TW200941778A - Thermoelectric semiconductor unit - Google Patents

Thermoelectric semiconductor unit Download PDF

Info

Publication number
TW200941778A
TW200941778A TW97109853A TW97109853A TW200941778A TW 200941778 A TW200941778 A TW 200941778A TW 97109853 A TW97109853 A TW 97109853A TW 97109853 A TW97109853 A TW 97109853A TW 200941778 A TW200941778 A TW 200941778A
Authority
TW
Taiwan
Prior art keywords
type
heat
semiconductors
semiconductor
thermoelectric
Prior art date
Application number
TW97109853A
Other languages
Chinese (zh)
Other versions
TWI362775B (en
Inventor
Jun-Guang Luo
Original Assignee
Jun-Guang Luo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jun-Guang Luo filed Critical Jun-Guang Luo
Priority to TW97109853A priority Critical patent/TW200941778A/en
Priority to US12/358,276 priority patent/US20090152666A1/en
Publication of TW200941778A publication Critical patent/TW200941778A/en
Application granted granted Critical
Publication of TWI362775B publication Critical patent/TWI362775B/zh

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermoelectric semiconductor unit mainly contains a first ceramic layer contacting cold source, a second ceramic layer contacting heat source plurality of mutually crisscrossed first conductors and second conductors which are placed between the first and second ceramic layers at internals; interlacing and connecting to the several P-type and N-type semiconductors of the corresponding first and second conductors in series; and a layer of heat-insulated material filled between those P-type and N-type semiconductors. Therefore, utilize that layer of heat-insulated material to block heat, which is conducted from one side ends of those P-type and N-type semiconductors to the other ends of previous semiconductors, for enhancing temperature gradients and raising thermoelectric effects.

Description

200941778 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種熱能發電裝置,特別是指一種可 以利用溫差產生電能的熱電半導體單元。 【先前技術】 ❹BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a thermal power generation device, and more particularly to a thermoelectric semiconductor unit that can generate electrical energy using a temperature difference. [Prior Art] ❹

Q 曰常生活中有許多耗費的能源生成,卻又被廢棄的熱 能,如:燃燒機產生的高溫煙氣、工廠排放的廢熱、地熱: 等等。如果能將這些熱能善加利用,將可成為符合環保需 求的再生能源。而熱電材料(thermoelectric)可以將大量廢 熱回收轉為電能’且具有設備簡單、無傳動部件、低噪音 、無排放污染、取用方便、安全可靠、壽命長、不需維: 等優點,因而普遍得到日、美、歐等先進國家的重視。 參閱圖1,一般熱電半導體單元丨主要是以卩型半導體 11、N型半導體12與金屬導體13串連組成一封閉電路 。藉此,當一端接點溫度不同時,該迴路14中就會產生電 流(Seebeck效應),並達到發電的目的。 1.依據前述,該熱電半導體單元丨的溫差越大,產生的 電能就會越強,惟,由於P型、N型半導體u、12是分別 透過金屬導體13與熱源接觸,因此,熱能很容易由p型、 N型半導體U、12的―端部傳導至另—端部,不但會縮小 P型半導體11、N型半導體12的溫差,且會影響熱電效應 ,使發電效率不如預期。 2.且以往的P型、N型半導體11、12是以金屬粉末經 问壓冲壓後’直接切割成顆粒,再以錫銲(熔融溫度為細 5 200941778 °c)的方式與金屬導體13銲結,因此,P型、N型半導體“ 、12很容易在長時間高溫的環境下’有鬆散瓦解及脫銲的 . 缺失。 【發明内容】 因此,本發明之目的,即在提供一種能提昇熱電效應 的熱電半導體單元。 於是,本發明的熱電半導體單元,是與自然環境中的 冷源及熱源作用,包含一第一陶瓷層、—第二陶瓷層、一 〇 第一銅箔導體、一第二銅箔導體、數p型半導體、數 半導體,及一斷熱材料層。該第一陶瓷層與一第二陶瓷層 是相隔一間距且分別與冷源、熱源接觸。該等第一導體與 第二導體是間隔佈設在該第一、第二陶瓷層一内表面且相 互錯開。該等P型半導體與N型半導體是交錯排列且以串 聯方式導接於相對應第一、第二導體間。該斷熱材料層是 充填在該等p型、N型半導體間,而形成在該等?型、N型 半導體一外表面。 ^ 本發明的功效是能藉由斷熱材料層阻隔熱能由該等p 型、N型半導體一端部導熱到另一端部,而能強化溫度差, 並提昇熱電效應。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一較佳實施例的詳細說明中,將可清 楚的呈現。 參閱圖2、圖3’本發明的熱電半導體單元的一較佳實 6 200941778 施例是與自然環境中的冷源及熱源作用,該冷源可以是溪 ’ 水、海水、水庫用水、地下水…等,該熱源可以是工業產生 •- 的高溫煙氣、排放的廢熱、地熱、溫泉熱…等。該熱電半導 體單元包含:一第一陶瓷層21、一第二陶瓷層22、一第一 銅箔導體23、一第二銅箔導體24、數P型半導體25、數N 型半導體26,及一斷熱材料層27。 該第一陶瓷層21是與冷源接觸。 該第二陶瓷層22是與熱源接觸。 Ο 該等第一銅箔導體23與該等第二銅箔導體24是間隔 佈設在該第一、第二陶瓷層21、22 —内表面。 該等P型半導體25與該等N型半導體26是由銻、鉍 粉末經尚壓沖壓、燒結成型後,裁切成顆粒,且以銅銲劑 與前述第一、第二銅箔導體23、24銲結。 該斷熱材料層27是在本較佳實施例中是一種以注射方 式/主入該等P型、N型半導體25、%間的磷酸銨合成物, 、經離心處理後,可均句包覆在該等P型、N型半導體25、 w 26 —外表面。 卞a j艰取一蚵閉的電性迴路 ’藉此,該等半導體敎番留_ 。 W ” ^ 〜電% 是以與冷源接觸的第一陶Q There are many energy sources in the daily life, but the waste heat is discarded, such as high-temperature flue gas generated by the burner, waste heat from the factory, and geothermal heat. If these heat energy can be used well, it will become a renewable energy source that meets environmental protection needs. The thermoelectric material can convert a large amount of waste heat recovery into electric energy' and has the advantages of simple equipment, no transmission parts, low noise, no emission pollution, convenient access, safety and reliability, long life, no need for dimension, etc. It has received the attention of advanced countries such as Japan, the United States and Europe. Referring to Fig. 1, a general thermoelectric semiconductor unit 丨 is mainly composed of a 半导体-type semiconductor 11, an N-type semiconductor 12 and a metal conductor 13 connected in series to form a closed circuit. Thereby, when the temperature of one end contact is different, a current (Seebeck effect) is generated in the circuit 14, and the purpose of power generation is achieved. 1. According to the foregoing, the greater the temperature difference of the thermoelectric semiconductor unit, the stronger the generated electric energy. However, since the P-type and N-type semiconductors u and 12 are respectively in contact with the heat source through the metal conductor 13, the heat energy is easy. Conduction from the "end" of the p-type and N-type semiconductors U, 12 to the other end not only reduces the temperature difference between the P-type semiconductor 11 and the N-type semiconductor 12, but also affects the thermoelectric effect, making the power generation efficiency less than expected. 2. The conventional P-type and N-type semiconductors 11, 12 are directly cut into particles after being pressed by metal powder, and then soldered to the metal conductor 13 by soldering (melting temperature is fine 5 200941778 °c). Therefore, the P-type and N-type semiconductors "12 are easily loosened and de-soldered in a long-time high-temperature environment." [Invention] Therefore, the object of the present invention is to provide an improvement The thermoelectric semiconductor unit of the thermoelectric effect. Thus, the thermoelectric semiconductor unit of the present invention acts on a cold source and a heat source in a natural environment, and includes a first ceramic layer, a second ceramic layer, a first copper foil conductor, and a a second copper foil conductor, a plurality of p-type semiconductors, a semiconductor, and a layer of thermal insulation material. The first ceramic layer and the second ceramic layer are spaced apart from each other and are in contact with a cold source and a heat source, respectively. Disposed on the inner surface of the first and second ceramic layers and spaced apart from each other. The P-type semiconductor and the N-type semiconductor are staggered and connected in series to the corresponding first and second conductors. between. The heat-dissipating material layer is filled between the p-type and N-type semiconductors and formed on the outer surface of the N-type semiconductor. The effect of the present invention is that the thermal insulation material can be insulated by the thermal insulation material. The one end of the p-type and N-type semiconductors is thermally conductive to the other end, which can strengthen the temperature difference and enhance the thermoelectric effect. [Embodiment] The foregoing and other technical contents, features and effects of the present invention are described below with reference to the drawings. A detailed description of a preferred embodiment will be apparent. Referring to Figures 2 and 3, a preferred embodiment of the thermoelectric semiconductor unit of the present invention is applied to a cold source and a heat source in a natural environment. The cold source may be brook water, sea water, reservoir water, ground water, etc., and the heat source may be industrially produced high temperature flue gas, discharged waste heat, geothermal heat, hot spring heat, etc. The thermoelectric semiconductor unit includes: a ceramic layer 21, a second ceramic layer 22, a first copper foil conductor 23, a second copper foil conductor 24, a plurality of P-type semiconductors 25, a number N-type semiconductor 26, and a layer of thermal insulation material 27. a ceramic 21 is in contact with a cold source. The second ceramic layer 22 is in contact with a heat source. The first copper foil conductors 23 and the second copper foil conductors 24 are spaced apart from the first and second ceramic layers 21, 22 - inner surface. The P-type semiconductors 25 and the N-type semiconductors 26 are formed by pressing and sintering of tantalum and niobium powders, and then cutting into pellets, and using copper solder and the first and second copper. The foil conductors 23, 24 are welded. The heat-insulating material layer 27 is an ammonium phosphate composite in the preferred embodiment by injection/priming into the P-type, N-type semiconductors 25, and %. After centrifugation, it can be coated on the outer surfaces of the P-type and N-type semiconductors 25 and w 26 . The 电aj hardly takes a closed electrical circuit 'by this, the semiconductors are left _. W ” ^ 〜%% is the first pottery in contact with the cold source

瓷層21與该等Ps、N atm* 1 +導體25、26 —端部接觸,及 以與熱源接觸的笫-_ 入 第—陶層22與該等p型、\型 26另一端部接觸 、 1之邊寻P型、N型半導體2 端部接觸不同溫度的情 在兩 產生電流。重要的βώ 溫差’及於該電性迴路31 、疋,於該等Ρ型、Ν型半導體25、% 7 200941778 絲面形成有該斷熱材料層27,因此,可以阻隔熱能由該 等Ρ型、Ν型半導體25、26 一端部傳導到另一端部,強化 « Ρ型' Ν型半導體25、26的溫度差,有效提昇熱電效 應。 據上所述可知,本發明之熱電半導體單元具有下列優 點及功效: ❹ Ο 1·本發明是以該斷熱材料層27阻隔熱能由該等ρ型、 Ν型半導體25、26 -端部傳導到另—端部,藉此,不但可 ^降低熱能在傳遞過程中的損耗’且能強化該等ρ型、Ν ' 5 26的/m度差,而大幅提昇熱電效應,使本發 明更具有實用性。 一 2 ·由於該等P型、N型半導體2 5、2 6是由錄、纽粉末 經冋壓沖壓、燒結成型後,才裁切成顆粒,再以銅銲劑與 前述第-、第二銅綱23、24銲結,因此,前述銻、鉍 ♦刀末間可以燒結成—體,且該第— ' 第二㈣導體B、Μ 與銅銲劑可耐高溫5〇〇。(:以上,藉此,不但可以提昇結構強 度,且不會有鬆散瓦解或脫銲的情形。 以上所述只是本發明之較佳實施例而已,當不能以此 限定本發明實施之範圍,即大凡依本發明中請專利範圍及 發月說月内4所作之簡單的等效變化與修飾,皆仍屬本發 明專利涵蓋之範圍内。 8 200941778 【圖式簡單說明】 圖1是一示意圖,說明一般熱電半導體裝置的工作原 理;及 圖2是一示意圖,說明本發明一熱電半導體單元與一 電路單元的一較佳實施例。 200941778 【主要元件符號說明】 2…… •…半導體熱電單元 25•… ••…P型半導體 21 ·...· …··第一陶瓷層 26•… ••…N型半導體 22••… •…第二陶瓷層 27…· .....斷熱材料層 23 •…第一銅箔導體 3…… ••…電路單元 24..... •…第二銅箔導體The porcelain layer 21 is in contact with the ends of the Ps, N atm* 1 + conductors 25, 26, and the 笫-_ into the first ceramic layer 22 in contact with the heat source is in contact with the other end portions of the p-type and the type 26 On the 1st side, the P-type and N-type semiconductors 2 are in contact with different temperatures to generate current. An important β ώ temperature difference ′ and the electrical circuit 31 and 疋, the heat-dissipating material layer 27 is formed on the wire surface of the Ρ-type, Ν-type semiconductor 25, and % 7 200941778, and therefore, the heat insulating ability can be blocked by the Ρ type The one end portion of the Ν-type semiconductors 25 and 26 is conducted to the other end portion to strengthen the temperature difference between the Ρ-type Ν-type semiconductors 25 and 26, thereby effectively improving the thermoelectric effect. It can be seen from the above that the thermoelectric semiconductor unit of the present invention has the following advantages and effects: ❹ · 1. The present invention is that the thermal insulation material layer 27 conducts heat from the end of the p-type, Ν-type semiconductor 25, 26 - To the other end, thereby not only reducing the loss of thermal energy during the transfer process, but also enhancing the /m degree difference of the p-type, Ν '26, and greatly improving the thermoelectric effect, so that the present invention has more Practicality. 1-2. Since the P-type and N-type semiconductors 25, 26 are cut and granulated by the stamping and sintering of the film and the powder, and then the copper and the second and second copper are used. The joints 23 and 24 are welded. Therefore, the above-mentioned 锑 and 铋 ♦ can be sintered into a body at the end, and the second-fourth (four) conductor B, Μ and copper flux can withstand high temperatures of 5 〇〇. (The above, by this, not only can the structural strength be improved, but also there is no loose disintegration or desoldering. The above is only a preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, The simple equivalent changes and modifications made by Dafan in accordance with the scope of the invention and the month of the month are still within the scope of the patent of the invention. 8 200941778 [Simple description of the diagram] Figure 1 is a schematic diagram, A working principle of a general thermoelectric semiconductor device; and FIG. 2 is a schematic view showing a preferred embodiment of a thermoelectric semiconductor unit and a circuit unit of the present invention. 200941778 [Explanation of main components] 2... • Semiconductor thermoelectric unit 25 •... ••...P-type semiconductor 21 ·...·...··First ceramic layer 26•... ••...N-type semiconductor 22••... •...Second ceramic layer 27...·.....breaking heat Material layer 23 •...first copper foil conductor 3... ••...circuit unit 24...........second copper foil conductor

❹ 10❹ 10

Claims (1)

200941778 % 十、申請專利範圍·· 參 * 1. 一種熱電半導縣置 θ 早70 ’疋與自然環境中的冷源及熱源作 ' 用,包含: $ 一陶瓷層與-第二陶瓷層,是相隔-間距且分 別與冷源、熱源接觸; 數第4體與數第二導體,是間隔佈設在該第一、 第二陶莞層—内表面且相互錯開; ❹ 數Ρ型半導體與數Ν型半導體,是交錯排列且以串 4方式導接於相對應第-H㈣;及 :斷熱材料層’是充填在該等PS、N型半導體間 ,而形成在該等p型、N型半導體一外表面。 依據申明專利範圍第1項所述之熱電半導體單元,其中 ::等,型半導體與㈣半導體是由銻、叙粉末經高愿 冲壓、燒結成型後,裁切成顆粒。 3. 依據申請專利範圍第1項所述之熱電半導體單元, ο ’該等第-、第二導體分別是一種銅落導體,:等P其: 半導體與N型半導體是以銅銲劑與前述第一 導體銲結。 由 4. 依據申請專利範圍第1項所述之熱電半導體單元其 ’該斷熱材料層是一種磷酸銨合成物。 、 11200941778 % X. Patent application scope ··· 1. A type of thermoelectric semi-conductor county θ 早 70 '疋 and the cold source and heat source in the natural environment, including: a ceramic layer and a second ceramic layer, Is spaced apart from each other and in contact with the cold source and the heat source; the fourth body and the second plurality of conductors are spaced apart from each other on the inner surface of the first and second ceramic layers and are staggered from each other; ❹ number of semiconductors and numbers The germanium-type semiconductors are staggered and are connected in series 4 to the corresponding first-H (four); and: the heat-insulating material layer is filled between the PS and N-type semiconductors, and is formed in the p-type and n-type An outer surface of a semiconductor. According to the thermoelectric semiconductor unit of claim 1, wherein the semiconductor device and the semiconductor device are cut into particles by a high-pressure stamping and sintering molding. 3. According to the thermoelectric semiconductor unit of claim 1, the first and second conductors are respectively a copper drop conductor, and the like: the semiconductor and the N-type semiconductor are copper solder and the foregoing A conductor weld. 4. The thermoelectric semiconductor unit according to claim 1, wherein the heat insulating material layer is an ammonium phosphate composite. , 11
TW97109853A 2006-09-29 2008-03-20 Thermoelectric semiconductor unit TW200941778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97109853A TW200941778A (en) 2008-03-20 2008-03-20 Thermoelectric semiconductor unit
US12/358,276 US20090152666A1 (en) 2006-09-29 2009-01-23 Thermoelectric semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97109853A TW200941778A (en) 2008-03-20 2008-03-20 Thermoelectric semiconductor unit

Publications (2)

Publication Number Publication Date
TW200941778A true TW200941778A (en) 2009-10-01
TWI362775B TWI362775B (en) 2012-04-21

Family

ID=44868413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97109853A TW200941778A (en) 2006-09-29 2008-03-20 Thermoelectric semiconductor unit

Country Status (1)

Country Link
TW (1) TW200941778A (en)

Also Published As

Publication number Publication date
TWI362775B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
JP5427462B2 (en) Thermoelectric conversion module
Li et al. Bismuth telluride/half‐Heusler segmented thermoelectric unicouple modules provide 12% conversion efficiency
JP2012514332A (en) Method for manufacturing thermoelectric conversion element
WO2008150007A1 (en) Thermoelectric conversion module and thermoelectric heat generation system
KR20170076358A (en) Thermoelectric module and method for fabricating the same
CN101859867A (en) Thermoelectric element
JP2009188088A (en) Thermoelectric apparatus
JPH0697512A (en) Thermoelectric conversion element
CN106159077B (en) Bismuth telluride-based thermoelectric power generation element and preparation method thereof
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
CN103022338B (en) Manufacturing method of cascade temperature-difference power generating device
US20090152666A1 (en) Thermoelectric semiconductor device
JP2008177356A (en) Thermoelectric power generation element
TW200941776A (en) Environmental thermal power generating device
TWI362775B (en)
US10897001B2 (en) Thermoelectric conversion module
US10658561B2 (en) Thermoelectric element and thermoelectric converter including at least one such element
JP2018093152A (en) Thermoelectric power generation device
KR102441699B1 (en) Thermoelectric element
RU2376681C1 (en) Thermoelectric cell
WO2019244692A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
JP2010016132A (en) Thermoelectric conversion module and method of producing the same
JP2017085050A (en) Thermoelectric conversion element, thermoelectric conversion module
JP2004319944A (en) Cylindrical multilayer thermoelectric transducer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees