TW200939249A - Method for making twisted yarn - Google Patents

Method for making twisted yarn Download PDF

Info

Publication number
TW200939249A
TW200939249A TW97108087A TW97108087A TW200939249A TW 200939249 A TW200939249 A TW 200939249A TW 97108087 A TW97108087 A TW 97108087A TW 97108087 A TW97108087 A TW 97108087A TW 200939249 A TW200939249 A TW 200939249A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
nanotube film
forming
conductive material
Prior art date
Application number
TW97108087A
Other languages
Chinese (zh)
Other versions
TWI342027B (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108087A priority Critical patent/TWI342027B/en
Publication of TW200939249A publication Critical patent/TW200939249A/en
Application granted granted Critical
Publication of TWI342027B publication Critical patent/TWI342027B/en

Links

Abstract

The present invention relates to a method for making a twisted yarn. The method includes the following steps of: (a) providing an array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes via a drawing tool; (c) forming at least one layer of conductive material layer on the surface of the carbon nanotube film; and (d) twisting the carbon nanotube film with at least one layer of conductive material layer formed thereon to acquire a twisted yarn.

Description

200939249 九、發明說明: 【發明所屬之技術領域】 纟發明涉及-種絞線的製造方法,尤其涉及一種基於 奈米碳管的絞線的製造方法。 【先前技術】 奈米碳管係-種由石墨烯片卷成的中空管狀物,1星 有優異的力學、熱學及電學性質。奈米碳管應用領域非常 參廣闊,如,它可用於製作場效應晶體管、原子力顯微鏡針 尖、場發射電子搶、奈米模板等等。然,目前基本上都係 於微觀尺度下應用奈米碳管,操作較困難。故,將奈米碳 管組裝成宏觀尺度的結構對於奈米碳管的宏觀應用具 要意義。 '200939249 IX. Description of the invention: [Technical field to which the invention pertains] The invention relates to a method for manufacturing a stranded wire, and more particularly to a method for manufacturing a stranded wire based on a carbon nanotube. [Prior Art] The carbon nanotube system is a hollow tubular body rolled from a graphene sheet, and has a star with excellent mechanical, thermal and electrical properties. The application of carbon nanotubes is very broad, for example, it can be used to make field effect transistors, atomic force microscope tips, field emission electrons, nano templates, and so on. However, at present, it is basically applied to the micro-scale application of carbon nanotubes, which is difficult to operate. Therefore, the assembly of nano-carbon tubes into macro-scale structures is of great significance for the macroscopic application of carbon nanotubes. '

范守善等人於 Nature,2002, 419:8〇1,Spinning C〇ntinuous CNT Yarns —文中揭露了從一超順排奈米碳管 陣列中可以拉出-根連續的純奈米碳管線,這種奈米碳管 線包括多個於凡德瓦爾力制下首尾相接的奈米碳管束片 段,每個奈米碳管束片段具有大致相等的長度,且每個奈 米碳管束片段由多個相互平行的奈米碳管構成。然而,由 =述奈米碳管束片段通過相互搭接來形成—連續的奈米 :炭管線,導致接觸點處的電阻較高,進而導致上述奈米碳 B線的電^率較低’無法代替金屬導線,用於信號傳輸及 電氣傳輸領域。 ^有鑒於此,提供一種絞線及其製備方法實為必要,該 纹線具有良好的導電性能、較强的機械性能、較輕的質量 7 200939249 及較小的直徑,並且易于製造,適于低成本大量生產 【發明内容】 相較於先前技術,本技術方案絞線的製備方法具有以 ❹ 下優點:其…所述絞線是通過對所述奈米碳管薄膜進行 扭轉而製造,製造方法簡單方便、成本較低。其二,所述 從奈米碳管P翔直接拉取獲得奈米碳管薄膜的步驟及形成 至少-層導電材料層的步驟均可在一真空容器中進行,有 利於絞線的規模化生産。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例絞線的結 構及其製造方法。Fan Shoushan et al., Nature, 2002, 419:8〇1, Spinning C〇ntinuous CNT Yarns—disclosed a pure nanocarbon pipeline that can be pulled out from a super-sequential carbon nanotube array. The nano carbon pipeline comprises a plurality of carbon nanotube bundle segments which are connected end to end in a van der Waals force, each of the carbon nanotube bundle segments having substantially equal lengths, and each of the carbon nanotube bundle segments being parallel to each other The composition of the carbon nanotubes. However, the formation of a continuous nano:carbon line by the overlap of the carbon nanotube bundles of the said nanocarbons leads to a higher electrical resistance at the contact point, which in turn leads to a lower electrical conductivity of the above-mentioned nanocarbon B-line. Instead of metal wires, it is used in the field of signal transmission and electrical transmission. In view of the above, it is necessary to provide a stranded wire and a preparation method thereof, which has good electrical conductivity, strong mechanical properties, light weight, and is relatively easy to manufacture, and is suitable for manufacturing. Low-cost mass production [Summary of the Invention] Compared with the prior art, the method for preparing a strand of the present invention has the advantage of: the strand is manufactured by twisting the carbon nanotube film, and is manufactured. The method is simple and convenient, and the cost is low. Secondly, the step of directly drawing the carbon nanotube film from the carbon nanotube P and the step of forming the at least one layer of the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the strand. . [Embodiment] Hereinafter, a structure of a stranded wire of an embodiment of the present technical solution and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.

…-種絞線的製造方法,包括以下步驟:提供一奈米碳 官陣列;採用-拉伸1具從所述奈米碳管陣列中拉取獲得 :士米碳管薄膜;形成至少一層導電材料層於所述奈米碳 官溥膜表® ;以及扭轉所述奈米碳管薄m,形成一絞線。 本技術方案實施例提供一種絞線,該絞線由奈米碳管 和V電材料構成。具體地,該絞線包括多個奈来碳管,並 且,每個奈米碳管表面均包覆至少一層導電材料。其中, 母個奈米碳管具有大致相等的長度,並且,多個奈米碳管 通過凡德瓦爾力首尾相連形成一絞線。在該奈米碳管絞線 中,奈米碳官沿絞線的軸向擇優取向排列。優選地,奈米 石反官繞絞線的轴向螺旋狀旋轉排列。該絞線的直徑可以爲 4.5奈米〜1〇〇微米,優選地,該絞線的直徑爲微米。 清參見圖1 ’該絞線中每一根奈米碳管u丨表面均包 8 200939249 覆至少一層導電材料層114。具體地,該導電材料層114 .包括與奈米碳官U 1表面直接結合的潤濕層112、設置在 潤濕層外的過渡層113、設置在過渡層113外的導電層114 以及設置在導電層114外的抗氧化層U5。 由於奈米碳官111與大多數金屬之間的潤濕性不好, 因此’上述潤濕層U2的作用爲使導電層m與奈米碳管 m更好的結合。形成該潤濕層112的材料可以爲鏡、妃 ©或欽等與奈米碳管111潤濕性好的金屬或它們的合金,該 潤濕層112的厚度爲wo奈米。本實施例中,該潤渴層 112的材料爲鎳,厚度約爲2奈米。可以理解,該潤渴層 112爲可選擇結構。 上述過渡層113的作用爲使潤濕層112與導電層 ^的結合。形成該過渡層113的材料可以爲與潤濕^ ιΐ2 材料及導電層m材料均能較好結合的材料,該過渡層113 施例中,該過渡層⑴的材料 結構。 理解’該過渡層113爲可選擇 处^導電層m的作用爲使絞線具有較好的導電性 二:ί該導電層114的材料可以爲銅、銀或金等導電性 金屬或其合金’該導電層114的 本實::,該導電㈣的材料爲銀,厚度約爲二。 導電層1 層115的仙聽止在絞線㈣造過財 Ϊ :上4 *空氣中被氧化’從而使絞線的導電性能下 7成該抗氧化層115的材料可以爲金或料在空氣中 200939249 不易氧化的穩定金屬或它們的合金,該抗氧化層ιΐ5的厚 度爲卜H)奈米。本實施例中,該抗氧化層ιΐ5的材料爲 ^構厚度爲2奈米。可以理解,該抗氧化層115爲可選擇 進一步地’爲提高絞線的强度,可在該抗氧化層ιΐ5 外進一步設置-强化層116。形成該强化層u6的材料可 以爲聚乙料(PVA)、聚苯撑笨並二㈣(ρΒ〇)、聚乙 ❹ ❹ :广)_乙稀(PVC)等强度較高的聚合物,該强 1Γ16的厚度爲ο.1〜1微米。本實施例中,該强化層U6 ==爲聚乙烯醇,厚度〇.5微米。可以理解,該强化 層116爲可選擇結構。 清參閱圖2及圖3,本技術方案實施例中絞線的製備 万法主要包括以下步驟: 步驟-:提供一奈米碳管陣% 216,優選地,該陣列 為超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列川爲單壁夺 2管陣列,雙壁奈米碳管陣列,及多壁奈米破管陣列中 供種◎種。本實施例中,該超順排奈米碳管陣列的製 法採用化學氣相沈積法’其具體步驟包括:⑴提供 :古整基底’該基底可選用P型或N型矽基底,或選用形 有广化層的矽基底’本實施例優選爲採用4英寸的矽基 U在基底表面均勻形成-催化劑層,該催化劑層材 金:用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合 “ —;(c)將上述形成有催化劑層的基底在a method for manufacturing a stranded wire, comprising the steps of: providing a nano carbon array; extracting from the array of carbon nanotubes by using - stretching a film of: a carbon nanotube film; forming at least one layer of conductive A material layer is formed on the nano-carbon bureaucratic film sheet; and the carbon nanotube is twisted to form a strand. Embodiments of the present technical solution provide a stranded wire composed of a carbon nanotube and a V electrical material. Specifically, the strand comprises a plurality of carbon nanotubes, and each of the carbon nanotube surfaces is coated with at least one layer of electrically conductive material. Wherein, the mother carbon nanotubes have substantially equal lengths, and a plurality of carbon nanotubes are connected end to end by a van der Waals force to form a strand. In the carbon nanotube strand, the carbon carbon is aligned along the axially preferred orientation of the strand. Preferably, the nanoscopy is arranged in an axial helical rotation of the twisted wire. The strand may have a diameter of from 4.5 nm to 1 μm, and preferably, the strand has a diameter of micrometers. See Fig. 1 ' each of the carbon nanotubes in the stranded wire has a surface of 8 200939249 covering at least one layer of conductive material 114. Specifically, the conductive material layer 114 includes a wetting layer 112 directly bonded to the surface of the nanocarbon U 1 , a transition layer 113 disposed outside the wetting layer, a conductive layer 114 disposed outside the transition layer 113 , and An oxidation resistant layer U5 outside the conductive layer 114. Since the wettability between the nanocarbon member 111 and most metals is not good, the above-mentioned wetting layer U2 functions to better bond the conductive layer m to the carbon nanotube m. The material forming the wetting layer 112 may be a metal having a wettability with a carbon nanotube 111, such as a mirror, a crucible, or an alloy thereof, and the thickness of the wetting layer 112 is wo nano. In this embodiment, the material of the thirsty layer 112 is nickel and has a thickness of about 2 nm. It will be appreciated that the thirsty layer 112 is of an alternative construction. The transition layer 113 functions to bond the wetting layer 112 to the conductive layer ^. The material forming the transition layer 113 may be a material which can be better combined with the wet material and the conductive material m. In the embodiment of the transition layer 113, the material structure of the transition layer (1). It is understood that the transition layer 113 is optional. The conductive layer m functions to make the strand have better conductivity. The material of the conductive layer 114 may be a conductive metal such as copper, silver or gold or an alloy thereof. The conductive layer 114 is: the conductive (four) material is silver and has a thickness of about two. The conductive layer 1 layer 115 is stunned in the stranded wire (4). The upper 4* is oxidized in the air' so that the conductive property of the stranded wire is 70%. The material of the anti-oxidation layer 115 may be gold or material in the air.中200939249 A stable metal that is not easily oxidized or an alloy thereof. The thickness of the oxidation resistant layer ιΐ5 is h) nanometer. In this embodiment, the material of the oxidation resistant layer ι 5 is a thickness of 2 nm. It can be understood that the oxidation resistant layer 115 is optional. Further, in order to increase the strength of the strand, a reinforcing layer 116 may be further disposed outside the oxidation resistant layer ιΐ5. The material forming the strengthening layer u6 may be a polymer having a higher strength such as polyethylene (PVA), polyphenylene (2) (p), poly(ethylene) or ethylene (PVC). The thickness of the strong 1Γ16 is ο.1~1 μm. In this embodiment, the reinforcing layer U6 == is polyvinyl alcohol and has a thickness of 55 μm. It will be appreciated that the reinforcement layer 116 is an optional structure. Referring to FIG. 2 and FIG. 3, the preparation method of the stranded wire in the embodiment of the present technical solution mainly includes the following steps: Step-: providing a carbon nanotube array % 216, preferably, the array is super-sequential nanocarbon Tube array. The carbon nanotube arrays provided in the embodiments of the present technical solutions are single-walled 2 tube arrays, double-walled carbon nanotube arrays, and multi-walled nanotube arrays. In this embodiment, the method for manufacturing the super-sequential carbon nanotube array adopts chemical vapor deposition method, and the specific steps thereof include: (1) providing: an ancient substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a shape is selected. The ruthenium substrate having a broadened layer is preferably formed by uniformly forming a catalyst layer on the surface of the substrate using a 4 inch bismuth base U. The catalyst layer gold: using iron (Fe), cobalt (Co), nickel (Ni) Or any combination of the combinations "-; (c) the substrate on which the catalyst layer is formed is

700〜900°C 10 200939249 的空氣中退火約30分鐘〜90分鐘;(d)將處理過的基底置 . 於反應爐中’在保護氣體環境下加熱到500〜740。(:,然後 通入碳源氣體反應約5〜30分鐘,生長得到超順排奈米碳 管陣列,其高度爲200〜400微米。該超順排奈米碳管陣列 爲多個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米碳管陣列。通過上述控制生長條件’該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 ❹顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 步驟二:採用一拉伸工具從所述奈米碳管陣列216中 ©拉取獲得一奈米碳管薄膜214。 所述奈米碳管薄膜214的製備方法包括以下步驟:(a) 從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶接觸奈 米碳管陣列216以選定一定寬度的多個奈米碳管束片段; (b )以一定速度沿基本垂直於奈米碳管陣列216生長方向 拉伸該夕個奈米碳管束片段,以形成一連續的奈米碳管 膜 214 。 ’ 請參閱圖4,該奈米碳管薄膜214爲擇優取向排列的 200939249 多個奈米碳管束首尾相連形成的具有一定寬度的奈米碳管 .薄膜214。在上述拉伸過程中,該多個奈米碳管束片段在 、拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦 爾力作用,該選定的多個奈米碳管束片段分別與其它奈米 碳管束片段首尾相連地連續地被拉出,從而形成一奈米碳 官薄膜214。該奈米碳管薄膜214包括多個首尾相連且定 向排列的奈米碳管束。該奈米碳管薄膜2丨4中奈米碳管的 ❹排列方向基本平行於奈米碳管薄膜214的拉伸方向。 該直接拉伸獲得的擇優取向排列的奈米碳管薄膜214 比無序的奈米碳管薄膜具有更好的均勻性。同時該直接拉 伸獲得奈米碳管薄膜214的方法簡單快速,適宜進行工業 化應用》 步驟三:形成至少一層導電材料層於所述奈米碳管薄 膜214表面。 本實施例採用物理氣相沈積法(PVD)如真空蒸鍍或 〇離子濺射等沈積導電材料層。優選地,本實施例採用^空 蒸鍍法沈積至少一層導電材料層。 二 所述採用真空蒸鍍法形成至少一層導電材料層的方法 包括以下步驟:首先,提供一真空容器210,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 少—個蒸發源212,該至少一個蒸發源212按形成至少一 層導電材料層的先後順序依次沿奈米碳管薄膜214的拉伸 方向設置,且每個蒸發源212均可通過一個加熱裝置(圖 未示)加熱。上述奈米碳管薄膜214設置於上下蒸發源2 & 12 200939249 中間並間隔一定距離,其中奈米碳管薄膜214正對上下蒸 •發源212設置。該真空容器21〇可通過外接一真空泵(圖 未示)抽氣達到預定的真空度。所述蒸發源212材料爲待 沈積的導電材料。其次,通過加熱所述蒸發源212,使其 熔融後蒸發或升華形成導電材料蒸汽,該導電材料蒸汽遇 到冷的奈米碳管薄膜214後’在奈米碳管薄膜214上下表 面凝聚,形成導電材料層。由於奈米碳管薄膜214中的奈 ❹米碳管之間存在間隙,並且奈米碳管薄膜214的厚度較 薄,導電材料可以滲透進入所述奈米碳管薄膜214之中, 從而沈積在每根奈米碳管表面。沈積導電材料層後的奈米 碳管薄膜214的微觀結構照片請參閱圖5和圖6。 可以理解,通過調節奈米碳管薄膜214和每個蒸發源 212的距離以及蒸發源212之間的距離,可使每個蒸發源 212具有一個沈積區。當需要沈積多層導電材料層時,可 將多個蒸發源212同時加熱,使奈米碳管薄膜214連續通 ❹過多個瘵發源的沈積區,從而實現沈積多層導電材料層。 爲提南導電材料蒸汽密度並且防止導電材料被氧化, 真空容器210内真空度應達到i帕(pa)以上。本技術方 案實施例中,真空容器中的真空度爲4xl〇_4pa。 可以理解’也可將步驟一中的奈米碳管陣列216直接 放入上述真空谷器210中。首先,在真空容器21〇中採用 拉伸工具從所述奈米碳管陣列2丨6中拉取獲得一定寬度 的不米碳官4膜214。然後,加熱上述至少一個蒸發源 212,沈積至少一層導電材料於所述奈米碳管薄膜2ι4表 13 200939249 面。以一定速度不斷地從所述奈米碳管陣列216中拉取奈 . 米碳管薄臈214,且使所述奈米碳管薄膜214連續地通過 上述蒸發源212的沈積區,進而實現從奈米碳管陣列216 中拉取奈米碳管薄膜214及形成至少一層導電材料層的連 續生産。 本技術方案實施例中,所述採用真空蒸鍍法形成至少 一層導電材料層的步驟具體包括以下步驟··形成一層潤濕 ❹層於所述奈米碳管薄膜214表面;形成一層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡層的外表 面;形成一層抗氧化層於所述導電層的外表面。其中,上 述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇的步 驟。具體地,可將上述奈米碳管薄膜214連續地通過上述 各層材料所形成的蒸發源的沈積區。 …“另外,在所述形成至少一個導電材料層於所述奈米碳 官溥膜214的表面之後,可進一步包括在所述奈米碳管薄 ©膜14表面开> 成强化層的步驟。所述形成强化層的步驟包 括以下步驟··將形成有至少一個導電材料層的奈米碳管薄 2 214通過一裝有聚合物溶液的裝置22〇 ,使聚合物溶液 次們正個奈米石反官薄膜214,該聚合物溶液通過分子間作 =力點附於所述至少—個導電材料層的外表面;以及凝固 聚合物’形成一强化層。 v驟四.扭轉所述奈米碳管薄膜214,形成一絞線222。 所述扭轉上述沈積有至少一層導電材料層的奈米碳管 薄膜214形成一纟交線999 λα止 、綠222的步驟可通過以下兩種方式形 14 200939249 5 .:-’通過將黏附於上述奈米碳管 伸工具固定於—烙 开m 知的拉 從而形成-絞線222。膜214’ 碳管薄膜214 ,、一如供一個尾部可以黏住奈米 轴,將該紡紗轴的尾部與奈米碳管薄 薄膜2U二成紡紗軸以旋轉的方式扭轉該奈求碳管 ❹ 方式不限,;以正i線222。可以理解,上述纺紗軸的旋轉 I\ 轉,可以反轉,或者正轉和反轉相結合。Annealing in air at 700 to 900 ° C 10 200939249 for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace to be heated to 500 to 740 in a protective gas atmosphere. (:, then a carbon source gas is introduced for about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array having a height of 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of parallel and An array of pure carbon nanotubes formed by a carbon nanotube grown perpendicular to the substrate. The growth conditions are controlled by the above. The super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal ruthenium particles. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other by van der Waals force to form an array. The super-sequential carbon nanotube array is substantially the same area as the above substrate. The gas may be selected from a chemically active hydrocarbon such as acetylene, ethylene or decane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. Second, a carbon nanotube film 214 is obtained by pulling from the carbon nanotube array 216 by a stretching tool. The preparation method of the carbon nanotube film 214 includes the following steps: (a) from the above Meter A plurality of carbon nanotube bundle segments of a certain width are selected in the tube array 216. In this embodiment, it is preferred to contact the carbon nanotube array 216 with a tape having a certain width to select a plurality of carbon nanotube bundle segments of a certain width; (b) The solar nanotube bundle segments are stretched at a rate substantially perpendicular to the growth direction of the carbon nanotube array 216 to form a continuous carbon nanotube film 214. 'Please refer to FIG. 4, the carbon nanotube film 214 is a preferred orientation of the 200939249 plurality of carbon nanotube bundles connected end to end to form a carbon nanotube with a certain width. Film 214. During the above stretching process, the plurality of carbon nanotube bundle fragments under the action of tension While the stretching direction is gradually separated from the substrate, the selected plurality of carbon nanotube bundle segments are continuously pulled out end to end with the other carbon nanotube bundle segments due to the van der Waals force, thereby forming a nano carbon officer. The film 214. The carbon nanotube film 214 comprises a plurality of carbon nanotube bundles connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube film 2丨4 is substantially parallel to the naphthalene. The stretching direction of the carbon nanotube film 214. The preferred orientation of the aligned carbon nanotube film 214 has better uniformity than the disordered carbon nanotube film, and the direct stretching obtains the nanometer. The carbon nanotube film 214 is simple and rapid, and is suitable for industrial application. Step 3: Form at least one layer of conductive material on the surface of the carbon nanotube film 214. This embodiment uses physical vapor deposition (PVD) such as vacuum evaporation. Or depositing a layer of conductive material by sputtering or the like. Preferably, in this embodiment, at least one layer of conductive material is deposited by vacuum evaporation. The method for forming at least one layer of conductive material by vacuum evaporation comprises the following steps: First, a vacuum container 210 is provided. The vacuum container 210 has a deposition interval. At the bottom and the top of the deposition interval, at least one evaporation source 212 is disposed, and the at least one evaporation source 212 is sequentially followed by forming at least one layer of conductive material. The stretching direction of the carbon nanotube film 214 is set, and each evaporation source 212 can be heated by a heating device (not shown). The carbon nanotube film 214 is disposed at a distance between the upper and lower evaporation sources 2 & 12 200939249, wherein the carbon nanotube film 214 is disposed opposite to the upper and lower evaporation source 212. The vacuum vessel 21 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 212 material is a conductive material to be deposited. Next, by heating the evaporation source 212, melting it, evaporating or sublimating to form a conductive material vapor, the conductive material vapor is condensed on the upper and lower surfaces of the carbon nanotube film 214 after encountering the cold carbon nanotube film 214. A layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube film 214, and the thickness of the carbon nanotube film 214 is thin, the conductive material can penetrate into the carbon nanotube film 214, thereby depositing The surface of each carbon nanotube. The microstructure of the carbon nanotube film 214 after depositing the conductive material layer is shown in Figures 5 and 6. It will be appreciated that by adjusting the distance between the carbon nanotube film 214 and each evaporation source 212 and the distance between the evaporation sources 212, each evaporation source 212 can have a deposition zone. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube film 214 through the deposition regions of the plurality of hair sources, thereby realizing deposition of the plurality of layers of the conductive material. In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum vessel 210 should be above iPa (pa). In the embodiment of the technical solution, the degree of vacuum in the vacuum vessel is 4xl 〇 4pa. It will be appreciated that the carbon nanotube array 216 of step one can also be placed directly into the vacuum vessel 210 described above. First, a carbon nanotube array 4 film 214 having a certain width is taken up from the carbon nanotube array 2 6 by using a stretching tool in a vacuum vessel 21 . Then, the at least one evaporation source 212 is heated to deposit at least one layer of electrically conductive material on the surface of the carbon nanotube film 2 ι4. The carbon nanotube thin tube 214 is continuously pulled from the carbon nanotube array 216 at a constant speed, and the carbon nanotube film 214 is continuously passed through the deposition region of the evaporation source 212, thereby realizing The carbon nanotube array 216 is drawn with a carbon nanotube film 214 and a continuous production of at least one layer of a conductive material. In the embodiment of the technical solution, the step of forming at least one layer of the conductive material by vacuum evaporation comprises the following steps: forming a layer of a wetting layer on the surface of the carbon nanotube film 214; forming a transition layer An outer surface of the wetting layer; a conductive layer formed on an outer surface of the transition layer; and an anti-oxidation layer formed on an outer surface of the conductive layer. Here, the steps of forming the wetting layer, the transition layer and the oxidation resistant layer are all optional steps. Specifically, the above-described carbon nanotube film 214 may be continuously passed through a deposition zone of an evaporation source formed by the above respective layers of materials. "Additionally, after the forming of the at least one conductive material layer on the surface of the nano-carbon bureaucratic film 214, the step of further forming a strengthening layer on the surface of the carbon nanotube thin film 14 may be further included. The step of forming the strengthening layer comprises the steps of: forming a carbon nanotube thin film 2 214 formed with at least one conductive material layer through a device 22 containing a polymer solution, so that the polymer solution is in the right place. a mullite film 214, the polymer solution is attached to the outer surface of the at least one conductive material layer by an intermolecular force point; and the solidified polymer 'forms a strengthening layer. The carbon nanotube film 214 forms a strand 222. The step of twisting the carbon nanotube film 214 deposited with the at least one layer of conductive material to form a turn line 999 λα, green 222 can be formed by the following two forms 14 200939249 5 .:-'The stranded wire 222 is formed by fixing the above-mentioned nano carbon tube extending tool to the opening of the opening. The film 214' carbon tube film 214, as for a tail can be adhered Live the nano shaft, the spinning shaft The tail and the carbon nanotube thin film 2U two-spinning shaft twists the carbon tube 旋转 in a rotating manner. The method is not limited to the positive i-line 222. It can be understood that the rotation of the above-mentioned spinning shaft can be rotated. Reverse, or a combination of forward and reverse.

丄 扭轉奈米碳管薄膜214可沿奈米碳管薄臈2U 产昭螺旋方式扭轉。所形成的絞線222的掃描電 鏡照片请參見圖7。 β 、理解,本技術方案並不限於上述方法獲得絞線 似’只要能使所述奈米碳管薄膜214形成絞線222的方法 都在本技術方案的保護範圍之内。 、所製得的紋線222可進一步收集在捲筒224上。收集 方式爲將絞線222纏繞在捲筒224上。 可k擇地’上述奈米碳管薄膜214的形成步驟、形成 至)一個導電材料層的步驟、奈米碳管薄膜214的扭轉步 驟及絞線222的收集步驟均可在上述真空容器中進行,進 而實現絞線222的連續生産。 與現有技術相比較,本技術方案實施例提供的採用導 電材料包覆奈米碳管所製造的絞線及其製備方法具有以下 優點:其一’採用導電材料包覆的奈米碳管形成的絞線比 純奈米碳管長線具有更好的導電性。其二,絞線中包含多 個通過凡德瓦爾力首尾相連的奈米碳管束片段,且每個奈 15 200939249 米石反官表面均形成有至少一層導電材料層,其中,奈 .管束片段起導電及支撑作用,在奈米碳管上沈積導電材二 層後所形成的纹線比採用現有技術中的金屬拉絲方法得 的金屬導電絲更細’適合製作超細微線纔。其三,由於太 米碳管爲中空的管狀結構,且形成於奈求破管外表面的: 電材料層的厚度只有幾個奈米,因此,電流在通過導電材 料層時基本不會産生趨膚效應,從而避免了信號在絞線傳 β $過程中的衰减。其四,由於奈米碳管具有優異的力學性 能,且具有中空的管狀結構,因此,該含有奈米碳管的絞 線比屯金屬導線具有更南的機械强度及更輕的質i,適合 特殊領域,如航天領域及空間設備的應用。其五,所述 ,,通過對所述奈米碳管薄膜進行扭轉而製造,製造方法 簡單方便、成本較低。其六,所述從奈米碳管陣列直接拉 伸獲知奈米石反管薄膜的步驟及形成至少一層導電材料層的 步驟均可在一真空容器中進行,有利於絞線的規模化生産。 © 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利中請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 ^ 【圖式簡單說明】 ^圖1係本技術方案實施例奈米碳管絞線中單根奈米碳 管的結構示意圖。 圖2係本技術方案實施例絞線的製造方法的流程圖。 16 200939249 圖3係本技術㈣實施例絞線的製造裝置的結構示意 圖4係本技術方案實施例奈米碳管薄膜的掃描電鏡照 —一圖5係本技術方案實施例沈積導電材料層後的奈米碳 管薄膜的掃描電鏡照片。 卜圖6係本技術方案實施例沈積導電材料層後的奈米碳 官薄膜中的奈米碳管的透射電鏡照片, 圖7係本技術方案實施例絞線的掃描電鏡照片。 【主要元件符號說明】 奈米碳管 .m 潤濕層 ,、^ 113 114 115 116 210 212 214 216 220 222 224 過渡層 導電層 抗氧化層 ❾强化層 真空容器 蒸發源 奈米碳管結構 奈来碳管陣列 裝有聚合物溶液的襄置 奈米碳管長線結構 捲筒 17扭转 The twisted carbon nanotube film 214 can be twisted along the carbon nanotubes of the 2U. See Figure 7 for a scanning electron micrograph of the formed strand 222. β, It is understood that the present technical solution is not limited to the above method to obtain a stranded wire as long as the method of forming the carbon nanotube film 214 into the stranded wire 222 is within the protection scope of the present technical solution. The resulting ridges 222 can be further collected on the reel 224. The collection method is to wind the strand 222 around the reel 224. The step of forming the above-described carbon nanotube film 214, forming a layer of a conductive material, the step of twisting the carbon nanotube film 214, and the step of collecting the strand 222 may be performed in the above vacuum container. In turn, continuous production of the strands 222 is achieved. Compared with the prior art, the stranded wire manufactured by using the conductive material coated carbon nanotube provided by the embodiment of the present technical solution and the preparation method thereof have the following advantages: a 'formed by a carbon nanotube coated with a conductive material The stranded wire has better electrical conductivity than the long line of pure carbon nanotubes. Secondly, the stranded wire comprises a plurality of carbon nanotube bundle segments connected end to end by Van der Waals force, and each of the Nai 15 200939249 meters stone counter surface is formed with at least one layer of conductive material, wherein the tube bundle segment Conductive and supporting, the formation of the second layer of conductive material on the carbon nanotubes after the formation of the line is thinner than the metal wire drawn by the metal wire drawing method of the prior art 'suitable for making ultra-fine lines. Third, since the carbon nanotubes are hollow tubular structures and are formed on the outer surface of the tube: the thickness of the layer of electrical material is only a few nanometers, so the current does not substantially tend to flow when passing through the layer of conductive material. The skin effect, thereby avoiding the attenuation of the signal during the twisted-line transmission of β $. Fourth, since the carbon nanotube has excellent mechanical properties and has a hollow tubular structure, the twisted wire containing the carbon nanotube has a more souther mechanical strength and a lighter quality than the bismuth metal wire, and is suitable for Special areas such as aerospace and space equipment applications. According to the fifth aspect, the manufacturing method is simple and convenient, and the cost is low by manufacturing the carbon nanotube film. Sixth, the step of directly drawing the nanometer tube from the carbon nanotube array and the step of forming at least one layer of the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the strand. © In summary, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. ^ [Simple Description of the Drawings] ^ Figure 1 is a schematic view showing the structure of a single carbon nanotube in a carbon nanotube stranded wire of the embodiment of the present technical solution. FIG. 2 is a flow chart of a method for manufacturing a twisted wire according to an embodiment of the present technical solution. 16 200939249 FIG. 3 is a schematic view showing the structure of the manufacturing apparatus of the embodiment of the present invention. FIG. 4 is a scanning electron microscope image of the carbon nanotube film of the embodiment of the present technical solution— FIG. 5 is a schematic diagram of depositing a conductive material layer in the embodiment of the technical solution. Scanning electron micrograph of a carbon nanotube film. FIG. 6 is a transmission electron micrograph of a carbon nanotube in a nano carbon film after depositing a conductive material layer in the embodiment of the present technical solution, and FIG. 7 is a scanning electron micrograph of a strand of the embodiment of the present technical solution. [Main component symbol description] Nano carbon tube.m Wetting layer, ^ 113 114 115 116 210 212 214 216 220 222 224 Transition layer conductive layer anti-oxidation layer ❾ strengthening layer vacuum container evaporation source carbon nanotube structure Nailai Carbon tube array with polymer solution of carbon nanotube long-length structure reel 17

Claims (1)

200939249 十、申請專利範圍 • 1 · 一種絞線的製造方法,包括以下步驟: 提供一奈米碳管陣列; 採用一拉伸工具從所述奈米碳管陣列中拉取太 米碳管薄膜; " 形成至少一層導電材料層於所述奈米碳管薄膜表面;以 及 Φ 扭轉所述奈米碳管薄膜’形成一絞線。 2.如申請專利範圍第i項所述的絞線的製造方法,其中, 所述奈米碳管薄膜的製備過程包括以下步驟:、 從上述奈米碳管陣列中選定一定寬度的 束片段;以及 ’下…卡石厌官 以一定速度沿基本垂直於奈米碳管陣列生長方向拉 “夕個不米奴官束片段,以形成一連續的奈米碳管薄 ❹3.如申請專利範圍第1項所述的絞線的製造方法,其中, =述开/成至少—層導電材料層的方法包括真空 或濺射法。 “、'锻/云 4如申吻專利1巳圍第3項所述的絞線的製造方法,其中, 所述形成至少—層導電材料層的方法為真空蒸鍍法,該 方法包括以下步驟: ," 容器,該真空容器具有一沈積區間,該沈積 :曰_。和頂部分別放置至少—個蒸發源,該至少一個 "發源按形成至少—層導電材料層的錢順序依次沿 200939249 奈米碳管薄膜的拉伸方向設置,且每個蒸發源均可通過 . 一個加熱裝置加熱; , 將奈米碳管薄膜置於上下蒸發源中間並與其間隔一定 距離,其中奈米碳管薄膜正對上下蒸發源設置;以及 依次加熱所述蒸發源,使其熔融後蒸發或升華形成導電 材料蒸汽,該導電材料蒸汽遇到冷的奈米碳管薄膜後, 於奈米碳管薄膜上下表面凝聚,形成導電材料層。 ❹5 ·如申請專利範圍第4項所述的絞線的製造方法,其中, 所述形成至少一層導電材料層的過程包括形成一層導 電層於所述奈米碳管薄膜的外表面的步驟。 6. 如申请專利範圍第5項所述的絞線的製造方法’其中’ 所述導電層的材料爲金、娘、銅或其合金。 7. 如申請專利範圍第5項所述的絞線的製造方法,其中, 所述導電層的厚度爲1〜2〇奈米。 8. 如申請專利範圍第5項所述的絞線的製造方法’其中’ 〇 在所述形成導電層的步驟之前進一步包括以下梦驟:形 成一層潤濕層於所述奈米碳管薄膜表面;形成〆層過渡 層於所述淵濕層的外表面,上述導電層形成在所述潤濕 層的外表面。 9. 如申請專利範圍第5項所述的絞線的製造方法,其中’ 在所述形成導電層的步驟之後進一步包括形成一層抗 氧化層於所述導電層的外表面。 1 〇.如申請專利範圍第5項所述的絞線的製造方法,其中, 在所述形成至少一層導電材料層於所述奈米碳管薄膜 19 200939249 表面之後’可進一步包括在所述奈米碳管薄膜外表面形 成强化層的步驟。 11 ·如申請專利範圍第10項所述的絞線的製造方法,其 中,所述形成强化層的步驟具體包括以下步驟:將形成 有至少一個導電材料層的奈米碳管薄膜通過一裝有聚 合物溶液的裝置,使聚合物溶液浸潤整個奈米碳管薄 膜,該聚合物溶液通過分子間作用力黏附於所述至少一 ❹層導電材料層的外表面;以及凝固聚合物,形成一强化 層。 U·如申請專利範圍第1項所述的絞線的製造方法,其中, 所述扭轉所述奈米碳管薄膜,形成—絞線的過程包括以 I步驟:將黏附於上述奈米碳管薄膜-端的拉伸工呈固 :於-旋轉電機上;扭轉所述奈米碳管薄膜,形成二交 13.如申請專利範圍第 ❹所述扭轉所述夺米碳^所述的纹線的製造方法’其中, 下步驟:提供:個尾It形成'絞線的過程包括以 Μ㈣紡_尾部與:米:炭时 纺紗軸以旋轉的方式扭轉 二膜:…以及使該 線。 得这不未石反官溥膜,形成—絞 如申請專利範圍第12項 方法,其中,所述扭轉夺米^一項所述的絞線的製造 碳管薄膜的拉伸方向官缚膜的過程包括沿奈米 的步驟。 ’、夂方式扭轉該奈米碳管薄膜 20200939249 X. Patent Application Range 1 • A method for manufacturing a stranded wire, comprising the steps of: providing a carbon nanotube array; pulling a carbon nanotube film from the carbon nanotube array by using a stretching tool; " forming at least one layer of a conductive material on the surface of the carbon nanotube film; and Φ twisting the carbon nanotube film to form a strand. 2. The method for manufacturing a stranded wire according to the invention of claim 1, wherein the preparation process of the carbon nanotube film comprises the steps of: selecting a bundle segment of a certain width from the array of carbon nanotubes; And 'below... Ka Shi swearing at a certain speed along the direction perpendicular to the growth direction of the carbon nanotube array, "the eve of a non-nano slave bundle segment to form a continuous carbon nanotube thin ❹ 3. As claimed in the patent scope The method for manufacturing a strand according to any one of the preceding claims, wherein the method of describing/forming at least the layer of the conductive material comprises vacuum or sputtering. “, 'Forging/Cloud 4, for example, the third item of Shen Kiss Patent 1 The method for manufacturing a stranded wire, wherein the method of forming at least a layer of a conductive material layer is a vacuum evaporation method, the method comprising the steps of: " a container having a deposition interval, the deposit:曰_. And at least one evaporation source is respectively disposed at the top, and the at least one source is disposed in the order of the formation of the at least one layer of the conductive material in the direction of the stretching of the 200939249 carbon nanotube film, and each evaporation source can pass. Heating by a heating device; placing a carbon nanotube film in the middle of the upper and lower evaporation sources and at a distance therefrom, wherein the carbon nanotube film is disposed opposite to the upper and lower evaporation sources; and sequentially heating the evaporation source to melt and evaporate Or sublimation to form a conductive material vapor, which, after encountering the cold carbon nanotube film, is agglomerated on the upper and lower surfaces of the carbon nanotube film to form a conductive material layer. The method of manufacturing a strand according to claim 4, wherein the forming of the at least one layer of the conductive material comprises the step of forming a conductive layer on the outer surface of the carbon nanotube film. 6. The method for producing a strand according to claim 5, wherein the material of the conductive layer is gold, mother, copper or an alloy thereof. 7. The method of manufacturing the strand according to claim 5, wherein the conductive layer has a thickness of 1 to 2 nanometers. 8. The method of manufacturing a strand according to claim 5, wherein the step further comprises the following dream before the step of forming the conductive layer: forming a wetting layer on the surface of the carbon nanotube film Forming a ruthenium transition layer on an outer surface of the wet layer, the conductive layer being formed on an outer surface of the wet layer. 9. The method of manufacturing a strand according to claim 5, wherein the step of forming the conductive layer further comprises forming an oxidation resistant layer on an outer surface of the conductive layer. The method for manufacturing a strand according to claim 5, wherein after the forming of at least one layer of a conductive material on the surface of the carbon nanotube film 19 200939249, the invention may further be included in the The step of forming a strengthening layer on the outer surface of the carbon nanotube film. The method for manufacturing a strand according to claim 10, wherein the step of forming the reinforcing layer specifically comprises the step of: passing a carbon nanotube film formed with at least one layer of a conductive material through a a device for polymerizing a polymer solution to wet the entire carbon nanotube film, the polymer solution being adhered to the outer surface of the at least one layer of the conductive material layer by intermolecular force; and solidifying the polymer to form a strengthening Floor. The method for manufacturing a strand according to claim 1, wherein the twisting the carbon nanotube film to form a strand comprises the step of: adhering to the carbon nanotube. The film-end stretcher is solidified on a rotating electric machine; the carbon nanotube film is twisted to form a cross-link 13. The twisted wire described in the third paragraph is twisted as described in the scope of the patent application. Manufacturing method 'Where, the next step: providing: the tail of the process of forming the 'twist line' includes spinning the _ (four) spinning _ tail with: m: carbon when the spinning shaft twists the two membranes in a rotating manner: ... and makes the line. The method of claim 12, wherein the method of twisting the twisted wire of the twisted wire of the manufactured carbon tube film is used to stretch the direction of the film. The process includes steps along the nanometer. ', twisting the carbon nanotube film 20
TW97108087A 2008-03-07 2008-03-07 Method for making twisted yarn TWI342027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Publications (2)

Publication Number Publication Date
TW200939249A true TW200939249A (en) 2009-09-16
TWI342027B TWI342027B (en) 2011-05-11

Family

ID=44867650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Country Status (1)

Country Link
TW (1) TWI342027B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557060B (en) * 2014-04-23 2016-11-11 北京富納特創新科技有限公司 Carbon nanotube composite wire
US9696335B2 (en) 2014-04-23 2017-07-04 Beijing Funate Innovation Technology Co., Ltd. Hot wire anemometer having twisted carbon nanotube composite wire detecting element
US9702747B2 (en) 2014-04-23 2017-07-11 Beijing Funate Innovation Technology Co., Ltd. Mass flowmeter having twisted carbon nanotube composite wire sensing elements
US9817435B2 (en) 2014-04-23 2017-11-14 Beijing Funate Innovation Technology Co., Ltd. Conductive mesh and touch panel using the same
US9960141B2 (en) 2014-04-23 2018-05-01 Beijing Funate Innovation Technology Co., Ltd. Binding wire and semiconductor package structure using the same
US10213857B2 (en) 2014-04-23 2019-02-26 Beijing Funate Innovation Technology Co., Ltd. Wire cutting electrode and wire cutting device using the same
US10251219B2 (en) 2014-04-23 2019-04-02 Beijing Funate Innovation Technology Co., Ltd. Defrosting glass, defrosting lamp and vehicle using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557060B (en) * 2014-04-23 2016-11-11 北京富納特創新科技有限公司 Carbon nanotube composite wire
US9570208B2 (en) 2014-04-23 2017-02-14 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube composite wire
US9696335B2 (en) 2014-04-23 2017-07-04 Beijing Funate Innovation Technology Co., Ltd. Hot wire anemometer having twisted carbon nanotube composite wire detecting element
US9702747B2 (en) 2014-04-23 2017-07-11 Beijing Funate Innovation Technology Co., Ltd. Mass flowmeter having twisted carbon nanotube composite wire sensing elements
US9817435B2 (en) 2014-04-23 2017-11-14 Beijing Funate Innovation Technology Co., Ltd. Conductive mesh and touch panel using the same
US9960141B2 (en) 2014-04-23 2018-05-01 Beijing Funate Innovation Technology Co., Ltd. Binding wire and semiconductor package structure using the same
US10213857B2 (en) 2014-04-23 2019-02-26 Beijing Funate Innovation Technology Co., Ltd. Wire cutting electrode and wire cutting device using the same
US10251219B2 (en) 2014-04-23 2019-04-02 Beijing Funate Innovation Technology Co., Ltd. Defrosting glass, defrosting lamp and vehicle using the same

Also Published As

Publication number Publication date
TWI342027B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
JP4589439B2 (en) Method for producing carbon nanotube composite
TWI380949B (en) Carbon nanotube yarn strucutre
JP5243478B2 (en) Nanomaterial thin film
CN105244071B (en) cable
US9840773B2 (en) Method for making nanowire structure
JP5180266B2 (en) Method for producing carbon nanotube linear structure
JP5091278B2 (en) Method for producing carbon nanotube linear structure
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
TWI327177B (en) Carbon nanotube film and method for making same
JP2009184907A (en) Carbon nanotube composite material
TW200939249A (en) Method for making twisted yarn
TWI481554B (en) Method for making nanowire structure
JP2008517182A (en) Method for producing fibers from a supported array of nanotubes
TWI411574B (en) Carbon nanotube composite material and method for making the same
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same
TWI342266B (en) Carbon nanotube composite film
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure
TWI402210B (en) Carbon nanotube wire structure and method for making the same
TWI421365B (en) Method for making carbon nanotube composite film
TW201209235A (en) Carbon nanotube composite wire and method for making the same
TWI345794B (en) Method for making cable
KR20200095832A (en) Electric wire with carbon nanofibers and manufacturing method thereof
TW201039673A (en) Planar heater