TW200939253A - Method for making cable - Google Patents

Method for making cable Download PDF

Info

Publication number
TW200939253A
TW200939253A TW97108086A TW97108086A TW200939253A TW 200939253 A TW200939253 A TW 200939253A TW 97108086 A TW97108086 A TW 97108086A TW 97108086 A TW97108086 A TW 97108086A TW 200939253 A TW200939253 A TW 200939253A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
forming
carbon
nanotube structure
Prior art date
Application number
TW97108086A
Other languages
Chinese (zh)
Other versions
TWI345794B (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108086A priority Critical patent/TWI345794B/en
Publication of TW200939253A publication Critical patent/TW200939253A/en
Application granted granted Critical
Publication of TWI345794B publication Critical patent/TWI345794B/en

Links

Abstract

The present invention relates to a method for making a cable. The method includes the following steps of: (a) providing an array of carbon nanotubes; (b) drawing a carbon nanotube structure from the array of carbon nanotubes via a drawing tool; (c) forming at least one layer of conductive material layer on the surface of the carbon nanotube structure to form a carbon nanotube yarn structure; (d) forming at least one layer of insulating layer on the surface of the carbon nanotube yarn structure; (e) forming at least one layer of shielding layer on the surface of the insulating layer; and (f) forming a sheath on the surface of the shielding layer.

Description

200939253 、 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種線纜的製造方法’尤其涉及一種基於 奈米碳管的線纜的製造方法。 【先前技術】 線窺係電子産業裏較爲常用的信號傳輸線材,微米級 尺寸的線缓更廣泛應用於it產品、醫學儀器、空間設備 ❹中。傳統的線缓内部設置有兩個導體,内導體用以傳輸電 “號’外導體用以屏蔽傳輸的電信號並且將其封閉於内 部,從而使線纜具有高頻損耗低、屏蔽及抗干擾能力强、 使用頻帶寬等特性,請參見文獻“ Electr〇magnetic Shielding of High-Voltage Cables" (M.De Wulf, P. Wouters et.al., Journal of Magnetism and Magnetic Materials, 316, e908-e901 (2007))。 一般情况下,線纜從内至外的結構依次爲形成内導體 ❹的緵芯、包覆於纜芯外表面的絕緣介質層、形成外導體的 屏蔽層和外護套。其中,纜芯用來傳輸電信號,材料以銅、 紹或銅鋅合金爲主。屏蔽層通常由多股金屬線編織或用金 屬薄膜卷覆於絕緣介質層外形成,用以屏蔽電磁干擾或無 用外部k號干擾。對於以金屬材料形成的缓芯,最大問題 在於交變電流於金屬導體中傳輸時會産生趨膚效應(心 Effect)。趨膚效應使金屬導體中通過電流時的有效截面積 减小,從而使導體的有效電阻變大,導致線镜的傳輸效率 降低或傳輸信號丟失。另外,以金屬材料作爲纜芯及屏蔽 7 200939253 層的線纜’其强度較小’質量及直徑較大,無法滿足某些 特定條件,如航天領域、空間設備及超細微線纜的應用。 先鈾技術中,線缓的製造方法一般包括以下步驟.包 覆聚合物於所述纜芯的外表面形成絕緣介質層;將多股金 屬線直接或通過編織包覆在絕緣介質層外形成屏蔽層或用 金屬薄膜卷覆在絕緣介質層外形成屏蔽層;以及包覆一外 護套於所述屏蔽層的外表面。 奈米碳管係一種新型一維奈米材料,其具有優異的導 電性能、高的抗張强度和高熱穩定性,於材料科學、化學、 物理學等交叉學科領域已展現出廣闊的應用前景。目前,' 已有將奈米碳管與金屬混合形成複合材料,從而用來^造 線纜的纜芯。然而’奈米碳管於金屬,爲無序分散,仍: 法解决上述金屬緵芯中的趨膚效應問題。且該包含二 管的纜芯的製造方法爲將微量奈米碳管與金屬通過:二: 融、真空燒結或真空熱壓的方法進行混合法: 複雜。 平又局 ^寥於此,提供—魏纜的製造方法實為必要, 法間早、成本低、易於規模化生産,且所200939253, IX. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a cable, and more particularly to a method of manufacturing a cable based on a carbon nanotube. [Prior Art] The line transmission technology is commonly used in the electronics industry. The micron-sized line is more widely used in IT products, medical instruments, and space equipment. The conventional wire is internally provided with two conductors, and the inner conductor is used to transmit an electric "outer" outer conductor for shielding the transmitted electrical signal and enclosing it inside, so that the cable has low frequency loss, shielding and anti-interference. For features such as high performance and bandwidth usage, please refer to the literature "Electr〇 Magnetic Shielding of High-Voltage Cables" (M. De Wulf, P. Wouters et. al., Journal of Magnetism and Magnetic Materials, 316, e908-e901 ( 2007)). In general, the structure of the cable from the inside to the outside is a core forming an inner conductor, an insulating dielectric layer covering the outer surface of the core, a shielding layer forming an outer conductor, and an outer sheath. Among them, the cable core is used to transmit electrical signals, and the material is mainly copper, slag or copper-zinc alloy. The shielding layer is usually formed by braiding a plurality of metal wires or wrapping a metal film over the insulating dielectric layer to shield electromagnetic interference or unwanted external k-interference. For a slow core formed of a metallic material, the biggest problem is that an alternating current causes a skin effect when transmitted in a metal conductor. The skin effect reduces the effective cross-sectional area of the metal conductor when passing current, thereby making the effective resistance of the conductor large, resulting in a decrease in the transmission efficiency of the line mirror or loss of the transmission signal. In addition, the metal material is used as the core and the cable of the 200939253 layer is less strong. The quality and diameter are large, which cannot meet certain specific conditions, such as aerospace, space equipment and ultra-fine cable applications. In the prior uranium technology, the line slow manufacturing method generally comprises the following steps: coating the polymer to form an insulating medium layer on the outer surface of the core; forming a shielding by directly or by braiding the outer layer of the insulating medium The layer is wound with a metal film to form a shielding layer outside the insulating dielectric layer; and an outer sheath is coated on the outer surface of the shielding layer. Nano carbon nanotubes are a new type of one-dimensional nano-materials with excellent electrical conductivity, high tensile strength and high thermal stability. They have shown broad application prospects in the fields of materials science, chemistry and physics. At present, 'the carbon nanotubes have been mixed with metals to form composite materials, which are used to make cable cores. However, the 'carbon nanotubes in the metal, which are disorderly dispersed, still: The method solves the skin effect problem in the above metal core. And the method for manufacturing the core comprising the two tubes is a method of mixing a small amount of carbon nanotubes with a metal by two methods: melting, vacuum sintering or vacuum hot pressing: complicated. Ping and bureau. In this case, it is necessary to provide the manufacturing method of Wei cable. It is early, low cost and easy to scale production.

=的導電性能、較强的機械性能、較輕的質量及 U 【發明内容】 ,纜的製造方法,包括以下步 管陣列;採用一拉伸 捉択不米石反 -奈米破管結構陣列中拉取獲得 成至^層^讀料層於所述奈米破 8 200939253 ‘管結構表面,形成一奈米碳管長線結構;形成至少一絕緣 介質層於所述奈米碳管長線結構的外表面;形成至少一屏 蔽層於所述絕緣介質層的外表面;以及形成一外護套於所 述屏蔽層的外表面。 相較於先前技術,本技術方案採用奈米碳管長線結構 作爲線纜的纜芯的製造方法具有以下優點:其一,由於奈 米碳管長線結構係通過對奈米碳管結構進行扭轉或直接從 ❾奈米碳管陣列中拉取獲得,該方法簡單、成本較低。其二, 所述從奈米碳管陣列中拉取獲得奈米碳管結構的步驟及形 成至少一層導電材料層的步驟均可在一真空容哭 有利於镜芯的規模化生産,從而有利於線纜的規模化生産。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例線纜的結 構及其製備方法。 本技術方案實施例提供一種線纜,該線纜包括至少一 ❹纔芯、包覆於纜芯外的至少一絕緣介質層、至少一屏蔽層 和一外護套。 印參閱圖1,本技術方案第一實施例的線纜1〇爲同軸 線纜’該同軸線纜包括一個纜芯11〇、包覆於纜芯11〇外 的絕緣介質層120、包覆於絕緣介質層120外的屏蔽層130 和包覆於屏蔽層130外的外護套14〇。其中,上述纜芯11〇、 、”邑緣^貝層120、屏蔽層13〇和外護套14〇爲同軸設置。 =$纜芯U0包括至少一奈米碳管長線結構。具體地, 該纜心110可由一個單獨的奈米碳管長線結構構成,也可 200939253 '由多個奈米碳管長線結構相互纏繞形成。本實施例中,該 、€芯110爲-奈米碳f長線結構。該蜆芯UG的直徑可以 爲4.5奈米〜1毫米,優選地,該纜芯的直徑爲1〇〜30微米。 該不米石反管長線結構由奈米碳管和導電材料構成。具 體地,該奈米碳管長線結構包括多個奈米碳管,並且,每 個奈米碳管表面均包覆至少一導電材料層。其中,每個奈 米石反管具有大致相等的長度,並且,多個奈米碳管通過凡 ❹$瓦爾力首尾相連形成一奈米碳管長線結構。於該奈米碳 管長線結構中,奈米碳管沿奈米碳管長線結構的抽向擇優 取向排列。進一步地,該奈米碳管長線結構可經過一扭轉 過程,形成一紋線結構。於上述絞線結構中,奈米碳管繞 絞線結構的軸向螺旋狀旋轉排列。該奈来碳管長線結構^ 直仅可以爲4.5奈米〜1〇〇微米,優選地,該奈米碳管長線 結構的直徑爲10〜30微米。 請參見目2,該奈米碳管長線結構中每一根奈米碳管 ❹ill表面均包覆至少一導電材料層。具體地,該導電材料 層包括與奈米碳管111表面直接結合的潤濕層丨12、設置 於潤濕層112外的過渡層113、設置於過渡層113外的導 電層114及設置於導電層114外的抗氧化層115。 由於奈米碳管111與大多數金屬之間的潤濕性不好, 故,上述潤濕層112的作用爲使導電層114與奈米碳管 更好的結合。形成該潤濕層丨12的材料可以爲鎳、鈀或鈦 等與奈米碳管111潤濕性好的金屬或它們的合金,該潤濕 層112的厚度爲1〜奈米。本實施例中,該潤濕層⑴ 200939253 的材料爲鎳,厚度約爲2夺 爲可選擇結構。 /、可以理解,該潤濕層112 上述過渡層113的作用爲使潤濕層ιΐ2 更好的結合。形成該過渡層u 〃 一曰 ^ ^ 的材科可以爲與潤渴層112 材枓及導電層114材料均能較好結合的材料,該過;= 的厚度爲1〜1〇夺米。太本浐^,丄 4 丁寸通過度層113 爲銅,严产A 2太半 中’該過渡層113的材料 ❹ 、=。尽度爲2奈未。可以理解,該過渡層ιΐ3爲可選擇 上述導電層H4的作用爲使奈米碳管長線結構且有較 好的導電性能。形成該導電層114的材料可以爲銅、銀或 金等導電性好的金屬或它們的合金,該導電層ιΐ4的厚度 爲1〜20奈米。本實施例中’該導電| 114的材料爲銀: 厚度約爲5奈米。 上述抗氧化層115的作用爲防止於線纜1〇的製造過程 中導電層U4於空氣中被氧化,從而使纜芯11〇的導電性 ❹能下降。形成該抗氧化層115的材料可以爲金或鉑等於空 氣中不易氧化的穩定金屬或它們的合金,該抗氧化層115 的厚度爲1〜ίο奈米。本實施例中,該抗氧化層115的材 料爲麵’厚度爲2奈米。可以理解,該抗氧化層丨丨$爲可 選擇結構。 進一步地’爲提高線纜10的强度,可於該抗氧化層 115外進一步設置一强化層116。形成該强化層116的材料 可以爲聚乙烯醇(PVA)、聚苯撑苯並二噁唑(pbo)、聚 乙烯(PE)或聚氣乙烯(PVC)等强度較高的聚合物,該 200939253 强化層116的厚度爲o.^i微米。本實施例中,該强化層 116的材料爲聚乙烯醇,厚度爲〇.5微米。可以理解,該 强化層116均爲可選擇結構。 絕緣介質層120用於電氣絕緣,可以選用聚四氟乙 稀、聚乙烯、聚丙烯、聚苯乙烯、泡沫聚乙烯組合物或奈 米黏土—高分子複合材料。奈米黏土一高分子複合材料中 奈米黏土係奈米級層狀結構的矽酸鹽礦物,係由多種水合 矽酸鹽和一定量的氧化鋁、鹼金屬氧化物及鹼土金屬氧化 物組成,具耐火阻燃等優良特性,如奈米高嶺土或奈米蒙 脫土。高分子材料可以選用矽樹脂' 聚醯胺、聚烯烴如聚 乙烯或聚丙烯等,但並不以此爲限。本實施例優選泡沫聚 乙稀組合物。 屏蔽層130由一導電材料形成,用以屏蔽電磁干擾或 無用外部信號干擾。具體地,屏蔽層130可由多股金屬線 編織或用金屬薄膜卷覆於絕緣介質層丨2〇外形成,也可由 ❹多個奈米碳管長線、單層有序奈米碳管薄膜、多層有序奈 米碳管薄膜或無序奈米碳管薄膜纏繞或卷覆於絕緣介質層 12〇外形成’或可由含有奈米碳管的複合材料直接包覆^ 絕緣介質層120表面。 、 其中’該金屬_或金屬線的材料可以選擇爲銅、金 或銀等導電性好的金屬或它們的合金。該奈米碳管長線、 單層有序奈米碳管薄膜或多層有序奈米碳管薄膜包括多個 奈米碳管束m每個奈米碳管束諸具有大致相 度且每個奈米碳管束片段由多個相互平行的 12 200939253 -成,奈米碳管束片段兩端通過凡德瓦爾力相互連接,從而 形成連續的奈米碳管薄膜或奈米碳管長線。該複合材料可 以爲金屬與奈米碳管的複合或聚合物與奈来碳管的複合。 該聚合物材料可以選擇爲聚對苯二曱酸乙二醇酯 (Polyethylene Terephthalate, PET )、聚碳酸酉旨 (Polycarbonate, PC)、丙烯腈一丁二烯丙烯一苯乙稀共聚 物(Acrylonitrile-Butadiene Styrene Terpolymer, ABS )、聚 A碳酸酯/丙烯腈一丁二烯一苯乙烯共聚物(PC/ABS)等高 〇 分子材料。將奈米碳管均勻分散於上述聚合物材料的溶液 中,並將該混合溶液均勻塗覆於絕緣介質層120表面,待 冷却後形成一含奈米碳管的聚合物層。可以理解,該屏蔽 層130還可由奈米碳管複合薄膜或奈米碳管複合長線結構 包裹或纏繞於絕緣介質層120外形成。具體地,所述奈米 碳管金屬複合薄膜或奈米碳管金屬複合長線結構中的奈米 碳管有序排列,並且,該奈米碳管表面包覆至少一導電材 ©料層。進一步地,該屏蔽層130還可由上述多種材料於絕 緣介質層120外組合構成。 外護套140由絕緣材料製成,可以選用奈米黏土一高 分子材料的複合材料,其中奈米黏土可以爲奈米高嶺土或 奈米蒙脫土,高分子材料可以爲矽樹脂、聚醯胺、聚烯烴 如聚乙烯或聚丙烯等,但並不以此爲限。本實施例優選奈 米蒙脫土一聚乙烯複合材料,其具有良好的機械性能、耐 火阻燃性能、低烟無鹵性能,不僅可以爲線纜10提供保 護,有效抵禦機械、物理或化學等外來損傷,同時還能滿 13 200939253 - 足環境保護的要求。 請參閱圖3及圖4,本技術方案實施例中線纔1〇的製 備方法主要包括以下步驟: 步驟一:提供一奈米碳管陣列216,優選地,該陣列 爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列216爲單壁奈 米碳管陣列,雙壁奈米碳管陣列,及多壁奈米碳管陣列中 ❹的種或夕種。本實施例中,該超順排奈米碳管陣列的製 備方法採用化學氣相沈積法,其具體步驟包括:(a)提供 -平整基底,該基底可選用?型或Μ⑭基底,或選用形 成有氧化層的矽基底,本實施例優選爲採用4英寸的矽基 底’(b )於基底表面均勻形成一催化劑層,該催化劑層材 料可選用鐵(Fe)、銘(C。)、鎳(Ni)或其任意組合的合 金之一;(c)將上述形成有催化劑層的基底於7〇〇〜9〇〇〇c 的二氣中退火約30分鐘〜9〇分鐘;(d)將處理過的基底置 ❹於反應爐中,於保護氣體環境下加熱到5〇〇〜74〇D(:,然後 通入碳源氣體反應約5〜3〇分鐘,生長得到超順排奈米碳 官陣列,其南度爲200〜400微米。該超順排奈米碳管陣列 爲多個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米碳官陣列。通過上述控製生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 述基底面積基本相同。 200939253 -本實施例中碳源氣可選用乙炔、乙烯、甲燒等化學性 質較活潑的%I氲化合物’本實施例優選的碳源氣爲乙炉. 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 步驟二.採用一拉伸工具從所述奈米碳管陣列2丨6中 拉取獲得一奈米碳管結構214。 所述奈求奴官結構214的製備方法包括以下步驟:(a ) ❹從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶或一針 尖接觸奈米碳管陣列216以選定一定寬度的多個奈米碳管 束片段;(b )以一定速度沿基本垂直於奈米碳管陣列2丄6 生長方向拉伸該多個奈米碳管束片段,以形成一連續的奈 米碳管結構214。 於上述拉伸過程中,該多個奈米碳管束片段於拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 ❹用’該選定的多個奈米碳管束片段分別與其它奈米碳管束 片段首尾相連地連續地被拉出,從而形成一奈米碳管結構 214。該奈米碳管結構214包括多個首尾相連且定向排列的 奈米碳管束。該奈米碳管結構214中奈米碳管的排列方向 基本平行於奈米碳管結構214的拉伸方向。 該奈米碳管結構214爲一奈米碳管薄膜或一奈米碳管 線。具體地’當所選定的多個奈米碳管束片段的寬度較大 時’所獲得的奈米碳管結構214爲一奈米碳管薄膜,其微 觀結構請參閱圖5;當所選定的多個奈米碳管束片段的寬 200939253 -度較小時’所獲得的奈米碳管結構214可近似爲—奈米碳 管線。 該直接拉伸獲得的擇優取向排列的奈米碳管結構2 i 4 比無序的奈米碳管結構具有更好的均勻性。同時該直接拉 伸獲得奈米碳管結構214的方法簡單快速,適宜進行工業 化應用。 ' 步驟二:形成至少一導電材料層於所述奈米碳管結構 ❹214表面’形成—奈米碳管長線結構222。 本實施例採用物理氣相沈積法(PVD )如真空蒸鏡或 離子濺射等沈積導電材料層。優選地,本實施例採用真空 蒸鍛法形成至少一層導電材料層。 所述採用真空蒸鍍法形成至少一層導電材料層的方法 包括以下步驟:首先,提供一真空容器210,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 少一個蒸發源212,該至少一個蒸發源212按形成至少一 ❹層導電材料層的先後順序依次沿奈米碳管結構214的拉伸 方向設置’且每個蒸發源212均可通過一個加熱裝置(圖 未不)加熱。將上述奈米碳管結構214放置於上下蒸發源 212中間並與其間隔一定距離,其中奈米碳管結構214正 對上下蒸發源212設置。該真空容器210可通過外接一真 空栗(圖未示)抽氣達到預定的真空度。所述蒸發源212 材料爲待沈積的導電材料。其次,通過加熱所述蒸發源 212’使其熔融後蒸發或升華形成導電材料蒸汽,該導電材 料蒸汽遇到冷的奈米碳管結構2丨4後,於奈米碳管結構214 16 200939253 • 上下表面凝聚,形成導電材料層。由於奈米碳管結構214 中的奈米碳管之間存在間隙,並且奈米碳管結構214厚度 較薄,導電材料可以滲透進入奈米碳管結構214之中,從 而沈積於每根奈米碳管表面。沈積導電材料層後的奈米碳 管結構214的微觀結構照片請參閱圖6和圖7。 可以理解,通過調節奈米碳管結構214和每個蒸發源 212的距離及蒸發源212之間的距離,可使每個蒸發源212 ❹具有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212依次加熱’使奈米碳管結構214連續通過多 個蒸發源的沈積區,從而實現沈積多層導電材料層。 爲提高導電材料蒸汽密度並且防止導電材料被氧化, 真空谷器210内真空度應達到1帕(pa)以上。本技術方 案實施例中,真空容器中的真空度爲4xl〇-4Pa。 可以理解’也可將步驟一中的奈米碳管陣列216直接 放入上述真空容器21〇中。首先,於真空容器21〇中採用 ❹一拉伸工具從所述奈米碳管陣列216中拉取獲得一奈米碳 管結構214。然後,加熱上述至少一個蒸發源212,沈積至 少一層導電材料於所述奈米碳管結構214表面。以一定速 度不斷地從所述奈米碳管陣列216中拉取奈米碳管結構 214 ,且使所述奈米碳管結構214連續地通過上述蒸發源 的沈積區,進而形成奈米碳管長線結構222。故該真空 容器21G可實現奈米碳管長線結構222的連續生産。 本技術方案實施例令,所述採用真空蒸鍍法形成至少 一層導電材料層的方法具體包括以下步驟:形成-層潤濕 200939253 層於所述奈米碳管結構2丨4表面;形成一層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡層的外表 面;形成一層抗氧化層於所述導電層的外表面。其中,上 述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇的步 驟。具體地’可將上述奈米碳管結構214連續地通過上述 各層材料所形成的蒸發源212的沈積區。 另外,於所述形成至少一層導電材料層於所述奈米碳 ❺管結構214表面之後,可進一步包括於所述奈米碳管結構 214表面形成强化層的步驟。所述形成强化層的步驟具體 包括以下步驟:將形成有至少一個導電材料層的奈米碳管 結構214通過一裝有聚合物溶液的裝置220,使聚合物溶 液浸潤整個奈米碳管結構214,該聚合物溶液通過分子間 作用力黏附於所述至少一個導電材料層的外表面;及凝固 聚合物,形成一强化層。 當所述奈米碳管結構214爲一奈米碳管線時,所述形 ❾成有至少一個導電材料層的奈米碳管線即爲一奈米碳管長 線結構222,不需要做後續處理。 當所述奈米碳管結構214爲一奈米碳管薄膜時,所述 形成奈未被官長線結構2 2 2的步驟可進·—步包括對所述夺 米碳管結構214進行機械處理的步驟。該機械處理步驟可 通過以下兩種方式實現:對所述形成有至少一個導電材料 層的奈米碳管結構214進行扭轉,形成奈米碳管長線結構 222或切割所述形成有至少一個導電材料層的奈米碳管結 構214,形成奈米碳管長線結構222。 200939253 對所述奈米碳管結構214進行扭轉,形成奈米碳管長 線結構222的步驟可通過以下兩種方式實現:其一,通過 將黏附於上述奈米後管結構214—端的拉伸工具固定於= 旋轉電機上,杻轉該奈米碳管結構214,從而形成一奈米 f管長線結構222。其二’提供-個尾部可以黏住奈米碳 管結構214的紡紗軸’將該紡紗軸的尾部與奈米碳管結構 214結合後,使該纺紗軸以旋轉的方式扭轉該奈米破管結 ❾構214 ^/成奈米%i官長線結構222。可以理解,上述紡 紗韩的旋轉方式不限,可以正轉,可以反轉,或者正轉和 反轉相結合。優選地,所述扭轉該奈米碳管結構214的步 驟爲將所述奈米碳管結構214沿奈米碳管結構214的拉伸 方向以螺旋方式扭轉。扭轉後所形成的奈米碳管長線結構 222爲一絞線結構’其掃描電鏡照片請參見圖8。 所述切割奈米碳管結構214,形成奈米碳管長線結構 222的步驟爲:沿奈米碳管結構214的拉伸方向切割所述 ❾奈米碳官結構214 ’形成多個奈米碳管長線結構222。上述 多個奈米碳管長線結構222可進一步進行重叠、扭轉,以 形成一較大直徑的奈米碳管長線結構222。 可以理解,本技術方案並不限於上述方法獲得奈米碳 官長線結構222,只要能使所述奈米碳管薄膜214形成奈 米碳官長線結構222的方法都於本技術方案的保護範圍之 内。 所製传的奈米石炭官長線結構222可進一步收集於一第 一捲筒224上。收集方式爲將奈米碳管長線結構222纏繞 200939253 * 於所述第一捲筒224上。所述奈米碳管長線結構222用作 纜線的纜芯。 可選擇地’上述奈米;s炭管結構214的形成步驟、形成 至少一層導電層的步驟、强化層的形成步驟、奈米碳管結 構214的扭轉步驟及奈米碳管長線結構222的收集步驟均 可於上述真空容器中進行,進而實現奈米碳管長線結構 222的連續生産。 Q 步驟四:形成至少一絕緣介質層於所述所述奈米碳管 長線結構222的外表面。 所述絕緣介質層可通過一第一擠壓裝置23〇包覆於所 述奈米碳管長線結構222的外表面’該第一擠壓裝置23〇 將聚合物熔體組合物塗覆於所述奈米碳管長線結構222的 表面。本技術方案實施例_,所述聚合物熔體組合物優選 爲泡沫聚乙稀組合物。一旦奈米碳管長線結構222離開所 述第一擠壓裝置230,聚合物熔體組合物就會發生膨脹, ©以形成絕緣介質層。 當所述絕緣介質層爲兩層或兩層以上時,可重複上述 步驟。 步驟五:形成至少一屏蔽層於所述絕緣介質層的外表 面。 提供一屏蔽帶232,該屏蔽帶232由一第二捲 4 提供。將該屏蔽帶232圍繞絕緣介質層卷覆,以便形成屏 欧層。屏蔽帶232可選用一金屬薄膜、奈米碳管薄膜或奈 米碳管複合薄膜等帶狀膜結構或奈米碳管長線、奈米碳管 20 200939253 . 複合長線結構或金屬線等線狀結構。另外,所述屏蔽帶232 也可由上述多種材料形成的編織層共同組成,並通過黏結 劑黏結或直接纏繞於所述絕緣介質層外表面。 本技術方案實施例中,所述屏蔽層由多個奈米碳管長 線組成’該奈米碳管長線直接或編織成網狀纏繞於所述絕 緣介質層外。每個奈米碳管長線包括多個從奈米碳管束陣 列長出的奈米碳管束片段,每個奈米碳管束片段具有大致 ◎相等的長度且每個奈米碳管束片段由多個相互平行的奈米 碳管束構成,其中,奈米碳管束片段兩端通過凡德瓦爾力 相互連接。 優選地,所述帶狀膜結構的屏蔽帶232沿縱向邊緣進 行重叠,以便完全屏蔽纜芯。所述奈米碳管長線、奈米碳 管複合長線結構或金屬線等線狀結構的屏蔽帶232可直接 或編織成網狀纏繞於絕緣介質層的外表面。具體地,所述 夕根奈米碳管長線或金屬線可通過多個繞線架236沿不同 ©的螺旋方向捲繞於絕緣介質層的外表面。 可以理解,當所述屏蔽層爲兩層或兩層以上結構時, 可重複上層步驟。 步驟六:形成一外護套於所述屏蔽層的外表面。 所述外護套可通過一第二擠壓裝置240施用到所述屏 敝層外表面。所述聚合物熔體圍繞於所述屏蔽層的外表面 被擠壓,冷却後形成外護套。 進一步地’可將所製造的的線纜收集於一第三捲筒 260上’以利於儲存和裝運。 21 200939253 •請參閱圖9,本技術方案第二實施例提供一種線纜30 包括多個纜芯310(圖9中共顯示七個纜芯)、每一纜芯3 10 外覆蓋一個絕緣介質層320、包覆於多個纜芯310外的一 個屏蔽層330和一個包覆於屏蔽層330外表面的外護套 340。屏蔽層330和絕緣介質層320的間隙内可填充絕緣材 料。其中’每個纜芯310及絕緣介質層320、屏蔽層330 和外護套340的結構、材料及製備方法與第一實施例中的 ❹纜芯110、絕緣介質層120、屏蔽層130和外護套140的結 構、材料及製備方法基本相同。 請參閱圖10 ’本技術方案第三實施例提供一種線纜40 包括多個纜芯410 (圖10中共顯示五個纜芯)、每一缓芯 410外覆蓋一個絕緣介質層420和一個屏蔽層430、及包覆 於多個纜芯410外表面的外護套44〇。屏蔽層43〇的作用 於於對各個纜芯410進行單獨的屏蔽,這樣不僅可以防止 外來因素對纜芯410内部傳輸的電信號造成干擾而且可以 〇防止各纜芯410内傳輸的不同電信號間相互發生干擾。其 中,每個纜芯410、絕緣介質層42〇、屏蔽層43〇和外護套 440的結構、材料及製備方法與第一實施例中的纜芯工⑺、 絕緣介質層120、屏蔽層130和外護套14〇的結構、材料 及製備方法基本相同。 本技術方案實施例提供的採用奈米碳管長線結構 ,線欖及其製備方法具有以下優點:其一,奈米碳管 2線結構中包含多個通過凡德瓦爾力首尾相連的奈米碳管 束片段’鱗根奈米碳管表面均形成有導電材料層,其中, 22 200939253 ‘奈米石反管束片段起導電及支撑作用,於奈米碳管上沈積金 屬導電層後,形成的奈米碳管長線結構比採用先前技術中 的金屬拉絲方法得到的金屬導電絲更細,適合製作超細微 線纔。其二’由於奈米碳管爲中空的管狀結構,且形成於 奈米碳管外表面的金屬導電層厚度只有幾個奈米,故,電 流通過金屬導電層時基本不會産生趨膚效應,從而避免了 信號於線纜中傳輸過程中的衰减。其三,由於奈米碳管具 ❹有優異的力學性能,且具有中空的管狀結構,故,該含有 不米碳官的線纜具有比採用純金屬纜芯的線纜更高的機械 强度及更輕的質量,適合特殊領域,如航天領域及空間設 備的應用。其四,採用金屬包覆的奈米碳管形成的奈米碳 管長線結構作爲纜芯比採用純奈米碳管繩作爲纜芯具有更 好的導電性。其五,由於奈米碳管長線結構係通過對奈米 炭^薄膜進行疑轉或直接從奈米碳管陣列中拉取而製造, 該方法簡單、成本較低。其六,所述從奈米碳管陣列中拉 ❹取獲得奈米碳管結構的步驟及形成至少一層導電材料層的 步驟均可於一真空容器中進行,有利於纜芯的規模化生 産’從而有利於線纜的規模化生産。 β综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 23 200939253 圖1係本技術方案第一實施例線纜的截面結構示意 圖。 圖2係本技術方案第一實施例線纜中單根奈米碳管的 結構不意圖。 圖3係本技術方案第一實施例線纜的製造方法的流程 圖。 圖4係本技術方案第一實施例線纜的製造裝置的結構 圖5係本技術方案第一實施例奈米碳管薄膜的掃描電 鏡照片。 圖6係本技術方案第一實施例沈積導電材料層後的奈 米碳管薄膜的掃描電鏡照片。 圖7係本技術方案第一實施例沈積導電材料層後的奈 米石反b薄膜中的奈米碳管的透射電鏡照片。 圖8係本技術方案第一實施例對奈米碳管結構進行扭 ❹轉後所形成的絞線結構的掃描電鏡照片。 圖9係本技術方案第二實施例線纜的截面結構示意 圖1〇係本技術方案第三實施例線纜的截面結構示意 【主要元件符號說明】 線纜 纜芯 奈米碳管 10, 30, 40 110, 310, 410 111 24 112 200939253Conductive performance, strong mechanical properties, lighter weight and U [Invention], the method for manufacturing the cable, including the following array of step tubes; using a stretch-trapping non-meter stone anti-nano tube structure array The middle pull is obtained to form a layer of the read layer on the surface of the tube structure, forming a long carbon nanotube structure; forming at least one insulating medium layer on the long-line structure of the carbon nanotube An outer surface; forming at least one shielding layer on an outer surface of the insulating dielectric layer; and forming an outer sheath on an outer surface of the shielding layer. Compared with the prior art, the prior art adopts a carbon nanotube long-line structure as a cable core manufacturing method, and has the following advantages: First, since the long-term structure of the carbon nanotubes is reversed by the structure of the carbon nanotubes or It is obtained directly from the tantalum carbon nanotube array, which is simple and low in cost. Secondly, the step of extracting the carbon nanotube structure from the carbon nanotube array and the step of forming at least one layer of the conductive material can facilitate the large-scale production of the mirror core in a vacuum, thereby facilitating Large-scale production of cables. [Embodiment] Hereinafter, a structure of a cable of the embodiment of the present technical solution and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. Embodiments of the present technical solution provide a cable including at least one core, at least one insulating dielectric layer covering the core, at least one shielding layer, and an outer sheath. Referring to FIG. 1 , a cable 1 第一 of a first embodiment of the present technical solution is a coaxial cable. The coaxial cable includes a cable core 11 , an insulating dielectric layer 120 coated on the outer core 11 , and covered with The shielding layer 130 outside the insulating dielectric layer 120 and the outer sheath 14 包覆 wrapped around the shielding layer 130. Wherein, the above-mentioned cable core 11 , 邑 邑 ^ 贝 layer 120, shielding layer 13 〇 and outer sheath 14 〇 are coaxially disposed. = $ cable core U0 includes at least one carbon nanotube long-line structure. Specifically, the The cable core 110 may be formed by a single long carbon nanotube structure, or may be formed by a plurality of nano carbon tube long-line structures intertwined. In this embodiment, the core 110 is a nano carbon f long-line structure. The diameter of the core UG may be 4.5 nm to 1 mm, and preferably, the diameter of the core is 1 〇 30 30 μm. The long line structure of the non-meter stone reverse tube is composed of a carbon nanotube and a conductive material. The carbon nanotube long-line structure includes a plurality of carbon nanotubes, and each of the carbon nanotube surfaces is coated with at least one layer of a conductive material, wherein each of the nano-steel tubes has substantially the same length, and A plurality of carbon nanotubes are connected end to end by a van der Waals force to form a long carbon nanotube structure. In the long-line structure of the carbon nanotubes, the orientation of the carbon nanotubes along the long-line structure of the carbon nanotubes is preferred. Arrange. Further, the long carbon nanotube structure can pass The twisting process forms a ridge structure. In the above-mentioned stranded structure, the carbon nanotubes are arranged in an axial spiral rotation around the strand structure. The long-term structure of the carbon nanotubes can only be 4.5 nm to 1 〇. Preferably, the carbon nanotube long-line structure has a diameter of 10 to 30 μm. See Item 2, the surface of each of the carbon nanotubes in the long-length structure of the carbon nanotube is coated with at least one conductive material. Specifically, the conductive material layer includes a wetting layer 12 directly bonded to the surface of the carbon nanotube 111, a transition layer 113 disposed outside the wetting layer 112, a conductive layer 114 disposed outside the transition layer 113, and a setting The anti-oxidation layer 115 outside the conductive layer 114. Since the wettability between the carbon nanotubes 111 and most of the metals is not good, the above-mentioned wetting layer 112 functions to make the conductive layer 114 and the carbon nanotubes more A good combination. The material forming the wetting layer 丨12 may be a metal such as nickel, palladium or titanium which is wettable with the carbon nanotube 111 or an alloy thereof. The thickness of the wetting layer 112 is 1 to nanometer. In this embodiment, the wetting layer (1) 200939253 is made of nickel and has a thickness of about 2 For the optional structure, it can be understood that the wetting layer 112 has the function of the above-mentioned transition layer 113 to better combine the wetting layer ιΐ2. The material forming the transition layer u 〃 曰 ^ ^ can be thirsty Layer 112 material and conductive layer 114 materials can be better combined materials, the thickness of = = 1 ~ 1 〇 米 米. Tai Ben 浐 ^, 丄 4 寸 inch pass layer 113 for copper, strict production A 2 too half of the material of the transition layer 113 ❹, =. The degree of completion is 2 Nai. It can be understood that the transition layer ιΐ3 is selected to be the above-mentioned conductive layer H4 to make the carbon nanotube long-line structure and has better Conductive properties: The material forming the conductive layer 114 may be a conductive metal such as copper, silver or gold or an alloy thereof, and the conductive layer ι 4 has a thickness of 1 to 20 nm. In the present embodiment, the material of the conductive material 114 is silver: the thickness is about 5 nm. The function of the above-mentioned oxidation resistant layer 115 is to prevent the conductive layer U4 from being oxidized in the air during the manufacturing process of the cable 1〇, so that the conductivity of the core 11〇 can be lowered. The material for forming the oxidation resistant layer 115 may be gold or platinum equal to a stable metal which is not easily oxidized in the air or an alloy thereof, and the thickness of the oxidation resistant layer 115 is 1 to ί. In this embodiment, the material of the oxidation resistant layer 115 has a face thickness of 2 nm. It will be appreciated that the antioxidant layer 丨丨$ is an alternative structure. Further, in order to increase the strength of the cable 10, a reinforcing layer 116 may be further disposed outside the oxidation resistant layer 115. The material forming the strengthening layer 116 may be a higher strength polymer such as polyvinyl alcohol (PVA), polyphenylene benzobisoxazole (pbo), polyethylene (PE) or polyethylene oxide (PVC). The thickness of the reinforcing layer 116 is o.^i micron. In this embodiment, the reinforcing layer 116 is made of polyvinyl alcohol and has a thickness of 〇.5 μm. It will be understood that the reinforcing layer 116 is of an alternative construction. The dielectric layer 120 is used for electrical insulation, and may be a polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, foamed polyethylene composition or a nano-clay-polymer composite. Nano-clay-polymer composites of nano-layered silicate minerals of nano-clay, composed of a variety of hydrated silicates and a certain amount of alumina, alkali metal oxides and alkaline earth metal oxides. It has excellent properties such as fire retardant and flame retardant, such as nano kaolin or nano montmorillonite. The polymer material may be selected from the group consisting of phthalocyanines, polyamines, polyolefins such as polyethylene or polypropylene, but not limited thereto. This embodiment is preferably a foamed polyethylene composition. The shielding layer 130 is formed of a conductive material for shielding electromagnetic interference or unwanted external signal interference. Specifically, the shielding layer 130 may be formed by braiding a plurality of metal wires or wrapping the metal film on the insulating dielectric layer 2, or may be formed by a plurality of carbon nanotube long wires, a single-layer ordered carbon nanotube film, and a plurality of layers. The ordered carbon nanotube film or the disordered carbon nanotube film is wound or wrapped around the insulating dielectric layer 12 to form 'or directly coated with the composite material containing the carbon nanotubes to the surface of the insulating dielectric layer 120. The material of the metal or the metal wire may be selected from a conductive metal such as copper, gold or silver or an alloy thereof. The carbon nanotube long-line, single-layer ordered carbon nanotube film or multi-layer ordered carbon nanotube film comprises a plurality of carbon nanotube bundles m each having a substantially phase and each nanocarbon The tube bundle segment is composed of a plurality of mutually parallel 12 200939253 - and the carbon nanotube bundle segments are connected to each other by van der Waals force to form a continuous carbon nanotube film or a long carbon nanotube tube. The composite material may be a composite of a metal and a carbon nanotube or a composite of a polymer and a carbon nanotube. The polymer material may be selected from the group consisting of polyethylene terephthalate (PET), polycarbonate (PC), and acrylonitrile-butadiene propylene-benzene copolymer (Acrylonitrile- Butadiene Styrene Terpolymer (ABS), a high molecular weight material such as polyA carbonate/acrylonitrile butadiene styrene copolymer (PC/ABS). The carbon nanotubes are uniformly dispersed in the solution of the above polymer material, and the mixed solution is uniformly applied to the surface of the insulating dielectric layer 120, and after cooling, a polymer layer containing a carbon nanotube is formed. It can be understood that the shielding layer 130 can also be formed by wrapping or wrapping the carbon nanotube composite film or the carbon nanotube composite long-line structure outside the insulating dielectric layer 120. Specifically, the carbon nanotubes in the carbon nanotube metal composite film or the carbon nanotube metal composite long-line structure are arranged in an order, and the surface of the carbon nanotube is coated with at least one conductive material layer. Further, the shielding layer 130 may also be composed of a plurality of materials described above which are combined outside the insulating dielectric layer 120. The outer sheath 140 is made of an insulating material, and a nano-clay-polymer composite material can be selected, wherein the nano-clay can be nano-kaolin or nano-montmorillonite, and the polymer material can be an anthracene resin or a polyamide. , polyolefin, such as polyethylene or polypropylene, etc., but not limited to this. The present embodiment is preferably a nano montmorillonite-polyethylene composite material, which has good mechanical properties, fire-retardant properties, low smoke and halogen-free properties, and can not only provide protection for the cable 10, but also effectively resist mechanical, physical or chemical. External damage, but also full 13 200939253 - the requirements of environmental protection. Referring to FIG. 3 and FIG. 4, the method for preparing the wire in the embodiment of the present invention mainly includes the following steps: Step 1: providing a carbon nanotube array 216, preferably, the array is super-sequential nanocarbon Tube array. The carbon nanotube array 216 provided by the embodiment of the present technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a species or a species of scorpion in a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate being selectable? a type or a crucible 14 substrate, or a germanium substrate formed with an oxide layer. In this embodiment, a 4 inch germanium substrate (b) is preferably used to uniformly form a catalyst layer on the surface of the substrate. The catalyst layer material may be iron (Fe). One of the alloys of Ming (C.), nickel (Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in a gas of 7 〇〇 to 9 〇〇〇 c for about 30 minutes to 9 〇min; (d) The treated substrate is placed in a reaction furnace and heated to 5 〇〇 to 74 〇D in a protective gas atmosphere (:, then a carbon source gas is introduced for about 5 to 3 minutes to grow. A super-sequential nanocarbon array having a south degree of 200 to 400 micrometers is obtained. The super-sequential carbon nanotube array is a pure nano carbon tube formed by a plurality of carbon nanotubes that are parallel to each other and grow perpendicular to the substrate. Array. The super-sequential carbon nanotube array is substantially free of impurities, such as amorphous carbon or residual catalyst metal particles, etc. by controlling the growth conditions described above. The carbon nanotubes in the super-sequential carbon nanotube array Forming an array by close contact with each other by Van der Valli. The super-shun The carbon nanotube array has substantially the same area as the above-mentioned substrate. 200939253 - In this embodiment, the carbon source gas may be selected from the chemically active %I 氲 compound such as acetylene, ethylene, and ketone. The preferred carbon source gas in this embodiment is B. The protective gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. Step 2. Pulling a carbon nanotube structure from the carbon nanotube array 2丨6 using a stretching tool to obtain a carbon nanotube structure 214. The preparation method of the Naifuoguan structure 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably has a certain Width of the tape or a tip of the needle contacts the carbon nanotube array 216 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretches at a certain speed along a direction substantially perpendicular to the growth direction of the carbon nanotube array 2丄6 a plurality of carbon nanotube bundle segments to form a continuous carbon nanotube structure 214. During the stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, The van der Waals force uses the selected plurality of carbon nanotube bundle segments to be continuously pulled out end to end with the other carbon nanotube bundle segments, thereby forming a carbon nanotube structure 214. The carbon nanotube structure 214 includes a plurality of end-to-end aligned carbon nanotube bundles. The arrangement of the carbon nanotubes in the carbon nanotube structure 214 is substantially parallel to the direction of stretching of the carbon nanotube structure 214. The carbon nanotube structure 214 is a carbon nanotube film or a nano carbon line. Specifically, 'when the width of the selected plurality of carbon nanotube bundle segments is larger, the obtained carbon nanotube structure 214 is a carbon nanotube. For the microstructure of the film, please refer to FIG. 5; when the width of the selected plurality of carbon nanotube bundle segments is 200939253-degree is small, the obtained carbon nanotube structure 214 can be approximated as a nanocarbon pipeline. The preferred orientation of the aligned carbon nanotube structure 2 i 4 obtained by direct stretching has better uniformity than the disordered carbon nanotube structure. At the same time, the method of directly drawing the carbon nanotube structure 214 is simple and rapid, and is suitable for industrial application. Step 2: forming at least one layer of a conductive material on the surface of the carbon nanotube structure ❹ 214 to form a carbon nanotube long-line structure 222. This embodiment deposits a layer of a conductive material by physical vapor deposition (PVD) such as vacuum evaporation or ion sputtering. Preferably, this embodiment forms at least one layer of a conductive material by vacuum evaporation. The method for forming at least one layer of conductive material by vacuum evaporation comprises the following steps: First, a vacuum container 210 is provided, the vacuum container 210 has a deposition interval, and at least one evaporation source 212 is respectively placed at the bottom and the top of the deposition interval. The at least one evaporation source 212 is sequentially disposed along the stretching direction of the carbon nanotube structure 214 in the order of forming at least one layer of the conductive material layer, and each of the evaporation sources 212 can be heated by a heating device (not shown). . The carbon nanotube structure 214 is placed in the middle of the upper and lower evaporation sources 212 at a distance therefrom, wherein the carbon nanotube structure 214 is disposed opposite the upper and lower evaporation sources 212. The vacuum vessel 210 can be evacuated to a predetermined degree of vacuum by externally pumping a vacuum pump (not shown). The evaporation source 212 material is a conductive material to be deposited. Secondly, by heating the evaporation source 212' to melt it and then evaporating or sublimating to form a conductive material vapor, the conductive material vapor encounters the cold carbon nanotube structure 2丨4, and then in the carbon nanotube structure 214 16 200939253 • The upper and lower surfaces are agglomerated to form a layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube structure 214, and the thickness of the carbon nanotube structure 214 is thin, the conductive material can penetrate into the carbon nanotube structure 214 and deposit on each nanometer. Carbon tube surface. A photograph of the microstructure of the carbon nanotube structure 214 after depositing a layer of conductive material is shown in Figures 6 and 7. It will be appreciated that by adjusting the distance between the carbon nanotube structure 214 and each evaporation source 212 and the distance between the evaporation sources 212, each evaporation source 212 can have a deposition zone. When it is desired to deposit a plurality of layers of electrically conductive material, a plurality of evaporation sources 212 may be sequentially heated to cause the carbon nanotube structure 214 to continuously pass through a deposition zone of a plurality of evaporation sources, thereby effecting deposition of a plurality of layers of electrically conductive material. In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum barn 210 should be above 1 Pa (pa). In the embodiment of the technical solution, the degree of vacuum in the vacuum vessel is 4 x 1 〇 -4 Pa. It will be understood that the carbon nanotube array 216 of the first step can also be placed directly into the vacuum vessel 21〇 described above. First, a carbon nanotube structure 214 is drawn from the carbon nanotube array 216 by means of a first stretching tool in a vacuum vessel 21 crucible. The at least one evaporation source 212 is then heated to deposit at least one layer of electrically conductive material on the surface of the carbon nanotube structure 214. The carbon nanotube structure 214 is continuously drawn from the carbon nanotube array 216 at a certain speed, and the carbon nanotube structure 214 is continuously passed through the deposition zone of the evaporation source to form a carbon nanotube length. Line structure 222. Therefore, the vacuum vessel 21G can realize continuous production of the carbon nanotube long-line structure 222. According to an embodiment of the present invention, the method for forming at least one layer of a conductive material by vacuum evaporation includes the following steps: forming a layer-wetting 200939253 layer on the surface of the carbon nanotube structure 2丨4; forming a transition layer Laying on an outer surface of the wetting layer; forming a conductive layer on an outer surface of the transition layer; forming an anti-oxidation layer on an outer surface of the conductive layer. Here, the steps of forming the wetting layer, the transition layer and the oxidation resistant layer are all optional steps. Specifically, the above-described carbon nanotube structure 214 may be continuously passed through the deposition zone of the evaporation source 212 formed by the above respective layers of materials. In addition, after the forming at least one layer of conductive material on the surface of the carbon nanotube structure 214, a step of forming a strengthening layer on the surface of the carbon nanotube structure 214 may be further included. The step of forming the strengthening layer specifically includes the steps of: impregnating the entire carbon nanotube structure 214 with the polymer solution through a device 220 containing the polymer solution through a carbon nanotube structure 214 formed with at least one layer of a conductive material. And the polymer solution is adhered to the outer surface of the at least one conductive material layer by an intermolecular force; and the polymer is solidified to form a strengthening layer. When the carbon nanotube structure 214 is a nanocarbon line, the nanocarbon line formed into a layer of at least one conductive material is a carbon nanotube long-line structure 222, which does not require subsequent processing. When the carbon nanotube structure 214 is a carbon nanotube film, the step of forming the nano-structure without the official long-line structure 2 2 2 may include mechanically treating the carbon nanotube structure 214. step. The mechanical processing step can be achieved by twisting the carbon nanotube structure 214 formed with at least one layer of conductive material to form a carbon nanotube long-line structure 222 or cutting the at least one conductive material. The layer of carbon nanotube structure 214 forms a carbon nanotube long-line structure 222. 200939253 The step of twisting the carbon nanotube structure 214 to form the carbon nanotube long-line structure 222 can be achieved by the following two methods: First, by stretching the 214 end of the tube structure of the nano-tube. Fixed on the = rotating electrical machine, the carbon nanotube structure 214 is twisted to form a nanometer long tube structure 222. The second 'provides a spinning axis that can adhere to the carbon nanotube structure 214'. The tail of the spinning shaft is combined with the carbon nanotube structure 214, and the spinning shaft is twisted in a rotating manner. The meter breaks the knot structure 214 ^ / into the nanometer %i official long line structure 222. It can be understood that the spinning method of the above-mentioned spinning Han is not limited, and it can be rotated forward, reversed, or combined with forward rotation and reverse rotation. Preferably, the step of twisting the carbon nanotube structure 214 is to twist the carbon nanotube structure 214 in a helical manner along the direction of stretching of the carbon nanotube structure 214. The long-line structure 222 of the carbon nanotube formed after twisting is a stranded structure'. See Figure 8 for a scanning electron micrograph. The step of cutting the carbon nanotube structure 214 to form the nano carbon tube long-line structure 222 is: cutting the tantalum carbon carbon structure 214 ' along the tensile direction of the carbon nanotube structure 214 to form a plurality of nano carbons The tube long line structure 222. The plurality of carbon nanotube long-line structures 222 may be further overlapped and twisted to form a larger diameter carbon nanotube long-line structure 222. It can be understood that the technical solution is not limited to the above method to obtain the nano carbon official long-line structure 222, as long as the method for forming the carbon nanotube film 214 to form the nano-carbon official long-line structure 222 is within the protection scope of the technical solution. Inside. The prepared nano-charcoal official long-line structure 222 can be further collected on a first reel 224. The collection method is to wind the nano carbon tube long-line structure 222 on the first reel 224. The carbon nanotube long wire structure 222 is used as the core of the cable. Optionally, 'the above-described nano; s carbon tube structure 214 forming step, forming at least one conductive layer step, strengthening layer forming step, twisting step of the carbon nanotube structure 214, and collecting the carbon nanotube long-line structure 222 The steps can be carried out in the above vacuum vessel to achieve continuous production of the carbon nanotube long-line structure 222. Q Step 4: Forming at least one insulating dielectric layer on the outer surface of the carbon nanotube long-line structure 222. The insulating dielectric layer may be coated on the outer surface of the carbon nanotube long-line structure 222 by a first pressing device 23'. The first pressing device 23 涂覆 applies the polymer melt composition to the The surface of the carbon nanotube long-line structure 222 is described. In an embodiment of the present invention, the polymer melt composition is preferably a foamed polyethylene composition. Once the carbon nanotube long wire structure 222 exits the first extrusion device 230, the polymer melt composition expands to form an insulating dielectric layer. When the insulating medium layer is two or more layers, the above steps may be repeated. Step 5: forming at least one shielding layer on the outer surface of the insulating dielectric layer. A shielding strip 232 is provided which is provided by a second roll 4. The shield tape 232 is wrapped around the insulating dielectric layer to form a screen layer. The shielding tape 232 can be selected from a strip film structure such as a metal film, a carbon nanotube film or a carbon nanotube composite film or a long carbon nanotube tube or a carbon nanotube 20 200939253. A composite long-line structure or a wire-like structure such as a metal wire . In addition, the shielding tape 232 may also be composed of a woven layer formed of the above various materials, and bonded or directly wound on the outer surface of the insulating dielectric layer by an adhesive. In an embodiment of the technical solution, the shielding layer is composed of a plurality of carbon nanotube long wires. The long carbon nanotube wire is wound directly or woven into a mesh shape outside the insulating dielectric layer. Each of the carbon nanotube long wires includes a plurality of carbon nanotube bundle segments elongated from the carbon nanotube bundle array, each of the carbon nanotube bundle segments having a length of approximately ◎ equal length and each of the carbon nanotube bundle segments being composed of a plurality of each other A parallel carbon nanotube bundle is constructed in which both ends of the carbon nanotube bundle segment are connected to each other by a van der Waals force. Preferably, the strip of film 232 of the strip film structure overlaps along the longitudinal edges to completely shield the core. The shielded tape 232 of the linear structure of the carbon nanotube long wire, the carbon nanotube composite long wire structure or the metal wire may be directly or woven into a mesh shape wound on the outer surface of the insulating dielectric layer. Specifically, the sigma-nanocarbon tube long wire or metal wire may be wound around the outer surface of the insulating dielectric layer by a plurality of bobbins 236 in different spiral directions of ©. It can be understood that when the shielding layer is of two or more layers, the upper layer step can be repeated. Step 6: Form an outer sheath on the outer surface of the shielding layer. The outer sheath can be applied to the outer surface of the screen layer by a second pressing device 240. The polymer melt is extruded around the outer surface of the shield layer and, after cooling, forms an outer jacket. Further, the manufactured cable can be collected on a third reel 260 to facilitate storage and shipping. 21 200939253 • Referring to FIG. 9 , a second embodiment of the present invention provides a cable 30 including a plurality of cores 310 (a total of seven cores are shown in FIG. 9 ), and each core 3 10 is covered with an insulating dielectric layer 320 . A shielding layer 330 covering the outside of the plurality of cores 310 and an outer sheath 340 covering the outer surface of the shielding layer 330. The gap between the shield layer 330 and the insulating dielectric layer 320 may be filled with an insulating material. The structure, material and preparation method of each of the cable core 310 and the insulating dielectric layer 320, the shielding layer 330 and the outer sheath 340 are the same as that of the first embodiment, the core 110, the insulating dielectric layer 120, the shielding layer 130 and the outer layer. The structure, material and preparation method of the sheath 140 are basically the same. Referring to FIG. 10, a third embodiment of the present invention provides a cable 40 including a plurality of cores 410 (five cores are shown in FIG. 10), each of which is covered with an insulating dielectric layer 420 and a shielding layer. 430, and an outer sheath 44〇 covering the outer surfaces of the plurality of cores 410. The shielding layer 43 作用 acts to shield each of the cores 410 separately, so that not only external factors can be prevented from interfering with the electrical signals transmitted inside the core 410 but also different electrical signals transmitted between the cores 410 can be prevented. Interference with each other. The structure, material and preparation method of each of the cable core 410, the insulating dielectric layer 42A, the shielding layer 43A and the outer sheath 440 are the core device (7), the insulating dielectric layer 120, and the shielding layer 130 in the first embodiment. The structure, material and preparation method of the outer sheath 14〇 are basically the same. The long-term structure of the carbon nanotube provided by the embodiment of the technical solution has the following advantages: First, the carbon nanotube 2-wire structure includes a plurality of nanocarbons connected end to end by van der Waals force. A layer of conductive material is formed on the surface of the tube bundle segment 'scale root carbon nanotubes, wherein 22 200939253 'the nanometer stone reverse tube bundle segment acts as a conductive and supporting force, and the nanometer formed after depositing a metal conductive layer on the carbon nanotube The carbon tube long-line structure is finer than the metal conductive wire obtained by the metal wire drawing method in the prior art, and is suitable for making ultra-fine micro wires. Secondly, since the carbon nanotube is a hollow tubular structure, and the thickness of the metal conductive layer formed on the outer surface of the carbon nanotube is only a few nanometers, the skin effect is not substantially generated when the current passes through the metal conductive layer. This avoids attenuation of the signal during transmission in the cable. Third, because the carbon nanotubes have excellent mechanical properties and have a hollow tubular structure, the cable containing carbon meters has higher mechanical strength than cables with pure metal cores. Lighter quality for special applications such as aerospace and space applications. Fourth, the long-line structure of the carbon nanotube formed by the metal-coated carbon nanotubes is better as the core than the pure carbon nanotube rope as the core. Fifthly, since the long-term structure of the carbon nanotubes is manufactured by suspecting the nano carbon film or pulling directly from the carbon nanotube array, the method is simple and low in cost. Sixth, the step of extracting the carbon nanotube structure from the carbon nanotube array and the step of forming at least one layer of the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the core. This is conducive to the large-scale production of cables. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a cable of a first embodiment of the present technical solution. Fig. 2 is a schematic view showing the structure of a single carbon nanotube in the cable of the first embodiment of the present technical solution. Fig. 3 is a flow chart showing a method of manufacturing a cable according to a first embodiment of the present technical solution. Fig. 4 is a view showing the structure of a manufacturing apparatus for a cable of a first embodiment of the present invention. Fig. 5 is a scanning electron micrograph of a carbon nanotube film of the first embodiment of the present invention. Fig. 6 is a scanning electron micrograph of a carbon nanotube film after depositing a layer of a conductive material in the first embodiment of the present technical solution. Fig. 7 is a transmission electron micrograph of a carbon nanotube in a nano-bend anti-b film after depositing a conductive material layer in the first embodiment of the present technical solution. Fig. 8 is a scanning electron micrograph of a stranded structure formed by twisting a carbon nanotube structure in the first embodiment of the present technical solution. 9 is a cross-sectional structural view of a cable according to a second embodiment of the present technical solution. 1 is a cross-sectional structural diagram of a cable of a third embodiment of the present technical solution. [Main component symbol description] Cable core carbon nanotubes 10, 30, 40 110, 310, 410 111 24 112 200939253

潤濕層 過渡層 導電層 抗氧化層 强化層 絕緣介質層 屏蔽層 外護套 真空容器 蒸發源 奈米碳管結構 奈米碳管陣列 裝有聚合物溶液的裝 奈米碳管長線結構 第一捲筒 第一擠壓裝置 屏蔽帶 第二捲筒 繞線架 第二擠壓裝置 第三捲筒 113 114 115 116 120, 320, 420 130, 330, 430 140, 340, 440 210 212 214 216 置 220 222 224 230 232 234 236 240 260 25Wetting layer transition layer conductive layer anti-oxidation layer strengthening layer insulating medium layer shielding layer outer sheath vacuum container evaporation source carbon nanotube structure carbon nanotube array loaded with polymer solution packed carbon nanotube long-line structure first volume Cartridge first extrusion device shield belt second reel bobbin second extrusion device third reel 113 114 115 116 120 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 224 230 232 234 236 240 260 25

Claims (1)

200939253 十、申請專利範圍 1. 一種線規的製造方法,包括以下步驟: 提供一奈米碳管陣列; 採用一拉伸工具從所述奈米碳管陣列中拉取獲得一奈 米碳管結構, 形成至少一層導電材料層於所述奈米碳管結構表面,形 成一奈米碳管長線結構; ^ 形成至少一絕緣介質層於所述奈米碳管長線結構的外 Ο 表面; 形成至少一屏蔽層於所述絕緣介質層的外表面;以及 形成一外護套於所述屏蔽層的外表面。 2. 如申請專利範圍第1項所述的線纜的製造方法,其中, 所述奈米碳管結構的製備過程包括以下步驟: 從上述奈米碳管陣列中選定一定寬度的多個奈米碳管 束片段;以及 〇 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸 該多個奈米碳管束片段’以形成一連續的奈米碳管結 構。 3. 如申請專利範圍第1項所述的線纜的製造方法,其中, 所述奈米碳管結構包括一奈米碳管薄膜或一奈米碳管 線。 4. 如申請專利範圍第3項所述的線纜的製造方法,其中, 當所述奈米碳管結構爲一奈米碳管薄膜時,町進一步包 括對所述奈米碳管結構進行機械處理的步驟。 26 200939253 ^ 5.如申請專利範圍第4項所述的線纜的製造方法,其中, 所述機械處理的步驟包括:對所述奈米碳管結構進行扭 轉,形成奈米碳管長線結構;或切割所述奈米碳管結構, 形成奈米碳管長線結構。 6. 如申請專利範圍第5項所述的線纜的製造方法,其中, 所述對奈米碳管結構進行扭轉,形成奈米碳管長線結構 的步驟具體包括以下步驟:將黏附於上述奈米碳管結構 〇 —端的拉伸工具固定於一旋轉電機上;扭轉該奈米碳管 結構’從而形成一奈米碳管長線結構。 7. 如申請專利範圍第5項所述的線纜的製造方法,其中, 所述對奈米碳管結構進行扭轉,形成奈米碳管長線結構 驟具體包括以下步驟:提供一個尾部可以黏住奈米 ::結構的紡紗轴,將該紡紗軸的尾部與奈米碳管結構 、。口,使該紡紗軸以旋轉的方式扭轉該奈米碳管結構, 形成一奈米碳管長線結構。 .如申叫專利範圍第6項或第7項所述的線纜的製造方 去一八中,所述扭轉該奈米碳管結構的過程包括沿奈米 碳管結構的拉伸方向以螺旋方式扭轉該奈米碳管結構的 步驟。 如申,專利範圍第5項所述的線纜的製造方法,其中, 斤述切割奈米碳官結構,形成奈米碳管長線結構的步驟 =1 j下步驟.沿奈米碳管結構的拉伸方向切割所述奈 米峽官結構,形成奈米碳管長線結構。 1〇.如申請專利範圍第i項所述的線纜的製造方法,其中, 27 200939253 . 所述形成至少一層導電材料層的方法包括真空蒸鍍法戒 濺射法。 11.如申請專利範圍第10項所述的線纜的製造方法,其 中,所述形成至少一層導電材料層的方法為真空蒸鍍 法,該方法包括以下步驟: 提供一真空容器,該真空容器具有一沈積區間,該沈積 區間底部和頂部分別放置至少一個蒸發源,該至少一個 蒸發源按形成至少一層導電材料層的先後順序依次沿 奈米碳管結構的拉伸方向設置,且每個蒸發源均可通過 一個加熱裝置加熱; 將奈米碳管結構置於上下蒸發源中間並與其間隔一定 距離,其中奈米碳管結構正對上下蒸發源設置;以及 依次加熱所述蒸發源,使其熔融後蒸發或升華形成導電 材料療汽,該導電材料蒸汽遇到冷的奈米碳管結構後, 於奈米碳官結構上下表面凝聚,形成導電材料層。 ❹12.如申請專利範圍第丨丨項所述的線纜的製造方法,其 中,所述形成至少一層導電材料層的過程包括形成一層 導電層於所述奈米碳管結構的外表面的步驟。 13. 如申請專利範圍第12項所述的線纜的製造方法,其 中,所述導電層的材料爲金、銀、銅或其合金,該導電 層的厚度爲1〜20奈米。 14. 如申請專利範圍第12項所述的線纜的製造方法,其 中,在所述形成導電層的步驟之前進一步包括以下步 驟:形成一層潤濕層於所述奈米碳管結構的外表面;以 28 200939253 及形成一層過渡層於所述潤濕層的外表面,上述導電層 形成在所述過渡層的外表面。 15. 如申請專利範圍第12項所述的線纜的製造方法,其 中,在所述形成導電層的步驟之後進一步包括形成一層 抗氧化層於所述導電層的外表面。 16. 如申請專利範圍第12項所述的線纜的製造方法,其 中’在所述形成至少一層導電材料層於所述奈米碳管結 q 構表面之後’可進一步包括在所述奈米碳管結構外表面 形成强化層的步驟。 17. 如申請專利範圍第16項所述的線纜的製造方法,其 中’所述形成强化層的步驟具體包括以下步驟:將形成 有至少一層導電材料層的奈米碳管結構通過一裝有聚合 物溶液的裝置,使聚合物溶液浸潤整個奈米碳管結構, 該聚合物溶液通過分子間作用力黏附於所述至少一層導 電材料層的外表面;以及凝固聚合物,形成一强化層。 ❹18.如申請專利範圍第!項所述的線纜的製造方法,其中, 7述絕緣介質層的材料爲聚對苯二甲酸乙二醇酯、聚碳 ISa、丙烯腈一丁二烯丙烯一苯乙烯共聚物或聚碳酸酯/ 丙烯腈一丁二烯一苯乙烯共聚物。 9.如申明專利範圍第丨項所述的線纜的製造方法,其中, =述屏蔽層的材料爲金屬薄膜、奈米碳管薄膜或奈米碳 s復合4膜等帶狀膜結構或奈米碳管長線、奈米碳管複 合長線結構或金屬線。 2〇.如申請專利範圍第19項所述的線㈣製造方法,其 29 200939253 中,所述形成屏蔽層的過程進一步包括將金屬薄膜、奈 米碳管薄膜或奈米碳管複合薄膜通過黏結劑黏結或直接 纏繞在所述絕緣介質層的外表面的步驟。 21.如申請專利範圍第19項所述的線纜的製造方法,其 中,所述形成屏蔽層的過程進一步包括將所述奈米碳營 長線、奈米碳管複合長線結構或金屬線直接或編織^^ 狀纏繞在所述絕緣介質層的外表面的步驟。200939253 X. Patent application scope 1. A method for manufacturing a wire gauge, comprising the steps of: providing a carbon nanotube array; using a stretching tool to extract a carbon nanotube structure from the carbon nanotube array Forming at least one layer of a conductive material on the surface of the carbon nanotube structure to form a long carbon nanotube structure; ^ forming at least one insulating dielectric layer on the outer surface of the long carbon nanotube structure; forming at least one a shielding layer on an outer surface of the insulating dielectric layer; and an outer sheath formed on an outer surface of the shielding layer. 2. The method of manufacturing a cable according to claim 1, wherein the preparation process of the carbon nanotube structure comprises the steps of: selecting a plurality of nanometers of a certain width from the array of carbon nanotubes; a carbon tube bundle segment; and the crucible stretching the plurality of carbon nanotube bundle segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube structure. 3. The method of manufacturing a cable according to claim 1, wherein the carbon nanotube structure comprises a carbon nanotube film or a carbon nanotube wire. 4. The method of manufacturing a cable according to claim 3, wherein when the carbon nanotube structure is a carbon nanotube film, the town further comprises mechanically mechanically constructing the carbon nanotube structure. The steps of processing. The method for manufacturing a cable according to the fourth aspect of the invention, wherein the step of mechanically processing comprises: twisting the carbon nanotube structure to form a long-line structure of a carbon nanotube; Or cutting the carbon nanotube structure to form a long-line structure of the carbon nanotube. 6. The method of manufacturing a cable according to claim 5, wherein the step of twisting the carbon nanotube structure to form a long carbon nanotube structure comprises the following steps: adhering to the naphthalene The 碳-end stretching tool of the carbon tube structure is fixed on a rotating electric machine; the carbon nanotube structure is twisted to form a long carbon nanotube structure. 7. The method for manufacturing a cable according to claim 5, wherein the twisting the carbon nanotube structure to form a long-length structure of the carbon nanotube comprises specifically the following steps: providing a tail to be adhered Nano:: The spinning axis of the structure, the tail of the spinning shaft and the carbon nanotube structure. The nozzle rotates the carbon nanotube structure in a rotating manner to form a long carbon nanotube structure. The method for twisting the carbon nanotube structure includes a spiral along the stretching direction of the carbon nanotube structure, as in the manufacture of the cable described in claim 6 or 7 of the patent scope. The step of twisting the carbon nanotube structure. The method for manufacturing a cable according to the fifth aspect of the invention, wherein the step of cutting the carbon carbon structure and forming the long-line structure of the carbon nanotubes is the step of step 1 j. The structure along the carbon nanotube structure The nano-gorge structure is cut in the direction of stretching to form a long-line structure of the carbon nanotubes. A method of manufacturing a cable according to the invention of claim 1, wherein the method of forming the at least one layer of the conductive material comprises a vacuum evaporation method or a sputtering method. 11. The method of manufacturing a cable according to claim 10, wherein the method of forming at least one layer of a conductive material is a vacuum evaporation method, the method comprising the steps of: providing a vacuum container, the vacuum container Having a deposition interval, at least one evaporation source is respectively placed at the bottom and the top of the deposition interval, and the at least one evaporation source is sequentially arranged along the stretching direction of the carbon nanotube structure in the order of forming at least one layer of the conductive material, and each evaporation The source can be heated by a heating device; the carbon nanotube structure is placed in the middle of the upper and lower evaporation sources and spaced apart therefrom, wherein the carbon nanotube structure is disposed opposite to the upper and lower evaporation sources; and the evaporation source is sequentially heated to After melting, evaporation or sublimation forms a conductive material for vapor treatment. After the vapor of the conductive material encounters the cold carbon nanotube structure, it condenses on the upper and lower surfaces of the nano-carbon structure to form a conductive material layer. The method of manufacturing a cable according to claim 2, wherein the forming of the at least one layer of the conductive material comprises the step of forming a conductive layer on the outer surface of the carbon nanotube structure. 13. The method of manufacturing a cable according to claim 12, wherein the conductive layer is made of gold, silver, copper or an alloy thereof, and the conductive layer has a thickness of 1 to 20 nm. 14. The method of manufacturing the cable of claim 12, wherein the step of forming the conductive layer further comprises the step of forming a wetting layer on the outer surface of the carbon nanotube structure. And forming a transition layer on the outer surface of the wetting layer at 28 200939253, the conductive layer being formed on an outer surface of the transition layer. 15. The method of manufacturing a cable according to claim 12, wherein after the step of forming the conductive layer, further comprising forming an oxidation resistant layer on an outer surface of the conductive layer. 16. The method of manufacturing the cable of claim 12, wherein 'after forming the at least one layer of conductive material on the surface of the carbon nanotube junction q' may further include the nano The step of forming a strengthening layer on the outer surface of the carbon tube structure. 17. The method of manufacturing a cable according to claim 16, wherein the step of forming the reinforcing layer specifically comprises the step of: passing a carbon nanotube structure formed with at least one layer of a conductive material through a loading The apparatus of the polymer solution causes the polymer solution to wet the entire carbon nanotube structure, the polymer solution is adhered to the outer surface of the at least one layer of the conductive material by intermolecular force; and the polymer is solidified to form a strengthening layer. ❹ 18. If you apply for a patent scope! The method for manufacturing a cable according to the invention, wherein the material of the insulating dielectric layer is polyethylene terephthalate, polycarbene ISa, acrylonitrile-butadiene propylene-styrene copolymer or polycarbonate. / Acrylonitrile butadiene-styrene copolymer. 9. The method for manufacturing a cable according to the invention, wherein the material of the shielding layer is a strip film structure such as a metal thin film, a carbon nanotube film or a nano carbon s composite 4 film. Long carbon wire tube, nano carbon tube composite long wire structure or metal wire. The method for manufacturing a wire (4) according to claim 19, wherein the process of forming the shielding layer further comprises bonding the metal film, the carbon nanotube film or the carbon nanotube composite film through bonding. The step of bonding or directly wound around the outer surface of the insulating dielectric layer. The method for manufacturing a cable according to claim 19, wherein the process of forming the shielding layer further comprises directly connecting the nano carbon camp line, the carbon nanotube composite long line structure or the metal line Or a step of winding the outer surface of the insulating dielectric layer.
TW97108086A 2008-03-07 2008-03-07 Method for making cable TWI345794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Publications (2)

Publication Number Publication Date
TW200939253A true TW200939253A (en) 2009-09-16
TWI345794B TWI345794B (en) 2011-07-21

Family

ID=44867652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108086A TWI345794B (en) 2008-03-07 2008-03-07 Method for making cable

Country Status (1)

Country Link
TW (1) TWI345794B (en)

Also Published As

Publication number Publication date
TWI345794B (en) 2011-07-21

Similar Documents

Publication Publication Date Title
TWI345792B (en) Cable
CN105244071B (en) cable
CN101556839B (en) Cable
TWI345793B (en) Cable
US8247036B2 (en) Method for making coaxial cable
EP2451635B1 (en) Hybrid conductors and method of making same
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
TWI380949B (en) Carbon nanotube yarn strucutre
KR101189858B1 (en) Cable and methods for making the same
TWI342027B (en) Method for making twisted yarn
CN102110501B (en) Preparation method of wire cable and cable core thereof
TWI345794B (en) Method for making cable
TW201222563A (en) Cable
WO2022137950A1 (en) Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest
TWI335036B (en) Electro magnetic shielding cable
TWI329324B (en) Electro magnetic shielding cable