TW200932679A - Method for producing copper indium chalcogenides powders and method for producing the target thereof - Google Patents

Method for producing copper indium chalcogenides powders and method for producing the target thereof Download PDF

Info

Publication number
TW200932679A
TW200932679A TW97103740A TW97103740A TW200932679A TW 200932679 A TW200932679 A TW 200932679A TW 97103740 A TW97103740 A TW 97103740A TW 97103740 A TW97103740 A TW 97103740A TW 200932679 A TW200932679 A TW 200932679A
Authority
TW
Taiwan
Prior art keywords
starting material
cis
material containing
producing
solvent
Prior art date
Application number
TW97103740A
Other languages
Chinese (zh)
Other versions
TWI353344B (en
Inventor
Yaw-Shyan Fu
Wen-Chi Huang
Bang-Yen Chou
Shih-Jen Lin
Original Assignee
Nanowin Thchnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanowin Thchnology Co Ltd filed Critical Nanowin Thchnology Co Ltd
Priority to TW97103740A priority Critical patent/TWI353344B/en
Priority to US12/249,194 priority patent/US20090196817A1/en
Priority to DE602008006346T priority patent/DE602008006346D1/en
Priority to EP08171213A priority patent/EP2085362B1/en
Priority to AT08171213T priority patent/ATE506325T1/en
Publication of TW200932679A publication Critical patent/TW200932679A/en
Application granted granted Critical
Publication of TWI353344B publication Critical patent/TWI353344B/en

Links

Abstract

This invention provides a method for producing copper indium chalcogenides powders, which comprises mixing a starting material containing Cu, a starting material containing M1, a starting material containing M2, and a chelate solvent in a reactor containing inert gas for making the chelate solvent catch at the cations and the ions of the starting materials and forming a precursor with uniform containing Cu, M1, and M2. Further, the precursor reacts to form the copper indium chalcogenides powders containing chalcopyrite phase, wherein, M1 is selected from In, Ga or a combination thereof, M2 is selected from Se, S or a combination thereof. This invention also provides a method for producing copper indium chalcogenides target, which uses the copper indium chalcogenides powders made of the method stated above.

Description

200932679 * 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種粉末之製作方法,特別是指一種 CIS系(copper indium chalcogenides)粉末之製作方法及其乾 材(target)之製作方法。 【先前技術】 . 為解決人類近幾十年來因過度開發所面臨的能源危機 與環境污染等問題,太陽能電池(solar cell)之開發已嚴然成 Ό w 為解決能源危機等問題的主要研究課題。 在以二硒化銅銦(CuInSe2)三元化合物所衍生出來的CIS 系之太陽能電池中,其p型半導體吸收層所常見的材料則 有 CuInSe2、CuCInxGauXSeySz.y)、CuQnxAh.xKSeyShy)等 。由於此等CIS系材料具備有高光電效率(efficiency)及低材 料成本等特點,因此,亦被此技術領域者所看好。200932679 * IX. Description of the Invention: [Technical Field] The present invention relates to a method for producing a powder, and more particularly to a method for producing a CIS (copper indium chalcogenides) powder and a method for producing the same . [Prior Art] In order to solve the problems of energy crisis and environmental pollution caused by over-exploitation in recent decades, the development of solar cells has become a major research topic for solving energy crisis and other issues. . Among the solar cells of the CIS system derived from the ternary compound of copper indium selenide (CuInSe2), materials commonly used for the p-type semiconductor absorber layer are CuInSe2, CuCInxGauXSeySz.y), CuQnxAh.xKSeyShy) and the like. These CIS materials are also favored by those skilled in the art because of their high photoelectric efficiency and low material cost.

Claire J. Carmalt 等人於 J. Mater. Chem.,1998,8(10), 2209-2211文章中公開一種CIS系粉末之製作方法。Claire J. Carmalt 等人,是混合 CuBr(0.186 g,1 ·30 mmol)、 InCl3(0.280 g,1.30 mmol)、Na2Se(2.60 mmol)及 C7H8(20 cm3);另,昇溫並迴流(reflux)約72小時後,將反應產物靜 置並抽取出C7H8以留下固態的反應產物;其中,CuBr可使 用CuC12(0.174 g,1.30 mmol)取代。進一步地,將固態的反 " 應產物予以磨碎並施予真空乾燥;最後,對此等固態的反 應產物施予500°C持溫24小時的煅燒(calcining)製程以形成 黃銅礦晶相(chalcopyritephase)的CIS系粉末。 5 200932679A method for making a CIS-based powder is disclosed by Claire J. Carmalt et al., J. Mater. Chem., 1998, 8(10), 2209-2211. Claire J. Carmalt et al., mixed CuBr (0.186 g, 1.30 mmol), InCl3 (0.280 g, 1.30 mmol), Na2Se (2.60 mmol), and C7H8 (20 cm3); another, warmed up and refluxed (about) After 72 hours, the reaction product was allowed to stand and C7H8 was taken to leave a solid reaction product; wherein CuBr was replaced with CuC12 (0.174 g, 1.30 mmol). Further, the solid anti-"product is ground and applied to vacuum drying; finally, the solid reaction product is subjected to a calcining process at 500 ° C for 24 hours to form a chalcopyrite crystal. Phase (chalcopyrite phase) CIS powder. 5 200932679

Claire J. Carmalt等人所發表的製作方法,不僅需經過 500°C持溫長達24小時的緞燒才得以取得黃銅礦晶相的CIS 系粉末。此外,值得注意的是,當CIS系粉末中存在有閃 鋅礦晶相(sphalerite phase)時,亦將影響材料本身的光電效 率。然而,由此文獻之X射線繞射(X-ray diffraction,簡稱 XRD)能譜圖顯示可知,此方法仍存在有許多此技術領域所 不欲見的閃鋅礦晶相之繞射訊號峰。因此,此方法所製得 之CIS系粉末在太陽能電池的應用上,亦因其光電效率不 足而受到限制。The production method published by Claire J. Carmalt et al. requires not only a 500 ° C satin burning temperature of up to 24 hours, but also a CIS powder of the chalcopyrite phase. In addition, it is worth noting that when a sphalerite phase is present in the CIS powder, it will also affect the photoelectric efficiency of the material itself. However, the X-ray diffraction (XRD) spectrum of this document shows that there are still many diffracted signal peaks of the sphalerite crystal phase which are not desired in this art. Therefore, the CIS-based powder obtained by this method is also limited in the application of solar cells due to its insufficient photoelectric efficiency.

By Bin Li 等人於 Adv. Mater. 1999,",No. 17,1456-1459文章中公開一種CuInSe2之奈米鬚(nanowhiskers)及奈 米粒子(.nanoparticles)的製作方法。By Bin Li等人,是於壓 力鑛(autoclave)内混合有 C11CI2.2^0(0.221 g,1.26 mmol) 、InCl3.4H2O(0.380 g,1.29 mmol)、Se(0.205 g,2.59 mmol)及液位約達壓力锅的90%之含水的二乙基胺(hydrous diethylamine),封閉壓力鍋並以180°C持溫15小時。進一步 地,使壓力鍋冷卻至室溫,於壓力鍋内的沉澱物是經過過 濾並利用蒸餾水及乙醇清洗數次後以移除其副產物。最後 ,將反應產物放置於真空環境下採用60°C的溫度乾燥4小 時以取得CIS系粉末。A method for producing nanowhiskers and nanoparticles of CuInSe2 is disclosed in Byv. Mater. By Bin Li et al., mixed with C11CI2.2^0 (0.221 g, 1.26 mmol), InCl3.4H2O (0.380 g, 1.29 mmol), Se (0.205 g, 2.59 mmol) and liquid in an autoclave. Approximately 90% of the aqueous diethylamine (hydrous diethylamine) was placed in a pressure cooker, and the pressure cooker was closed and held at 180 ° C for 15 hours. Further, the pressure cooker was cooled to room temperature, and the precipitate in the pressure cooker was filtered and washed with distilled water and ethanol several times to remove by-products. Finally, the reaction product was placed in a vacuum atmosphere and dried at a temperature of 60 ° C for 4 hours to obtain a CIS-based powder.

