TW200939257A - Variable impendance material - Google Patents

Variable impendance material Download PDF

Info

Publication number
TW200939257A
TW200939257A TW97133851A TW97133851A TW200939257A TW 200939257 A TW200939257 A TW 200939257A TW 97133851 A TW97133851 A TW 97133851A TW 97133851 A TW97133851 A TW 97133851A TW 200939257 A TW200939257 A TW 200939257A
Authority
TW
Taiwan
Prior art keywords
variable impedance
impedance material
powder
variable
weight
Prior art date
Application number
TW97133851A
Other languages
Chinese (zh)
Other versions
TWI476790B (en
Inventor
Pao-Hsuan Chen
David Shau-Chew Wang
Ching-Han Yu
Tong-Cheng Tsai
Original Assignee
Polytronics Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/043,550 external-priority patent/US20090224213A1/en
Priority claimed from US12/139,860 external-priority patent/US7708912B2/en
Application filed by Polytronics Technology Corp filed Critical Polytronics Technology Corp
Publication of TW200939257A publication Critical patent/TW200939257A/en
Application granted granted Critical
Publication of TWI476790B publication Critical patent/TWI476790B/en

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

A variable impedance composition according to one aspect of the present invention comprises a high electro-magnetic permeability powder in an amount from 10% to 85% of the weight of the variable impedance composition, and an insulation adhesive in an amount from 10% to 30% of the weight of the variable impedance composition. The incorporation of high electro-magnetic permeability powder including carbonyl metal, such as carbonyl iron or carbonyl nickel, in the variable impedance composition can not only suppress the overstress voltage, but also dampen the transient current. In contrast to the conventional electrostatic discharge (ESD) device, the relatively high electro-magnetic permeability carbonyl metal powder can reduce arcing as well as lower the trigger voltage of the device. The high electro-magnetic permeability characteristics can also absorb the undesirable electro-magnetic radiation that causes corruption of signal and loss of data.

Description

200939257 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可變阻抗材料,特別係關於一種包 含能降低瞬間的高壓對電子產品造成損害之高導電磁性金 屬粉末。 【先前技術】 積體電路接受外部之電源供應與待處理之輸入訊號, 並輸出處理後之訊號。特而言之,由於積體電路之輸入端 g 係直接連接於輸入級開關之閘極,因而相當容易受到損害 。當積體電路藉由手動夾持或自動設備而焊接於電路板上 時》易受損害之輸入端及輸出端即可能受到靜電放電而損 害。例如,人體可經由靜電予以充電後再經由輸入端對半 導體元件之積體電路進行放電。 自動組裝機台或測試機台之工具亦可能被充電後再經 由積體電路之輸入端對半導體元件之積體電路進行放電。 隨著半導體技術不斷演進,半導體元件之線寬亦隨之縮小 φ ,對抗靜電放電之保護機制的需求亦隨之顯現。積體電路 元件大多配置ESD(electrostatic discharge)保護機制以避免 過高之輸入電流,例如配置電阻元件於輸入端,藉以限制 輸入電流。 US 6,642,297揭示一種可提供過電壓/過電流保護之 組合物,其包含絕緣黏結劑、摻雜半導性粒子以及導電性 粒子。該組合物在正常操作電壓時具有高電阻,但在承受 一暫態過電壓事件時即切換至一低電阻狀態且在該過電壓BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable impedance material, and more particularly to a highly conductive magnetic metal powder comprising a high-voltage electronic product which can reduce the transient high voltage. [Prior Art] The integrated circuit accepts an external power supply and an input signal to be processed, and outputs the processed signal. In particular, since the input terminal g of the integrated circuit is directly connected to the gate of the input stage switch, it is quite susceptible to damage. When the integrated circuit is soldered to the board by manual clamping or automatic equipment, the vulnerable input and output may be damaged by electrostatic discharge. For example, the human body can be charged by static electricity and then discharged to the integrated circuit of the semiconductor element via the input terminal. The tool of the automatic assembly machine or the test machine may also be charged and then discharged to the integrated circuit of the semiconductor element via the input terminal of the integrated circuit. As semiconductor technology continues to evolve, the line width of semiconductor components has also shrunk φ, and the need for protection against electrostatic discharge has also emerged. Most of the integrated circuit components are equipped with an ESD (electrostatic discharge) protection mechanism to avoid excessive input current, such as configuring a resistive component at the input terminal to limit the input current. US 6,642,297 discloses a composition that provides overvoltage/overcurrent protection comprising an insulating binder, doped semiconducting particles, and electrically conductive particles. The composition has a high resistance at normal operating voltages, but switches to a low resistance state and is at the overvoltage when subjected to a transient overvoltage event

I27093.DOC 200939257 暫 在 件 態事件中限制該過電壓至—較低位準。 US 6,013,358揭示一種過電壓伴 岵α、#城 土保遠兀件,其使用鑽石鋸 一接地導體與另一導體間形 成間隙。该過電壓保護元 之基板材料可選自特定"材料,其密度小於38細3 US5,〇6M34揭示—種過電㈣護元件及材料,鮮由 將導電粒子係均句地分散於…由 料具有非線性之電阻特性,=阻;:_材 1如朱 升踝性之電阻特性係取決於粒 4在黏結劑内之間距及黏結劑之電氣特性。藉由調整導電 =⑼距,非線性材料之電氣特性可在—大範圍内予以 US 6,498,715揭示一種堆疊式低電容過電屢保護元件 ’包含基板、設置於基板上之導電性下電極、設置於 I性^電極上之㈣敏感材料以及設置於該錢敏感材料 上之導電上電極。I27093.DOC 200939257 Temporarily limit the overvoltage to a lower level in the event event. US 6,013,358 discloses an overvoltage with 岵α, #土保保兀, which uses a diamond saw to form a gap between a ground conductor and another conductor. The substrate material of the overvoltage protection element may be selected from a specific material, the density of which is less than 38 fine 3 US5, and 〇6M34 reveals a kind of over-current (four) protective components and materials, and the conductive particles are uniformly dispersed in the ... The material has a non-linear resistance characteristic, = resistance;: The resistance characteristics of the material 1 such as Zhu Sheng is dependent on the distance between the particles 4 in the binder and the electrical properties of the bonding agent. By adjusting the electrical conductivity = (9) distance, the electrical properties of the nonlinear material can be used in a wide range. US 6,498,715 discloses a stacked low-capacitance over-current protection element comprising a substrate, a conductive lower electrode disposed on the substrate, and being disposed on (4) sensitive material on the I-electrode electrode and a conductive upper electrode disposed on the money-sensitive material.

US 6,645,393揭示—種可抑制暫態電屋之材料,包含二 種均勻混合之粉末,其中―種粉末具有非線性電阻特性, 另—種粉末為導轉末。導電粉末係分散於具㈣線性電 阻特性之粉末t以降低元件之整體料性電阻特性, 降低元件之崩潰電壓。 * 了 ESD夕卜|子元件也極易受電磁輕射的影響,# ,疋對數位計算裝置之影響更大。數位計算裝置中包含非 吊多以極高速度來開關及傳輸訊號的電晶體,而其運作的 結果是產生了可觀的電磁輻射量。散逸的電磁“可能導 I27〇93.Dqq 200939257 致錯誤的電晶體開關狀態、訊號損壞和資料損失。 目前有許多可用來保護電子元件免於受電磁輻射影響 之技術。其中,以金屬製的外殼作為防護是一種廣為人知 的方法’其係豬南導電表面以反射的方式來阻擋電磁?δ射 。然而,金屬製的外殼不僅昂貴,而且藉由反射來達到防 護的效果常因缺少讓輻射耗散之能力而造成逸漏。歐洲專 利公開號第ΕΡ0550373號揭示一内部中間層之結構,其係以 具較高之導磁性及具較低之導電性的材料所製成。在受到 0 電磁輕射的影響時,該中間層將吸收大部份的電磁場能置 。與尚導電材料相比較’南導磁性與低導y電性的材料在吸 收輕射方面表現出更有效率。 高頻的接收與發射裝置中,靜電與電磁偶合效應之產 生是常見的。美國專利US 5,565,878揭示一種設置於玻璃窗 片上之環狀保護金屬圖樣,其係為在該環狀保護金屬圖樣 與玻璃窗片週邊之導電體間產生強烈靜電與電磁耦合而設 置於玻璃窗片上。 © 美國專利118 6,058,000揭示一種電磁干擾與£80防護 的方法。該發明方法教示以一具防護導體表面之外殼、一 内部防護導體平面、一用於連接該防護導體表面與該防護 導體平面之導體連接器、一使電磁訊號得以穿過該防護導 體平面之通道、一濾波電路以及一靜電箝位電路等之構成 來達成電磁干擾與ESD防護。電磁防護之達成手段則有: 對輸入訊號進行濾波、將頻寬不符需求之訊號電氣連接至 防護障壁,以及將電壓不符需求之訊號電氣連接至防護障US 6,645,393 discloses a material which inhibits transient electrical house and comprises two uniformly mixed powders, wherein the powder has a non-linear resistance characteristic and the other powder is a terminal. The conductive powder is dispersed in the powder t having (4) linear resistance characteristics to lower the overall material resistance characteristics of the element and reduce the breakdown voltage of the element. * ESD eve | sub-element is also very susceptible to electromagnetic light, #, 疋 has a greater impact on digital computing devices. The digital computing device includes a transistor that does not hang many signals that switch and transmit signals at a very high speed, and the result of the operation is that a considerable amount of electromagnetic radiation is generated. Dissipative electromagnetic "may lead to I27〇93.Dqq 200939257 error in transistor switching status, signal damage and data loss. There are many techniques available to protect electronic components from electromagnetic radiation. Among them, metal housing As a kind of protection, it is a well-known method. The conductive surface of the pig's south is reflective to block electromagnetic spectroscopy. However, the metal casing is not only expensive, but the effect of shielding by reflection is often due to the lack of radiation dissipation. The ability to cause leakage. European Patent Publication No. 0550373 discloses an internal intermediate layer structure which is made of a material having a high magnetic permeability and a low electrical conductivity. When the influence is made, the intermediate layer will absorb most of the electromagnetic field energy. Compared with the conductive material, the materials of the south and the low-conductivity y-electricity are more efficient in absorbing light radiation. The generation of electrostatic and electromagnetic coupling effects is common in launching devices. U.S. Patent No. 5,565,878 discloses a ring disposed on a glazing. A metal-shielding pattern is provided on the glazing panel by a strong electrostatic and electromagnetic coupling between the annular protective metal pattern and the conductors around the glazing. © US Patent No. 1,186, 050, 8,000 discloses an electromagnetic interference and £80 protection. The method of the invention teaches a housing having a protective conductor surface, an inner protective conductor plane, a conductor connector for connecting the guard conductor surface and the shield conductor plane, and an electromagnetic signal passing through the shield conductor plane The channel, a filter circuit and an electrostatic clamp circuit are used to achieve electromagnetic interference and ESD protection. The means for achieving electromagnetic protection are: filtering the input signal, electrically connecting the signal with the bandwidth non-conformity to the protection barrier, And electrically connecting the signal whose voltage does not meet the demand to the protection barrier

127093.DOC 200939257 壁等。而其中,發明中之防護導體平面與接地平面於結構 設計上是分開的。 電磁與ESD防護之應用專利有WO/1996/028951”具靜 電放電防護之植入裝置”。該專利述及到一小部份的耳蝸裝 置失效之情形,而其中,有數個裝置内之與接收資訊有關 之元件受到高壓電擊而損壞。在實驗室中,曾進行數次的 相關實驗,試圖在其他耳蝸裝置上重複類似的失效情形。 特而言之,植入裝置係浸泡於仿體液和組織之生理食鹽水 p 中,且其因在高電磁場強度的影響下導致ESD之產生。由 此得知,要防護裝置遭受電擊之破壞,不僅應注意到ESD 方面之防護,而且也要注意到電磁場方面之影響。 SEMTECH CORPORATION所出版的使用指南 SI97-01 中,敘述如何使用 TVS ( Transient Voltage Suppression )元 件來保護裝置不受ESD的損害。該指南中指出,在同軸連 接器之屏蔽上所發生的靜電放電,會導致電磁波穿越收發 器電路板介面而到達電路板上。此電磁波係沿連接該屏蔽 Ο 與主機板接地平面(Groud Plane )間之導線來傳遞。電路 板導線的電感效應則會在CDS ( Collision Detect Sense )接 腳上產生高於1.5 kV的電壓電位。此等級的電壓過載會破 壞收發器晶片的絕緣。同樣地,在導體流動的電流脈衝, 會對電路板上位於其附近之其他元件產生因電磁耦合而發 生之電性瞬變。TVS二極體即是被設計用來將此暫態電流 從受保護的乙太網路收發器分流出來。TVS二極體可同時 抑制過電壓;^將暫恶電流分流。然而’南早價以及缺乏耗127093.DOC 200939257 Wall and so on. Among them, the protective conductor plane and the ground plane in the invention are structurally separated. The application patent for electromagnetic and ESD protection is WO/1996/028951 "Implant device with electrostatic discharge protection". This patent deals with the failure of a small number of cochlear devices in which several of the devices associated with receiving information are damaged by high voltage electric shock. In the laboratory, several related experiments were performed in an attempt to repeat similar failure scenarios on other cochlear devices. In particular, the implant device is immersed in the physiological saline p of the body fluid and tissue, and it causes ESD due to the influence of high electromagnetic field strength. It is known that the protection device is damaged by electric shock, not only the protection of ESD, but also the influence of electromagnetic field. The user guide published by SEMTECH CORPORATION, SI97-01, describes how to use TVS (Transient Voltage Suppression) components to protect the device from ESD damage. The guide states that electrostatic discharges that occur on the shield of a coaxial connector can cause electromagnetic waves to pass through the transceiver board interface and onto the board. This electromagnetic wave is transmitted along a wire connecting the shield Ο to the ground plane of the motherboard (Groud Plane). The inductive effect of the board leads to a voltage potential of more than 1.5 kV on the CDS (Collision Detect Sense) pin. This level of voltage overload can damage the insulation of the transceiver chip. Similarly, current pulses flowing through the conductor create electrical transients due to electromagnetic coupling to other components in the vicinity of the board. The TVS diode is designed to shunt this transient current from the protected Ethernet transceiver. The TVS diode can suppress overvoltage at the same time; However, 'Southern early price and lack of consumption

I27093.DOC 200939257 散能力是TVS二極體的主要缺點。 【發明内容】 本發明提出一種包含導電粉末、半導體粉末及絕緣黏 結物之可變阻抗材料,其在低施加電壓狀態呈現高電阻特 性,但在高施加電壓狀態則呈現低電阻特性。 本發明之可變阻抗材料包含導電粉末、半導體粉末及 絕緣黏結物。導電粉末之含量可介於該可變阻抗材料重量 之10%至3 0%之間,半導體粉末之含量可介於該可變阻抗材 @ 料重量之30%至90%之間,絕緣黏結物之含量可介於該可變 阻抗材料重量之3%至50%之間。該可變阻抗材料在低施加 電麼狀態呈現高電阻特性,但在高施加電壓狀態.則呈現低 電阻特性。將該可變阻抗材料設置於過電壓保護元件之導 體間的間隙1該過電壓保護元件之整體即具有在低施加電 壓時呈現低電阻並在高施加電壓時則呈現低電阻之電氣特 性。 本發明亦提出一種包含高導電磁粉末之可變阻抗材料 ® ,其可降低元件的觸發電壓,並且在低施加電壓狀態呈現 高電阻特性而在高施加電壓狀態則呈現低電阻特性。 本發明之可變阻抗材料包含高導電磁粉末及絕緣黏結 物。高導電磁粉末之含量可介於該可變阻抗材料重量之 1 0%至85%之間,絕緣黏結物之含量可介於該可變阻抗材料 重量之1 0%至3 0%之間。 在可變阻抗材料中加入包括幾基金屬之粉末(例如幾 基鐵粉或羰基鎳粉)不僅能抑制過電壓,且能耗散暫態電 127093.DOC -10- 200939257 流2較於傳統靜電放電裝置使用之材料,使用幾基金屬 之冋‘電磁性之金屬粉末能降低元件之觸發電壓,而且其 同導電磁特性也能吸收部份會造成訊獍失真和資料錯誤之 電磁轄射。 曰、 ^在本發明之一實施例中,該可變阻抗材料在低施加電 ㈣態呈現高電阻特性,但在高施加電壓狀態則呈現低電 阻特性。藉由將該可變阻抗材料設置於過電壓保護元件内 兩導體間之間隙,該過電壓保護元件之整體即具有在低施 加電雇時呈現高電阻並在高施加電麈時則呈現低電泰 氣特性。 & 上文已經概略地敍述本發明之技術特徵及優點,俾使 下=之本發明詳細描述得以獲得較佳瞭冑。構成本發明之 申味專利範圍標的之其它技術特徵及優點將描述於下文。 本發明所屬技術領域中具有通常知識者應可瞭解,下文揭 ::概念與特定實施例可作為基礎而相當輕易地予以修改 e 日或設計其它結構或製程而實現與本發明_之目的。本發 月所屬技術領域巾具有通常知識者亦應可瞭解,這類等效 =建構並無法脫離後附之中請專利範圍所提出之本發明的 猜神和範圍。 【實施方式】 灸圖1至圖5例示本發明第—實施之過電壓保護元件1〇。 ’形成—電極結構2G於—基板12上,該基板12可由 2緣材料(例如塑膠材料)構成,亦即該基板12可為—塑踢基 ’且具有-上表面12A及-下表面12B。該電極結構20包 i27093.D〇c -11- 200939257 含一第一非矩形導體14、一第二非矩形導體16、一第—側 邊電極22以及一第二側邊電極24。該第一非矩形導體丨斗具 有設置於該上表面12A之一第一凸部14A,該第二非矩形導 體16具有設置於該上表面12A之一第二凸部16八,該第—側 邊電極22係設置於該基板丨2之一侧邊且連接於該第一非矩 形導體14,該第二側邊電極24係設置於該基板12之另—側 邊且連接於該第二非矩形導體16。 此外’該電極結構20另包含一第一導電件22,及一第二 Φ 導電件24’’其可為電鍍金屬層或導電通孔。該第一導電件 22係夾設於該基板12與該第一側邊電極22之間,該第二導 電件24’係夾設於該基板12與該第二侧邊電極24之間❹較佳 地,該第一凸部14A與該第二凸部16A之一係一錐狀&部, 其具有漸縮之寬度。該第二凸部16A面向該第一凸部14八以 形成介於二者之間的一放電通路18。 較佳地,該第一非矩形導體14與該第二非矩形導體16 係呈梯形且以鏡相方式設置於該基板12上。特而言之,該 ® 第一非矩形導體14之外形可不同於該第二非矩形導體16。 該第一凸部14A具有一第一平緣14B,該第二凸部16A具有 一第二平緣16B,且該第二平緣16B面向該第一平緣146。 參考圖2,其係圖1之電極結構2 〇的剖示圖。該第一凸 邻14 A與該弟二凸部丨6 A之上端的寬度大於中段的寬度,亦 即該第一凸部】4A與該第二凸部16A具有非均勻之厚度。因 此,相較於中段處,該第一凸部14A與該第二凸部16A在上 端處較罪近彼此,因此該放電通路丨8係形成於該第一凸部I27093.DOC 200939257 Dispersion capability is the main drawback of TVS diodes. SUMMARY OF THE INVENTION The present invention provides a variable impedance material comprising a conductive powder, a semiconductor powder, and an insulating adhesive which exhibits high resistance characteristics in a low applied voltage state but exhibits low resistance characteristics in a high applied voltage state. The variable impedance material of the present invention comprises a conductive powder, a semiconductor powder, and an insulating binder. The content of the conductive powder may be between 10% and 30% by weight of the variable impedance material, and the content of the semiconductor powder may be between 30% and 90% of the weight of the variable resistive material, the insulating adhesive The amount may be between 3% and 50% by weight of the variable impedance material. The variable impedance material exhibits a high resistance characteristic in a low applied state, but exhibits a low resistance characteristic in a high applied voltage state. The variable impedance material is placed in the gap 1 between the conductors of the overvoltage protection element. The entire overvoltage protection element has electrical characteristics that exhibit low resistance at low applied voltage and low resistance at high applied voltage. The present invention also proposes a variable impedance material ® comprising a highly conductive magnetic powder which reduces the trigger voltage of the element and exhibits a high resistance characteristic in a low applied voltage state and a low resistance characteristic in a high applied voltage state. The variable impedance material of the present invention comprises a highly conductive magnetic powder and an insulating binder. The content of the highly conductive magnetic powder may be between 10% and 85% by weight of the variable impedance material, and the content of the insulating binder may be between 10% and 30% by weight of the variable impedance material. Adding a powder including a few base metals (for example, a few base iron powder or a nickel carbonyl powder) to a variable impedance material not only suppresses overvoltage, but also dissipates the transient state of electricity 127093.DOC -10- 200939257 Stream 2 is more conventional than static electricity The material used in the discharge device, using a few base metals, 'electromagnetic metal powder can reduce the trigger voltage of the component, and its conductive magnetic properties can also absorb some of the electromagnetic interference that causes signal distortion and data errors. In one embodiment of the invention, the variable impedance material exhibits a high resistance characteristic in a low applied electric (four) state, but exhibits a low electric resistance characteristic in a high applied voltage state. By placing the variable impedance material in the gap between the two conductors in the overvoltage protection component, the overvoltage protection component as a whole has a high resistance when applied at low application and exhibits low power when the power is applied high. Thai gas characteristics. The technical features and advantages of the present invention have been summarized above, and the detailed description of the present invention is better. Other technical features and advantages of the subject matter of the claims of the present invention will be described below. It is to be understood by those of ordinary skill in the art that the present invention may be practiced as a basis and the invention may be practiced otherwise. It should be understood by those of ordinary skill in the art of the present invention that such equivalence = construction cannot be separated from the guessing and scope of the invention as set forth in the appended claims. [Embodiment] Moxibustion FIGS. 1 to 5 illustrate an overvoltage protection element 1A of the first embodiment of the present invention. The formation-electrode structure 2G is on the substrate 12, which may be composed of a 2-edge material (e.g., a plastic material), that is, the substrate 12 may be a plastic kick base and have an upper surface 12A and a lower surface 12B. The electrode structure 20 includes i27093.D〇c -11-200939257 including a first non-rectangular conductor 14, a second non-rectangular conductor 16, a first side electrode 22 and a second side electrode 24. The first non-rectangular conductor bucket has a first convex portion 14A disposed on the upper surface 12A, and the second non-rectangular conductor 16 has a second convex portion 16 disposed on the upper surface 12A, the first side The side electrode 22 is disposed on one side of the substrate 丨2 and is connected to the first non-rectangular conductor 14. The second side electrode 24 is disposed on the other side of the substrate 12 and connected to the second non- Rectangular conductor 16. In addition, the electrode structure 20 further includes a first conductive member 22, and a second Φ conductive member 24'' which may be a plated metal layer or a conductive via. The first conductive member 22 is interposed between the substrate 12 and the first side electrode 22, and the second conductive member 24' is sandwiched between the substrate 12 and the second side electrode 24. Preferably, the first convex portion 14A and one of the second convex portions 16A are tapered and have a tapered width. The second convex portion 16A faces the first convex portion 14 to form a discharge path 18 therebetween. Preferably, the first non-rectangular conductor 14 and the second non-rectangular conductor 16 are trapezoidal and are disposed on the substrate 12 in a mirror phase manner. In particular, the ® first non-rectangular conductor 14 may be different from the second non-rectangular conductor 16. The first convex portion 14A has a first flat edge 14B, the second convex portion 16A has a second flat edge 16B, and the second flat edge 16B faces the first flat edge 146. Referring to Figure 2, there is shown a cross-sectional view of the electrode structure 2 of Figure 1. The width of the upper end of the first protrusion 14 A and the second protrusion 丨 6 A is greater than the width of the middle portion, that is, the first protrusion 4A and the second protrusion 16A have a non-uniform thickness. Therefore, the first convex portion 14A and the second convex portion 16A are closer to each other at the upper end than the middle portion, and thus the discharge path 8 is formed in the first convex portion.

I27093.DOC -12- 200939257 14A上端與該第二凸部16A上端之間。 參考圖3,一可變阻抗材料26係形成於該第一凸部14A 與該第二凸部1 6A之間。該可變阻抗材料26可包含導電粉末 、半導體粉末及絕緣黏結物。導電粉末之含量可介於該可 變阻抗材料重量之10%至30%之間,半導體粉末之含量可介 於該可變阻抗材料重量之30%至90%之間,絕緣黏結物之含 量可介於該可變阻抗材料重量之3%至50%之間。 較佳地,該導電粉末可選自銘、銀、Ιε、銘、金、鎳 ρ 、銅、鎢、絡、鐵、鋅、鈦、銳、I目、釘、錯及銀.所組之 族群之其中之一,該半導體粉末可包含氧化鋅或碳化矽, 該絕緣黏結物包含環氧樹脂或矽膠。此外,該可變阻抗材 料26可另包含絕緣粉末,其含量係介於該可變阻抗材料重 量之1 0%至60%之間,其中該絕緣粉末可包含金屬氧化物, 例如氧化鋁或氧化鍅。 參考圖4及圖5,一放電保護層30覆蓋該可變阻抗材料 26,且一絕緣層32覆蓋該放電保護層30。較佳地,該放電 ® 保護層30可包含無機絕緣材料及有機絕緣材料,其中該無 機絕緣材料可包含金屬氧化物,而該有機絕緣材料可包含 環氧樹脂或矽膠。該絕緣層32可包含無機絕緣材料及有機 絕緣材料,其中該無機絕緣材料包含金屬氧化物,而該有 機絕緣材料包含環氧樹脂或矽膠。 圖6例示本發明第二實施例之過電壓保護元件10'。相較 於圖5所示之過電壓保護元件10,圖6之過電壓保護元件10' 另包含至少一設置於該下表面12Β之對位區塊34。當該過電 127093.DOC 13 - 200939257 壓保護元件10'要附著於一電路板上時,該對位區塊34即可 用以對準該電路板上之另一對位區塊。此外,該對位區塊 34並未電氣連接於該過電流保護元件1(V之導電元件,且該 對位區塊34亦可予以選擇性地設計為二個或多個。 圖7例示過電壓保護元件10與負載44之並聯電路40。將 過電壓保護元件1 〇與負載44並聯,當一高暫態電壓42施加 於該過電壓保護元件10時,該過電壓保護元件10可切換至 一低電阻狀態且將暫態電壓42限縮至一低電壓值。換言之 @ ,並聯於該過電壓保護元件1 0之負載44將承受限縮後之暫 態電壓。 圖8係本發明之可變阻抗材料26之電阻與施加電壓之 關係圖。該可變阻抗材料26在低施加電壓狀態呈現高電阻 特性,但在高施加電壓狀態則呈現低電阻特性。藉由將該 可變阻抗材料26設置於該第一非矩形導體14與該第二非矩 形導體1 6之間隙,該過電壓保護元件1 0之整體即具有在低 施加電壓時呈現低電阻並在高施加電壓時則呈現低電阻之 〇 電氣特性。 圖9顯示本發明第一實施例之過電壓保護元件10承受 一暫態電壓42時之響應。參考圖7與圖9,在過電壓保護元 件10與負載44並聯之情況下,當1900伏特之暫態電壓42施 加於該過電壓保護元件10之第一非矩形導體14與第二非矩 形導體1 6時,該過電壓保護元件1 0切換至一低電阻狀態且 將1 900伏特之暫態電壓42限縮約為5 1 8伏特。換言之,並聯 於該過電壓保護元件10之負載44將承受限縮後約為518伏 127093.DOC -14- 200939257 特之暫態電壓,而不是承受i 9〇fW4s μ ± 又川0伙待之暫態電壓42。 習知之過電壓保護元件均摄 J休用二個等寬且以一間隙予 以分隔之導體,因此習知之過雷两如# , 心電屋保護元件的放電通路位 置無法預測。相對地,本發明夕、風^ 个知明之過電壓保護元件10具有二 個非矩形導體14 ' 1 6,且二個北拓π ,sI27093.DOC -12- 200939257 14A is between the upper end and the upper end of the second convex portion 16A. Referring to FIG. 3, a variable impedance material 26 is formed between the first convex portion 14A and the second convex portion 16A. The variable resistance material 26 may comprise a conductive powder, a semiconductor powder, and an insulating binder. The content of the conductive powder may be between 10% and 30% by weight of the variable impedance material, and the content of the semiconductor powder may be between 30% and 90% by weight of the variable impedance material, and the content of the insulating adhesive may be Between 3% and 50% by weight of the variable impedance material. Preferably, the conductive powder may be selected from the group consisting of Ming, Silver, Ιε, Ming, Jin, Nickel ρ, Copper, Tungsten, Cobalt, Iron, Zinc, Titanium, Sharp, I mesh, Nail, Wrong and Silver. In one of the cases, the semiconductor powder may comprise zinc oxide or tantalum carbide, and the insulating adhesive comprises an epoxy resin or a silicone rubber. In addition, the variable impedance material 26 may further comprise an insulating powder in an amount of between 10% and 60% by weight of the variable impedance material, wherein the insulating powder may comprise a metal oxide such as alumina or oxidation. Hey. Referring to Figures 4 and 5, a discharge protection layer 30 covers the variable impedance material 26, and an insulating layer 32 covers the discharge protection layer 30. Preferably, the discharge ® protective layer 30 may comprise an inorganic insulating material and an organic insulating material, wherein the inorganic insulating material may comprise a metal oxide, and the organic insulating material may comprise an epoxy resin or a silicone rubber. The insulating layer 32 may comprise an inorganic insulating material and an organic insulating material, wherein the inorganic insulating material comprises a metal oxide, and the organic insulating material comprises an epoxy resin or a silicone rubber. Fig. 6 illustrates an overvoltage protection element 10' of a second embodiment of the present invention. Compared with the overvoltage protection component 10 shown in FIG. 5, the overvoltage protection component 10' of FIG. 6 further includes at least one alignment block 34 disposed on the lower surface 12A. When the overvoltage 127093.DOC 13 - 200939257 voltage protection component 10' is to be attached to a circuit board, the alignment block 34 can be used to align another alignment block on the circuit board. In addition, the alignment block 34 is not electrically connected to the conductive element of the overcurrent protection component 1 (V, and the alignment block 34 can also be selectively designed as two or more. FIG. 7 illustrates The parallel circuit 40 of the voltage protection component 10 and the load 44. The overvoltage protection component 1 并联 is connected in parallel with the load 44. When a high transient voltage 42 is applied to the overvoltage protection component 10, the overvoltage protection component 10 can be switched to a low resistance state and limiting the transient voltage 42 to a low voltage value. In other words, the load 44 connected in parallel with the overvoltage protection component 10 will withstand the transient voltage after the limiting. Figure 8 is a A graph of the resistance of the variable impedance material 26 versus the applied voltage. The variable impedance material 26 exhibits a high resistance characteristic in a low applied voltage state, but exhibits a low resistance characteristic in a high applied voltage state. By the variable impedance material 26 Provided in a gap between the first non-rectangular conductor 14 and the second non-rectangular conductor 16, the overvoltage protection element 10 has a low resistance at a low applied voltage and a low resistance at a high applied voltage. Electric power Fig. 9 shows the response of the overvoltage protection component 10 of the first embodiment of the present invention when subjected to a transient voltage 42. Referring to Figures 7 and 9, in the case where the overvoltage protection component 10 is connected in parallel with the load 44, When a transient voltage 42 of 1900 volts is applied to the first non-rectangular conductor 14 and the second non-rectangular conductor 16 of the overvoltage protection component 10, the overvoltage protection component 10 switches to a low resistance state and will be 1 900 volts. The transient voltage 42 is limited to about 5 18 volts. In other words, the load 44 connected in parallel with the overvoltage protection component 10 will withstand a transient voltage of about 518 volts 127093.DOC -14-200939257 after the limiting. It is not subject to the transient voltage of i 9〇fW4s μ ± 川0. The conventional over-voltage protection components are all taken by two equal-width conductors separated by a gap, so the conventional # , The position of the discharge path of the protection device of the electrocardiogram house is unpredictable. In contrast, the overvoltage protection element 10 of the present invention has two non-rectangular conductors 14 ' 1 6 and two north extensions π , s

1U非矩形導體14、1 6之凸部14A 、16A彼此相肖,因Λ二個非矩形導體“、16之間距並非均 句一致。特而言之,二個非矩形導體14、16之間隙在其凸 部ΜΑ、16Α位置的寬度較窄於其它位置,因此該放電通路The convex portions 14A and 16A of the 1U non-rectangular conductors 14, 16 are mutually opposite, because the distance between the two non-rectangular conductors "16" is not uniform. In particular, the gap between the two non-rectangular conductors 14, 16 The width of the convex portion Α, 16 Α is narrower than other positions, so the discharge path

即設計於該凸部14Α、1 6Α仿荖,ο # 置且該可變阻抗材料26覆蓋 5亥凸部14Α、16Α。 圖10例示本發明第三實施之過電堡保護元件1〇,,。該過 電遷保護元件10"包含一基板12及設置於該基板12上之一 第一導體52與-第二導體54,且該第一導體52及該第二導 體54間係以一間隙56予以分隔,而-可變阻抗材料26,係置 於該間隙56。須另古明去,楚 肩另。明者,第一導體52及第二導體Μ可為 任何形狀而仍不背離本發明所揭露之範圍。在本發明之一 實施例中^該可變阻抗材料26,可包含高導電磁粉末及絕緣 黏’〜物。兩導電磁粉末之含量可介於該可變阻抗材料重量 之。10%至90%之間’其含量為該可變阻抗材料重量之鳩至 =間為較佳;絕緣黏結物之含量可介於該可變阻抗材料 14%至80%間為較佳 重里之10%至90%之間,其含量為該可變阻抗材料重量之 一圖11顯示本發明之第三實施例之過電壓保護元件10,, 承受-暫態電壓42時之響應。參考圖7與圖ι〇,將圖7之過That is, the convex portion 14 is designed to be folded, and the variable impedance material 26 is covered with the five convex portions 14A and 16B. Fig. 10 is a view showing an electric power protection element 1 of the third embodiment of the present invention. The over-current protection component 10" includes a substrate 12 and a first conductor 52 and a second conductor 54 disposed on the substrate 12, and a gap 56 is formed between the first conductor 52 and the second conductor 54. Separated, and a variable impedance material 26 is placed in the gap 56. Must go to another ancient Ming, Chu shoulder another. It is obvious that the first conductor 52 and the second conductor Μ can be of any shape without departing from the scope of the invention. In an embodiment of the invention, the variable impedance material 26 may comprise a highly conductive magnetic powder and an insulating paste. The content of the two conductive magnetic powders may be between the weight of the variable impedance material. Between 10% and 90%, the content is between 鸠 and 重量 of the weight of the variable-resistance material; the content of the insulating adhesive may be between 14% and 80% of the variable-resistance material. Between 10% and 90%, the content is one of the weights of the variable impedance material. FIG. 11 shows the response of the overvoltage protection component 10 of the third embodiment of the present invention when subjected to a transient voltage of 42. Referring to Figure 7 and Figure ι, Figure 7 has passed

127093.DOC -15 - 200939257 電壓保護元件10以電壓保護元件1 〇M置換後進行測試可發 現,當2000伏特之暫態電壓42施加於該過電壓保護元件10” 之第一導體52並將該第一導體54接地時,該過電壓保護元 件10n切換至一低電阻狀態並將2000伏特之暫態電壓42限 縮至約為307伏特之觸發電壓。換言之,並聯於該過電壓保 護元件1〇Μ之負載44將承受限縮後約為307伏特之暫態電壓 ,而不是承受2000伏特之暫態電壓42。 在本發明之一實施例中,高導電磁粉末包含羰基配體 g ( Carbonyl Ligand〉。例如,高導電磁粉末包括截基金屬粉 末(Carbonyl Metal ),而其可包含例如幾基鐵粉(Carbonyl Iron)、戴基鐵鎳粉(Carbonyl Nickel)或幾基鐵鎳始合金 粉末(Carbonyl Nickel/Cobalt Alloy).。_在本發明之一實施 例中,絕緣黏結物包含環氧樹脂或矽膠。下列表I顯示不同 混合比例之可變阻抗材料2 6'之範例: 表I :127093.DOC -15 - 200939257 The voltage protection component 10 is tested after being replaced by the voltage protection component 1 〇M. It can be found that when a transient voltage 42 of 2000 volts is applied to the first conductor 52 of the overvoltage protection component 10" and When the first conductor 54 is grounded, the overvoltage protection component 10n is switched to a low resistance state and the transient voltage 42 of 2000 volts is limited to a trigger voltage of about 307 volts. In other words, the overvoltage protection component is connected in parallel. The load 44 of the crucible will withstand a transient voltage of about 307 volts after being limited, rather than with a transient voltage 42 of 2000 volts. In one embodiment of the invention, the highly conductive magnetic powder comprises a carbonyl ligand g (Carbonyl Ligand) For example, the highly conductive magnetic powder includes Carbonyl Metal, and it may include, for example, Carbonyl Iron, Carbonyl Nickel, or a few base iron-nickel alloy powders ( Carbonyl Nickel/Cobalt Alloy). In one embodiment of the invention, the insulating adhesive comprises epoxy or silicone. Table I below shows examples of variable impedance materials of different mixing ratios. I :

範例編號 導電磁粉末 絕緣黏結物 觸發電壓 範例1 86% 14% 353 V 範例2 70% 3 0% 500 Y 範例3 50% 50% 600 V 範例4 20% 80% 1157 V 上述範例所使用之導電磁粉末為BASF公司所生產之 幾基金屬之幾基鐵粉(Carbonyl .Iron Power ; CIP ),其型號 為enpulver SW-S,而上述範例所使用之絕緣黏結物為 SIL-MORE INDUSTRIAL LTD所製造之矽膠,其型號為 127093.DOC -16- 200939257 SLR9530 A&B。觸發電壓則以SANKI所生產之靜電放電發 生器(型號:ESD-8012A)進行試驗,其試驗條件:ESD-8012A 輸出電壓為2 kV、INT. 90、放電30次。範例1至範例4均顯 示,可變阻抗材料26'中加入以一定比例内混合之羰基鐵粉 及絕緣黏結物後,可將觸發電壓限縮於ESD保護上限電壓 之1200伏特下。表I中顯示,導電磁粉末之含量變化從20% 至86%而仍能將觸發電壓限縮在1200伏特下。由此可推論 ,導電磁粉末之適當含量可介於1 0%至90%間。此外,表I φ 中絕緣黏結物之含量變化從14%至80%而仍能將觸發電壓 限縮在1200伏特下,由此亦可推論絕緣黏結物之適當含量 水平可介於1 0%至90%間。 在本發明之另一實施例中,可變阻抗材料26’另包含半 導體粉末。該半導體粉末包含氧化鋅或碳化矽。半導體粉 末之含量可介於該可變阻抗材料重量之0.001%至10°/。之間 ,其含量以介於該可變阻抗材料重量之0.001 %至8%者為佳 ,而含量以介於該可變阻抗材料重量之1 %至6.5°/。者為較佳 ® 。下列表II即顯示不同混合比例之可變阻抗材料26’之範例 表II :Example No. Conductive Magnetic Powder Insulation Bond Trigger Voltage Example 1 86% 14% 353 V Example 2 70% 3 0% 500 Y Example 3 50% 50% 600 V Example 4 20% 80% 1157 V Conductive magnetic used in the above example The powder is a few base metal powders (Carbonyl. Iron Power; CIP) produced by BASF, and its model is enpulver SW-S, and the insulating adhesive used in the above examples is manufactured by SIL-MORE INDUSTRIAL LTD. Silicone, its model number is 127093.DOC -16- 200939257 SLR9530 A&B. The trigger voltage was tested with an electrostatic discharge generator (model: ESD-8012A) manufactured by SANKI. The test conditions were: ESD-8012A output voltage was 2 kV, INT. 90, discharge 30 times. Examples 1 to 4 show that the addition of carbonyl iron powder and insulating binder in a certain ratio to the variable-resistance material 26' can limit the trigger voltage to 1200 volts of the upper limit of the ESD protection. Table I shows that the content of conductive magnetic powder varies from 20% to 86% while still limiting the trigger voltage to 1200 volts. It can be inferred that the appropriate content of the conductive magnetic powder may be between 10% and 90%. In addition, the content of the insulating binder in Table I φ varies from 14% to 80% and still limits the trigger voltage to 1200 volts. It can also be inferred that the appropriate level of insulating binder can be between 10% and 90%. In another embodiment of the invention, the variable impedance material 26' further comprises a semiconductor powder. The semiconductor powder contains zinc oxide or tantalum carbide. The semiconductor powder may be present in an amount of from 0.001% to 10% by weight of the variable impedance material. Preferably, the content is between 0.001% and 8% by weight of the variable-resistance material, and the content is between 1% and 6.5°/% of the weight of the variable-resistance material. It is better ® . Table II below shows an example of a variable impedance material 26' of different mixing ratios. Table II:

範例編號 導電磁粉末 半導體粉末 絕緣黏結物 觸發電壓 範例5 75.80% 6.20% 18.00% 1050 V 範例6 76.77% 5.63% 17.60% 892 V 範例7 78.35% 4.19% 17.46% 763 V 範例8 8 0.04% 2.75% 17.21% 639 V 127093.DOC -17- 200939257 1.36% 1.00%Example No. Conductive Magnetic Powder Semiconductor Powder Insulation Bond Trigger Voltage Example 5 75.80% 6.20% 18.00% 1050 V Example 6 76.77% 5.63% 17.60% 892 V Example 7 78.35% 4.19% 17.46% 763 V Example 8 8 0.04% 2.75% 17.21 % 639 V 127093.DOC -17- 200939257 1.36% 1.00%

----- 一16.93% 」 560 V 14.50% 390 V (例如:氧化辞)混入羰 表11中顯示氧化鋅的含量 範例9 81.71% 範例10 84.50% 此一實施例係將半導體粉末 基鐵粉與矽膠聚合物的混合物中。 介於K00%至6.20%間,而仍能限縮觸發電壓於12〇〇伏特下 。據此可推論,氧化鋅的合適含量為〇〇〇1%至1〇%間。 在本發明之又-實施例中,可變阻抗特料26,另包含絕 緣粉末。該絕緣粉末包含金屬氧化物,其可為如氧化鋁或 ❹ 氧化錘。絕緣粉末之含量可介於該可變阻抗材料重量之 0.001%至10%之間,其含量以介於該可變阻抗材料重量之 0.001%至8%者為佳,而含量以介於該可變阻抗材料重量之 1%至6%者為較佳。下列表m即顯示不同混合比例之可變阻 抗材料26'之範例:----- 16.93% 560 V 14.50% 390 V (for example: oxidized) mixed into carbonyl table 11 shows the content of zinc oxide Example 9 81.71% Example 10 84.50% This example is a semiconductor powder based iron powder In a mixture with a silicone polymer. Between K00% and 6.20%, and still limit the trigger voltage to 12 volts. Accordingly, it can be inferred that a suitable content of zinc oxide is between %1% and 1%. In still another embodiment of the invention, the variable impedance material 26 further comprises an insulating powder. The insulating powder contains a metal oxide which may be, for example, an alumina or ruthenium oxide hammer. The content of the insulating powder may be between 0.001% and 10% by weight of the variable-resistance material, and the content thereof is preferably 0.001% to 8% by weight of the variable-resistance material, and the content may be between It is preferred that the weight of the variable impedance material is from 1% to 6% by weight. The following table m shows an example of a variable impedance material 26' of different mixing ratios:

實細•例係將絕緣粉末(例如:三氧化二鋁)混入 幾基=與發膠聚合物的混合物中。表m中顯示三氧化二 的3里"於100%至6G()%間,而此仍能限縮觸發電壓於 ^特下。據此可推論,三氧化二鋁的合適含量為〇.帅^ ’再者,於此混合物中,可變阻抗材料%,可包々 氧化鋅或碳切等半導體粉末,其含量可佔可變阻抗材:The thin example is the case where an insulating powder (for example, aluminum oxide) is mixed into a mixture of a few bases and a hair gel polymer. Table 3 shows that 3 volts of trioxide is between 100% and 6G ()%, and this can still limit the trigger voltage to ^. According to this, it can be inferred that the appropriate content of aluminum oxide is 〇. handsome ^ ', in this mixture, the variable resistance material%, can be coated with semiconductor powder such as zinc oxide or carbon cut, its content can be variable Impedance material:

127093.DOC 200939257 重量之0.001%至1〇〇/〇間。 高導電磁粉末包含至少一元素係選自鎳、鈷、鐵、鋁 和鈥組成之群組,該元素和有機官能基(如羰基、矽氧烷 、胺基等)形成化合物。特言之,該高導電磁粉末係選自 幾基鐵粉、羰基鎳粉或羰基鎳鈷合金粉末等。而其中,幾 基鐵粉(CIP)特別地被選為研究之用。半導體粉末包含氧 化鋅或碳化矽,而絕緣黏結物包含環氧樹脂或矽膠。此外 ,可變阻抗材料26'更可包含氧化鋁或氧化鍅等之絕緣粉末 • 〇 在可變阻抗材料26’中加入包括羰基金屬粉末(如羰基 鐵粉或羰基鎳粉)不僅能抑制過電壓,且能耗散暫態電流 。與傳統靜電放電裝置不同之處,在於以羰基金屬之相對 咼的‘電磁金屬粉末能降低元件之觸發電麗。高導電磁特 性也能吸收會造成訊號損壞和資料損失之電磁輻射。 本發明之技術内容及技術特點已揭示如上,然而本發 月所屬技術領域中具有通常知識者仍可能基於本發明之教 示及揭示而作種種不背離本發明精神之替換及修飾。因此 ,本發明之保護範圍應不限於實施例所揭示者,而應包括 各種不月離本發明之替換及修飾,並為以下之申請專利範 圍所涵蓋。 【圖式簡要說明】 圖1至圖5例示本發明第一實施之過電壓保護元件; 圖6例示本發明第二實施例之過電壓保護元件; 圖7例示過電壓保護元件與負載並聯電路示意圖;127093.DOC 200939257 0.001% by weight to 1〇〇/〇. The highly conductive magnetic powder comprises at least one element selected from the group consisting of nickel, cobalt, iron, aluminum and ruthenium, and the element forms a compound with an organic functional group (e.g., carbonyl, decane, amine, etc.). In particular, the highly conductive magnetic powder is selected from the group consisting of a few base iron powder, a nickel carbonyl powder or a nickel carbonyl cobalt alloy powder. Among them, a few base iron powder (CIP) was specially selected for research. The semiconductor powder contains zinc oxide or tantalum carbide, and the insulating binder contains epoxy or silicone. Further, the variable-resistance material 26' may further contain an insulating powder such as alumina or yttrium oxide. 〇 Adding a metal carbonyl powder (such as carbonyl iron powder or nickel carbonyl powder) to the variable-resistance material 26' not only suppresses overvoltage And energy dissipation of the transient current. The difference from the conventional electrostatic discharge device is that the electromagnetic metal powder which is opposite to the carbonyl metal can reduce the triggering of the component. Highly conductive magnetic properties also absorb electromagnetic radiation that can cause signal damage and data loss. The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of the invention should be construed as not limited by the scope of the invention, and should be construed as being BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 5 illustrate an overvoltage protection component of a first embodiment of the present invention; FIG. 6 illustrates an overvoltage protection component of a second embodiment of the present invention; FIG. 7 illustrates a schematic diagram of a parallel circuit of an overvoltage protection component and a load. ;

127093.DOC 200939257 係圖 圖8係本發明之可變阻抗持料之電阻與施加電堡 之關 圖9顯示本發明第一實施 暫態電壓時之響應; I屋保護元件承受 圖10,示本發明第三實施之過電麗保護元件;以及 圖,.頁示本發明之第二貫施例之過電壓保護元件承受 一暫態電壓時之響應。127093.DOC 200939257 is a diagram showing the relationship between the resistance of the variable impedance holding material of the present invention and the application of the electric castle. FIG. 9 shows the response of the first embodiment of the present invention; The third embodiment of the present invention relates to an overvoltage protection component; and the diagram, the page shows the response of the overvoltage protection component of the second embodiment of the present invention when subjected to a transient voltage.

【主要元件符號說明】 10 過電壓保護元件 10' 過電壓保護元件 10" 過電壓保護元件 12 基板 12A 上表面 12B 下表面 14 第一非矩形導體 14A 第一凸部 14B 第一平緣 16 第二非矩形導體 16A 第二凸部 16B 第二平緣 18 放電通路 20 電極結構 22 第一側邊電極 22, 第一導電件 24 第二側邊電極[Main component symbol description] 10 Overvoltage protection component 10' Overvoltage protection component 10" Overvoltage protection component 12 Substrate 12A Upper surface 12B Lower surface 14 First non-rectangular conductor 14A First convex portion 14B First flat edge 16 Second Non-rectangular conductor 16A second convex portion 16B second flat edge 18 discharge path 20 electrode structure 22 first side electrode 22, first conductive member 24 second side electrode

127093 DOC -20- 200939257 24' 第二導電件 26 可變阻抗材料 26' 可變阻抗材料 30 放電保護層 32 絕緣層 40 電路 42 暫態電壓 44 負載 52 第一導體 54 第二導體 56 間隙127093 DOC -20- 200939257 24' Second Conductor 26 Variable Impedance Material 26' Variable Impedance Material 30 Discharge Protective Layer 32 Insulation 40 Circuit 42 Transient Voltage 44 Load 52 First Conductor 54 Second Conductor 56 Clearance

127093.DOC -21127093.DOC-21

Claims (1)

200939257 十、申請專利範圍: 1. 一種可變阻抗材料,包含: 30%之間I 〃 3里係介於該可變阻抗材料重量之1〇%至 至9半末’其含量係介於該可變阻抗材料重量之薦 王yU/。之間;以及 絕緣黏結物,盆合吾 至50%之間。〃 可變阻抗材料重量之3〇/〇 ❹ 2. 根據凊求項1之可變阻 #自叙# 支阻抗材科,其中該導電粉末之材質係 进自鋁、銀、鈀、鉑、合、 、錄、銅、鎮、絡、鐵、鋅、鈦、 ’匕、、釕、錯及銀所組之族群之並中之一。 3· =r變阻抗材料,其中該半導體粉末包含氧 氧樹脂或二之。了受阻抗材料,其中該絕緣黏結物包含環 5.根據請求項1之可變阻括 係介於…另包含絕緣粉末,其含量 係"於該可變阻抗材料重量之1 〇%至6〇%之間。 6,根據請求項5之可轡阻於# 氧化物。 夂阻抗材枓,其中該絕緣粉末包含金屬 7 ·根據萌求項6之可變阻括分射 紹或氧化結。#科’其,該金屬氧化物係氧化 8. —種可變阻抗材料,包含·· 南導電磁粉末,豆合蔷及A a里係"於該可變阻抗材料重吾之 10%至90°/。之間丨以及 、邑緣黏結物,其含量係介於該可變阻抗材料重量之! 〇 % 127093.DOC -22- 200939257 至90%之間。 其中該高導電磁粉末包含 其中該局導電磁粉末包含 9.根據請求項8之可變阻抗材料 幾·基配體。 10.根據請求項8之可變阻抗材料 羰基金屬粉末。 η·=Γ8之可變阻抗材料,其中該高導電磁粉末包含 ^ 4、羰基鎳粉或羰基鎳鈷合金粉末。 12·,據1求項8之可變阻抗材料’其中該絕緣黏結物包含環 氧樹脂或石夕膠。 13. 根據請求項8之可變阻抗材料,其另包含半導體粉末。 14. 根據切求項13之可變阻抗材料,其中該半導體粉末之含量 係介於該可變阻抗材料重量之請财㈣之間。 根據”月求項13之可變阻抗材料,其中該半導體粉末包含氧 化鋅或碳化矽。 16.根據請求項8之可變阻抗材料,其另包含絕緣粉末,其含 量係二介於該可變阻抗材料重量之〇〇〇1%至1〇%之間。 ❹ 根據响求項丨6之可變阻抗材料,其中該絕緣粉末包含金屬 氧化物。 根據味求項丨6之可變阻抗材料,其中該金屬氧化物係氧化 在呂或氧化錯。 19.根據請求項16之可變阻抗材料,其另包含半導體粉末。 根據明求項丨9之可鉍阻抗材料,其中該半導體粉末之含量 係h於該可變阻抗材料重量之g 至⑺%之間。 2 1 ·根據吻求項丨9之可變阻抗材料,其中該半導體粉末包含氧 化鋅或碳化發。 127093.DOC -23-200939257 X. Patent application scope: 1. A variable impedance material, including: 30% between I 〃 3 is between 1% and 9% of the weight of the variable impedance material. The recommended weight of the variable impedance material is yU/. Between; and insulating adhesive, between 50%. 〇 The weight of the variable impedance material is 3〇/〇❹ 2. According to the variable 1 of the variable resistance, the material of the conductive powder is derived from aluminum, silver, palladium, platinum, and One of the groups of the group of records, copper, town, network, iron, zinc, titanium, '匕, 钌, 错, and silver. 3· = r variable impedance material, wherein the semiconductor powder comprises an oxy-oxygen resin or a second. The resistive material, wherein the insulating adhesive comprises a ring 5. The variable resisting system according to claim 1 further comprises an insulating powder, the content of which is <1% to 6% by weight of the variable resistive material 〇% between. 6, according to claim 5 can be blocked by # oxide. The 夂impedance material, wherein the insulating powder comprises a metal 7 · a variable blocking or oxidizing junction according to the item 6. #科', the metal oxide is oxidized. 8. A variable-impedance material, including ························································· °/. Between the 丨 and the 邑 edge of the adhesive, the content is between the weight of the variable impedance material! 〇 % 127093.DOC -22- 200939257 to between 90%. Wherein the highly conductive magnetic powder comprises wherein the conductive magnetic powder comprises 9. The variable impedance material according to claim 8 is a ligand. 10. The variable impedance material according to claim 8 carbonyl metal powder. A variable impedance material of η·=Γ8, wherein the highly conductive magnetic powder comprises ^ 4, nickel carbonyl powder or nickel carbonyl cobalt powder. 12. The variable impedance material of claim 8, wherein the insulating adhesive comprises an epoxy resin or a diarrhea. 13. The variable impedance material of claim 8, further comprising a semiconductor powder. 14. The variable impedance material according to claim 13, wherein the content of the semiconductor powder is between (4) the weight of the variable impedance material. The variable impedance material according to the item of claim 13, wherein the semiconductor powder comprises zinc oxide or tantalum carbide. 16. The variable impedance material according to claim 8, further comprising an insulating powder, the content of which is two重量1% to 1〇% of the weight of the impedance material. 可变 The variable impedance material according to the response 丨6, wherein the insulating powder contains a metal oxide. According to the variable impedance material of the item ,6, Wherein the metal oxide is oxidized or oxidized. 19. The variable impedance material according to claim 16, further comprising a semiconductor powder. The ytterbium resistance material according to the item 丨9, wherein the content of the semiconductor powder is h is between g and (7)% of the weight of the variable impedance material. 2 1 · A variable impedance material according to the kiss ,9, wherein the semiconductor powder comprises zinc oxide or carbonized hair. 127093.DOC -23-
TW097133851A 2008-03-06 2008-09-04 Variable impendance material TWI476790B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/043,550 US20090224213A1 (en) 2008-03-06 2008-03-06 Variable impedance composition
US12/139,860 US7708912B2 (en) 2008-06-16 2008-06-16 Variable impedance composition

Publications (2)

Publication Number Publication Date
TW200939257A true TW200939257A (en) 2009-09-16
TWI476790B TWI476790B (en) 2015-03-11

Family

ID=44867655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133851A TWI476790B (en) 2008-03-06 2008-09-04 Variable impendance material

Country Status (1)

Country Link
TW (1) TWI476790B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495077B (en) * 2012-06-15 2015-08-01 Polytronics Technology Corp Multi-channel over-voltage protection device
CN113234407A (en) * 2021-04-02 2021-08-10 广东美信科技股份有限公司 Magnetic conductive glue and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726991A (en) * 1986-07-10 1988-02-23 Eos Technologies Inc. Electrical overstress protection material and process
US6251513B1 (en) * 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
US6463898B1 (en) * 2000-11-20 2002-10-15 Cummins Engine Company, Inc. Rocker lever ball socket retainer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495077B (en) * 2012-06-15 2015-08-01 Polytronics Technology Corp Multi-channel over-voltage protection device
CN113234407A (en) * 2021-04-02 2021-08-10 广东美信科技股份有限公司 Magnetic conductive glue and preparation method thereof

Also Published As

Publication number Publication date
TWI476790B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US7708912B2 (en) Variable impedance composition
US6211554B1 (en) Protection of an integrated circuit with voltage variable materials
US7034652B2 (en) Electrostatic discharge multifunction resistor
US6628498B2 (en) Integrated electrostatic discharge and overcurrent device
JP4902944B2 (en) Voltage variable material for direct application and device using voltage variable material
US6251513B1 (en) Polymer composites for overvoltage protection
JP5264484B2 (en) Circuit protection device having thermally coupled MOV overvoltage element and PPTC overcurrent element
US8179655B2 (en) Surge protection apparatus and methods
JPH06113445A (en) Protective device of teelcommunication apparatus
JP5877317B2 (en) Overvoltage protection components and overvoltage protection materials for overvoltage protection components
JPS63100702A (en) Material and method for avoiding excessive electrical stress
US20090015978A1 (en) Non-inductive silicon transient voltage suppressor
US7035072B2 (en) Electrostatic discharge apparatus for network devices
TW200939257A (en) Variable impendance material
Drabkin Surge protection of low-voltage AC power by MOV-based SPDs
US7358006B2 (en) Electromagnetic pulse protected fuel cell power system
CN101527195B (en) Variable impedance material
TWI384501B (en) Over-voltage protection device
CN203871099U (en) Electrostatic suppressor with overcurrent protection function
EP1494284A1 (en) Overvoltage protection device
JP2016157896A (en) Overvoltage protection component and overvoltage protection material for overvoltage protection component
Bourns Essentials for Effective Protection Against Overvoltage Events.
WO2013170270A1 (en) Discrete silicon avalanche diode array
Simbürger et al. Bauelemente für die Unterdrückung transienter Überspannungen–Technologien und Eigenschaften
TW201128892A (en) Resettable ultra-wideband high-speed communication safety circuit breaker

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees