TW200944970A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
TW200944970A
TW200944970A TW097148024A TW97148024A TW200944970A TW 200944970 A TW200944970 A TW 200944970A TW 097148024 A TW097148024 A TW 097148024A TW 97148024 A TW97148024 A TW 97148024A TW 200944970 A TW200944970 A TW 200944970A
Authority
TW
Taiwan
Prior art keywords
control
feedforward
command
spectrum
response
Prior art date
Application number
TW097148024A
Other languages
Chinese (zh)
Inventor
Fukashi Andoh
Original Assignee
Yaskawa Denki Seisakusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Denki Seisakusho Kk filed Critical Yaskawa Denki Seisakusho Kk
Publication of TW200944970A publication Critical patent/TW200944970A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

A motor controller which can judge whether feedforward control to be used is effective or not using only the frequency response information of a controlled object, and can set a control gain for realizing highest available control performance. The motor controller comprises an operating unit (111) for calculating a load response spectrum based on a command spectrum and a controlled object frequency response, an operating unit (112) for calculating a load response follow-up deviation spectrum based on the command spectrum and the load response spectrum, and a feedforward control setter (113) for calculating a feedforward control setting signal based on the load response follow-up deviation spectrum.

Description

200944970 九、發明說明 【發明所屬之技術領域】 本發明,係有關於驅動已連結負載的馬達之馬達控制 裝置。 _ 【先前技術】 以往的馬達控制裝置,係根據控制對象的逆解模式所 0 算出的轉矩前饋訊號之第1轉矩前饋訊號的變化較爲和緩 的情況下,把施以濾波處理到前述第1轉矩前饋訊號之第 2轉矩前饋訊號加算到轉矩指令,在前述第1轉矩前饋訊 號的變化較爲急遽的情況下,把前述第1轉矩前饋訊號加 算到前述轉矩指令後驅動控制對象(例如,參閱專利文獻 1 ) ° 在圖5中,5〇1爲位置指令產生器、502爲位置控制 手段、5 03爲速度控制手段、5 04爲電流控制手段、5 05爲 〇 控制對象、5 0 6爲檢測器、5 0 7爲速度F F作成手段、5 0 8 * 爲轉矩F F作成手段、5 0 9爲濾波處理手段、5 1 0爲切換手 - 段。 位置指令產生器501爲輸出位置指令。 位置控制手段5 02爲輸入對前述位置指令進行減法運 算後的位置追蹤偏差,輸出速度指令。 速度控制手段503爲把速度前饋訊號加法運算到前述 速度指令’輸入已對速度進行過減法運算的速度追蹤偏差 ,輸出轉矩指令。 -5- 200944970 電流控制手段504爲輸入加法運算第1轉矩前饋訊號 或是第2前饋訊號到前述轉矩指令後的調整轉矩指令’利 用電流來驅動控制對象5 05。 檢測器5 06爲檢測控制對象505的前述位置並進行輸 出。 速度FF作成手段5 07爲輸入前述位置指令,輸出把 該輸入訊號予以1階微分後的前述速度前饋訊號。 轉矩FF作成手段508係輸入前述速度前饋訊號,根 據已知的控制對象5 05的機械常數來輸出第1轉矩前饋訊 號。 濾波處理手段5 09係輸入前述第1轉矩前饋訊號,輸 出對該輸入訊號施以低通濾波、移動平均濾波等的濾波處 理之第2轉矩前饋訊號。 切換手段510係輸入前述第1前饋訊號與前述第2前 饋訊號,在前述第1前饋訊號的變化量比已設定的臨限値 還要大的情況下,輸出前述第1前饋訊號,在其它的情況 下則輸出前述第2前饋訊號。 如此,以往的前饋控制裝置,係根據控制對象的逆解 模式所算出的轉矩前饋訊號之第1轉矩前饋訊號的變化較 爲和緩的情況下’把施以濾波處理到前述第1轉矩前饋訊 號之第2轉矩前饋訊號加算到轉矩指令,在前述第1轉矩 前饋訊號的變化較爲急遽的情況下,把前述第1轉矩前饋 訊號加算到前述轉矩指令後驅動控制對象。 〔專利文獻1〕日本特開2007-34729號專利公報(第 -6 - 200944970 10頁、第1圖) 【發明內容】 〔發明欲解決之課題〕 以往的馬達控制裝置,係在控制增益的設定値 _ 對象的組合爲某種情況下,針對正在使用的前饋控 應改善是否有效一事,有著提高控制增益後沒去計 Φ 波形是沒辦法判斷出來之問題。又,也有著實現利 使用的前饋控制所應得到之最好的控制性能之控制 定之問題。 本發明係有鑑於這樣的問題點,其目的是在於 僅使用控制對象之頻率響應的資訊,可以判斷正在 前饋控制是否有效,可以去實現理應得到之最好的 能的控制增益設定之馬達控制裝置。 Q 〔解決課題之手段〕 ' 爲解決上述問題,本發明爲如下之構成。 - 請求項1所記載之發明,爲一種馬達控制裝置 備了 :回饋控制器,爲輸入位置或是速度的指令與 象的控制響應以及前饋訊號,以使前述指令與前述 應一致的方式來進行控制演算後算出轉矩指令、和 制器,爲輸入前述轉矩指令,根據前述轉矩指令供 至前述控制對象、和前饋控制器,爲輸入前述指令 前述指令來算出前述前饋訊號、和訊號產生器,爲 與控制 制之響 測響應 用正在 增益設 提供有 使用的 控制性 ,係具 控制對 控制響 轉矩控 給電力 ,根據 在頻率 200944970 響應計測時輸出頻率響應計測用訊號;其特徵爲:具備前 饋控制設定裝置,爲算出:指令頻譜,是爲輸入前述指令 以及頻率響應計測時之前述控制響應,是爲前述指令的頻 譜、和控制對象頻率響應,是爲前述控制對象的頻率響應 、和負載響應追蹤偏差頻譜,是爲根據前述指令頻譜與前 述控制對象頻率響應,構成前述控制對象的負載之負載響 應之前述指令的追蹤偏差;輸出前饋控制設定訊號;根據 前述前饋控制設定訊號,來設定是否使用前述前饋控制器 _ 的控制增益、以及前述前饋控制器。 又,請求項2所記載的發明,爲在請求項1所記載的 發明中的前述前饋控制設定裝置,爲在有關於各個前述指 令頻譜包含的頻率範圍與其以上的頻率範圍中去設定臨限 値,在前述負載響應追蹤偏差頻譜爲至少其中一方的臨限 値以上之情況下,輸出所謂不使用前述前饋控制器之前述 前饋控制設定訊號。 又,請求項3所記載的發明,爲在請求項1所記載的 Q 發明中的前述前饋控制設定裝置,爲針對各個前述回饋控 — 制器與前述前饋控制器之複數個控制增益組合來算出前述 . 負載響應追蹤偏差頻譜,根據前述負載響應追蹤偏差頻譜 的大小爲最小的情況之前述控制增益組合,把前述控制增 益的設定値當作前述前饋控制設定訊號來輸出。 〔發明之效果〕 由本發明,因爲可以僅使用控制對象的頻率響應的資 -8- 200944970 訊來判斷正在使用的前饋控制是否有效的緣故,並沒有必 要提高控制增益來計測響應波形,可以在初期狀態下預測 前饋控制的效果,可以實現經由正在利用的控制器所應得 到最好的控制性能之增益設定。 又,由請求項2或3所記載的發明,頻率響應的測定 變得比較快的緣故,短時間內可以預測前饋控制的效果, 可以實現經由正在使用的控制器所應得到最好的控制性能 Q 之控制增益設定。 【實施方式】 以下,有關本發明的實施形態,參閱圖來說明之。 於實際的馬達控制裝置內建有各式各樣的功能或手段 ’但是於圖中僅記載與本發明有關係之功能或手段來進行 說明。又’有關以下同一之名稱盡可能賦予同一之符號並 省略重複說明。 〔實施例1〕 圖1係說明表示本發明之第1實施例之馬達控制裝置 之方塊圖。 圖1中’ 101爲指令產生器、丨02爲回饋控制器、103 爲轉矩控制器、104爲控制對象、1〇5爲編碼器、1〇6爲前 饋控制器、107爲頻率響應計測用訊號產生器、1〇8爲前 饋控制設定裝置。又,109爲指令頻譜演算器、n〇爲控 制對象頻率響應檢測器、U1爲負載響應頻譜演算器、n2 -9- 200944970 爲負載響應追蹤偏差頻譜演算器、113爲前饋控制設定器 〇 位置指令產生器1 〇 1,爲輸出位置指令。 回饋控制器102,係輸入前述指令與前饋訊號與控制 對象104的響應,前述響應以使前述指令一致的方式來進 行控制演算,算出轉矩指令,輸出到轉矩控制器1 03。 控制對象1 04,係連結負載之馬達。 轉矩控制器1 03,係輸入前述轉矩指令與頻率響應計 測用訊號,於通常動作時根據前述轉矩指令,於頻率響應 計測時根據由頻率響應計測用訊號產生器所輸出的頻率響 應計測用訊號,讓馬達電流流動到前述馬達。 編碼器1 05,爲檢測控制對象1 04的前述位置並進行 輸出。 前饋控制器106,係輸入前述指令與前饋控制設定訊 號,根據前述前饋控制設定訊號算出前述前饋訊號,輸出 到回饋控制器102。 頻率響應計測用訊號產生器107,爲把前述頻率響應 計測用訊號書出道轉矩控制器1 03。 前述頻率響應計測用訊號,只要是可以測定馬達控制 裝置的頻率響應的話任何一種都可以,掃瞄正弦波者爲佳 。又,以複數個頻率之正弦波來構成者也爲佳。以把前述 頻率響應測定用訊號當作掃瞄正弦波訊號的方式,可以在 短時間正確地計測控制對象1 0 4的頻率響應。又,以把前 述頻率響應測定用訊號當作複數個頻率的正弦波來構成的 -10- 200944970 方式,可以利用短時間正確地計測控制對象104的頻率響 應。 前饋控制設定裝置108,係於頻率響應檢測時’輸入 前述指令與前述響應,算出前述前饋控制設定訊號’輸出 到前饋控制器106。 .前述前饋控制設定訊號,係包含有前饋控制器106之 控制增益以及使用/不使用前饋控制的設定値。 〇 又,前饋控制設定裝置1 08,係以指令頻譜演算器 109、控制對象頻率響應檢測器11〇、負載響應頻譜演算器 111、負載響應追蹤偏差頻譜演算器112、以及前饋控制設 定器1 1 3來構成。 指令頻譜演算器1 〇 9,係輸入前述指令,算出指令頻 譜’輸出到負載響應頻譜演算器111以及負載響應追蹤偏 差頻譜演算器1 1 2。 指令頻譜演算器109,係期望有使用FFT來算出前述 © 指令頻譜。又,使用連續的頻率帶域之複數個帶通濾波器 — 來算出前述指令頻譜者爲佳。 * 控制對象頻率響應檢測器11 〇,係輸入前述響應,算 出控制對象頻率響應,輸出到負載響應頻譜演算器n i。 負載響應頻譜演算器111,係輸入前述指令與前述控 制對象頻率響應,算出負載響應頻譜,輸出到負載響應追 蹤偏差頻譜演算器丨i 2。 負載響應頻譜演算器111,係期望有:由前述控制對 象頻率響應來算出前述控制對象的***振頻率,根據前述 -11 - 200944970 ***振頻率算出所謂直至前述控制對象的負載響應之頻率 響應的負載頻率響應,算出把由前述指令頻譜與前述前饋 控制器的控制增益所算出的前饋控制器頻率響應與前述負 載頻率響應予以進行乘法運算所得出的負載響應頻譜。 負載響應追蹤偏差頻譜演算器112,係輸入前述指令 頻譜與前述負載響應頻譜,算出負載響應追蹤偏差頻譜, 輸出到前饋控制設定器1 1 3。 負載響應追蹤偏差頻譜演算器Π2,係期望有從前述 負載響應頻譜對指令頻譜進行減法運算,來算出前述負載 響應追蹤偏差頻譜。 前饋控制設定器113,係輸入前述負載響應追蹤偏差 頻譜,算出前述前饋控制設定訊號,輸出到前饋控制器 106° 前饋控制設定器113,係在有關於各個前述指令頻譜 包含的頻率範圍與其以上的頻率範圍中去設定臨限値,在 前述負載響應追蹤偏差頻譜爲至少其中一方的臨限値以上 之情況下,輸出所謂不使用前述前饋控制器106之前饋控 制設定訊號;在其它的情況下,輸出所謂使用前述前饋控 制器1 06之前饋控制設定訊號。 又,前饋控制設定器113,係期望有針對各個回饋控 制器102與前饋控制器106之複數個控制增益組合來算出 前述負載響應追蹤偏差頻譜,根據前述負載響應追蹤偏差 頻譜的大小爲最小的情況之前述控制增益組合,把前饋控 制器1 06的控制增益設定値當作前述前饋控制設定訊號來 -12- 200944970 輸出。 本發明與先前技術不同的部分,係具備有以指令頻譜 演算器109、控制對象頻率響應檢測器110、負載響應頻 譜演算器111、負載響應追蹤偏差頻譜演算器112、以及 前饋控制設定器1 1 3所構成之前饋控制設定裝置1 〇8 ;特 _ 別是具備有,根據指令頻譜與控制對象頻率響應來算出負 載響應頻譜之負載響應頻譜演算器111、根據前$ f旨令頻 〇 譜與前述負載響應頻譜來算出負載響應追蹤偏差頻譜之負 載響應追蹤偏差頻譜演算器Π2、以及根據前述負載響應 追蹤偏差頻譜算出前饋控制設定訊號之前饋控制設定器 1 13的部分。 以下,詳細說明前饋控制設定裝置1 〇 8算出前饋控制 設定訊號的結構。 把指令當作位置指令,把回饋控制器1 〇 2當作位置速 度控制器’控制對象1 04爲連結負載之馬達,當作可以近 © 似在二慣性系統(two-inertia system),把響應當作馬達 ' 位置的話’控制對象頻率響應檢測器1 1 〇所輸出的控制對 • 象頻率響應變成從轉矩指令至馬達位置的頻率響應。 把前述控制對象的頻率響應Gpl(s)的振幅爲當作極小 値的頻率做爲***振頻率wa,把當作極大値的頻率當作 共振頻率ωι·’***振頻率wa之附近的控制對象頻率響應 Gpl(s)的振幅的溝的Q値當作Qa的話,***振的衰減係 數ta以式(1)來表示。 ζ a=l/(2*Qa) (l) -13- 200944970 同樣地,把共振頻率wr附近的控制對象的頻率響應 Gpl(s)的振幅的峰之Q値當作Qr的話,共振的衰減係數 Γ r以式(2 )來表示。200944970 IX. Description of the Invention [Technical Field] The present invention relates to a motor control device for driving a motor to which a load is connected. _ [Prior Art] In the conventional motor control device, when the change in the first torque feedforward signal of the torque feedforward signal calculated by the inverse solution mode of the control target is relatively gentle, the filter processing is applied. The second torque feedforward signal to the first torque feedforward signal is added to the torque command, and when the change of the first torque feedforward signal is relatively rapid, the first torque feed forward signal is The control target is added after the torque command is added (for example, see Patent Document 1). In Fig. 5, 5〇1 is the position command generator, 502 is the position control means, 503 is the speed control means, and 504 is the current. The control means, 505 is the 〇 control object, 506 is the detector, 507 is the speed FF generating means, 508 is the torque FF generating means, 509 is the filtering processing means, and 5 10 is the switching Hand-segment. The position command generator 501 is an output position command. The position control means 502 inputs a position tracking deviation after subtracting the position command, and outputs a speed command. The speed control means 503 adds a speed feedforward signal to the speed command' to input a speed tracking deviation which has been subjected to subtraction of the speed, and outputs a torque command. -5- 200944970 The current control means 504 drives the control object 505 by inputting the first torque feedforward signal or the second feedforward signal to the torque command command after the torque command. The detector 506 detects the aforementioned position of the control object 505 and outputs it. The speed FF generating means 5 07 is for inputting the position command, and outputs the speed feedforward signal after the input signal is first-order differentiated. The torque FF generating means 508 inputs the speed feedforward signal, and outputs a first torque feedforward signal based on a known mechanical constant of the control object 505. The filter processing means 5 09 inputs the first torque feedforward signal, and outputs a second torque feedforward signal for filtering the input signal by low-pass filtering, moving average filtering or the like. The switching means 510 inputs the first feedforward signal and the second feedforward signal, and outputs the first feedforward signal when the amount of change of the first feedforward signal is larger than the threshold value that has been set. In other cases, the second feedforward signal is output. As described above, in the conventional feedforward control device, when the change in the first torque feedforward signal of the torque feedforward signal calculated based on the inverse solution mode of the control target is relatively gentle, the filtering process is applied to the foregoing The second torque feedforward signal of the torque feedforward signal is added to the torque command, and when the change of the first torque feedforward signal is relatively rapid, the first torque feedforward signal is added to the foregoing The control object is driven after the torque command. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2007-34729 (Section -6 - 200944970, p. 10, 1). [Problem to be Solved by the Invention] A conventional motor control device sets the control gain.値 _ The combination of objects is a problem in which the improvement of the feedforward control being used should be effective, and there is no way to judge the waveform without increasing the control gain. In addition, there is also the problem of controlling the best control performance that should be achieved by the use of feedforward control. The present invention is directed to such a problem, and its object is to use only the information of the frequency response of the control object to determine whether the feedforward control is effective or not, and to achieve the best control gain setting motor control that should be obtained. Device. Q [Means for Solving the Problem] In order to solve the above problems, the present invention has the following constitution. - The invention recited in claim 1, wherein the motor control device is provided with: a feedback controller for inputting a position or speed command and image control response and a feedforward signal so that the aforementioned command is consistent with the foregoing After the control calculation, the torque command and the controller are calculated, and the torque command is input, and the torque command is supplied to the control target and the feedforward controller, and the feedforward signal is calculated by inputting the command command. And the signal generator provides control for use with the gain response of the control system, and the control controls the power of the control torque, and outputs a frequency response measurement signal according to the response measurement at frequency 200944970; The feedforward control setting device is configured to calculate the command spectrum, which is the control response when the command and the frequency response are input, and is the spectrum of the command and the frequency response of the control target, and is the control target. Frequency response, and load response tracking deviation spectrum, is based on the aforementioned spectrum The control target frequency response, the tracking deviation of the command constituting the load response of the load to be controlled; outputting a feedforward control setting signal; and setting whether to use the control gain of the feedforward controller_ according to the feedforward control setting signal And the aforementioned feedforward controller. The invention according to claim 2, wherein the feedforward control setting device according to the invention of claim 1 is configured to set a threshold in a frequency range including a frequency range included in each of the command spectrums. In other words, when the load response tracking deviation spectrum is at least one of the thresholds, the feedforward control setting signal that does not use the feedforward controller is output. Further, the invention according to claim 3, wherein the feedforward control setting device according to the Q invention described in claim 1 is a combination of a plurality of control gains for each of the feedback controller and the feedforward controller The load response tracking deviation spectrum is calculated, and the control gain combination in the case where the magnitude of the load response tracking deviation spectrum is the smallest is used, and the setting of the control gain is output as the feedforward control setting signal. [Effect of the Invention] According to the present invention, since it is possible to judge whether or not the feedforward control being used is valid by using only the frequency response of the control target, it is not necessary to increase the control gain to measure the response waveform. The effect of predicting feedforward control in the initial state can achieve a gain setting that is best achieved by the controller being utilized. Further, in the invention described in the claim 2 or 3, since the measurement of the frequency response becomes relatively fast, the effect of the feedforward control can be predicted in a short time, and the best control by the controller being used can be realized. Control gain setting for performance Q. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. Various functions or means are built into the actual motor control device. However, only functions or means related to the present invention are described in the drawings. Further, the same names as below are given the same symbols as much as possible, and overlapping descriptions are omitted. [Embodiment 1] Fig. 1 is a block diagram showing a motor control device according to a first embodiment of the present invention. In Fig. 1, '101 is the command generator, 丨02 is the feedback controller, 103 is the torque controller, 104 is the control object, 1〇5 is the encoder, 1〇6 is the feedforward controller, and 107 is the frequency response measurement. The signal generator and 1〇8 are used as feedforward control setting devices. In addition, 109 is the command spectrum calculator, n 〇 is the control target frequency response detector, U1 is the load response spectrum calculator, n2 -9- 200944970 is the load response tracking deviation spectrum calculator, and 113 is the feedforward control setter 〇 position The command generator 1 〇1 is the output position command. The feedback controller 102 inputs the above-mentioned command and the response of the feedforward signal and the control object 104. The response is controlled in such a manner that the commands are identical, and the torque command is calculated and output to the torque controller 103. The control object 104 is a motor that connects the load. The torque controller 1300 inputs the torque command and the frequency response measurement signal, and measures the frequency response according to the frequency response measurement signal generator during the frequency response measurement according to the torque command during normal operation. Use a signal to let the motor current flow to the aforementioned motor. The encoder 105 detects and outputs the aforementioned position of the control object 104. The feedforward controller 106 inputs the command and the feedforward control setting signal, and calculates the feedforward signal according to the feedforward control setting signal, and outputs the feedforward signal to the feedback controller 102. The frequency response measurement signal generator 107 is for outputting the frequency response measurement signal book to the torque controller 103. The frequency response measurement signal may be any one as long as it can measure the frequency response of the motor control device, and it is preferable to scan the sine wave. Also, it is preferable to form a sine wave of a plurality of frequencies. By using the frequency response measurement signal as a scanning sine wave signal, the frequency response of the control object 104 can be accurately measured in a short time. Further, in the -10-200944970 system in which the frequency response measurement signal is used as a sine wave of a plurality of frequencies, the frequency response of the control object 104 can be accurately measured in a short time. The feedforward control setting means 108 inputs the aforementioned command and the response when the frequency response is detected, and calculates the feedforward control setting signal 'outputted to the feedforward controller 106. The aforementioned feedforward control setting signal includes a control gain of the feedforward controller 106 and a setting of using/not using feedforward control. Further, the feedforward control setting means 108 is a command spectrum calculator 109, a control target frequency response detector 11A, a load response spectrum actor 111, a load response tracking deviation spectrum estimator 112, and a feedforward control setter. 1 1 3 to form. The command spectrum calculator 1 〇 9 inputs the above command, and calculates the command spectrum 'outputted to the load response spectrum calculator 111 and the load response tracking deviation spectrum calculator 1 1 2 . The command spectrum calculator 109 expects to use the FFT to calculate the aforementioned command spectrum. Further, it is preferable to use a plurality of band pass filters of a continuous frequency band to calculate the aforementioned command spectrum. * The control target frequency response detector 11 输入 inputs the aforementioned response, calculates the control target frequency response, and outputs it to the load response spectrum calculator n i . The load response spectrum calculator 111 inputs the aforementioned command and the aforementioned control target frequency response, calculates a load response spectrum, and outputs it to the load response tracking deviation spectrum calculator 丨i 2 . The load response spectrum calculator 111 is configured to calculate the anti-resonance frequency of the control target from the frequency response of the control target, and calculate a load corresponding to the frequency response of the load response to the control target based on the anti-resonance frequency of -11 - 200944970 The frequency response calculates a load response spectrum obtained by multiplying the feedforward controller frequency response calculated by the command spectrum and the control gain of the feedforward controller and the load frequency response. The load response tracking deviation spectrum controller 112 inputs the aforementioned command spectrum and the load response spectrum, calculates a load response tracking deviation spectrum, and outputs it to the feedforward control setter 113. The load response tracking deviation spectrum Π2 is expected to calculate the aforementioned load response tracking deviation spectrum by subtracting the command spectrum from the load response spectrum. The feedforward control setter 113 inputs the load response tracking deviation spectrum, calculates the feedforward control setting signal, and outputs the signal to the feedforward controller 106° feedforward control setter 113, which is related to the frequency included in each of the aforementioned command spectra. In the frequency range above the range, the threshold is set, and when the load response tracking deviation spectrum is at least one of the thresholds, the so-called feedforward control setting signal of the feedforward controller 106 is not used; In other cases, the output uses the aforementioned feedforward controller 106 feed control setting signal. Moreover, the feedforward control setter 113 expects to have a combination of a plurality of control gains for each of the feedback controller 102 and the feedforward controller 106 to calculate the load response tracking deviation spectrum, and to minimize the magnitude of the deviation spectrum according to the load response. In the case of the aforementioned control gain combination, the control gain setting of the feedforward controller 106 is output as the feedforward control setting signal -12-200944970. The portion of the present invention different from the prior art is provided with a command spectrum calculator 109, a control target frequency response detector 110, a load response spectrum actor 111, a load response tracking deviation spectrum estimator 112, and a feedforward control setter 1 1 3 constitutes a feedforward control setting device 1 〇8; specially provided, a load response spectrum calculator 111 for calculating a load response spectrum based on a command frequency spectrum and a control target frequency response, and a frequency spectrum based on the previous $f command A load response tracking deviation spectrum calculator Π2 for calculating a load response tracking deviation spectrum from the load response spectrum, and a portion of the feedforward control setting signal feed forward control setter 1 13 based on the load response tracking deviation spectrum. Hereinafter, the configuration of the feedforward control setting means 1 算出 8 for calculating the feedforward control setting signal will be described in detail. The command is used as the position command, and the feedback controller 1 〇2 is regarded as the position speed controller' control object 104 as the motor connected to the load, which can be used as a two-inertia system. If the motor 'position is set', the control object frequency response detector 1 1 输出 outputs the control pair • the frequency response becomes the frequency response from the torque command to the motor position. The frequency of the frequency response Gpl(s) of the control target is regarded as the frequency of the minimum small 値 as the anti-resonance frequency wa, and the frequency which is regarded as the maximum 値 is regarded as the control target of the resonance frequency ωι·' near the anti-resonance frequency wa When Q値 of the groove of the amplitude of the frequency response Gpl(s) is regarded as Qa, the attenuation coefficient ta of the anti-resonance is expressed by the formula (1). ζ a=l/(2*Qa) (l) -13- 200944970 Similarly, the Q 値 of the peak of the amplitude of the frequency response Gpl(s) of the control object near the resonance frequency wr is regarded as Qr, and the attenuation coefficient of the resonance Γ r is expressed by the formula (2).

Cr=l/(2-Qr) (2) 把比***振頻率ω a還要非常低頻率ω之控制對象的 頻率響應Gpl(s)的振幅當作Ml的話,控制對象104的總 慣性矩以式(3 )來表示。 Ι=1/(Μ1·ω2) (3) 使用控制對象頻率響應Gpl(s)以及式(1 )至(3 )所 算出的***振頻率6〇a、使用***振的衰減係數(a經由式 (4)算出從前述馬達位置至負載位置的頻率響應Gp2(s) 〇Cr=l/(2-Qr) (2) If the amplitude of the frequency response Gpl(s) of the control object which is very lower than the anti-resonance frequency ω a is regarded as M1, the total moment of inertia of the control object 104 is Expressed by equation (3). Ι=1/(Μ1·ω2) (3) Using the control target frequency response Gpl(s) and the anti-resonance frequency 6〇a calculated by equations (1) to (3), using the anti-resonance attenuation coefficient (a (4) Calculate the frequency response Gp2(s) from the motor position to the load position 〇

Gp2(s) = coa2/(s2+2· ζ a. coa-s+ coa2) 前饋控制器106係當作輸出包含有位置前饋訊號、速 度前饋訊號、轉矩前饋訊號之前饋訊號,於回饋控制器 102內,根據由前述位置前饋訊號對前述馬達位置進行減 法運算後的馬達位置追蹤偏差來算出速度指令,根據於前 述速度指令對前述速度前饋訊號進行加法運算並對是爲前 述馬達位置的1階微分値的馬達速度進行減法運算後的馬 達速度追蹤偏差來算出回饋轉矩指令,於前述回饋轉矩指 令對前述轉矩前饋訊號進行加法運算後算出轉矩指令。前 述位置前饋訊號係於前述位置指令對位置前饋濾波器 Grp(s)進行乘法運算後而求出的。 200944970 器Grv(s)進行乘法運算後而求出的。 前述轉矩前饋訊號係於前述位置指令對轉矩前饋濾波 器Grt(s)進行乘法運算後而求出的。 使用控制對象頻率響應Gpl(s)、式(4 )、轉矩前饋 濾波器Grt(s),來求出是爲從前述位置指令至負載位置的 _ 頻率響應之負載頻率響應Grt(s). Gpl(s)· Gp2(s)。 指令頻譜演算器109,係使用FFT來算出是爲前述位 0 置指令的頻譜之指令頻譜sr( ω )。但是,把ω當作頻譜頻 率〇 負載響應頻譜演算器111,係根據式(5)算出是爲負 載響應的頻譜之負載響應頻譜sl(«)。 slU)= || Grt(jco).GplGco) Αρ2〇ω) IhsrU)⑸ 但是’ II · II爲範數,j表示爲虛數單位。 負載響應追蹤偏差頻譜演算器112係把相對於負載位 置的前述位置指令之是爲追蹤偏差的負載位置追蹤偏差的 G 頻譜之負載響應追蹤偏差頻譜,經由式(6)來算出。 " sld (ω) = sr (ω) — si (ω ) (6) , 負載響應追蹤偏差頻譜sld( ω),爲在全部的頻譜頻 率ω中是爲0的情況下,表示前述負載位置爲完全地追蹤 於前述位置指令。另一方面,於某頻率㊉中具有峰値的情 況下’表示前述負載位置包含該頻率0的振動。 各自設定:比起是爲指令頻譜sr(w)所包含之主要的 頻率成分的頻率上限値之指令頻率上限値還要低的頻率範 圍中負載響應追蹤偏差頻譜sld(〇))所持有之峰値的容許 -15- 200944970 値、和比起前述指令頻率上限値還要高的頻率範圍中負載 響應追蹤偏差頻譜sld(〇;)所持有之峰値的容許値。前饋 控制設定器1 1 3,係僅在負載響應追蹤偏差頻譜sld( ω )爲 前述容許値以下的情況下,經由把做爲「使用」的前饋控 制之前饋控制訊號輸出到前饋控制器1 〇6,可以實現暫態 響應或高頻振動較少的負載的響應。 又,本發明,係僅使用控制對象1 04的頻率響應就可 以做前饋控制設定的緣故,像先前技術般地爲了前饋控制 的設定而提高回饋控制增益,不會使控制對象104振動變 大,可以爲最適合於設定控制對象104的回饋控制增益之 前饋控制設定。 在本實施例表示出位置速度控制的情況,但是,經由 把前述前饋訊號當作速度前饋訊號與轉矩前饋訊號、把式 (3)分母的ω2當作ω、把前述響應當作馬達速度、把前 述負載響應當作負載速度的話,於速度控制的情況下也同 樣可以適用。 又,本發明,係除了表示在本實施例中的位置控制規 則、速度控制規則、前饋控制規則之外,對其他任意的控 制規則也同樣可以適用。 以下,表示第1實施例之模擬結果。使用在模擬的數 値爲如下。 J=〇. 116X10 3[kg-m2]、c〇a=80.2.Tt[rad/s]、 ζβ=0. lx ωτ=100·2· π [rad/s]N ζτ=0. 1 但是,J爲控制對象104的總慣性矩,ω a爲***振 頻率’ (a爲***振的哀減係數’ 爲共振頻率,爲 -16- 200944970 共振的衰減係數。回饋控制規則係把馬達位置做比例控制 、馬達速度做比例積分控制之位置P速度PI控制。 圖2係表示本發明之第1實施例之等價速度指令與位 置指令的波形之圖。 圖2(a)爲等價速度指令,圖2(b)爲位置指令波 .形。 圖2(a)的等價速度指令,係對圖2(b)的位置指 φ 令波進行1階時間積分後所求出的。 在本模擬,做爲一般使用在一般產業用機械的動作控 制之指令的一個例子,使用圖2 ( b )的位置指令。 又,圖3,係本發明之第1實施例之指令頻譜以及 Grt(s) · Gpl(s) · Gp2(s)之波德圖;圖3 ( a )爲指令頻譜 之波德圖,圖3 ( b )爲Grt(s) . Gpl (s) . Gp2(s)之波德圖 〇 由圖3(a),位置指令係主要揭示有在8Hz以下持 © 有頻率成分的部分。亦即,指令頻率成分上限値爲8Hz。 ' 由圖3(b),在8Hz以下從位置指令到負載位置的波德 ' 圖大致一定在OdB左右,負載位置係可以推測在位置指令 中進行良好的追蹤。 - 又,圖4’係表示本發明之第1實施例之負載響應頻 譜、負載響應追蹤偏差頻譜、以及負載響應追蹤偏差頻譜 的位置指令振幅比之圖;圖4(a)爲負載響應頻譜,圖4 (b)爲負載響應追蹤偏差頻譜,圖4(c)爲負載響應追 蹤偏差頻譜的位置指令振幅比。 -17- 200944970 圖4(a)的負載響應頻譜,爲具有跟圖3 (a)的指 令頻譜一樣的傾向,該振幅係與前述指令頻譜相比,是比 較小的。 圖4(b)的負載響應追蹤偏差頻譜,係從前述負載響 應頻譜對前述指令頻譜進行減法運算後求得的。 也從圖4(b)可以瞭解到,前述負載響應頻譜比前述 指令頻譜還要小。圖4(c)的負載響應追蹤偏差頻譜的指 令振幅比,爲對前述負載響應追蹤偏差頻譜的前述指令頻 _ 譜的最大値%之比。由圖4(c)可以瞭解到前述負載位置 係包含有頻率爲4 Η z、振幅爲指令振幅的1 3 %之振動。例 如,頻率爲8Hz以下的範圍內,容許直至位置指令振幅的 20%的振幅的振動,在頻率比8 Hz還要大的範圍下,在容 許直至前述位置指令振幅的10%的振幅的振動之產業用機 械的動作控制中,由圖4 ( c ),前饋控制設定器1 1 3係輸 出所謂使用前饋控制之前饋控制設定訊號。 又’本發明,除了設定是否使用前饋控制器106之外 φ ,經由以使圖4 ( c )的負載響應追蹤偏差頻譜的位置指令 - 振幅比最小的方式來設定回饋控制器1 0 2與前饋控制器 . 1 06的控制增益,也可以利用在由正在使用的前饋控制器 1 06所應得到最好的控制性能設定。 回饋控制器1 02,係位置P速度P控制、位置P速度 PI控制、位置P速度Ι-P控制、位置PID、速度P控制、 速度PI控制、速度Ι-P控制等的任何回饋控制規則都可以 適用;又’前饋控制器106係輸出速度前饋、轉矩前饋等 -18- 200944970 的任何前饋控制規則都可以適用。 又,控制對象1 04的剛性’爲在比較高的負載響應與 前述響應大致一致的情況下,控制對象頻率響應GPl(s)係 因爲控制對象頻率響應Gpl(s)與直至負載位置的頻率響應 Gp2(s)的乘法運算値大致一致的緣故,在圖3中取代掉 Grt(s)· Gpl(s)· Gp2(s),使用 Grt(s)· Gpl(s)也同樣可以 適用本發明。 〇 從而,由本發明,因爲可以僅使用控制對象的頻率響 應的資訊來判斷正在使用的前饋控制是否有效的緣故,並 沒有必要提高控制增益來計測響應波形,可以在初期狀態 下預測前饋控制的效果,可以實現經由正在使用的控制器 所應得到最好的控制性能之增益設定。 〔產業上的可利用性〕 僅使用控制對象的頻率響應的資訊來進行前饋控制的 Ο 最佳設定,因爲可以實現經由正在使用的前饋控制器所應 ' 得到最好的控制性能之控制增益設定的緣故,可以廣泛適 • 用在半導體製造裝置、工作機械、液晶面板製造裝置、產 業用機械人等之一般產業用裝置上。 【圖式簡單說明】 圖1說明表示本發明之第1實施例之馬達控制裝置之 方塊圖 圖2表示本發明之第1實施例之等價速度指令與位置 -19- 200944970 指令的波形之圖 圖3本發明之第1實施例之指令頻譜以及Grt(s) · Gpl(s)· Gp2(s)之波德圖(Bode diagram) 圖4表示本發明之第1實施例之負載響應頻譜、負載 響應追蹤偏差頻譜、以及負載響應追蹤頻譜的位置指令振 幅比之圖 圖5以往的前饋控制裝置 【主要元件符號說明】 1 〇 1 :指令產生器 102 :回饋控制器 103 :轉矩控制器 104 :控制對象 1 〇 5 .編碼器 106 :前饋控制器 1 07 :頻率響應計測用訊號產生器 108 :前饋控制設定裝置 109 :指令頻譜演算器 1 1 〇 :控制對象頻率響應檢測器 1Π :負載響應頻譜演算器 112:負載響應追蹤偏差頻譜演算器 1 1 3 :前饋控制設定裝置 5 0 1 :位置指令產生器 502 :位置控制手段 200944970 5 03 :速度控制手段 504 :電流控制手段 5 0 5 :控制對象 5 06 :檢測器 5 07 :速度FF作成手段 5 08 :轉矩FF作成手段 5 09 :濾波處理手段 ❹ 5 1 0 :切換手段Gp2(s) = coa2/(s2+2· ζ a. coa-s+ coa2) The feedforward controller 106 is used as an output to include the position feed forward signal, the speed feedforward signal, and the feed signal before the torque feed forward signal. In the feedback controller 102, a speed command is calculated based on a motor position tracking deviation obtained by subtracting the motor position by the position feedforward signal, and the speed feedforward signal is added according to the speed command and is The motor speed of the first-order differential 値 of the motor position is subjected to the subtracted motor speed tracking deviation to calculate a feedback torque command, and the torque feedback command is added to the feedback torque command to calculate a torque command. The position feedforward signal described above is obtained by multiplying the position feedforward filter Grp(s) by the position command. 200944970 Grv(s) is obtained by multiplication. The torque feedforward signal is obtained by multiplying the torque feedforward filter Grt(s) by the position command. Using the control object frequency response Gpl(s), equation (4), and torque feedforward filter Grt(s), the load frequency response Grt(s) is obtained for the _ frequency response from the position command to the load position. Gpl(s)· Gp2(s). The command spectrum calculator 109 uses the FFT to calculate the command spectrum sr( ω ) of the spectrum that is commanded by the above bit 0. However, ω is regarded as the spectral frequency 负载 load response spectrum calculator 111, and the load response spectrum sl(«) of the spectrum which is the load response is calculated according to the equation (5). slU)= || Grt(jco).GplGco) Αρ2〇ω) IhsrU)(5) However, 'II · II is a norm, and j is an imaginary unit. The load response tracking deviation spectrum controller 112 calculates the load response tracking deviation spectrum of the G spectrum which is the tracking position deviation of the tracking deviation based on the position command with respect to the load position, and calculates it by the equation (6). " sld (ω) = sr (ω) — si (ω ) (6) , load response tracking deviation spectrum sld( ω), in the case where all spectrum frequencies ω are 0, indicating that the aforementioned load position is Fully tracked the aforementioned position command. On the other hand, when there is a peak 某 in a certain frequency ten, it indicates that the aforementioned load position includes the vibration of the frequency 0. Each setting: is held by the load response tracking deviation spectrum sld(〇) in the frequency range lower than the upper limit of the frequency of the main frequency component included in the command frequency sr(w) Peak allowable -15- 200944970 値, and allowable 値 of the peak value of the load response tracking deviation spectrum sld(〇;) in the frequency range higher than the above-mentioned command frequency upper limit 値. The feedforward control setter 1 1 3 outputs the feedforward control signal to the feedforward control via the feedforward control as the "use" when the load response tracking deviation spectrum sld(ω) is below the allowable chirp The device 1 〇6 can realize the response of the transient response or the load with less high frequency vibration. Further, according to the present invention, the feedforward control setting can be performed only by using the frequency response of the control object 104, and the feedback control gain is increased for the setting of the feedforward control as in the prior art, and the control object 104 is not vibrated. Large, it can be the feed control setting that is most suitable for setting the feedback control gain of the control object 104. In the present embodiment, the position speed control is shown. However, by using the feedforward signal as the speed feedforward signal and the torque feedforward signal, the ω2 of the denominator of the equation (3) is regarded as ω, and the aforementioned response is regarded as The motor speed and the load response as the load speed are also applicable in the case of speed control. Further, the present invention is applicable to any other control rule in addition to the position control rule, the speed control rule, and the feedforward control rule in the present embodiment. The simulation results of the first embodiment are shown below. The number used in the simulation is as follows. J=〇. 116X10 3[kg-m2], c〇a=80.2.Tt[rad/s], ζβ=0. lx ωτ=100·2· π [rad/s]N ζτ=0. 1 However, J is the total moment of inertia of the control object 104, ω a is the anti-resonance frequency ' (a is the anti-resonance sag coefficient ' is the resonance frequency, is the attenuation coefficient of the resonance of -16-200944970. The feedback control rule is to proportionalize the motor position Control and motor speed are used to control the position P-speed PI control. Fig. 2 is a view showing the waveforms of the equivalent speed command and the position command according to the first embodiment of the present invention. Fig. 2(a) is an equivalent speed command. Fig. 2(b) shows the position command wave shape. The equivalent speed command of Fig. 2(a) is obtained by performing the first-order time integration on the position finger φ of Fig. 2(b). As an example of an operation command generally used for general industrial machinery, the position command of Fig. 2 (b) is used. Fig. 3 is a command spectrum and Grt(s) of the first embodiment of the present invention. · Gpl(s) · Gp2(s) Bode diagram; Figure 3 (a) is the Bode diagram of the command spectrum, and Figure 3 (b) is Grt(s). Gpl (s) . Gp2(s) Detuo is represented by Figure 3(a) The command system mainly reveals that there is a frequency component below 8 Hz. That is, the upper limit of the command frequency component is 8 Hz. ' From Figure 3(b), the Bode from the position command to the load position below 8 Hz' It must be around OdB, and the load position can be presumably tracked well in the position command. - In addition, Fig. 4' shows the load response spectrum, load response tracking deviation spectrum, and load response tracking deviation of the first embodiment of the present invention. The positional amplitude ratio of the spectrum is plotted; Figure 4(a) shows the load response spectrum, Figure 4(b) shows the load response tracking deviation spectrum, and Figure 4(c) shows the position response amplitude ratio of the load response tracking deviation spectrum. - 200944970 The load response spectrum of Figure 4(a) has the same tendency as the command spectrum of Figure 3(a), which is relatively small compared to the aforementioned command spectrum. Figure 4(b) Load response The tracking deviation spectrum is obtained by subtracting the aforementioned command spectrum from the load response spectrum. It can also be seen from Fig. 4(b) that the load response spectrum is smaller than the aforementioned command spectrum. Fig. 4(c) of The command amplitude ratio of the load response tracking deviation spectrum is a ratio of the maximum 値% of the command frequency spectrum of the load response tracking deviation spectrum. It can be understood from FIG. 4(c) that the load position includes a frequency of 4 Η. z. The amplitude is a vibration of 13% of the command amplitude. For example, in the range of 8 Hz or less, the vibration of the amplitude up to 20% of the amplitude of the position command is allowed, and the frequency is allowed to be larger than the frequency of 8 Hz. In the operation control of the industrial machine for the vibration of the amplitude of 10% of the amplitude of the position command, the feedforward control setter 1 1 3 outputs the so-called feedforward control feedforward control setting signal as shown in Fig. 4 (c). Further, in the present invention, in addition to setting whether or not to use the feedforward controller 106, the feedback controller 1 0 2 is set in such a manner as to minimize the position command-amplitude ratio of the load response tracking deviation spectrum of FIG. 4(c). Feedforward controller. The control gain of 1 06 can also be used to get the best control performance settings from the feedforward controller 106 being used. The feedback controller 102 has any feedback control rules such as position P speed P control, position P speed PI control, position P speed Ι-P control, position PID, speed P control, speed PI control, speed Ι-P control, and the like. It can be applied; and the feedforward controller 106 is capable of outputting speed feedforward, torque feedforward, etc. Any feedforward control rule of -18-200944970 can be applied. Further, the rigidity ' of the control object 104' is such that the control object frequency response GP1(s) is due to the control target frequency response Gpl(s) and the frequency response up to the load position in the case where the relatively high load response substantially coincides with the aforementioned response. The Gp2(s) multiplication operation is substantially identical, and Grt(s)·Gpl(s)·Gp2(s) is replaced in FIG. 3, and the present invention is also applicable to Grt(s)·Gpl(s). . Therefore, according to the present invention, since it is possible to judge whether or not the feedforward control being used is valid using only the information of the frequency response of the control object, it is not necessary to increase the control gain to measure the response waveform, and the feedforward control can be predicted in the initial state. The effect is to achieve a gain setting that is best controlled by the controller being used. [Industrial Applicability] Only the information of the frequency response of the control object is used to perform the optimal setting of the feedforward control because it is possible to achieve the best control performance control via the feedforward controller being used. The gain setting can be widely applied to general industrial devices such as semiconductor manufacturing equipment, work machines, liquid crystal panel manufacturing equipment, and industrial robots. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a motor control device according to a first embodiment of the present invention. FIG. 2 is a view showing waveforms of an equivalent speed command and a position -19-200944970 command according to the first embodiment of the present invention. 3 is a diagram of a command spectrum of the first embodiment of the present invention and a Bode diagram of Grt(s)·Gp2(s). FIG. 4 shows a load response spectrum of the first embodiment of the present invention. Load Response Tracking Deviation Spectrum and Position Response Amplitude Ratio of Load Response Tracking Spectrum Figure 5 Conventional Feedforward Control Device [Main Component Symbol Description] 1 〇1: Command Generator 102: Feedback Controller 103: Torque Controller 104 : Control object 1 〇 5 . Encoder 106 : Feed forward controller 1 07 : Frequency response measurement signal generator 108 : Feed forward control setting device 109 : Command spectrum calculator 1 1 控制 : Control target frequency response detector 1Π : load response spectrum calculator 112: load response tracking deviation spectrum calculator 1 1 3 : feedforward control setting means 5 0 1 : position command generator 502 : position control means 200944970 5 03 : speed control means 504 : electric Control means 505: control object 506: Detector 507: FF speed creating means 508: filter processing means ❹ 5 1 0:: FF torque switching means 509 creating means

-21-twenty one

Claims (1)

200944970 十、申請專利範圍 1. —種馬達控制裝置,係具備了 :回饋控制器,爲 輸入位置或是速度的指令與控制對象的控制響應以及前饋 訊號,以使前述指令與前述控制響應一致的方式來進行控 制演算後算出轉矩指令、和轉矩控制器,爲輸入前述轉矩 指令,根據前述轉矩指令供給電力至前述控制對象、和前 饋控制器,爲輸入前述指令,根據前述指令來算出前述前 饋訊號、和訊號產生器,爲在頻率響應計測時輸出頻率響 _ 應計測用訊號;其特徵爲= 具備前饋控制設定裝置,爲算出:指令頻譜,是爲輸 入前述指令以及頻率響應計測時之前述控制響應,是爲前 述指令的頻譜、和控制對象頻率響應,是爲前述控制對象 的頻率響應、和負載響應追蹤偏差頻譜,是爲根據前述指 令頻譜與前述控制對象頻率響應,構成前述控制對象的負 載之負載響應之前述指令的追蹤偏差;輸出前饋控制設定 訊號; ◎ 根據前述前饋控制設定訊號,來設定是否使用前述前 - 饋控制器的控制增益、以及前述前饋控制器。 . 2. 如申請專利範圍第1項所記載之馬達控制裝置, 其中: 前述前饋控制設定裝置,爲在有關於各個前述指令頻 譜包含的頻率範圍與其以上的頻率範圍中去設定臨限値, 在前述負載響應追蹤偏差頻譜爲至少其中一方的臨限値以 上之情況下,輸出所謂不使用前述前饋控制器之前述前饋 -22 - 200944970 控制設定訊號。 3 .如申請專利範圍第1項所記載之馬達 其中: 前述前饋控制設定裝置,爲針對各個前述 與前述前饋控制器之複數個控制增益組合來算 _ 響應追蹤偏差頻譜,根據前述負載響應追蹤偏 小爲最小的情況之前述控制增益組合,把前述 〇 設定値當作前述前饋控制設定訊號來輸出。 控制裝置, 回饋控制器 出前述負載 差頻譜的大 控制增益的200944970 X. Patent application scope 1. A motor control device is provided with a feedback controller, which is a control response and a feedforward signal of an input position or speed command and control object, so that the aforementioned command is consistent with the aforementioned control response. In order to perform the control calculation, the torque command and the torque controller are calculated, and the torque command is input, and the power is supplied to the control target and the feedforward controller based on the torque command, and the command is input according to the The command is used to calculate the feedforward signal and the signal generator, and the output frequency response signal is measured during the frequency response measurement; and the characteristic is that the feedforward control setting device is provided for calculating: the command spectrum is for inputting the foregoing command. And the control response at the time of the frequency response measurement is a frequency spectrum of the command and a frequency response of the control target, and is a frequency response of the control target and a tracking deviation spectrum of the load response, and is based on the command spectrum and the control target frequency. Responding to the load response of the load constituting the aforementioned control object Tracking deviation instruction; feedforward control signal output prior to setting; ◎ feedforward control signal is set in accordance with the prior, whether to set the pre - controlling the gain of the feedforward control, the feedforward controller and a front. 2. The motor control device according to claim 1, wherein: the feedforward control setting device sets a threshold in a frequency range corresponding to a frequency range included in each of the command spectrums, In the case where the load response tracking deviation spectrum is at least one of the thresholds, the aforementioned feedforward-22 - 200944970 control setting signal that does not use the feedforward controller is output. 3. The motor of claim 1, wherein: the feedforward control setting device calculates a _ response tracking deviation spectrum for each of the plurality of control gain combinations of the foregoing feedforward controller, according to the load response The aforementioned control gain combination in the case where the tracking is minimized is performed, and the aforementioned 〇 setting 値 is output as the feedforward control setting signal. a control device that returns a large control gain of the aforementioned load difference spectrum -23--twenty three-
TW097148024A 2008-01-11 2008-12-10 Motor controller TW200944970A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003863 2008-01-11

Publications (1)

Publication Number Publication Date
TW200944970A true TW200944970A (en) 2009-11-01

Family

ID=40852938

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097148024A TW200944970A (en) 2008-01-11 2008-12-10 Motor controller

Country Status (3)

Country Link
JP (1) JP5278333B2 (en)
TW (1) TW200944970A (en)
WO (1) WO2009087813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671614B (en) * 2013-12-09 2019-09-11 山洋電氣股份有限公司 Motor control unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057723B2 (en) * 2018-06-22 2022-04-20 オークマ株式会社 Position control device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308489A (en) * 1991-04-05 1992-10-30 Mitsubishi Heavy Ind Ltd Servo controller
JPH06208404A (en) * 1993-01-11 1994-07-26 Matsushita Electric Ind Co Ltd Automatic adjusting unit for feedback gain
JP2001100801A (en) * 1999-10-01 2001-04-13 Mikuni Corp Device and method for controlling actuator
EP1283593B1 (en) * 2000-04-20 2009-08-05 Kabushiki Kaisha Yaskawa Denki Motor controller
JP4166157B2 (en) * 2004-01-07 2008-10-15 三菱電機株式会社 Electric motor control device
JP2005285030A (en) * 2004-03-31 2005-10-13 Yaskawa Electric Corp Servo control apparatus
JP2005339011A (en) * 2004-05-25 2005-12-08 Fujitsu Ltd Servo control method, servo control system and disk device
JP2006003953A (en) * 2004-06-15 2006-01-05 Yaskawa Electric Corp Mechanical vibration suppressing device and mechanical vibration frequency detecting method
JP2006280080A (en) * 2005-03-29 2006-10-12 Yaskawa Electric Corp System identification device and its system identification method
JP2007122575A (en) * 2005-10-31 2007-05-17 Yaskawa Electric Corp Motor controller
JP4939388B2 (en) * 2007-12-17 2012-05-23 三菱重工業株式会社 Feed-forward control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671614B (en) * 2013-12-09 2019-09-11 山洋電氣股份有限公司 Motor control unit

Also Published As

Publication number Publication date
JP5278333B2 (en) 2013-09-04
WO2009087813A1 (en) 2009-07-16
JPWO2009087813A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5899547B2 (en) Electric motor control device
JP6088604B1 (en) Electric motor control device having magnetic flux control unit, machine learning device and method thereof
US9977411B2 (en) Motor control apparatus with magnetic flux controller and machine learning apparatus and method therefor
WO2007138758A1 (en) Servo controller
US20190260322A1 (en) Motor control device
JP2009303432A (en) Position controller using motor
JP6491497B2 (en) Motor control device
JP2010259275A (en) Motor drive system, motor control device, and motor drive method
JP2009011017A (en) Controller for voltage type inverter
JP2016189668A (en) Motor control apparatus, motor control method, sewing machine, and program thereof
TW200944970A (en) Motor controller
JP2015170208A (en) Control device, control method and control program
JP2009237916A (en) Servo control device
JP5271853B2 (en) Feedback control device and feedback control method
JP2011035967A (en) Device for controlling electric machine
JP2010273400A (en) Device for control of induction motor
JP5176729B2 (en) Motor controller with moment of inertia identifier
JP5115705B2 (en) PWM cycloconverter and control method thereof
Anuchin Structures of a digital PI controller for an electric drive
JP4784826B2 (en) System identification apparatus and motor control apparatus including the same
JP2005304120A (en) Controller of motor
JP5263143B2 (en) Electric motor control device
KR20110017725A (en) Motor controlling apparatus for compensating backlash
TWI809610B (en) motor control unit
JP2010093961A (en) Motor control apparatus