By Bin Li等人所使用的溶劑熱合成法(solvothermal synthesis)雖可得到呈黃銅礦晶相的CIS系粉末;然而,由 此文獻所揭示的XRD能譜圖顯示可知,此種溶劑熱合成法 所製得之CIS系粉末亦可見有許多此技術領域所不欲見的 200932679 閃辞礦晶相之繞射訊號蜂[即,(1〇3)、(2ιι)、(3〇ι)、(侧) 等繞射面]。此外,由於壓力銷越小塵力易控制,而遂力鋼 越=力越不易控制,·再者,於實施溶劑熱合成法時,用 來岔封其反應物的壓力鍋内未配置有攪拌器,其減少了反 應物之間的碰撞機率亦相對地降低了其反應速率。因此, 使用溶劑熱合成法是無法達成CIS系粉末的量產化。 • ,經前述說明可知,取得高黃銅礦晶相的CIS系粉末之 © 冑作方法並使得其製作方法達到量產的效果,是研究開發 CIS系粉末之相關領域者所待突破的課題。 【發明内容】 <發明概要> 促使化合物呈結晶相的條件,其主要的決定因素是在 於反應溫度所提供的熱能是否足以使得化合物中的各原子 得以佔據於其於晶體中的晶格位置(lattice site)。 值得一提的是,當複數種含有陰離子與陽離子的離子 〇 性化合物所搭配使用的溶劑,是屬於可充分地自此等離子 性化合物中抓取出陰離子與金屬陽離子以分別形成一呈均 質相(homogeneous phase)之含有此等離子的前驅物 (precursor)的嵌合性(Chelate)溶劑時;那麼,含有此等陽/陰 離子之前驅物在溶劑内經過一預定時間的迴流後並反應形 成具有特定化學劑量比之晶相的過程中,其所需的反應能 量便會相對地下降。 因此,本發明主要是利用具有嵌合性之溶劑來抓取起 始物内的陰離子與陽離子以形成一呈均質相之含有此等陰 7 200932679 離子與陽離子之前驅物,待此前驅物於嵌合性溶劑内迴流 一預定時間後便可於反應能下降的情況下(非高溫高壓下)反 應形成具有預定化學劑量比之晶相。 <發明目的> 因此,本發明之目的’即在提供一種CIS系粉末之製 作方法。 * 本發明之另一目的,即在提供一種CIS系靶材之製作 方法。 ❹ 於是,本發明CIS系粉末之製作方法,包含:於一含 有惰性氣體之反應槽内混合一含有Cu之起始物、一含有 河丨之起始物、一含有M2之起始物及一嵌合性溶劑,以使該 嵌合性溶劑於該反應槽内抓取出該等起始物之陽離子與陰 離子,並形成一呈均質相之含有Cu、^^與M2之前趨物。 其中,該呈均質相之前趨物經迴流後進—步地反應形 成含有更銅礦晶相的粉末’ Μι是選自in、Ga,或此等之一 φ 組合,M2是選自Se、S ’或此等之一組合。 另’本發明CIS系輕材之製作方法,包含以下步驟: (a)於一腔體内的一模具中填入如上述之製作方法所製 得之CIS系粉末; . (b)對該腔體施予減壓以形成一淨化腔體; _ (c)對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間; (d)對該淨化腔體内的粉體施予升壓達一預定壓力並持 壓該預定時間’致使該CIS系粉末經由該預定溫度 200932679 及預疋壓力取彳于粉體緻密化(denSificati〇n)的能量; 及 (e)移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。 本發明之功效在於,不需在高溫高壓之製作條件下即 可取得高黃銅礦晶相的CIS系粉末,並使得其製作方法達 到量產的效果;另,因量產化之CIS系粉末之製作方法而 Q 得以製作CIS系靶材。 【實施方式】 <發明詳細說明> 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例、九個具體例與兩個 比較例的詳細說明中,將可清楚的呈現。 本發明CIS系粉末之製作方法之一較佳實施例,包含 :於一含有惰性氣體之反應槽内混合一含有Cu之起始物、 Q —含有Ml之起始物、一含有M2之起始物及一嵌合性溶劑 ’以使該嵌合性溶劑於該反應槽内抓取出該等起始物之陽 離子與陰離子,並形成一呈均質相之含有(^、河厂與 前趨物。 其中,該呈均質相之前趨物是被施予攪拌並經迴流後 進一步地反應形成含有黃銅礦晶相的粉末,M1是選自h、The solvothermal synthesis method used by By Bin Li et al. can obtain a CIS-based powder in the form of a chalcopyrite crystal phase; however, the XRD spectrum shown in the literature shows that this solvothermal synthesis is known. The CIS powder obtained by the law can also be seen in many of the 200932679 flashing ore crystal phase diffracted bees that are not desired in this technical field [ie, (1〇3), (2ιι), (3〇ι), (side) and other diffraction surfaces]. In addition, because the smaller the pressure pin is easier to control, the more the force steel is, the more difficult it is to control the pressure. Moreover, when the solvothermal synthesis method is used, the pressure cooker used to seal the reactants is not equipped with a stirrer. It reduces the probability of collision between reactants and also relatively reduces the reaction rate. Therefore, mass production of a CIS-based powder cannot be achieved by using a solvothermal synthesis method. • As can be seen from the above description, the effect of the production method of the CIS-based powder of the CIS-based powder, which is a high-quality chalcopyrite crystal phase, is a problem to be solved in the field of research and development of CIS-based powders. SUMMARY OF THE INVENTION <Summary of the Invention> Conditions for promoting a compound to a crystalline phase, the main determining factor being whether the heat energy provided by the reaction temperature is sufficient for each atom in the compound to occupy its lattice position in the crystal (lattice site). It is worth mentioning that when a plurality of solvents containing anionic and cationic ion-containing compounds are used, the anion and the metal cation can be sufficiently taken out from the plasma compound to form a homogeneous phase, respectively. a homogeneous phase) of a precursor containing the precursor of the plasma; then, the precursor containing the cation/anion is refluxed in a solvent for a predetermined period of time and reacted to form a specific chemistry When the dose is higher than the crystal phase, the required reaction energy will decrease relatively. Therefore, the present invention mainly utilizes a solvent having chimerism to capture anions and cations in the starting material to form a homogenous phase containing the precursors of the ions and the cations, which are to be embedded in the precursors. After refluxing for a predetermined period of time in the solvent, the reaction can be carried out under conditions of non-high temperature and high pressure (non-high temperature and high pressure) to form a crystal phase having a predetermined stoichiometric ratio. <Objectives of the Invention> Therefore, the object of the present invention is to provide a method for producing a CIS-based powder. * Another object of the present invention is to provide a method of producing a CIS-based target. ❹ The method for producing a CIS powder according to the present invention comprises: mixing a starting material containing Cu, a starting material containing a river bream, a starting material containing M2, and a starting material in a reaction tank containing an inert gas; a chimeric solvent such that the chimeric solvent captures the cations and anions of the starting materials in the reaction vessel and forms a precursor containing Cu, ^ and M2 in a homogeneous phase. Wherein, the precursor before the homogenization phase is refluxed and then reacted to form a powder containing a more copper ore crystal phase. Μι is selected from in, Ga, or a combination of φ, and M2 is selected from Se, S ' Or a combination of these. Further, the method for producing a CIS light material according to the present invention comprises the following steps: (a) filling a mold in a cavity with a CIS-based powder obtained by the above-described production method; (b) the cavity The body is subjected to a reduced pressure to form a purification chamber; _ (c) the powder in the chamber is heated to a predetermined temperature and held for a predetermined time; (d) the powder in the purification chamber Applying the pressure to a predetermined pressure and holding the predetermined time to cause the CIS-based powder to be subjected to powder densification (denSificati) energy via the predetermined temperature 200932679 and the pre-compression pressure; and (e) removing the predetermined The pressure also introduces an inert gas into the purification chamber to cool the purification chamber. The utility model has the advantages that the CIS powder of the high chalcopyrite crystal phase can be obtained under the conditions of high temperature and high pressure, and the production method thereof can achieve the mass production effect; and the CIS powder which is mass-produced The production method and Q made a CIS-based target. [Embodiment] <Detailed Description of the Invention> With regard to the foregoing and other technical contents, features and effects of the present invention, a detailed description of a preferred embodiment, nine specific examples and two comparative examples will be given below with reference to the drawings. In, it will be clearly presented. A preferred embodiment of the method for producing a CIS-based powder of the present invention comprises: mixing a starting material containing Cu in a reaction tank containing an inert gas, Q-starting material containing M1, and starting from containing M2 And a chimeric solvent' such that the chimeric solvent captures the cations and anions of the starting materials in the reaction tank, and forms a homogeneous phase (^, river plant and precursor) Wherein, the precursor before the homogenization phase is stirred and further reacted to form a powder containing a chalcopyrite crystal phase, and M1 is selected from h,

Ga,或此等之一組合,m2是選自Se、s,或此等之一組合 〇 乙二胺 適用於本發明之嵌合性溶劑是選 9 200932679 (ethylenediamine,簡稱 ED)、二甲基曱醯胺(dimethyl formamide,簡稱 DMF)、二曱基乙醮胺(dimethyl— acetamide) 、二曱基亞颯(dimethyl sulfoxide,簡稱 DMSO)、N-曱基0比 洛烧(N-methylpyrrolidone,簡稱 NMP)、〇比咬(pyridine),或 此等之一組合;適用於本發明之含有Cu之起始物是選自 CuC卜CuC12_2H20、CuS04,或此等之一組合;適用於本發 明之含有Μι之起始物是選自InClr4H20、In203、In(N03)3 、Ga、GaC〗3,或此等之一組合;適用於本發明之含有M2 之起始物是選自Se、Na2Se、S,或此等之一組合;且該反 應槽内的惰性氣體是選自N2、Ar、He,或此等之一組合。 較佳地,該嵌合性溶劑的使用量是介於該反應槽之液位的 50%〜90%之間;該反應槽内之迴流溫度是介於90°C〜300°C 之間;該反應槽之迴流時間是介於4小時〜48小時之間。更 佳地,該反應槽内之迴流溫度是介於120°C〜300°C之間;該 反應槽之迴流時間是介於8小時〜48小時之間。 更佳地,該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有厘丨之起始物是InCl3,4H20與Ga之 一組合;該含有M2之起始物是Se ;且CuCh InCl3,4H20、 Ga與Se的莫爾數比是介於0.90 : 0.88 : 0.22 : 2.20〜1.10 :0.72 : 0.18 : 1.90 之間。 更佳地,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有%之起始物是InCl3_4H20 ;該含有 M2之起始物是Se ;且CuC卜InCl3.4H20與Se的莫爾數比 是介於 0.90 : 1.10 : 1.90 ~ 1.10 : 0.90 : 2.20 之間。 10 200932679 更佳地,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有之起始物是In2〇3與Ga之一組 合;該含有M2之起始物是Se;且CuCl、ln203、Ga與Se 的莫爾數比是介於 0.90 : 0.88 : 0.22 : 2.20 ~ 1.10 : 0.72 : 0.18 : 1.90 之間。Ga, or a combination of these, m2 is selected from Se, s, or one of the combinations. Ethylenediamine is suitable for use in the chimeric solvent of the present invention. 9 200932679 (ethylenediamine, ED for short), dimethyl Dimethyl formamide (DMF), dimethyl-acetamide, dimethyl sulfoxide (DMSO), N-methylpyrrolidone (N-methylpyrrolidone) NMP), pyridine, or a combination thereof; the starting material containing Cu suitable for use in the present invention is selected from the group consisting of CuCb CuC12_2H20, CuS04, or a combination thereof; suitable for use in the present invention The starting material of Μι is selected from the group consisting of InClr4H20, In203, In(N03)3, Ga, GaC, or a combination thereof; the starting material containing M2 suitable for use in the present invention is selected from the group consisting of Se, Na2Se, S Or a combination of ones; and the inert gas in the reaction tank is selected from the group consisting of N2, Ar, He, or a combination thereof. Preferably, the amount of the chimeric solvent is between 50% and 90% of the liquid level of the reaction tank; the reflux temperature in the reaction tank is between 90 ° C and 300 ° C; The reflux time of the reaction tank is between 4 hours and 48 hours. More preferably, the reflux temperature in the reaction tank is between 120 ° C and 300 ° C; and the reflux time of the reaction tank is between 8 hours and 48 hours. More preferably, the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material containing ruthenium is InCl3, and 4H20 is combined with one of Ga; The starting material is Se; and the Mohr number ratio of CuCh InCl3, 4H20, Ga and Se is between 0.90: 0.88: 0.22: 2.20~1.10: 0.72: 0.18: 1.90. More preferably, the chimeric solvent is dimercaptomethylamine; the starting material containing Cu is CuCl; the starting material containing % is InCl3_4H20; the starting material containing M2 is Se; and CuC The Mohr number ratio of InCl3.4H20 to Se is between 0.90: 1.10: 1.90 ~ 1.10: 0.90: 2.20. 10 200932679 More preferably, the chimeric solvent is dimethylformamide; the starting material containing Cu is CuCl; the starting material is a combination of In2〇3 and Ga; the content containing M2 The starting material is Se; and the Mohr number ratio of CuCl, ln203, Ga and Se is between 0.90: 0.88: 0.22: 2.20 ~ 1.10: 0.72: 0.18: 1.90.

❹ 更佳地,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有Μι之起始物是In(N〇3)3與Ga之一 組合;該含有M2之起始物是Se;且CuCl、In(N03)3、Ga 與Se的莫爾數比是介於0.90 : 0.88 : 0.22 : 2.20〜1.10 : 0.72 : 0.18 : 1.90 之間。 更佳地,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有⑷之起始物是InCl3.4H2〇與Ga之 一組合,該含有m2之起始物是Na2Se ;且CuC1、 InCl3.4H2〇、Ga與NazSe的莫爾數比是介於〇 9〇 : 〇 88 : 0.22 : 2.20 〜1.10 : 0.72 : 0.18 : 1.9〇 之間。 更佳地’該嵌合性溶劑是二甲基甲醯胺;該含有Cu之 起始物是CuCl2.2H2〇;該含有Μ丨之起始物是InCl3.4H2〇 與Ga之一組合;該含有%之起始物是且CuCi2 2H2〇 、禮3.4H2〇、Ga與Se的莫爾數比是介於〇9〇:〇88: 0·22 : 2.20 〜1.10 : 0.72 : 0.18 : 1.9〇 之間。 更佳地,該礙合性溶劑是二甲基甲酿胺;該含有q之 起始物是CuCl2.2H2〇;該含有%之起始物是inCi3.4H2〇 與Ga之一組合;該含有&之缸仏π ^起始物是Na2se ;且More preferably, the chimeric solvent is dimethylformamide; the starting material containing Cu is CuCl; the starting material containing Μ1 is a combination of In(N〇3)3 and Ga; The starting material containing M2 is Se; and the Mohr number ratio of CuCl, In(N03)3, Ga and Se is between 0.90:0.88:0.22: 2.20~1.10:0.72:0.18: 1.90. More preferably, the chimeric solvent is dimethylformamide; the starting material containing Cu is CuCl; the starting material containing (4) is a combination of InCl3.4H2 yttrium and Ga, which contains m2 The starting material is Na2Se; and the Mohr number ratio of CuC1, InCl3.4H2〇, Ga and NazSe is between 〇9〇: 〇88: 0.22: 2.20~1.10: 0.72: 0.18: 1.9〇. More preferably, the chimeric solvent is dimethylformamide; the starting material containing Cu is CuCl2.2H2〇; the starting material containing ruthenium is a combination of InCl3.4H2〇 and Ga; The Mobi number ratio of the starting material containing % and CuCi2 2H2〇, 礼 3.4H2〇, Ga and Se is between 〇9〇:〇88: 0·22: 2.20 ~1.10 : 0.72 : 0.18 : 1.9〇 between. More preferably, the blocking solvent is dimethyl ketone; the starting material containing q is CuCl2.2H2 〇; the starting material containing % is a combination of inCi3.4H2 〇 and Ga; & cylinder 仏 π ^ starting material is Na2se;

CuC12.2H20、InCl3-4H20、Ga 鱼 c 、Na2Se的莫爾數比是介於 11 200932679 0.90:0.88:0.22:2.2〇〜』:〇.72:〇.18。相 更么地,該喪合性溶劑是乙二胺;該含有CU之起始物 疋CuCl,該含有%之也私τ ^ 丨 < 起始物疋InCl3.4H20與Ga之一組合The Mohr number ratio of CuC12.2H20, InCl3-4H20, Ga fish c and Na2Se is between 11 200932679 0.90:0.88:0.22:2.2〇~』:〇.72:〇.18. More specifically, the fungicidal solvent is ethylenediamine; the starting material containing CU is 疋CuCl, and the % containing is also private τ ^ 丨 < combination of starting material 疋InCl3.4H20 and Ga

;該含有M2之起始物熹ςρ. B 切疋 Se,且 CuC卜 InCl3.4H20、Ga 與The starting material containing M2 熹ςρ. B is 疋 Se, and CuC 卜 InCl3.4H20, Ga and

Se的莫爾數比是介於〇 9 u.yu . U.88 . 0.22 : 2.20 〜1.1〇 : 0.72 :0.18 : 1.90 之間。 ©The Mohr number ratio of Se is between 〇 9 u.yu . U.88 . 0.22 : 2.20 〜1.1〇 : 0.72 :0.18 : 1.90. ©

曰更佳地,該嵌合性溶劑是乙二胺;該含有&之起始物 疋CuCl2 2H20,該含有M丨之起始物是Μι; 4出〇與^之 一組合;該含有M2之起始物是Se;且CUC12.2H20、More preferably, the chimeric solvent is ethylenediamine; the starting material containing & 疋CuCl2 2H20, the starting material containing M Μ is Μι; 4 combination of 〇 and ^; this contains M2 The starting material is Se; and CUC 12.2H20,

InCl3 4H2〇、Ga與Se的莫爾數比是介於〇 9〇 : 〇 88 : 〇 22 • 2’20 〜1.1〇 : 0.72 : 0.18 : 1.90 之間。 另,本發明CIS系靶材之製作方法之一較佳實施例, 包含以下步驟: (a) 於一腔體内的一模具中(圖未示)填入如上述之製作 方法所製得之CIS系粉末; (b) 對該腔體施予減壓以形成一淨化腔體; (c) 對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間; (d) 對該淨化腔體内的粉體施予升壓達一預定壓力並持 壓該預定時間,致使該CIS系粉末經由該預定溫度 及預定壓力取得粉體緻密化的能量;及 (e) 移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。 值得一提的是,本發明該步驟(b)實施減壓的目的主要 12 200932679 疋在於淨化該腔體;當該淨化腔體的壓力過大時,將於實 施該步驟(C)、(d)的過程中因該淨化腔體内的雜質殘留量過 大而產生本發明所不欲見的雜質化合物。因此,較佳地, 該步驟(b)之淨化腔體的壓力是介於〗0-2 Torr〜I0_5 Torr之 間。 又值得一提的是,本發明該步驟(C)、(d)之主要目的是 • 在於使得該系粉末產生緻密化的作用。在本發明之靶 〇 #的製作方法巾,該步驟⑷之升溫速率是決定於該步驟⑷ 的升塵速率,亦即,同時達該步驟⑷的預定溫度與該步驟 ⑷的預力為原則。因此,較佳地,該步驟⑷之升溫速 率疋"於2 C/min〜1〇 t/min之間;該步驟⑷之升麼速 率是介於1 MPa/min〜3 MPa/min之間。 此外,在本發明之靶材的製作方法中,主要是經由溫 又〃壓力所產生的能量來使得該CIS系粉末得以經由擴散 f燒結(sintering)的機制以產生緻密化。而此處值得一提的 ❹ 是,當該步驟(c)、(d)之預定溫度、預定壓力或預定時間不 2時,將使得最終所製得之靶材的結構過於鬆散;反之, 當=步驟⑷之預定遷力或預定時間過大時,不僅對於粉體 緻欲化無實質上的貝獻度亦將造成無謂的生產成本;此處 更需注意的是,當該步驟⑷之預定溫度過高時,將使得最 終所製得的㈣因相變化(phase t刪⑴⑽)而生成本發明所 不欲見的5相。因此,較佳地,該步驟⑷之預定溫度是介於 500 C〜800°C之間;該步驟⑷之預^壓力是介於的购〜 180 MPa之間;該步驟⑷、⑷之預定時間是介於】小時〜8 13 200932679 小時之間。 而值得一提的是,本發明之靶材的製作方法主要是經 由溫度與壓力所產生的能量來使得該CIS系粉末產生緻密 化;因此,當該預定溫度趨近上述所界定的500°c時,是可 經由提昇該預定壓力來補足形成緻密化所需的能量。 <具體例1> . 在本發明CIS系粉末之製作方法之一具體例1中,該 反應槽内的惰性氣體是N2 ;該嵌合性溶劑是體積1200 ml 的DMF ;該含有Cu之起始物是CuCl ;該含有Μ!之起始物 是I11CI3·4Η2〇與Ga之一組合;該含有M2之起始物是Se ; 攪拌速率是300 rpm ;迴流溫度與迴流時間分別是180°C與 48個小時。 此外,在該具體例1 _,DMF於該反應槽内的液位約 達60% ; CuC卜InCl3.4H20、Ga與Se的莫爾數比是1 : 0.8 :0.2 : 2 ;且 CuCl、InCl3,4H20、Ga 與 Se 的用量分別是 102.96 g、243_36g、14.56g 與 164.32 g。經本發明該具體例 1所製得之CIS系粉末是重量約339.77g且平均粒徑約1 μιη 〜5 μπι 左右的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖1,由本發明該具體例1所製得之CIS系粉末的 XRD能譜圖之分析數據顯示可知,該具體例1僅於約65° 與71°處分別出現有微弱之(400)與(316)等晶面的閃鋅礦晶 相繞射訊號峰。顯然地,本發明於180°c的製程溫度下即可 製得大量且南純度之黃銅礦晶相的CIS糸粉末。 <具體例2> 14The Mohr number ratio of InCl3 4H2 〇, Ga and Se is between 〇 9〇 : 〇 88 : 〇 22 • 2'20 〜 1.1 〇 : 0.72 : 0.18 : 1.90. In addition, a preferred embodiment of the method for fabricating a CIS-based target of the present invention comprises the following steps: (a) filling a mold (not shown) in a cavity into the manufacturing method as described above. a powder of the CIS system; (b) applying a pressure to the cavity to form a purification chamber; (c) applying a temperature rise to the predetermined temperature in the cavity for a predetermined period of time; (d) Pressurizing the powder in the purification chamber to a predetermined pressure and holding the predetermined time, so that the CIS powder obtains powder densification energy through the predetermined temperature and the predetermined pressure; and (e) removing the predetermined The pressure also introduces an inert gas into the purification chamber to cool the purification chamber. It is worth mentioning that the purpose of the step (b) of the present invention is to reduce the pressure of the cavity. When the pressure of the purification chamber is too large, the steps (C) and (d) will be implemented. In the process, the impurity compound in the purification chamber is excessively large to produce an impurity compound which is not desired in the present invention. Therefore, preferably, the pressure of the purification chamber of the step (b) is between 0-2 Torr and I0_5 Torr. It is also worth mentioning that the main purpose of the steps (C), (d) of the present invention is to • cause the densification of the powder. In the method of fabricating the target of the present invention, the rate of temperature rise of the step (4) is determined by the rate of dusting of the step (4), that is, the predetermined temperature of the step (4) and the pre-force of the step (4). Therefore, preferably, the temperature increase rate of the step (4) is between 2 C/min and 1 〇t/min; and the rate of the step (4) is between 1 MPa/min and 3 MPa/min. . Further, in the method of producing the target of the present invention, the CIS-based powder is mainly subjected to diffusion f sintering mechanism to generate densification by energy generated by temperature and pressure. What is worth mentioning here is that when the predetermined temperature of the steps (c), (d), the predetermined pressure or the predetermined time is not 2, the structure of the finally produced target will be too loose; = When the predetermined relocation force of the step (4) or the predetermined time is too large, not only the substantial deliberation of the powder for the powder will cause unnecessary production cost; here, it is more important to note that the predetermined temperature of the step (4) When it is too high, it will cause the final (4) phase change (phase t deletion (1) (10)) to generate 5 phases which are not desired in the present invention. Therefore, preferably, the predetermined temperature of the step (4) is between 500 C and 800 ° C; the pre-pressure of the step (4) is between -180 MPa; the predetermined time of the steps (4), (4) It is between 】 hours ~ 8 13 200932679 hours. It is worth mentioning that the target of the present invention is mainly made by densifying the CIS powder through the energy generated by temperature and pressure; therefore, when the predetermined temperature approaches 500 °c as defined above. At this time, it is possible to supplement the energy required to form densification by raising the predetermined pressure. <Specific Example 1> In a specific example 1 of the method for producing a CIS-based powder of the present invention, the inert gas in the reaction tank is N2; the chimeric solvent is a volume of 1200 ml of DMF; The starting material is CuCl; the starting material containing Μ! is I11CI3·4Η2〇 combined with one of Ga; the starting material containing M2 is Se; the stirring rate is 300 rpm; the reflux temperature and reflux time are 180 ° C, respectively. With 48 hours. Further, in the specific example 1 _, the liquid level of the DMF in the reaction tank is about 60%; the molar ratio of CuC to InCl3.4H20, Ga to Se is 1: 0.8:0.2:2; and CuCl, InCl3 The amounts of 4H20, Ga and Se were 102.96 g, 243_36 g, 14.56 g and 164.32 g, respectively. The CIS-based powder obtained in the specific example 1 of the present invention is a CuIn®.8Ga〇.2Se2 powder having a weight of about 339.77 g and an average particle diameter of about 1 μm to 5 μm. Referring to Fig. 1, the analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 1 of the present invention shows that the specific example 1 has a weak (400) and only about 65° and 71°, respectively. (316) The surface of the zinc blende crystal phase of the isomorphous plane is diffracted. Obviously, the present invention produces a large amount of CIS tantalum powder of a chalcopyrite crystal phase of a southern purity at a process temperature of 180 °C. <Specific example 2> 14

V 200932679 本發明CIS系粉末之製作方法之一具體例2大致上是 :目同於該具體例1 ’其不同處僅在於,該含有Μ丨之起始物 疋InCl3 4Η20 ’且CuCh InCl3.4H20與Se的莫爾數比是! :1 ·· 2。此外,在該具體例2中,Cua、InCl3.4H2〇盥^ 的用量分別是u)2.96 g、304.2 §與164 32g。經本發明該具 體例2所製得之CIS系粉末是重量約g且平均粒徑 約 1 μπι 〜5 μπι 的 CuInSe2 粉末。 ❹ 參閱圖2 ’由本發明該具體例2所製得之CIS系粉末的 細能譜圖之分析數據顯示可知,該具體例2僅於約 、71。與82。處分別出現有微弱之(彻)、(316)與(424)等晶面 礦晶相繞射訊號峰。顯然地,本發明於的製程 •^下I5可製知大量且咼純度之黃銅礦晶相的系粉末 〇 <具體例3> 本發明cIS系粉末之製作方法之一具體例3大致上是 了該具體例1,其不同處僅在於,該含有之起始物 數θ 3〗與Ga之組合,且CuC1、Ιϊΐ2〇3、Ga與Se的莫爾 疋· G·8 · G·2: 2 °此外,在該具體例3中,Cua、 in2〇3、Ga與Se的用詈公則b, 盘, 刀別疋 102.96 g、229.63 g、14.56 g = 4.32g。經本發明該具體例3所製得之CIS系粉末是重 =⑽7g且平均粒徑約1μιη〜5叫的。咖 XRD 3纟本發明該具體例3所製得之CIS系粉末的 咖之分析數據顯示可知,該具體例3僅於約65。 15 200932679 Μ與82處分別出現有微弱之(400)、(316)與(424)等晶面 的閃鋅礦晶相繞射訊號峰。顯然地,本發明於18代的製程 ,孤度下即可製得大量且高純度之黃銅礦晶相# CIS系粉末 〇 <具體例 _本發明CIS系粉末之製作方法之一具體例4大致上是 .相同於該具體例i,其不同處僅在於,該含有%之起始物 ❹ 疋 In(N〇3)3 與 Ga 之一組合;且 CuCU、In(N〇3)3、Ga 與 Se 的莫爾數比是1:0.8: 0·2 : 2。此外,在該具體例4中, CuCl ' Ιη(Ν〇3)3、Ga 與 Se 的用量分別是 1〇2 % g、249 6 层V 200932679 One of the specific examples 2 of the method for producing a CIS powder of the present invention is substantially the same as the specific example 1 ', except that the starting material containing cerium 疋InCl3 4Η20 ' and CuCh InCl3.4H20 The Mohr number with Se is! :1 ·· 2. Further, in this specific example 2, the amounts of Cua and InCl3.4H2〇盥^ were u) 2.96 g, 304.2 § and 164 32 g, respectively. The CIS-based powder obtained by the specific example 2 of the present invention is a CuInSe2 powder having a weight of about g and an average particle diameter of about 1 μm to 5 μm.分析 Referring to Fig. 2, the analysis data of the fine energy spectrum of the CIS-based powder obtained in the specific example 2 of the present invention shows that the specific example 2 is only about 71. With 82. There are weak (Current), (316) and (424) crystal planes, which are diffracted by the crystal phase. Obviously, the process of the present invention can produce a large amount of 黄铜-purity chalcopyrite crystal phase powder 〇<Specific Example 3> One of the methods for producing the cIS-based powder of the present invention is substantially This is the specific example 1, which differs only in the combination of the number of starting materials θ 3 and Ga, and the molar ratio of CuC1, Ιϊΐ2〇3, Ga and Se to Mol疋·G·8·G·2 : 2 ° Further, in this specific example 3, Cua, in2〇3, Ga and Se were used for b, and the disk was 102.96 g, 229.63 g, and 14.56 g = 4.32 g. The CIS-based powder obtained by the specific example 3 of the present invention has a weight of = (10) 7 g and an average particle diameter of about 1 μm to 5 Å. Coffee XRD 3 shows that the analysis data of the coffee of the CIS-based powder obtained in the specific example 3 of the present invention shows that the specific example 3 is only about 65. 15 200932679 There are diffractive (400), (316) and (424) crystal planes at the Μ and 82, respectively. Obviously, in the 18th generation process of the present invention, a large amount of high-purity chalcopyrite crystal phase #CIS-based powder 〇 can be obtained under the degree of separation. Specific Example _ A specific example of the production method of the CIS-based powder of the present invention 4 is substantially the same as the specific example i, except that the % of the starting material ❹ 疋In(N〇3)3 is combined with one of Ga; and CuCU, In(N〇3)3 The Mohr number ratio of Ga to Se is 1:0.8: 0·2: 2. Further, in this specific example 4, the amount of CuCl 'Ιη(Ν〇3)3, Ga, and Se is 1〇2% g, 249 6 layers, respectively.

14.56 g與164.32 g。經本發明該具體例4所製得之cIS 系粉末是重量約339.77 g且平均粒徑約1 μπι〜5 μπι的14.56 g and 164.32 g. The cIS-based powder obtained by the specific example 4 of the present invention has a weight of about 339.77 g and an average particle diameter of about 1 μm to 5 μm.

CuIn〇.8GaQ.2Se2 粉末。 參閱圖4,由本發明該具體例4所製得之CIS系粉末的 XRD $曰圖之分析數據顯示可知,該具體例*僅於約65。 〇 71與82處分別出現有微弱之(400)、(3 16)與(424)等晶面 的閃鋅礦晶相繞射訊號峰。顯然地,本發明於丨8〇。〇的製程 度下即可製得大量且高純度之黃銅礦晶相的cis系粉末 Ο - <具體例5> - 本發明CIS系粉末之製作方法之一具體例5大致上是 相同於該具體例1,其不同處僅在於,該含有m2之起始物 是 NkSe ;且 Cua、InC13.4H2〇、Ga 與 Na2Se 的莫爾數比 疋0.9 . 0.88 : 0.22 : 2.2。此外’在該具體例5中’ CuC1、 16 200932679CuIn〇.8GaQ.2Se2 powder. Referring to Fig. 4, the analysis data of the XRD $曰 map of the CIS-based powder obtained in the specific example 4 of the present invention shows that the specific example * is only about 65.闪 71 and 82 respectively appear diffracted (400), (3 16) and (424) crystal planes of the sphalerite crystal phase diffraction signal peak. Obviously, the present invention is based on 丨8〇. A cis-based powder of a large amount of high-purity chalcopyrite crystal phase can be obtained under the system of hydrazine - <Specific Example 5> - One of the methods for producing the CIS-based powder of the present invention is substantially the same as The specific example 1 is different in that the starting material containing m2 is NkSe; and the molar ratio of Cua, InC13.4H2〇, Ga and Na2Se is 0.9. 0.88: 0.22: 2.2. Further 'in this specific example 5' CuC1, 16 200932679

