film, and the like. The number of components constituting the backlight assembly is increased by the separate mounting of the diffusing film, the diaphragm, and the protective film. The increased number of components has made it difficult to make lighter, thinner, simpler, and smaller backlight assemblies. In addition, the number of assembly steps increases, which in turn increases the defect rate and increases total manufacturing costs. The invention provides an optical film, and a backlight assembly comprising the optical film and a liquid crystal display. 201003222 In the optical film of the present invention and the backlight assembly including the optical film and the liquid crystal display, the single optical film has the functions of light refraction, light convergence and light diffusion, and does not require a The mask also does not require a protective film, which is excellent in cost reduction, productivity, and processability, while achieving a lighter, thinner, simpler, and smaller liquid crystal display. [Embodiment] According to an embodiment of the present invention, an optical film includes: a transparent substrate; and at least one three-dimensional (three-dimensional) disposed on one of one side and the other side of the transparent substrate , hereinafter referred to as "3D") pattern layer. The functional beads can be sandwiched between the transparent substrate and the at least one 3D pattern. Alternatively, a predetermined surface roughness may be formed on a top surface of one of the uppermost 3D pattern layers disposed on one side of the transparent substrate. One of the uppermost 3D pattern layers of at least one of the 3D pattern layers disposed on the one side of the transparent substrate and the other side comprises silicon acrylate 〇 1 according to another embodiment of the present invention An optical film comprising: a transparent substrate; a first 3D pattern layer disposed on one side of the transparent substrate; and a second 3D pattern layer disposed on the other side of the transparent substrate. The first 3D pattern layer includes at least one pattern selected from the group consisting of a 稜鏡 pattern, a lenticular pattern, a microlens pattern, and a Fresnel pattern. The second 3D pattern layer can be shaped as embossing. 5 201003222 The first 3D pattern layer may comprise a predetermined surface roughness on its top surface, the surface roughness being between 0.05 microns and 0.5 microns. For example, a ratio of a surface area of the first 3D pattern layer having a surface area of the surface roughness to a total area of the 3D pattern of the first 3D pattern layer is 10% to 100%. Moreover, at least one of the 3D pattern layers of the first and second 3D pattern layers comprises a sulphuric acid vinegar. Moreover, the functional beads may be sandwiched between the transparent substrate and at least one of the first and second 3D pattern layers, wherein the functional beads are light diffusing beads. According to another embodiment of the present invention, a backlight assembly includes: a lamp unit; a light guiding member for guiding light from the lamp unit upward; and the method of any one of claims 1 to 13 An optical film disposed on an upper surface of the light guiding member. According to still another embodiment of the present invention, a liquid crystal display includes: a display panel; and the backlight assembly for providing light to the display panel. Embodiments of the invention are described in detail in the embodiments and the drawings. The advantages and features of the present invention, as well as a method of practicing the invention, will be described in detail with reference to the specific embodiments. However, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments shown herein. The concept of the invention is conveyed. The invention is defined only by the definitions cited in the scope of the patent application. In the present specification, like reference numerals in the figures indicate similar elements 201003222 pieces 0 space relative words "below", "beneath", "lower" The "above" or "upper" can be used to easily explain the relationship between one constituent element and another constituent element as shown in the drawing. When used in a direction other than the one shown in the figures, the spatially relative terms must be understood to include the different orientations of the constituent elements. For example, when one of the constituent elements shown in the drawings is turned over, the constituent elements described below or below the other constituent element may be located above or above the other constituent element. Thus, the exemplary word "below or beneath" can encompass both the downward and upward directions. The constituent elements can be arranged in a different direction, and the spatially relative words can be interpreted correspondingly according to the direction. An optical film according to an embodiment of the present invention will hereinafter be described with reference to Figs. 1 to 4. 1 to 4 are cross-sectional views illustrating an optical film according to an embodiment of the present invention. In addition to a light diffusing function, and diffractive and condensing to enhance one of the brightness convergence functions, the optical films 100, 110, 120, and 130 according to embodiments of the present invention have a protective function to prevent and close the optical film. Scratches occur between the other members of the sheets 100, 110, 120, and 130. The optical film 100 according to an embodiment of the present invention may include a transparent substrate 10 and at least one 3D pattern layer 20 and 30 respectively disposed on one side 12 and the other side 14 of the transparent substrate 10. As shown in FIG. 1, the first 3D pattern layer 20 can be included on one side 12 of the transparent substrate 10, and the second 3D pattern layer 30 can be included on the other side 14 of the transparent substrate 10. 7 201003222 The transparent substrate ίο is shaped as a plate formed by allowing a light to pass through a colorless transparent synthetic resin. The synthetic resin forming the transparent substrate 10 is not particularly limited, but may include polyethylene terephthalate, polyethylene naphthalate, acrylic resin, polycarbonate, polystyrene, polyolefin, cellulose acetate. (cellous acetate), for gas gathering, for example. Among these materials, polyethylene terephthalate or polycarbonate having an excellent transparency and polyethylene terephthalate having an enhanced warpage property are preferred. The thickness of the transparent substrate 10 is not particularly specified, but may be 0 to 1000 μm, preferably 25 to 600 μm, for example. Within the above thickness range, the transparent substrate 10 exhibits excellent mechanical strength and thermal stability, and has a suitable flexibility, while the loss of transmitted light is small. The first 3D pattern layer 20 is disposed on one side 12 of the transparent substrate 10. The first 3D pattern layer 20 functions to enhance brightness by diffusing or condensing light. The first 3D pattern layer 20 may have a series of meandering patterns along its upper surface. The 图案 pattern may be a triangular arrangement of a line arrangement, a square pyramid pattern, or a triangular pattern, for example. The first 3D pattern layer 20 formed of the above-described 稜鏡 pattern can increase the brightness of an image that is monitored by an observer by means of a display device. As shown in Fig. 3, a first 3D pattern layer 40 may have a lenticular pattern or a microlens pattern on an upper surface thereof. The first 3D pattern layer 40 can be used, for example, to diffuse light one-dimensionally perpendicular to the lenticular pattern or the grooves of the microlens pattern. As shown in FIG. 4, a first 3D pattern layer 50 may have a 201003222 on an upper surface thereof.

菲涅爾(Fresnel)圖案,除上述圖案外,其可具有多種形式之3D 圖案。 第一 3D圖案層20可具有一相對高之折射率,例如1.53及更高, 且較佳1.54至1.60。該較高之折射率增加一彙聚能力,進而同樣 地增加亮度。 此外,第一 3D圖案層20可具有約10至300微米之平均厚度。 第一 3D圖案層30平均厚度為10微米或更薄時很難達成一足夠大 之彙聚效應,而平均厚度為300微米或更厚時容易破碎。 / 第二3D圖案層30設置於在其一側12上包含第一 3D圖案層20 之透明基底10之另一側14上。第二3D圖案層30具有一漫射光 之功能,可被造型為粗壓紋。 第二3D圖案層30藉由使自光源入射之光漫射並透射而增加亮 度,並遮罩印刷於一冷陰極螢光燈(CCFL)或起光源作用之一光 導板上之點圖案等。第二3D圖案層30之一壓紋形式之複數突起 部可被造型為各種形狀,諸如一球體、一旋轉橢圓體、一正方棱 I 錐及一纖維,但本發明並不特別限於此一形狀。 第二3D圖案層30可具有相對低之一折射率,諸如1.53或更小 之一折射率,較佳1.45至1.52。該較低之折射率增加一功效,使 入射至第二3D圖案層30之光未被第一 3D圖案層20反射地穿過 透明基底10入射至第一 3D圖案層20。 並且,第二3D圖案層30可具有約0.1至300微米之平均厚度。 第二3D圖案層30於平均厚度係0.1微米或更薄時幾乎不遮罩該 9 201003222 、、…s :¾導板之印刷圖案且亦不增加亮度,而於平均厚度係獅 微米或更厚時容易破裂。 並且’如第2圖巾所示’功能珠15可夾£於透縣底10與第 一 3D圖案層3G之間。此時,儘管未圖示,但功能珠15於透明基 底,、第_ 3D圖案層3〇之間之夹置可包含二種情況,功能珠 15放置成接觸透明基底1〇及與透明基底10分離。 功能珠15可係為,舉例而言,增強第二3D圖案層如之光漫射 功能之-光漫射珠。若功能珠15係為一光漫射珠,則自第二犯 圖案層30射向透明基底1〇之光可被均句地漫射。 當功能珠15係為一光漫射珠時,該光漫射珠可係為一無機填充 劑或一有機填充劑。 該無機填充劑可包含,諸如,氧化矽、氫氧化鋁、氧化鋁、氧 化鋅、硫化鋇及矽酸鎂,且因而可使用上述無機填充劑其中之一 或混合其中至少二種。該有機填充劑可使用多層之多組份基顆 粒,該等顆粒係藉由在形成以下顆粒後覆蓋另一種單體而形成: 由以下物質之均聚物或共聚物構成之丙婦酸基顆粒:例如,甲基 丙烯酸甲酯、丙烯酸、甲基丙烯酸、f基丙烯酸羥乙醋、甲基丙 烯酸羥丙酯、丙烯醯胺、羥甲基丙烯醯胺、曱基丙烯酸縮水甘油 基酯、丙烯酸乙酯、丙烯酸異丁酯、丙烯酸正丁酯、及丙稀酸2_ 乙基己酯(2-ethylhyxylacrylate);稀烴基顆粒,諸如聚乙稀、聚 笨乙埽(polysthylene)及聚丙稀;以及丙烯酸與稀烴基共聚物顆 粒及均聚物顆粒。 10 201003222 稱為光漫射珠之上述無機填充劑或有機填充劑僅係提供用於闞 釋目的,可用熟習此項技術者知道的、能達成本發明之主要目的 但未被定義為該無機填充劑或該有機填充劑之另一材料替代。功 能珠15具有同時存在單分散及多分散之一顆粒分佈’其形狀並無 特別限制,可被造型為一球體、一轉轴、一針、一棒、一立方體、 一板、一鱗狀物及諸如此類此處,具有一極佳光漫射性質之一球 形珠係為最佳形式。 功能珠15之平均直徑可係為〇. 1至150微米’較佳1至1 〇〇微 米,舉例而言。倘若功能珠15之平均直徑係為1微米或更小及ι〇〇 微米或更大,則漫射效應容易不足’進而降低相對於該光源及該 光導板之該等印刷圖案而言之遮罩性能。並且,功能珠15之含量 相對於第二3D圖案層30之總組成而言可係為約1至80wt〇/〇。儘 管未圖示,但顯然上述功能珠15可添加於透明基底1〇與第—3d 圖案層20之間。 參照第1圖至第4圖闡述之光學臈片之第—3D圖案層2〇、The Fresnel pattern, in addition to the above pattern, can have various forms of 3D patterns. The first 3D pattern layer 20 may have a relatively high refractive index, such as 1.53 and higher, and preferably 1.54 to 1.60. This higher refractive index increases a convergence capability, which in turn increases brightness. Further, the first 3D pattern layer 20 may have an average thickness of about 10 to 300 μm. It is difficult to achieve a sufficiently large converging effect when the first 3D pattern layer 30 has an average thickness of 10 μm or less, and is easily broken when the average thickness is 300 μm or more. / The second 3D pattern layer 30 is disposed on the other side 14 of the transparent substrate 10 including the first 3D pattern layer 20 on one side 12 thereof. The second 3D pattern layer 30 has a function of diffusing light and can be shaped as a rough embossing. The second 3D pattern layer 30 increases the brightness by diffusing and transmitting the light incident from the light source, and masks a dot pattern printed on a cold cathode fluorescent lamp (CCFL) or a light guide plate functioning as a light source. The plurality of protrusions in an embossed form of the second 3D pattern layer 30 may be shaped into various shapes such as a sphere, a spheroid, a square pyramid, and a fiber, but the invention is not particularly limited to this shape . The second 3D pattern layer 30 may have a relatively low refractive index, such as a refractive index of 1.53 or less, preferably 1.45 to 1.52. The lower refractive index is increased in efficiency such that light incident on the second 3D pattern layer 30 is incident on the first 3D pattern layer 20 through the transparent substrate 10 without being reflected by the first 3D pattern layer 20. Also, the second 3D pattern layer 30 may have an average thickness of about 0.1 to 300 microns. The second 3D pattern layer 30 hardly covers the printed pattern of the 9 201003222, ..., s: 3⁄4 guide plates when the average thickness is 0.1 micron or less, and does not increase the brightness, but the average thickness is lion micron or thicker. It is easy to break. And 'the functional bead 15 as shown in Fig. 2 can be sandwiched between the permeable bottom 10 and the first 3D pattern layer 3G. At this time, although not shown, the functional bead 15 is on the transparent substrate, and the interposition between the 3D pattern layers 3〇 may include two cases, and the functional bead 15 is placed in contact with the transparent substrate 1 and the transparent substrate 10. Separation. The functional bead 15 can be, for example, a light diffusing bead that enhances the second 3D pattern layer such as the light diffusing function. If the functional bead 15 is a light diffusing bead, the light that is emitted from the second smear pattern layer 30 toward the transparent substrate 1b can be uniformly diffused. When the functional bead 15 is a light diffusing bead, the light diffusing bead may be an inorganic filler or an organic filler. The inorganic filler may contain, for example, cerium oxide, aluminum hydroxide, aluminum oxide, zinc oxide, cerium sulfide, and magnesium ruthenate, and thus one or a mixture of at least two of the above inorganic fillers may be used. The organic filler may use a plurality of multi-component base particles formed by covering another monomer after forming the following particles: a bupropion-based particle composed of a homopolymer or a copolymer of the following: : for example, methyl methacrylate, acrylic acid, methacrylic acid, f-based hydroxyethyl acrylate, hydroxypropyl methacrylate, acrylamide, methylol acrylamide, glycidyl methacrylate, acrylic acid B Ester, isobutyl acrylate, n-butyl acrylate, and 2-ethylhyxylacrylate; dilute hydrocarbon-based particles such as polyethylene, polysthylene, and polypropylene; Dilute hydrocarbon based copolymer particles and homopolymer particles. 10 201003222 The above-mentioned inorganic filler or organic filler, referred to as a light diffusing bead, is provided solely for the purpose of release, and can be achieved by those skilled in the art to achieve the primary object of the present invention but not defined as the inorganic filler. The agent or another material of the organic filler is substituted. The functional bead 15 has a particle distribution in which both monodisperse and polydisperse are present. The shape thereof is not particularly limited, and can be shaped into a sphere, a shaft, a needle, a rod, a cube, a plate, and a scale. And the like, one of the spherical bead systems having an excellent light diffusing property is the optimum form. The average diameter of the functional beads 15 may be from 1 to 150 μm, preferably from 1 to 1 μm, for example. If the average diameter of the functional beads 15 is 1 micron or less and ι micron or larger, the diffusion effect is easily insufficient, thereby reducing the mask relative to the light source and the printed pattern of the light guide plate. performance. Also, the content of the functional beads 15 may be about 1 to 80 wt 〇 / 相对 with respect to the total composition of the second 3D pattern layer 30. Although not shown, it is apparent that the above-described functional beads 15 may be added between the transparent substrate 1'' and the -3d pattern layer 20. Referring to Figures 1 to 4, the third 3D pattern layer 2 of the optical cymbal,

u、4Q 之反應性稀釋劑 此處,該反應性稀釋劑可係選自諸% 及50及第二3D圖案層30中之任一者或每一者可包含發丙缚娘 酯,舉例而言。更具體而言,第一 3D圖案層2〇、4〇及5〇以及第 二3D圖案層30可包含40至8〇Wt%之石夕丙烯酸醋、2〇至μ 3,3-二乙氧基丙烯酸乙 (ethyldiglycon acrylate )、丙婦酸月桂职 目珥 e、己二醇二丙烯酸酯u, 4Q Reactive Diluent Here, the reactive diluent may be selected from any one of the % and 50 and the second 3D pattern layer 30 or each may comprise a acesulfame ester, for example Words. More specifically, the first 3D pattern layers 2 〇, 4 〇 and 5 〇 and the second 3D pattern layer 30 may comprise 40 to 8 〇 Wt% of shi vinegar vinegar, 2 〇 to μ 3,3-diethoxy Ethyl acrylate (ethyldiglycon acrylate), propylene glycol, laurel, e, hexanediol diacrylate

二醇二丙烯酸酯組成之群組。該添λ J 办力σ劑可係為聚矽氧烷基 物,該光起始劑可係為氧化醯基膦G °A group consisting of diol diacrylates. The λ J ng agent can be a polyoxyalkylene group, and the photoinitiator can be a ruthenium phosphine oxide G °

Crylphosphine oxide),舉例 201003222 而言。 對於上述之包含矽丙烯酸酯之第一 3D圖案層20、40和50及第 二3D圖案層30,表面摩擦係數因矽本身之滑動特性而較低,可 提供極佳之可加工型,第一 3D圖案層20、40和50及第二3D圖 案層30之表面即使在其上未單獨形成一掩膜時亦不會受損。此 外,即使未於第一 3D圖案層20、40及50上提供用於遮罩包含矽 丙烯酸酯之第一 3D圖案20、40、和50及保護設置於第一 3D圖 案層20、40及50之上表面上之顯示面板的一保護膜,第9圖之 一顯示面板220之一偏光膜亦不會被損壞。 現在將參照第5圖至第8圖闡述根據本發明之另一實施例之光 學膜片。第5圖至第8圖係為圖解顯示根據本發明之另一實施例 之光學膜片之剖面圖。 根據該實施例之光學膜片140、150、160及170除於該等第一 3D圖案層之頂面上具有一預定表面粗糙度之外與本發明之上述實 施例之光學膜片100、110、120及130實質相同。 因而,闡述根據本發明之該實施例之該等光學膜片時將著重闡 述與本發明之上述實施例之光學膜片之不同處。 如第5圖中所示,根據本發明之該實施例之光學膜片140包含 一透明基底10、位於其一側12上之一第一 3D圖案層60及位於 其另一側14上之一第二3D圖案層30。另外,如第6圖中所示, 功能珠15可設置於透明基底10與第二3D圖案層30之間。儘管 未圖示,但功能珠15可設置於透明基底10與第一 3D圖案層60 12 201003222 之間。透明基底10、功能珠15及第二3D圖案層30與本發明上 述實施例之第1圖之光學膜片100之彼等實質相同。因而,此處 將不予以重複闡釋。設置於透明基底10上之一側12上用以彙聚 光以增強亮度之第一 3D圖案層60可具有各種於其頂面上具有一 預定表面粗糙度之3D圖案。 如第5圖及第6圖中所示,第一 3D圖案層60可具有一系列於 其頂面上具有一預定表面粗糙度之稜鏡圖案。舉例而言,該表面 粗糙度可藉由研磨而提供於第一 3D圖案60之頂面。具有於其頂 ί 面上具有該預定表面粗糙度之稜鏡圖案之第一 3D圖案層可增加 被一觀察者藉助一顯示裝置監視之影像之亮度。 如第7圖中所示,一第一 3D圖案層70可設置有於其頂面上具 有一預定表面粗糙度之一透鏡狀圖案或一微透鏡圖案。具有於其 頂面上具有預定表面粗糙度之透鏡狀圖案或微透鏡圖案之第一 3D 圖案層70可用以垂直於該透鏡狀圖案或該微透鏡圖案之凹槽一維 地漫射光。 、 如第8圖中所示,一第一 3D圖案層80可具有於其頂面上具有 一預定表面粗糙度之一菲涅爾圖案,除上述圖案外,其可具有多 種形式之於其頂面上具有一預定表面粗糙度之3D圖案。 如第5圖至第8圖中所示,具有於頂面上具有預定表面粗糙度 之各種形式之3D圖案之第一 3D圖案層60、70及80之表面粗糙 度可係為介於0.05至0.5微米之間,舉例而言。此乃因該稜鏡之 各個峰不能被覆蓋,當該表面粗糙度係為0.05微米或更小時易於 因與一相鄰表面摩擦而受損,而當超過0.5微米時,亮度易於降低。 13 201003222 此外,在第一 3D圖案層60、70及80中具有該表面粗糙度之一 面積相對於3D圖案之一總面積之比可係為例如約10至100%。此 乃因該稜鏡之各個峰(peak)不能被覆蓋,並且當第一圖案層60、 70及80中具有該表面粗糙度度之面積之比小於10%時,其易於因 與一相鄰表面摩擦而受損。 具有一預定表面粗糙度之第一 3D圖案層60、70及80可增強光 漫射效率,此乃因穿過透明基底10之一背面入射之光當被射向光 學膜片140、150、160及170之外部時因形成於該表面粗糙度中 之精細粗糙度而被均勻地漫射。 另外,第一 3D圖案層60、70及80可包含類似於本發明上述實 施例之光學膜片之彼等之矽丙烯酸酯。包含矽丙烯酸酯之第一 3D 圖案層60、70及80具有極佳之可加工性,且具有即使未單獨附 著一掩膜亦不會受損之表面。並且,一顯示面板之一偏光膜即使 在未單獨使用用以遮罩設置於第一 3D圖案層60、70及80之一上 表面上之該顯示面板的一保護膜時亦不會受損。 該等第一 3D圖案層60、70及80可具有高於第二3D圖案層30 之折射率之一折射率,例如至少1·53及更高,較佳1.54至1.60。 第一 3D圖案層60、70及80可具有約10至300微米之一平均厚 度。 並且,儘管未在圖中顯示,但若第一 3D圖案層70及80各自具 有一具有透鏡狀圖案、微透鏡圖案或菲涅爾圖案之上表面,則功 能珠15可添加於透明基底10與第一 3D圖案層70及80之間,或 透明基底10與第二3D圖案層30之間。 14 201003222 根據上述之本發明另一實施例之光學膜片於該透明基底之一侧 及另一側上分別提供有3D圖案層,於該上部3D圖案層中包含矽 丙烯酸酯,且選擇性地具有功能珠或表面粗糙度。因而,該漫射 功能、該聚光功能及該保護功能可藉由該單一光學膜片確保。 現將參照第9圖闡述根據本發明一實施例之一液晶顯示器,第9 圖係為圖解顯示本發明該實施例之液晶顯示器之一部件分解透視 圖。 根據本發明之該實施例之一液晶顯示器200包含一背光總成 210、 一顯示面板220、上部及下部容器230及240、一中間模製 框架250、一下部模製框架260、及正面和背面蓋280及290。 首先,將對背光總成210予以闡述。 如第9圖中所示,背光總成210包含用以提供光之一燈單元 211、 用以向上引導來自燈單元211之光之一光導構件212、及用 以漫射和彙聚來自光導構件212之光之一光學膜片100。 燈單元211可包含一燈211a及一燈反射板211b。燈211a可係 % 為一細而長之圓拄狀冷陰極螢光燈(CCFL),舉例而言。儘管未 圖示,但燈211a可係為一扁平型螢光燈,舉例而言。倘若如此, 光導構件212可省略。燈發射板211b將來自燈211a之光反射至 光導構件212側。 儘管未圖示,但燈單元211可設置於光導構件211之二側上, 或設置於其一側上。當燈單元211設置於光導構件212之二側上 時,光導構件212之一形狀可係為一扁平型。而若燈單元211設 15 201003222 置於光導構件m之一側 y 麻導構件212可具有-楔型。光 冓件212係由-塑性材料形成,如㈣酸系物,且可於其一下 表面上印刷有各種圖案,以將入射至光導構件212内之光之前進 方向改變至朝向顯示面板22〇側。 —反射板213設置於光導構件212之—背面上,用以將射向光 構件212之-背面之光反射至光導構件212之一上表面側。反 ^板213降低入射至顯示面板22〇之光之損失同時增強射向光 導構件212之上表面之光之均勻度。 :置於光導構件212之上表面上之光學膜片刚包含各自設置 ;一透明基底H)之-側12及另一侧14上之—第_ 3D圖案層2〇 ^-第二3D圖案層3〇。光學膜片1〇〇更可於透明基底㈣第一 圖案層2〇之間或於透明基底10與第二沁圖案層3〇之間且有 ^能珠15。並且,光學膜片刚可於一第二扣圖案層4〇之頂面 j有-預定表面_度。光學膜片⑽以垂直於顯示面板22〇 ::方向:彙聚穿過光導構件212出射之光並漫射所產生 以增強光之㈣度,增大視角,並遮蓋光導構件212之圖 另外,光學膜片1〇〇於第_ 3D圖案層2〇 布一"' 3D圖索層m 包含石夕丙烯酸酿,從而即使在不單獨使用—掩膜或—保護之 障况下光學膜片1GG之表面及相鄰部件之表面亦不會受損、。、 儘管未圖示,但顯而易見,除上述光學膜片ι〇 21〇可施加有根據本發明—及另 ’ f光總成 13〇、14〇、15〇、160及17〇。 W120、 16 201003222 . 用以顯示影像之顯示面板220設置於如上所述形成之背光總成 210之一上表面上。顯示面板220包含:具有一滤色鏡之一第一顯 示板221,該濾色鏡被一黑色矩陣包圍,用以利用紅色、綠色及藍 色畫素使自背光總成210提供之光(by pixels of red, green and blue )顯示為一預定顏色;一具有設置為一矩陣之薄膜電晶體之一 第二顯示板222;及形成於第一顯示板221與第二顯示板222之間 之一液晶層(未圖示)。在具有該濾色鏡之第一顯示板221中,孔 徑比藉由調節該黑色矩陣之寬度等而加以控制,以便可增加透光 / 率。 除第一顯示板221及第二顯示板222外,顯示面板220還包含 資料及閘極印刷電路板225及226。資料及閘極印刷電路板225 及226利用位於一撓性電路板上之資料及閘極捲帶式封裝223及 224連接至顯示面板220。並且,資料及閘極印刷電路板225及226 提供一驅動信號及一定時信號至該薄膜電晶體之一閘極線及一資 料線,用以控制一液晶之一陣列角及佈置構成該液晶層之液晶之 持續時間。 儘管未圖示,但一偏光板提供至顯示面板220之與背光總成210 相對之一表面。 上部容器230藉由裝配有利用一耦合單元(如螺釘)安裝至下 部容器240之上侧之中間模製框架250而固定顯示面板220,並於 其一側壁上具有複數耦合窗(未圖示)。 下部容器240容納背光總成210,且被造型為以一矩形牢固地放 置背光總成210於其中,舉例而言。一螺紋凹槽(未圖示)形成 17 201003222 ' · 於下部容器240之一背面中。 下部模製框架260容納下部容器240,且用以以吊鉤配合 (hook-fitted)形成於上部容器230中之複數耦合窗(未圖示)之 複數耦合突起(未圖示)形成於下部模製框架260之一側壁中。 印刷電路板蓋270利用該耦合單元(例如該等螺釘)接地至下部 容器240,用以阻斷資料印刷電路板225中產生之電波。 雖然已參照本發明之具體實施例對本發明予以詳細圖示及說 明,但熟習此項技術者將理解,可對該等實施例之形式及細節實 施各種改變,此並不背離如下文之申請專利範圍中界定之本發明 之精神及範圍。 本發明適用於包含具有一多功能之光學膜片之液晶顯示器等技 術領域。 【圖式簡單說明】 第1圖至第4圖係為圖解顯示根據本發明一實施例之光學膜片 之剖面圖; 第5圖至第8圖係為圖解顯示根據本發明另一實施例之光學膜 片之剖面圖;以及 第9圖係為圖解顯示根據本發明一實施例之一液晶顯示器之一 部件分解透視圖。 【主要元件符號說明】 10:透明基底 12:透明基底之一側 18 201003222 14 :透明基底之另一側 20 :圖案層 40 :第一 3D圖案層 60 :第一 3D圖案層 80 :第一 3D圖案層 110 :光學膜片 130 :光學膜片 150 :光學膜片 170 :光學膜片 210 :背光總成 211a :燈 212 :光導構件 220 :顯示面板 222 :第二顯示板 224 :閘極極捲帶式封 226 :閘極印刷電路板 240 :下部容器 260 :下部模製框架 280 :正面蓋 15 :功能珠 30 :圖案層 50 :第一 3D圖案層 70 :第一 3D圖案層 100 :光學膜片 120 :光學膜片 140 :光學膜片 160 :光學膜片 200 :液晶顯示器 211 :燈單元 211b :燈反射板 213 :反射板 221 :第一顯示板 223 :資料捲帶式封裝 225 :資料印刷電路板 230 :上部容器 250 :中間模製框架 270 :印刷電路板蓋 290 :背面蓋 19Crylphosphine oxide), for example 201003222. For the first 3D pattern layers 20, 40 and 50 and the second 3D pattern layer 30 comprising the ruthenium acrylate, the surface friction coefficient is low due to the sliding property of the ruthenium itself, and provides an excellent processable type, first The surfaces of the 3D pattern layers 20, 40, and 50 and the second 3D pattern layer 30 are not damaged even when a mask is not separately formed thereon. In addition, the first 3D patterns 20, 40, and 50 for masking the germanium-containing acrylate are provided on the first 3D pattern layers 20, 40, and 50, and the first 3D pattern layers 20, 40, and 50 are protected. A protective film of the display panel on the upper surface, one of the nine figures shows that one of the polarizing films of the panel 220 is not damaged. An optical film according to another embodiment of the present invention will now be described with reference to Figs. 5 to 8. 5 to 8 are cross-sectional views showing an optical film according to another embodiment of the present invention. The optical films 140, 150, 160 and 170 according to this embodiment have a predetermined surface roughness on the top surface of the first 3D pattern layers and the optical films 100, 110 of the above-described embodiments of the present invention. 120 and 130 are essentially the same. Thus, the description of the optical film according to this embodiment of the present invention will focus on the difference from the optical film of the above embodiment of the present invention. As shown in FIG. 5, the optical film 140 according to this embodiment of the present invention comprises a transparent substrate 10, one of the first 3D pattern layers 60 on one side 12 thereof and one on the other side 14 thereof. The second 3D pattern layer 30. In addition, as shown in FIG. 6, the functional beads 15 may be disposed between the transparent substrate 10 and the second 3D pattern layer 30. Although not shown, the functional bead 15 may be disposed between the transparent substrate 10 and the first 3D pattern layer 60 12 201003222. The transparent substrate 10, the functional beads 15 and the second 3D pattern layer 30 are substantially identical to those of the optical film 100 of the first embodiment of the above-described embodiment of the present invention. Therefore, it will not be repeated here. The first 3D pattern layer 60 disposed on one side 12 of the transparent substrate 10 for concentrating light to enhance brightness may have various 3D patterns having a predetermined surface roughness on the top surface thereof. As shown in Figs. 5 and 6, the first 3D pattern layer 60 may have a series of ruthenium patterns having a predetermined surface roughness on the top surface thereof. For example, the surface roughness can be provided on the top surface of the first 3D pattern 60 by grinding. The first 3D pattern layer having a meandering pattern having the predetermined surface roughness on its top surface increases the brightness of an image that is monitored by an observer by means of a display device. As shown in Fig. 7, a first 3D pattern layer 70 may be provided with a lenticular pattern or a microlens pattern having a predetermined surface roughness on its top surface. The first 3D pattern layer 70 having a lenticular pattern or a microlens pattern having a predetermined surface roughness on its top surface can diffuse light one-dimensionally perpendicular to the lenticular pattern or the groove of the microlens pattern. As shown in FIG. 8, a first 3D pattern layer 80 may have a Fresnel pattern having a predetermined surface roughness on its top surface, which may have various forms on top of it in addition to the above pattern. The surface has a 3D pattern of predetermined surface roughness. As shown in FIGS. 5 to 8, the surface roughness of the first 3D pattern layers 60, 70, and 80 having various forms of 3D patterns having a predetermined surface roughness on the top surface may be 0.05 to Between 0.5 microns, for example. This is because the peaks of the crucible cannot be covered, and when the surface roughness is 0.05 μm or less, it is liable to be damaged by friction with an adjacent surface, and when it exceeds 0.5 μm, the luminance is liable to be lowered. Further, the ratio of the area of one of the surface roughnesses to the total area of one of the 3D patterns in the first 3D pattern layers 60, 70 and 80 may be, for example, about 10 to 100%. This is because the peaks of the crucible cannot be covered, and when the ratio of the area of the first pattern layers 60, 70, and 80 having the surface roughness is less than 10%, it is easy to be adjacent to Surface friction is damaged. The first 3D pattern layers 60, 70, and 80 having a predetermined surface roughness enhance light diffusion efficiency because light incident through the back surface of one of the transparent substrates 10 is incident on the optical films 140, 150, 160 The outer portions of 170 and 170 are uniformly diffused due to the fine roughness formed in the surface roughness. Additionally, the first 3D pattern layers 60, 70, and 80 may comprise the oxime acrylates similar to those of the optical films of the above-described embodiments of the present invention. The first 3D pattern layers 60, 70 and 80 comprising ruthenium acrylate have excellent processability and have a surface which is not damaged even if a mask is not separately attached. Further, a polarizing film of a display panel is not damaged even when a protective film for the display panel disposed on the upper surface of one of the first 3D pattern layers 60, 70 and 80 is not used alone. The first 3D pattern layers 60, 70 and 80 may have a refractive index higher than a refractive index of the second 3D pattern layer 30, for example at least 1.53 and higher, preferably 1.54 to 1.60. The first 3D pattern layers 60, 70 and 80 may have an average thickness of about 10 to 300 microns. And, although not shown in the figure, if the first 3D pattern layers 70 and 80 each have a surface having a lenticular pattern, a microlens pattern or a Fresnel pattern, the functional beads 15 may be added to the transparent substrate 10 and Between the first 3D pattern layers 70 and 80, or between the transparent substrate 10 and the second 3D pattern layer 30. 14 201003222 The optical film according to another embodiment of the present invention is respectively provided with a 3D pattern layer on one side and the other side of the transparent substrate, and the enamel acrylate is contained in the upper 3D pattern layer, and selectively With functional beads or surface roughness. Thus, the diffusing function, the concentrating function and the protective function can be ensured by the single optical film. A liquid crystal display according to an embodiment of the present invention will now be described with reference to Fig. 9, which is an exploded perspective view showing one of the liquid crystal displays of the embodiment of the present invention. A liquid crystal display 200 according to this embodiment of the present invention includes a backlight assembly 210, a display panel 220, upper and lower containers 230 and 240, an intermediate molding frame 250, a lower molding frame 260, and front and back surfaces. Covers 280 and 290. First, the backlight assembly 210 will be explained. As shown in FIG. 9, the backlight assembly 210 includes a light unit 211 for providing light, a light guiding member 212 for guiding light from the lamp unit 211 upward, and for diffusing and concentrating from the light guiding member 212. One of the light optical films 100. The lamp unit 211 can include a lamp 211a and a lamp reflector 211b. The lamp 211a can be a thin and long round-shaped cold cathode fluorescent lamp (CCFL), for example. Although not shown, the lamp 211a can be a flat type fluorescent lamp, for example. In this case, the light guiding member 212 can be omitted. The lamp emitting plate 211b reflects the light from the lamp 211a to the side of the light guiding member 212. Although not shown, the lamp unit 211 may be disposed on both sides of the light guiding member 211 or on one side thereof. When the lamp unit 211 is disposed on both sides of the light guiding member 212, one of the shape of the light guiding member 212 may be a flat type. And if the lamp unit 211 is set to 15 201003222 and placed on one side of the light guiding member m, the guiding member 212 may have a - wedge type. The aperture member 212 is formed of a -plastic material, such as a (4) acid, and various patterns may be printed on the lower surface thereof to change the forward direction of light incident into the light guiding member 212 toward the side of the display panel 22 . The reflecting plate 213 is disposed on the back surface of the light guiding member 212 for reflecting the light incident on the back surface of the optical member 212 to the upper surface side of the light guiding member 212. The antiplate 213 reduces the loss of light incident on the display panel 22 while enhancing the uniformity of light incident on the upper surface of the photoconductive member 212. The optical film disposed on the upper surface of the light guiding member 212 has just been disposed separately; the side of the transparent substrate H) on the side 12 and the other side 14 - the 3D pattern layer 2 - the second 3D pattern layer 3〇. The optical film 1 can be further disposed between the first pattern layer 2 of the transparent substrate (4) or between the transparent substrate 10 and the second pattern layer 3 and has the beads 15. Moreover, the optical film just has a predetermined surface _ degree on the top surface j of a second buckle pattern layer 4 . The optical film (10) is generated perpendicular to the display panel 22:: direction: the light that is emitted through the light guiding member 212 and diffused to enhance the (four) degree of light, increase the viewing angle, and cover the light guiding member 212. The diaphragm 1 is disposed on the _3D pattern layer 2, and the 3D layer m contains the yoke acrylic, so that the optical film 1GG is used even in the case of not using the mask or the protection. The surface of the surface and adjacent components will not be damaged. Although not shown, it is apparent that, in addition to the above-described optical film ι 21 〇, there may be applied according to the present invention - and other 'f light assemblies 13 〇, 14 〇, 15 〇, 160 and 17 〇. W120, 16 201003222. A display panel 220 for displaying an image is disposed on an upper surface of one of the backlight assemblies 210 formed as described above. The display panel 220 includes: a first display panel 221 having a color filter surrounded by a black matrix for using the red, green, and blue pixels to provide light from the backlight assembly 210 (by pixels of Red, green and blue ) are displayed as a predetermined color; a second display panel 222 having a thin film transistor disposed as a matrix; and a liquid crystal layer formed between the first display panel 221 and the second display panel 222 (not shown). In the first display panel 221 having the color filter, the aperture ratio is controlled by adjusting the width of the black matrix or the like so that the light transmittance/rate can be increased. In addition to the first display panel 221 and the second display panel 222, the display panel 220 also includes data and gate printed circuit boards 225 and 226. The data and gate printed circuit boards 225 and 226 are connected to the display panel 220 using data and gate tape packages 223 and 224 on a flexible circuit board. Moreover, the data and gate printed circuit boards 225 and 226 provide a driving signal and a timing signal to a gate line and a data line of the thin film transistor for controlling an array angle of the liquid crystal and arranging the liquid crystal layer. The duration of the LCD. Although not shown, a polarizing plate is provided to one surface of the display panel 220 opposite to the backlight assembly 210. The upper container 230 is fixed to the display panel 220 by being fitted with an intermediate molding frame 250 mounted to the upper side of the lower container 240 by a coupling unit such as a screw, and has a plurality of coupling windows (not shown) on one side wall thereof. . The lower container 240 houses the backlight assembly 210 and is shaped to securely house the backlight assembly 210 therein in a rectangular shape, for example. A threaded groove (not shown) is formed 17 201003222 ' in the back of one of the lower containers 240. The lower molding frame 260 houses the lower container 240, and is formed in the lower mold by a plurality of coupling protrusions (not shown) that are hook-fitted in a plurality of coupling windows (not shown) formed in the upper container 230. One of the side walls of the frame 260. The printed circuit board cover 270 is grounded to the lower container 240 by the coupling unit (e.g., the screws) for blocking electrical waves generated in the data printed circuit board 225. While the invention has been illustrated and described with reference to the embodiments of the embodiments of the invention The spirit and scope of the invention as defined in the scope. The present invention is applicable to a technical field including a liquid crystal display having a multi-functional optical film. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 4 are cross-sectional views showing an optical film according to an embodiment of the present invention; FIGS. 5 to 8 are diagrams showing another embodiment of the present invention. A cross-sectional view of an optical film; and a ninth drawing is an exploded perspective view showing one of the liquid crystal displays according to an embodiment of the present invention. [Main component symbol description] 10: Transparent substrate 12: One side of transparent substrate 18 201003222 14: The other side of transparent substrate 20: Pattern layer 40: First 3D pattern layer 60: First 3D pattern layer 80: First 3D Pattern layer 110: Optical film 130: Optical film 150: Optical film 170: Optical film 210: Backlight assembly 211a: Lamp 212: Light guide member 220: Display panel 222: Second display panel 224: Gate pole tape Seal 226: Gate printed circuit board 240: Lower container 260: Lower molded frame 280: Front cover 15: Functional bead 30: Pattern layer 50: First 3D pattern layer 70: First 3D pattern layer 100: Optical film 120: optical film 140: optical film 160: optical film 200: liquid crystal display 211: lamp unit 211b: lamp reflector 213: reflector 221: first display panel 223: data tape package 225: data printed circuit Plate 230: upper container 250: intermediate molding frame 270: printed circuit board cover 290: rear cover 19

Claims (1)

201003222 、. 七、申請專利範圍: 1. 一種光學膜片,包含: 一透明基底;以及 至少一三維(three-dimensional,下稱“3D”)圖案層, 設置於該透明基底之一侧與另一側中之每一者上。 2. 如請求項1所述之光學膜片,更包含:功能珠,夾置於該透 明基底與該至少一 3D圖案層其中之一之間。 3. 如請求項1所述之光學膜片,其中在設置於該透明基底之該 一側上之該至少一 3D圖案層中一最上3D圖案層之頂面上包 含一預定表面粗韃度。 4. 如請求項1所述之光學膜片,其中設置於該透明基底之該一 側及該另一側上之該等3D圖案層至少其中之一中的一最上 3D圖案層包含石夕丙烯酸酯(silicon acrylate)。 5. 一種光學膜片,包含: 一透明基底; 一第一 3D圖案層,設置於該透明基底之一側上;以及 一第二3D圖案層,設置於該透明基底之另一側上。 6. 如請求項5所述之光學膜片,其中該第一 3D圖案層包含至少 一種圖案,該至少一種圖案係選自一棱鏡圖案、一透鏡狀圖 案、一微透鏡圖案、及一菲淫爾(Fresnel)圖案。 7. 如請求項6所述之光學膜片,其中該第二3D圖案層被造型為 壓紋(embossing) ° 8. 如請求項5所述之光學膜片,其中該第一 3D圖案層於其頂面 上包含一預定表面粗糙度。 20 201003222 · 9. 如請求項8所述之光學膜片,其中該表面粗糙度係介於0.05 微米至0,5微米之間。 10. 如請求項8所述之光學膜片,其中該第一 3D圖案層之頂面上 具有該表面粗糙度之一面積相對於該第一 3D圖案層之3D圖 案之一總面積之比係為10%〜100%。 11. 如請求項5所述之光學膜片,其中該第一和該第二3D圖案層 其中之至少一 3D圖案層包含矽丙烯酸酯。 12. 如請求項5所述之光學膜片,其中於該透明基底與該第一和該 f 第二3D圖案層其中之至少一 3D圖案層之間更包含功能珠。 13. 如請求項12所述之光學膜片,其中該等功能珠係為光漫射珠。 14. 一種背光總成,包含: 一燈單元; 一光導構件,用以向上引導來自該燈單元之光;以及 如請求項1至13中任一項所述之光學膜片,設置於該光 導構件之一上表面。 15. —·種液晶顯示器,包含: 一顯示面板;以及 如請求項14所述之背光總成,用以提供光至該顯示面板。 21201003222,. VII. Patent application scope: 1. An optical film comprising: a transparent substrate; and at least one three-dimensional (hereinafter referred to as "3D") pattern layer disposed on one side of the transparent substrate and another On each of the sides. 2. The optical film of claim 1, further comprising: a functional bead interposed between the transparent substrate and one of the at least one 3D pattern layer. 3. The optical film of claim 1, wherein a top surface of a topmost 3D pattern layer of the at least one 3D pattern layer disposed on the one side of the transparent substrate comprises a predetermined surface roughness. 4. The optical film of claim 1, wherein an uppermost 3D pattern layer of at least one of the 3D pattern layers disposed on the one side and the other side of the transparent substrate comprises Shixia Acrylic Silicon acrylate. An optical film comprising: a transparent substrate; a first 3D pattern layer disposed on one side of the transparent substrate; and a second 3D pattern layer disposed on the other side of the transparent substrate. 6. The optical film of claim 5, wherein the first 3D pattern layer comprises at least one pattern selected from the group consisting of a prism pattern, a lenticular pattern, a microlens pattern, and a smear Fresnel pattern. 7. The optical film of claim 6, wherein the second 3D pattern layer is embossed. The optical film of claim 5, wherein the first 3D pattern layer is The top surface thereof contains a predetermined surface roughness. The optical film of claim 8, wherein the surface roughness is between 0.05 microns and 0,5 microns. 10. The optical film of claim 8, wherein a ratio of an area of the surface roughness of the first 3D pattern layer to a total area of one of the 3D patterns of the first 3D pattern layer is It is 10%~100%. 11. The optical film of claim 5, wherein at least one of the first and second 3D pattern layers comprises a ruthenium acrylate. 12. The optical film of claim 5, wherein a functional bead is further included between the transparent substrate and at least one of the first and the second 3D pattern layers. 13. The optical film of claim 12, wherein the functional beads are light diffusing beads. A backlight assembly, comprising: a light unit; a light guiding member for guiding light from the light unit; and an optical film according to any one of claims 1 to 13, disposed on the light guide One of the upper surfaces of the component. 15. A liquid crystal display comprising: a display panel; and a backlight assembly as claimed in claim 14 for providing light to the display panel. twenty one
TW098118903A 2008-06-09 2009-06-06 Optical sheet and backlight assembly and liquid crystal display comprising the same TW201003222A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080053854A KR100934574B1 (en) 2008-06-09 2008-06-09 Optical sheet, backlight assembly and liquid crystal display comprising same

Publications (1)

Publication Number Publication Date
TW201003222A true TW201003222A (en) 2010-01-16

Family

ID=41417210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118903A TW201003222A (en) 2008-06-09 2009-06-06 Optical sheet and backlight assembly and liquid crystal display comprising the same

Country Status (3)

Country Link
KR (1) KR100934574B1 (en)
TW (1) TW201003222A (en)
WO (1) WO2009151217A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110075720A (en) * 2009-12-28 2011-07-06 제일모직주식회사 Light diffuser of liquid crystal display device
KR101007236B1 (en) * 2010-08-02 2011-01-13 (주) 아이에스옵틱스 A method for manufacturing scattering panel
TWI459044B (en) * 2011-06-03 2014-11-01 Innocom Tech Shenzhen Co Ltd Optical sheet and method for manufacturing the same and liquid crystal display device using the same
KR101407439B1 (en) * 2012-06-27 2014-06-19 신화인터텍 주식회사 Optical film for a display, light source assembly including the same and liquid crystal display including the optical film
KR101549730B1 (en) 2012-12-27 2015-09-02 제일모직주식회사 Light diffusing plate, method for preparing thereof and backlight unit comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060057984A (en) * 2004-11-24 2006-05-29 주식회사 엘지에스 Optical film and back-light unit has them
KR20070050515A (en) * 2005-11-11 2007-05-16 삼성전자주식회사 Light diffusing unit, backlight assembly having the same and display device having the same
JP2007329007A (en) * 2006-06-07 2007-12-20 Omron Corp Point light source backlight, and liquid crystal display device

Also Published As

Publication number Publication date
KR20090127747A (en) 2009-12-14
WO2009151217A3 (en) 2010-02-25
WO2009151217A2 (en) 2009-12-17
KR100934574B1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US8506149B2 (en) Optical sheets
KR100907231B1 (en) Optical sheet and backlight assembly and liquid crystal display comprising the same
US20090135335A1 (en) Optical film and liquid crystal display including the same
JP2007188031A (en) Diffuser plate for higher light diffusion and luminance
KR100945392B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
CN101446656A (en) Optical film and liquid crystal display including the optical film
JP5736957B2 (en) Light guide plate, surface light source device and display device
TW201003222A (en) Optical sheet and backlight assembly and liquid crystal display comprising the same
US8310623B2 (en) Optical sheet and liquid crystal display including the same
JP2009053623A (en) Lens sheet, optical sheet for display, backlight unit and display apparatus using them
US7956954B2 (en) Optical sheet, backlight unit, and liquid crystal display
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
KR20090026069A (en) Light diffuser plate with light-collecting layer, surface light source device and liquid crystal display device
JP2010044270A (en) Light diffusion plate, optical sheet, back light unit and display device
KR20110034432A (en) Light guide panel united brightness diffusion film
JP2010044269A (en) Light diffusion plate, optical sheet, back light unit and display device
KR100989046B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
KR100939740B1 (en) Back Light Unit And Liquid Display Device Comprising Of The Same
KR20090123755A (en) Optical sheet, back light unit and liquid crystal display device comprising the same
KR100980068B1 (en) Multi-functional optic film
KR100936713B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal display Device Comprising the same
KR101158313B1 (en) Optical film improving visibility
KR101069934B1 (en) Diffuser sheet with multi-function
KR100837305B1 (en) Optical sheet, backlight unit and liquid crystal display device using the same
JP2009237475A (en) Optical sheet, back light unit using the same, and display