TW201002349A - A kit for radiotherapy dosimetry - Google Patents

A kit for radiotherapy dosimetry Download PDF

Info

Publication number
TW201002349A
TW201002349A TW97126563A TW97126563A TW201002349A TW 201002349 A TW201002349 A TW 201002349A TW 97126563 A TW97126563 A TW 97126563A TW 97126563 A TW97126563 A TW 97126563A TW 201002349 A TW201002349 A TW 201002349A
Authority
TW
Taiwan
Prior art keywords
gel
gelatin
monomer
radiation dose
polymer gel
Prior art date
Application number
TW97126563A
Other languages
Chinese (zh)
Inventor
Bor-Tsung Hsieh
Po-Hsiu Lee
Yuan-Jen Chang
Ji-An Liang
Original Assignee
Univ Central Taiwan Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Central Taiwan Sci & Tech filed Critical Univ Central Taiwan Sci & Tech
Priority to TW97126563A priority Critical patent/TW201002349A/en
Publication of TW201002349A publication Critical patent/TW201002349A/en

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a kit for radiotherapy dosimetry that is appropriate for intensity-modulated radiation therapy (IMRT) verification and three dimensional dose distributions. The kit includes a polymer gel unit and a Tetrakis (hydroxymethyl) phosphonium chloride (THPC) unit. The polymer gel unit is formed by using N-Isopropylacrylamide (NIPAM) as a monomer and includes N-Isopropylacrylamide monomer, gelatin, N',N'-methylene-bisacrylamide, and deionized water.

Description

201002349 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種放射劑量量測套組,尤指一種包括有以 乙烯異丙烯醯胺(7V-Is〇propylacrylamide) (NIPAM)為單體之聚合 物凝膠單元以及氣化四(羥甲基)鱗(Tetrakis (Hydroxymethyl) Phosphonium Chloride) (THPC)單元,並適用於量測強度調控放 射治療之劑量及其立體分佈之放射劑量量測套組。 【先前技術】 癌症之放射治療係以高能之游離輻射以體外遠隔治療或體 内近接治療之方式給予腫瘤特定之處方劑量,以獲得良好之腫 瘤控制率,進而提高病患之存活率。 然而,體外遠隔治療於先天上有其限制,即在腫瘤週遭之 正常組織或多或少都會接收到輻射線。由於各種正常組織對於 里之耐χ性程度不餘同,目此倾技術龍瘤給予理 …之^里^'’往往會使周遭正常組織接收到過高劑量,而無法 達到良好的治癒率。 為解决以上難題’於9〇年代發展出強度調控放射治療,其 ^由調贿物之輻翻度,藉以降低正常組_接受到的 ::之呆的腫瘤劑量。強度調控放射治療補 ㈣ 豸^葉式準直儀調控輸出劑量,以達順型之立 _ 將大。Ρ伤劑量集中於腫瘤範圍内,使腫瘤與其周 201002349 邊組織交界處出現劑量落差極大之劑量梯度。因此,正式進行 治療前,必須練過嚴謹的·驗證步驟,確定劑量分絲= 在合理可接受之範圍内後,方進行對病患之治療。 為能事先模擬實際輻射吸收劑量之立體分佈,以有效評估 治療過程巾及練後之狀況,則必須配合適#之継計。目前 在臨床劑量驗證X作上常使狀輻射劑量驗證卫具包括有游離 月工熱發光计、底片以及聚合物凝谬劑量劑,其中又以聚合物 凝膝劑量·有較狀讀量觀力與較高之解析度,對 於目4走向三度空間且愈來愈複雜的放射治療而言,具有極大 之助益。 然而,聚合物凝膠於使用方面仍存有些許問題,以致於未 能實際應用於臨床上’例如必須於實驗室㈣備、凝膠成分毒 性過高以及凝膠易受外在環境變化(如光、溫度、和氧氣等)之 影響。 聚合物凝膠至今仍無法普及使用,其主要之原因在於凝膠 本身不夠穩定,以致於無法提供準確之劑量分佈。其次則歸因 於過高之單體毒性,其將威脅製備人員之健康安全。於2〇〇4 年’ McAuley提出三個尚待解決的問題與可能的解決方法,分 迷如下。 其一 ’關於長哥命自由基(L〇ng_[iVed radicals)方面:簡 單的單體溶液(沒有添加交聯劑)受照射後產生自由基,使聚 201002349 合分子快逮增長,之後快速擴散並與鄰近的自由基反應,達玖 止反應若新自由基不再產生,則聚合作用也迅速降到零。^ 述反應係發生於單體溶液系統中,但於凝膠系統中,因為聚合 的自由基(polymeric free)降低自身的移動性,難以擴散· 近的自由基發生終止反應^時未結合的單體分子比聚合長鍵 更小且易於移動,以擴散方式與自由基反應,所以增值反應持 績進行’導致整體的聚合反應率較高。每個聚合的自由基持續 聚合’直到發生下列反應其中之一時,才會進行終止反應小 與另-個自由基結合,引發終止反應。2、與抑制劑(如細 或不純物(如氧氣)反應,生成新的自由基,不過這類的自由 基可能沒奴夠魏行她聚合反應(編心綱)。 其二’關於照射邊緣過度反應方面··因凝勝過度反應而造 成的邊緣過度反應,確切原因尚未完全明白,其合理假說為: 在熱力(thennody細ic) ‘驅使下,凝膠中的聚合物與單體都會 由高漢度擴散到低濃度,達平衡狀態。而實際上,聚合物擴散 的程度相當小’因為本身為巨大分子,再加上與細化交聯在 -起,使移動更加困難。凝勝受輻射照射後,產生自由基,觸 發聚合作用。照射高劑量區域會產生高濃度的自由基,此區的 單體被大量反應’相對其他未受照射的區域仍有高濃度單體未 發生聚合作用。而單體屬於小分子,則較有移動的可能,故未 反應的單體(位於照射區外)會由高單體濃度(低自由基濃度) 201002349 擴散到低單體濃度U自由基濃度),使得照射輯、_單體擴 散’而增強邊緣聚合作用。尤其是照射高継時,侧明顯。 另外’此邊緣聚合作用也將隨著增加照射後的時間而增加。 其二’關於單體毒性方面:Acrylamide具有神經毒性,疑 似致癌物Ϊ ’可能造柄胎,容易經⑽膚和呼吸道快速被人 體吸收,造成製造人員安全上的隱憂。BisacryIamide是較大的 刀子’比#x不會揮發到環境巾,被快速吸收’也是有可能造成 突變和畸船。將兩者製作成凝膠,且完全發生聚合作用後,凝 膠將不致危害人體丨只是要將凝膠完全聚合需要很高的劑量, 而且填裝後的谷斋處置與淨洗也是一個問題。 除上述問題外’關於聚合物凝膠之製備,先前文獻所提供 之製作方法皆不相同’且各有其優缺點,因此對於想要製作聚 合物凝踢者而言,目前沒有—套完整製齡序可以遵循。 緣此,為使聚合物凝膠能於具有低毒性之同時,亦得以增 加對刻里之敏感度以便於呈現病患體内劑量之立體分布情形, 且提供-套可以遵循之完整製傷程序,發明人積多年的經驗及 不斷的研發改進,遂有本發明之產生。 201002349 【發明内容】 核明主要的目的在提供—種具有低毒性,賴量之敏感 度更N卩降低X環境變異的影響之特性,並可直接用於呈現 病患體_量立體分布情形之—種放射織制套組,以期改 善治療計晝,增進病人安全。 為達上述之目的,本發明提供一種放射劑量量測套組,其 適用於1測強度調控放射治療之劑量,包含聚合物凝膠單元以 及氯化四(羥甲基)鱗(Tetrakis (Hydroxymethyl) Phosphonium Chloride) (THPC)單元。其中該聚合物凝膠單元係為以乙烯異丙 烯酿胺(iV-IS0pr0pylacrylamide)(NIPAM)為單體之聚合物凝膠, 包括有乙烯異丙烯酿胺(jV_ISOpr〇pylacrylamide)(]s[ipA]yi)單體 (重量百分比為3-6wt%)、明膠(GelatinX重量百分比為3_7wt%)、 -亞甲基二丙烯醯胺(w,-methylene-bisacrylamide) (BIS)(其重量百分比為2-5wt%)以及、去離子水(重量百分比為 81-91wt%)。此外,該氣化四⑽甲基)鱗單元係包括濃度為2_1〇 mM之氯化四(羥甲基)鱗。 此外’上述聚合物凝膠單元中之聚合物凝谬較佳製備為液 態,且本發明亦提供有該液態聚合物凝膠之製備方法,以及包 括利用該製造方法製得之液態聚合物凝膠之放射劑量量測套組 之使用方法。 或,上述聚合物凝膠單元中之聚合物凝膠較佳製備為粉 9 201002349 狀’本發明則提供有該粉狀聚合物凝膠之製備方法,以及包括 利用该製造方法製得之粉狀聚合物凝膠之放射劑量量測套組之 使用方法。 為對於本發明之特點與作用能有更深入之瞭解,茲藉實施 例配合圖式詳述於後。 【實施方式】 本發明係提供一種放射劑量量測套組,適用於量測強度調 控放射治療之劑量,其包含有一聚合物凝膠單元以及一氯化四 (羥甲基)鱗(Tetrakis (Hydroxymethyl) Phosphonium Chloride) (THPC)單兀。該聚合物凝膠單元係具有以乙烯異丙烯醯胺201002349 IX. Description of the invention: [Technical field of the invention] The present invention relates to a radiation dose measuring kit, and more particularly to a method comprising a monomer comprising 7V-Is〇propylacrylamide (NIPAM). Polymer gel unit and gasified tetrakis (Hydroxymethyl) Phosphonium Chloride (THPC) unit, and is suitable for measuring dose and intensity distribution of radiation therapy dose and its stereoscopic distribution of radiation dose measurement kit . [Prior Art] Radiation therapy for cancer is given by high-energy free radiation in the form of in vitro remote treatment or in vivo proximity treatment to obtain a specific tumor dose to obtain a good tumor control rate, thereby improving the survival rate of the patient. However, in vitro remote treatment has inherent limitations in that radiation is received more or less in normal tissues surrounding the tumor. Because the normal tissue is not the same for the degree of tolerance, it is often the case that the normal tissue of the surrounding tissue will receive too high a dose, and it will not achieve a good cure rate. In order to solve the above problems, in the 1990s, intensity-modulated radiation therapy was developed, which was used to reduce the tumor dose of the normal group. Intensity-regulated radiotherapy supplement (4) 豸^-leaf collimator regulates the output dose to achieve the cis-type _ will be large. The dose of bruises was concentrated in the tumor range, causing a dose gradient with a large dose difference at the junction of the tumor and its peripheral 201002349 side tissue. Therefore, before the formal treatment, it is necessary to practice a rigorous and verification procedure to determine the dosage of the split yarn = within a reasonably acceptable range before the patient is treated. In order to simulate the stereoscopic distribution of the actual radiation absorbed dose in advance, in order to effectively evaluate the condition of the treatment process towel and the post-training condition, it is necessary to match the appropriate #. At present, in the clinical dose verification X, the routine radiation dose verification aid includes a free-flowing thermal luminometer, a negative film and a polymer gelling dose, wherein the polymer condensed knee dose has a comparative reading. With a higher resolution, it is of great help to the four-dimensional and more complex radiotherapy. However, there are still some problems in the use of polymer gels, so that they are not practically applied in the clinic. For example, it must be prepared in the laboratory (4), the gel component is too toxic, and the gel is susceptible to external environmental changes (such as The effects of light, temperature, and oxygen. Polymer gels are still not widely available today, the main reason being that the gel itself is not sufficiently stable to provide an accurate dose distribution. Second, it is attributed to excessive monomer toxicity, which threatens the health and safety of the preparer. In 5.4 years, McAuley proposed three unresolved problems and possible solutions, which are as follows. One is about L长ng_[iVed radicals: a simple monomer solution (without adding a cross-linking agent) generates free radicals after irradiation, causing the polycarbonate 201002349 to rapidly grow and then rapidly diffuse. And react with the adjacent free radicals to reach the reaction. If the new radicals are no longer produced, the polymerization will quickly drop to zero. ^ The reaction occurs in the monomer solution system, but in the gel system, because the polymerized free radical reduces its mobility, it is difficult to diffuse. The near radicals terminate the reaction. The bulk molecule is smaller than the long bond of the polymerization and is easy to move, and reacts with the radical in a diffusion manner, so the value-added reaction is carried out to cause a higher overall polymerization rate. Each of the polymerized free radicals continues to polymerize until the occurrence of one of the following reactions occurs, and the termination reaction is combined with another radical, causing the termination reaction. 2. Reacting with inhibitors (such as fine or impure substances (such as oxygen) to generate new free radicals, but such free radicals may not be able to pass through her polymerization reaction (chorus). In terms of reaction, the excessive cause of edge overreaction caused by over-reaction is not fully understood. The rational hypothesis is: Under the driving force of thennody fine ic, the polymer and monomer in the gel will be high. Hando diffuses to a low concentration and reaches an equilibrium state. In fact, the degree of polymer diffusion is quite small 'because it is a huge molecule, and it is more difficult to move with refinement and cross-linking. Condensation is affected by radiation. After the irradiation, free radicals are generated to trigger the polymerization. High-dose regions are generated to generate high concentrations of free radicals, and the monomers in this region are largely reacted. 'There is still no polymerization of high-concentration monomers relative to other unirradiated regions. However, if the monomer belongs to a small molecule, it is more likely to move, so the unreacted monomer (located outside the irradiation zone) will diffuse from a high monomer concentration (low radical concentration) 201002349 to a low single. U radical concentration concentration), so that the series of the irradiation, the monomer diffusion _ 'edge enhanced polymerization. Especially when the sorghum is irradiated, the side is obvious. In addition, this edge polymerization will also increase with increasing time after irradiation. The second is about the toxicity of the monomer: Acrylamide is neurotoxic, and the suspected carcinogen Ϊ ‘ may cause the tire to be easily absorbed by the human body through the skin and respiratory tract, causing safety concerns for the manufacturing personnel. BisacryIamide is a larger knife's than #x does not volatilize into the environmental towel and is quickly absorbed' and is also likely to cause mutations and shipwrecks. When the two are made into a gel, and the polymerization is completely carried out, the gel will not harm the human body. It is only necessary to completely polymerize the gel, and it is also a problem to dispose and clean after filling. In addition to the above problems, 'the preparation of polymer gels, the preparation methods provided by the prior literature are different' and each has its own advantages and disadvantages, so for those who want to make polymer gels, there is currently no complete set of Age order can be followed. Therefore, in order to enable the polymer gel to have low toxicity, the sensitivity to the engraving can be increased to facilitate the stereoscopic distribution of the dose in the patient, and the complete injury procedure can be provided. The invention has accumulated many years of experience and continuous research and development improvements, and the invention has been produced. 201002349 [Summary of the Invention] The main purpose of the verification is to provide a kind of low toxicity, the sensitivity of the quantity is more N, and the influence of the variation of the X environment is reduced, and can be directly used to present the stereoscopic distribution of the patient's body. A radiological weaving kit to improve treatment planning and improve patient safety. To achieve the above object, the present invention provides a radiation dose measuring kit suitable for use in a dose-modulating radiation therapy dose comprising a polymer gel unit and Tetrakis (Hydroxymethyl) scales (Tetrakis (Hydroxymethyl)). Phosphonium Chloride) (THPC) unit. Wherein the polymer gel unit is a polymer gel containing iV-IS0p0pylacrylamide (NIPAM) as a monomer, including ethylene isopropene (jV_ISOpr〇pylacrylamide) (]s[ipA] Yi) monomer (weight percent 3-6 wt%), gelatin (Gelatin X weight percent 3-7 wt%), - methylene-bisacrylamide (BIS) (its weight percentage is 2- 5 wt%) and deionized water (81-91 wt% by weight). Further, the gasified tetrakis(10)methyl) squara unit system includes tetrakis (hydroxymethyl) chlorinated scales having a concentration of 2 to 1 mM. Further, the polymer gel in the above polymer gel unit is preferably prepared in a liquid state, and the present invention also provides a method for preparing the liquid polymer gel, and a liquid polymer gel obtained by the method. The method of using the radiation dose measuring kit. Or, the polymer gel in the above polymer gel unit is preferably prepared as powder 9 201002349. The present invention provides a method for preparing the powdery polymer gel, and a powder obtained by the method. The method of using the radiation dose measuring kit of polymer gel. In order to gain a better understanding of the features and functions of the present invention, the embodiments are described in detail below with reference to the drawings. [Embodiment] The present invention provides a radiation dose measuring kit suitable for measuring the dose of intensity-modulated radiation therapy, comprising a polymer gel unit and tetrakis (hydroxymethyl) scales (Tetrakis (Hydroxymethyl) Phosphonium Chloride) (THPC) Single. Ethylene isopropenamide

WlS〇prcpylaciylamide)(NIpAM)為單體之聚合物凝膠,其包括 有乙稀異丙稀酸胺(HS0pr0pyl lami —明事一 (W’-niethylene-bisaciylamide / 、2_5域%)、以及去離子水 (81-9lwt%)。而職化难f基)鱗單元則包括濃度為請麻 之氯化四(經甲基)鱗。上述乙稀異丙稀酿胺單體、膠,_亞甲基 二丙烯_以及氣化四㈣基_物質德學式請參見表】。 10 201002349 中英文名稱 分子式 化學式 乙烯異丙烯醯胺/NIPAM N- Isopropylacrylamide c6huno 〇 Η 氣化四(羥甲基)鱗/THPC Tetrakis(Hydroxymethyl) Phosphonium Chloride c4h12o4cip cr HO η〇-λ J /p+ r V-OH OH N,N-亞曱基二丙烯醯胺/BIS Ν,Ν'-Methylenediacrylamide C7 H10N2 〇2 Η H 0 〇 表1 其中 THPC 是一種 monoprotic acid,pKa = 5.5。2006 年, Jirasek提出THPC除氧機轉的模式(jirasek et al.,2006),轉述如 下: 首先’ THPC與水以質子交換之方式(pr〇t〇n exchange), 可將 THPC 游離(dissociation )成 THPOH (式 1)和 THP (式 2)。 可將(式1)和(式2)合併寫成(式3)。 (H0CH2)4PC1 <—^(HOCH2)4POH + HC1 (式 1) (HOCH2)4POH (HOCH2)3P + HCHO + H20 (式 2) (H0CH2)4PC1 <—> (HOCH2)3P + HCHO + H20+HC1 (式 3) THP可清除氧氣而形成THPO (式4) 11 201002349 (HOCH2)3P + 0.5〇2 — (HOCH2)3P =0 (式 4) 而THPOH和THPO可與曱醒反應(formaldehyde ),產生 半縮醛(hemiacetals),如(式 5)(式 6)(式 7)。 (HOCH2)3P = 0 + HCHO (HOCH2)2P(= 0)CH20CH20H (式 5) (HOCH2)3P = O + 2HCHO — (HOCH2)P(= 0)(CH20CH20H)2 (式6) (HOCH2)3P = O + 3HCHO P(= 〇)(CH2OCH2OH)3 (式乃 由此可知’真正具有除氧能力的是THP,而THP除了可與 氧氣反應之外,又可與甲搭反應。 於實施時’上述聚合物凝膠單元較佳更包括1 wt%以下之 驗性溶液(例如氫氧化鈉),藉以將聚合物凝膠調整至中性。上 述之明膠係為由豬皮(porcine skin)所提煉之蛋白膠(Bloom number 300)。上述明膠(Gelatin)之重量百分比係較乙烯異丙烯 酿胺單體和亞甲基二丙烯醯胺高1〜2%,藉以使該聚合物 凝膠具有最佳之凝固性。此外,明膠、乙烯異丙烯醯胺單體與 WJV’-亞甲基二丙烯醯胺之比例較佳為6 : 5 : 2.5,如此可使該 聚合物凝膠具有良好之敏感度與凝固性。 上述之聚合物凝膠單元中之聚合物凝膠可為液態或粉體, 而本發明亦提供液態或粉體聚合物凝膠之製備方法,以及包括 利用該製造方法所製得之液態或粉體聚合物凝膠之放射劑量量 測套組之使用方法。 12 201002349 第一實施例 液態聚合物凝膠之y 第1圖係顯示本發明之放射劑量量測套組中聚合物凝谬單 • 70之聚合物凝膠之製造方法之流程圖。於此實施例中,該聚合 物凝膠單元係包括複數個承裝有液態聚合物凝膠之管體,其製 造方法分述如下。 , 首先’步驟(al)係將去離子水加入一容器(例如燒杯)内,並 於至μ下加人日騰觀_ 1Q分鐘,使其級溶解。隨後,步驟㈣ 係將自步驟(al)所得之溶液加入一隔水加熱裝置内加熱擾掉至 45〇C,使該溶液完全澄清。隨後,步驟㈣係於上述溶液中分 別加入乙#異丙_胺單體以及^_亞?基二丙烯酿胺,並 均勻攪拌3G分鐘,使其充份轉。最後,步驟㈣係將所得之 溶液分裝至魏個管_如⑽試管㈣,並將該管體密封。 U 此外,如第2圖所示’實施時可於步驟㈣與㈣間加入一 步驟㈣··加入驗性溶液並均勻擾拌,其中該驗性溶液之重量 百刀比為1 wt%以下’且可為例如氫氧化納等驗性溶液,藉以 將聚合物凝膠調至中性。 士於實施上述步驟⑹至㈣時,為有效排除制之氧氣,可 持續以氬氣對溶液充I同理,於步驟㈣令,於分 凝膠溶液於管體時,可於充滿氬氣之手套箱令進行,雜練 氣之進人。於分料繼,可賴轉絲合物導的管體置 13 201002349 入冰箱冷藏以備用。 由上述製備方法所得之聚合物凝膠,其中各組成物之重量 百分比為:蛋白膠(Gelatin) 3-7wt%,乙烯異丙烯醯胺單體 3-6wt% 甲基雙醯胺(BIS)2_5wt%,以及去離子水 81-91wt%。上述明膠係為由豬皮(p0rcine skin)所提煉之蛋白膠 (Bloom number 300)。此外,為使該聚合物凝膠具有最佳之凝固 性,上述明膠(Gelatin)之重量百分比係較乙烯異丙烯醯胺單體 和亞曱基二丙烯醯胺高1〜2%;為使該聚合物凝膠具有良 好之敏感度與凝固性,上述明膠、乙烯異丙烯酿胺單體與 亞甲基二丙烯醯胺之比例則較佳為6 : 5 : 2.5。 基射劑量量測套組之#用古法 第3圖係顯示本發明放射劑量量測套組之使用方法,其中 聚合物凝膠單元係利用上述製造方法所製得。如圖所示,該使 用方法包括以下幾個步驟: (bl)將由苐2圖所述之方法所獲付之内含聚合物凝膠之 管體置於於45°C水中並予以加熱,使其内之聚合物凝 膠還原成液態凝膠; (W)、於該管體内等比例加入2-lOmM之氯化四(經甲基) 鱗並加以搖晃,使氯化四(羥甲基)鱗與凝膠充份溶解 而去除其内氧氣;以及 (b3)、將上述凝膠靜置於室溫下(22至25。〇,待其凝固後 14 201002349 即可進行放射線照射。 第二實施例 粉體聚合物凝勝之製備方法 第4圖係顯示本發明之放射劑量量測套組中聚合物凝膠單 元之聚合物凝膠之製造方法之流程圖。於此實施例中,該聚合 物凝膠單元中之聚合物凝膠係呈粉體狀,其製造方法分述如下 首先’於步驟(cl)中,將去離子水加入—容器(例如燒杯) 内,並於室溫下加入明膠攪拌10分鐘,使其充份溶解。隨^, 於步驟㈣’將自步驟(cl)所得之溶液加入一隔水加熱裝置内加 熱攪拌至45°C,使該溶液完全澄清。於步驟(c3)中,乙烯異丙 烯酿胺單體以及亞甲基二丙稀酿胺分別加入上述溶液, 並均勻響30分鐘’使其充份溶解。於步驟㈣中,將之 德夜分裝至培養对,並於室溫τ(22至饮)冷卻凝固形成 .體。於步驟⑹中,將上述凝_體置於零下机 % =再移置零下8峰東24小時。最後,於步驟㈣中’將、I 練後的凝膠冷魏燥48何,並純料絲體。將冰 、此外,實施時於步驟㈣中可同時加入重量百分 以下之驗性溶液(例如氫氧化納),藉以將聚合物_調至中性。0 成物=_方法之步驟㈣所得的聚合物;_,射各组 置百分比為··蛋白膠(Gel _7wt% 6~異丙烯醯 201002349 胺單體3_6wt% ’ ” f基雙酿胺卿)2_Swt%,以及去離子水 81-91wt%。上述明膠係為由豬皮sk叫所提煉之蛋白膠 (B1〇〇mnUmber3〇〇)°此外’為使該聚合物凝膠具有最佳之凝固 性’上述明廢(Gelati狀重量百分比係較乙烯異丙烯酸胺單體 和”亞甲基二丙_胺高卜2%;為使該聚合物凝膠具有良 好之敏感度與翻性,上述师、乙稀異丙_胺單體與H 亞曱基一丙烯酿胺之比例則較佳為6: 5 : 25。 放射劑量量測套組之使用方法 第5圖係齡本發明放射量測套組之使財法,其中 聚合物凝膠單元係利用上造方法職得。如騎示,該使 用方法包括以下幾個步驟: (dl)、將由上述製備方法所得之聚合物凝膠粉體與適當量 之去離子水置於一管體内; ㈣、將該管體置於恍水中隔水加熱,並加以震靈,使 其内之粉體完全溶解; ㈣、於該管體内等比例加人2_1〇福之氯化四濟甲基) 鱗並加以搖晃,使氯化四(羥曱基)鱗與凝膠充份溶解 以去除其内氧氣;以及 (d4)、將上述凝膠靜置於室溫下,待其顧後即可進行放 射線照射。 16 201002349 示例配方之製備 第6圖為製備NIPAM凝膠的流程圖,詳細流程如下: 1、 由純水製造機上,取86.5ml去離子水(Deionized Water) 置於250m丨燒杯内。 2、 在室溫下加入6g明膠(Gelatin)攪拌待至粉體完全溶解 及充分膨脹。 3、 將此溶液注入隔水加熱系統,再加熱授拌至45它,讓 明膠充分溶解呈現澄清狀。 4、 加入5g乙浠異丙烯醯胺單體ρ^ρΑΜ)與2 5g 甲基二丙烯醯胺(BIS”均勻攪拌,等全部組成分完全溶 解。 5、 加入5 mM氯化四(羥甲基)鱗(THpc),均勻攪拌,讓組 成物充分混和。 6、 將凝膠分裝至pyrex螺蓋試管内。WlS〇prcpylaciylamide) (NIpAM) is a monomeric polymer gel comprising ethylene isopropyl acid amine (HS0pr0pyl lami - W'-niethylene-bisaciylamide /, 2_5 domain%), and deionized Water (81-9lwt%). The occupational difficulty of the base) scale unit includes the concentration of chlorinated tetrakis (methyl) scales. The above-mentioned ethyl isopropyl dilute amine monomer, rubber, _methylene dipropylene _ and gasification tetra (tetra) _ material German learning formula see the table]. 10 201002349 Chinese and English name molecular formula chemical formula ethylene isopropenylamine / NIPAM N- Isopropylacrylamide c6huno 〇Η gasification tetrakis (hydroxymethyl) scale / THPC Tetrakis (Hydroxymethyl) Phosphonium Chloride c4h12o4cip cr HO η〇-λ J /p+ r V- OH OH N, N-decylene propylene amide / BIS Ν, Ν '-Methylenediacrylamide C7 H10N2 〇 2 Η H 0 〇 Table 1 where THPC is a monoprotic acid, pKa = 5.5. In 2006, Jirasek proposed THPC deoxygenation The mode of machine rotation (jirasek et al., 2006) is described as follows: First, 'THPC and water exchange by proton (pr〇t〇n exchange), can dissociate THPC into THPOH (Formula 1) and THP (Formula 2). (Formula 1) and (Formula 2) can be combined and written as (Formula 3). (H0CH2)4PC1 <-^(HOCH2)4POH + HC1 (Formula 1) (HOCH2)4POH (HOCH2)3P + HCHO + H20 (Formula 2) (H0CH2)4PC1 <-> (HOCH2)3P + HCHO + H20+HC1 (Formula 3) THP can remove oxygen to form THPO (Formula 4) 11 201002349 (HOCH2)3P + 0.5〇2 — (HOCH2)3P =0 (Formula 4) and THPOH and THPO can react with awakening (formaldehyde) ), producing hemiacetals such as (Formula 5) (Formula 6) (Formula 7). (HOCH2)3P = 0 + HCHO (HOCH2)2P(= 0)CH20CH20H (Formula 5) (HOCH2)3P = O + 2HCHO — (HOCH2)P(= 0)(CH20CH20H)2 (Formula 6) (HOCH2)3P = O + 3HCHO P(= 〇)(CH2OCH2OH)3 (The formula thus shows that 'the true oxygen scavenging capacity is THP, and THP can react with oxygen in addition to reacting with oxygen. Preferably, the above polymer gel unit further comprises an alkaline solution (for example, sodium hydroxide) of 1 wt% or less, thereby adjusting the polymer gel to neutrality. The gelatin described above is refined from porcine skin. Bloom number 300. The weight percentage of the above gelatin (Gelatin) is 1~2% higher than that of the ethylene isopropenylamine monomer and methylenebisacrylamide, so that the polymer gel is optimal. In addition, the ratio of gelatin, ethylene isopropenylamine monomer to WJV'-methylenebisacrylamide is preferably 6:5:2.5, so that the polymer gel has good sensitivity. And the coagulability. The polymer gel in the above polymer gel unit may be a liquid or a powder, and the present invention also provides a liquid or powder polymer gel. A method of preparation, and a method of using a radiation dose measuring kit comprising a liquid or powder polymer gel prepared by the manufacturing method. 12 201002349 The first embodiment liquid polymer gel y Figure 1 shows A flow chart of a method for producing a polymer gel of a polymer gel of a radiopharmaceutical kit of the present invention. In this embodiment, the polymer gel unit comprises a plurality of liquid polymerization systems. The method of manufacturing the tube of the gel is described as follows. First, the step (al) is to add deionized water to a container (for example, a beaker), and add _ 1Q minutes to the μ. The step is dissolved. Then, in step (4), the solution obtained from the step (al) is added to a water-blocking heating device and heated to disturb to 45 ° C to completely clarify the solution. Then, step (4) is added to the above solution separately. B #isopropyl_amine monomer and ^_亚基基丙丙烯胺, and evenly stirred for 3G minutes, make it fully rotated. Finally, step (4) is the solution is divided into Wei tube _ such as (10) test tube (d), and seal the pipe body. U In addition, as the second In the figure shown, a step (4) may be added between steps (4) and (4). The test solution is added and uniformly scrambled, wherein the test solution has a weight ratio of 1 wt% or less 'and may be, for example, hydrogen hydroxide. The test solution is adjusted to neutralize the polymer gel. When the above steps (6) to (4) are carried out, in order to effectively eliminate the oxygen produced, the solution can be filled with argon gas in the same way, in step (4) When the gel solution is applied to the tube body, it can be carried out in a glove box filled with argon gas, and the gas is introduced into the body. After the sub-feeding, it can be placed on the refrigerator body for storage. The polymer gel obtained by the above preparation method, wherein the weight percentage of each composition is: protein gum (Gelatin) 3-7 wt%, ethylene isopropenylamine monomer 3-6 wt% methylbisguanamine (BIS) 2_5 wt %, and deionized water 81-91 wt%. The gelatin described above is a gelatin (Bloom number 300) refined from porcine skin. Further, in order to optimize the coagulability of the polymer gel, the weight percentage of the above gelatin (Gelatin) is 1 to 2% higher than that of the ethylene isopropenylamine monomer and the fluorenylene propylene amide; The polymer gel has good sensitivity and coagulability, and the ratio of the above gelatin, ethylene isopropenylamine monomer to methylenebisacrylamide is preferably 6:5:2.5. The basic method of the base dose measuring kit is shown in Fig. 3, which shows the use of the radiation dose measuring kit of the present invention, wherein the polymer gel unit is obtained by the above manufacturing method. As shown, the method of use comprises the following steps: (bl) placing the tube containing the polymer gel obtained by the method described in FIG. 2 in water at 45 ° C and heating it. The polymer gel therein is reduced to a liquid gel; (W), 2-lO mM tetrachloro(methyl) scale is added in an equal proportion to the tube and shaken to make tetrakis (hydroxymethyl) chloride The scale and the gel are fully dissolved to remove the oxygen therein; and (b3), the gel is allowed to stand at room temperature (22 to 25. 〇, after it is solidified, 14 201002349 can be irradiated. EXAMPLES Preparation Method of Powder Polymer Condensation Figure 4 is a flow chart showing a method for producing a polymer gel of a polymer gel unit in the radiation dose measuring kit of the present invention. In this embodiment, the polymerization is carried out. The polymer gel in the gel unit is in the form of a powder, and the manufacturing method thereof is as follows. First, in the step (cl), deionized water is added into a container (for example, a beaker), and added at room temperature. The gelatin is stirred for 10 minutes to make it fully soluble. With ^, in step (4) 'the solution obtained from step (cl) The solution is completely clarified by heating and stirring into a water-blocking heating device to 45 ° C. In the step (c3), the ethylene isopropenylamine monomer and the methylene dipropylene amine are separately added to the above solution, and uniformly Ring for 30 minutes to make it fully soluble. In step (4), add the night to the culture pair and cool and solidify at room temperature τ (22 to drink) to form the body. In step (6), the above condensation _ Place the body in the lower machine % = then shift the zero to the next 8 peaks for 24 hours. Finally, in step (4), 'I will clean the gel after the I cold, and the pure silk body. Will ice, in addition, implement In step (4), an experimental solution (for example, sodium hydroxide) of less than the weight percent may be simultaneously added to adjust the polymer to neutral. 0 is the product obtained by the step (4) of the method; The percentage of each group is · gelatin (Gel _7wt% 6~ isopropene 醯 201002349 amine monomer 3_6wt% ' ” f-based bis-amine) 2_Swt%, and deionized water 81-91wt%. Pig skin sk is called refined protein glue (B1〇〇mnUmber3〇〇) ° In addition 'to make the polymer gel have the best coagulability The above-mentioned depletion (Gelati-like weight percentage is 2% higher than ethylene isoacrylamide monomer and "methylene dipropanamine"; in order to make the polymer gel have good sensitivity and turnover, the above division, B The ratio of the dilute isopropylamine monomer to the H-mercapto-acrylamide is preferably 6:5: 25. The method of using the radiation dose measuring kit is shown in Fig. 5 is the age of the radiation measuring kit of the present invention. The method of using the above method is as follows: (dl), the polymer gel powder obtained by the above preparation method and an appropriate amount are used. The deionized water is placed in a tube; (4) the tube body is placed in the puddle water and heated by water, and the body is shaken to completely dissolve the powder therein; (4) in the tube body, the proportion is added 2_1 〇 之 氯化 氯化 氯化 ) 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞 鳞At room temperature, radiation can be irradiated after it is taken care of. 16 201002349 Preparation of the sample formulation Figure 6 is a flow chart for preparing the NIPAM gel. The detailed procedure is as follows: 1. On a pure water manufacturing machine, 86.5 ml of deionized water (Deionized Water) was placed in a 250 m crucible. 2. Add 6 g of gelatin (Gelatin) at room temperature until the powder is completely dissolved and fully expanded. 3. Inject the solution into the water-blocking heating system, and then heat and mix it to 45, so that the gelatin is fully dissolved and clear. 4. Add 5g of ethylene propylene amide monomer ρ^ρΑΜ) and 25g of methyl bis decylamine (BIS), stir evenly, and completely dissolve all the components. 5. Add 5 mM tetrachloromethane (hydroxymethyl) ) Scale (THpc), stir evenly, and mix the composition thoroughly. 6. Dispense the gel into the pyrex screw cap test tube.

一嚴〜一 w 1 1文錢膠;疑固。 於减膝·製備後6小時内,進行輻射照射。A strict ~ a w 1 1 Wenqi plastic; suspected. Radiation irradiation was carried out within 6 hours after the knee reduction and preparation.

第7圖係為NIPAM凝膠照射示意圖 录具高再雜,捨棄傳統的水箱中照射: 的方式進行照射。訂製特殃慰☆七 。考慮快速擺位之餘能 捨棄傳統的水箱t騎方式,破賴態假體 大小為 30cmx30cmx 。§丁製特殊壓克力假體, 17 201002349 4cm正方形平版,於侧面正中心軸處鑽16cm圓孔(符合p^ex 螺蓋試管管徑)’將凝膠置入圓孔後,其頭尾端分別以3.5cm及 16.5cm長的壓克力圓棒以定位凝膠。在壓克力假體上下各堆疊 3cm固態水假體假體。此設定將凝膠中心軸定位於深度5cm處。 直線加速器(Varian21EX)的設置為:旋轉臂角度0。,光 子能量6MV,照野10x10cm2。量測凝膠空間穩定度時,以架設 在水假體系統内的IC10 (空腔體積:0.147 cc,半徑:〇 3 cm), 紀錄6MY,10x1“,深度5公分處的射束剖面劑量分佈(b_ profile )作為對照組。凝膠在相同條件下,紀錄此半照野的侧 面剖面劑量(lateralproflle)與先前的ια〇量得的訊號作比較。 第8圖則係為單點雷射量測系統元件及量測流程圖。以 632_8 nm之He-Ne雷射,其功率為2〇mw。He-Ne雷射使用 前需先暖機超過140分鐘後才開始進行實驗。經測試,其功率 飄移誤差小於1%,並且在實驗進行前將冑溫控制在Π,降 低因溫度不_對分減料成的誤差。雷射齡光鏡將射束 刀為一,—為記錄光強,另一為通過凝膠後再紀錄其強度! 將凝膠置於植物油巾,用來降低雷射穿透?卿玻璃所產生的 折反射。而裝油的油槽也是以Pyrex玻璃組成。本實驗量測凝 膠中心軸的點_,觀賴量反應時,在均勻照取5點數 據平均;而研究整體空間穩定度時,則沿著凝膠中心轴由下往 上量測。 18 201002349 示例配方之驗證 於以下示例中’本發明之放射劑量量測套組中之之 重量百分比為6%、乙烯異丙烯醯胺單體之重量百分比為5%、 • 八",#_甲基雙酿胺(BIS)之重量百分比為2.5%、而JHPC之、、曲声 • 則為5mM。以此比例製備成三批聚合物凝膠(以下稱為 π-ΝΙΡΑΜ gel),分別進行驗證。結果如第9圖所示,於觀察其 劑量反應敏感度方面,可發現三批π-NIPAM gel之再現性良好 (Slope : 0.024±0.001 ; H2 ·· 0.991±0.0004),且其線性劑量之範目 為 0-15 Gy。 於觀察劑量反應穩定度部份,請參考第10圖,其係顯示上 述72-NIPAM gel)(三次平均)之凝膠反應穩定度。觀察照射後 3-143小時間之凝膠聚合反應可發現,此凝膠於3小時即達成 穩定。此現象有兩種可能之解釋: 1、 聚合物凝膠於照射後快速反應,3小時後呈現穩定,表示Figure 7 is a schematic diagram of NIPAM gel irradiation. Recording is high and repetitive, and the irradiation in the traditional water tank is discarded. Customized special comfort ☆ seven. Considering the quick position, you can abandon the traditional water tank t-ride method, and the size of the broken prosthesis is 30cmx30cmx. §Ding special acrylic prosthesis, 17 201002349 4cm square lithography, drilling 16cm round hole at the right central axis (according to p^ex screw cap test tube diameter) 'The gel is placed in the round hole, the head and tail The ends were respectively 3.5 cm and 16.5 cm long acryl round bars to position the gel. A 3 cm solid water prosthesis prosthesis was stacked on top of each other on the acrylic prosthesis. This setting positions the gel center axis at a depth of 5 cm. The linear accelerator (Varian21EX) is set to a rotary arm angle of zero. , photon energy 6MV, photo field 10x10cm2. When measuring the spatial stability of the gel, the IC10 (cavity volume: 0.147 cc, radius: 〇3 cm) erected in the water prosthesis system, record 6 MY, 10x1", beam profile dose distribution at a depth of 5 cm (b_profile) was used as a control group. Under the same conditions, the lateral proflle of this semi-field was recorded and compared with the previous signal of ια〇. Figure 8 is a single-point laser. System components and measurement flow chart. The He-Ne laser with 632_8 nm has a power of 2〇mw. Before the He-Ne laser is used, it needs to warm up for more than 140 minutes before starting the experiment. The power drift error is less than 1%, and the temperature is controlled to Π before the experiment is performed, and the error caused by the temperature is not reduced. The laser beam of the laser is one for the recording light intensity. The other is to record the strength after passing the gel! The gel is placed on the vegetable oil towel to reduce the deflection of the laser penetration. The oil tank is also composed of Pyrex glass. Measure the point _ of the center axis of the gel, and observe the amount of reaction 5-point data averaging; while studying overall spatial stability, it is measured from bottom to top along the central axis of the gel. 18 201002349 Validation of the sample formulation in the following example 'The radiation dose measurement kit of the present invention The weight percentage is 6%, the weight percentage of ethylene isopropenamide monomer is 5%, • eight ", #_ methyl double-brown amine (BIS) is 2.5% by weight, and JHPC, 曲曲• Then, it was 5 mM. Three batches of polymer gel (hereinafter referred to as π-ΝΙΡΑΜ gel) were prepared in this ratio and verified separately. As shown in Fig. 9, three batches can be found in observing the sensitivity of dose response. The reproducibility of π-NIPAM gel is good (Slope: 0.024±0.001; H2 ··0.991±0.0004), and the linear dose is 0-15 Gy. For the observation of dose stability, please refer to Figure 10. , which shows the gel reaction stability of the above 72-NIPAM gel) (three times average). It can be found that the gel polymerization of 3-43 hours after the irradiation shows that the gel is stable in 3 hours. Two possible explanations: 1. The polymer gel is fast after irradiation. Reaction, stable after 3 hours, indicating

Vi 聚合反應完畢。 2、 聚合物政膠照射後緩慢反應’量測系統難以量測些微變化。 若為第一項情況,對於實際應用而言將是一大利基,因為 可大幅縮短等待聚合作用的時間,立即收取凝膠内立體劑量分 佈訊息。若為弟二種情況,以目前的量測設備無法察覺,需改 良度量設備方能察覺。 為驗證π-NIPAMgel是否於3小時後即完成反應,另製備 19 201002349 一批凝膠’翻增加卜2小時的度量,結果請參考第u圖。 在照射後1小時與2小時,可發現曲線明顯往上攸升,表示凝 膠持續進行聚合作用,而3小時之後便停止,證實應為第一項 情況。 、弟11圖富中之2Gy、6Gy、8Gy、10Gy為例,假設三 小日"3*為平衡時間’設定平衡後的容許波動為平均值±1%,計算 結果如表2。高劑量誤差較小,在照射後2小時後就達到1% 波動標準,而低劑量誤差較大,需要3小時才能達到波動標 準,所以整體而言《-ΝΙΡΑΜ gel需要經過3小時的穩定期。Vi polymerization is complete. 2. The polymer reaction is slowly reacted after irradiation. The measurement system is difficult to measure some slight changes. If it is the first case, it will be a big niche for practical applications, because the time for waiting for polymerization can be greatly shortened, and the stereoscopic dose distribution information in the gel is immediately collected. If you are a younger brother, you can't detect it with the current measurement equipment, and you need to improve the measurement equipment to detect it. In order to verify whether the π-NIPAMgel completes the reaction after 3 hours, another batch of 19 201002349 batch gel is measured to increase the measurement by 2 hours. Please refer to the figure u. At 1 hour and 2 hours after the irradiation, it was found that the curve was soared upward, indicating that the gel continued to polymerize and stopped after 3 hours, confirming that it should be the first case. For example, in the case of 2Gy, 6Gy, 8Gy, and 10Gy in the 11th, we assume that the allowable fluctuation after the balance is set to the average value of ±3% for the balance time of 3 days. The calculation result is shown in Table 2. The high dose error is small, and the 1% fluctuation standard is reached 2 hours after the irradiation, while the low dose error is large, and it takes 3 hours to reach the fluctuation standard, so overall, the "ΝΙΡΑΜ gel needs a 3-hour stabilization period.

Time (hr) 一 2Gy 6Gy 8Gy 10 Gy 1 0.035586 0.153406 0.234512 0.305877 2 0.035579 0.156848 0.240034 0.314623 3 0.035701 0.156696 0.243487 0.318869 6 0.035258 0.156431 0.24187 0.316145 9 0.035093 0.156331 0.241715 0.315653 15 0.035078 0.156291 0.24117 0.314743 18 0.034755 0.155366 0.240829 0.31466 24 0.034636 0.155546 0.244141 0.314443 3hr-24hr 平均值 0.035087 0.15611 0.242202 0.315752 1%誤差 0.000351 0.001561 0.002422 0.003158 穩定時間 (hr) 3 2 2 2 表2 20 201002349 關於凝膠空間穩定度方面,請參照第12、13圖,其中第 12圖係比較不同照射劑量的/2-NIPAM gel與游離腔(iC丨〇)於 beam profile的吻合程度;第13圖則係各別比較不同照射劑量 • 的W-NIPAM gel與iciO於beam profile的吻合程度。表3係顯 - 示小NIPAM辟1在>80%、80〜20%、<20%三區段差異百分比 表中整理0-15 Gy,每個劑量與beam profile相較的最大及平约 誤差百分比。由第14圖為平均誤差百分比、第15圖為總平均 誤差百分比可發現:>80% : 2 25%±116%、8〇〜2〇% : 1U7%± 3.84%、<20% : 4.64%±1.99% ’ 只有高劑量區段(>80%)誤差 小於3%’屬合理誤差範圍;而半影區⑽〜2〇%)誤差達η.37%, 誤差屬偏高,但半影區屬劑量變化劇烈的區段,在5mm内劑量 變化50%,相當於10%/mm,所以此半影區誤差在imm ;而低 劑量區段(<20%)誤差為4.64%,介於3〜5°/❶之間,屬臨床可 接受範圍。 21 201002349Time (hr) A 2Gy 6Gy 8Gy 10 Gy 1 0.035586 0.153406 0.234512 0.305877 2 0.035579 0.156848 0.240034 0.314623 3 0.035701 0.156696 0.243487 0.318869 6 0.035258 0.156431 0.24187 0.316145 9 0.035093 0.156331 0.241715 0.315653 15 0.035078 0.156291 0.24117 0.314743 18 0.034755 0.155366 0.240829 0.31466 24 0.034636 0.155546 0.244141 0.314443 3hr-24hr Average 0.035087 0.15611 0.242202 0.315752 1% error 0.000351 0.001561 0.002422 0.003158 Stabilization time (hr) 3 2 2 2 Table 2 20 201002349 For the gel space stability, please refer to Figures 12 and 13, where Figure 12 The degree of agreement between the 2/NIPAM gel and the free cavity (iC丨〇) in the beam profile was compared between the different irradiation doses; the 13th figure was the degree of agreement between the W-NIPAM gel and the iciO in the beam profile. . Table 3 shows that the small NIPAM is 1 in the >80%, 80~20%, <20% three-segment difference percentage table to sort 0-15 Gy, and the maximum and flatness of each dose compared with the beam profile Approximately the percentage error. From Figure 14 is the average error percentage, and Figure 15 is the total average error percentage. It can be found: >80%: 2 25% ± 116%, 8〇~2〇%: 1U7%± 3.84%, <20%: 4.64%±1.99% 'only high dose segment (>80%) error is less than 3%' is a reasonable error range; and penumbra (10)~2〇%) error is η.37%, the error is high, but the error is high, but The penumbra is a segment with a drastically variable dose, with a 50% change in dose within 5 mm, which is equivalent to 10%/mm, so the penumbra error is in imm; and the low dose segment (<20%) is 4.64%. , between 3~5 ° / ,, is a clinically acceptable range. 21 201002349

Dose % (beam profile) >80% 80 〜20% <20% (Difference between IC10 and gel) Difference between IC 10 and gel Difference between IC 10 and gel Dose(Gy) Mean SD Mean SD Mean SD 0.5 4.58 2.12 6.10 4.30 3.33 2.32 1 3.05 3.61 5.74 3.20 1.59 1.00 1.5 2.13 2.69 8.15 5.44 1.44 0.92 2 1.37 1.29 16.52 8.03 5.80 1.73 4 1.33 2.01 11.71 6.14 6.20 1.58 5 0.60 0.36 13.25 8.24 6.22 2.34 8 2.62 2.76 13.09 6.33 5.93 2.10 10 1.93 1.85 14.98 8.61 6.17 2.02 15 2.67 3.58 12.80 6.24 5.05 1.39 Meantot. 2.25 2.25 11.37 6.28 4.64 1.71 SDtot. 1.16 1.05 3.84 1.82 1.99 0.53 表3 總合以上敘述: 1. 上述配方 Gelatin : 6%、NIPAM : 5%、BIS : 2.5%、THPC : 5Mm,稱為 π-ΝΙΡΑΜ gel。 22 201002349 1.16%、半影區(80〜20%) : 1U7%±3 84%、低劑量 (<20%) : 4.64%±1.990/〇。 此外,以下將就上述所得結果進一步加以討論。 ’ 一、劑量反應敏感度 . 劑纽應_度歧膠的_份有關,根據树明之方法 所製備之πΝΙΡΑΜ凝轉為具有優感度之配方。 f 二、時間穩定度 凝膠經過騎猶續進行聚合反應,使得_反應會隨著 時間而改變’此段時間長短將會影響卿定,而待穩定 凝膠後方能進行制工作。若凝膠可快速達敎期,則利於快 速量測。DeDeeneeul在PAG中發現兩種時間不穩定度,一 種會影響敏感度,可轉續12小時;另—種會影物量聽曲 線’可以持續30天。這些與gelatin的凝膠製備過程有關⑼ DeeneetaL’2000)。新型的細^凝膠中,pAGAT凝膠的時 間穩定性不佳,絲如後24天補不穩定ding,腿,Dose % (beam profile) >80% 80 〜20% <20% (Difference between IC10 and gel) Difference between IC 10 and gel Difference between IC 10 and gel Dose(Gy) Mean SD Mean SD Mean SD 0.5 4.58 2.12 6.10 4.30 3.33 2.32 1 3.05 3.61 5.74 3.20 1.59 1.00 1.5 2.13 2.69 8.15 5.44 1.44 0.92 2 1.37 1.29 16.52 8.03 5.80 1.73 4 1.33 2.01 11.71 6.14 6.20 1.58 5 0.60 0.36 13.25 8.24 6.22 2.34 8 2.62 2.76 13.09 6.33 5.93 2.10 10 1.93 1.85 14.98 8.61 2.17 2.02 15 2.67 3.58 12.80 6.24 5.05 1.39 Meantot. 2.25 2.25 11.37 6.28 4.64 1.71 SDtot. 1.16 1.05 3.84 1.82 1.99 0.53 Table 3 General Description: 1. The above formula Gelatin: 6%, NIPAM: 5%, BIS: 2.5 %, THPC: 5Mm, called π-ΝΙΡΑΜ gel. 22 201002349 1.16%, penumbra (80~20%): 1U7%±3 84%, low dose (<20%): 4.64%±1.990/〇. In addition, the results obtained above will be further discussed below.  First, the dose response sensitivity. The agent should be related to the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ f Second, the time stability The gel is still undergoing polymerization after riding, so that the _ reaction will change with time. The length of time will affect the determination, and the work can be done after the gel is stabilized. If the gel can reach the flood season quickly, it will facilitate rapid measurement. DeDeeneeul found two kinds of time instability in the PAG, one affecting the sensitivity and can be rotated for 12 hours; the other kind of viewing volume can last for 30 days. These are related to gelatin's gel preparation process (9) Deeneeta L'2000). In the new fine gel, the time stability of the pAGAT gel is not good, and the silk is as unstable as the last 24 days, the legs,

Brindha,Healy, & Baldock,2005a)。 本研九的/2-NIPAJVigeI具有最短的穩定時間,只要3小時 敏感度即可達穩定,為目前文獻最短者,甚具發展性。 三、空間穩定度 聚合物凝膠劑量計有邊緣劑量過渡反應(〇versh〇〇t)的缺 23 201002349 點,形成邊界增強的效果,而邊緣過度反應會影響劑量分佈的 精確性(De Deene et al” 2006; McAuley, 2004; Vergote,De Deene,Brindha, Healy, & Baldock, 2005a). The 2/NIPAJVigeI of this research has the shortest stabilization time, and it can be stabilized as long as the sensitivity is 3 hours. It is the development of the shortest document in the current literature. Third, the space stability polymer gel dosimeter has a marginal dose transition reaction (〇versh〇〇t) of the lack of 23 201002349 points, the effect of boundary enhancement, and the edge overreaction will affect the accuracy of the dose distribution (De Deene et Al" 2006; McAuley, 2004; Vergote, De Deene,

Bussche, & De Wagter, 2004) ° 近年來,許多研究開始注重凝膠本身的穩定度並尋求改善 的方法。2000年,De Deene在PAG凝膠中添加疊氮化納(如出騰 azide,NaN3 ),可以增加穩定性,然而敏感度卻明顯降低。然而, 高濃度的NaN3會降低凝膠的黏度,同時NaN3具高生物毒性 (ORL-RATLD50 : 27mg/kg) (2006d),無法被生物降解。所 以NaN3並非理想的添加劑(De Deene et al.,2000)。 2004年,Vergote et al觀察PAG凝膠發現:增加凝膠中的Bussche, & De Wagter, 2004) ° In recent years, many studies have begun to focus on the stability of the gel itself and seek ways to improve it. In 2000, De Deene added sodium azide (such as azide, NaN3) to the PAG gel to increase stability, but the sensitivity was significantly reduced. However, high concentrations of NaN3 reduce the viscosity of the gel, while NaN3 is highly biotoxic (ORL-RATLD50: 27 mg/kg) (2006d) and cannot be biodegraded. Therefore, NaN3 is not an ideal additive (De Deene et al., 2000). In 2004, Vergote et al observed PAG gel discovery: increased in the gel

Gelatin比例,會降低單體擴散效應,減低長壽命自由基的壽命, 而降低邊緣過渡反應的問題,同時提高凝膠穩定性,但相對的 也會降低凝膠敏感度,並可能影響溫度依存性及劑量率依存性 (Vergote et al., 2004) ° 2006年,DeDeene比較PAG、nMAG、nPAG三者的穩定性 與基本特性,發現nPAG雖然敏感度不高,但是空間穩定度、溫 度敏感度、劑量率依存性,表現卻比PAG、更好(De et al·,2006)。 綜上所述,本發明確可達到預期之目的,提供一種具有低 毒性,對劑量之敏感度更高,可降低受環境變異的影響之特性, 並可直翻於呈現病紐㈣4立體分布獅之放射劑量量測 24 201002349 套組 【圖式簡單說明】 第1圖係顯示本發明第—實施例之放射劑量量測套組中聚 合物凝膠單元之聚合物凝叙製造方法之流程圖。 弟2圖係顯示本發明第一實施例之放射劑量量測套組中聚 合物凝膠單元之聚合物凝膠之製造方法之另一流程 圖。 弟3圖係顯示本發明第一實施例之放射劑量量測套組之使 用方法。 第4圖係顯示本發明第二實施例之放射劑量量測套組中聚 合物凝膠單元之聚合物凝膠之製造方法之流程圖。 第5圖係顯示本發明第二實施例之放射劑量量測套組之使 用方法。 第6圖係顯示本發明示例中製備ϊ^ραμ凝膠之流程圖。 第7圖係顯示對本發明示例中所製備之聚合物凝膠進行照 射之示意圖。 第8圖係顯示對本發明示例中單點雷射量測系統元件及量 測流程。 第9圖係顯示本發明示例中製備三次聚合物凝膠(《-ΝΙΡΑΜ 25 201002349 gel)之劑量反應圖。 第10圖係顯示本發明示例中聚合物凝膠O-NIPAM gel)(三 次平均)的凝膠反應穩定度。 第11圖係顯示本發明示例中聚合物凝膠ONIPAM gel)-repeat的凝膠反應穩定度。 第12圖係顯示本發明示例中比較不同照射劑量的仏NIPAM gel與1C 10於beam profile的吻合程度。 第13圖係顯示本發明示例中各別比較不同照射劑量的 /•Ζ-ΝΓΡΑΜ gel 與 1C 10 於 beam profile 的吻合程度。 第14圖係顯示本發明示例中π-ΝΙΡΑΜ gel在>80%、 80〜20%、<20%三區段平均差異百分比。 第15圖係顯示本發明示例中κ-ΝΙΡΑΜ gel在>80%、 80〜20%、<20%三區段總平均差異百分比。 26 201002349 【主要元件符號說明】 步驟al :提供一内含有去離子水之容器,並於室溫下加入明膠 擾拌’使其充份溶解 步驟a2 .將步驟(ai)所得之溶液加入一隔水加熱裝置内加熱 拌至45°C ’使該溶液完全澄清 ”、、 步驟a3 :於上述溶液中加入乙烯異丙烯醯胺單體以及n,_亞 甲基二丙烯醯胺並均勻攪拌,使其充份溶解, 步驟a4 :加入鹼性溶液並均勻擾拌,其重量百分比為丨㈣以 下 步驟a5 :將所得之溶液分裝至複數個管體内 步驟Μ 所述之方法所得之内含聚合物凝 原成中並予以加熱,使其内之聚合物凝膠還 步驟W 入㈣福之氣化四㈣基)鱗 ί 以氣 四(羥甲基)鱗與凝膠充份溶解ΐ 步驟b3凝膠靜置於室溫下,待其凝固後即可進行放射 步驟cl 水之容器,並於室溫下加入明膠 ㈣e2 隔水加熱裝置内加紐 步驟c3. J 亞 步驟c4 :將步驟㈣之溶液分^ =使f充,洛解 凝固形成膠體 σ養皿中,並於室溫下冷卻 步驟c5 :將上述凝固之膠體晋 置零下_冰下2〇 C冰束24小時,再移 步驟c6 :將冰凍後之凝膠冷東乾 體 果純48小日守,亚加以磨碎成粉 27 201002349 步騍di 步驟d2 步驟d3 : 步驟d4 : 當量之本述方法製備所得之聚合物凝膠粉體與適 .離子水置於一管體内 置ί全4?解讨隔水加熱,並加以震盈,使 亥管體内等比例加入2-10mM之氯化四(羥 氣使氣化四(羥甲基)鱗與凝膠充份溶Ά $行故射 將上述凝膠靜置於室溫下,待其凝固後即可 線照射 28The ratio of Gelatin will reduce the monomer diffusion effect, reduce the lifetime of long-lived free radicals, reduce the problem of edge transition reaction, and improve the gel stability, but it will also reduce the gel sensitivity and may affect the temperature dependence. And dose rate dependence (Vergote et al., 2004) ° In 2006, DeDeene compared the stability and basic characteristics of PAG, nMAG and nPAG. It was found that although nPAG is not sensitive, spatial stability, temperature sensitivity, Dose rate dependence is better than PAG (De et al., 2006). In summary, the present invention can achieve the intended purpose, and provides a low toxicity, a higher sensitivity to the dose, and can reduce the influence of environmental variability, and can be turned directly to the diseased New Zealand (4) 4 stereoscopic distribution lion Radiation dose measurement 24 201002349 Set [Schematic description of the drawings] Fig. 1 is a flow chart showing the method of polymer gel formation of the polymer gel unit in the radiation dose measuring kit of the first embodiment of the present invention. Fig. 2 is a flow chart showing a method of manufacturing a polymer gel of a polymer gel unit in the radiation dose measuring kit of the first embodiment of the present invention. Fig. 3 is a view showing the use of the radiation dose measuring kit of the first embodiment of the present invention. Fig. 4 is a flow chart showing a method of producing a polymer gel of a polymer gel unit in the radiation dose measuring kit of the second embodiment of the present invention. Fig. 5 is a view showing the use of the radiation dose measuring kit of the second embodiment of the present invention. Fig. 6 is a flow chart showing the preparation of a ϊ^ραμ gel in the example of the present invention. Fig. 7 is a view showing the irradiation of the polymer gel prepared in the examples of the present invention. Figure 8 is a diagram showing the single point laser measurement system components and measurement flow for an example of the present invention. Fig. 9 is a graph showing the dose response of the preparation of a tertiary polymer gel ("-ΝΙΡΑΜ 25 201002349 gel" in the example of the present invention. Fig. 10 is a graph showing the gel reaction stability of the polymer gel O-NIPAM gel) (three times average) in the example of the present invention. Fig. 11 is a graph showing the gel reaction stability of the polymer gel ONIPAM gel)-repeat in the example of the present invention. Figure 12 is a graph showing the degree of agreement between the 仏NIPAM gel and 1C 10 in the beam profile for comparing different irradiation doses in the example of the present invention. Figure 13 is a graph showing the degree of agreement between the /·Ζ-ΝΓΡΑΜ gel and 1C 10 in the beam profile for different exposure doses in the examples of the present invention. Fig. 14 is a graph showing the average difference percentage of π-ΝΙΡΑΜ gel in > 80%, 80 to 20%, < 20% three-segment in the example of the present invention. Fig. 15 is a graph showing the total average difference percentage of κ-ΝΙΡΑΜ gel in >80%, 80~20%, <20% three-parts in the example of the present invention. 26 201002349 [Explanation of main component symbols] Step a: Provide a container containing deionized water, and add gelatin at room temperature to disturb 'to make it fully soluble in step a2. Add the solution obtained in step (ai) to a compartment The water heating device is heated and mixed to 45 ° C to "completely clarify the solution", step a3: adding ethylene isopropenylamine monomer and n, methylene dipropenylamine to the above solution and uniformly stirring, so that It is fully dissolved, step a4: adding an alkaline solution and uniformly interfering, the weight percentage is 丨 (4), the following step a5: dispensing the obtained solution into a plurality of tubes in the step Μ The substance is condensed and heated to make the polymer gel in the step further into the gasification of the tetrakis (tetramethyl) sulphate and the gel. Step b3 The gel is allowed to stand at room temperature, and after it is solidified, the container of the water step cl can be carried out, and gelatin is added at room temperature (4) e2 water heating device is added to the step c3. J substep c4: step (4) The solution is divided into ^ = f is charged, and the solution is solidified to form colloidal sputum And cooling at room temperature in step c5: the above-mentioned solidified colloid is placed under zero _ under ice 2 〇 C ice bundle for 24 hours, and then moved to step c6: the frozen gel after cold body dry fruit pure 48 days Shou, Yaji grind into powder 27 201002349 Step di step d2 Step d3: Step d4: Equivalent of the polymer gel powder obtained by the method described above and the appropriate ion water placed in a tube body ί Full 4? Deconstruct the water-proof heating, and make a shock, so that the body of the tube is added with 2-10 mM chlorinated tetrachloride (the gas gas makes the vaporized tetrakis (hydroxymethyl) scales and the gel fully soluble. The above gel is allowed to stand at room temperature, and after it is solidified, it can be irradiated by wire 28

Claims (1)

201002349 十、申請專利範圍: 1、一種放射劑量量測套組,適用於量測放射治療之劑量,其包 含: 聚合物凝膠單元:其係以乙烯異丙烯醯胺 (iV-Isopropylacrylamide)(NIPAM)為單體之聚合物凝膠,包括: 乙烯異丙稀酿胺(iV-Isopropylacrylamide)(NIPAM) 單體,其重量百分比為3-6wt°/〇 ; 明膠(Gelatin) ’其重量百分比為3-7%wt% ; 亞曱基二丙烯醯胺 (A^iV’-methylene-bisacrylamide) (BIS),其重量百分比為 2-5wt% ;以及 去離子水’其重量百分比為81-91wt% ;以及 氯化四(羥曱基)鱗(Tetrakis (Hydroxymethyl) Phosphonium Chloride) (THPC)單元,其包括濃度為 2-10 mM 之氯化四(羥曱基)鱗。 2、 如申請專利範圍第1項所述之放射劑量檢測套組,其中該聚 合物凝谬單元更包括鹼性溶液,其重量百分比為1 wt°/〇以下。 3、 如申請專利範圍第2項所述之放射劑量檢測套組,其中該聚 合物凝踢單元巾之雜溶液係減氧化納。 4、 如申請專利範圍第1項所述之放射劑量檢測套組,其中該聚 合物/邊膠單元中明膠之重量百分比係較乙烯異丙烯醯胺單體 29 201002349 和亞曱基二丙烯醯胺高1〜2%。 5、 如申請專利範圍第1項所述之放射劑量檢測套組,其中該聚 合物凝膠單元中之明膠:乙稀異丙烯酿胺單體亞曱 基二丙歸臨胺為6 : 5 : 2.5。 6、 如申請專利範圍帛!項所述之放射劑量檢着組,其中明膠 係為由豬皮(p0rcine skin)所提煉之蛋白膠(m〇〇m 300)。 7、 -種如巾請專利細第1項所述之放射劑量制套組中聚合 賊膠單元之製備方法,射解元内之聚合鱗膠係呈液 恝,該方法包括以下步驟: ()提供内含有去離子水之容器,並於室溫下加入明膠 授拌’使其充份溶解; ㈣、將步驟(al)所得之溶液加入一隔水加熱裝置内加熱擾掉 至45。(:,使該溶液完全澄清;以及 ()於上述a液中加人乙稀異丙雜胺單體以及亞甲 基二丙稀ϋ胺並均㈣拌,使其充份溶解。 士申明專利補第7項所述之方法更包括步驟㈣:加入 驗性溶液並均自卿,其4量百分比為 1 wt%以下。 9、 如申請專利範圍第8項 氧化鈉 呔之方法,其中該鹼性溶液係為氫 10、 如申請專利範圍第7 4 8項所述之方法更包括步驟(a5): 30 201002349 將所得之溶液分裝至複數個管體内,並將該管體密封。 π、如申請專利範圍第10項所述之方法,其中步驟㈣係於充 滿鼠氣之手套箱中進行。 12、 如申請專利範圍第7項所述之方法,其中於步驟⑹至㈣ 中,持續以氬氣對溶液充氣,以排除其令的氧氣。 13、 如申請專利顧第7或8項所述之放射劑量量測套組,其 t該聚合物凝膠中各組成物之重量百分比係為:明膠 3-7wt% ’乙烯異丙烯酸胺單體3彻% 甲基雙酿胺 2-5wt% ,以及去離子水81_91树% 〇 14、 如申請專利範圍第7項所述之放射劑量量測套細,其中該 聚合物凝膠中明膠之重量百分比係較乙歸異丙婦醒胺單體和 ATJV’-亞甲基二丙烯醯胺高μ%。 15、 如申請專嫌圍第7項所述之放射缝細套組,其中該 聚合物凝膠中之明膠:乙烯異丙烯酿胺單體:❼亞甲基 二丙稀醯胺為6 : 5 : 2.5。 如中請專利翻第7項所述之放射劑量量測套組,其中明 膠係為由豬皮(pGrcine skin)所提煉之蛋自糊_凹和 300)。 17、一種如巾請翻翻第1項所述之放_«測套組之使 用方法,包括以下步驟: (M)、將由申請專利範圍第1〇項所述之方法所得之内含聚合 31 201002349 物凝膠之管體置於於45°C水中並予以加熱,使其内之聚 合物凝膠還原成液態凝膠; (b2)、於該管體内等比例加入2-1 〇mM之氯化四(羥甲基)鱗並 加以搖晃,使氯化四(羥甲基)鱗與凝膠充份溶解而去除 其内氧氣;以及 (b3)將上述旋膠靜置於室溫下,待其凝固後即可進行放射 線照射。 18、一種如申請專利範圍第1項所述之放射劑量量測套組中聚 合物凝膠單元之製備方法,其中該單元内之聚合物凝膠係呈 粉狀,該方法包括以下步驟: (cl)、提供一内含有去離子水之容器,並於室溫下加入明膠 攪拌,使其充份溶解; (c2)、將步驟(cl)所得之溶液加入一隔水加熱裝置内加熱攪拌 至45°C,使該溶液完全澄清; (c3)、於上述溶液中加入乙烯異丙烯醯胺單體以及%,亞曱 基一丙烯醯胺並均勻攪拌,使其充份溶解; (c4)、將步驟(c3)之溶液分裝至培養皿中,並於室溫下冷卻凝 固形成膠體; (c5)、將上述凝固之膠體置於零下20°c冰凍24小時,再移置 零下80°C冰凍24小時;以及 (c6)、將冰洗後之凝膠冷;;東乾燥48小時’並加以磨碎成粉體。 32 201002349 19、 如申請專利範圍第18項所述之製備方法,其中該聚合物凝 膠中各組成物之重量百分比係為:明膠3-7wt%,乙烯異丙稀 酿胺單體3-6wt%,ΑΓ,ΑΡ-甲基雙醯胺2-5wt%,以及去離子水 81-91wt%。 20、 如申請專利範圍第18項所述之製備方法,其中於步驟(c3) 中同時加入鹼性溶液,其重量百分比為1加%以下。 21、 如申請專利範圍第18項所述之製備方法,其中該鹼性溶液 係為氮氧化納。 22、 如申明專利範圍第18項所述之放射劑量量測套組,其中該 小合物凝膠中明勝之重量百分比係較乙稀異丙烯醯胺單體和 亞甲基二丙烯醯胺高μ%。 23、 如申請專利範圍第18項所述之放射劑量量測套組,其中該 聚合物凝膠之比例為明膠:乙烯異丙烯醯胺單體:亞 甲基二丙烯醯胺為6 : 5 : 2.5。 24、 如申請專利範圍帛18項所述之放射劑量量測套組,其中明 朦係為㈣物。rcine娜所提煉之蛋自膠(BlGGm number 300)。 25、 -種如憎專纖邮丨項所狀放射紐量測套組之使 用方法,包括以下步驟: (dl)、將由中請專利範圍第18項所述方法製備所得之聚合物 凝膠粉體與適當量之去軒水置於—管體内; 33 201002349 (d2)、將該管體置於45°C水中隔水加熱,並加以震盪,使其 内之粉體完全溶解; (d3)、於該管體内等比例加入2-1 OmM之氯化四(羥曱基)鱗並 加以搖晃,使氯化四(羥曱基)鱗與凝膠充份溶解以去除 其内氧氣;以及 (d4)、將上述凝膠靜置於室溫下,待其凝固後即可進行放射 線照射。 34201002349 X. Patent application scope: 1. A radiation dose measuring kit for measuring the dose of radiotherapy, comprising: polymer gel unit: it is made of iV-Isopropylacrylamide (NIPAM) ) is a monomeric polymer gel comprising: iV-Isopropylacrylamide (NIPAM) monomer in a weight percentage of 3-6 wt ° / 〇; gelatin (Gelatin) '% by weight 3 -7% by weight; A^iV'-methylene-bisacrylamide (BIS) in a weight percentage of 2 to 5% by weight; and deionized water in a weight percentage of 81 to 91% by weight; And a Tetrakis (Hydroxymethyl Phosphonium Chloride) (THPC) unit comprising a tetrakis (hydroxyindole) chloride scale at a concentration of 2-10 mM. 2. The radiation dose detecting kit of claim 1, wherein the polymer gelling unit further comprises an alkaline solution having a weight percentage of 1 wt./〇 or less. 3. The radiation dose detection kit of claim 2, wherein the polymer solution of the polymer sponge unit is reduced in oxidation. 4. The radiation dose detecting kit according to claim 1, wherein the weight percentage of gelatin in the polymer/side rubber unit is lower than that of ethylene isopropenamide monomer 29 201002349 and fluorenylene propylene amide 1~2% higher. 5. The radiation dose detecting kit according to claim 1, wherein the gelatin in the polymer gel unit: ethylene dilute acrylamide monomer, fluorenylene dimer amide is 6:5: 2.5. 6, such as the scope of application for patents! The radiation dose detecting group according to the item, wherein the gelatin is a protein gel (m〇〇m 300) refined from pig skin (p0rcine skin). 7. A method for preparing a polymeric thief gum unit in a radiation dose set according to the invention, wherein the polymeric scale in the ejector element is liquid helium, the method comprising the following steps: Providing a container containing deionized water, and adding gelatin at room temperature to make it fully soluble; (4), adding the solution obtained in the step (al) to a water-blocking heating device and disturbing to 45. (:, the solution is completely clarified; and () is added to the above liquid a to add isopropyl isopropylamine monomer and methylene dipropylene amide and mix (4) to make it fully soluble. The method described in the supplementary item 7 further comprises the step (4): adding the test solution and all of them are self-cleaning, and the percentage of the 4 parts is less than 1 wt%. 9. The method of applying the sodium oxide bismuth in the eighth item of the patent scope, wherein the alkali The solution is hydrogen 10, and the method as described in the scope of claim 7 4 includes step (a5): 30 201002349 The resulting solution is dispensed into a plurality of tubes and the tube is sealed. The method of claim 10, wherein the step (4) is performed in a glove box filled with a rat. 12. The method of claim 7, wherein in the steps (6) to (4), The solution is inflated with argon gas to remove the oxygen. 13. The radiation dose measuring kit according to claim 7 or 8, wherein the weight percentage of each component in the polymer gel is For: gelatin 3-7wt% 'ethylene isoacrylate monomer 3%% methyl Brewing amine 2-5wt%, and deionized water 81_91 tree% 〇14, as described in the scope of claim 7, the radiation dose measurement set, wherein the weight percentage of gelatin in the polymer gel is different from B Cyanamide monomer and ATJV'-methylenebisacrylamide are up to μ%. 15. If you apply for the radiosity set according to item 7, the gelatin in the polymer gel: Ethylene isopropenol amine monomer: ❼ methylene dipropylene amide is 6: 5 : 2.5. For example, the patent discloses the radiation dose measuring kit described in Item 7, wherein the gelatin is made from pig skin ( pGrcine skin) refined eggs from the paste _ concave and 300). 17. A method for using the _« test kit according to the first item, including the following steps: (M), the inclusion polymerization obtained by the method described in claim 1 of the patent application 31 201002349 The tube of the gel is placed in water at 45 ° C and heated to reduce the polymer gel in the liquid to a liquid gel; (b2), 2-1 mM in the tube is added in equal proportions Tetrakis (hydroxymethyl) chloride is swayed and shaken to dissolve the tetrakis (hydroxymethyl) squamous chloride and the gel to remove oxygen therein; and (b3) the above-mentioned gel is allowed to stand at room temperature. After it is solidified, it can be irradiated with radiation. 18. A method of preparing a polymer gel unit in a radiation dose measuring kit according to claim 1, wherein the polymer gel in the unit is in a powder form, the method comprising the steps of: Cl), providing a container containing deionized water, and adding gelatin to stir at room temperature to fully dissolve; (c2), adding the solution obtained in step (cl) to a water-blocking heating device and heating and stirring until 45 ° C, the solution is completely clarified; (c3), adding ethylene isopropenylamine monomer and %, fluorenyl acrylamide to the above solution and uniformly stirring to dissolve it; (c4), The solution of the step (c3) is dispensed into a culture dish, and cooled and solidified at room temperature to form a colloid; (c5), the solidified colloid is frozen at minus 20 ° C for 24 hours, and then displaced to minus 80 ° C. Freeze for 24 hours; and (c6), cold the gel after washing;; dry for 48 hours in the east' and grind into powder. The method of claim 18, wherein the weight percentage of each component in the polymer gel is: gelatin 3-7 wt%, ethylene isopropanol monomer 3-6 wt %, ΑΓ, ΑΡ-methylbisguanamine 2-5 wt%, and deionized water 81-91 wt%. 20. The preparation method according to claim 18, wherein in the step (c3), the alkaline solution is simultaneously added, and the weight percentage thereof is 1% by weight or less. 21. The preparation method of claim 18, wherein the alkaline solution is sodium oxynitride. 22. The radiation dose measuring kit of claim 18, wherein the weight percentage of Mingsheng in the gel is higher than that of ethylene propylene amide monomer and methylene propylene amide. %%. 23. The radiation dose measuring kit according to claim 18, wherein the ratio of the polymer gel is gelatin: ethylene isopropenylamine monomer: methylene diacrylamide is 6:5: 2.5. 24. The radiation dose measurement kit described in claim 18, wherein the alum is a (four) material. The egg extracted by rcine Na is self-adhesive (BlGGm number 300). 25. The method of using a radiological measurement kit such as the 憎 憎 丨 , , , , , , , , , , , , ( ( ( ( ( ( ( ( ( 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物 聚合物The body and the appropriate amount of decox water are placed in the tube; 33 201002349 (d2), the tube is placed in water at 45 ° C and heated by water, and shaken to completely dissolve the powder therein; Adding 2-1 OmM chlorinated tetrakis (hydroxyindole) scales in the same proportion in the tube and shaking them to dissolve the tetrakis(hydroxyindole) scales and the gel to remove the oxygen therein; And (d4), the gel is allowed to stand at room temperature, and after it is solidified, radiation irradiation can be performed. 34
TW97126563A 2008-07-11 2008-07-11 A kit for radiotherapy dosimetry TW201002349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126563A TW201002349A (en) 2008-07-11 2008-07-11 A kit for radiotherapy dosimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126563A TW201002349A (en) 2008-07-11 2008-07-11 A kit for radiotherapy dosimetry

Publications (1)

Publication Number Publication Date
TW201002349A true TW201002349A (en) 2010-01-16

Family

ID=44825162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126563A TW201002349A (en) 2008-07-11 2008-07-11 A kit for radiotherapy dosimetry

Country Status (1)

Country Link
TW (1) TW201002349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453221B (en) * 2012-10-18 2014-09-21 A combination reagent group for a radiation gel dosimeter, a method for preparing the reagent group, and a combination method of the reagent group
US20210236855A1 (en) * 2018-05-03 2021-08-05 Duke University Systems and methods of quality assurance for radiotherapy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453221B (en) * 2012-10-18 2014-09-21 A combination reagent group for a radiation gel dosimeter, a method for preparing the reagent group, and a combination method of the reagent group
US20210236855A1 (en) * 2018-05-03 2021-08-05 Duke University Systems and methods of quality assurance for radiotherapy

Similar Documents

Publication Publication Date Title
Babic et al. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel
Zhu et al. Responsive fluorescent Bi2O3@ PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery
JP5590526B2 (en) Radiation dosimeter gel and radiation dosimeter using the same
Maeyama et al. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix
US20130266508A1 (en) Thermosensitive hydrogel for coating radioisotope and chemotherapeutic agent to treat cancer and method for preparing the same
ES2645971T3 (en) Association of poly (N-acryloyl glycinamide) with at least one active substance
Koeva et al. Preliminary investigation of the NMR, optical and x-ray CT dose–response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity
CN105440188B (en) A kind of novel three-dimensional gel gauge material and preparation method thereof
Majeed et al. Fabrication and evaluation of pH sensitive chemically cross-linked interpenetrating network [Gelatin/Polyvinylpyrrolidone-co-poly (acrylic acid)] for targeted release of 5-fluorouracil
EP2829560B1 (en) Polymerizable composition, method of making and using it and 3d polymer gel dosimeter comprising the composition
Pandit et al. Formulation and evaluation of transdermal films for the treatment of overactive bladder
TW201002349A (en) A kit for radiotherapy dosimetry
Fuse et al. Design and characteristics of an agar additive polymer gel dosimeter
CN106977634B (en) A kind of pharmaceutical sustained release compositions and preparation method thereof for Minimally Invasive Surgery
Hsieh et al. Preliminary investigation of a new type of propylene based gel dosimeter (DEMBIG)
JP2015098523A (en) Gel for radiation dosimeter, radiation dosimeter using the gel
CN103371963A (en) Dextrorotary ketoprofen tromethamine thermo-sensitive hydrogel for injection and preparation process thereof
CN108926549A (en) Rivastigmine gel emplastrum and preparation method thereof
TWI296275B (en) A new composition of acrylic polymer gel and a method for manufacturing the same
Jahan et al. In vitro transdermal delivery of metformin from a HPMC/PVA based TDS-patch at different pH
Lu et al. Functionalized ionic liquid exfoliated MoS2 nanosheets for photoacoustic imaging guided synergistic photothermal/chemotherapy
US6369037B1 (en) Controlled release of doxorubicin
Yoshioka et al. Improved dose sensitivity of normoxic polyacrylamide gelatin gel dosimeter with sucrose
Cho et al. Fabrication of a normoxic polymer gel dosimeter and its dose distribution characteristics
CN114369259A (en) PH dissociable temperature-sensitive hydrogel, preparation method and application thereof