InCV4H2〇、Ga 與 NhSe 的用量分別是 92 66 g、267 7〇 g、 16.02 g與286 g。經本發明該具體例5所製得之⑶系粉末 是重量約360.54 g且平均粒徑約i师〜5㈣的 CuInQ gGa〇.2Se2 粉末。 參閱圖5,由本發明該具體例5所製得之⑶系粉末的 XRD能譜圖之分析數據顯示可知,該具體例5僅於約65。 • 與71。處分別Λ現有微弱之(彻)與(316)等曰曰曰㈣閃鋅礦晶 φ 相繞射訊號峰。顯然地,本發明於18(TC的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 <具體例6> 本發明CIS系粉末之製作方法之一具體例6大致上是 相同於該具體例1’其不同處僅在於,該含有Cu之起始物 是 CuC12.2H20 ;且 CuC12.2H2〇、inci3.4H2〇、Ga 與 Se 的 莫爾數比是1 _ 0.8 : 0·2 : 2。此外’在該具體例6中, CuC12’2H2〇、InCl3.4H2〇、Ga 與 Se 的用量分別是 m 32 g ❹ 、243.36 g、14·56 g與164.32 g。經本發明該具體例6所製 得之CIS系粉末是重量約339.77 g且平均粒徑約} μιη〜5 μιη 的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖6,由本發明該具體例6所製得之CIS系粉末的 . XRD能譜圖之分析數據顯示可知,該具體例6僅於約65。 與71 °處分別出現有微弱之(400)與(316)等晶面的閃鋅礦晶 相繞射訊號峰。顯然地,本發明於18(rc的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 另,於該腔體内的模具(圖未示)中填置由該具體例6所 17 200932679 製得之cuin〇.8Ga〇2Se2粉末約8〇 g ;進一步地,以$ t/論 的升皿速率對該CuIn〇 8Ga〇2Se2粉末施予升溫同時對該腔體 抽真空;當該腔體内的真空度彡2.〇χ1〇-3 T〇rr左右時(歷時 約1小時),於該腔體内引入Ar,並分別以相同的升溫速率 及1.7 MPa/min的升壓速率對該““Μ粉末施予升 壓與升溫達該預定塵力與預定溫度(約歷時15小時);最後 - ’於㈣與持溫歷時約4小時之後,移除該預定壓力並於 •❹ Ar的氛圍下自然冷卻以製得CIS系靶材。 在該具體例6中,該CIS系乾材的外觀是直徑與厚度 刀別約3英吋(ln)與3 mm的圓板狀;該預定壓力與預定溫 度分別是150 MPa與780°C。 參閱圖7,由本發明該具體例6之粉末所製得之as系 乾材的XRD能譜圖顯示可知,該具體例6之乾材的三大繞 射訊號峰分職(i丨2)、(2G4/22_ (3丨2)m,顯然本發 明該具體例6之粗材是高純度的黃銅礦晶相之cis系乾材 ❹ <具體例7> 本發明cis系粉末之製作方法之一具體例7大致上是 :同於該具體例6’其不同處僅在於,該含有⑷之起始物 疋 Naje,且 cuckoo、InClr4H2〇、洳與仏2Se 的莫 爾數比是1 H0.2: 2。此外,在該具體例7中, 、InC13,4H2〇、Ga 與 NazSe 的用量分別是 •05 g 219.02 g、13.10 g與247 g。經本發明該具體例7 所製得之cis系粉末是重量約327·22 g且平均粒徑約丄叫 18 200932679 〜5 μπι 的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖8,由本發明該具體例7所製得之CIS系粉末的 XRD能譜圖之分析數據顯示可知,該真體例7僅於約μ。 與71 °處分別出現有微弱之(400)與(3丨6)等晶面的閃辞礦晶 相繞射訊號峰。顯然地,本發明於18(rc的製程溫度下即可 製得大量且高純度之黃銅礦晶相的CIS系粉末。 - <具體例8> Q 本發明CIS系粉末之製作方法之一具體例8大致上是 相同於該具體例1,其不同處僅在於,該嵌合性溶劑是體積 約1200 ml的乙二胺(ED)e經本發明該具體例8所製得之 CIS系粉末是重量約339.77 g且平均粒徑約i _〜5㈣的 CuIn〇.8Ga〇.2Se2 粉末。 參閱圖9 ’由本發明該具體例8所製得之cis系粉末的 ㈣能譜圖之分析數據顯示可知,該具體8僅於約65。 、71與82處分別出現有微弱之(4〇〇)、(316)與(424)等晶面 © 的閃鋅礦晶相繞射訊號峰。_地,本發明於18Gt:的製程 溫度下即可製得大量且高純度之黃銅礦晶相的⑶系粉末 <具體例9> 本發明CIS系粉末之製作方法之一具體例9大致上 t目同於該具體例8,其不同處僅在於,該含有Cu之起始 疋 CuC12.2H2〇 ;且 CuCh.2H η τThe amounts of InCV4H2 〇, Ga and NhSe were 92 66 g, 267 7 〇 g, 16.02 g and 286 g, respectively. The (3)-based powder obtained by the specific example 5 of the present invention is a CuInQ gGa〇.2Se2 powder having a weight of about 360.54 g and an average particle diameter of about i to 5 (four). Referring to Fig. 5, the analysis data of the XRD spectrum of the (3)-based powder obtained in the specific example 5 of the present invention shows that the specific example 5 is only about 65. • with 71. At the same time, there are faint (trans) and (316) 曰曰曰 (4) sphalerite crystal φ phase diffraction signal peaks. Obviously, the present invention can produce a large amount of high-purity chiffrite crystal phase CIS powder at a process temperature of 18 (Specific Example 6) One specific example of the production method of the CIS powder of the present invention 6 is substantially the same as the specific example 1' except that the starting material containing Cu is CuC12.2H20; and the Mohr number ratio of CuC12.2H2〇, inci3.4H2〇, Ga and Se is 1 _ 0.8 : 0·2 : 2. Further, in this specific example 6, the amounts of CuC12'2H2〇, InCl3.4H2〇, Ga and Se are m 32 g ❹ , 243.36 g, 14·56 g and 164.32 g, respectively. The CIS-based powder obtained by the specific example 6 of the present invention is a CuIn®.8Ga〇.2Se2 powder having a weight of about 339.77 g and an average particle diameter of about ληη to 5 μηη. Referring to Fig. 6, the specific example 6 of the present invention The analysis data of the XRD spectrum of the obtained CIS-based powder showed that the specific example 6 was only about 65. There were weak (400) and (316) crystal planes of sphalerite at 71 °, respectively. The crystal phase is diffracted with a signal peak. Obviously, the present invention can produce a large amount of high-purity chalcopyrite phase CIS powder at a process temperature of 18 (rc). In addition, a mold (not shown) in the cavity is filled with cuin 〇.8Ga〇2Se2 powder prepared by the specific example 6 1732, 729; about 8 〇 g; further, by $ t / Increasing the rate of the CuIn〇8Ga〇2Se2 powder while vacuuming the cavity; when the vacuum in the cavity is about 〇χ1〇-3 T〇rr (about 1 hour), Introducing Ar into the cavity, and applying the boosting and heating up to the predetermined dust force and the predetermined temperature (about 15 hours) at the same heating rate and a pressure increasing rate of 1.7 MPa/min, respectively; - 'After (4) and about 4 hours after holding the temperature calendar, the predetermined pressure is removed and naturally cooled in an atmosphere of ?❹ Ar to obtain a CIS-based target. In this specific example 6, the appearance of the CIS-based dry material It is a disk shape having a diameter and a thickness of about 3 inches (ln) and 3 mm; the predetermined pressure and the predetermined temperature are 150 MPa and 780 ° C, respectively. Referring to Fig. 7, the powder of the specific example 6 of the present invention is used. The XRD spectrum of the as-dry material obtained shows that the three major diffraction peaks of the dry material of the specific example 6 are divided (i丨2), (2G4). /22_(3丨2)m, it is apparent that the crude material of the specific example 6 of the present invention is a cis-based dry material of a high-purity chalcopyrite crystal phase <Specific Example 7> One of the methods for producing the cis-based powder of the present invention The specific example 7 is substantially the same as the specific example 6' except that the starting material containing the (4) is Naje, and the molar ratio of cuckoo, InClr4H2〇, 洳 and 仏2Se is 1 H0.2. : 2. Further, in this specific example 7, the amounts of InC13, 4H2, Ga and NazSe were respectively -05 g 219.02 g, 13.10 g and 247 g. The cis-based powder obtained by the specific example 7 of the present invention is a CuIn®.8Ga〇.2Se2 powder having a weight of about 327·22 g and an average particle diameter of about 18 200932679 to 5 μπι. Referring to Fig. 8, the analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 7 of the present invention shows that the solid example 7 is only about μ. At the 71 °, a flashing ore crystal phase diffraction signal peak with weak (400) and (3丨6) crystal planes appears. Obviously, the present invention can produce a CIS-based powder of a large amount of high-purity chalcopyrite crystal phase at a process temperature of 18 (r). <Specific Example 8> Q One of the methods for producing the CIS-based powder of the present invention Specific Example 8 is substantially the same as this Specific Example 1, except that the chimeric solvent is a CIS-based powder obtained by the specific example 8 of ethylenediamine (ED)e having a volume of about 1200 ml. It is a CuIn〇.8Ga〇.2Se2 powder having a weight of about 339.77 g and an average particle diameter of about i_~5(iv). Referring to Fig. 9 'analysis data showing the (four) energy spectrum of the cis-based powder obtained by the specific example 8 of the present invention It can be seen that the specific 8 only has diffraction peaks of the sphalerite crystal phase with weak (4〇〇), (316) and (424) crystal planes, respectively, at about 71, 71 and 82. The present invention can produce a large amount of high-purity chalcopyrite crystal phase (3) powder at a process temperature of 18 Gt: <Specific Example 9> One of the methods for producing the CIS-based powder of the present invention is as follows: The same as in the specific example 8, except that the starting point of Cu is CuC12.2H2〇; and CuCh.2H η τ

