TW200933093A - Methods and apparatus for starting and operating a thermal abatement system - Google Patents

Methods and apparatus for starting and operating a thermal abatement system Download PDF

Info

Publication number
TW200933093A
TW200933093A TW97141006A TW97141006A TW200933093A TW 200933093 A TW200933093 A TW 200933093A TW 97141006 A TW97141006 A TW 97141006A TW 97141006 A TW97141006 A TW 97141006A TW 200933093 A TW200933093 A TW 200933093A
Authority
TW
Taiwan
Prior art keywords
flame
sensor
radiation
burner
flame sensor
Prior art date
Application number
TW97141006A
Other languages
Chinese (zh)
Inventor
Ho-Man Rodney Chiu
Daniel O Clark
Shaun W Crawford
Jay J Jung
Youssef A Loldj
Robbert Vermeulen
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200933093A publication Critical patent/TW200933093A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

A flame sensor apparatus for use with a flame heated thermal abatement reactor is provided, including a flame sensor adapted to sense a flame within the thermal abatement reactor; and a shutter adapted to selectively block the transmission of radiation from the flame to the flame sensor.

Description

200933093 六、發明說明: 【發明所屬之技術領域】 本發明有關於電子元件製造,且特別是啟動及操作熱 減量系統之方法及裝置。 【先前技術】200933093 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the manufacture of electronic components, and more particularly to a method and apparatus for starting and operating a heat reduction system. [Prior Art]

源自電子材料、元件、產品、太陽能電池及記憶體物 件(下文稱為“電子元件,,)製造的氣態排出物流為有關 多種化學化合物、有機化合物、氧化劑、光阻及其他試 劑之分解產品物,如同其他氣體及懸浮料子,最好能將 它們在排出物流由製程設備排放至大氣前由排出物流中 移除。 欲減量的排出物流可包括由電子元件製造製程產生的 物種及/或傳送至電子元件製造製程並通過製程腔室而 無化學改變的物種。本文中,「電子製造製程」-詞的使 用奴廣義解釋為包括任何及所有在電子元件及域 產抑裝l中的加工及單元操作’以及所有涉及用於電子 元件及《LCD製造設備或由其產生的材料之處理或加 工的操作,以及所有與電子元件及蜮LCD製造設備有 關所進行的操作佝不、、牛 不涉及活性製造的操作(範例包括製 程設備的條件、在極你淮报1 辉作準備中化學的傳輸管線的滌氣、 製程工作腔室的蝕刻、、主 *到β 4、源自電子元件及/或LCD製 造設備產生的排屮私 出物之母·性或危險氣體減量等)。本文 3 200933093 中,”排出物流”及’’廢料流”為欲指同義字體。 熱反應器已大量用於設置為製程排出物廢料流的減量 系統使用端以分解毒性材料,將其轉換至較低毒性的形 式。例如,熱減量反應器可減量廢料排出物組份包括但 不限制為 CF4、C2F6、SF6、C3F8、C4F8、C4F80、SiF4、 BF3、BH3、B2H6、B5H9、NH3、PH3、SiH4、SeH2、 C12、HC1、HF、HBr、WF6、H2、A1(CH3)3、醇類、氧 化劑如03、NF3、及C1F3、F2 —級及二級胺、酸性氣體、 有機石夕烧、有機金屬、及鹵代石夕烧。 當擴大採用熱減量,故有開發熱反應器之安全性、可 靠度、監控及控制特徵結構需求。安全性特徵結構特別 地重要,因為熱反應器中排出物廢料流的減量可藉由導 入燃料至熱反應器以進行其中的燃燒及氧化而加速,如 甲烷、天然氣及/或氫。 因此,如能提供提高熱減量反應器的安全性及可靠度 0 之方法及裝置,將帶來好處。 【發明内容】 . 在一些態樣中,提供一火焰感測器裝置以與火焰加熱 之熱減量反應器使用,其包括一在熱減量反應器中適於 感測火焰的火焰感測器;及一適於選擇性阻絕火焰輻射 傳送至火焰感測器的阻斷器。 在某些態樣中,提供啟動熱減量反應器的方法,包括 4 200933093 下列步驟:(a)在熱減量反應器中點燃一誘導火焰;(b) 以一火焰感測器偵測誘導火焰;(c)阻絕由誘導火焰之火 焰輕射傳送至火焰感測器;及(d)當在步驟(c)中火焰輻射 的傳送被阻絕時,若火焰感測器顯示火焰感測器偵測到 一火焰,則停止燃料流至燃燒器火焰。 在一些態樣中’提供操作熱減量反應器的方法,包括 步驟下列步驟:(a)點燃一燃燒器火焰;(b)以一火焰感測 Ο 益债測燃燒器火焰;(c)若火焰感測器未偵測出步輝(b) 中的燃燒器火焰,則停止燃料流至燃燒器火焰;(d)阻絕 火焰輻射由燃燒器火焰傳送至火焰感測器;及(e)當在步 驟(d)中火焰輻射的傳送被阻絕時,若火焰感測器顯示火 焰感測器偵測到燃燒器火焰,則停止燃料流至燃燒器火 本發明之其他特徵結構及態樣可由下列的詳細描述、 後附申請專利範圍及附圖而充分揭示。 【實施方式】 如上所述,熱減量反應器可使用燃料燃燒為一熱源以 用用於減量在電子元件製造製程排出物中含有的不想要 物種。此熱減量反應器基本上之特徵在於至少 一引導噴A gaseous effluent stream derived from electronic materials, components, products, solar cells, and memory objects (hereinafter referred to as "electronic components,") is a decomposition product of various chemical compounds, organic compounds, oxidants, photoresists, and other reagents. As with other gases and suspended materials, it is preferred to remove them from the effluent stream before it is discharged from the process equipment to the atmosphere. The effluent stream to be reduced may include species produced by the electronic component manufacturing process and/or transmitted to Electronic component manufacturing process and passing through the process chamber without chemically altered species. In this paper, the term "electronic manufacturing process" - the use of the word slave is broadly interpreted to include any and all processing and units in the electronic component and domain production. Operation 'and all operations involving the processing or processing of electronic components and "LCD manufacturing equipment or materials produced therefrom, as well as all operations related to electronic components and/or LCD manufacturing equipment, and cattle are not involved in activity Manufacturing operations (examples include conditions for process equipment, preparations for you Etching the scrubber, the process working chamber transfer line chemical ,, master * to β 4, from electronic components and / or LCD manufacturing apparatus generates discharge Che private showing parent-or dangerous gas reduction was the like). In this paper, in 200933093, “exhaust logistics” and “recycle flow” are synonymous fonts. Thermal reactors have been used in large quantities to reduce the amount of toxic materials used in process waste streams to convert toxic materials to Low toxicity form. For example, the heat reduction reactor can reduce the waste effluent components including but not limited to CF4, C2F6, SF6, C3F8, C4F8, C4F80, SiF4, BF3, BH3, B2H6, B5H9, NH3, PH3, SiH4 , SeH2, C12, HC1, HF, HBr, WF6, H2, A1(CH3)3, alcohols, oxidants such as 03, NF3, and C1F3, F2 - and secondary amines, acid gases, organic stone, organic Metal, and halogenated stone shochu. When expanding the use of heat reduction, there is a need to develop thermal reactor safety, reliability, monitoring and control features. Safety features are particularly important because of the effluent in the thermal reactor The reduction in waste stream can be accelerated by introducing fuel into the thermal reactor for combustion and oxidation therein, such as methane, natural gas, and/or hydrogen. Thus, if it is possible to provide improved safety and reliability of the heat-reduced reactor. The invention and the device will bring benefits. [Invention] In some aspects, a flame sensor device is provided for use with a heat-reducing heat-reducing reactor, which includes a heat-reducing reactor for sensing a flame sensor for measuring flames; and a blocker adapted to selectively block flame radiation from being delivered to the flame sensor. In some aspects, a method of initiating a heat reduction reactor is provided, including 4 200933093. (a) igniting an induced flame in the heat reduction reactor; (b) detecting the induced flame with a flame sensor; (c) blocking the light flame transmitted by the induced flame to the flame sensor; and (d) When the transmission of flame radiation is blocked in step (c), if the flame sensor indicates that the flame sensor detects a flame, then the fuel flow is stopped to the burner flame. In some aspects, 'operational heat reduction is provided' The method of the reactor comprises the steps of: (a) igniting a burner flame; (b) measuring the burner flame by a flame sensing; (c) if the flame sensor does not detect step gamma ( b) burner flame, stop Stopping the fuel flow to the burner flame; (d) blocking the flame radiation from being transmitted by the burner flame to the flame sensor; and (e) when the transmission of the flame radiation is blocked in step (d), if the flame sensor is displayed The flame sensor detects the burner flame and stops the fuel flow to the burner. Other features and aspects of the present invention are fully disclosed in the following detailed description, the appended claims, and the accompanying drawings. As described above, the heat-reducing reactor can use fuel combustion as a heat source for reducing unwanted species contained in the effluent of the electronic component manufacturing process. The heat-reduction reactor is basically characterized by at least one pilot spray

可瞭解在下列描述“燃料、或燃料及氧化劑 以形成誘導火焰。 化劑,,可簡易地參 5 200933093 照為“燃料’’。主燃燒器噴嘴可適於形成主燃燒器火焰, 其可用於加熱熱減量反應器及其内容物。 在啟動熱減量反應器前,應無燃料由引導喷嘴或燃燒 器喷嘴流入。此狀態在本文中稱為「停機」或「關閉」。 當一關閉之減量反應器要啟動前,基本上可使用下述啟 動程序:減量反應器可以氮滌氣,燃料可流至一導燃器 及點火以形成一誘導火焰;且接著燃料可流至一或一以 上的主燃燒器喷嘴而形成燃燒器火焰。 若當誘導火焰並未燃燒時,供應至反應器的燃料會有 爆燃及/或***的風險。為了這個原因,如在2004年11 月18曰提出申請之同時擁有的美國專利申請案第 10/991,740 號,名稱為 “SAFETY, MONITORING AND CONTROL FEATURES FOR THERMAL ABATEMENT REACTOR”的專利申請案中揭露,火焰感測器已有利地 的安裝在熱反應器上以確保燃料不會供應至反應器,除 φ 非誘導火焰燃燒。然而,當誘導火焰感測器故障時,可 能提供一錯誤的火焰-啟動指示至系統控制器顯示誘導 火焰燃燒。此可導致燃料供應至反應器,但誘導火焰並 未燃燒且可提高爆燃及/或***的風險。 此外,當主燃燒器火焰已經形成,且熱減量反應器在 操作模式,在某些情況下主燃燒器火焰停止燃燒為可能 的,此造成未燃燒燃料進入反應腔室。這也可導致爆燃 及/或***。已知火焰感測器可安裝於熱反應器以偵測此 一狀況並於若火焰停止燃燒時,確保燃料不供應至反應 6 200933093 器。然而,亦可能此火焰感測器故障並在已停止燃燒後 仍持續顯示燃燒器火焰存在。此相似地可導致未燃燒燃 料供應至反應器,而有爆燃及/或***的風險。 本發明提供方法及裝置用來安全地及可靠地啟動並操 作熱減量反應器並用來偵測故障的火焰感測器。為了降 低未燃燒燃料導入至熱反應腔室的風險,且因此降低爆 燃及/或***的風險,本發明提供火焰感測器測試裝置 0 (下文稱為「火焰感測器裝置」)及方法。 如上所述,當在一熱減量反應器存在一火焰時,一火 焰感測器可收到由火焰產生的輻射(下文稱為「火焰輻 射」)。由熱反應器内部發散之火焰輻射的存在可指示火 焰存在其内,且火焰感測器可回報火焰-啟動狀態至一控 制器。為了上述火焰感測器在火焰_關閉狀態可失敗及持 續回報一火焰-啟動狀態的可能性,本發明之火焰感測器 裝置可包括可由控制器使用之阻斷器以 ❹的可操作性或完整性(某些時候下文稱為「錯誤二器 因此,在實際火焰·啟動狀態期間,此阻斷器可關閉以阻 絕火焰輻射到達火焰感測器。在阻斷器關閉時,控制器 應'由火焰感測器收到一火焰,閉信號。若控制器在此測 試期間ώ火焰感測器收到-火焰·關閉信號,控制器可判 斷此火焰感測器為操作適當。另一方面,若控制器由火 焰感測器收到一火焰-啟動信號但阻斷器為關閉,則控制 器可判斷此火焰感測器不完善的,並停止熱反應腔室。 控制器可使用阻斷n以在熱減量反應器啟動期間及在其 7 200933093 正常操作期間測試火焰感測器。 控制器可使用上述的程序以在兩個 在啟動過程期間It can be understood that the following description "fuel, or fuel and oxidant to form an induced flame. Chemical agent, can be easily referred to as "fuel". The main burner nozzle can be adapted to form a main burner flame that can be used to heat the heat reduction reactor and its contents. No fuel should flow from the pilot nozzle or burner nozzle before starting the heat reduction reactor. This status is referred to herein as "downtime" or "off." The start-up procedure described below can basically be used before a closed down-reduction reactor is started: the reduced-reactor can be purged with nitrogen, the fuel can be passed to a pilot burner and ignited to form an induced flame; and then the fuel can flow to One or more primary burner nozzles form a burner flame. If the induced flame is not combusted, the fuel supplied to the reactor may be at risk of deflagration and/or explosion. For this reason, the patent application entitled "SAFETY, MONITORING AND CONTROL FEATURES FOR THERMAL ABATEMENT REACTOR" is disclosed in the patent application No. 10/991,740, filed on November 18, 2004. The sensor has been advantageously installed on the thermal reactor to ensure that fuel is not supplied to the reactor, except for φ non-induced flame combustion. However, when a flame sensor failure is induced, an erroneous flame-start indication may be provided to the system controller indicating induced flame combustion. This can result in fuel being supplied to the reactor, but the induced flame is not combusted and can increase the risk of deflagration and/or explosion. In addition, when the main burner flame has been formed and the heat-reducing reactor is in the operating mode, it is possible in some cases to stop combustion of the main burner flame, which causes unburned fuel to enter the reaction chamber. This can also cause deflagration and/or explosion. Flame sensors are known to be mounted in a thermal reactor to detect this condition and to ensure that fuel is not supplied to the reaction if the flame ceases to burn. However, it is also possible that the flame sensor fails and continues to show the presence of the burner flame after the combustion has ceased. This similarly results in the supply of unburnt fuel to the reactor with the risk of deflagration and/or explosion. The present invention provides methods and apparatus for use in a flame sensor that safely and reliably activates and operates a heat reduction reactor and is used to detect faults. In order to reduce the risk of unburned fuel being introduced into the thermal reaction chamber, and thus reducing the risk of explosion and/or explosion, the present invention provides a flame sensor test device 0 (hereinafter referred to as a "flame sensor device") and method. As described above, when a flame is present in a heat-reducing reactor, a flame sensor can receive radiation generated by a flame (hereinafter referred to as "flame radiation"). The presence of flame radiation diverging from the interior of the thermal reactor can indicate the presence of the flame therein, and the flame sensor can return the flame-activated state to a controller. In order for the flame sensor to fail in a flame-off state and to continuously report a flame-activated state, the flame sensor device of the present invention may include a damper operable by a controller to be used or Integrity (sometimes referred to below as "error two devices, therefore, during the actual flame start state, this blocker can be turned off to prevent flame radiation from reaching the flame sensor. When the blocker is off, the controller should be' A flame is received by the flame sensor, and the signal is closed. If the controller receives the flame-off signal during the test, the controller can determine that the flame sensor is properly operated. If the controller receives a flame-start signal from the flame sensor but the blocker is off, the controller can determine that the flame sensor is imperfect and stop the thermal reaction chamber. The controller can use blocking n The flame sensor is tested during startup of the heat reduction reactor and during normal operation of its 200933093. The controller can use the above procedure to be used during both startup processes

❹ 不同啟動階段測試火焰感測器。在第一階段中,導引階 段’ -旦火焰感測器已則貞測到誘導火焰,此控制器可 測試火焰感測器。在這個階段,^控制器判斷火焰感測 器為故障’控制器可使熱減量反應器停止並中止啟動。 然而,若控制器判斷火焰感測器未故障,控制器可指示 燃料流人主燃燒ϋ㈣。在第二階段中,主燃燒^燃 階段,一旦火焰感測器偵測到主燃燒器火焰,此控制器 為錯誤測試火焰感測器。再次,若火焰感測器回報至控 制器為該火焰感測器偵測出一火焰,但阻斷器為關閉: 則控制器可判斷出火焰感測器為故障,且控制器使熱減 量反應器停止並中止啟動。若另—方面控制器㈣火焰 感測器未故障,控制器可繼續指示燃料流入至主燃燒器 噴嘴。控制器可在整個熱減量反應器的操作期間執行火 焰感測器週期錯誤測試。 第1圖繪示具有一熱反應單元102及一下驟冷室ι〇5 的通用熱減量反應器100。熱反應單元102可包括定義 熱反應室115的熱反應器壁11〇,及一入口轉接器12〇, 其包括一頂平板125、至少一廢料流入口 13〇、_燃料入 口 135、一燃燒器噴嘴14〇、一導燃器145、及氡化劑入 口 150之每一者。在一實施例中,熱反應器壁11〇可由 網狀陶瓷材料製成,如摻雜氧化釔的氧化鋁,雖然也可 使用其他材料。在某些實施例中,使用的燃料可包括天 8 200933093 然氣、氫、甲烷或任何其他適合的燃料源。 小錢作中,廢料流可由提供於人口轉接H 12G中的至 廢料机入口 130進入熱反應腔室ιΐ5,及燃料或燃 料/氧化劑混合物可由至少—燃燒器喷嘴14〇進入熱反應 腔至115。此導燃n 145可包括一誘導火焰,其可用以 點火燃燒器喷嘴140㈣成燃燒器火焰,並產生熱反應 腔至115 ·溫度介於約50(rc至約2〇〇〇〇c範圍間。高溫可测试 Test the flame sensor at different start-up stages. In the first phase, the pilot stage has detected that the flame has been detected, and the controller can test the flame sensor. At this stage, the controller determines that the flame sensor is malfunctioning. The controller stops the thermal decrement reactor and aborts the start. However, if the controller determines that the flame sensor is not malfunctioning, the controller may instruct the fuel to flow to the main combustion chamber (4). In the second phase, during the main combustion phase, once the flame sensor detects the main burner flame, the controller tests the flame sensor incorrectly. Again, if the flame sensor returns to the controller to detect a flame for the flame sensor, but the blocker is off: the controller can determine that the flame sensor is faulty, and the controller causes the heat reduction reaction The device stops and aborts the start. If the other aspect controller (4) flame sensor is not faulty, the controller can continue to indicate fuel flow to the main burner nozzle. The controller can perform a flame sensor cycle error test during operation of the entire heat reduction reactor. Figure 1 shows a universal heat reduction reactor 100 having a thermal reaction unit 102 and a lower quench chamber ι〇5. The thermal reaction unit 102 can include a thermal reactor wall 11A defining a thermal reaction chamber 115, and an inlet adapter 12A including a top plate 125, at least one waste stream inlet 13A, a fuel inlet 135, and a combustion Each of the nozzles 14A, a pilot burner 145, and a sulphurizer inlet 150. In one embodiment, the thermal reactor wall 11 can be made of a reticulated ceramic material, such as yttria-doped alumina, although other materials can be used. In certain embodiments, the fuel used may include day 8, 200933093 gas, hydrogen, methane or any other suitable fuel source. In the case of a small amount of money, the waste stream may be passed to the waste machine inlet 130 provided in the population transfer H 12G into the thermal reaction chamber ι 5, and the fuel or fuel/oxidant mixture may be passed from at least the burner nozzle 14 into the thermal reaction chamber to 115. The pilot n 145 can include an induced flame that can be used to ignite the burner nozzle 140 (four) into a burner flame and to generate a thermal reaction chamber to 115. The temperature is between about 50 (rc to about 2 〇〇〇〇 c). High temperature

促進進入熱反應腔1115的包含於廢料流中污染物的分 解 。 在接著分解/燃燒後,排出物氣體可通至下室105,其 中使用一水簾幕(未繪示)以冷卻下室的壁並抑止顆粒物 質沈積於其上。在水簾幕的更下游,可在下室105内設 置一水喷霧(未繪示)以冷卻氣體流並移除顆粒物質及水 溶性或反應氣體。通過腔室的氣體可釋放至大氣或,可 替代地被導引至額外的處理單元包括,但不限制為液體/ 液體洗蘇、物理及/或化學吸附、冷卻袋、靜電沉殿器、 旋風器及/或任何其他適合的處理單元。 第2圖圖示的概略圖本發明火焰感測器裝置200,其 可與一火焰加熱熱減量單元或反應腔室如減量單元丨〇〇 使用。輻射導管204可設置於通過入口轉接器120之頂 平板125’且輻射導管204的底端可位於熱反應腔室115 内且輻射導管204可適於接收導燃器及/或主燃燒器火焰 之火焰輻射,及傳導火焰輻射至火焰感測器206。在某 些實施例中,輻射導管204可與熱反應腔室11 5流體相 200933093 通。淨化氣體’如在淨化氣體入口 208導入’可持續向 下流至輕射導管204以減少顆粒集結與在導管及/或導管 底端中回擴散。淨化氣體可以是清潔的乾空氣(CDA)、 空氣、氧、氮、氬、或任何惰性氣體。熟於此技術領域 人士可瞭解本文所描述的火焰感測器裝置之結構及構造 可輕易由任何需要感測火焰的系統修飾而得。 火焰感測器206可設置於經輻射導管204與熱反應室 φ 輕射相通。如本文中定義,,,輻射相通,,代表來自熱反應 室的火焰輻射可被火焰感測器偵測到。火焰感測器可密 閉密封並具機械彈性且可包括一具石英或藍寶石透鏡之 輻射小室、一具灯電源供應器之灯及一偵測器組成件。 此透鏡將偵測器自熱反應器氛圍中隔離。可使用任何適 合的火焰感測器。在某些實施例中,一火焰感測器的光 譜範圍對.應於紫外線範圍且可介於約1 〇 nm至約400 nm 的範圍間’而在其他實施例中可介於約190 nm至約320 ❿ nm的範圍間。熟於是項技術人士可瞭解火焰感測器可依 在熱反應器中使用的燃料而使用不同的光譜範圍。例 如,當燃料是天然氣時,其有關的發散為OH*發現,其 相當於 λ =309 nm (參見 Timmerman,B. Η.、 Bryanston-Cross,P. J.、Dunkley,P.著之 The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines , Cambridge,UK,2002年9月,第1-7頁)。適合的火焰 感測器範例可以是Kromschroder公司(美國俄亥俄州胡 10 200933093 森市)製造的UVS 6。 ❹ ❹ 火焰感測器裝置200可包括阻斷器21 0,其可設置並 適於致動阻斷器210以選擇性地經由自熱反應室115内 部收到的火焰輻射而阻絕火焰感測器2〇6。此阻斷器可 致能一控制器21 2以判斷火焰感測器2〇6是否正確地運 作。控制器2 12可經由信號接線2 14連接至火焰感測器 及/或經由信號接線216連接至阻斷器21〇。信號接線 214、216以虛線表示。應瞭解”自熱反應室115内部收到 的火焰輻射而阻絕火焰感測器”一詞在本文中的解釋包 括"顯著減少由熱反應室内部之經火焰感測器接收之火 焰輻射量"。因此,即使一阻斷器21〇不能完全阻絕火焰 輻射到達火趋感測器,若當阻斷器在關閉位置時到達火 焰感測器之輻射不足以引起火焰感測器適當的操作以指 示一火焰·啟動狀態,則阻絕的輻射量可視為充分。 第3A及3B圖為繪示一阻斷器組合21〇的代表圖,在 開啟(第3AW)及關閉(第祀圖)位置。參考第从圖,宜 繪示該阻斷器組成㈣阻斷器21()在開啟位置,此阻斷 器組合件210可包括火焰輻射阻絕裝置302,其可適於 在外殼304内移動。外殼3〇4可以是任何外殼,直中火 焰輻射阻絕裝置302可移動 " J移勖入或出一位置以由熱反應 内部阻絕火焰輻射到達火焰感 心 , 饮j器206。在某些實施例 中,外殼304可為一形成+车 夺氏 成十子形以與火焰輻射導管204 乂叉的V s 。此火焰輻 * 302可以是活塞、- 往塞、一平板、或任何谪 、於由熱反應室内部阻絕火焰輻 200933093 射到達火焰感測器206的形狀及尺寸之主體。阻斷器組 合裝置210可更包括一阻斷器致動器3〇6,其可經連接 器308連接至火焰輻射阻絕裝置3〇2。在某些實施例中, 致動器306可適於在外殼304内以一往復運動前後移動 火焰輻射阻絕裝置302,如以雙箭頭標示(第3A圖),故 火焰輻射阻絕裝置302可替換的阻絕及開啟輻射導管 2〇4。因此,致動器3〇6可以是氣壓缸、液壓缸、一電磁、 0 步進馬達、伺服馬達、或任何可移動輻射阻絕裝置在入 及出的位置之作動裝置,在該位置可使輻射遮蔽裝置 可由熱反應室内部阻絕火焰輻射到達火焰感測器2〇6。 當輻射導管204被火焰輻射阻絕裝置3〇2阻絕時,火焰 感測器206不能接收到熱反應腔室(未繪示)内部的火焰 輻射。然而,當輻射導管2〇4未被火焰輻射阻絕裝置3〇2 阻絕時,火焰感測器206可接收到熱反應腔室(未繪示) 内部的火焰輻射。第3B圖繪示阻斷器組合21〇位於關閉 ❿ 位置。 在某些實施例中,阻斷器可包括一可用以判斷阻斷器 位置之裝置,故一控制器可判斷當火焰感測器應通報為 一火焰-關閉狀態,及當火焰感測器應通報為火焰_開啟 狀悉。例如,參照第3A及3B圖,可設置一微開關3 ι〇, 故田阻斷器2 1 〇為位於阻絕輻射導管2〇4(第3B圖)時, 信號可以從微開關310送到控制器212以顯示輻射導管 204被阻絕。控制器212可接著預期從感測器接收 到火焰-關閉狀態信號。反之,當阻斷器2 1 0位於一不 12 200933093 阻絕輻射導管204的位置時(第3八圖),微開關3i"送 出一信號至控制器212以顯示輻射導f 2()4並未阻絕。 控制器212可接著預期從感測器2〇6接收到—火焰-開啟 狀態信號。任何適合的開關或裝置可用來偵測阻斷器 2 1 0的位置。 〇The decomposition of contaminants contained in the waste stream entering the thermal reaction chamber 1115 is promoted. After subsequent decomposition/combustion, the effluent gas can pass to the lower chamber 105 where a water curtain (not shown) is used to cool the walls of the lower chamber and to inhibit particulate matter from depositing thereon. Further downstream of the water curtain, a water spray (not shown) may be placed in the lower chamber 105 to cool the gas stream and remove particulate matter and water soluble or reactive gases. The gas passing through the chamber can be released to the atmosphere or alternatively can be directed to additional processing units including, but not limited to, liquid/liquid scrubbing, physical and/or chemical adsorption, cooling bags, electrostatic sinks, cyclones And/or any other suitable processing unit. Fig. 2 is a schematic view of the flame sensor device 200 of the present invention, which can be used with a flame heating heat reduction unit or a reaction chamber such as a reduction unit. The radiation conduit 204 can be disposed through the top plate 125' of the inlet adapter 120 and the bottom end of the radiation conduit 204 can be located within the thermal reaction chamber 115 and the radiation conduit 204 can be adapted to receive a pilot burner and/or a main burner flame The flame radiation and the conducted flame are radiated to the flame sensor 206. In some embodiments, the radiation conduit 204 can be in fluid phase with the thermal reaction chamber 11 5 200933093. The purge gas' as introduced at the purge gas inlet 208' can continue to flow down to the light tunnel conduit 204 to reduce particle buildup and back diffusion in the conduit and/or conduit bottom end. The purge gas can be clean dry air (CDA), air, oxygen, nitrogen, argon, or any inert gas. Those skilled in the art will appreciate that the structure and construction of the flame sensor device described herein can be readily modified by any system that requires sensing of the flame. The flame sensor 206 can be disposed in direct communication with the thermal reaction chamber φ via the radiation conduit 204. As defined herein, the radiation communication, representative of the flame radiation from the thermal reaction chamber, can be detected by the flame sensor. The flame sensor can be hermetically sealed and mechanically resilient and can include a radiant chamber with a quartz or sapphire lens, a lamp power supply lamp, and a detector component. This lens isolates the detector from the atmosphere of the thermal reactor. Any suitable flame sensor can be used. In some embodiments, the spectral range of a flame sensor is in the ultraviolet range and may range from about 1 〇 nm to about 400 nm', and in other embodiments may be between about 190 nm. Between approximately 320 ❿ nm. Those skilled in the art will appreciate that the flame sensor can use different spectral ranges depending on the fuel used in the thermal reactor. For example, when the fuel is natural gas, its associated divergence is found as OH*, which is equivalent to λ = 309 nm (see Timmerman, B. Η., Bryanston-Cross, PJ, Dunkley, P. The 16th Symposium on Measuring) Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, Cambridge, UK, September 2002, pp. 1-7). An example of a suitable flame sensor would be UVS 6 manufactured by Kromschroder, Inc. (Huon 10 200933093, Ohio, USA).火焰 火焰 Flame sensor device 200 can include a blocker 210 that can be configured and adapted to actuate blocker 210 to selectively block flame sensors via flame radiation received within autothermal reaction chamber 115. 2〇6. This blocker can enable a controller 21 2 to determine if the flame sensor 2 〇 6 is operating properly. Controller 2 12 can be coupled to the flame sensor via signal wiring 2 14 and/or to blocker 21A via signal wiring 216. Signal wirings 214, 216 are indicated by dashed lines. It should be understood that the term "insulation of flame radiation received inside the autothermal reaction chamber 115 to block the flame sensor" includes "significantly reducing the amount of flame radiation received by the flame sensor inside the thermal reaction chamber"; Therefore, even if a blocker 21 does not completely prevent the flame radiation from reaching the fire sensor, if the blocker reaches the flame sensor when the blocker is in the off position, the radiation is insufficient to cause the flame sensor to operate properly to indicate a In the flame/starting state, the amount of radiation that is blocked can be considered sufficient. Figures 3A and 3B are representative views of a blocker combination 21A, in the open (3AW) and closed (Fig.) positions. Referring to the drawings, it is preferred that the blocker component (4) blocker 21 () is in an open position, and the blocker assembly 210 can include a flame radiation blocking device 302 that can be adapted to move within the outer casing 304. The outer casing 3〇4 can be any outer casing, and the direct flame radiation blocking device 302 can be moved <J moved into or out of a position to block the flame radiation from the thermal reaction to reach the flame sense, and drink the device 206. In some embodiments, the outer casing 304 can be a V s that forms a car shape to be entangled with the flame radiation conduit 204. The flame spokes * 302 may be a piston, a plug, a flat plate, or any body that blocks the shape and size of the flame sensor 206 from the interior of the thermal reaction chamber. The blocker assembly 210 can further include a blocker actuator 3〇6 that can be coupled to the flame radiation blocking device 3〇2 via connector 308. In some embodiments, the actuator 306 can be adapted to move the flame radiation blocking device 302 back and forth within the housing 304 in a reciprocating motion, as indicated by the double arrow (FIG. 3A), so the flame radiation blocking device 302 can be replaced. Block and open the radiation conduit 2〇4. Therefore, the actuator 3〇6 can be a pneumatic cylinder, a hydraulic cylinder, an electromagnetic, a 0 stepping motor, a servo motor, or an actuating device of any movable radiation blocking device in and out of the position, in which the radiation can be made The shielding device can block the flame radiation from the inside of the thermal reaction chamber to reach the flame sensor 2〇6. When the radiation conduit 204 is blocked by the flame radiation blocking device 3〇2, the flame sensor 206 cannot receive the flame radiation inside the thermal reaction chamber (not shown). However, when the radiation conduit 2〇4 is not blocked by the flame radiation blocking device 3〇2, the flame sensor 206 can receive flame radiation inside the thermal reaction chamber (not shown). Figure 3B shows the blocker combination 21〇 in the closed ❿ position. In some embodiments, the blocker can include a device that can be used to determine the position of the blocker, so a controller can determine when the flame sensor should be notified of a flame-off state, and when the flame sensor should The notification is for the flame _ open. For example, referring to Figures 3A and 3B, a microswitch 3 ι〇 can be provided, and when the field blocker 2 1 位于 is located in the blocking radiation conduit 2〇4 (Fig. 3B), the signal can be sent from the microswitch 310 to the control. The device 212 is blocked by the display radiation conduit 204. Controller 212 can then expect to receive a flame-off state signal from the sensor. Conversely, when the blocker 2 1 0 is located at a position of the non-12 200933093 blocking radiation conduit 204 (Fig. 3A), the microswitch 3i" sends a signal to the controller 212 to display the radiation guide f 2() 4 Blocked. Controller 212 may then expect to receive a -flame-on state signal from sensor 2A6. Any suitable switch or device can be used to detect the position of the blocker 210. 〇

此阻斷器組合210也可包括一淨化氣體埠3丨丨,經此 埠可引導一淨化氣體進入外殼3〇4及火焰輻射導管 Γ1。如上所冑,淨化氣體可以是清潔的乾空氣(cda)、 空氣、氧、氮、氬、或任何惰性氣體。淨化氣體可連續 地流動。輻射遮蔽裝置3〇2可適於允許淨化氣體流入介 於其及外# 304 Ffl,故即使當輻射遮蔽裝置3〇2為在阻 絕位置,淨化氣體可進入輻射特2〇4。、淨化氣體可幫 忙預防或延遲轄射導管204的阻塞’該淨化氣體可延伸 入熱反應腔室115(第2圖)。 在其他實施例中,參閱第3C圖,致動器3〇6可適於旋 轉-輻射阻絕裝置302。在這些實施例中,輻射阻絕裝 置302可以是具有至少一火焰輻射阻絕及/或通道區域之 碟形主體。如本文所使用’ 一通道區域為火焰輻射阻絕 裝置302的一部份,其未阻絕火焰輻射到達火焰感測器 其阻絕火焰輻射到達火焰感測器206。因此,在第3C圖, 每-區域3i2、3i4、316、及/或318可為一阻絕區域或 通道區域’只要具有至少一阻絕區域及至少一通道區 域。此外,雖然以四個相等大小管形狀區域說明,應瞭 13 200933093The blocker assembly 210 can also include a purge gas 埠3丨丨 through which a purge gas can be directed into the outer casing 3〇4 and the flame radiation conduit Γ1. As noted above, the purge gas can be clean dry air (cda), air, oxygen, nitrogen, argon, or any inert gas. The purge gas can flow continuously. The radiation shielding device 3〇2 can be adapted to allow the purge gas to flow in and out of it, so that even when the radiation shielding device 3〇2 is in the blocking position, the purge gas can enter the radiation. The purge gas can help prevent or delay the blockage of the radiant conduit 204. The purge gas can extend into the thermal reaction chamber 115 (Fig. 2). In other embodiments, referring to Figure 3C, the actuator 3〇6 can be adapted for the rotary-radiation blocking device 302. In these embodiments, the radiation blocking device 302 can be a dished body having at least one flame radiation blocking and/or channel region. As used herein, a channel region is part of a flame radiation blocking device 302 that does not block flame radiation from reaching the flame sensor and blocks flame radiation from reaching the flame sensor 206. Thus, in Figure 3C, each of the regions 3i2, 3i4, 316, and/or 318 can be a resistive region or channel region' as long as it has at least one resistive region and at least one channel region. In addition, although illustrated by four equal-sized tube shape regions, it should be 13 200933093

解其可具有為任何形狀及不同尺寸的2、3、5、6、7、 或更多區域。當阻絕區域介於火焰感測器2〇6及熱反應 腔室U 5之間’則阻斷器可稱為關閉。另一方面,當通 道區域介於火焰感測器2〇6及熱反應腔室ιι5之間,則 阻斷器可稱為開啟。此外,雖然繪示於第3 C圖的火焰輻 射阻絕裝置302為圓形,可瞭解該裝置可以是任何形 狀,如,例如,三角形、正方形、矩形等。繪示於第3CIt can be solved in 2, 3, 5, 6, 7, or more regions of any shape and size. When the blocking region is between the flame sensor 2〇6 and the thermal reaction chamber U5, the blocker can be referred to as a shutdown. On the other hand, when the channel area is between the flame sensor 2〇6 and the thermal reaction chamber ιι, the blocker can be referred to as open. Further, although the flame radiation blocking device 302 illustrated in Fig. 3C is circular, it is understood that the device may be of any shape such as, for example, a triangle, a square, a rectangle, or the like. Painted in the 3C

圖的火焰輻射阻絕裝置3〇2也可具有外緣32〇,其可提 供裝置的剛性及平衡。 在這些實施例中,致動器306為適於轉動一輻射阻絕 裝置302 ’如繪示於第3c圖,致動器3〇6可以是馬達、 步進馬達、或伺服馬達或任何其他可在減量環境中轉動 輻射阻絕裝置3 〇2的裝置。旋轉軸可以平行於輻射導管 2〇4。若致動器3〇6為一步進馬達或一伺服馬達,則其可 適於送出一信號至控制器212以指示當輻射導管2〇4由 輻射阻絕裝置302阻絕。若致動器306不能送出此一信The flame radiation blocking device 3〇2 of the figure may also have an outer edge 32〇 which provides rigidity and balance of the device. In these embodiments, the actuator 306 is adapted to rotate a radiation blocking device 302' as shown in Figure 3c, and the actuator 3〇6 can be a motor, a stepper motor, or a servo motor or any other A device for rotating the radiation blocking device 3 〇 2 in a reduced environment. The axis of rotation can be parallel to the radiation conduit 2〇4. If the actuator 3〇6 is a stepper motor or a servomotor, it can be adapted to send a signal to the controller 212 to indicate that the radiation conduit 2〇4 is blocked by the radiation blocking device 302. If the actuator 306 cannot send this letter

號至控制器212’則可使用—微開關31〇(如繪示於第3A 圖)或其他可判定輻射阻絕裝置3〇2的位置並送出一信號 至控制器212之裝置。 回到第2圖,阻斷器組合210可使控制器2 1 2測試火 感測器206的操作及/或整合性。如上述討論,對於火 焰感測器206’其可偵測火焰輻射並提供—火焰-啟動指 示至控制器212,其可 停止收到火焰輻射時, 能失效而在即使火焰感測器206 仍將持續提供火焰·啟動指示至控 14 200933093 制器212»此錯誤可造成一危除的情況。The number to controller 212' may use a microswitch 31 (as shown in Figure 3A) or other device that determines the position of the radiation blocking device 3〇2 and sends a signal to the controller 212. Returning to Figure 2, the blocker combination 210 allows the controller 2 1 2 to test the operation and/or integration of the fire sensor 206. As discussed above, for the flame sensor 206' it can detect flame radiation and provide a -flame-start indication to the controller 212, which can cease to receive flame radiation and can fail even though the flame sensor 206 will still Continue to provide flame · start indication to control 14 200933093 Maker 212» This error can cause a dangerous situation.

為了避免及/或造成此一危除的情況,控制器212可執 行火焰感測器的-次性測試。因此,㈣器可指示阻斷 器2U)關閉’藉此阻絕自火焰感測器寫收到熱反應室 115内部的火焰輻射。若如預期的,在阻絕期間,火焰 感測器206回報控制胃212為火焰·關閉狀態,接著火焰 感測器可適當運作,且控❹212可繼續操作熱反應 室。另一方面,若在阻絕期間火焰感測器2〇6回報控制 器212為火焰_開啟狀態’接著控制器可判斷火焰感測器 為故障(如,失效)。控制器212可接著使熱反應室停機。 在一可替代實施例中,取代由控制器2 12指示阻斷器 210關閉,阻斷g 210自動週期地操作開啟及關閉。在 這些實施例中,控制器可接收信號(如來自微開關、步進 馬達、及/或伺服馬達等)’其顯示阻斷器為關閉或阻斷 器為開啟。當接收到此一信號,控制器可預期在阻斷器 210為在開啟位置時從火焰感測器2〇6接收一火焰-啟動 化號,且可預期在阻斷器2 1 〇為在關閉位置時從火焰感 測器206接收火焰-關閉信號。在某些實施例中,火焰感 測器206可每分鐘或每小時故障測試數次。 關閉阻斷器/開啟阻斷器週期的期待時序或時程易於 由熟於是項技術人士選擇。例如,該阻斷器可在相等的 交替期間或不相等的交替期間開啟及關閉,且開啟期間 可比關閉期間長,或反之亦然。因此,相等的交替期間 可各自介於約1秒及約60秒或更多,介於約2秒及約 15 200933093 枚,或介於約3秒及約 期間的實施例中,關閉期間可介在開啟期間長於闕閉 介於3及約5秒長或約 、及约ί0秒長,或約 ^ t ’且開啟期間可A Μ 間之約2至約20倍,或約 〕了為關閉期 於關閉期間的實施例中 、、倍。在開啟期間短 長,或約介於3及約:秒:啟=…及… 可為開啟期間之約2及約心,、或#4長’且關閉期間 ❹ φ 往復輻射阻絕裝置的情;…力i約10倍。在 在—適杏門陪孩“兄令该開啟及關閉期間可藉由 署而. 嗯裝置至—阻絕或一非阻絕位 置而產生。在轉動輻射阻 由選擇一、ϋ + 裝置的例子_,該期間可藉 =^之阻絕及通道區域尺寸、與旋轉速度而產 在某些實施例中,可程式化控制器212以在當阻斷器 210為開啟時,若抻也丨„辦器 二制裔212未收到感測器206之火焰· 開啟狀態信號時可觸發警示器或將減量反應室停工。此 外可程式化控制器212以在當阻斷器W為關閉時, 若控制器212收至I丨咸、、目,丨$ λ» λ / j α測窃206之火焰-開啟狀態信號時可 觸發警示器或將減量反應室停卫。應瞭解熱反應腔室停 機可匕括關閉燃料流至箱(爪⑹)及/或導燃器。 在某些A施例中,控制器212可適於由火焰感測器2〇6 接收一仏號及基於信號而修飾熱減量反應器之操作參 數控制器212可適於修飾的操作參數可包括燃燒器燃 料流-引燃料流、氧化劑流、及排出物流的至少一者。 修飾的參數可包括停止燃料、氧化劑及/或排出物的流 16 200933093 入0 第4圖為一說明本發明用於啟動熱減量單元的方法 400之流程圖。啟動方法400在步驟402開始,其點燃 誘導火焰。誘導火焰的點燃可由控制器指示,如繪於第 2圖的控制器21 2。在步驟404,使用一火焰感測器偵測 誘導火焰是否已經成功地點然。若火焰感測器不能偵測 到誘導火焰,此方法在步驟406停止且中止啟動。若在 步驟404中,火焰感測器偵測到誘導火焰,啟動方法4〇〇 ❹ 進行步驟408,其中故障測試該火焰感測器。本發明之 火焰感測器裝置可用來故障測試火焰感測器。參照第2 圖,阻斷器210移動至關閉位置,其阻絕火焰輻射到達 火焰感測器206。若火焰感測器206送出一火焰_啟動信 號至控制器212,當阻斷器210位於關閉位置,則控制 器212判斷火焰感測器206故障,故方法400在步驟41〇 ^止且中止啟動。若火焰感測器206送出一火焰》關閉_ © 號至控制器212,同時阻斷器210為在關閉位置,控制 器212判斷火焰感測器為運作正常。方法4〇〇進行至步 驟412,其中點燃一燃燒器火焰。燃燒器火焰的點燃可 由控制器212指示且可包括將燃料流入燃燒器噴嘴 140,其中燃料由誘導火焰點燃。在一選擇性步驟(未繪 示)中,誘導火焰可在接著點燃燃燒器火焰後熄滅。方法 4〇〇進行至步驟414’其中使用火焰感測器2〇6偵測燃燒 益火焰。若火焰感測器施在步驟414中沒有债測到燃 燒器火焰,方法在步驟416終止且中止啟動。若火焰感 17 200933093 測益2 0 6在步驟4 1 d rb a 14中偵測到燃燒器火焰,方法進行至 步驟 418,Φ 丛 Jr*. % 八故障測试火焰感測器206。在步驟418期 /進订故障測試可為相同於在步驟彻期間進行之故障 測忒’除了在步驟418 ’阻斷器210由主燃燒器火焰阻 、’、ϋ輻射類似於步驟408,若火焰感測器2〇6送出 火焰啟動<5號至控制@ 2 i 2,但阻斷器2上〇在關閉位 置則控制n 212判斷火焰感測器2G6為故障,及方法 〇 400進仃至步驟42〇且減量反應器停機。若火焰感測器 2〇6送出一火焰-關閉信號至控制器212,但阻斷器210 為在關閉位置,則控制器2 12判斷火焰感測器206為運 作正常。方法400在步驟422終止,其完成啟動。 在一可替代實施例中,可省略步驟4〇8、41〇。在此實 施例中,右火焰感測器在步驟4〇4中偵測到誘導火焰, 方法400由步驟4〇4進行至步驟412。在另一可替代實 施例中,可省略步驟418、42〇β在此實施例中,若火焰 © 感測器在步驟414中偵測到燃燒器火焰,方法4〇〇直接 由步驟414進行至步驟422。在另一可替代實施例,步 驟402可先進行在誘導火焰的點燃前測試火焰感測器的 步驟(未繪示)。在此實施例中,使用火焰感測器2〇6在 還未開始之減量反應器内偵測火焰。若控制器212在誘 導火焰點燃前,從火焰感測器2〇6接收到一火焰_啟動信 號,則控制器212判斷火焰感測器206為故障且中止啟 動。另一方面,若控制器212沒有從火焰感測器2〇6接 收到一火焰-啟動信號’則方法400進行至步驟402,其 200933093 點燃該誘導火焰。 第5圖為說明本發明用於操作一熱減量反應器的方法 之流程圖。方法500由步驟502開始,其操作熱減 量:應器且主燃燒器喷嘴產生主燃燒器火焰。方法_ 、行至步驟5G4 ’使用—火焰感測器則貞測主燃燒器火 焰。若未谓測到主燃燒器火焰,接著方法進行至步驟 5〇6,其中該減量單元僖 _ , ^ _ 里早兀V機。若在步驟5〇4,火焰感測器 ❹ 偵測到燃燒器火焰,接著方法5〇〇進行至步驟5〇8,關 閉本發明之_器裝置以由域燒器火焰阻絕火焰輻射 到達火焰感測器。在步驟51"控制器判斷火焰感測器 疋否田阻斷器為關閉時提供一錯誤火焰-啟動指示。若火 焰感測器在阻斷器為關閉時提供一錯誤火焰-啟動指 丁則方法5 00進行至步驟512,其中該減量單元停機。 若控制器判斷在阻斷器為關閉時未提供—錯誤火焰-啟 動指示方法500進行至步驟514,其中該阻斷器開啟。 在步驟5 14期間,阻斷器可依任何預期的時間週期維持 開啟位置。方丨500迴路至步驟5〇8,,其中該阻斷器 關閉,及進行如上所诚。士、+ c Λ Λ _丄上 过·方法5〇〇可使熱減量反應室操 作但火焰感測器週期地進行故障測試。在方法500中, 控制器可命令阻斷器的開啟及關閉,或阻斷器開啟及關 閉可為自動及週期的。 前述描述僅揭露本發明之例示實施例。屬於本發明技 術範壽之⑴述揭露之裝置及方法的修飾對熟於此項技術 人士而言為顯見的。 19 200933093 因此’雖然本發明已由其範例之實施例揭露,但應瞭 解在屬於本發明之技術思想及範疇内之其他實施例,如 後附申請專利範圍之界定。 【圖式簡單說明】 第1圖為通用熱減量反應器的示意圖。 第2圖為本發明之火焰感測器襞置的示意圖。 〇 第3A圖為本發明阻斷器組合於開啟狀態的示意圖。 第3B圖為本發明阻斷器組合於關閉狀態的示意圖。 第3C圖為本發明之火焰輕射阻絕裝置的示意圖。 第4圖為說明本發明用於啟動一熱減量單元之方法的 流程圖° 第5圖為說明本發明用於操作熱減量單元之方法 程圖。 、仏 ® 【主要元件符號說明】 1〇〇 熱減量反應器 102 熱反應單元 105 下驟冷室 110 熱反應器壁 115 熱反應室 120 入口轉接器 125 頂平板 20 200933093 130 廢料流入口 135 燃料入口 140 燃燒器喷嘴 145 導燃器 150 氧化劑入口 200 火焰感測器裝置 204 輻射導管 206 火焰感測器 ❹ 208 淨化氣體入口 210 阻斷器 212 控制器 2 1 4、2 1 6信號接線 302 火焰輻射阻絕裝置 304 外殼 306 阻斷器致動器 ❿ 308 連接器 310 微開關 311 淨化氣體埠 312、314、316、318 阻絕區域 400 方法 402 點燃誘導火焰 404 火焰感測器偵測誘導火焰? 406 中止啟動 408 火焰感測器提供錯誤火焰啟動顯示? 21 200933093 410 中止啟動。 4 1 2燃燒器火焰 414火焰感測器偵測燃燒器火焰? 416 中止啟動 4 1 8火焰感測器提供錯誤火焰啟動顯示? 420 減量反應器停機 422 完成啟動 500 方法 502 操作熱減量反應器及主燃燒器喷嘴點燃 504 火焰感測器以偵測主燃燒器火焰? 506 減量單元停機 508 關閉阻斷器 510 火焰感測器是否提供一錯誤火焰指示 512 減量單元停機 514 該阻斷器開啟 22To avoid and/or cause this dangerous situation, the controller 212 can perform a flame sensor-sub-test. Therefore, the (4) device can instruct the blocker 2U) to close 'by thereby blocking the flame radiation from the inside of the thermal reaction chamber 115 from the flame sensor. If desired, during the blockade, the flame sensor 206 reports control of the stomach 212 to a flame on state, then the flame sensor can function properly, and the control 212 can continue to operate the thermal reaction chamber. On the other hand, if the flame sensor 2 〇 6 returns the controller 212 to the flame_on state during the blocking, then the controller can judge that the flame sensor is malfunctioning (e.g., failure). Controller 212 can then shut down the thermal reaction chamber. In an alternate embodiment, instead of being instructed by controller 2 12 to block blocker 210, blocking g 210 automatically cycles on and off. In these embodiments, the controller can receive signals (e.g., from a microswitch, stepper motor, and/or servo motor, etc.)' that the display blocker is off or the blocker is on. Upon receipt of this signal, the controller can expect to receive a flame-starting number from the flame sensor 2〇6 when the blocker 210 is in the open position, and can be expected to be turned off at the blocker 2 1 The flame-off signal is received from the flame sensor 206 in position. In some embodiments, the flame sensor 206 can be tested several times per minute or every hour. The expected timing or timing of turning off the blocker/turn-on blocker cycle is easily selected by those skilled in the art. For example, the blocker can be turned on and off during equal alternation or unequal alternation, and the on period can be longer than the off period, or vice versa. Thus, equal alternation periods may each be between about 1 second and about 60 seconds or more, between about 2 seconds and about 15 200933093 pieces, or in embodiments where about 3 seconds and about, the closure period may be The opening period is longer than 3 and about 5 seconds long or about, and about ί0 seconds long, or about ^t' and the opening period can be about 2 to about 20 times of A, or about In the embodiment during the shutdown period, the time is doubled. Short during the opening period, or about 3 and about: seconds: start = ... and ... can be about 2 and about the heart during the opening period, or #4 long 'and the closing period ❹ φ reciprocating radiation blocking device; ... force i about 10 times. In the case of -Xing Xingmen accompanying children, the brothers can use the department during the opening and closing period. In this embodiment, the controller can be programmed to control the controller 212 so that when the blocker 210 is turned on, if the blocker 210 is turned on, the device can be used. When the patriarch 212 does not receive the flame on/off status signal of the sensor 206, it can trigger the warning device or shut down the reduced reaction chamber. In addition, the controller 212 can be programmed to control the flame-on state signal of the burglary 206 if the controller 212 is closed when the blocker W is off. Trigger the alarm or stop the reduction chamber. It should be understood that the thermal reaction chamber shutdown may include shutting off fuel flow to the tank (claw (6)) and/or the pilot burner. In some embodiments, the controller 212 can be adapted to receive an apostrophe from the flame sensor 2〇6 and modify the operational parameter controller 212 based on the signal to modify the thermal decrement reactor. The operational parameters that can be adapted for modification can include The combustor fuel stream - at least one of a pilot fuel stream, an oxidant stream, and a effluent stream. The modified parameters may include stopping the flow of fuel, oxidant, and/or effluent 16 200933093 into 0 Figure 4 is a flow chart illustrating a method 400 of the present invention for activating a heat reduction unit. The startup method 400 begins at step 402, which ignites the induced flame. The ignition of the induced flame can be indicated by the controller, as depicted in controller 21 2 of Figure 2. At step 404, a flame sensor is used to detect if the induced flame has been successfully located. If the flame sensor is unable to detect the induced flame, the method stops at step 406 and aborts the start. If, in step 404, the flame sensor detects the induced flame, the method 4 〇〇 启动 proceeds to step 408 where the flame sensor is tested for failure. The flame sensor device of the present invention can be used to fault test a flame sensor. Referring to Figure 2, the blocker 210 is moved to a closed position that blocks flame radiation from reaching the flame sensor 206. If the flame sensor 206 sends a flame_start signal to the controller 212, when the blocker 210 is in the closed position, the controller 212 determines that the flame sensor 206 is faulty, so the method 400 stops at step 41 and aborts the start. . If the flame sensor 206 sends a flame "off"__ sign to the controller 212 and the blocker 210 is in the off position, the controller 212 determines that the flame sensor is functioning properly. Method 4 proceeds to step 412 where a burner flame is ignited. Ignition of the burner flame can be indicated by controller 212 and can include flowing fuel into combustor nozzle 140 where the fuel is ignited by an induced flame. In an optional step (not shown), the induced flame can be extinguished after the burner flame is subsequently ignited. Method 4 proceeds to step 414' where the flame detector 2〇6 is used to detect the combustion benefit flame. If the flame sensor does not have a fuel flame detected in step 414, the method terminates at step 416 and aborts the start. If the flame feels 17 200933093 The benefit 2 0 6 detects the burner flame in step 4 1 d rb a 14 , the method proceeds to step 418, Φ bundle Jr*. % eight fault test flame sensor 206. The step 418/subscribing fault test may be the same as the fault test performed during the step-by-step 'except in step 418 'the blocker 210 is blocked by the main burner flame, ', the ϋ radiation is similar to step 408, if the flame The sensor 2〇6 sends out the flame start <5 to control @ 2 i 2, but when the blocker 2 is in the closed position, the control n 212 determines that the flame sensor 2G6 is faulty, and the method 〇400 proceeds to Step 42 and the reactor is shut down. If the flame sensor 2〇6 sends a flame-off signal to the controller 212, but the blocker 210 is in the closed position, the controller 212 determines that the flame sensor 206 is operating normally. The method 400 terminates at step 422, which completes the startup. In an alternate embodiment, steps 4〇8, 41〇 may be omitted. In this embodiment, the right flame sensor detects an induced flame in step 4〇4, and the method 400 proceeds from step 4〇4 to step 412. In another alternative embodiment, steps 418, 42 〇 β may be omitted. In this embodiment, if the flame © sensor detects the burner flame in step 414, method 4 〇〇 proceeds directly from step 414 to Step 422. In another alternative embodiment, step 402 may first perform the step of testing the flame sensor (not shown) prior to inducing ignition of the flame. In this embodiment, a flame sensor 2〇6 is used to detect the flame in a decrementing reactor that has not yet begun. If the controller 212 receives a flame_start signal from the flame sensor 2〇6 before the induced flame ignites, the controller 212 determines that the flame sensor 206 is faulty and aborts the start. Alternatively, if controller 212 does not receive a flame-start signal from flame sensor 2A, then method 400 proceeds to step 402, which 200933093 ignites the induced flame. Figure 5 is a flow chart illustrating the process of the present invention for operating a heat-reducing reactor. The method 500 begins with a step 502 of operating a heat reduction: the main burner nozzle produces a main burner flame. Method _, go to step 5G4 ‘Use—The flame sensor measures the main burner flame. If the main burner flame is not detected, then the method proceeds to step 5〇6, where the decrementing unit 僖 _ , ^ _ is early in the V machine. If in step 5〇4, the flame sensor 侦测 detects the burner flame, and then the method 5〇〇 proceeds to step 5〇8, the apparatus of the present invention is turned off to block the flame radiation from the domain burner flame to reach the flame sensation. Detector. An error flame-start indication is provided in step 51 " the controller determines that the flame sensor is not closed. If the flame sensor provides an error flame when the blocker is off - the start finger then the method 5 00 proceeds to step 512 where the decrement unit is shut down. If the controller determines that the blocker is off when the blocker is off - the error flame-start indication method 500 proceeds to step 514 where the blocker is turned "on". During step 514, the blocker can maintain the open position for any desired period of time.丨500 loop to step 5〇8, where the blocker is turned off, and proceed as above.士, + c Λ Λ _ 丄 · 方法 Method 5 〇〇 allows the heat reduction reaction chamber to operate but the flame sensor periodically performs a fault test. In method 500, the controller can command the opening and closing of the blocker, or the blocker can be turned on and off automatically and periodically. The foregoing description discloses only illustrative embodiments of the invention. Modifications of the apparatus and method disclosed in (1) of the present invention are apparent to those skilled in the art. 19 200933093 Thus, while the invention has been described by way of example embodiments thereof, other embodiments of the invention are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a general heat reduction reactor. Figure 2 is a schematic view of the flame sensor arrangement of the present invention. 〇 Figure 3A is a schematic view showing the combination of the blocker of the present invention in an open state. Fig. 3B is a schematic view showing the combination of the blocker of the present invention in a closed state. Figure 3C is a schematic view of the flame light-blocking device of the present invention. Fig. 4 is a flow chart for explaining a method for starting a heat reduction unit of the present invention. Fig. 5 is a view showing a method for operating the heat reduction unit of the present invention.仏® [Main component symbol description] 1〇〇 Thermal reduction reactor 102 Thermal reaction unit 105 Lower quenching chamber 110 Thermal reactor wall 115 Thermal reaction chamber 120 Entrance adapter 125 Top plate 20 200933093 130 Waste inlet 135 Fuel Inlet 140 Burner Nozzle 145 Burner 150 Oxidizer Inlet 200 Flame Detector Device 204 Radiation Catheter 206 Flame Detector 208 Purified Gas Inlet 210 Blocker 212 Controller 2 1 4, 2 1 6 Signal Wiring 302 Flame Radiation Blocking device 304 Housing 306 Blocker actuator 308 308 Connector 310 Microswitch 311 Purging gas 埠 312, 314, 316, 318 Blocking zone 400 Method 402 Ignition induced flame 404 Flame sensor detects induced flame? 406 Aborted Startup 408 Does the Flame Sensor provide an error flame start display? 21 200933093 410 Aborted startup. 4 1 2 Burner Flame 414 Flame Sensor detects burner flame? 416 Aborted Start 4 1 8 Flame Sensor provides an error flame start display? 420 Reduced Reactor Shutdown 422 Completed Startup 500 Method 502 Operating the Heat Reduction Reactor and Main Burner Nozzle to ignite the 504 Flame Sensor to detect the main burner flame? 506 Reduce unit stop 508 Shut off blocker 510 Does the flame sensor provide an error flame indication 512 Reduce unit stop 514 The blocker opens 22

Claims (1)

200933093 七、申請專利範圍: 1. 一種與一火焰加熱之熱減量反應器使用的火焰感 測器裝置,包含: 一火焰感測器’其適於在該熱減量反應器中感測—火 焰;及 一阻斷器’其適於選擇性阻絕來自該火焰之輻射傳送 至該火焰感測器。 @ 2.如申請專利範圍第1項所述之火焰感測器,其中該 火焰為一誘導火焰。 3. 如申請專利範圍第1項所述之火焰感測器,其中該 火焰為一燃燒器火焰。 4. 如申請專利範圍第1項所述之火焰感測器,更包含 一阻斷器致動器。 5. 如申請專利範圍第4項所述之火焰感測器,其中該 阻斷益包含一火培輻射阻絕裝置,且該阻斷器致動器適 〇 於使該火焰輻射阻絕裝置產生一往復運動。 6. 如申請專利範圍第4項所述之火焰感測器,其中該 阻斷器包含一火焰輻射阻絕裝置,且該阻斷器致動器為 用於旋轉該火焰輻射阻絕裝置。 7·如申請專利^圍帛1項所述之火焰感測器,更包含 —控制器,1, /、遇於由該火焰感測器接收一信號及修飾該 火^加熱熱減量反應器的一操作參數。 •如申請專利範圍第7項所述之火焰感測器,其中該 操作參數包冬 3卜列一或多者:燃燒器燃料流、誘導燃料 23 200933093 流、氧化劑流、排出物流及警示聲音。 9.如申請專利範圍第〗項所述之火焰感測器’更包含 一火焰輻射導管。 I 〇·如申請專利範圍第1項所述之火焰感測器,更包含 一洗務器’其適於以—氣體洗滌該火焰輻射導管。 II ·如申請專利範圍第1 0項所述之火焰感測器,其中 該氣體為下列乾淨乾燥空氣之一或多者:空氣、氧、氮 及氩。200933093 VII. Patent Application Range: 1. A flame sensor device for use with a flame-heating heat-reducing reactor, comprising: a flame sensor adapted to sense a flame in the heat-reducing reactor; And a blocker' adapted to selectively block radiation from the flame from being transmitted to the flame sensor. The flame sensor of claim 1, wherein the flame is an induced flame. 3. The flame sensor of claim 1, wherein the flame is a burner flame. 4. The flame sensor of claim 1, further comprising a blocker actuator. 5. The flame sensor of claim 4, wherein the blocking benefit comprises a fire radiation blocking device, and the blocker actuator is adapted to cause the flame radiation blocking device to generate a reciprocating motion. 6. The flame sensor of claim 4, wherein the blocker comprises a flame radiation blocking device and the blocker actuator is for rotating the flame radiation blocking device. 7. The method as claimed in claim 1, wherein the flame sensor further comprises a controller, a signal received by the flame sensor and a modified heat-reducing heat reduction reactor. An operational parameter. • The flame sensor of claim 7, wherein the operating parameter comprises one or more of: a burner fuel stream, an inducing fuel 23 200933093 stream, an oxidant stream, an exhaust stream, and a warning sound. 9. The flame sensor as described in claim </ RTI> further comprises a flame radiation conduit. I. The flame sensor of claim 1, further comprising a washer adapted to scrub the flame radiation conduit with a gas. II. The flame sensor of claim 10, wherein the gas is one or more of the following clean dry air: air, oxygen, nitrogen, and argon. 12. —種啟動熱減量反應器的方法,包括下列步驟: a) 在熱減量反應器中點燃一誘導火焰; b) 以一火焰感測器偵測該誘導火焰; c) 阻絕來自該誘導火焰之火焰輻射傳送至該火焰感 測器;及 d)在步驟(c)中該火焰輻射的傳送被阻絕時,若該火焰 感測器顯示該火焰感測器偵測到一火焰,則停止燃料流 裏該誘導火焰。 13.如申請專利範圍第12項所述之方法,更包含下列 梦驟: 測出誘導火 更包含下列 e)若在步驟(b)中該火焰感測器未债 焰,則停止燃料流至該誘導火焰。 14.如申請專利範圍第12項所述之方法 梦驟: 0當在步驟c)中該火焰轄射的值、芝 钿耵的傳送破阻絕時,若該火 焰感測器末顯示該火焰感測器偵測到一怍 八艰,則在該熱 24 200933093 減量反應器中點燃一燃燒器火焰; g) 以該火焰感測器偵測該燃燒器火焰;及 h) 若在步驟(g)中,該火焰感測器未偵測出該燃燒器 火焰,則停止燃料流至該燃燒器火焰。 1 5.如申請專利範圍第14項所述之方法,更包含下列 步驟: l) 阻絕來自該燃燒器火焰之火焰輻射傳送至該火焰 感測器;及 j) 當在步驟⑴中火焰輻射的傳送被阻絕時,若該火焰 感測器顯示該火焰感測器偵測到該燃燒器火焰,則停止 燃料流至該燃燒器火焰。 16.如申請專利範圍第12項所述之方法,更包含下列 步驟: k) 使用一火焰感測器以偵測是否在點燃一誘導火焰 前~火焰存在於該熱減量反應器中; © 丨)若在步驟(k)中該火焰感測器未顯示該火焰感測器 偵剛到一火焰,則點燃該誘導火焰;及 m) 若在步驟(k)中該火焰感測器顯示該火焰感測器偵 測到--火焰,則中止啟動。 17 · —種操作熱減量反應器的方法,包含下列步驟: a) 點燃一燃燒器火焰; b) 以一火焰感測器偵測該燃燒器火焰; c) 若在步驟(b)中該火焰感測器未偵測出該燃燒器火 焰’則停止燃料流至該燃燒器火焰; 25 200933093 d) 阻絕來自該燃燒器火焰之火焰輻射傳送至該火焰 感測器;及 e) 當在步驟(d)中火焰輻射的傳送被阻絕時,若該火焰 感測器顯示該火焰感測器偵測到該燃燒器火焰,則停止 燃料流至該燃燒器火焰。 18.如申請專利範圍第17項所述之方法,其中上述阻 絕火焰輻射傳送的步驟更包含:使用一控制器以指示一 Ο 阻斷器阻、絕來自該㉟燒器火焰之輕射傳送至該火焰感測 器。 19.如申請專利範圍第17項所述之方法,其中上述阻 絕火焰輻射傳送的步驟更包含:移動一阻斷器以週期性 地阻絕來自該燃燒器火焰之該火焰輻射傳送至該火焰感12. A method of initiating a heat reduction reactor comprising the steps of: a) igniting an induced flame in a heat reduction reactor; b) detecting the induced flame with a flame sensor; c) resisting the induced flame The flame radiation is transmitted to the flame sensor; and d) when the transmission of the flame radiation is blocked in step (c), if the flame sensor indicates that the flame sensor detects a flame, the fuel is stopped The flow should induce a flame. 13. The method of claim 12, further comprising the following dreams: measuring the induced fire further comprises the following e) if the flame sensor is not flamed in step (b), stopping the fuel flow to The induced flame. 14. The method of claim 12, wherein when the value of the flame is ignited in step c), the transmission of the sputum is broken, if the flame sensor displays the flame. When the detector detects a difficult situation, a burner flame is ignited in the heat 24 200933093 decrement reactor; g) the burner flame is detected by the flame sensor; and h) if in step (g) If the flame sensor does not detect the burner flame, the fuel flow is stopped to the burner flame. 1 5. The method of claim 14, further comprising the steps of: l) blocking the transmission of flame radiation from the burner flame to the flame sensor; and j) when irradiating the flame in step (1) When the transmission is blocked, if the flame sensor indicates that the flame sensor detects the burner flame, the fuel flow is stopped to the burner flame. 16. The method of claim 12, further comprising the steps of: k) using a flame sensor to detect whether a flame is present in the heat reduction reactor prior to igniting an induced flame; © 丨And if the flame sensor does not indicate that the flame sensor detects a flame in step (k), igniting the induced flame; and m) if the flame sensor displays the flame in step (k) When the sensor detects the flame, it stops the start. 17 - A method of operating a heat reduction reactor comprising the steps of: a) igniting a burner flame; b) detecting the burner flame with a flame sensor; c) if the flame is in step (b) The sensor does not detect the burner flame' to stop the flow of fuel to the burner flame; 25 200933093 d) to block the transmission of flame radiation from the burner flame to the flame sensor; and e) when in the step ( d) When the transmission of the flame radiation is blocked, if the flame sensor indicates that the flame sensor detects the burner flame, the fuel flow is stopped to the burner flame. 18. The method of claim 17, wherein the step of resisting flame radiation transmission further comprises: using a controller to indicate a damper resistance, and transmitting light from the flame of the 35 burner to The flame sensor. 19. The method of claim 17, wherein the step of resisting flame radiation transmission further comprises: moving a blocker to periodically block the flame radiation from the burner flame from being transmitted to the flame sensation 20. 如申請專利範圍第19 器包含一火焰輻射阻絕裝置 —線性路徑上往復作動。 21. 如申請專利範圍第19 器包含一火焰輻射阻絕裝置 置。 項所述之方法’其中該阻斷 ’且該火焰輕射阻絕裝置在 項所述之方法,其中該阻斷 且旋轉該火焰輻射阻絕裝 2620. The device of claim 19 includes a flame-radiation blocking device that reciprocates in a linear path. 21. If the scope of the patent application is 19th, a flame radiation blocking device is included. The method of the present invention, wherein the blocking is performed and the flame light blocking device is in the method described, wherein the blocking and rotating the flame radiation blocking device 26
TW97141006A 2007-10-24 2008-10-24 Methods and apparatus for starting and operating a thermal abatement system TW200933093A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US98239107P 2007-10-24 2007-10-24
US98239307P 2007-10-24 2007-10-24

Publications (1)

Publication Number Publication Date
TW200933093A true TW200933093A (en) 2009-08-01

Family

ID=40580043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141006A TW200933093A (en) 2007-10-24 2008-10-24 Methods and apparatus for starting and operating a thermal abatement system

Country Status (2)

Country Link
TW (1) TW200933093A (en)
WO (1) WO2009055660A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299416A (en) * 1964-03-27 1967-01-17 Bailey Meter Co Fail-safe flame detector
US4280184A (en) * 1979-06-26 1981-07-21 Electronic Corporation Of America Burner flame detection
JP3255442B2 (en) * 1992-01-31 2002-02-12 横河電子機器株式会社 Flame detector
US7682574B2 (en) * 2004-11-18 2010-03-23 Applied Materials, Inc. Safety, monitoring and control features for thermal abatement reactor

Also Published As

Publication number Publication date
WO2009055660A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5692955B2 (en) Safety, monitoring and control mechanism of thermal abatement reactor
JP2008520435A5 (en)
US9387428B2 (en) Systems and methods for treating flammable effluent gases from manufacturing processes
US20070079972A1 (en) Manually activated, portable fire-extinguishing aerosol generator
JP2007171009A (en) Burning test device
JP2005529491A (en) System and method for high hydrogen concentration selective oxidation
US8095240B2 (en) Methods for starting and operating a thermal abatement system
JP2017101926A (en) Combustion test device and combustion test device operation method
TW200933093A (en) Methods and apparatus for starting and operating a thermal abatement system
US4973451A (en) Flame arresting conduit section, combustor and method
Vasiliev et al. Contemporary technologies of early detection of fire in space vehicles
JP2010032124A (en) Gas combustor
KR101410057B1 (en) Portable gas burner and method for contolling the same
KR101995361B1 (en) Gas supplying system equipped with seismic monitoring sensor
CN112050655B (en) Control method of automatic ignition and flame detection system of hydrogen chloride synthesis furnace
CN117781722A (en) Control method and system for automatic ignition and safety protection of heating furnace
JP2013007564A (en) Open type burning appliance
KR102576074B1 (en) Apparatus and Method for Ignition Control of Gas Appliance
JP2006349312A (en) Safety confirmation method and combustion system for combustion facility
JP5265317B2 (en) Open combustion equipment
JP2927705B2 (en) Control device
Cazabon et al. An oven explosion: Lessons learned on PSM applications
CN117839383A (en) Spraying system
JP2007247915A (en) Oven device
JPH10332578A (en) Atomic absorption photometer