TW200949441A - Photosensitive resin composition, interlayer insulating film, and method for processing microlens - Google Patents

Photosensitive resin composition, interlayer insulating film, and method for processing microlens Download PDF

Info

Publication number
TW200949441A
TW200949441A TW098109358A TW98109358A TW200949441A TW 200949441 A TW200949441 A TW 200949441A TW 098109358 A TW098109358 A TW 098109358A TW 98109358 A TW98109358 A TW 98109358A TW 200949441 A TW200949441 A TW 200949441A
Authority
TW
Taiwan
Prior art keywords
resin composition
weight
group
coating film
radiation
Prior art date
Application number
TW098109358A
Other languages
Chinese (zh)
Other versions
TWI430025B (en
Inventor
Yuuki Oonuma
Masaaki Hanamura
Ken-Ichi Hamada
Takahiro Iijima
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200949441A publication Critical patent/TW200949441A/en
Application granted granted Critical
Publication of TWI430025B publication Critical patent/TWI430025B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This invention relates to a photosensitive resin composition, an interlayer insulating film, and a method for processing microlens. The photosensitive resin composition has high photosensitivity and excellent developing margin, which can easily form a pattered thin film having excellent adhesion to bottom layer and is suitable for forming an interlayer insulating film and microlens. The photosensitive resin composition comprises at least one selected from the group consisting of unsaturated carboxylic acid and carboxylic acid anhydride, a copolymer of at least one unsaturated mixture selected from the group consisting of an unsaturated compound having oxiranyl and an unsaturated compound having oxetanyl, a 1, 2-quinonediazide compound, and a silsesquinoxane having C6-15 aryl.

Description

200949441 六、發明說明: 【發明所屬之技術領域】 本發明涉及感放射線性樹脂組成物以及層間絕緣 膜和微透鏡的製造方法。 【先前技術】 薄膜電晶體(以下記爲“TFT”)型液晶顯示元件及 磁頭元件、積體電路元件、固態攝像元件等電子產品, Ο 通常在層狀佈置的佈線之間設置絕緣用的層間絕緣 膜。由於作爲形成層間絕緣膜的材料,較佳爲獲得必要 圖案形狀所需的步驟數少、且具有足夠好的平坦性的材 料,因而感放射線性樹脂組成物被廣泛地使用(參見專 利文獻1和專利文獻2)。 另外,作爲傳真機、電子影印機、固態攝像元件等 晶載彩色濾光片成像光學系統或者光纖連接器的光學 系統材料,使用具有3〜lOOgm左右透鏡直徑的微透 ❹ 鏡,或者將這些微透鏡按規律排列而成的微透鏡陣列。 微透鏡或者微透鏡陣列的形成,已知在形成相當於透鏡 的抗蝕圖案後,通過加熱處理使其熔體流動後直接作爲 透鏡使用的方法,或者將熔體流動的透鏡圖案作爲掩 模’通過乾蝕刻法向底層轉印透鏡形狀的方法等。在上 述透鏡圖案的形成中,廣泛地使用感放射線性樹脂組成 物(參見專利文獻3和專利文獻4)。 -4- 200949441 這些層間絕緣膜和微透鏡或微透鏡陣列要求有高 耐熱性、高耐溶劑性、高透明性、與底層的黏附性等各 種性能。並且,近年來,在TFT液晶顯示元件領域,正 處於大螢幕化、快速回應化、薄型化等的趨勢下,作爲 其中所用層間絕緣膜的形成用組成物,在具有高敏感 度、作爲形成的層間絕緣膜具有低介電常數方面,要求 比以前有所提高的高性能。並且,在製造層間絕緣膜和 微透鏡的過程中,在其顯影步驟中,如果顯影時間哪怕 是稍微超過最佳時間,則圖案與基板之間容易滲入顯影 液而發生脫落,故而必須嚴格控制顯影時間,因此,需 要開發具有足夠顯影界限的感放射線性樹脂組成物。 【專利文獻1】日本特開200 1 - 3 54822號公報 【專利文獻2】日本特開2001— 343743號公報 【專利文獻3】日本特開平6- 18702號公報 【專利文獻4】日本特開平6 - 136239號公報 【發明內容】 本發明是基於以上情況而作出的。因此,本發明的 目的是提供一種感放射線性組成物,其具有高的感放射 線敏感度和優良的顯影界限,並且能夠容易地形成與底 層的黏附性優良的圖案狀薄膜。 本發明的另一目的是提供一種感放射線性樹脂組 200949441 成物,當其用於形成層間絕緣膜時,能夠形成高耐熱 性 '高耐溶劑性、高透光率、低介電常數的層間絕緣膜’ 並且當用於形成微透鏡時,能夠形成具有高透光率和良 好的熔融形狀的微透鏡。 本發明的又一目的是提供一種用上述感放射線性 樹脂組成物形成層間絕緣膜和微透鏡的方法。 本發明的其他目的和優點可以由以下的說明獲悉。 © 根據本發明,本發明的上述目的和優點,第一,由 一種感放射線性樹脂組成物達成,其特徵在於包括: [A]含有(a 1)由不飽和羧酸和不飽和羧酸酐構成的 群組中選出的至少一種和(a2)由具有環氧乙基的不飽 和化合物和具有氧雜環丁烷基的不飽和化合物構成的 群組中選出的至少一種之不飽和混合物的共聚物(以下 也稱爲“共聚物(A)”), φ [B]l,2 -醌二叠氮化合物(以下也稱爲‘‘[B]成 分”),以及 [C]具有碳原子數爲6〜15的芳基之倍半砂氧院 (silsesquinoxane)(以下也稱爲 “[C]成分,,)。 根據本發明’本發明的上述目的和優點,第二,由 一種層間絕緣膜或微透鏡的形成方法達成,其特徵在於 包括按照下述順序之以下步胃, 200949441 (1) 在基板上形成上述感放射線性樹脂組成物塗膜 的步驟, (2) 對該塗膜的至少一部分照射放射線的步驟, (3) 將照射後的塗膜進行顯影的步驟,和 (4) 將顯影後的塗膜進行加熱的步驟。 本發明的感放射線性樹脂組成物,具有高的感放射 線敏感度和優良的顯影界限,並且,通過使用該感放射 線性樹脂組成物,能夠容易地形成與底層的黏附性優良 的圖案狀薄膜。 由上述組成物形成的本發明層間絕緣膜,耐溶劑性 和耐熱性優良,具有高透光率和低介電常數,可適合作 爲電子產品的層間絕緣膜使用。另外,由上述組成物形 成的本發明微透鏡,耐溶劑性和耐熱性優良,並且具有 高透光率和良好的熔融形狀,可適合作爲固態攝像元件 的微透鏡使用。 【實施方式】 以下,對本發明的感放射線性樹脂組成物進行詳細 說明。 共聚物[A] 本發明中使用的共聚物[A],可以經由將含有(a 1) 由不飽和羧酸和不飽和羧酸酐構成的群組中選出的至 200949441 少一種(以下也稱爲“化合物(al)”)和(a2)由具有環氧 乙基的不飽和化合物和具有氧雜環丁烷基的不飽和化 合物構成的群組中選出的至少一種(以下也稱爲“化合 物(a2)”)的不飽和混合物在溶劑中,在聚合引發劑的存 在下進行自由基共聚合而製造。 化合物(al)是具有自由基聚合性的不飽和羧酸和/ 或不飽和羧酸酐,可以列舉例如單羧酸、二羧酸、二羧 酸的酸酐、多元羧酸的單[(甲基)丙烯醯氧基烷基]酯、 兩末端具有羧基和羥基的聚合物的單(甲基)丙烯酸 酯、具有羧基的多環式化合物及其酸酐等。 作爲其具體例子,單羧酸可以列舉例如丙烯酸、甲 基丙烯酸、巴豆酸等; 二羧酸可以列舉例如馬來酸、富馬酸、檸康酸、中 康酸、衣康酸等; 二羧酸的酸酐可以列舉例如作爲上述二羧酸而例 示的化合物的酸酐等; 多元羧酸的單[(甲基)丙烯醯氧基烷基]酯可以列舉 例如琥珀酸單[2-(甲基)丙烯醯氧基乙基]酯、鄰苯二甲 酸單[2-(甲基)丙烯醯氧基乙基]酯等; 兩末端具有羧基和羥基的聚合物的單(甲基)丙烯 酸酯可以列舉例如ω-羧基聚己內酯的單(甲基)丙烯酸 200949441 酯等; 具有羧基的多環式化合物及其酸酐可以列舉例如 5-羧基二環[2.2_1]庚-2-烯、5,6-二羧基二環[2.2.1]庚_2_ 烯、5-羧基-5-甲基二環[2.2.1]庚-2-烯、5-羧基-5-乙基 二環[2.2.1]庚-2-烯、5-羧基-6-甲基二環[2.2.1]庚-2-烯、5-羧基-6-乙基二環[2.2.1]庚-2-烯、5,6-二羧基二環 [2.2.1]庚-2-烯酸酐等。 其中,較佳使用單羧酸、二羧酸的酸酐,從共聚合 反應性、對於鹼顯影液的溶解性和容易獲得性方面考 慮,特佳使用丙烯酸、甲基丙烯酸、馬來酸酐。這些化 合物(a 1)可以單獨或兩種以上組合使用。 化合物U2)是具有環氧乙基的不飽和化合物和/或 具有氧雜環丁烷基的不飽和化合物,作爲具有環氧乙基 的不飽和化合物,可以列舉例如丙烯酸縮水甘油基酯、 甲基丙烯酸縮水甘油基酯、α -乙基丙烯酸縮水甘油基 酯、α-正丙基丙烯酸縮水甘油基酯、α-正丁基丙烯酸 縮水甘油基酯 '丙烯酸-3,4-環氧基丁基酯、甲基丙嫌酸 -3,4-環氧基丁基酯、丙烯酸-6,7-環氧基庚基酯、甲基丙 烯酸-6,7-環氧基庚基酯、α-乙基丙烯酸-6,7-環氧基庚 基酯、丙烯酸-3,4-環氧基環己基酯、甲基丙烯酸_3,4· 環氧基環己基酯、丙烯酸-3,4-環氧基環己基甲基酯、甲 200949441 基丙烯酸-3,4-環氧基環己基甲基酯、鄰乙烯基苄基縮水 甘油基醚、間乙烯基苄基縮水甘油基醚、對乙烯基苄基 縮水甘油基醚等。其中,從提高共聚合反應性和所得層 間絕緣膜或微透鏡的耐熱性、表面硬度的方面考慮,較 佳使用甲基丙烯酸縮水甘油基酯、甲基丙烯酸-6,7-環氧 基庚基酯、鄰乙烯基苄基縮水甘油基醚、間乙烯基苄基 縮水甘油基醚、對乙烯基苄基縮水甘油基醚、甲基丙嫌 酸-3,4-環氧基環己基酯、甲基丙烯酸-3,4-環氧基環己基 甲基酯等。 作爲具有氧雜環丁烷基的不飽和化合物,可以列舉 例如3-(丙烯醯氧基甲基)氧雜環丁烷、3-(丙烯醯氧基甲 基)-2-甲基氧雜環丁烷、3-(丙烯醯氧基甲基)-3-乙基氧 雜環丁烷、3-(丙烯醯氧基甲基)-2-苯基氧雜環丁烷、 3-(2-丙烯醯氧基乙基)氧雜環丁烷、3-(2-丙烯醯氧基乙 基)-2-乙基氧雜環丁烷、3-(2-丙烯醯氧基乙基)-3-乙基 氧雜環丁烷、3-(2-丙烯醯氧基乙基)-2-苯基氧雜環丁烷 等丙烯酸酯、3-(甲基丙烯醯氧基甲基)氧雜環丁烷、 3-(甲基丙烯醯氧基甲基)-2-甲基氧雜環丁院、3·(甲基丙 烯醯氧基甲基)-3-乙基氧雜環丁烷、3·(甲基丙稀酿氧基 甲基)-2-苯基氧雜環丁烷、3-(2-甲基丙烯醯氧基乙基) 氧雜環丁烷、3-(2-甲基丙烯醯氧基乙基)-2-乙基氧雜環 -10- 200949441 丁烷、3-(2-甲基丙烯醯氧基乙基)-3-乙基氧雜環丁烷、 3-(2·甲基丙烯醯氧基乙基)-2-苯基氧雜環丁烷等甲基 丙烯酸酯。 其中,從共聚合反應性方面考慮,較佳使用3-(丙 烯醯氧基甲基)-2-甲基氧雜環丁烷、3-(丙烯醢氧基甲 基)-3-乙基氧雜環丁烷、3-(甲基丙烯醯氧基甲基)-2-甲 基氧雜環丁烷、3-(甲基丙烯醯氧基甲基)-3-乙基氧雜環 © 丁烷等。 這些化合物(a2)可以單獨或組合使用。 本發明中所用的共聚物[A],較佳爲上述化合物 (al)、U2)以及進一步的能夠與它們共聚合的其他不飽 和化合物(以下也稱爲“化合物U3)”)的共聚物》作爲 這種化合物U3),只要是具有自由基聚合性的不飽和化 合物,則對其沒有特別的限制,可以列舉例如甲基丙烯 _ 酸烷基酯、甲基丙烯酸環狀烷基酯、丙烯酸烷基酯、丙 〇 烯酸環狀烷基酯、甲基丙烯酸芳基酯、丙烯酸芳基酯、 不飽和二羧酸二酯、具有羥基的甲基丙烯酸酯、二環不 飽和化合物、馬來醯亞胺化合物、不飽和芳香族化合 物、共軛二烯、具有四氫呋喃骨架、呋喃骨架、四氫吡 喃骨架、吡喃骨架或(聚)烷二醇骨架的不飽和化合物、 具有酚性羥基的不飽和化合物以及其他的不飽和化合 -11- 200949441 物。 作爲它們的具體例子,甲基丙烯酸烷基酯可 例如甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙 丁酯、甲基丙烯酸第二丁酯、甲基丙烯酸第三丁 基丙烯酸2-乙基己酯、甲基丙烯酸異癸酯、甲基 正十二烷基酯、甲基丙烯酸十三烷基酯、甲基丙 十八烷基酯等;作爲甲基丙烯酸環狀烷基酯可以 β 如甲基丙烯酸環基酯、甲基丙烯酸2-甲基環己醋 丙烯酸三環[5.2.1.02,6]癸烷-8-基酯(以下稱爲“ 烯酸二環戊基酯”)、甲基丙烯酸三環[5.2.1.02 -8-基氧基乙酯、甲基丙烯酸異冰片酯等;作爲 烷基酯可以列舉例如丙烯酸甲酯、丙烯酸乙酯、 正丙酯 '丙烯酸異丙酯、丙烯酸正丁酯、丙烯酸 酯、丙烯酸第三丁酯等;作爲丙烯酸環狀烷基酯 舉例如丙烯酸環己酯、丙烯酸2 -甲基環己酯、丙 〇 環[5.2.1.02’6]癸烷-8-基酯(以下稱爲“丙烯酸二 酯”)、丙烯酸三環[5.2.1.02,6]癸烷-8_基氧基乙 烯酸異冰片酯等;作爲丙烯酸芳基酯可以列舉例 酸苯酯、丙烯酸苄酯等;作爲甲基丙嫌酸芳基醋 舉例如甲基丙烯酸苯酯、甲基丙烯酸节醋等;作 和二羧酸二酯可以列舉例如馬來酸二乙醋、富馬 以列舉 烯酸正 酯、甲 丙烯酸 烯酸正 列舉例 、甲基 甲基丙 ’6]癸烷 丙烯酸 丙烯酸 第二丁 可以列 烯酸三 環戊基 酯、丙 如丙烯 可以列 爲不飽 酸二乙 -12- 200949441 酯、衣康酸二乙醋等;作爲具有經基的甲基丙嫌酸醋可 以列舉例如甲基丙烧酸羥基甲酯、甲基丙嫌酸2_經基乙 酯、甲基丙烯酸3-羥基丙酯、甲基丙烯酸4_羥基丁醋、 二甘醇單甲基丙烯酸酯、甲基丙烯酸2,3-二羥基丙醋、 2-甲基丙烯醯氧基乙基糖苷等;作爲二環不飽和化合物 可以列舉例如二環[2.2.1]庚-2-烯、5-甲基二環[2.2.1]庚 -2-烯、5-乙基二環[2.2.1]庚-2-烯、5-羥基二環[2_2.1] 庚-2-烯、5-羧基二環[2.2.1]庚-2-烯、5-羥甲基二環 [2.2.1]庚-2-烯、5-(2-羥基乙基)二環[2.2.1]庚-2-烯等; 作爲馬來醯亞胺化合物可以列舉例如N-苯基馬來 醯亞胺、N-環己基馬來醯亞胺、N-苄基馬來醯亞胺、 N-(4-羥基苯基)馬來醯亞胺、N-(4-羥基苄基)馬來醯亞 胺、N-琥珀醯亞胺基-3-馬來醯亞胺基苯甲酸酯、N-琥 珀醯亞胺基-4-馬來醯亞胺基丁酸酯、N-琥珀醯亞胺基 -6_馬來醯亞胺基己酸酯、N-琥珀醯亞胺基-3-馬來醯亞 胺基丙酸酯、N_(9-吖啶基)馬來醯亞胺等; 作爲不飽和芳香族化合物可以列舉例如苯乙烯、α -甲基苯乙烯、間甲基苯乙烯、對甲基苯乙烯、乙烯基 甲苯、對甲氧基苯乙烯等;作爲共軛二烯可以列舉例如 1,3-丁二烯、異戊二烯、2,3-二甲基-1,3-丁二烯等;作 爲具有四氫呋喃骨架的不飽和化合物可以列舉例如(甲 -13- 200949441 基)丙烯酸四氫糠基酯、2-甲基丙烯醯氧基-丙酸四氫糠 基酯、3-(甲基)丙烯醯氧基四氫呋喃-2-酮等;作爲具有 呋喃骨架的不飽和化合物可以列舉例如2 ·甲基-5 - (3 -呋 喃基)-1-戊烯-3-酮、(甲基)丙烯酸糠基酯、1-呋喃-2-丁 基-3-烯-2-酮、1-呋喃-2-丁基-3-甲氧基-3-烯-2-酮' 6-(2-呋喃基)-2-甲基-1-己烯-3-酮、6-呋喃-2-基-己-1-烯-3-酮、丙烯酸2-呋喃-2·基-1·甲基-乙基酯、6-(2-呋喃基)-6-〇 甲基-1-庚烯-3-酮等;作爲具有四氫吡喃骨架的不飽和 化合物可以列舉例如甲基丙烯酸(四氫吡喃-2_基)甲 酯、2,6-二甲基-8-(四氫吡喃-2-基氧基)-辛-1-烯-3-酮、 2-甲基丙烯酸四氫吡喃-2-基酯、1-(四氫吡喃-2-氧基)-丁基-3-烯-2-酮等;作爲具有吡喃骨架的不飽和化合物 可以列舉例如4-(1,4_二氧雜-5-酮基-6-庚烯基)-6-甲基 -2-吡喃酮、4-(1,5-二氧雜-6-酮基-7-辛烯基)-6-甲基-2-@ 吡喃酮等; 具有(聚)烷二醇骨架的不飽和化合物可以列舉例 如聚乙二醇(n=2~10)單(甲基)丙烯酸酯、聚丙二醇(n = 2〜10)單(甲基)丙烯酸酯等; 具有酚性羥基的不飽和化合物可以列舉(甲基)丙 烯酸4-羥基苄酯、(甲基)丙烯酸4-羥基苯酯、鄰羥基苯 乙烯、對羥基苯乙烯、α-甲基-對羥基苯乙烯、N-(4- -14- 200949441 羥基苄基)(甲基)丙烯醯胺、N-(3,5-二甲基-4-羥基苄 基)(甲基)丙烯醯胺、N-(4-羥基苯基)(甲基)丙烯醯胺等; 其他的不飽和化合物可以列舉例如丙烯腈、甲基丙 烯腈、氯乙烯、偏氯乙烯、丙烯醯胺、甲基丙烯醯胺、 乙酸乙烯酯。 其中,較佳使用甲基丙烯酸烷基酯、甲基丙烯酸環 狀烷基酯、丙烯酸環狀烷基酯、馬來醯亞胺化合物、不 飽和芳香族化合物、共轭二烯、具有四氫呋喃骨架、呋 喃骨架、四氫吡喃骨架、吡喃骨架、(聚)烷二醇骨架的 不飽和化合物、具有酚性羥基的不飽和化合物,從共聚 合反應性和對於鹼水溶液的溶解性方面考慮,特佳爲苯 乙烯、甲基丙烯酸第三丁酯、甲基丙烯酸正十二烷基 酯、甲基丙烯酸三環[5.2.1.02’6]癸烷-8-基酯、對甲氧基 苯乙烯、丙烯酸2-甲基環己酯、N-苯基馬來醯亞胺、 N-環己基馬來醯亞胺、ι,3-丁二烯、(甲基)丙烯酸四氫 糠基酯、聚乙二醇(n = 2~10)單(甲基)丙烯酸酯、3-(甲基) 丙烯醯氧基四氫呋喃-2-酮、(甲基)丙烯酸4-羥基苄酯、 (甲基)丙烯酸4-羥基苯酯、鄰羥基苯乙烯、N-(4-羥基苯 基)(甲基)丙烯醯胺、對羥基苯乙烯、α-甲基-對羥基苯 乙烯。這些化合物(a3)可以單獨或兩種以上組合使用。 作爲本發明中所用的共聚物[Α]的較佳具體例子, -15- 200949441 可以列舉例如甲基丙烯酸/甲基丙烯酸三環[5.2.1.026] 癸烷-8-基酯/丙烯酸2-甲基環己酯/甲基丙烯酸縮水甘 油基酯/苯乙烯、甲基丙烯酸/甲基丙烯酸四氫糠基酯/ 甲基丙烯酸縮水甘油基酯/N -環己基馬來醯亞胺/甲基 丙烯酸十二烷基酯/ α-甲基-對羥基苯乙烯、苯乙烯/甲 基丙烯酸/甲基丙烯酸縮水甘油基酯/甲基丙烯酸(3 -乙 基氧雜環丁烷-3-基酯)/甲基丙烯酸三環[5.2.1.02’Ί癸烷 ® -8-基酯、苯乙烯/甲基丙烯酸/甲基丙烯酸縮水甘油基酯 /Ν-(4-羥基苯基)甲基丙烯醯胺。 本發明中使用的共聚物[Α],基於衍生自化合物 (al)、(a2)和(a3)的重複單元的合計量,較佳含有5〜40 重量%的衍生自化合物(al)的重複單元,特佳含有5〜25 重量%。如果使用該重複單元不足5重量%的共聚物, 則會導致在顯影步驟中難溶於鹼水溶液,另一方面,超 過40重量%的共聚物,則會出現對於鹼水溶液的溶解 ❹ 性過大的傾向。 另外,本發明中使用的共聚物[Α],基於衍生自化 合物(al)、(a2)和U3)的重複單元的合計量,較佳含有 10〜80重量%的衍生自化合物(a2)的重複單元,特佳含 有30〜80重量%。當該重複單元不足1〇重量%時,則 會出現所得層間絕緣膜或微透鏡的耐熱性、表面硬度和 -16- 200949441 耐剝離液性下降的傾向,另一方面’當該重複單元的量 超過80重量%時,則會出現感放射線性樹脂組成物的 保存穩定性降低的傾向。 本發明中使用的共聚物[A]的聚苯乙烯換算的重量 平均分子量(以下稱爲“Mw”)較佳爲2xl03〜lxlO5,更 佳爲5xl03〜5xl04。如果Mw不足2xl03,則會出現顯 影界限不夠的情況,使所得覆膜的殘膜率等下降,並且 使所得層間絕緣膜或微透鏡的圖案形狀、耐熱性等變 差,另一方面,若超過lxl 05,則會出現敏感度下降、 圖案形狀變差的情況。此外,所欲之分子量分布(以下 稱爲“ Mw/Mn”)較佳爲5.0以下,更佳爲3.0以下。如 果Mw/Mn超過5.0,則會出現所得層間絕緣膜或微透鏡 的圖案形狀變差的情況。含有上述共聚物[A]的感放射 線性樹脂組成物在顯影時不會產生顯影殘留,能夠容易 _ 地形成所預定的圖案形狀。 ❷ 共聚物[A]可以通過例如將化合物(ai)、化合物(a2) 和化合物(a3)在適當的溶劑中,在自由基聚合引發劑的 存在下進行聚合而合成。 作爲共聚物[A]製備中所用的溶劑,可以列舉例如 二甘醇、丙二醇單烷基醚、丙二醇烷基醚乙酸酯、丙二 醇烷基醚丙酸酯、酮、酯等。 -17- 200949441 它們的具體例子,作爲二甘醇,可以列舉例如二甘 醇單甲醚、二甘醇單***、二甘醇二甲醚、二甘醇二乙 醚、二甘醇乙基甲基醚等; 作爲丙二醇單烷基醚,可以列舉例如丙二醇單甲 醚、丙二醇單***、丙二醇單丙醚、丙二醇單丁醚等; 作爲丙二醇烷基醚丙酸酯,可以列舉例如丙二醇甲 基醚丙酸酯、丙二醇乙基醚丙酸酯、丙二醇丙基醚丙酸 ® 酯、丙二醇丁基醚丙酸酯等; 作爲丙二醇烷基醚乙酸酯,可以列舉例如丙二醇甲 基醚乙酸酯、丙二醇乙基醚乙酸酯、丙二醇丙基醚乙酸 酯、丙二醇丁基醚乙酸酯等; 作爲酮,可以列舉例如甲基乙基酮、環己酮、4-羥基-4-甲基-2-戊酮等;作爲酯,可以列舉例如乙酸甲 酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、2-羥基丙酸乙酯.、 @ 2-羥基-2-甲基丙酸甲酯、2-羥基-2-甲基丙酸乙酯、羥 基乙酸甲酯、羥基乙酸乙酯、羥基乙酸丁酯、乳酸甲酯、 乳酸乙酯、乳酸丙酯、乳酸丁酯、甲氧基乙酸甲酯、甲 氧基乙酸乙酯、乙氧基乙酸甲酯、乙氧基乙酸乙酯、丙 氧基乙酸甲酯、丙氧基乙酸乙酯、丁氧基乙酸甲酯、丁 氧基乙酸乙酯、2-甲氧基丙酸甲酯、2 -甲氧基丙酸乙 酯、2-乙氧基丙酸甲酯、2-乙氧基丙酸乙酯、2-丁氧基 -18- 200949441 丙酸甲酯、2-丁氧基丙酸乙酯、3 -甲氧基丙酸甲酯、3-甲氧基丙酸乙酯、3-甲氧基丙酸丙酯、3-甲氧基丙酸丁 酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、3-丙氧基 丙酸甲酯、3-丙氧基丙酸乙酯、3-丁氧基丙酸甲酯、3-丁氧基丙酸乙酯等酯。 其中,較佳爲二甘醇二烷基醚、丙二醇單烷基醚、 丙二醇烷基醚乙酸酯,特佳爲二甘醇二甲醚、二甘醇乙 基甲基醚、丙二醇甲基醚' 丙二醇乙基醚、丙二醇甲基 醚乙酸酯、3-甲氧基丙酸甲酯。 作爲共聚物[A]製備中所用的聚合引發劑,可以使 用已知作爲自由基聚合引發劑的聚合引發劑。可以列舉 例如2,2’-偶氮二異丁腈、2,2’-偶氮二-(2,4-二甲基戊 腈)、2,2’-偶氮二-(4-甲氧基-2,4-二甲基戊腈)等偶氮化 合物;過氧化苯甲醯、過氧化月桂醯、第三丁基過氧化 特戊酸酯、1,1’-二(第三丁基過氧化)環己烷等有機過氧 化物;以及過氧化氫。當使用過氧化物作爲自由基聚合 引發劑時,還可以將過氧化物與還原劑同時使用作爲氧 化還原型引發劑。 在共聚物[A]的製備中,還可以使用調節分子量用 的分子量調節劑。作爲其具體例子,可以列舉氯仿、四 溴化碳等齒代烴類;正己硫醇、正辛硫醇、正十二烷硫 -19- 200949441 醇、第三十二烷硫醇、锍基乙酸等硫醇類;二甲基黃原 素硫化物、二異丙基黃原素二硫化物等黃原素類;萜品 油稀、〇:-甲基苯乙嫌二聚物等。 [Β]成分 本發明中使用的[Β]成分是通過照射放射線能夠產 生羧酸的1,2·醌二叠氮化合物,可以使用由酚性化合物 Q 或醇性化合物(以下稱爲“母核”)與1,2-萘醌二叠氮磺 醯鹵的縮合物。 作爲上述母核,可以列舉例如三羥基二苯酮、四羥 基二苯酮、五羥基二苯酮、六羥基二苯酮、(多羥基苯 基)烷。 作爲它們的具體例子,三羥基二苯酮可以列舉例如 2,3,4-三羥基二苯酮、2,4,6-三羥基二苯酮等;作爲四羥 0 基二苯酮可以列舉例如 2,2’,4,4’-四羥基二苯酮、 2,3,4,3’-四羥基二苯酮、2,3,4,4’-四羥基二苯酮、 2,3,4,2’-四羥基-4’-甲基二苯酮、2,3,4,4’-四羥基-3’-甲 氧基二苯酮等; 作爲五羥基二苯酮可以列舉例如2,3,4,2’,6’-五羥 基二苯酮等; 作爲六羥基二苯酮可以列舉例如2,4,6,3’,4’,5’-六 -20- 200949441 羥基二苯酮、3,4,5,3’,4’,5’-六羥基二苯酮等; 作爲(多羥基苯基)烷可以列舉例如二(2,4-二羥基 苯基)甲烷、二(對羥基苯基)甲烷、三(對羥基苯基)甲 烷、三(對羥基苯基)乙烷、二(2,3,4-三羥基苯基) 甲烷、2,2-二(2,3,4-三羥基苯基)丙烷、1,1,3-三(2,5-二 甲基-4-羥基苯基)-3-苯基丙烷、4,4’-[1-[4-[1-[4-羥基苯 基]-1-甲基乙基]苯基]亞乙基]雙酚、二(2,5-二甲基-4-羥基苯基)-2-羥基苯基甲烷、3,3,3’,3’-四甲基-1,1’-螺雙 茚-5,6,7,5’,6’,7’-六醇、2,2,4-三甲基-7,2’,4’-三羥基黃 烷等。 此外,還可以適當使用將以上例示的母核的酯鍵改 爲醯胺鍵後的1,2-萘醌二叠氮磺醯胺類,例如2,3,4-三 羥基二苯酮-1,2-萘醌二疊氮·4-磺醯胺等。 這些母核當中,較佳爲2,3,4,4’-四羥基二苯酮、 4,4’-[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]亞乙基] 雙酚。 此外’作爲1,2 -萘酸二疊氮磺醯鹵,較佳例如ι,2-萘醌二疊氮磺醯氯,作爲其具體的例子,可以列舉i,2_ 萘醌二叠氮-4-磺醯氯和1,2-萘醌二疊氮-5-磺醯氯,其 中,較佳使用1,2-萘醌二疊氮-5-磺醯氯。 在縮合反應中,相對於酚性化合物或者醇性化合物 -21- 200949441 中的OH基數,較佳可使用相當於30〜85莫耳%、更佳 爲50〜70莫耳%的1,2-萘醌二疊氮磺醯鹵。 縮合反應可以採用公知的方法進行。 這些[B]成分可以單獨或者兩種以上組合使用。 [B] 成分的使用比例,相對於100重量份共聚物 [A],較佳爲5〜100重量份,更佳爲10〜50重量份。 當該比例不足5重量份時,則照射放射線的部分與未照 射放射線的部分相對於作爲顯影液的鹼水溶液的溶解 度之差較小,會出現難以形成圖案的情況,並且會出現 所得層間絕緣膜或微透鏡的耐熱性和耐溶劑性不夠好 的情況。另一方面,當該比例超過100重量份時,則照 射放射線的部分如上述鹼水溶液中的溶解度不夠大,會 出現難以顯影的情況。 [C]成分 本發明中使用的[C]成分,是具有碳原子數爲6〜15 的芳基的倍半矽氧烷。通過使感放射線性樹脂組成物中 含有這種成分,可獲得具有高放射線敏感度和優良的顯 影界限的感放射線性樹脂組成物,並且可以形成低介電 常數的層間絕緣膜,同時,可以形成與底層的黏附性也 優良的層間絕緣膜或微透鏡。 [C] 成分可以通過例如將下述式(1)表示的矽烷化合 -22- 200949441 物(以下也稱爲“化合物(C 1) ”)水解而製備。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation sensitive resin composition, a method of manufacturing an interlayer insulating film, and a microlens. [Prior Art] A thin film transistor (hereinafter referred to as "TFT") type liquid crystal display element, an electronic product such as a magnetic head element, an integrated circuit element, and a solid-state image sensor, and 层 an interlayer for insulation is usually provided between the wirings arranged in layers. Insulating film. Since the material for forming the interlayer insulating film is preferably a material having a small number of steps required to obtain a necessary pattern shape and having sufficiently good flatness, the radiation sensitive resin composition is widely used (see Patent Document 1 and Patent Document 2). Further, as an optical system material of an on-chip color filter imaging optical system such as a facsimile machine, an electronic photocopier, or a solid-state image sensor, or an optical fiber connector, a microlens having a lens diameter of about 3 to 100 gm or the like is used. A microlens array in which the lenses are regularly arranged. The formation of a microlens or a microlens array is known as a method of forming a resist pattern corresponding to a lens, directly flowing it as a lens after heat treatment, or using a melt flowing lens pattern as a mask. A method of transferring a lens shape to a bottom layer by dry etching or the like. In the formation of the above lens pattern, a radiation sensitive resin composition is widely used (see Patent Document 3 and Patent Document 4). -4- 200949441 These interlayer insulating films and microlenses or microlens arrays require various properties such as high heat resistance, high solvent resistance, high transparency, and adhesion to the underlayer. In addition, in the field of TFT liquid crystal display elements, in the field of large-screening, rapid response, and thinning, in recent years, as a composition for forming an interlayer insulating film used therein, it has high sensitivity and is formed. The interlayer insulating film has a low dielectric constant and requires higher performance than before. Further, in the process of manufacturing the interlayer insulating film and the microlens, in the developing step, if the development time is slightly more than the optimum time, the developer and the substrate are easily infiltrated into the developing solution to fall off, so that development must be strictly controlled. Time, therefore, it is necessary to develop a radiation sensitive resin composition having a sufficient development limit. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2001-343743 (Patent Document 3) Japanese Laid-Open Patent Publication No. Hei 6- 18702 (Patent Document 4) - 136239 SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances. Accordingly, it is an object of the present invention to provide a radiation sensitive composition which has high radiation sensitivity and excellent development limit, and which can easily form a pattern-like film excellent in adhesion to a bottom layer. Another object of the present invention is to provide a radiation sensitive resin group 200949441 which, when used for forming an interlayer insulating film, can form a layer having high heat resistance, high solvent resistance, high light transmittance, and low dielectric constant. The insulating film' and when used to form a microlens, can form a microlens having high light transmittance and a good molten shape. It is still another object of the present invention to provide a method of forming an interlayer insulating film and a microlens using the above-described radiation sensitive resin composition. Other objects and advantages of the invention will be apparent from the description which follows. According to the present invention, the above objects and advantages of the present invention, firstly achieved by a radiation sensitive resin composition, are characterized by comprising: [A] containing (a1) consisting of an unsaturated carboxylic acid and an unsaturated carboxylic anhydride a copolymer of at least one selected from the group and (a2) an unsaturated mixture of at least one selected from the group consisting of an unsaturated compound having an epoxy group and an unsaturated compound having an oxetane group (hereinafter also referred to as "copolymer (A)"), φ [B]l, 2- quinone diazide compound (hereinafter also referred to as ''[B] component)), and [C] has a carbon number of Silsesquinoxane (hereinafter also referred to as "[C] component,)) of 6 to 15 aryl. According to the present invention, the above objects and advantages of the present invention, and secondly, are achieved by a method of forming an interlayer insulating film or a microlens, which comprises the following steps in the following order, 200949441 (1) forming the above on a substrate a step of coating the radiation-sensitive resin composition coating film, (2) a step of irradiating at least a part of the coating film with radiation, (3) a step of developing the coating film after the irradiation, and (4) applying the developed coating film The step of heating. The radiation sensitive resin composition of the present invention has high radiation sensitivity and excellent development limit, and by using the radiation sensitive resin composition, a pattern-like film excellent in adhesion to the underlayer can be easily formed. The interlayer insulating film of the present invention formed of the above composition is excellent in solvent resistance and heat resistance, has high light transmittance and low dielectric constant, and can be suitably used as an interlayer insulating film of an electronic product. Further, the microlens of the present invention formed of the above composition is excellent in solvent resistance and heat resistance, has high light transmittance and a good melt shape, and can be suitably used as a microlens of a solid-state image sensor. [Embodiment] Hereinafter, the radiation sensitive resin composition of the present invention will be described in detail. Copolymer [A] The copolymer [A] used in the present invention may be selected from the group consisting of (a 1) consisting of an unsaturated carboxylic acid and an unsaturated carboxylic anhydride to 200949441 (hereinafter also referred to as "Compound (al)") and (a2) at least one selected from the group consisting of an unsaturated compound having an epoxy group and an unsaturated compound having an oxetanyl group (hereinafter also referred to as "a compound ( The unsaturated mixture of a2)") is produced by radical copolymerization in a solvent in the presence of a polymerization initiator. The compound (al) is a radically polymerizable unsaturated carboxylic acid and/or an unsaturated carboxylic anhydride, and examples thereof include an acid anhydride of a monocarboxylic acid, a dicarboxylic acid, and a dicarboxylic acid, and a mono[(methyl) group of a polyvalent carboxylic acid. A propylene methoxyalkyl] ester, a mono(meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both terminals, a polycyclic compound having a carboxyl group, an acid anhydride thereof, and the like. As a specific example, the monocarboxylic acid may, for example, be acrylic acid, methacrylic acid or crotonic acid; and the dicarboxylic acid may, for example, be maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid or the like; Examples of the acid anhydride include an acid anhydride such as a compound exemplified as the above dicarboxylic acid; and a mono[(meth)acryloxyalkylalkyl] ester of a polyvalent carboxylic acid, for example, succinic acid mono [2-(methyl) A propylene oxyethyl ester, a mono [2-(methyl) propylene oxyethyl ester] phthalate, etc.; a mono(meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both terminals can be exemplified For example, mono(meth)acrylic acid 200949441 ester of ω-carboxypolycaprolactone, etc.; polycyclic compound having a carboxyl group and an acid anhydride thereof may, for example, be 5-carboxybicyclo[2.2_1]hept-2-ene, 5,6 -dicarboxybicyclo[2.2.1]hept-2-ene, 5-carboxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-5-ethylbicyclo[2.2.1 Hept-2-ene, 5-carboxy-6-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-ethylbicyclo[2.2.1]hept-2-ene, 5 6-Dicarboxybicyclo[2.2.1]hept-2-ene anhydride and the like. Among them, an acid anhydride of a monocarboxylic acid or a dicarboxylic acid is preferably used, and acrylic acid, methacrylic acid, and maleic anhydride are particularly preferably used in view of copolymerization reactivity, solubility in an alkali developing solution, and easy availability. These compounds (a 1) may be used singly or in combination of two or more. The compound U2) is an unsaturated compound having an epoxy group and/or an unsaturated compound having an oxetanyl group. Examples of the unsaturated compound having an epoxy group include, for example, glycidyl acrylate and methyl group. Glycidyl acrylate, glycidyl α-ethyl acrylate, glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, 3,4-epoxy butyl acrylate , methyl propylene acid-3,4-epoxy butyl ester, acrylate-6,7-epoxyheptyl ester, -6,7-epoxyheptyl methacrylate, α-ethyl -6,7-epoxyheptyl acrylate,-3,4-epoxycyclohexyl acrylate, _3,4·epoxycyclohexyl methacrylate, 3,4-epoxy acrylate Cyclohexylmethyl ester, methyl 200949441-3,4-epoxycyclohexylmethyl acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl shrinkage Glyceryl ether and the like. Among them, glycidyl methacrylate and methacrylic acid-6,7-epoxy heptyl are preferably used from the viewpoint of improving copolymerization reactivity and heat resistance and surface hardness of the obtained interlayer insulating film or microlens. Ester, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, methyl propionate-3,4-epoxycyclohexyl ester, A 3-,4-epoxycyclohexylmethyl acrylate or the like. Examples of the unsaturated compound having an oxetane group include 3-(acryloxymethyl)oxetane and 3-(acryloxymethyl)-2-methyloxirane. Butane, 3-(acryloxymethyl)-3-ethyloxetane, 3-(acryloxymethyl)-2-phenyloxetane, 3-(2- Propylene oxiranyl ethyl) oxetane, 3-(2-propenyloxyethyl)-2-ethyloxetane, 3-(2-propenyloxyethyl)-3 -Acrylate such as ethyloxetane or 3-(2-propenyloxyethyl)-2-phenyloxetane, 3-(methacryloxymethyl)oxycyclohexane Butane, 3-(methacryloxymethyl)-2-methyloxetane, 3·(methacryloxymethyl)-3-ethyloxetane, 3 · (Methylpropyl oxymethyl)-2-phenyloxetane, 3-(2-methylpropenyloxyethyl)oxetane, 3-(2-methyl Propylene oxiranylethyl)-2-ethyloxo--10-200949441 Butane, 3-(2-methylpropenyloxyethyl)-3-ethyloxetane, 3-( 2·methacryloxyethyl)-2-phenyloxa Butane methacrylate. Among them, from the viewpoint of copolymerization reactivity, 3-(acryloxymethyl)-2-methyloxetane, 3-(acryloxymethyl)-3-ethyloxy is preferably used. Heterocyclic butane, 3-(methacryloxymethyl)-2-methyloxetane, 3-(methacryloxymethyl)-3-ethyloxyhelide Alkane, etc. These compounds (a2) can be used singly or in combination. The copolymer [A] used in the present invention is preferably a copolymer of the above compounds (al), U2) and further unsaturated compounds (hereinafter also referred to as "compound U3)" which can be copolymerized with them" The compound U3) is not particularly limited as long as it is a radical polymerizable unsaturated compound, and examples thereof include a methacrylic acid alkyl ester, a methacrylic acid cyclic alkyl ester, and an acrylonitrile. Base ester, cyclic alkyl acrylate, aryl methacrylate, aryl acrylate, unsaturated dicarboxylic acid diester, methacrylate with hydroxyl group, bicyclic unsaturated compound, mala An imine compound, an unsaturated aromatic compound, a conjugated diene, an unsaturated compound having a tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton, a pyran skeleton or a (poly)alkylene glycol skeleton, or a phenolic hydroxyl group Saturated compounds as well as other unsaturated compounds -11-200949441. As a specific example thereof, the alkyl methacrylate may be, for example, methyl methacrylate, ethyl methacrylate, methyl butyl acrylate, second butyl methacrylate, butyl methacrylate 2-B acrylate 2-B. Hexyl hexyl ester, isodecyl methacrylate, methyl n-dodecyl ester, tridecyl methacrylate, methyl octadecyl ester, etc.; as a cyclic alkyl methacrylate, β For example, cyclyl methacrylate, 2-methylcyclohexyl acrylate methacrylate tricyclo[5.2.1.02,6]nonane-8-yl ester (hereinafter referred to as "dicyclopentyl enoate"), Tricyclo[meth] methacrylate [5.2.1.02 -8-ethyloxyethyl ester, isobornyl methacrylate, etc.; as the alkyl ester, for example, methyl acrylate, ethyl acrylate, n-propyl ester isopropyl acrylate, N-butyl acrylate, acrylate, tert-butyl acrylate, etc.; as a cyclic alkyl acrylate, for example, cyclohexyl acrylate, 2-methylcyclohexyl acrylate, propylene ring [5.2.1.02'6] decane -8-yl ester (hereinafter referred to as "acrylic acid diester"), tricyclo[5.1.0.02,6]decane-8-yl Examples of the aryl acrylate include phenyl acrylate and benzyl acrylate; and examples of the methyl propylene aryl vinegar such as phenyl methacrylate and methacrylic acid; And dicarboxylic acid diesters may, for example, be maleic acid diethyl acetonate, fumar to exemplify olefinic acid orthoester, methacrylic acid olefinic acid, and methyl propyl propyl hexanoic acid acrylic acid, second butyl acrylate. The tricyclopentyl enoate and the propylene such as propylene may be classified as diethyl 12-200949441 ester, itaconic acid diethyl sulphate, etc.; as the methyl propylene vinegar having a mercapto group, for example, methyl propyl acrylate may be mentioned. Oxyacid methyl ester, methyl propyl acid 2_yl ethyl ester, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, diethylene glycol monomethacrylate, methacrylic acid 2, 3-dihydroxypropyl vinegar, 2-methacryloxyethyl glucoside, etc.; as a bicyclic unsaturated compound, for example, bicyclo[2.2.1]hept-2-ene, 5-methylbicyclo[2.2 .1]hept-2-ene, 5-ethylbicyclo[2.2.1]hept-2-ene, 5-hydroxybicyclo[2_2.1]hept-2-ene, 5-carboxybicyclo[ 2.2.1] hept-2-ene, 5-hydroxymethylbicyclo[2.2.1]hept-2-ene, 5-(2-hydroxyethyl)bicyclo[2.2.1]hept-2-ene, etc. Examples of the maleinimide compound include N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N-(4-hydroxyphenyl). Maleimide, N-(4-hydroxybenzyl)maleimide, N-succinimide-3-maleimidobenzoate, N-ammonium imino group- 4-Maleic iminobutyrate, N-succinimide-6-maleimidohexanoate, N-succinimide-3-maleimidopropionic acid Ester, N-(9-acridinyl) maleimide, etc.; as the unsaturated aromatic compound, for example, styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyl Toluene, p-methoxystyrene, etc.; as a conjugated diene, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, etc.; Examples of the unsaturated compound of the tetrahydrofuran skeleton include, for example, (A-13-200949441-based) tetrahydrofurfuryl acrylate, 2-methylpropenyloxy-propionic acid. Tetrahydrofurfuryl ester, 3-(meth)propenyloxytetrahydrofuran-2-one, etc.; as an unsaturated compound having a furan skeleton, for example, 2·methyl-5-(3-furyl)-1- Penten-3-one, decyl (meth) acrylate, 1-furan-2-butyl-3-en-2-one, 1-furan-2-butyl-3-methoxy-3- En-2-one '6-(2-furyl)-2-methyl-1-hexen-3-one, 6-furan-2-yl-hex-1-en-3-one, acrylic acid 2- Furan-2·yl-1·methyl-ethyl ester, 6-(2-furyl)-6-fluorenyl-1-hepten-3-one, etc.; as an unsaturated group having a tetrahydropyran skeleton The compound may, for example, be (tetrahydropyran-2-yl)methyl methacrylate or 2,6-dimethyl-8-(tetrahydropyran-2-yloxy)-oct-1-ene-3. a ketone, 2-tetrahydropyran-2-yl methacrylate, 1-(tetrahydropyran-2-yloxy)-butyl-3-en-2-one, etc.; as a pyran skeleton Examples of the unsaturated compound include 4-(1,4-dioxo-5-keto-6-heptenyl)-6-methyl-2-pyrone and 4-(1,5-dioxa). -6-keto-7-octenyl)-6-methyl-2-@pyrone; an unsaturated compound having a (poly)alkane skeleton For example, polyethylene glycol (n = 2 to 10) mono (meth) acrylate, polypropylene glycol (n = 2 to 10) mono (meth) acrylate, etc.; and unsaturated compounds having a phenolic hydroxyl group can be enumerated. 4-hydroxybenzyl (meth)acrylate, 4-hydroxyphenyl (meth)acrylate, o-hydroxystyrene, p-hydroxystyrene, α-methyl-p-hydroxystyrene, N-(4- -14- 200949441 hydroxybenzyl)(meth)acrylamide, N-(3,5-dimethyl-4-hydroxybenzyl)(meth)acrylamide, N-(4-hydroxyphenyl)(methyl Examples of the other unsaturated compound include acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, and vinyl acetate. Among them, alkyl methacrylate, cyclic alkyl methacrylate, cyclic alkyl acrylate, maleimide compound, unsaturated aromatic compound, conjugated diene, tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton, a pyran skeleton, an unsaturated compound of a (poly)alkane skeleton, and an unsaturated compound having a phenolic hydroxyl group, from the viewpoints of copolymerization reactivity and solubility in an aqueous alkali solution, Preferably, it is styrene, tert-butyl methacrylate, n-dodecyl methacrylate, tricyclo[5.2.1.02'6]nonane-8-yl methacrylate, p-methoxystyrene, 2-methylcyclohexyl acrylate, N-phenylmaleimide, N-cyclohexylmaleimide, iota, butadiene, tetrahydrofurfuryl (meth) acrylate, polyethyl b Glycol (n = 2~10) mono (meth) acrylate, 3-(methyl) propylene decyloxytetrahydrofuran-2-one, 4-hydroxybenzyl (meth) acrylate, (meth) acrylate 4 -hydroxyphenyl ester, o-hydroxystyrene, N-(4-hydroxyphenyl)(meth)acrylamide, p-hydroxystyrene α- methyl - p-hydroxyphenyl ethylene. These compounds (a3) may be used singly or in combination of two or more. As a preferred specific example of the copolymer [Α] used in the present invention, -15-200949441 may, for example, be methacrylic acid/trimethyl methacrylate [5.2.1.026] decane-8-yl ester/acrylic acid 2-A Cyclohexyl ester / glycidyl methacrylate / styrene, methacrylic acid / tetrahydrofurfuryl methacrylate / glycidyl methacrylate / N - cyclohexyl maleimide / methacrylic acid Dodecyl ester / α-methyl-p-hydroxystyrene, styrene/methacrylic acid/glycidyl methacrylate/methacrylic acid (3-ethyloxetan-3-yl) /Tricyclomethacrylate [5.2.1.02'decane® -8-yl ester, styrene/methacrylic acid/glycidyl methacrylate/Ν-(4-hydroxyphenyl)methacrylamide . The copolymer [Α] used in the present invention preferably contains 5 to 40% by weight of a repeat derived from the compound (al) based on the total amount of the repeating units derived from the compounds (al), (a2) and (a3). The unit, particularly preferably contains 5 to 25 wt%. If less than 5% by weight of the copolymer is used in the repeating unit, it may cause insoluble alkali aqueous solution in the developing step, and on the other hand, in the case of more than 40% by weight of the copolymer, excessive dissolution of the aqueous alkali solution may occur. tendency. Further, the copolymer [Α] used in the present invention preferably contains 10 to 80% by weight of the compound (a2) derived from the compound (a2) based on the total amount of the repeating units derived from the compounds (al), (a2) and U3). The repeating unit is particularly preferably contained in an amount of 30 to 80% by weight. When the repeating unit is less than 1% by weight, the heat resistance of the obtained interlayer insulating film or microlens, the surface hardness, and the tendency of the peeling liquid resistance of -16-200949441 to fall may occur, and on the other hand 'when the amount of the repeating unit When it exceeds 80% by weight, the storage stability of the radiation sensitive resin composition tends to decrease. The polystyrene-equivalent weight average molecular weight (hereinafter referred to as "Mw") of the copolymer [A] used in the present invention is preferably 2 x 10 3 to 1 x 10 5 , more preferably 5 x 10 3 to 5 x 10 4 . When Mw is less than 2x10, the development limit is insufficient, the residual film ratio of the obtained film is lowered, and the pattern shape, heat resistance, and the like of the obtained interlayer insulating film or microlens are deteriorated. Lxl 05, there will be a case where the sensitivity is lowered and the shape of the pattern is deteriorated. Further, the desired molecular weight distribution (hereinafter referred to as "Mw/Mn") is preferably 5.0 or less, more preferably 3.0 or less. If Mw/Mn exceeds 5.0, the pattern shape of the resulting interlayer insulating film or microlens may be deteriorated. The radiation sensitive linear resin composition containing the above copolymer [A] does not cause development residue during development, and the predetermined pattern shape can be easily formed. The oxime copolymer [A] can be synthesized, for example, by polymerizing the compound (ai), the compound (a2) and the compound (a3) in a suitable solvent in the presence of a radical polymerization initiator. The solvent used in the preparation of the copolymer [A] may, for example, be diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol alkyl ether propionate, ketone or ester. -17- 200949441 Specific examples thereof, as diethylene glycol, for example, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diglyme, diethylene glycol diethyl ether, diethylene glycol ethyl methyl group Examples of the propylene glycol monoalkyl ether include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether. Examples of the propylene glycol alkyl ether propionate include propylene glycol methyl ether C. An acid ester, propylene glycol ethyl ether propionate, propylene glycol propyl ether propionic acid® ester, propylene glycol butyl ether propionate or the like; as the propylene glycol alkyl ether acetate, for example, propylene glycol methyl ether acetate, propylene glycol Ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, etc.; as the ketone, for example, methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2 a pentanone or the like; examples of the ester include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, and methyl @2-hydroxy-2-methylpropionate. Ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, glycolic acid Ethyl ester, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl methoxyacetate, ethyl methoxyacetate, methyl ethoxyacetate, ethoxyacetic acid Ester, methyl propoxyacetate, ethyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, 2-butoxy-18- 200949441 Methyl propionate, ethyl 2-butoxypropionate, 3-methoxypropane Methyl ester, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxypropane An ester of ethyl acetate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, methyl 3-butoxypropionate or ethyl 3-butoxypropionate. Among them, preferred are diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, particularly preferably diglyme, diethylene glycol ethyl methyl ether, propylene glycol methyl ether. ' Propylene glycol ethyl ether, propylene glycol methyl ether acetate, methyl 3-methoxypropionate. As the polymerization initiator used in the preparation of the copolymer [A], a polymerization initiator known as a radical polymerization initiator can be used. For example, 2,2'-azobisisobutyronitrile, 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobis-(4-methoxy) Azo compounds such as benzyl-2,4-dimethylvaleronitrile; benzammonium peroxide, laurel peroxide, t-butyl peroxypivalate, 1,1'-di (t-butyl Peroxidic) an organic peroxide such as cyclohexane; and hydrogen peroxide. When a peroxide is used as the radical polymerization initiator, it is also possible to use a peroxide together with a reducing agent as a redox type initiator. In the preparation of the copolymer [A], a molecular weight modifier for adjusting the molecular weight can also be used. Specific examples thereof include a toothed hydrocarbon such as chloroform or carbon tetrabromide; n-hexyl mercaptan, n-octyl mercaptan, n-dodecane sulfur-19-200949441 alcohol, tere-dodecanethiol, and thioglycolic acid. Such as thiol; dimethyl xanthogen sulfide, diisopropyl xanthogen disulfide and other xanthans; dilute oil, bismuth: -methyl phenylethylene dimer. [Β] component The [Β] component used in the present invention is a 1,2·quinonediazide compound capable of generating a carboxylic acid by irradiation with radiation, and a phenolic compound Q or an alcoholic compound (hereinafter referred to as "mother core") can be used. ") a condensate with 1,2-naphthoquinonediazidesulfonium halide. Examples of the mother nucleus include trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, and (polyhydroxyphenyl)alkane. As a specific example thereof, examples of the trihydroxybenzophenone include 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, and the like; and as the tetrahydroxycarbonyl benzophenone, for example, 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,3'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3, 4,2'-tetrahydroxy-4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone, etc.; as the pentahydroxybenzophenone, for example, 2 , 3,4,2',6'-pentahydroxybenzophenone, etc.; as the hexahydroxybenzophenone, for example, 2,4,6,3',4',5'-hexa-20- 200949441 hydroxydiphenyl Ketone, 3,4,5,3',4',5'-hexahydroxybenzophenone, etc.; as (polyhydroxyphenyl) alkane, for example, bis(2,4-dihydroxyphenyl)methane, two (for example) p-Hydroxyphenyl)methane, tris(p-hydroxyphenyl)methane, tris(p-hydroxyphenyl)ethane, bis(2,3,4-trihydroxyphenyl)methane, 2,2-di(2,3 , 4-trihydroxyphenyl)propane, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane, 4,4'-[1-[4- [1-[4-hydroxyphenyl]-1-methylethyl]phenyl] Ethylene]bisphenol, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3,3',3'-tetramethyl-1,1'- Spirobiguan-5,6,7,5',6',7'-hexaol, 2,2,4-trimethyl-7,2',4'-trihydroxyflavan, and the like. Further, 1,2-naphthoquinonediazidesulfonamide such as 2,3,4-trihydroxybenzophenone-1 which is obtained by changing the ester bond of the parent core exemplified above to a guanamine bond can also be suitably used. , 2-naphthoquinone diazide, 4-sulfonamide, and the like. Among these mother cores, 2,3,4,4'-tetrahydroxybenzophenone, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methyl-B is preferred Base] phenyl]ethylidene] bisphenol. Further, 'as a 1,2 -naphthoic acid diazide sulfonium halide, preferably, for example, iota, 2-naphthoquinonediazide sulfonium chloride, as a specific example thereof, i, 2 - naphthoquinone diazide-4 - sulfonium chloride and 1,2-naphthoquinonediazide-5-sulfonyl chloride, of which 1,2-naphthoquinonediazide-5-sulfonyl chloride is preferably used. In the condensation reaction, it is preferable to use 1,2-, equivalent to 30 to 85 mol%, more preferably 50 to 70 mol%, based on the OH group number in the phenolic compound or the alcohol compound-21-200949441. Naphthoquinone diazide sulfonium halide. The condensation reaction can be carried out by a known method. These [B] components may be used alone or in combination of two or more. The use ratio of the component [B] is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, per 100 parts by weight of the copolymer [A]. When the ratio is less than 5 parts by weight, the difference in solubility between the portion irradiated with radiation and the portion not irradiated with radiation with respect to the aqueous alkali solution as the developing solution is small, a case where pattern formation is difficult, and the resulting interlayer insulating film may occur. Or the heat resistance and solvent resistance of the microlens are not good enough. On the other hand, when the ratio exceeds 100 parts by weight, the portion of the irradiated radiation such as the above aqueous alkali solution is not sufficiently large, and development may be difficult. [C] component The component [C] used in the present invention is a sesquioxane having a aryl group having 6 to 15 carbon atoms. By including such a component in the radiation-sensitive resin composition, a radiation-sensitive resin composition having high radiation sensitivity and excellent development limit can be obtained, and an interlayer dielectric film having a low dielectric constant can be formed, and at the same time, it can be formed. An interlayer insulating film or microlens excellent in adhesion to the underlayer. The component [C] can be produced, for example, by hydrolyzing decane compound-22-200949441 (hereinafter also referred to as "compound (C1)") represented by the following formula (1).

Si(R1)(OR2)(〇R3)(〇R4) ......⑴ (式中’ R1表示碳原子數爲6〜15的芳基’ r2〜r4 相互獨立地表示氫原子、碳原子數爲1〜4的取代或未 取代的烷基或醯基)。 上述水解物應當理解爲包括:原料中可水解的部分 被全部水解的水解物,以及其一部分被水解而一部分未 被水解而殘留的水解物。 上述式(1)中,作爲R1的碳原子數爲6〜15的芳基, 可以列舉萘基、苯基、蒽基、菲基、苄基等,較佳爲苯 基或苄基,特佳爲苯基。 作爲化合物(c 1)的具體例子,可以列舉苯基三甲氧 基矽烷、苯基三乙氧基矽烷、苯基三正丙氧基矽烷、苯 基三異丙氧基矽烷、苯基三乙醯氧基矽烷、苯基三(甲 氧基乙氧基)矽烷等。 其中’從反應性和保存穩定性方面考慮,較佳爲苯 基三甲氧基矽烷和苯基三乙氧基矽烷。化合物(cl)可以 單獨或兩種以上組合使用。 本發明中使用的[C]成分,從顯影界限和所得固化 膜的黏附性方面考慮,較佳爲化合物(cl)與下述式(2) 表示的矽烷化合物(以下也稱爲“化合物(c2)”)的水解 -23- 200949441 縮合物。Si(R1)(OR2)(〇R3)(〇R4) (1) (wherein R1 represents an aryl group having 6 to 15 carbon atoms' r2 to r4 independently represent a hydrogen atom or carbon A substituted or unsubstituted alkyl or fluorenyl group having 1 to 4 atoms. The above hydrolyzate is understood to include a hydrolyzate in which the hydrolyzable portion of the raw material is completely hydrolyzed, and a hydrolyzate in which a part thereof is hydrolyzed and a part is not hydrolyzed. In the above formula (1), examples of the aryl group having 6 to 15 carbon atoms of R1 include a naphthyl group, a phenyl group, a fluorenyl group, a phenanthryl group, a benzyl group and the like, and a phenyl group or a benzyl group is preferred. Is a phenyl group. Specific examples of the compound (c 1) include phenyltrimethoxydecane, phenyltriethoxydecane, phenyltri-n-propoxydecane, phenyltriisopropoxydecane, and phenyltrimethazine. Oxydecane, phenyltris(methoxyethoxy)decane, and the like. Among them, phenyltrimethoxydecane and phenyltriethoxydecane are preferred from the viewpoints of reactivity and storage stability. The compound (cl) may be used singly or in combination of two or more. The component [C] used in the present invention is preferably a compound (cl) and a decane compound represented by the following formula (2) from the viewpoint of development limit and adhesion of the obtained cured film (hereinafter also referred to as "compound (c2)" Hydrolysis -23- 200949441 condensate.

Si(R5)(OR6)(OR7)(OR8) ……(2) (式中,R5爲碳原子數爲1〜15的烷基,R6〜r8相 互獨立地爲氫原子、碳厚子數爲1〜4的取代或未取代 的烷基或醯基)。上述式(2)中,作爲上述碳原子數爲1 〜15的烷基,較佳爲碳原子數爲1〜6的直鏈或支鏈焼 基,或者碳原子數爲5〜10的環烷基。更佳例如甲基、 乙基、正丙基、異丙基、正丁基、第三丁基、環戊基、 環己基、金剛烷基、異冰片基、三環癸基等,特佳爲甲 基。 作爲化合物(c2)的具體例子,可以列舉甲基三甲氧 基矽烷、甲基三乙氧基矽烷、甲基三正丙氧基矽烷、甲 基三異丙氧基矽烷、甲基三乙醯氧基矽烷、甲基三(甲 氧基乙氧基)矽烷、乙基三甲氧基矽烷、乙基三乙氧基 矽烷、乙基三正丙氧基矽烷、乙基三異丙氧基矽烷、乙 基三乙醯氧基矽烷、乙基三(甲氧基乙氧基)矽烷、正丙 基三甲氧基矽烷、正丙基三乙氧基矽烷、正丙基三正丙 氧基矽烷、正丙基三異丙氧基矽烷、正丙基三乙醯氧基 矽烷、正丙基三(甲氧基乙氧基)矽烷、環己基三甲氧基 矽烷、環己基三乙氧基矽烷、環己基三正丙氧基矽烷、 環己基三異丙氧基矽烷、環己基三乙醯氧基矽烷、環己 -24- 200949441 基三(甲氧基乙氧基)矽烷等。 其中’從反應性和保存穩定性方面考慮,較佳爲甲 基三甲氧基砂院和甲基三乙氧基砂院。化合物(C2)可以 單獨或兩種以上組合使用。 本發明中使用的[C]成分,基於衍生自化合物(cl) 和(c 2)的重複單元的合計量,較佳含有50重量%以上衍 生自化合物(cl)的重複單元,更佳含有50〜95重量%, 特佳含有60〜90重量%。如果該重複單元不足50重量 % ’則存在於感放射線性樹脂組成物中與共聚物[A]發生 相分離而妨礙塗膜形成的可能。 製備[C]成分的水解反應,較佳在適當的溶劑中進 行。作爲這種溶劑,可以列舉例如甲醇、乙醇、正丙醇、 異丙醇、正丁醇、異丁醇、第三丁醇、丙酮、甲基乙基 酮、甲基異丁基酮、丙二醇單甲醚、丙二醇甲醚乙酸酯、 四氫呋喃、二氧六環、乙腈等水溶性溶劑或它們的水溶 液。 這些水溶性溶劑由於在之後的步驟中要被除去,因 此較佳爲甲醇、乙醇、正丙醇、異丙醇、丙酮、甲基乙 基酮、甲基異丁基酮、四氫呋喃等沸點較低的溶劑,從 原料的溶解性方面考慮,更佳爲丙酮、甲基乙基酮、甲 «異丁基酮等酮類,特佳爲甲基異丁基酮。 -25- 200949441 3外’水解反應,較佳在酸催化劑例如鹽酸、硫酸、 硝酸、甲酸、草酸、乙酸、三氟乙酸、三氟甲磺酸、酸 性離子交換樹脂、各種路易士酸,或鹼催化劑例如氨、 -級胺類、二級胺類、三級胺類、吡啶等含氮芳香族化 合物'驗性離子交換樹脂、氫氧化鈉等氫氧化物、碳酸 鉀胃碳酸鹽、醋酸鈉等羧酸鹽、各種路易士鹼等的存在 下進行。催化劑的用量,相對於1莫耳單體,較佳爲 0.2莫耳以下,更佳爲〇〇〇〇〇〗〜〇.〗莫耳。 水的含量、反應溫度、反應時間可適當地設定。例 如可以採用下述條件。 水的含量,相對於製備中所用的矽烷化合物中水解 基團的合計量1莫耳,爲1.5莫耳以下,較佳爲1莫耳 以下,更隹爲0.9莫耳以下的量。 反應溫度較佳爲40〜200°C,更佳爲50〜150°c。 反應時間較佳爲3 0分鐘〜2 4小時,更佳爲1〜1 2小時。 本發明中使用的[C]成分的聚苯乙烯換算的重量平 均分子量,較佳爲5xl02〜5xl03,更佳爲IxlO3〜4.5x 103。若[C]成分的重量平均分子量不足5xl02’則存在 顯影界限不夠的可能,另一方面,若超過5xl〇3 ’則存 在在感放射線性樹脂組成物中與共聚物[A]發生相分離 而妨礙塗膜形成的可能。 -26- 200949441 [C] 成分的使用比例’相對於100重量份共聚物 [A],較佳爲10〜100重量份以下’更佳爲15〜50重量 份。當該使用比例不足10重量份時’則存在不能獲得 所需的效果的可能,另一方面,當超過1〇〇重量份時’ 則存在與共聚物[A]發生相分離而妨礙塗膜形成的可 能。 其他成分 本發明的感放射線性樹脂組成物,含有上述共聚物 [A]、[B]和[C]成分作爲必需成分,除此以外還可以根據 需要含有[D]熱敏性產酸化合物、[E]含有至少一個乙烯 性不飽和雙鍵的聚合性化合物、[F]共聚物[A]以外的環 氧樹脂、[G]界面活性劑或者[H]黏合輔助劑。 上述[D]熱敏性產酸化合物可以爲了提高耐熱性和 硬度而使用。作爲其具體的例子,可以列舉锍鹽、苯并 噻唑鑰鹽、銨鹽、鳞鹽等已知的鎗鹽類。 [D] 成分的使用比例,相對於100重量份共聚物 [A] ’較佳爲20重量份以下,更佳爲5重量份以下。當 該使用量超過20重量份時,則在塗膜形成步驟中會析 出沉澱物,出現防礙塗膜形成的情況。 作爲[E]成分的含有至少一個乙烯性不飽和雙鍵的 聚合性化合物,較佳可以列舉例如已知的單官能(甲基) -27- 200949441 丙烯酸酯、雙官能(甲基)丙烯酸酯或者三官能以上的 (甲基)丙烯酸酯。其中,較佳使用三官能以上的(甲基) 丙嫌酸酯’特佳爲二經甲基丙院二(甲基)丙嫌酸酯、季 戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙稀酸 酯。 [E] 成分的使用比例,相對於100重量份共聚物 [A] ’較佳爲5 0重量份以下,更佳爲3 0重量份以下。 通過使其以這種比例含有[E]成分,可以提高由本 發明感放射線性樹脂組成物製得的層間絕緣膜或微透 鏡的耐熱性和表面硬度等。如果該使用量超過了 50重 量份,則會出現在基板上形成感放射線性樹脂組成物塗 膜的步驟中產生膜皸裂的情況。 作爲上述[F]成分的共聚物[A]以外的環氧樹脂,只 要對相容性沒有影響,則對其沒有限制。較佳可以列舉 雙酚A型環氧樹脂、苯酚酚醛型環氧樹脂、甲酚酚醛型 環氧樹脂、環狀脂肪族環氧樹脂、縮水甘油酯型環氧樹 脂、縮水甘油基胺型環氧樹脂、雜環式環氧樹脂、與甲 基丙烯酸縮水甘油基酯(共)聚合的樹脂等。其中’特佳 爲雙酚A型環氧樹脂、甲酚酚醛型環氧樹脂、縮水甘油 酯型環氧樹脂等。 [F] 成分的使用比例,相對於1〇〇重量份共聚物 -28- 200949441 [A],較佳爲30重量份以下。通過以這種比例含有[F] 成分,可以進一步提高由本發明感放射線性樹脂組成物 製得的保護膜或絕緣膜的耐熱性和表面硬度等。如果該 比例超過了 3 0重量份,則在基板上形成感放射線性樹 脂組成物塗膜時,會出現塗膜的膜厚度均一性不夠好的 情況。 另外,共聚物[A]也可以稱作爲“環氧樹脂”,但 是其在具有鹼可溶性這一點上與[F]成分不同。[F]成分 是鹼不溶性的。 在本發明的感放射線性樹脂組成物中,爲了進一步 提高塗敷性,還可以使用作爲上述[G]成分的界面活性 劑。作爲[G]界面活性劑,較佳可使用例如氟系界面活 性劑、矽氧烷類界面活性劑。 作爲氟系界面活性劑的具體例子,可以列舉 1,1,2,2-四氟辛基(1,1,2,2-四氟丙基)醚、1,1,2,2-四氟辛 基己基醚、八乙二醇二(1,1,2,2-四氟丁基)醚、六乙二醇 (1,1,2,2,3,3-六氟戊基)醚、八丙二醇二(1,1,2,2-四氟丁 基)醚、六丙二醇二(1,1,2,2,3,3-六氟戊基)醚、全氟十二 烷基磺酸鈉、1,1,2,2,8,8,9,9,10,10-十氟十二烷、 1,1,2,2,3,3-六氟癸烷等,除此之外,還可以列舉氟代烷 基苯磺酸鈉、氟代烷基氧乙烯醚、碘化氟代烷基銨、氟 -29- 200949441 代烷基聚氧乙烯醚、全氟烷基聚氧乙醇、全氟代烷基烷 氧化物、氟系烷基酯等。作爲它們的市售品,可以列舉 BM— 1000、BM— 1100(以上,由 BMChemie 公司生產)、 Megafac F142D、Megafac F172、Megafac F173、Megafac F183、Megafac F178、Megafac F191、Megafac F471(以 上,由大日本油墨化學工業(股)生產)、?1110以(1?(:-17 0C、FC — 171、FC-430、FC— 431(以上,由住友 3M(股) 生產)、Surflon S-112、Surflon S-113、Surflon S -131、Surflon S - 14 卜 Surflon S - 145、Surflon S - 3 82 > Surflon SC- 101、Surflon SC - 102、Surflon SC - 103、 Surflon SC - 104、Surflon SC - 105、Surflon SC - 106(旭 硝子(股)生產)、Eftop EF 30 1、Eftop EF 303、Eftop EF 352(新秋田化成(股)生產)等。 作爲上述矽氧烷系界面活性劑,可以列舉例如以 DC3PA、DC7PA、FS- 1 265、SF- 8428、SH11PA、SH21PA、 SH28PA、SH29PA、SH30PA、SH - 190、SH - 193、SZ-6032(以上,由 Toray Dowcorning Silicone Co.生產)、TSF -4440、TSF- 4300、TSF- 4445、TSF- 4446、TSF- 4460、 TSF — 44 52(以上由GE東芝Silicon(股)生產)等商品名銷 售的矽氧烷系界面活性劑。 這些界面活性劑可以單獨或者兩種以上組合使 200949441 用。這些[G]界面活性劑,相對於100重量份共聚物[A] ’ 較佳使用5重量份以下,更佳爲2重量份以下。如果[G] 界面活性劑的使用量超過了 5重量份,則在基板上形成 塗膜時,會出現塗膜容易產生膜皸裂的情況》 此外,爲了提高與基體的黏合性,本發明的感放射 線性樹脂組成物中還可以使用黏合輔助劑[H]成分。作 爲這種[H]黏合輔助劑,較佳使用官能性矽烷偶合劑’ 可以列舉例如具有羧基、甲基丙烯醯基、異氰酸酯基、 環氧基等反應性取代基的矽烷偶合劑。具體地可以列舉 三甲氧基矽烷基安息香酸酯、r-甲基丙烯醯氧基丙基 三甲氧基矽烷、乙烯基三乙醯氧基矽烷、乙烯基三甲氧 基矽烷、r-異氰酸酯基丙基三乙氧基矽烷、1r-環氧丙 氧基丙基三甲氧基矽烷、Θ -(3,4-環氧環己基)乙基三甲 氧基矽烷等。這種[H]黏合輔助劑,相對於100重量份 共聚物[A],較佳以20重量份以下的量,更佳以10重 量份以下的量進行使用。當黏合輔助劑的量超過20重 量份時,會出現在顯影步驟中容易產生顯影殘留的情 況。 感放射線性樹脂組成物 本發明的感放射線性樹脂組成物可以通過將上述 共聚物[A]、[B]和[C]成分以及如上所述任選添加的其他 -31- 200949441 成分均勻混合而配製。本發明的感放射線性樹脂組成物 較佳以溶於適當溶劑中的溶液狀態使用。例如可以通過 將共聚物[A]、[B]和[C]成分以及任選添加的其他成分以 所定的比例混合而配製成溶液狀態的感放射線性樹脂 組成物。 作爲本發明感放射線性樹脂組成物的配製中使用 的溶劑,可以使用能均勻溶解共聚物[A]、[B]和[C]成分 以及任選混合的其他成分中的各成分,且不與各成分反 應的溶劑。 作爲這種溶劑,可以列舉與上述作爲共聚物[A]的 製造中可以使用的溶劑而例示的相同溶劑。 在這種溶劑中,從各成分的溶解性、與各成分的反 應性、形成塗膜的容易性等角度出發,較佳使用醇、乙 二醇醚、乙二醇烷基醚乙酸酯、酯和二甘醇。其中,可 特佳可使用苄醇、2-苯乙醇、3-苯基-1-丙醇、乙二醇單 丁基醚乙酸酯、二甘醇單乙基醚乙酸酯、二甘醇二乙 醚、二甘醇乙基甲基醚、二甘醇二甲醚、丙二醇單甲基 醚、丙二醇單甲基醚乙酸酯、甲氧基丙酸甲酯、乙氧基 丙酸乙酯。 爲了提高膜厚的面內均勻性,還可以進一步與上述 溶劑一起聯用高沸點溶劑。作爲可以聯用的高沸點溶 -32- 200949441 劑,可以列舉例如N-甲基甲醯胺、N,N-二甲基甲醯胺、 N-甲基甲醯苯胺、N-甲基乙醯胺、Ν,Ν-二甲基乙醯胺、 Ν-甲基吡咯烷酮、二甲基亞硒、苄基乙基醚、二己基醚、 丙酮基丙酮、異佛爾酮、己酸、辛酸、1-辛醇、1-壬醇、 乙酸苄酯、苯甲酸乙酯、草酸二乙酯、馬來酸二乙酯、 r-丁內酯、碳酸乙二酯、碳酸丙二酯、苯基溶纖劑乙 酸酯等。其中,較佳爲N -甲基吡咯烷酮、r-丁內酯、 N,N-二甲基乙醯胺。 作爲本發明感放射線性樹脂組成物的溶劑’當聯用 高沸點溶劑時,其用量相對於全部溶劑的量可爲50重 量%以下,較佳爲40重量%以下,更佳爲30重量%以下。 當高沸點溶劑的用量超過該用量時,則會出現塗膜厚度 均勻性、敏感度和殘膜率下降的情況。 當將本發明的感放射線性樹脂組成物配製成溶液 狀態時,溶液中除溶劑以外的成分(即共聚物[A]、[B] 和[C]成分以及任選添加的其他成分的合計量)的所占 的比例,可以根據使用目的和所需膜厚度値等任意地設 定。即使如此,較佳爲5〜50重量%,更佳爲10〜40 重量%,進一步較佳爲15〜35重量%。 如此配製的組成物溶液還可以用孔徑爲 右的微孔濾器等過濾後再供給使用。 -33- 200949441 層間絕緣膜、微透鏡的形成 接著,對用本發明感放射線性樹脂組成物形成本發 明的層間絕緣膜、微透鏡的方法進行說明。本發明的層 間絕緣膜或微透鏡的形成方法按照下述順序包括以下 步驟。 (1) 在基板上形成本發明感放射線性樹脂組成物塗 膜的步驟, (2) 對該塗膜的至少一部分照射放射線的步驟, (3) 將照射後的塗膜進行顯影的步驟,和 (4) 將顯影後的塗膜進行加熱的步驟。 (1)在基板上形成本發明感放射線性樹脂組成物塗膜的 步驟 在上述步驟(1)中,將本發明的組成物溶液塗敷於 基板表面上,較佳經由進行預烘焙除去溶劑,形成感放 射線性樹脂組成物的塗膜。 作爲可以使用的基板的種類,可以列舉例如玻璃基 板 ' 矽晶片以及在它們表面上形成各種金屬的基板。 作爲組成物溶液的塗敷方法,對其沒有特別的限 制,可以採用例如噴塗法、輥塗法、旋轉塗布法(旋塗 法)、縫模塗敷法、棒塗法、噴墨法等適當的方法,特 佳使用旋塗法、縫模塗敷法。作爲預烘焙的條件,根據 -34- 200949441 各成分的種類、使用比例等而不同。例如,可以在60 〜11 0°C下進行30秒鐘〜15分鐘左右。 所形成的塗膜的厚度,作爲預烘焙後的値,當形成 層間絕緣膜時,較佳爲例如3〜6#m,當形成微透鏡 時,較佳爲例如0.5〜3//m。 (2) 對該塗膜的至少一部分照射放射線的步驟 在上述步驟(2)中,對所形成的塗膜,經由具有規 定圖案的掩模照射放射線後,用顯影液進行顯影處理除 去照射了放射線的部分’形成圖案。作爲此時使用的放 射線’可以列舉例如紫外線、遠紫外線、X射線、帶電 粒子束等。 作爲上述紫外線,可以列舉例如g線(波長 43 6nm)、i線(波長3 65nm)等。作爲遠紫外線,可以列舉 例如KrF準分子鐳射等。作爲X射線,可以列舉例如 同步加速放射線等。作爲帶電粒子束,可以列舉例如電 子束等。 它們當中’較佳爲紫外線’其中特佳爲含g線和/ 或i線的放射線。 作爲曝光量’當形成層間絕緣膜時,較佳爲5〇〜 1 500 J/m2 ’當形成微透鏡時,較佳爲5〇〜2〇〇〇 J/m2。 (3) 顯影步驟 -35- 200949441 作爲顯影處理中使用的顯影液’可以使用 化鈉、氫氧化鉀、碳酸鈉、矽酸鈉、偏矽酸鈉 氧化四甲基銨、氫氧化四乙基銨、吡咯、呱陡 氮雜二環[5.4.0]-7-~f--碳烯、1,5-二氮雜二環 壬烷等鹼(鹼性化合物)的水溶液。此外’還可 述鹼水溶液中添加適量的甲醇、乙醇等水溶性 或界面活性劑的水溶液,或者溶解本發明組成 © 有機溶劑作爲顯影液使用。另外’作爲顯影方 採用例如盛液法、浸漬法、震盪浸漬法、沖洗 的方法。此時的顯影時間’根據組成物的組成 可以爲例如30〜120秒。 另外,以前已知的感放射線性樹脂組成物 影時間比最佳値超過20〜25秒的程度’則由 圖案會發生脫落,因而必須嚴格控制顯影時間 I 本發明的感放射線性樹脂組成物的情況’即使 影時間超出的時間達到30秒以上’也可以形 圖案,在製品成品率方面存在優勢。 (4)加熱步驟 如上進行了(3)顯影步驟之後’對形成圖 較佳進行例如流水清洗的沖洗處理’並且’較 壓汞燈等進行全面照射放射線(後曝光),對該 例如氫氧 、氨、氫 、1,8-二 [4.3.01-5-以將在上 有機溶劑 物的各種 法,可以 法等適當 而不同, ,如果顯 於形成的 ,而對於 比最佳顯 成良好的 案的薄膜 佳採用高 薄膜中殘 •36- 200949441 留的1,2-醌二疊氮化合物進行分解處理,然後,通過將 該薄膜用加熱板、烘箱等加熱裝置進行加熱處理(後烘 焙處理),對該薄膜進行固化處理。在上述後曝光步驟 中的曝光量,較佳爲2000〜5000 J/m2左右。並且,該 固化處理中的烘焙溫度爲例如1 20〜250 °C。加熱時間 根據加熱機器的種類而不同,例如,當在加熱板上進行 加熱處理時,可以爲5〜30分鐘,當在烘箱中進行加熱 處理時,可以爲30〜90分鐘。此時,還可以採用進行 兩次以上的加熱步驟的分步烘焙法等。這樣,可在基板 表面上形成對應於目標層間絕緣膜或者微透鏡的圖案 狀薄膜。 如上形成的層間絕緣膜和微透鏡,由下述實施例可 知,介電常數、黏附性、耐熱性、耐溶劑性和透明性等 優良。 層間絕緣膜 如上形成的本發明層間絕緣膜,介電常數低,對基 板的黏附性良好,耐溶劑性和耐熱性優良,具有高的透 光率,可適合用作爲電子產品的層間絕緣膜。 微透鏡 如上形成的本發明微透鏡,對基板的黏附性良好, 耐溶劑性和耐熱性優良,且具有高透光率和良好的熔融 -37- 200949441 形狀,可適合用作爲固態攝像元件的微透鏡。另外,本 發明微透鏡的形狀,如第1圖U)所示,爲半凸透鏡形 狀。 [實施例] 以下經由例示合成例、實施例對本發明進行更具體 的說明,但是本發明並不局限於以下的實施例。 共聚物[A]的合成例 合成例1 向裝有冷卻管和攪拌器的燒瓶中,加入7重量份 2,2’ -偶氮二(2,4-二甲基戊腈)和200重量份二甘醇乙 基甲基醚。繼續加入16重量份甲基丙烯酸、14重量份 甲基丙烯酸三環[5.2.1.02'6]癸烷-8-基酯、20重量份丙烯 酸2-甲基環己酯、40重量份甲基丙烯酸縮水甘油基酯、 10重量份苯乙烯和3重量份α-甲基苯乙烯二聚物,用 氮氣置換後,開始緩慢攪拌。使溶液的溫度升至70 °C, 保持該溫度4小時,得到含共聚物[A-1]的聚合物溶 液。共聚物[A — 1]的聚苯乙烯換算重量平均分子量(Mw) 爲8000,分子量分布(Mw/Mn)爲2.3。另外,在此製得 的聚合物溶液的固體含量濃度爲34.4重量%。 合成例2 向裝有冷卻管和攪拌器的燒瓶中,加入8重量份 -38- 200949441 2,2’-偶氮二(2,4-二甲基戊腈)和220重量份二甘醇乙基 甲基醚。繼續加入13重量份甲基丙烯酸、12重量份甲 基丙烯酸四氫糠基酯、40重量份甲基丙烯酸縮水甘油 基酯、15重量份N-環己基馬來醯亞胺、10重量份甲基 丙烯酸十二烷基酯、10重量份 α-甲基-對羥基苯乙烯 和3重量份α -甲基苯乙烯二聚物,用氮氣置換後,開 始緩慢攪拌。使溶液的溫度升至70°C,保持該溫度5 小時,得到含共聚物[A - 2]的聚合物溶液。 共聚物[A - 2]的聚苯乙烯換算重量平均分子量(Mw) 爲8000,分子量分布(Mw/Mn)爲2.3。另外,在此製得 的聚合物溶液的固體含量濃度爲31.9重量%。 合成例3 向裝有冷卻管和攪拌器的燒瓶中,加入8重量份 2,2’ -偶氮二(2,4-二甲基戊腈)和220重量份二甘醇乙 基甲基醚。繼續加入10重量份苯乙烯、20重量份甲基 丙烯酸、40重量份甲基丙烯酸縮水甘油基酯、10重量 份甲基丙烯酸(3-乙基氧雜環丁烷-3-基酯)和20重量份 甲基丙烯酸三環[5.2.1.02,6]癸烷-8-基酯,用氮氣置換 後’開始緩慢攪拌。使溶液的溫度升至7〇°c,保持該 溫度5小時,得到含共聚物[A_3]的聚合物溶液。 共聚物[A - 3]的聚苯乙烯換算重量平均分子量(Mw) -39- 200949441 爲7900,分子量分布(Mw/Mn)爲2.4。另外’在此製得 的聚合物溶液的固體含量濃度爲31.6重量%。 合成例4 向裝有冷卻管和攪拌器的燒瓶中,加入8重量份 2,2’ -偶氮二(2,4-二甲基戊腈)和220重量份二甘醇乙 基甲基醚。繼續加入15重量份苯乙烯、15重量份甲基 丙烯酸、45重量份甲基丙烯酸縮水甘油基酯和20重量 Ο 份N-(4-羥基苯基)-甲基丙烯醯胺,用氮氣置換後,再 加入5重量份1,3·丁二烯,開始緩慢攪拌。使溶液的溫 度升至70°C,保持該溫度5小時,得到含共聚物[A -4]的聚合物溶液。 共聚物[A - 4]的聚苯乙烯換算重量平均分子量(Mw) 爲7900,分子量分布(Mw/Mn)爲2.4。另外,在此製得 的聚合物溶液的固體含量濃度爲31.5重量%。 [C]成分的合成 ❹ 合成例5 取100g苯基三甲氧基矽烷置於5 00 ml的三頸燒瓶 中,加入100g甲基異丁基酮使其溶解,一邊用磁力攪 拌器攪拌,一邊加熱升溫至60°C。向該溶液中經1小 時連續地加入溶解了 1重量%草酸的8.6g離子交換水。 使溶液的溫度保持60°C反應4小時後,將所得反應液 冷卻至室溫。然後,減壓蒸餾從反應液中除去反應副產 -40- 200949441 物醇成分。如此製得的倍半矽氧烷[C 一 1]的重量平均分 子量爲1600 » 合成例6 取79.8g苯基三甲氧基矽烷和21.2g甲基三甲氧基 矽烷置於500 ml的三頸燒瓶中,加入100g丙二醇甲醚 乙酸酯使其溶解,一邊用磁力攪拌器攪拌,一邊加熱升 溫至60°C。向該溶液中經1小時連續地加入溶解了 1 重量%草酸的8.6g離子交換水。使溶液的溫度保持60 °C反應4小時後,將所得反應液冷卻至室溫。然後,減 壓蒸餾從反應液中除去反應副產物醇成分。如此製得的 倍半矽氧烷[C-2]的重量平均分子量爲2 000。 實施例1 [感放射線性樹脂組成物的配製] 將作爲[A]成分的上述合成例1中合成的共聚物[A 一1]1〇〇重量份(換算爲固體成分),作爲[B]成分的 4,4’ -[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基]亞乙基] 雙酚(1.0莫耳)與1,2·萘醌二疊氮-5-磺醯氯(2.0莫耳)的 縮合物(Β — 1)30重量份,以及倍半矽氧烷[C- 1] 30重量 份(換算爲固體成分)進行混合,將其溶於二甘醇乙基甲 基醚,使其固體含量濃度爲30重量%,然後用孔徑爲 0.2 μ m的濾膜過濾,配製得到感放射線性樹脂組成物 -41- 200949441 的溶液(S - 1)。 實施例2〜8和比較例1 [感放射線性樹脂組成物的配製] 在實施例1中,除了 [A]〜[C]成分使用如表1中所 列的種類、用量以外,與實施例1同樣地操作,配製出 感放射線性樹脂組成物的溶液(S - 2)〜(S - 8)和(s- 1)。 另外,在實施例2、4、6、8中,[B]成分所列的表 ® 示分別聯用了兩種1,2-醌二疊氮化合物。 實施例9 在實施例1中,溶解於乙二醇乙基甲基醚/丙二醇 單甲醚乙酸酯= 6/4中,使其固體含量濃度爲20重量%, 並添加矽氧烷類界面活性劑 SH — 28PA(Toray Dowcorning Silicone Co.生產),除此以外,與實施例1 同樣地配製組成物,配製出感放射線性樹脂組成物溶液 Q (S ~ 9)。 表1中,成分的簡稱表示以下化合物。 B — 1 : 4,4’ -[1-[4-[1-[4-經基苯基]-1-甲基乙基]苯基] 亞乙基]雙酚(1.0莫耳)與1,2-萘醌二疊氮-5-磺醢氯(2.0 莫耳)的縮合物 B— 2: 4,4’ -[1-[4-[1-[4-羥基苯基]-1-甲基乙基]苯基] 亞乙基]雙酚(1.0莫耳)與1,2-萘醌二疊氮-5-磺醯氯(1.0 -42- 200949441 ❹ 莫耳)的縮合物 F :矽氧烷類界面活性劑(商品名爲 SH- 28PA,Toray Dowcorning Silicone Co.生產)。 表 組成物 共聚物A B成分 C成分 其他成分 種類 麵 重量份 種類 重量份 麵 重暈份 種類 重量份 實施例1 (S-1) A-1 100 B-1 30 C一 1 30 一 一 實施例2 (S-2) A-1 100 B-1/B-2 20/10 C-2 30 一 _ 實施例3 (S - 3) A—2 100 B —1 20 C-1 30 一 一 實施例4 (S-4) A-2 100 B-1/B-2 10/10 C-2 30 一 一 實施例5 (S - 5) A-3 100 B-1 20 C-1 30 一 一 實施例6 (S —6) A-3 100 B-1/B-2 10/10 C-2 30 一 一 實施例7 (S-7) A-4 100 B-1 20 C-1 30 一 一 實施例8 (S-8) A—4 100 B-1/B-2 10/10 C-2 30 一 — 實施例9 (S-9) A-1 100 B-1 30 C-1 30 F 0.2 比較例1 (s-1) A-1 100 B-1 30 — — 3-環氧丙氧基丙 基三甲氧基矽烷 5 實施例1 0〜1 8和比較例2 <作爲層間絕緣膜的性能評價> 使用如上配製的感放射線性樹脂組成物,對其作爲 層間絕緣膜的各種性能如下進行評價。 [敏感度的評價] 對於實施例10〜17、比較例2,採用旋塗器將表2 -43- 200949441 中所列的組成物塗敷於矽基板上後,在加熱板上於90 °(:下預烘焙2分鐘,形成膜厚度爲3.0 Mm的塗膜。對 於實施例18,採用縫模塗敷器進行塗敷,在0.5 Torr 下進行真空乾燥,再在加熱板上於90 °C下預烘焙2分 鐘,形成膜厚度爲3.0/zm的塗膜。經由具有預定圖案 的圖案掩模,採用Canon製造的PLA-501F曝光機(超高 壓汞燈),使曝光時間變化,對所得塗膜進行曝光後, 在表2中所示濃度的氫氧化四甲基銨水溶液中,在25 t下採用盛液法進行顯影,當採用0.4%濃度的顯影液 時,顯影80秒,當採用2.3 8%濃度的顯影液時,顯影 50秒。再用超純水進行1分鐘流水沖洗,並使其乾燥, 在矽片上形成圖案。測定使3.0 μ m線條和間隙(1〇比 1)的間隙·圖案完全溶解所必需的曝光量。以該値作爲 敏感度列於表2。當該値爲1000 J/m2以下時,可以認 定敏感度爲良好。 [顯影界限的評價] 對於實施例10〜17、比較例2,採用旋塗器將表2 中所列的組成物塗敷於矽基板上後,在加熱板上於90 °0下預烘焙2分鐘,形成膜厚度爲3·0μπι的塗膜。對 於實施例18,採用縫模塗敷器進行塗敷,在0.5 Torr 下進行真空乾燥,再在加熱板上於9(TC下預烘焙2分 -44- 200949441 鐘,形成膜厚度爲3.0/zm的塗膜。經由具有3.〇#111線 條和間隙(10比1)圖案的掩模’採用Canon製造的 PLA-501F曝光機(超高壓汞燈),以相當於上述“敏感度 評價”中測定的敏感度値的曝光量對所得塗膜進行曝 光,在表2所示濃度的氫氧化四甲基銨水溶液中’於 25 °C下以變化的顯影時間經由盛液法進行顯影。然後用 超純水進行1分鐘流水沖洗’並使其乾燥,在矽片上形 成圖案。這時,以使線條的線寬爲3.0/zm所必需的顯 影時間爲最佳顯影時間列於表2。 並且,在自最佳顯影時間起進一步繼續顯影時,測 定直到3.Oym線條圖案脫落時的時間,以其作爲顯影 界限列於表2。當該値爲30秒以上時,則可以認定顯 影界限爲良好。 [耐溶劑性的評價] 對於實施例1〇~ 17、比較例2,採用旋塗器將表2 中所列的組成物塗敷於矽基板上後,在加熱板上於90 °C下預烘焙2分鐘,形成塗膜。對於實施例18,採用 縫模塗敷器進行塗敷,在0.5 Torr下進行真空乾燥,再 在加熱板上於90°C下預烘焙2分鐘,形成塗膜。採用 Canon製造的PLA-501F曝光機(超高壓汞燈)以累積照射 量爲3000I/m2對所得塗膜進行曝光,將該矽基板在潔淨 -45- 200949441 烘箱中於220°C下加熱1小時,得到厚度爲3.0/zm的固 化膜。測定所得固化膜的膜厚(T1)。然後,將形成了該 固化膜的矽基板在溫度控制在70°C的二甲亞楓中浸漬 20分鐘後,測定該固化膜的膜厚(tl),算出由浸漬導致 的膜厚變化率{Itl-Tll/Tl}xl00[%]。結果列於表2。當 該値爲5 %以下時,可以認定耐溶劑性爲良好。 另外,在耐溶劑性評價中形成的膜由於不需要形成 圖案,故省略了顯影步驟,僅供對塗膜形成步驟、照射 放射線的步驟和加熱步驟進行評價。 [耐熱性的評價] 與上述耐溶劑性的評價同樣地形成固化膜,測定所 得固化膜的膜厚(T2)。然後,將該固化膜基板置於潔淨 烘箱中在240 °C下追加烘焙1小時後,測定該固化膜的 厚度(t2),計算由追加烘焙導致的膜厚變化率{It2-丁2丨/了2}><100[%]。結果列於表2。當該値爲5%以下時, 可以認定耐熱性爲良好。 [固化膜黏附性的評價] 與上述耐溶劑性的評價同樣地形成固化膜,將預先 塗敷了環氧樹脂的具有直徑爲〇.27cm圓形黏合面的鋁 制大頭釘(QUAD公司生產)黏合在固化膜上,使釘與基 板相垂直,在潔淨烘箱中於1 50°C下進行1小時烘焙, -46- .200949441 使環氧樹脂固化。然後,用牽拉試驗機“ Motorized Stand SDMS— 0201— 100SL((股)今田製作所製造)”牽拉大頭 釘,測定固化膜與基板脫離時的力。此時的力値列於表 2。若該値爲150 N以上,可認定對基板的黏附性爲良 好。 [透明性的評價] 在上述耐溶劑性的評價中,除了採用玻璃基板 “ Corning 705 9(由Corning公司製造)”代替矽基板以外, 同樣地在玻璃基板上形成固化膜。用分光光度計“ 1 5 0 —20型雙光束((股)日立製作所製造)”在400〜800nm 波長範圍內測定具有該固化膜的玻璃基板的透光率。此 時的最低透光率値列於表2。當該値爲90%以上時,可 以認定透明性爲良好。 [介電常數的評價] 對於實施例10〜17、比較例2,採用旋塗器將表2 中所列的組成物塗敷於硏磨後的SUS304製基板上後, 在加熱板上於90 °C下預烘焙2分鐘,形成膜厚度爲 3.0#m的塗膜。對於實施例18,採用縫模塗敷器進行 塗敷’在0.5 Torr下進行真空乾燥,再在加熱板上於 90°C下預烘焙2分鐘,形成膜厚度爲3.0/zm的塗膜。 採用Canon製造的PLA-501F曝光機(超高壓汞燈)以累 -47- 200949441 積照射量爲3000〗/m2對所得塗膜進行曝光,將該基枝 潔淨烘箱中於220°C下烘焙1小時,得到固化膜。磨 固化膜經由蒸鍍法形成Pt/Pd電極圖案,製作出測笼 電常數用的樣品。對該基板,採用Hewlett-Packard 造的HP1645 1B電極和HP4284A精密LCR儀,經由 法以10kHz的頻率測定該基板的介電常數。結果列东 2。當該値爲3.9以下時,可以認定介電常數爲良好 另外,在介電常數評價中形成的膜由於不需要开 圖案,故省略了顯影步驟,僅供對塗膜形成步驟、麻 放射線的步驟和加熱步驟進行評價。 在 該 介 製 CV 表 〇 成 射Si(R5)(OR6)(OR7)(OR8) (2) (wherein R5 is an alkyl group having 1 to 15 carbon atoms, and R6 to r8 are each independently a hydrogen atom, and the carbon number is 1 ~4 substituted or unsubstituted alkyl or fluorenyl). In the above formula (2), the alkyl group having 1 to 15 carbon atoms is preferably a linear or branched fluorenyl group having 1 to 6 carbon atoms or a cycloalkane having 5 to 10 carbon atoms. base. More preferably, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, cyclopentyl, cyclohexyl, adamantyl, isobornyl, tricyclodecyl, etc., particularly preferably methyl. Specific examples of the compound (c2) include methyltrimethoxydecane, methyltriethoxydecane, methyltri-n-propoxydecane, methyltriisopropoxydecane, and methyltriethoxysilane. Base decane, methyl tris (methoxyethoxy) decane, ethyl trimethoxy decane, ethyl triethoxy decane, ethyl tri-n-propoxy decane, ethyl triisopropoxy decane, B Triethyl decyloxydecane, ethyl tris(methoxyethoxy)decane, n-propyltrimethoxydecane, n-propyltriethoxydecane, n-propyltri-n-propoxydecane, n-propyl Triisopropoxy decane, n-propyltriethoxydecane, n-propyltris(methoxyethoxy)decane, cyclohexyltrimethoxydecane, cyclohexyltriethoxydecane, cyclohexyl N-propoxy decane, cyclohexyl triisopropoxy decane, cyclohexyltriethoxy decane, cyclohexane-24-200949441 bis(methoxyethoxy)decane, and the like. Among them, from the viewpoints of reactivity and storage stability, it is preferably a methyltrimethoxy sand hospital and a methyltriethoxy sand courtyard. The compound (C2) may be used singly or in combination of two or more. The component [C] used in the present invention preferably contains 50% by weight or more of a repeating unit derived from the compound (cl) based on the total amount of the repeating units derived from the compounds (cl) and (c 2), more preferably 50%. ~95% by weight, particularly preferably 60 to 90% by weight. If the repeating unit is less than 50% by weight, the film may be separated from the copolymer [A] in the radiation sensitive resin composition to hinder the formation of the coating film. The hydrolysis reaction for preparing the component [C] is preferably carried out in a suitable solvent. As such a solvent, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol alone may be mentioned. A water-soluble solvent such as methyl ether, propylene glycol methyl ether acetate, tetrahydrofuran, dioxane or acetonitrile or an aqueous solution thereof. Since these water-soluble solvents are to be removed in the subsequent step, it is preferred that methanol, ethanol, n-propanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, etc. have a lower boiling point. The solvent is more preferably a ketone such as acetone, methyl ethyl ketone or methyl isobutyl ketone from the viewpoint of solubility of the raw material, and particularly preferably methyl isobutyl ketone. -25- 200949441 3 external 'hydrolysis reaction, preferably in acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, acidic ion exchange resins, various Lewis acids, or alkalis Catalysts such as ammonia, -amines, secondary amines, tertiary amines, nitrogen-containing aromatic compounds such as pyridine, "allergic ion exchange resins, hydroxides such as sodium hydroxide, potassium carbonate, sodium carbonate, sodium acetate, etc. It is carried out in the presence of a carboxylate, various Lewis bases, and the like. The amount of the catalyst is preferably 0.2 m or less with respect to 1 mol of the monomer, more preferably 〇〇〇〇〇 〇 ~ 〇. The water content, the reaction temperature, and the reaction time can be appropriately set. For example, the following conditions can be employed. The content of water is 1.5 mol or less, preferably 1 mol or less, more preferably 0.9 mol or less, based on 1 mol of the total of hydrolyzable groups in the decane compound used in the preparation. The reaction temperature is preferably from 40 to 200 ° C, more preferably from 50 to 150 ° C. The reaction time is preferably from 30 minutes to 2 hours, more preferably from 1 to 12 hours. The polystyrene-equivalent weight average molecular weight of the component [C] used in the present invention is preferably 5 x 10 2 to 5 x 10 3 , more preferably 1 x 10 3 to 4.5 x 103. If the weight average molecular weight of the [C] component is less than 5 x 10 2 ', there is a possibility that the development limit is insufficient. On the other hand, if it exceeds 5 x 10 〇 3 ', it is phase-separated from the copolymer [A] in the radiation sensitive resin composition. It hinders the possibility of film formation. -26- 200949441 [C] The ratio of use of the component ' is preferably 10 to 100 parts by weight or less per 100 parts by weight of the copolymer [A], more preferably 15 to 50 parts by weight. When the use ratio is less than 10 parts by weight, there is a possibility that the desired effect cannot be obtained. On the other hand, when it exceeds 1 part by weight, there is a phase separation from the copolymer [A], which hinders the formation of a coating film. Possible. Other components The radiation sensitive resin composition of the present invention contains the above-mentioned copolymer [A], [B], and [C] as essential components, and may contain [D] heat-sensitive acid-producing compound, [E, if necessary. a polymerizable compound containing at least one ethylenically unsaturated double bond, an epoxy resin other than the [F] copolymer [A], a [G] surfactant, or a [H] adhesion aid. The above [D] heat-sensitive acid generating compound can be used for the purpose of improving heat resistance and hardness. Specific examples thereof include known gun salts such as an onium salt, a benzothiazole key salt, an ammonium salt, and a scale salt. The use ratio of the component [D] is preferably 20 parts by weight or less, more preferably 5 parts by weight or less based on 100 parts by weight of the copolymer [A] '. When the amount used exceeds 20 parts by weight, precipitates are precipitated in the coating film forming step, and the formation of the coating film is prevented from occurring. The polymerizable compound containing at least one ethylenically unsaturated double bond as the component [E] is preferably, for example, a known monofunctional (meth)-27-200949441 acrylate, difunctional (meth) acrylate or A trifunctional or higher (meth) acrylate. Among them, it is preferred to use a trifunctional or higher (meth)propionic acid ester, which is preferably dimethicone di(methyl)propionate, pentaerythritol tetra(meth)acrylate, dipentaerythritol. Methyl) acrylate. The use ratio of the component [E] is preferably 50 parts by weight or less, more preferably 30 parts by weight or less based on 100 parts by weight of the copolymer [A] '. By containing the component [E] in such a ratio, the heat resistance, surface hardness, and the like of the interlayer insulating film or the microlens obtained by the radiation sensitive resin composition of the present invention can be improved. If the amount used exceeds 50 parts by weight, a film splitting may occur in the step of forming a coating film of the radiation sensitive resin composition on the substrate. The epoxy resin other than the copolymer [A] of the above [F] component is not limited as long as it has no influence on compatibility. Preferred examples thereof include bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolac type epoxy resin, cyclic aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin. Resin, heterocyclic epoxy resin, resin (co)polymerized with glycidyl methacrylate, and the like. Among them, the bisphenol A type epoxy resin, the cresol novolac type epoxy resin, the glycidyl ester type epoxy resin, and the like are particularly preferable. The proportion of the component [F] is preferably 30 parts by weight or less based on 1 part by weight of the copolymer -28-200949441 [A]. By containing the [F] component in such a ratio, the heat resistance, surface hardness, and the like of the protective film or the insulating film obtained from the radiation sensitive resin composition of the present invention can be further improved. If the ratio exceeds 30 parts by weight, when the radiation-sensitive resin composition coating film is formed on the substrate, the film thickness uniformity of the coating film may be insufficient. Further, the copolymer [A] may also be referred to as "epoxy resin", but it is different from the [F] component in that it has alkali solubility. The [F] component is alkali-insoluble. In the radiation sensitive resin composition of the present invention, in order to further improve the coatability, a surfactant as the above [G] component can also be used. As the [G] surfactant, for example, a fluorine-based surfactant or a siloxane-based surfactant can be preferably used. Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl)ether and 1,1,2,2-tetrafluoro. Octyl hexyl ether, octaethylene glycol di(1,1,2,2-tetrafluorobutyl)ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, Octapropylene glycol bis(1,1,2,2-tetrafluorobutyl)ether, hexapropylene glycol bis(1,1,2,2,3,3-hexafluoropentyl)ether, perfluorododecyl sulfonic acid Sodium, 1,1,2,2,8,8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, etc. Further, sodium fluoroalkylbenzenesulfonate, fluoroalkyloxyethylene ether, fluoroalkylammonium iodide, fluoro-29-200949441 alkyl polyoxyethylene ether, perfluoroalkyl polyoxyethylene, Perfluoroalkyl alkoxide, fluoroalkyl ester, and the like. As their commercial products, BM-1000, BM-1100 (above, produced by BM Chemie), Megafac F142D, Megafac F172, Megafac F173, Megafac F183, Megafac F178, Megafac F191, Megafac F471 (above, Japan ink chemical industry (shares) production),? 1110 to (1? (:-17 0C, FC - 171, FC-430, FC-431 (above, produced by Sumitomo 3M (share)), Surflon S-112, Surflon S-113, Surflon S-131, Surflon S - 14 Bu Surflon S - 145, Surflon S - 3 82 > Surflon SC-101, Surflon SC - 102, Surflon SC - 103, Surflon SC - 104, Surflon SC - 105, Surflon SC - 106 (Asahi Glass) Production), Eftop EF 30 1 , Eftop EF 303, Eftop EF 352 (produced by New Akita Chemicals Co., Ltd.), etc. Examples of the above-mentioned oxoxane-based surfactants include DC3PA, DC7PA, FS-1265, and SF. - 8428, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-193, SZ-6032 (above, produced by Toray Dowcorning Silicone Co.), TSF-4440, TSF-4300, TSF-4445, TSF- 4446, TSF-4460, TSF — 44 52 (the above is produced by GE Toshiba Silicon Co., Ltd.) and other commercially available siloxane surfactants. These surfactants can be used alone or in combination of two or more to make 200949441. [G] surfactant, preferably 5 parts by weight relative to 100 parts by weight of the copolymer [A]' More preferably, it is 2 parts by weight or less. When the amount of the [G] surfactant is more than 5 parts by weight, when the coating film is formed on the substrate, the coating film is likely to be cleaved. The adhesion of the substrate, the binder component [H] component can also be used in the radiation sensitive resin composition of the present invention. As the [H] binder adjuvant, a functional decane coupling agent is preferably used, and for example, a carboxyl group is exemplified. a decane coupling agent of a reactive substituent such as a methacryl oxime group, an isocyanate group or an epoxy group, and specifically, a trimethoxy decyl benzoate ester, r-methyl propylene methoxy propyl trimethoxy decane , vinyl triethoxy decane, vinyl trimethoxy decane, r-isocyanate propyl triethoxy decane, 1r-glycidoxypropyl trimethoxy decane, Θ - (3, 4- Epoxycyclohexyl)ethyltrimethoxydecane, etc. Such a [H] adhesion aid is preferably 20 parts by weight or less, more preferably 10 parts by weight or less based on 100 parts by weight of the copolymer [A]. The amount is used. When the amount of the binder auxiliary exceeds 20 parts by weight, there is a case where development residue is liable to occur in the developing step. Radiation-sensitive resin composition of the present invention can be obtained by uniformly mixing the above-mentioned copolymers [A], [B] and [C] components and other -31-200949441 components optionally added as described above. Formulated. The radiation sensitive resin composition of the present invention is preferably used in the form of a solution dissolved in a suitable solvent. For example, a radiation-sensitive resin composition in a solution state can be prepared by mixing the copolymer [A], [B], and [C] components and optionally other components in a predetermined ratio. As the solvent used in the preparation of the radiation sensitive resin composition of the present invention, each of the components which can uniformly dissolve the copolymer [A], [B] and [C] components and optionally other components can be used, and The solvent for the reaction of each component. As such a solvent, the same solvent as exemplified above as a solvent which can be used in the production of the copolymer [A] can be mentioned. In such a solvent, alcohol, glycol ether, ethylene glycol alkyl ether acetate, or the like is preferably used from the viewpoints of solubility of each component, reactivity with each component, easiness of formation of a coating film, and the like. Ester and diethylene glycol. Among them, benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol can be used. Diethyl ether, diethylene glycol ethyl methyl ether, diglyme, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl methoxypropionate, ethyl ethoxy propionate. In order to increase the in-plane uniformity of the film thickness, a high boiling point solvent may be further used in combination with the above solvent. As the high-boiling solution-32-200949441 agent which can be used in combination, for example, N-methylformamide, N,N-dimethylformamide, N-methylformamide, N-methylacetamidine can be mentioned. Amine, hydrazine, hydrazine-dimethylacetamide, hydrazine-methylpyrrolidone, dimethyl selenium, benzyl ethyl ether, dihexyl ether, acetone acetone, isophorone, hexanoic acid, octanoic acid, 1 - Octanol, 1-nonanol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, r-butyrolactone, ethylene carbonate, propylene carbonate, phenyl fumed fiber Agent acetate and the like. Among them, preferred are N-methylpyrrolidone, r-butyrolactone, and N,N-dimethylacetamide. The solvent used as the radiation-sensitive resin composition of the present invention can be used in an amount of 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less based on the total amount of the solvent. . When the amount of the high-boiling solvent exceeds this amount, there is a case where the film thickness uniformity, the sensitivity, and the residual film ratio are lowered. When the radiation sensitive resin composition of the present invention is formulated into a solution state, the total of the components other than the solvent in the solution (i.e., the copolymer [A], [B], and [C] components, and optionally other components are added in total. The proportion of the amount can be arbitrarily set depending on the purpose of use and the desired film thickness 値. Even so, it is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, still more preferably 15 to 35% by weight. The composition solution thus prepared can also be filtered by a micropore filter having a right aperture or the like and then supplied. -33-200949441 Formation of interlayer insulating film and microlens Next, a method of forming the interlayer insulating film and microlens of the present invention using the radiation sensitive resin composition of the present invention will be described. The method of forming the interlayer insulating film or the microlens of the present invention includes the following steps in the following order. (1) a step of forming a coating film of the radiation sensitive resin composition of the present invention on a substrate, (2) a step of irradiating at least a part of the coating film with radiation, (3) a step of developing the coating film after the irradiation, and (4) A step of heating the developed coating film. (1) a step of forming a coating film of the radiation sensitive resin composition of the present invention on a substrate. In the above step (1), the composition solution of the present invention is applied onto the surface of the substrate, preferably by prebaking to remove the solvent. A coating film of a radiation sensitive resin composition is formed. As the kind of the substrate which can be used, for example, a glass substrate '矽 wafer and a substrate on which various metals are formed on the surface thereof can be cited. The coating method of the composition solution is not particularly limited, and may be, for example, a spray coating method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an inkjet method, or the like. The method is particularly preferably a spin coating method or a slit die coating method. The conditions for prebaking differ depending on the type of each component, the ratio of use, and the like, in the range of -34 to 200949441. For example, it can be carried out at 60 to 11 0 ° C for about 30 seconds to 15 minutes. The thickness of the formed coating film is preferably, for example, 3 to 6 #m when forming the interlayer insulating film, and is preferably 0.5 to 3/m when forming the microlens. (2) a step of irradiating at least a part of the coating film with radiation. In the step (2), the formed coating film is irradiated with radiation through a mask having a predetermined pattern, and then developed by a developing solution to remove the irradiated radiation. The part 'forms a pattern. Examples of the radiation used in this case include ultraviolet rays, far ultraviolet rays, X rays, charged particle beams, and the like. Examples of the ultraviolet rays include a g line (wavelength of 43 6 nm), an i line (wavelength of 3 65 nm), and the like. Examples of the far ultraviolet rays include KrF excimer lasers and the like. Examples of the X-rays include synchrotron radiation and the like. Examples of the charged particle beam include an electron beam and the like. Among them, 'preferably ultraviolet rays' is particularly preferred as radiation containing g-line and/or i-line. When the interlayer insulating film is formed as the exposure amount, it is preferably 5 Å to 1 500 J/m 2 Å. When the microlens is formed, it is preferably 5 Å to 2 Å J/m 2 . (3) Development step -35- 200949441 As the developer used in the development treatment, sodium, potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, tetramethylammonium hydroxide, tetraethylammonium hydroxide can be used. An aqueous solution of a base (basic compound) such as pyrrole or fluorenyl azabicyclo[5.4.0]-7-~f--carbene or 1,5-diazabicyclodecane. Further, an aqueous solution of a water-soluble or surfactant such as methanol or ethanol may be added to the aqueous alkali solution, or the composition of the present invention may be dissolved. The organic solvent is used as a developing solution. Further, as the developing means, for example, a liquid-filling method, a dipping method, a shaking dipping method, and a rinsing method are employed. The developing time ' at this time may be, for example, 30 to 120 seconds depending on the composition of the composition. In addition, the previously known radiation-sensitive resin composition has a shadow time ratio of more than 20 to 25 seconds, and the pattern is detached. Therefore, it is necessary to strictly control the development time I. The radiation-sensitive resin composition of the present invention The situation 'even if the shadow time exceeds 30 seconds or more' can also be shaped, and there is an advantage in product yield. (4) The heating step is carried out as described above. (3) After the development step, 'the rinsing treatment such as the flow-through cleaning is preferably performed on the formation pattern' and the total irradiation radiation (post-exposure) is performed on the mercury-pressure lamp or the like, for example, hydrogen and oxygen, Ammonia, hydrogen, 1,8-di [4.3.01-5- will be different depending on various methods of the organic solvent, and if it is formed, it is good for the best. The film of the film is preferably decomposed by a 1,2-quinonediazide compound remaining in a high film, and then heated by a heating device such as a hot plate or an oven (post-baking treatment). The film is subjected to a curing treatment. The exposure amount in the above post-exposure step is preferably about 2,000 to 5,000 J/m2. Further, the baking temperature in the curing treatment is, for example, 1 20 to 250 °C. The heating time varies depending on the type of the heating machine, and may be, for example, 5 to 30 minutes when heat-treated on a hot plate, and 30 to 90 minutes when heat-treated in an oven. In this case, a stepwise baking method or the like which performs two or more heating steps may also be employed. Thus, a pattern-like film corresponding to the target interlayer insulating film or microlens can be formed on the surface of the substrate. The interlayer insulating film and the microlens formed as described above are excellent in dielectric constant, adhesion, heat resistance, solvent resistance, transparency, and the like, as described in the following examples. Interlayer insulating film The interlayer insulating film of the present invention formed as described above has a low dielectric constant, good adhesion to a substrate, excellent solvent resistance and heat resistance, and high light transmittance, and can be suitably used as an interlayer insulating film for electronic products. The microlens of the present invention formed as described above has good adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high light transmittance, and has a good melt-37-200949441 shape, and can be suitably used as a solid-state image pickup device. lens. Further, the shape of the microlens of the present invention is a semi-convex lens shape as shown in Fig. 1(). [Examples] Hereinafter, the present invention will be specifically described by way of examples of synthesis and examples, but the present invention is not limited to the following examples. Synthesis Example of Copolymer [A] Synthesis Example 1 To a flask equipped with a cooling tube and a stirrer, 7 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 200 parts by weight were added. Diethylene glycol ethyl methyl ether. Continue to add 16 parts by weight of methacrylic acid, 14 parts by weight of tricyclo[5.2.1.0''6]nonane-8-yl methacrylate, 20 parts by weight of 2-methylcyclohexyl acrylate, 40 parts by weight of methacrylic acid The glycidyl ester, 10 parts by weight of styrene, and 3 parts by weight of the α-methylstyrene dimer were slowly stirred after replacement with nitrogen. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [A-1]. The copolymer [A-1] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 2.3. Further, the polymer solution prepared herein had a solid content concentration of 34.4% by weight. Synthesis Example 2 To a flask equipped with a cooling tube and a stirrer, 8 parts by weight of -38-200949441 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol B were added. Methyl ether. Continue to add 13 parts by weight of methacrylic acid, 12 parts by weight of tetrahydrofurfuryl methacrylate, 40 parts by weight of glycidyl methacrylate, 15 parts by weight of N-cyclohexylmaleimide, 10 parts by weight of methyl Dodecyl acrylate, 10 parts by weight of α-methyl-p-hydroxystyrene, and 3 parts by weight of α-methylstyrene dimer, after replacement with nitrogen, started to stir slowly. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A - 2]. The copolymer [A-2] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 2.3. Further, the polymer solution prepared herein had a solid content concentration of 31.9% by weight. Synthesis Example 3 To a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were added. . 10 parts by weight of styrene, 20 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of (3-ethyloxetan-3-yl methacrylate) and 20 are continuously added. The tricyclo[5.2.1.02,6]nonane-8-yl methacrylate was added in portions by weight, and then the mixture was slowly stirred. The temperature of the solution was raised to 7 ° C, and the temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A_3]. The copolymer [A-3] had a polystyrene-equivalent weight average molecular weight (Mw) of -39 to 200949441 of 7,900 and a molecular weight distribution (Mw/Mn) of 2.4. Further, the polymer solution prepared herein had a solid content concentration of 31.6% by weight. Synthesis Example 4 To a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were added. . Further, 15 parts by weight of styrene, 15 parts by weight of methacrylic acid, 45 parts by weight of glycidyl methacrylate, and 20 parts by weight of N-(4-hydroxyphenyl)-methacrylamide were added, and the mixture was replaced with nitrogen. Then, 5 parts by weight of 1,3·butadiene was added and stirring was started slowly. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A - 4]. The copolymer [A-4] had a polystyrene-equivalent weight average molecular weight (Mw) of 7900 and a molecular weight distribution (Mw/Mn) of 2.4. Further, the polymer solution prepared herein had a solid content concentration of 31.5% by weight. Synthesis of [C] component ❹ Synthesis Example 5 100 g of phenyltrimethoxydecane was placed in a 500-neck three-necked flask, dissolved in 100 g of methyl isobutyl ketone, and heated while stirring with a magnetic stirrer. Warm to 60 °C. To the solution, 8.6 g of ion-exchanged water in which 1% by weight of oxalic acid was dissolved was continuously added over 1 hour. After the temperature of the solution was maintained at 60 ° C for 4 hours, the resulting reaction solution was cooled to room temperature. Then, the by-product of the reaction -40-200949441 was removed from the reaction liquid by distillation under reduced pressure. The sesquiterpene oxide [C-1] thus obtained had a weight average molecular weight of 1600 » Synthesis Example 6 79.8 g of phenyltrimethoxydecane and 21.2 g of methyltrimethoxydecane were placed in a 500 ml three-necked flask. Then, 100 g of propylene glycol methyl ether acetate was added and dissolved, and the mixture was heated by a magnetic stirrer and heated to 60 ° C. To the solution, 8.6 g of ion-exchanged water in which 1% by weight of oxalic acid was dissolved was continuously added over 1 hour. After the temperature of the solution was maintained at 60 ° C for 4 hours, the resulting reaction solution was cooled to room temperature. Then, the reaction by-product distillation removes the reaction by-product alcohol component from the reaction liquid. The sesquiterpene oxide [C-2] thus obtained had a weight average molecular weight of 2,000. Example 1 [Preparation of Radiation-sensitive Resin Composition] The copolymer [A-1] synthesized in the above Synthesis Example 1 as the component [A] was used in an amount of 1 〇〇 (in terms of solid content) as [B] 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2· 30 parts by weight of a condensate of naphthoquinonediazide-5-sulfonyl chloride (2.0 mol) (Β-1), and 30 parts by weight of sesquiterpene oxide [C-1] (in terms of solid content) are mixed. , dissolved in diethylene glycol ethyl methyl ether to a solid content concentration of 30% by weight, and then filtered through a filter having a pore size of 0.2 μm to prepare a solution of the radiation sensitive resin composition -41-200949441 (S - 1). Examples 2 to 8 and Comparative Example 1 [Preparation of Radiation-sensitive Resin Composition] In Example 1, except for the types and amounts listed in Table 1 except for the components [A] to [C], 1 In the same manner, solutions (S - 2) ~ (S - 8) and (s-1) of the radiation-sensitive resin composition were prepared. Further, in Examples 2, 4, 6, and 8, the table ® listed in the [B] component shows the combination of two 1,2-quinonediazide compounds, respectively. Example 9 In Example 1, it was dissolved in ethylene glycol ethyl methyl ether/propylene glycol monomethyl ether acetate = 6/4 to have a solid content concentration of 20% by weight, and a rhodium-oxygen-based interface was added. A composition of the radiation sensitive linear resin composition Q (S ~ 9) was prepared in the same manner as in Example 1 except that the active material SH - 28PA (manufactured by Toray Dow Corning Co., Ltd.) was used. In Table 1, the abbreviations of the components represent the following compounds. B — 1 : 4,4′ -[1-[4-[1-[4-Phenylphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1 , condensate of 2-naphthoquinonediazide-5-sulfonyl chloride (2.0 mol) B-2: 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1- Condensate F of methyl ethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonyl chloride (1.0-42-200949441 indole) A siloxane surfactant (trade name: SH-28PA, manufactured by Toray Dowcorning Silicone Co.). Table composition copolymer AB component C component Other component type Surface weight part Type weight part Surface halo part Type weight part Example 1 (S-1) A-1 100 B-1 30 C-1 1 Example 1 (S-2) A-1 100 B-1/B-2 20/10 C-2 30 I_ Example 3 (S-3) A-2 100 B-1 1 C C 30 30 Example 1 (S-4) A-2 100 B-1/B-2 10/10 C-2 30 One Embodiment 5 (S-5) A-3 100 B-1 20 C-1 30 One Embodiment 6 (S-6) A-3 100 B-1/B-2 10/10 C-2 30 One Embodiment 7 (S-7) A-4 100 B-1 20 C-1 30 One Embodiment 8 (S-8) A-4 100 B-1/B-2 10/10 C-2 30 I—Example 9 (S-9) A-1 100 B-1 30 C-1 30 F 0.2 Comparative Example 1 (s-1) A-1 100 B-1 30 - 3-glycidoxypropyltrimethoxydecane 5 Example 1 0 to 1 8 and Comparative Example 2 <Evaluation of Performance as Interlayer Insulating Film> Using the radiation sensitive resin composition prepared as above, various properties as an interlayer insulating film were evaluated as follows. [Evaluation of Sensitivity] For Examples 10 to 17 and Comparative Example 2, the compositions listed in Tables 2 - 43 to 200949441 were applied onto a ruthenium substrate by a spin coater, and then dried at 90 ° on a hot plate ( : Prebaking for 2 minutes to form a coating film having a film thickness of 3.0 Mm. For Example 18, coating was carried out using a slit die coater, vacuum drying was performed at 0.5 Torr, and then at 90 ° C on a hot plate. Prebaking for 2 minutes to form a coating film having a film thickness of 3.0/zm. The exposure time was varied by using a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon through a pattern mask having a predetermined pattern, and the resulting coating film was applied. After the exposure, development was carried out by a liquid-filling method at 25 t in an aqueous solution of tetramethylammonium hydroxide having a concentration shown in Table 2, and development was carried out for 80 seconds when a developer having a concentration of 0.4% was used, and when 2.3 8 was used. When developing at a concentration of 50%, develop for 50 seconds, rinse with ultrapure water for 1 minute, and dry it to form a pattern on the ruthenium. Determine the gap between the line and the gap (1 〇 1) of 3.0 μm. · The amount of exposure necessary to completely dissolve the pattern. The sensitivity is listed in the table. 2. When the enthalpy is 1000 J/m2 or less, the sensitivity is considered to be good. [Evaluation of development limit] For Examples 10 to 17, and Comparative Example 2, the compositions listed in Table 2 were applied by a spin coater. After coating on a ruthenium substrate, it was prebaked on a hot plate at 90 °C for 2 minutes to form a coating film having a film thickness of 3.0 μm. For Example 18, a coating was applied using a slit die coater at 0.5. Vacuum drying was performed under Torr, and then pre-baked on a hot plate at 9 (TC) for 2 minutes - 44 to 200949441 minutes to form a coating film having a film thickness of 3.0 / zm. Via a line with a gap of 3. 〇 #111 (10 ratio) 1) The mask of the pattern was irradiated with a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon, and the obtained coating film was exposed to an exposure amount equivalent to the sensitivity 测定 measured in the above "sensitivity evaluation". 2In the aqueous solution of tetramethylammonium hydroxide of the indicated concentration, it was developed by a liquid-filling method at a changing development time at 25 ° C. Then, it was rinsed with ultrapure water for 1 minute and dried. A pattern is formed thereon. At this time, the development time necessary for the line width of the line to be 3.0/zm The optimum development time is shown in Table 2. Further, when the development was further continued from the optimum development time, the time until the 3.Oym line pattern peeled off was measured, and it was listed as the development limit in Table 2. When the 値 was 30 When the temperature is at least two seconds, the development limit is considered to be good. [Evaluation of Solvent Resistance] For Examples 1 to 17, and Comparative Example 2, the compositions listed in Table 2 were applied to a ruthenium substrate by a spin coater. Thereafter, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film. For Example 18, coating was carried out using a slit die coater, vacuum drying was performed at 0.5 Torr, and then on a hot plate at 90 Prebaking at ° C for 2 minutes to form a coating film. The obtained coating film was exposed using a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon at a cumulative irradiation amount of 3000 I/m2, and the ruthenium substrate was heated in a clean-45-200949441 oven at 220 ° C for 1 hour. A cured film having a thickness of 3.0/zm was obtained. The film thickness (T1) of the obtained cured film was measured. Then, the ruthenium substrate on which the cured film was formed was immersed in dimethyl sulfoxide having a temperature controlled at 70 ° C for 20 minutes, and then the film thickness (t1) of the cured film was measured, and the film thickness change rate by immersion was calculated. Itl-Tll/Tl}xl00[%]. The results are shown in Table 2. When the enthalpy is 5% or less, it is considered that the solvent resistance is good. Further, since the film formed in the evaluation of the solvent resistance does not need to be patterned, the development step is omitted, and only the step of forming the coating film, the step of irradiating the radiation, and the step of heating are evaluated. [Evaluation of heat resistance] A cured film was formed in the same manner as the evaluation of the solvent resistance described above, and the film thickness (T2) of the obtained cured film was measured. Then, the cured film substrate was additionally baked in a clean oven at 240 ° C for 1 hour, and then the thickness (t2) of the cured film was measured, and the film thickness change rate by the additional baking was calculated {It2-d 2丨/ 2}><100 [%]. The results are shown in Table 2. When the enthalpy is 5% or less, it is considered that the heat resistance is good. [Evaluation of Adhesiveness of Cured Film] A cured film was formed in the same manner as the evaluation of the solvent resistance, and an aluminum tack (available from QUAD) having a circular bonding surface of 〇.27 cm in diameter coated with an epoxy resin was used. Adhesive on the cured film, the nail is perpendicular to the substrate, baked in a clean oven at 1 50 ° C for 1 hour, -46-.200949441 to cure the epoxy resin. Then, the tack was pulled by a pull tester "Motorized Stand SDMS - 0201 - 100SL (manufactured by Ikuta Seisakusho Co., Ltd.)", and the force at which the cured film was separated from the substrate was measured. The force at this time is listed in Table 2. If the enthalpy is 150 N or more, it is considered that the adhesion to the substrate is good. [Evaluation of Transparency] In the evaluation of the solvent resistance, a cured film was formed on the glass substrate in the same manner as in the case of using a glass substrate "Coring 705 9 (manufactured by Corning)" instead of the ruthenium substrate. The light transmittance of the glass substrate having the cured film was measured in a wavelength range of 400 to 800 nm by a spectrophotometer "1 5 0-20 type double beam (manufactured by Hitachi, Ltd.)". The lowest light transmittance at this time is shown in Table 2. When the enthalpy is 90% or more, it is considered that the transparency is good. [Evaluation of Dielectric Constant] In Examples 10 to 17 and Comparative Example 2, the compositions listed in Table 2 were applied onto a honed SUS304 substrate by a spin coater, and then placed on a hot plate at 90. Prebaking at ° C for 2 minutes to form a coating film having a film thickness of 3.0 #m. For Example 18, coating was carried out by using a slit die coater. Vacuum drying was carried out at 0.5 Torr, and prebaking was carried out at 90 ° C for 2 minutes on a hot plate to form a coating film having a film thickness of 3.0 / zm. The obtained coating film was exposed by a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon at a dose of -300-200949441, and baked at 220 ° C in the base cleaning oven. After hours, a cured film was obtained. The cured film was formed into a Pt/Pd electrode pattern by a vapor deposition method to prepare a sample for measuring the cage constant. The substrate was measured for the dielectric constant of the substrate by a method using a Hewlett-Packard HP1645 1B electrode and an HP4284A precision LCR meter at a frequency of 10 kHz. The result is East 2 . When the enthalpy is 3.9 or less, it is considered that the dielectric constant is good. Further, since the film formed in the evaluation of the dielectric constant does not require an opening pattern, the development step is omitted, and only the step of forming the coating film and the step of stimulating the radiation are performed. And the heating step was evaluated. In the context of the CV

-48- 200949441-48- 200949441

介電 常數 03 cn CO C-! CN cn cn cn c〇 cn cn CO C<I cn v〇 oS 透明性 g On cn 落 vn On ν〇 Os ON CN On C<J On cn Os 固化膜黏附性 g > < 沄 i—H ο 4 r—Η w-> wn 1—4 s I H >"1 < § 异 1 < s r1 < 耐熱性 膜厚變化率 (%) C<1 CN C<1 Οί csi CO CO cn CS CS 耐溶劑性 膜厚變化率 (%) cn CO c〇 CO cn CO CO CO m cn 顯影界限 顯影界限 (秒) in ο νη l〇 最佳顯影時間 (秒) 沄 g 敏感度評價 m m - 8 Ο <Γ) vr» 〇 vn ο 〇 8 〇 顯影液濃度 (wt%) 寸· 寸· 2.38 2.38 oo CO 05 2.38 气 对, 組成物 種類 (S-1) (S-2) (S-3) (S-4) (P) 1 CO (S-6) (S—7) (S-8) ON 1 (s-l) 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 比較例2 200949441 實施例19〜26和比較例3 <作爲微透鏡的性能評價> 採用上述配製的感放射線性樹脂組成物,對 透鏡的各種性能如下進行評價。另外,耐溶劑性 熱性評價、透明性評價將參照上述作爲層間絕緣 評價中的結果。 [敏感度的評價] 對於實施例19〜26、比較例3,採用旋塗器 所列的組成物塗敷於矽基板上後,在加熱板上於 烘焙2分鐘,形成膜厚度爲2.的塗膜。經由 圖案的圖案掩模,採用Nikon製造的NSR1755i7A 曝光機(ΝΑ = 0.50,λ=365ηπι),使曝光時間變化, 膜進行曝光,再在表3所示濃度的氫氧化四甲基 中,於25 °C下經由盛液法顯影1分鐘。用水沖洗 在矽片上形成圖案。測定使0.8 // m線條和間隙(1 φ 隙線寬爲0.8 # m所必需的曝光時間。以該値作爲 於表3。當該値爲2000J/m2以下時,可認定敏感虔 [顯影界限的評價] 對於實施例19〜26、比較例3,採用旋塗器 所列的組成物塗敷於矽基板上後,在加熱板上於 烘焙2分鐘,形成膜厚度爲2.0//m的塗膜。經由 圖案的圖案掩模,採用Nikon製造的NSR1755i7A 曝光機(ΝΑ = 0.50,λ =3 65nm),以相當於上述“ 其作爲微 評價、耐 膜的性能 將表3中 90°C下預 具有規定 縮小投影 對所得塗 銨水溶液 、乾燥, 比1)的間 敏感度列 :爲良好。 將表3中 90°C下預 具有規定 縮小投影 敏感度評 -50- 200949441 價”中測定的敏感度値的曝光量對所得塗膜進行曝光,在 表3所示濃度的氫氧化四甲基銨水溶液中,於25 °C下經由 盛液法顯影1分鐘。用水沖洗、乾燥’在矽片上形成圖案。 以使0.8 // m線條和間隙圖案(1比1)的間隙線寬爲0.8 # m 所必需的顯影時間作爲最佳顯影時間列於表3。並且,在 自最佳顯影時間起進一步繼續顯影時,測定直到0.8/zm寬 度的圖案脫落時的時間(顯影界限),以其作爲顯影界限列 I 於表3。當該値爲30秒以上時,可以認定顯影界限爲良好。 ❹ [微透鏡的形成] 對於實施例19〜26、比較例3,採用旋塗器將表3中 所列的組成物塗敷於矽基板上後,在加熱板上於9CTC下預 焙燒2分鐘,形成膜厚度爲2.0//m的塗膜。經由具有4.0/zm 點.2.0 μ m間隙圖案的圖案掩模,採用 Nikon製造的 NSR1755i7A縮小投影曝光機(ΝΑ = 0.50,λ =365nm),以相當 於上述“敏感度評價”中測定的敏感度値的曝光量對所得 〇 塗膜進行曝光,在表3的作爲敏感度評價中的顯影液濃度 而列出的濃度的氫氧化四甲基銨水溶液中,於25°C下經由 盛液法顯影1分鐘。用水沖洗,乾燥,在矽片上形成圖案。 然後,採用Canon製造的PLA-501F曝光機(超高壓汞燈)以 累積照射量爲3000J/m2進行曝光。然後在加熱板上於16〇 °C下加熱10分鐘後,進一步在230 °C下加熱10分鐘,使圖 案熔體流動,形成微透鏡。 所形成的微透鏡的底部(與基板接合的面)的尺寸(直徑) -51 - 200949441 和斷面形狀列於表3。當微透鏡底部的尺寸超過4.Oym且 不足5.0gm時,可認定爲良好。另外,如果該尺寸爲5·0μιη 以上,則其處於與相鄰透鏡相互接觸的狀態,是不佳的。 此外,斷面形狀在第1圖所示的示意圖中,當爲如(a)所示 的半凸透鏡形狀時,爲良好,而如(b)所示的近似梯形的情 形爲不良。Dielectric constant 03 cn CO C-! CN cn cn cn c〇cn cn CO C<I cn v〇oS transparency g On cn falling vn On ν〇Os ON CN On C<J On cn Os cured film adhesion g >< 沄i—H ο 4 r—Η w-> wn 1—4 s IH >"1 < § 1 1 < s r1 < Heat resistance film thickness change rate (%) C< 1 CN C<1 Οί csi CO CO cn CS CS Solvent-resistant film thickness change rate (%) cn CO c〇CO cn CO CO CO m cn Development limit development limit (seconds) in ο νη l〇Optimal development time ( Second) 沄g sensitivity evaluation mm - 8 Ο <Γ) vr» 〇vn ο 〇8 〇 developer concentration (wt%) inch · inch · 2.38 2.38 oo CO 05 2.38 gas pair, composition type (S-1 (S-2) (S-3) (S-4) (P) 1 CO (S-6) (S-7) (S-8) ON 1 (sl) Embodiment 10 Embodiment 11 Embodiment 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 2 200949441 Examples 19 to 26 and Comparative Example 3 <Performance evaluation as microlens> Composition using the above-described radiation-sensitive resin Matter, evaluate the various properties of the lens as follows . Further, the evaluation of the solvent resistance and the evaluation of the transparency will be referred to as the results in the evaluation of interlayer insulation. [Evaluation of Sensitivity] For Examples 19 to 26 and Comparative Example 3, the composition listed in the spin coater was applied onto a ruthenium substrate, and then baked on a hot plate for 2 minutes to form a film thickness of 2. Coating film. Through the pattern mask of the pattern, an NSR1755i7A exposure machine (ΝΑ = 0.50, λ = 365 ηπι) manufactured by Nikon was used to change the exposure time, and the film was exposed to light, and in the tetramethylammonium hydroxide concentration shown in Table 3, at 25 Development was carried out for 1 minute at a temperature of ° C. Rinse with water to form a pattern on the bracts. The exposure time required to make a line of 0.8 // m and a gap (1 φ gap width of 0.8 # m is used. This 値 is used as Table 3. When the 値 is 2000 J/m 2 or less, sensitive 虔 [development limit] Evaluation] For Examples 19 to 26 and Comparative Example 3, the composition listed in the spin coater was applied onto a ruthenium substrate, and then baked on a hot plate for 2 minutes to form a coating having a film thickness of 2.0/m. Membrane. Using a patterned pattern mask, an NSR1755i7A exposure machine manufactured by Nikon (ΝΑ = 0.50, λ = 3 65 nm) was used to correspond to the above "it is used as a micro evaluation, and the film resistance is expected to be 90 ° C in Table 3. Sensitivity column with a specified reduction in projection to the obtained ammonium-coated aqueous solution, dried, ratio 1): good. Sensitive measured in Table 3 at 90 ° C pre-defined with reduced projection sensitivity - 50-200949441 price The obtained coating film was exposed to light, and developed in a tetramethylammonium hydroxide aqueous solution having a concentration shown in Table 3 at a temperature of 25 ° C for 1 minute by a liquid-filling method. Rinse with water and dry to form a pattern on the crepe. The development time necessary for the gap line width of the 0.8 // m line and the gap pattern (1 to 1) to be 0.8 #m is shown in Table 3 as the optimum development time. Further, when the development was further continued from the optimum development time, the time until the pattern of the width of 0.8/zm was dropped (development limit) was measured, and it was shown in Table 3 as the development limit. When the enthalpy is 30 seconds or longer, it can be confirmed that the development limit is good. ❹ [Formation of microlenses] For Examples 19 to 26 and Comparative Example 3, the compositions listed in Table 3 were applied onto a ruthenium substrate by a spin coater, and then prebaked on a hot plate at 9 CTC for 2 minutes. A coating film having a film thickness of 2.0 / / m was formed. The NSR1755i7A reduced projection projection machine (ΝΑ = 0.50, λ = 365 nm) manufactured by Nikon was passed through a pattern mask having a gap pattern of 4.0/zm point. 2.0 μm to correspond to the sensitivity measured in the above "sensitivity evaluation". The exposure amount of ruthenium was exposed to the obtained ruthenium coating film, and developed in a tetramethylammonium hydroxide aqueous solution at a concentration listed in the sensitivity evaluation of Table 3 at 25 ° C. 1 minute. Rinse with water, dry, and pattern on the bracts. Then, exposure was carried out using a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon at a cumulative irradiation amount of 3000 J/m2. Then, after heating at 16 ° C for 10 minutes on a hot plate, it was further heated at 230 ° C for 10 minutes to flow the pattern to form a microlens. The dimensions (diameter) of the bottom of the formed microlens (the surface joined to the substrate) -51 - 200949441 and the sectional shape are shown in Table 3. When the size of the bottom of the microlens exceeds 4.Oym and is less than 5.0 gm, it can be considered to be good. Further, if the size is 5·0 μm or more, it is in a state of being in contact with an adjacent lens, which is not preferable. Further, in the schematic view shown in Fig. 1, the cross-sectional shape is good in the shape of a semi-convex lens as shown in (a), and the case of an approximately trapezoidal shape as shown in (b) is defective.

表3 組成物 種類 敏感度評價 顯影界限 醒鏡形狀 底部尺寸(mm) 顯影液濃度 (wt%) 敏感度 (J/m2) 最佳顯影時間 (秒) 顯影界限 (秒) 實施例19 (S-1) 0.4 1200 80 30 4.4 (a) 寶施例20 (S-2) 0.4 1200 80 35 4.3 ⑻ 費施例21 (S-3) 2.38 1100 50 35 4.4 (a) 費施例22 (S-4) 2.38 1100 50 40 4.3 (a) 議例23 (S-5) 0.4 1200 80 30 4.4 (a) 實施例24 (S-6) 0.4 1200 80 35 4.3 (a) 蓂施例25 (S-7) 2.38 1300 50 35 4.4 ⑻ 實施例26 (S-8) 2.38 1300 50 40 4.2 ⑻ 嫌例3 (s-1) 0.4 1400 80 15 4.6 (a) 【圖式簡單說明】 第1圖爲微透鏡剖面形狀的模式圖。 【主要元件符號說明】 無。 -52-Table 3 Composition Type Sensitivity Evaluation Development Limit Mirror Shape Bottom Size (mm) Developer Concentration (wt%) Sensitivity (J/m2) Optimal Development Time (seconds) Development Limit (seconds) Example 19 (S- 1) 0.4 1200 80 30 4.4 (a) Bao 20 (S-2) 0.4 1200 80 35 4.3 (8) Fees 21 (S-3) 2.38 1100 50 35 4.4 (a) Fee 22 (S-4) 2.38 1100 50 40 4.3 (a) Regulation 23 (S-5) 0.4 1200 80 30 4.4 (a) Example 24 (S-6) 0.4 1200 80 35 4.3 (a) Example 25 (S-7) 2.38 1300 50 35 4.4 (8) Example 26 (S-8) 2.38 1300 50 40 4.2 (8) Suspect 3 (s-1) 0.4 1400 80 15 4.6 (a) [Simplified illustration] Figure 1 shows the shape of the microlens Pattern diagram. [Main component symbol description] None. -52-

Claims (1)

.200949441 七、申請專利範圍: 1. 一種感放射線性樹脂組成物,其特徵在於包括: [A] 含有(al)由不飽和羧酸和不飽和羧酸酐構成的群組 中選出的至少一種和U2)由具有環氧乙基的不飽和化合 物和具有氣雜環丁烷基的不飽和化合物構成的群組中選 出的至少一種之不飽和混合物的共聚物, [B] l,2 -醌二叠氮化合物,以及 H [C]具有碳原子數爲6〜15的芳基之倍半矽氧烷。 2. 如申請專利範圍第1項之感放射線性樹脂組成物,其中[C] 倍半矽氧烷爲下述式(1)表示的矽烷化合物的水解縮合 物, Si(R')(OR2)(OR3)(OR4) ...... (1) 式中,R1表示碳原子數爲6〜15的芳基,R2〜R4相互 獨立地表示氫原子、碳原子數爲1〜4的取代或未取代的 烷基或醯基。 © 3 ·如申請專利範圍第1項之感放射線性樹脂組成物,其中[C] 倍半矽氧烷爲50〜95重量%的上述式(1)表示的矽烷化合 物與5〜50重量%的下述式(2)表示的矽烷化合物的水解 縮合物, Si(R5)(OR6)(OR7)(OR8) ...... (2) 式中,R5爲碳原子數爲1〜15的烷基,R6〜R8相互獨 立地爲氫原子、碳原子數爲1〜4的取代或未取代的烷基 或醯基。 -53- 200949441 4. 如申請專利範圍第1至3項中任一項之感放射線性樹脂 組成物,其用於形成層間絕緣膜。 5. —種層間絕緣膜之製造方法,其特徵在於包括按照,下述 順序之以下步驟: (1) 在基板上形成如申請專利範圍第4項之感放射線性 樹脂組成物塗膜的步驟, (2) 對該塗膜的至少一部分照射放射線的步驟, 赢 (3)將照射後的塗膜進行顯影的步驟,和 〇 (4)將顯影後的塗膜進行加熱的步驟。 6. 如申請專利範圍第1至3項中任一項之感放射線性樹脂 組成物,其用於形成微透鏡。 7. —種微透鏡之製造方法,其特徵在於包括按照下述順序 之以下步驟: (1)在基板上形成如申請專利範圍第6項之感放射線性 樹脂組成物塗膜的步驟, 〇 (2)對該塗膜的至少一部分照射放射線的步驟, (3) 將照射後的塗膜進行顯影的步驟,和 (4) 將顯影後的塗膜進行加熱的步驟。 -54-.200949441 VII. Patent application scope: 1. A radiation sensitive resin composition characterized by comprising: [A] containing at least one selected from the group consisting of unsaturated carboxylic acid and unsaturated carboxylic anhydride U2) a copolymer of at least one unsaturated mixture selected from the group consisting of an unsaturated compound having an epoxy group and an unsaturated compound having a gas-cyclobutane group, [B] l, 2 - 醌The azide compound, and H [C] has a sesquioxane having an aryl group having 6 to 15 carbon atoms. 2. The radiation-sensitive resin composition of claim 1, wherein [C] sesquiterpene oxide is a hydrolysis condensate of a decane compound represented by the following formula (1), Si(R')(OR2) (OR3) (OR4) (1) In the formula, R1 represents an aryl group having 6 to 15 carbon atoms, and R2 to R4 independently represent a hydrogen atom and a substitution of 1 to 4 carbon atoms. Or an unsubstituted alkyl or thiol group. The radiation sensitive linear resin composition of the first aspect of the invention, wherein [C] sesquioxane is 50 to 95% by weight of the decane compound represented by the above formula (1) and 5 to 50% by weight A hydrolysis condensate of a decane compound represented by the following formula (2), Si(R5)(OR6)(OR7)(OR8) (2) wherein R5 is a carbon number of 1 to 15 The alkyl group, R6 to R8, independently of each other, is a hydrogen atom, a substituted or unsubstituted alkyl group or a fluorenyl group having 1 to 4 carbon atoms. The radiation-sensitive resin composition according to any one of claims 1 to 3, which is used for forming an interlayer insulating film. 5. A method of producing an interlayer insulating film, comprising the steps of: (1) forming a coating film of a radiation sensitive resin composition as in the fourth aspect of the patent application, on the substrate, (2) a step of irradiating at least a part of the coating film with radiation, (3) a step of developing the coating film after the irradiation, and a step of heating the coating film after the development with the crucible (4). 6. The radiation sensitive resin composition according to any one of claims 1 to 3, which is used for forming a microlens. 7. A method of producing a microlens, comprising the steps of: (1) forming a coating film of a radiation sensitive resin composition as in claim 6 of the patent application on a substrate, 〇( 2) a step of irradiating at least a part of the coating film with radiation, (3) a step of developing the coating film after the irradiation, and (4) a step of heating the coating film after the development. -54-
TW098109358A 2008-03-24 2009-03-23 Photosensitive resin composition, interlayer insulating film, and method for processing microlens TWI430025B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076158A JP5105073B2 (en) 2008-03-24 2008-03-24 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens

Publications (2)

Publication Number Publication Date
TW200949441A true TW200949441A (en) 2009-12-01
TWI430025B TWI430025B (en) 2014-03-11

Family

ID=41193323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098109358A TWI430025B (en) 2008-03-24 2009-03-23 Photosensitive resin composition, interlayer insulating film, and method for processing microlens

Country Status (4)

Country Link
JP (1) JP5105073B2 (en)
KR (1) KR101525254B1 (en)
CN (1) CN101546127B (en)
TW (1) TWI430025B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404005B1 (en) * 2010-04-28 2014-06-05 제이에스알 가부시끼가이샤 Positive radiation-sensitive composition, interlayer insulating film for display element, and formation method for same
WO2011142391A1 (en) * 2010-05-13 2011-11-17 日産化学工業株式会社 Photosensitive resin composition and display device
JP5655529B2 (en) * 2010-12-01 2015-01-21 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, and method for forming interlayer insulating film
JP6186766B2 (en) * 2012-03-30 2017-08-30 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
KR20130132322A (en) * 2012-05-25 2013-12-04 주식회사 엘지화학 Photosensitive resin composition, pattern formed by using the same and display panel comprising the same
TWI524141B (en) 2014-06-27 2016-03-01 奇美實業股份有限公司 Photosensitive resin composition, protective film and element having the same
TWI524150B (en) 2014-06-27 2016-03-01 奇美實業股份有限公司 Photosensitive resin composition, protective film and element having the same
CN112368336A (en) * 2018-08-31 2021-02-12 东丽株式会社 Resin composition and cured film thereof
CN113260922A (en) 2018-12-31 2021-08-13 株式会社东进世美肯 Positive photosensitive resin composition
KR20240037946A (en) * 2021-07-28 2024-03-22 닛산 가가쿠 가부시키가이샤 Positive type photosensitive resin composition containing a specific copolymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835120B2 (en) * 2000-05-22 2006-10-18 Jsr株式会社 Radiation sensitive resin composition, interlayer insulating film and microlens
TWI273352B (en) * 2002-01-24 2007-02-11 Jsr Corp Radiation sensitive composition for forming an insulating film, insulating film and display device
US6984476B2 (en) * 2002-04-15 2006-01-10 Sharp Kabushiki Kaisha Radiation-sensitive resin composition, forming process for forming patterned insulation film, active matrix board and flat-panel display device equipped with the same, and process for producing flat-panel display device
JP4677871B2 (en) * 2005-10-03 2011-04-27 Jsr株式会社 Radiation sensitive resin composition and formation of interlayer insulating film and microlens
KR101280478B1 (en) * 2005-10-26 2013-07-15 주식회사 동진쎄미켐 Photosensitive resin composition
JP4655914B2 (en) * 2005-12-13 2011-03-23 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JPWO2007132890A1 (en) * 2006-05-16 2009-09-24 日産化学工業株式会社 Positive photosensitive resin composition and porous film obtained therefrom

Also Published As

Publication number Publication date
TWI430025B (en) 2014-03-11
KR101525254B1 (en) 2015-06-02
CN101546127A (en) 2009-09-30
JP5105073B2 (en) 2012-12-19
KR20090101847A (en) 2009-09-29
CN101546127B (en) 2012-11-28
JP2009229892A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
TWI430025B (en) Photosensitive resin composition, interlayer insulating film, and method for processing microlens
KR100976031B1 (en) Radiation Sensitive Resin Composition, Insulating Interlayer and Microlens, and Process for Preparing the Same
TWI444775B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
KR101409552B1 (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and process for producing them
TWI438573B (en) Radiation-sensitive composition, interlayer insulation film and micro-lens, and forming method thereof
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
JP2008176037A (en) Radiation-sensitive resin composition, interlayer insulation film, microlens, and method for producing those
KR101421299B1 (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and process for producing them
JP2009151099A (en) Radiation-sensitive resin composition, interlayer insulation film and method for producing the same
TWI361951B (en)
TWI510857B (en) Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like
JP5029836B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
KR100806495B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
TWI425315B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TW201829553A (en) Photosensitive resin composition and cured film prepared therefrom
JP2009204864A (en) Radiation-sensitive resin composition, interlayer dielectric and microlens, and methods for producing those
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
TWI394000B (en) Radiation sensitive resin composition, radiation sensitive dry film, interlayer dielectric film and a forming method thereof, and microlens and a forming method thereof
JP2009204865A (en) Radiation sensitive resin composition, interlayer dielectric, microlens, and method of manufacturing the same
TW201942678A (en) Positive-type photosensitive resin composition, cured film thereof, and solid-state imaging element having same