Cl2 2Η2〇、InCl3.4H20、Ga 與 Se 用量为別疋177.32 g、243 % p 7 Λ & g、14.56 g 與 164.32g。經 發明該具體例9所製;i旱之Γτς么, 汀I仟之CIS糸粉末是重量約349.44 g 19 200932679 平均粒徑約1 μηι〜5 的CuIn〇.8Ga〇.2Se2粉末。 參閱圖10,由本發明該具體例9所製得之CIS系粉末 的XRD迠譜圖之分析數據顯示可知,該具體例9僅於約65 Μ與82處分別出現有微弱之(4〇〇)、(316)與(424)等晶 面的閃鋅礦晶相繞射訊號蜂。顯然地,本發明於18〇〇c的製 程溫度下即可觀得大量且高純度之黃銅鑛晶相的CIS系粉 - 末。 <比較例> ❹ 用來與本發明該等具體例相比較的一比較例丨〜2,大致 上疋相同於該具體例1,其不同處僅在於該比較例1、2是 分別使用四氫呋喃(tetrahydr〇furan,化學式為C4H8〇,簡稱 THF)與氯仿(chl〇r〇form,化學式為CHC13)等不具嵌合性的 溶劑。 參閱圖11〜12,由該等比較例之XRD能譜圖的分析數 據顯示可知,該等比較例因使用不具嵌合性之溶劑而無法 ❹ 有效地自起始物(即,CuC卜InCl3.4H2〇、Ga與Se)中抓取 其陽離子與陰離子;因此,於18〇。〇之迴流溫度下無法直接 反應形成富含黃銅礦晶相之CIS系粉末,且於圖11〜丨2中 的26,6。、45。與52.5。處未能顯示有⑴2)、(2〇4)、(22〇)與 (312)等晶面之三大繞射訊號峰。 該等比較例與本發明該等具體例之細部差異是簡單地 整理於下列表1.中。 20 200932679 表1 · 溶劑 起始物 厂 莫爾齡 Cu In Ga Se Cu In n « 具體例1 DMF CuCl InCl3-4H2〇 Ga Se 1.0 0.80 \J 3. 〇 2Π Ο ϋ 9 〇 具體例2 DMF CuCl InCl3-4H2〇 - Se 1.0 1.00 2 0 具體例3 DMF CuCl Ιϊΐ2〇3 Ga Se 1.0 0.80 〇 20 2 0 具體例4 DMF CuCl In(N〇3)3 Ga Se 1.0 0.80 0 20 2 0 具體例5 DMF CuCl InCl3-4H20 Ga Na2Se 0.9 0.88 〇 22 9 2 具體例6 DMF CuC12-2H20 InCI3 -4H20 Ga Se 1.0 0.80 〇 20 2 0 具體例7 DMF CuC12-2H2〇 InCl3.4H20 Ga Na2Se 1.1 0.72 〇 1 c 1 Q 具體例8 ED CuCl InCl3-4H20 Ga Se 1.0 0.80 〇 20 2 0 具體例9 ED CuC12-2H20 InCl3-4H20 Ga Se 1.0 0.80 0.20 2.0 比較例1 THF CuCl InCl3.4H20 Ga Se 1.0 0.80 〇 20 2 0 比較例2 < :HC13 CuCl InCl3-4H20 Ga Se 1.0 0.80 0 20 2 0 經别述各具體例的說明可知,本發明因使用具後合性 之溶劑而得以在混合起始物與溶劑的過程中,藉由呈嵌合 性之溶劑抓取起始物中的陽離子與陰離子以形成呈均質相 的前驅物,並且在低於此嵌合性溶劑之沸點的迴流溫度條 件下(在本發明各具體例中是18〇。〇),使該前驅物得以直接 ® 地反應形成富含黃銅礦晶相之CIS系粉末。 此外,本發明CIS系粉末之製作方法亦因其使用嵌合 性溶劑之特點而得以製得大量的CIS系粉末;因此,經由 本發明CIS系粉末之製作方法所製得的CIS系粉末更可進 一步地經由粉末冶金(powder metallurgy)之製程來製成濺鍍 系統(sputtering system)專用之靶材,以利於太陽能電池產 業之開發。 值得一提的是,本發明自該具體例1〜9所生成的CIS 系粉末量約達350 g左右’雖然該等具體例所使用的反應槽 21 200932679 疋實驗至專用型且體積為2000 mi的反應槽;然而,當實施 本發明CIS系粉末之製作方法[即,化學濕式合成法 (chemical reflux synthesis method)]來生成 CIS 系粉末時所使The amount of Cl2 2Η2〇, InCl3.4H20, Ga and Se was 177.32 g, 243% p 7 Λ & g, 14.56 g and 164.32 g. According to the invention of the specific example 9, the CIS 糸 powder of the 仟I仟 is a CuIn〇.8Ga〇.2Se2 powder having a weight of about 349.44 g 19 200932679 and an average particle diameter of about 1 μηι 5 . Referring to Fig. 10, the analysis data of the XRD spectrum of the CIS-based powder obtained in the specific example 9 of the present invention shows that the specific example 9 has a weak (4 〇〇) only at about 65 Μ and 82, respectively. , (316) and (424) crystal planes of the zinc blende crystal phase diffracted signal bee. Obviously, the present invention can be obtained at a process temperature of 18 ° C in a large amount of high-purity chalcopyrite phase CIS powder. <Comparative Example> 一 A comparative example 丨2 for comparison with the specific examples of the present invention is substantially the same as the specific example 1, except that the comparative examples 1 and 2 are used separately. Tetrahydrofuran (tetrahydrofuran, chemical formula: C4H8, THF for short) and chloroform (chl〇rform, chemical formula: CHC13) are not chimeric solvents. Referring to Figures 11 to 12, the analysis data of the XRD spectra of the comparative examples show that the comparative examples are incapable of being effective from the starting material due to the use of a solvent having no chimerism (i.e., CuC Bu InCl3. 4H2〇, Ga and Se) capture their cations and anions; therefore, at 18〇. The CIS-based powder rich in chalcopyrite crystal phase cannot be directly reacted at the reflux temperature of ruthenium, and is 26, 6 in Figures 11 to 。2. 45. With 52.5. The three large diffraction signal peaks of the crystal planes of (1) 2), (2〇4), (22〇) and (312) are not displayed. The details of the comparison between these comparative examples and the specific examples of the present invention are simply summarized in Table 1. below. 20 200932679 Table 1 · Solvent starter plant Moering Cu In Ga Se Cu In n « Specific example 1 DMF CuCl InCl3-4H2〇Ga Se 1.0 0.80 \J 3. 〇2Π Ο 〇 9 〇 Specific example 2 DMF CuCl InCl3 -4H2〇- Se 1.0 1.00 2 0 Specific Example 3 DMF CuCl Ιϊΐ2〇3 Ga Se 1.0 0.80 〇20 2 0 Specific Example 4 DMF CuCl In(N〇3)3 Ga Se 1.0 0.80 0 20 2 0 Specific Example 5 DMF CuCl InCl3-4H20 Ga Na2Se 0.9 0.88 〇22 9 2 Specific Example 6 DMF CuC12-2H20 InCI3 -4H20 Ga Se 1.0 0.80 〇20 2 0 Specific Example 7 DMF CuC12-2H2〇InCl3.4H20 Ga Na2Se 1.1 0.72 〇1 c 1 Q Specific Example 8 ED CuCl InCl3-4H20 Ga Se 1.0 0.80 〇20 2 0 Specific Example 9 ED CuC12-2H20 InCl3-4H20 Ga Se 1.0 0.80 0.20 2.0 Comparative Example 1 THF CuCl InCl3.4H20 Ga Se 1.0 0.80 〇20 2 0 Comparative Example 2 < : HC13 CuCl InCl3-4H20 Ga Se 1.0 0.80 0 20 2 0 As will be understood from the description of each specific example, the present invention can be used in the process of mixing the starting materials and the solvent by using a solvent having a post-compatibility. The cation and anion in the starting material are taken up by a chimeric solvent to form a precursor in a homogeneous phase. And at a reflux temperature lower than the boiling point of the chimeric solvent (in the specific examples of the present invention, 18 〇.〇), the precursor is directly reacted to form a CIS rich in chalcopyrite crystal phase. Is a powder. Further, the method for producing a CIS-based powder of the present invention is also capable of producing a large amount of CIS-based powders due to the use of a chiral solvent; therefore, the CIS-based powder obtained by the method for producing a CIS-based powder of the present invention is more Further, a target for a sputtering system is made through a powder metallurgy process to facilitate the development of the solar cell industry. It is worth mentioning that the amount of CIS powder produced by the present invention from the specific examples 1 to 9 is about 350 g. 'Although the reaction tank 21 200932679 used in the specific examples is experimental to a dedicated type and has a volume of 2000 mi. Reaction tank; however, when the method for producing a CIS-based powder of the present invention (that is, a chemical reflux synthesis method) is carried out to produce a CIS-based powder,

用的反應槽是更換成量產型的反應槽時,其系粉末的 生成量不僅是可相對地增加;此外,於製作過程中,其製 程度易控制,再者,與溶劑熱合成法相比較之下,本發 明亦可隨著攪拌動作以增加其反應速率;因此,更有助於 太陽能電池相關產業的開發。 綜上所述,本發明CIS系粉末之製作方法及其靶材之 製作方法,不需在高溫高壓之製作條件下即可大量地製得 高純度之黃銅礦晶相的CIS系粉,而透過此量產化之製作 方法所製得的CIS系粉末更可因輕材的製作而輔助太陽能 電池相關產業的開發,確實達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍’即大凡依本發明申請:利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是- XRD能譜圖’說明本發明⑶系粉末之製作 方法之一具體例1的晶相; 圖2是一 XRD能譜圖 方法之一具體例2的晶相; 圖3是一 XRD能譜圖 方法之一具體例3的晶相; 說明本發明CIS系粉末之製作 說明本發明CIS系粉末之製作 22 200932679 圖4是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例4的晶相; 圖5是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例5的晶相; 圖6是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例6的晶相; 圖7是一 XRD能譜圖,說明由本發明該具體例6所製 得之CIS系粉末所製成之靶材的晶相; β 圖8是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例7的晶相; 圖9是一 XRD能譜圖,說明本發明CIS系粉末之製作 方法之一具體例8的晶相; 圖10是一 XRD能譜圖,說明本發明CIS系粉末之製 作方法之一具體例9的晶相; 圖11是一 XRD能譜圖,說明用來與本發明各具體例相 比較之一比較例.1的晶相;及 圖12是一 XRD能譜圖,說明用來與本發明各具體例 相比較之一比較例2的晶相。 23 200932679 【主要元件符號說明】 無When the reaction tank used is replaced with a mass production type reaction tank, the amount of the powder produced is not only relatively increased; in addition, the degree of production is easily controlled during the production process, and further, compared with the solvothermal synthesis method. In the following, the present invention can also increase the reaction rate with the stirring action; therefore, it is more conducive to the development of the solar cell related industry. In summary, the method for producing the CIS-based powder of the present invention and the method for producing the target thereof can produce a high-purity CIS-based powder of a high-purity chalcopyrite crystal phase without requiring high-temperature and high-pressure production conditions. The CIS-based powder obtained by the mass production method can assist in the development of the solar cell-related industry by the production of light materials, and indeed achieves the object of the present invention. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a crystal phase of a specific example 1 of a method for producing a powder of the present invention (3); FIG. 2 is a crystal phase of a specific example 2 of an XRD spectrum method; Fig. 3 is a crystal phase of a specific example 3 of an XRD spectrum method; illustrating the preparation of the CIS powder of the present invention. The production of the CIS powder of the present invention 22 200932679 Fig. 4 is an XRD spectrum showing the CIS of the present invention. The crystal phase of the specific example 4 of the method for producing the powder; FIG. 5 is an XRD spectrum, illustrating the crystal phase of the specific example 5 of the method for producing the CIS powder of the present invention; FIG. 6 is an XRD spectrum. A crystal phase of a specific example 6 of the method for producing a CIS-based powder of the present invention; and FIG. 7 is an XRD spectrum showing the crystal phase of a target made of the CIS-based powder obtained in the specific example 6 of the present invention. Fig. 8 is an XRD spectrum showing the crystal phase of a specific example 7 of the method for producing a CIS powder of the present invention; Fig. 9 is an XRD spectrum showing one of the methods for producing the CIS powder of the present invention. Figure 8 is a crystal phase; Figure 10 is an XRD spectrum showing the preparation of the CIS powder of the present invention. a crystal phase of a specific example 9; Fig. 11 is an XRD spectrum showing the crystal phase of Comparative Example 1. used for comparison with each specific example of the present invention; and Fig. 12 is an XRD spectrum, illustrating The crystal phase of Comparative Example 2 used to compare with each of the specific examples of the present invention. 23 200932679 [Description of main component symbols]

❿ 24❿ 24

Claims (1)

200932679 十、申請專利範圍: 1,-種cis系粉末之製作方法,包含: 於含有惰性氣體之反應槽内混合一含有cu之起 始物二一含有仏之起始物、一含有m2&lt;起始物及一敌 口 I·生冷劑’以使該礙合性溶劑於該反應槽内抓取出該等 起始物之陽離子與陰離子,並形成一呈均質相之含有 Cu、Μ丨與]之前趨物; 甘- | f ^ 八甲,該呈均質相之前趨物經迴流後進一步地反 應形成含有黃銅礦晶相的粉末,吣是選自匕、Ga,或 此等之一組合,M2是選自Se、S,或此等之一組合。 2. 依據申請專利範圍第丨項所述之CIS系粉末之製作方法 ,其中,該嵌合性溶劑是選自乙二胺、二甲基甲醯胺、 二甲基乙醯胺、二曱基亞碾、N•曱基吡咯烷、吡啶,或 此等之一組合’該含有Cu之起始物是選自CuCl、 CuCl2’2H20、CuS04,或此等之一組合;該含有%之起 始物是選自 InCl3.4H2〇、In2〇3、In(N〇3)3、Ga、GaCl3 ’或此等之一組合;該含有M2之起始物是選自以、 Na2Se、S ’或此等之一組合。 3. 依據申請專利範圍第2項所述之CIS系粉末之製作方法 ,其中,該嵌合性溶劑是二甲基曱醯胺;該含有Cu之 起始物是CuCl ;該含有%之起始物是Inci3.4H20與 Ga之一組合;該含有]y[2之起始物是se ; CuCl、 InCl3.4H2〇、Ga與Se的莫爾濃度是介於〇 9〇 : 〇 88 : 0·22· 2·20 〜1·10· 0·72: (Jig: 19〇 之間。 25 200932679 4·依據申睛專利範圍第2項所述之ciS系粉末之製作方法 ,其中,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有%之起始物是InCl3.4H2〇 ;該 含有M2之起始物是Se ; CuC卜InCl3.4H20與Se的莫 爾濃度是介於 0·90 : 1.10 : ! 9〇 〜uo : 0.90 : 2.20 之 間。 5.依據申請專利範圍第2項所述之CIS系粉末之製作方法 ’其中,該嵌合性溶劑是二曱基甲醯胺;該含有Cu之 起始物是CuCl ;該含有%之起始物是ln203與Ga之一 組合;該含有M2之起始物是se; CuCl、ln203、Ga與 Se 的莫爾濃度是介於 0.90 : 〇 88 : 〇 22 : 2.20 ~ 1.10 : 〇·72 : 0.18 : 1.90 之間。 6·依據申請專利範圍第2項所述之CIS系粉末之製作方法 ’其中’該嵌合性溶劑是二曱基曱醯胺;該含有Cu之 起始物是CuCl ;該含有%之起始物是Ιη(Ν03)3與Ga 之一組合;該含有M2之起始物是se ; CuCl、In(N〇3)3 、Ga與Se的莫爾濃度是介於0.90 : 〇 88 : 0.22 : 2.20〜 U〇 : 0.72 : 0·18 ·· 1.90 之間。 7·依據申請專利範圍第2項所述之CIS系粉末之製作方法 ’其中,該嵌合性溶劑是二曱基曱醯胺;該含有Cu之 起始物是CuCl ;該含有之起始物是inci3.4H2〇與 Ga之一組合;該含有M2之起始物是Na2Se ; CuCl、 InCl3‘4H2〇、Ga與Na2Se的莫爾濃度是介於0 90: 〇 88 :〇·22 : 2.20 〜1.10 : 0.72 : 〇·18 : 1.9〇 之間。 26 200932679 8,依據申請專利範圍第2項所述之CIS系粉末之製作方法 ,其中,該嵌合性溶劑是二甲基甲醯鞍;該含有Cu之 起始物是CuC12.2H2〇 ;該含有之起始物是 InClr4H2〇與Ga之一組合;該含有M2之起始物是Se ,CuCl2'2H2〇、InCl3.4H2〇、Ga 與 Se 的莫爾濃度是介 於 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 : 〇·18 : ! 9〇 之 間。 9.依據申請專利範圍第2項所述之CIS系粉末之製作方法 ,其中,該嵌合性溶劑是二甲基甲醯胺;該含有CU之 起始物是 CuCldHbO ;該含有 之起始物是 InClr4H2〇與Ga之一組合;該含有M2之起始物是 Na2Se ; CuC12-2H20、InCl3.4H20、Ga 與 Na2Se 的莫爾 濃度是介於 0.90 : 0.88 : 0.22 : 2.20 〜1.10 : 0.72 : 0,18 :1.90之間。 1 〇·依據申請專利範圍第2項所述之CIS系粉末之製作方法 ,其中’該嵌合性溶劑是乙二胺;該含有Cu之起始物 是CuCl ;該含有之起始物是InCl3.4H20與Ga之一 組合;該含有M2之起始物是Se; CuC卜InCl3.4H20、 Ga與Se的莫爾濃度是介於0.90 : 0.88 : 0,22 : 2.20〜 1.10 : 0.72 : 0·18 : 1.90 之間。 11.依據申請專利範圍第2項所述之CIS系粉末之製作方法 ,其中’該嵌合性溶劑是乙二胺;該含有Cu之起始物 是CuC12_2H2〇;該含有%之起始物是InCi3.4H2〇與 Ga之一組合;該含有M2之起始物是se ; CuC12.2H2〇、 27 200932679 InClr4H20、Ga與Se的莫爾濃度是介於〇 9〇 : 〇 88 : 0.22 : 2.20 ~ 1.10 : 〇·72 : 0.18 : uo 之間。 12. 依據申請專利範圍第1項所述之CIS系粉末之製作方法 ’其中,該反應槽内的惰性氣體是選自Ν2、ΑΓ、He, 或此等之一組合;該嵌合性溶劑的使用量是介於該反應 槽之液位的50% ~ 90%之間。 13. 依據申請專利範圍第1項所述之CIS系粉末之製作方法 ^ ,其中’該反應槽内之迴流溫度是介於9(TC〜3〇(TC之間 ;該反應槽之迴流時間是介於4小時〜48小時之間。 14. 一種CIS系把材之製作方法,包含以下步驟: (a) 於一腔體内的一模具中填入如申請專利範圍第丨〜^ 項任意一項之製作方法所製得之CIS系粉末; (b) 對該腔體施予減壓以形成一淨化腔體; (c) 對該腔體内的粉體施予升溫達一預定溫度並持溫一 預定時間; Q (d)對該淨化腔體内的粉體施予升壓達一預定壓力並持 壓該預定時間,致使該CIS系粉末經由該預定溫度 及預定壓力取得粉體緻密化的能量;及 (e)移除該預定壓力並於該淨化腔體内引入惰性氣體以 冷卻該淨化腔體。 15. 依據申請專利範圍第14項所述之CIS系靶材之製作方 法,其中,該步驟(b)之淨化腔體的壓力是介於ι〇_2 ~ 10-5 Torr 之間。 16. 依據申請專利範圍第14項所述之CIS系耙材之製作方 28 200932679 法’其令’該步驟⑷之升温速率是介 °C/min之間’·該步驟⑷之㈣速率是介# C/mind〇 3 MPa/min 之間。 、】MPa/min 〜 依據巾請專利範㈣14項所述之.CIS 法,其中,該步驟⑷之預定溫度是介於5=之製作方 之間;兮丰碰又疋’丨仏C〜80(rc ❹ 之間;:牛之預定壓力是介於6〇 MPa〜180 MPa 之間。…驟(C)、⑷之預定時間是介於1小時〜8小時200932679 X. Patent application scope: 1. A method for preparing a cis-based powder, comprising: mixing a starting material containing cu in a reaction tank containing an inert gas; a starting material containing cerium, one containing m2 &lt; The starting material and an enemy port I·cooling agent' are such that the intrusive solvent picks up the cations and anions of the starting materials in the reaction tank, and forms a homogeneous phase containing Cu, lanthanum and] Previously; gan- | f ^ octa, which is a homogeneous phase before the reaction is further reacted to form a powder containing a chalcopyrite crystal phase, which is selected from the group consisting of ruthenium, Ga, or a combination thereof. M2 is selected from the group consisting of Se, S, or a combination thereof. 2. The method for producing a CIS powder according to the above application, wherein the chimeric solvent is selected from the group consisting of ethylenediamine, dimethylformamide, dimethylacetamide, and dimercapto. Sub-milling, N-decylpyrrolidine, pyridine, or a combination of these 'the starting material containing Cu is selected from CuCl, CuCl2'2H20, CuS04, or a combination thereof; the start of the content containing The substance is selected from the group consisting of InCl3.4H2〇, In2〇3, In(N〇3)3, Ga, GaCl3′ or a combination thereof; the starting material containing M2 is selected from the group consisting of Na2Se, S′ or One of the combinations. 3. The method for producing a CIS-based powder according to claim 2, wherein the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; The substance is a combination of Inci3.4H20 and Ga; the starting material containing [y][2 is se; the Mohr concentration of CuCl, InCl3.4H2〇, Ga and Se is between 〇9〇: 〇88:0· 22· 2·20 ~1·10· 0·72: (Jig: 19〇. 25 200932679 4. The method for producing a ciS powder according to the second aspect of the patent application scope, wherein the chimerism The solvent is dimercaptomethylamine; the starting material containing Cu is CuCl; the starting material containing % is InCl3.4H2〇; the starting material containing M2 is Se; CuCb InCl3.4H20 and Se The molar concentration is between 0.90: 1.10: !9〇~uo: 0.90: 2.20. 5. The method for producing a CIS powder according to the second application of the patent application scope, wherein the chimeric solvent Is a dimethyl carbamide; the starting material containing Cu is CuCl; the starting material containing % is a combination of ln203 and Ga; the starting material containing M2 is se; CuCl, ln203, Ga and Se Moore The concentration is between 0.90 : 〇88 : 〇22 : 2.20 ~ 1.10 : 〇·72 : 0.18 : 1.90. 6. The method of making the CIS powder according to item 2 of the patent application scope The solvent is dimethyl decylamine; the starting material containing Cu is CuCl; the starting material containing % is a combination of Ιη(Ν03)3 and Ga; the starting material containing M2 is se; CuCl The Mohr concentration of In(N〇3)3, Ga and Se is between 0.90: 〇88: 0.22: 2.20~ U〇: 0.72: 0·18 ·· 1.90. 7. According to the patent application scope 2 The method for producing a CIS-based powder according to the invention, wherein the chimeric solvent is dimethyl decylamine; the starting material containing Cu is CuCl; and the starting material is inci3.4H2 〇 and Ga a combination; the starting material containing M2 is Na2Se; the Mohr concentration of CuCl, InCl3'4H2〇, Ga and Na2Se is between 0 90: 〇88 : 〇·22 : 2.20 〜1.10 : 0.72 : 〇·18 : </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The starting material is CuC12.2H2〇; the starting material is InClr4H2〇 combined with one of Ga; the starting material containing M2 is Se, CuCl2'2H2〇, InCl3.4H2〇, Mo and Se molar concentration Is between 0.90 : 0.88 : 0.22 : 2.20 ~ 1.10 : 0.72 : 〇 · 18 : ! 9 〇 between. 9. The method for producing a CIS-based powder according to claim 2, wherein the chimeric solvent is dimethylformamide; the starting material containing CU is CuCldHbO; It is a combination of InClr4H2〇 and Ga; the starting material containing M2 is Na2Se; the Mohr concentration of CuC12-2H20, InCl3.4H20, Ga and Na2Se is 0.90: 0.88 : 0.22 : 2.20 〜1.10 : 0.72 : 0 , 18: 1.90. The method for producing a CIS powder according to the second aspect of the patent application, wherein the chimeric solvent is ethylenediamine; the starting material containing Cu is CuCl; and the starting material is InCl3 .4H20 is combined with one of Ga; the starting material containing M2 is Se; the Mohr concentration of CuCb InCl3.4H20, Ga and Se is 0.90 : 0.88 : 0,22 : 2.20~ 1.10 : 0.72 : 0· 18: 1.90. 11. The method for producing a CIS-based powder according to claim 2, wherein 'the chimeric solvent is ethylenediamine; the starting material containing Cu is CuC12_2H2〇; the starting material containing % is InCi3.4H2 is combined with one of Ga; the starting material containing M2 is se; the molar concentration of CuC12.2H2〇, 27 200932679 InClr4H20, Ga and Se is between 〇9〇: 〇88 : 0.22 : 2.20 ~ 1.10 : 〇·72 : 0.18 : uo. 12. The method for producing a CIS-based powder according to claim 1, wherein the inert gas in the reaction tank is selected from the group consisting of ruthenium, osmium, He, or a combination thereof; the chimeric solvent The amount used is between 50% and 90% of the level of the reaction tank. 13. The method for producing a CIS powder according to the first aspect of the patent application, wherein 'the reflux temperature in the reaction tank is between 9 (TC~3〇(TC; the reflux time of the reaction tank is Between 4 hours and 48 hours. 14. A method for manufacturing a CIS-based material, comprising the following steps: (a) filling in a mold in a cavity as in the patent application scope 丨~^ (C) applying a reduced pressure to the cavity to form a purification chamber; (c) applying a temperature rise to a predetermined temperature and holding the powder in the cavity Warming for a predetermined time; Q (d) applying a pressure to the powder in the purification chamber for a predetermined pressure and holding the predetermined pressure for causing the CIS powder to obtain powder densification energy through the predetermined temperature and the predetermined pressure And (e) removing the predetermined pressure and introducing an inert gas into the purification chamber to cool the purification chamber. 15. The method for manufacturing a CIS-based target according to claim 14, wherein The pressure in the purification chamber of step (b) is between ι〇_2 ~ 10-5 Torr. 16. According to the manufacturer of the CIS system coffin according to item 14 of the patent application scope, the method of the invention is to increase the rate of temperature increase between the steps (4) and the rate of (4) of the step (4). # C/mind〇3 MPa/min. 】 MPa/min 〜 According to the towel, please refer to the CIS method described in Item 14 (4), wherein the predetermined temperature of the step (4) is between the producers of 5=兮 碰 疋 疋 丨仏 丨仏 '丨仏 C ~ 80 (between rc ;;: the predetermined pressure of the cattle is between 6 〇 MPa ~ 180 MPa. ... The predetermined time of (C), (4) is between 1 hour ~8 hours 2929
TW97103740A 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p TWI353344B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p
US12/249,194 US20090196817A1 (en) 2008-01-31 2008-10-10 Method for making a copper indium chalcogenides powder
DE602008006346T DE602008006346D1 (en) 2008-01-31 2008-12-10 Process for the preparation of copper indium chalcogenide powder
EP08171213A EP2085362B1 (en) 2008-01-31 2008-12-10 Method for making a copper indium chalcogenides powder
AT08171213T ATE506325T1 (en) 2008-01-31 2008-12-10 METHOD FOR PRODUCING COPPER INDIUM CHALCOGENIDE POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p

Publications (2)

Publication Number Publication Date
TW200932679A true TW200932679A (en) 2009-08-01
TWI353344B TWI353344B (en) 2011-12-01

Family

ID=44865676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97103740A TWI353344B (en) 2008-01-31 2008-01-31 Method for producing copper indium chalcogenides p

Country Status (1)

Country Link
TW (1) TWI353344B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451910A (en) * 2010-10-14 2012-05-16 住友金属矿山株式会社 Method for manufacturing Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
TWI424078B (en) * 2010-10-28 2014-01-21 Heliohawk Optoelectronics Corp Method for Making Copper Indium Gallium Sulfur Sulfur Pentane Target
US8968491B2 (en) 2010-03-18 2015-03-03 Mitsubishi Materials Corporation Sputtering target and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968491B2 (en) 2010-03-18 2015-03-03 Mitsubishi Materials Corporation Sputtering target and method for producing same
TWI490348B (en) * 2010-03-18 2015-07-01 Mitsubishi Materials Corp Sputtering target and its manufacturing method
CN102451910A (en) * 2010-10-14 2012-05-16 住友金属矿山株式会社 Method for manufacturing Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
TWI424078B (en) * 2010-10-28 2014-01-21 Heliohawk Optoelectronics Corp Method for Making Copper Indium Gallium Sulfur Sulfur Pentane Target

Also Published As

Publication number Publication date
TWI353344B (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Xiong et al. Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods
Miao et al. Z-scheme Bi/Bi2O2CO3/layered double-hydroxide nanosheet heterojunctions for photocatalytic CO2 reduction under visible light
CN103920520B (en) A kind of ultrasonic assistant sedimentation synthesis of nano SnO 2/ g-C 3n 4the preparation method of composite visible light catalyst
CN103252228A (en) Preparation method of composite nanomaterial of nano ZnO and graphene nanosheet
TW201033376A (en) Method for manufacturing multi-element metal chalcogenide synthesis
CN101318814B (en) Hydrothermal reaction method for manufacturing negative temperature coefficient heat-sensitive powder
CN101519307A (en) Method for preparing CIS powder and target thereof
JP2011517652A5 (en)
CN102286007B (en) Solventless synthesis method for metal polynitrogen azole framework material
TW200932679A (en) Method for producing copper indium chalcogenides powders and method for producing the target thereof
CN103213956A (en) Preparation method of CuInSe2 with a chalcopyrite structure and CuIn1-xGazSe2 nano particles
CN106629830B (en) A kind of zinc titanate nano-material and its application in perovskite solar cell
Wei et al. Manipulating luminescence and photocatalytic activities of BiVO4 by Eu3+ ions incorporation
CN101412530B (en) Preparation with organic addition for controlling external morphology of cuprous oxide crystal
Jing et al. Enhancing Photoluminescence and Stability of Mn-Doped Cs2InCl5· H2O Microcrystals with Introduced Bi3+ Ion
Bulimestru et al. Aminopolycarboxylate Bismuth (III)-Based Heterometallic Compounds as Single-Source Molecular Precursors for Bi4V2O11 and Bi2CuO4 Mixed Oxides
CN107879376A (en) A kind of preparation method of substoichiometric tungsten oxide
Yang et al. A new two-dimensional CdII coordination polymer based on 2-(1H-imidazol-1-ylmethyl)-6-methyl-1H-benzimidazole and benzene-1, 2-dicarboxylate: synthesis, crystal structure and characterization
Roof et al. Crystal growth of two new niobates, La2KNbO6 and Nd2KNbO6: structural, dielectric, photophysical, and photocatalytic properties
CN103613381B (en) Preparation method of N-type gadolinium-doped strontium titanate oxide pyroelectric ceramic
CN107673403A (en) A kind of preparation method of layered titanic acid strontium
CN102087054A (en) Photothermal conversion absorbing membrane system and sol-gel preparation method thereof
CN102259909B (en) Preparation method of lead carbonate combustion catalyst for solid propellant
CN102351699B (en) Gulonate and preparation method thereof
CN105236468B (en) Alumina doped mesoporous zinc oxide material with uniform duct and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees