TW200924627A - Backlight module for liquid crystal displays - Google Patents

Backlight module for liquid crystal displays Download PDF

Info

Publication number
TW200924627A
TW200924627A TW097137498A TW97137498A TW200924627A TW 200924627 A TW200924627 A TW 200924627A TW 097137498 A TW097137498 A TW 097137498A TW 97137498 A TW97137498 A TW 97137498A TW 200924627 A TW200924627 A TW 200924627A
Authority
TW
Taiwan
Prior art keywords
backlight module
liquid crystal
thermoplastic material
heat sink
cooling fins
Prior art date
Application number
TW097137498A
Other languages
Chinese (zh)
Inventor
Abel Frans Pot
Dijk Hans Klaas Van
Robert Hendrik Catharina Janssen
Original Assignee
Dsm Ip Assets Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets Bv filed Critical Dsm Ip Assets Bv
Publication of TW200924627A publication Critical patent/TW200924627A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The Invention relates to a backlight module for liquid crystal displays (LCDs), the backlight module comprising a light source and a heat sink with cooling fins, wherein the heat sink including the cooling fins is made from a thermoplastic material having a through-plane conductivity in the range of 1 to 10W/mK and the cooling fine have height (H) and thickness (T) dimensions wherein the H/T ratio is at least 3: 1. The invention also relates to an LCD comprising the backlight module.

Description

200924627 九、發明說明: 【發明所屬之技術領城】 發明領域 一本發明係有關用於液晶顯示器(LCDs)的背光模組,該 5背光換組包含一光源及—散熱器具有冷却錯片等。本發明 亦有關於包含該背光模組的LCD。 發明背景 一般而言,液晶顯示器可依其光源而被分類為反射式 10 [CD,透射式LCD,及透反射式LCD。一透射式或透反射 射式LCD主要包含一液晶面板與一背光模組。該液晶面板 具有一結構包含一液晶層中夾於一對透明基板之間。該背 光模組會以一平面光源照亮該液晶面板,而使資料能在該 液晶顯示器螢幕上被清楚地看到。 15 但是’除了產生光之外,該背光模組内的光源亦會產 生熱。ϊ έ亥熱散發於邊液晶面板中時,其顯示品質會受影 響。又因為由該光源向該液晶面板的熱傳導並不見得一 致,故在該液晶面板内的液晶層會受到不同程度的加熱。 除了影響該顯示器内部的液晶分子之外,該不一致的熱分 20佈亦可能影響該液晶顯示器内部的薄膜電晶體之切換。最 後,該液晶面板的整體顯示品質將會劣化。 一種能夠限制進入液晶面板中的熱量之用於LCD的背 光模組係可由US-2005/0041411-A1專利案中得知。此已知 的背光模組包含一框,一反射板,一光源,一凹陷的透光 5 200924627 板,一擴散板,及一光學膜。在該US-2005/0041411-A1專 利案之背光模組中的光源係為一燈管、燈泡、一發光二極 體陣列或一螢光燈,且係置設於該框内。為限制進入該液 晶面板中之由該光源所產生的熱量,及造成一不一致的顯 5 示,該US-2005/0041411-A1專利案提供該背光模組具有一 凹陷的透光板,設於該光源與擴散板之間。該凹陷的透光 板係使用一透光材料例如壓克力所製成。該擴散板係組設 在該凹陷透光板上,而使一間隙形成於該擴散板與該凹陷 透光板之間。透過該間隙則熱傳導將會受阻礙,而使傳導 10 至該液晶面板的熱量會甚大地減少。 在US 2006/0227554 A1專利案中有一發光總成和使用 該發光總成的背光裝置曾被揭露。該發光總成包含一金屬 電路板及一具有鰭片的冷却模組,兩者皆由金屬製成。針 對該等冷却鰭片,銅或鋁或一化合的合金曾被提及。 15 另一背光模組係可由US-2006/0138951-A1專利案中得 知。此已知的背光模組包含一發光二極體(L E D)發光系統作 為其光源,並能被使用於LCDs中來照亮要被顯示的資訊。 此背光模組係具有一高L E D封裝密度以達到一高光密度。 該等LEDs係被包含在大致垂直於一光學面板置設的各光 20 板中。該等LEDs會發射光而大致平行於該光學面板運行, 並被該光學面板所包含的光學凸體所反射。為更加強該 LED光源的性能並增加其使用壽命,其會與一散熱器一起 使用。該光板包含一散熱核心板,及一電路層連接於該散 熱核心板。該散熱核心板可由一材料製成,其係選自介電 200924627 材料、導電材料和熱導體。除了有一圖式概略地示出一散 熱器,以其一面置設於一光學面板的背面,並具有推想是 被冷却的凸肋由該散熱器的另一面突出之外,並沒有關於 該散熱器的其它細節被揭露。 5 最近的發展包括高功率的LEDs可適用於作為螢幕之 大尺寸的LCDs之照明系統和背光單元。此等高功率的leDs 會發出大量的熱’故需要優良的散熱性能和整體顯示器的 良好熱管理能力。 另一種最近的發展係將LEDs使用於載客車輛中的 10 LCD系統内。該等所使用的[(::以會被裝設於陰極螢光燈 (CCFL)背光系統,其亦會產生熱但較泛散化而較不集中, 故會造成比LEDs更少的熱問題,且容許該等模組的框被以 塑膠來製成。但是,作為LCDs之光源的LEDs具有一些優於 傳統之CCFLs的優點,譬如增加色彩頻譜,沒有拖影效應, 15對比的改良’較長的操作壽命,及較少環境危害(沒有汞)。 的另重大優點係為每單位光輸出的低功耗。不幸的 是用於車輛中之LCD系統的背光模組係被限制於非常小 的空間内,而受限於不可能使用強制冷却來避免不良的生 2〇熱。此會更強化有關熱管理的問題。在一早先的方法中’ 使用於W述CFFL背光系統中的塑膠框係被以Is取代來改 良几ED者光系統的性能。此會產生所需的散熱性能,但 ,、'、。成重里的大為增加。另一種金屬的銅亦會顯示一良 卜但其會更重且甚至更貴。以-高熱傳導性的塑膠 ;來取代金屬並不會產生一適佳的散熱性能。此乃與其 7 200924627 它的觀察結果相符合,在許多情況下熱導性塑膠散熱器不 能提供充分的熱傳導來達到所需的熱移轉能力。 在LCD系統的背光模組中使用LEDs作為光源的逐增 趨勢係正進行中。此亦需要一有成本效益的方案來解決該 5 熱管理問題。 【發明内容】 發明概要 本發明的目的係為提供一種具成本效益的方案用於解 決LCD系統中的熱管理問題,以產生一令人滿意的散熱效 10 能,而不會實質地增加該LCD系統之重量者。 此目標已被以一用於液晶顯示器(LCDs)的背光模組來 達成,該背光模組包含至少一光源及一散熱器含有冷却縛 片作為一整體部份,其特徵在於該含有冷却鰭片的散熱器 係由一熱塑性材料製成,其具有一 1至10W/mK的穿面導熱 15 性,且該等冷却鰭片具有高度(H)和厚度(T)的尺寸,而該 Η/T的比例係為至少3 : 1。 本發明亦有關於一種包—液晶面板及該背光模組的 液晶顯示器(LCD)。 本發明係更有關於該LCD的不同使用。 20 本發明的背光模組會獨特地結合高散熱效果,低重 量,及良好的機械強度。令人驚訝地,一充分高的散熱效 果將能被達到而不須要使用具有較高熱導性的材料。依據 本發明的背光模組係更優異於某些背光模組,它們包令— 散熱器具有該等纖細的冷却鰭片,但係由一具有較高熱導 200924627 性的熱塑性材料所製成,而會使該等背光模組造成較高的 重量值和有瑕疫地成型及/或機械性不佳的冷却鰭片。加強 該等冷却^的厚度而來減少前將會導致更增加重 量,且其熱消散並不會增加至相同程度。故令該等散熱器 5由具有-較高熱傳導性的材料來製成,其效能仍會比依據 本發明之由僅具有-適度熱傳導性的熱塑性材料所製成的 背光模組之散熱器更差。 圖式簡單說明 依據本發明之背光模組的設計會藉W圖中所示的非 0 限制性實施例來舉例說明。 第1圖係為一依據本發明的LCD之截面示意圖,包含一 夜曰曰面板6及彳光模組係由以下各元件所構成:一散熱器 U又體)卜冷却鰭片2 ’ 一光導3,一咖陣列4安裝在一印刷 ^包路板(PCB)8上,及一反射板5。該液晶面板6係被一疊層 的光學薄膜7所覆蓋。 C ^ 較佳實施例之詳細說明 依據本發明的背光模組之基本構件係為至少一光源及 丨〇匕s該等冷却轉片的散熱器。該等光源會直接或間接地與 錢熱器熱接觸,以容許熱由該等光源傳導至該散熱器。 典型地,該背光模組包含一殼體以容納該等光源和其它的 可擇構件。較好是,該散熱器會構成該殼體之—整體部份。 更好是忒政熱器會構成該殼體,即,除了其散熱功效 外,該散熱器亦會形成一殼體。 9 200924627 在本發明之一較佳實施例中,該背光模組更包含一反 射板。典型地,該反射板係被設在該殼體之一底部區域。 /、主要係作為一反射表面以將光由該液晶面板偏轉導開, 俾使该等光源的利用效率能增加。 5 15 °亥光源可為一燈管,一燈泡,一發光二極體陣列,或 螢光燈,例如一直管,一 U形管,或一扁平的螢光光源。 ;上述的LEDs之一些優點,故依據本發明的背光模組之 光源較好係包含或由多數的LEDs所構成,典型安裝在一母 或P刷電路板上。該板可適當地包含一金屬本體或金屬 乂〜。在該金屬核心印刷電路板(MC-PCB)中的金屬核心能 有利地作為熱傳導構件來將熱由該等LEDs傳導至該散熱器。 現該等光源的位置而定,本發明的背光模組可更包含 光導用以擴展所發射的光而來均勻地照亮該液晶面板。 可擇地’該背光模組可包含一擴散板,亦習稱為擴散 片 υ ^其典型係設在該殼體之一上部區域’並朝該液晶面板 ° °邊擴散板通常係為一薄層的透明聚合物,譬如一亞 克力細月曰或聚碳酸酯。其可被以一或更多的光學薄膜塗層 子覆。當光直接由該光源及/或光導射出,並被反射通過該 '散板之後’該擴散板會均勻地擴散該光來形成一平面狀 的光。 Λ °亥等冷却鰭片係為該散熱器之一整體部份,而可促進 ‘、、、除了冷却轉片之外,該散熱器包—主體,其係構 ^基底而冷却鰭片會由之突出。該等鰭片的高度Η係由該 ’’、、器的主體測量算起。該散熱器亦可包含其它元件。該 20 200924627 等凡件可為結構性元件,譬如凸肋,其可能被用來例如增 加機械強度,或用以防止該散熱器在受熱時的翹曲。該等 冷却鰭片的尺寸係為本發明之一主要特徵。其高度對厚度 之比(Η/T比)必須為至少3 :】,以確保一充分的散熱效果。 °亥厚度若在其厚度不均一例如推拔形狀的情況下係指單 一韓片的平均厚度。應請瞭解該Η/T比並不須要所有的單一 韓片皆為相同,即,每—鰭片的Η/Τ比係可互不相同。若, 除了該等滿足該Η/T要件的鰭片之外,該散熱器亦包含另外 的鰭片具有—在該指定範圍之外的Η/T比,則亦無損於本發 1〇明。當然,該等另外的鰭片會對散熱效果具有一較小的貢 獻。但是’該等另外鰭片的存在並不被申請專利範圍中的 文義所排除。 β亥鰭片的“厚度”係指該鰭片的最小尺寸。該鰭片的“高 度係指由該籍片的遠端測量至該散熱器之主體表面的尺 15寸。該轉片的“長度,,係指該鰭片的第三尺寸。 β雖然該等冷却鰭片之一較高的Η/τ比能改良其散熱效 疋大致確實的’但實務上的考量亦可能限制該Η/T比。具 高度的鰭片並不會提供該散熱效果的進一步改良; 本發明的材料並不能針對非常高的雜片充分地熱傳導來將 = 至頂部。由機械穩定性和製造容㈣觀點論 j等令却鰭片的較佳Η/T比係在3: 1至1〇: 1的範圍内; 更好以咐比係在5 : 1至8 : 1的範圍内。 片:了有關生產技術和機械穩定性的原因,該等冷却鰭 】厚度係較好為〇.2mm,更好為0.3mm,又更好為 11 200924627 〇.5mm。最好是,兮 ^ °豕等冷却鰭片的厚度係約為1mm。 視Λ:光模組和完成的LCD之預定用途而定,該等冷 曰 田大呵度係較好為20mm。典型地,該等冷却鳍片 的最小長度係為10mm。 5 10 15 20 限制°亥等絕對尺寸可容許每單位表面積有大量的冷却 =片(.错片的密集列設),且因此,該散熱器之每單位重量的 T却表面積乃可較〶’而該散熱器的整體尺寸可被保持受 艮制的itb對只有有限空間來供設置該背光模組的情況會 特別地有利’譬如用於内建式LCD導航系統的背光模組, 及在載客車輛之儀錶板巾的車輛資訊處理系統等。為能最 大化-亥政熱放果’其較好係儘可能緊密地列設該等鰭片; ,是,該等.鳍片之間有-特定的最小距離係由-值來決 定’若低於魏職熱龍75可齡受擾亂 ,且該等鳍片 的表面區域將會不能再被流動的冷却空氣進入。 °亥等冷却鰭片典型係從該散熱器之主體的外表面突 出。匕們残糾自地分佈在整個散鮮上。而是較有利 係將本發明之背光模組的散熱mt成使該等冷却,讀片主 要位於它們會最有效的地方,即靠近於該等將會發出須被 消散之熱的光源處。 5亥散熱器的冷却鰭片之位置、數目和實際尺寸(包括厚 度、向度和長度)乃可由製造散熱零件之專業人士依據經驗 和慣常的測試來決定。料變數的微調係屬於所需散熱效 果及3亥散熱器之製造方法和材料所管控的其它事項。 依據本發明之背光模組的散熱器係可藉任何適於處理 12 200924627 熱塑性材料的 出成型來製備 的冷却鳍片。 習知方法來製備。較好是,該散熱器係以射 ,因該製造方法係特別適合於形成該等纖細 5200924627 IX. Description of the Invention: [Technology Leading the Invention] Field of the Invention The present invention relates to a backlight module for liquid crystal displays (LCDs), the 5 backlight group includes a light source and the heat sink has a cooling chip, etc. . The invention also relates to an LCD comprising the backlight module. BACKGROUND OF THE INVENTION In general, liquid crystal displays can be classified into reflective 10 [CD, transmissive LCD, and transflective LCDs depending on their light source. A transmissive or transflective LCD mainly comprises a liquid crystal panel and a backlight module. The liquid crystal panel has a structure including a liquid crystal layer sandwiched between a pair of transparent substrates. The backlight module illuminates the liquid crystal panel with a planar light source so that the data can be clearly seen on the liquid crystal display screen. 15 However, in addition to generating light, the light source in the backlight module also generates heat.显示 When the heat is emitted in the LCD panel, the display quality will be affected. Further, since the heat conduction from the light source to the liquid crystal panel is not uniform, the liquid crystal layer in the liquid crystal panel is heated to a different extent. In addition to affecting the liquid crystal molecules inside the display, the inconsistent heat distribution 20 may also affect the switching of the thin film transistors inside the liquid crystal display. Finally, the overall display quality of the liquid crystal panel will deteriorate. A backlight module for an LCD capable of limiting the amount of heat entering the liquid crystal panel is known from the US-2005/0041411-A1 patent. The known backlight module comprises a frame, a reflector, a light source, a recessed light transmission 5200924627 plate, a diffusion plate, and an optical film. The light source in the backlight module of the US-2005/0041411-A1 patent is a lamp, a bulb, a light-emitting diode array or a fluorescent lamp, and is disposed in the frame. In order to limit the heat generated by the light source entering the liquid crystal panel, and causing an inconsistency, the US-2005/0041411-A1 patent provides that the backlight module has a concave transparent plate disposed on The light source is between the diffusion plate. The recessed light transmissive plate is made of a light transmissive material such as acrylic. The diffusion plate is assembled on the recessed transparent plate, and a gap is formed between the diffusion plate and the concave transparent plate. Through this gap, heat conduction will be hindered, and the heat conducted to the liquid crystal panel will be greatly reduced. In the US 2006/0227554 A1 patent, a light-emitting assembly and a backlight using the same have been disclosed. The illuminating assembly comprises a metal circuit board and a cooling module having fins, both of which are made of metal. These cooling fins, copper or aluminum or a compounded alloy have been mentioned. Another backlight module is known from the US-2006/0138951-A1 patent. The known backlight module includes a light emitting diode (L E D) illumination system as its light source and can be used in LCDs to illuminate information to be displayed. The backlight module has a high L E D package density to achieve a high optical density. The LEDs are included in each of the light plates disposed substantially perpendicular to an optical panel. The LEDs emit light that runs substantially parallel to the optical panel and is reflected by the optical protrusions contained in the optical panel. To enhance the performance of the LED light source and increase its useful life, it will be used with a heat sink. The light panel includes a heat dissipation core board, and a circuit layer is coupled to the heat dissipation core board. The heat sink core plate can be made of a material selected from the group consisting of dielectric 200924627 materials, conductive materials, and thermal conductors. In addition to a diagram schematically showing a heat sink, one side of which is disposed on the back side of an optical panel, and having a convex rib which is supposed to be cooled protrudes from the other side of the heat sink, and does not relate to the heat sink Other details are revealed. 5 Recent developments include high-power LEDs that can be used as lighting systems and backlight units for LCD screens. These high-powered leDs emit a lot of heat, so they require excellent heat dissipation and good thermal management of the overall display. Another recent development is the use of LEDs in 10 LCD systems in passenger vehicles. These [[::: will be installed in the cathode fluorescent lamp (CCFL) backlight system, which will also generate heat but is more diffuse and less concentrated, thus causing less thermal problems than LEDs. And allow the modules of these modules to be made of plastic. However, LEDs as the light source of LCDs have some advantages over traditional CCFLs, such as increasing the color spectrum, no smear effect, 15 contrast improvement Long operating life, and less environmental hazards (no mercury). Another major advantage is the low power consumption per unit of light output. Unfortunately, backlight modules for LCD systems in vehicles are limited to very small Within the space, it is limited by the possibility of using forced cooling to avoid undesirable heat. This will further strengthen the problem of thermal management. In an earlier method, the plastic frame used in the CFFL backlight system It is replaced by Is to improve the performance of several ED optical systems. This will produce the required heat dissipation performance, but, ', the weight of the weight will increase greatly. The copper of another metal will also show a good but its Will be heavier and even more expensive. - High thermal conductivity The plastic does not produce a good heat dissipation performance. This is in line with its observations in 200924627. In many cases, the thermally conductive plastic heat sink does not provide sufficient heat transfer to achieve the required heat. The ability to use LEDs as a light source in the backlight module of an LCD system is in progress. This also requires a cost-effective solution to solve the 5 thermal management problem. SUMMARY OF THE INVENTION The objective is to provide a cost-effective solution for solving thermal management problems in LCD systems to produce a satisfactory heat dissipation without substantially increasing the weight of the LCD system. The backlight module comprises at least one light source and a heat sink including a cooling tab as an integral part, characterized by the heat sink with cooling fins. Made of a thermoplastic material having a thermal conductivity of 1 to 10 W/mK, and the cooling fins have a height (H) and a thickness (T), and the crucible/ The ratio of T is at least 3: 1. The invention also relates to a package-liquid crystal panel and a liquid crystal display (LCD) of the backlight module. The invention relates to different uses of the LCD. 20 The backlight module of the invention The combination will uniquely combine high heat dissipation, low weight, and good mechanical strength. Surprisingly, a sufficiently high heat dissipation effect can be achieved without the need to use materials with higher thermal conductivity. The module system is superior to some backlight modules, and they are packaged - the heat sink has the fine cooling fins, but is made of a thermoplastic material with a higher thermal conductivity 200924627, which will make the backlight The modules result in higher weight values and defensively shaped and/or mechanically poor cooling fins. Increasing the thickness of the cooling holes will result in a further increase in weight, and its heat dissipation will not increase to the same extent. Therefore, the heat sinks 5 are made of a material having a higher thermal conductivity, and the performance is still more than that of the heat sink of the backlight module made of a thermoplastic material having only moderate thermal conductivity according to the present invention. difference. BRIEF DESCRIPTION OF THE DRAWINGS The design of a backlight module in accordance with the present invention will be exemplified by a non-limiting embodiment shown in the drawings. 1 is a schematic cross-sectional view of an LCD according to the present invention, comprising a night panel 6 and a twilight module consisting of the following components: a heat sink U and a cooling fin 2 'a light guide 3 The coffee maker array 4 is mounted on a printed circuit board (PCB) 8 and a reflector 5. The liquid crystal panel 6 is covered by a laminated optical film 7. C ^ DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The basic components of a backlight module according to the present invention are at least one light source and a heat sink for the cooling fins. The light sources are in direct or indirect thermal contact with the heat exchanger to allow heat to be conducted from the light sources to the heat sink. Typically, the backlight module includes a housing to house the light sources and other optional components. Preferably, the heat sink will form an integral part of the housing. More preferably, the heat exchanger will constitute the housing, i.e., in addition to its heat dissipation effect, the heat sink will also form a housing. 9 200924627 In a preferred embodiment of the invention, the backlight module further includes a reflector. Typically, the reflector is disposed in a bottom region of one of the housings. /, mainly as a reflective surface to deflect light from the liquid crystal panel, so that the utilization efficiency of the light sources can be increased. 5 15 °H light source can be a tube, a bulb, an array of light-emitting diodes, or a fluorescent lamp, such as a straight tube, a U-tube, or a flat fluorescent light source. The above-mentioned LEDs have some advantages, so the light source of the backlight module according to the present invention preferably comprises or consists of a plurality of LEDs, typically mounted on a mother or P-brush circuit board. The plate may suitably comprise a metal body or metal 乂~. The metal core in the metal core printed circuit board (MC-PCB) can advantageously act as a heat conducting member to conduct heat from the LEDs to the heat sink. Depending on the position of the light sources, the backlight module of the present invention may further comprise a light guide for expanding the emitted light to uniformly illuminate the liquid crystal panel. Alternatively, the backlight module may comprise a diffusion plate, also referred to as a diffusion sheet, which is typically disposed in an upper region of the housing and diffuses the plate toward the liquid crystal panel. A layer of transparent polymer, such as an acrylic fines or polycarbonate. It can be coated with one or more optical film coatings. When the light is directly emitted from the light source and/or the light guide and is reflected through the 'scattering plate', the diffusing plate uniformly diffuses the light to form a planar light.冷却 ° Hai and other cooling fins are an integral part of the heat sink, and can promote ',,, in addition to the cooling fins, the radiator package - the main body, the structure of the base and the cooling fins will be Outstanding. The height of the fins is measured by the body of the device. The heat sink can also contain other components. The 20 200924627 may be a structural component, such as a rib, which may be used, for example, to increase mechanical strength or to prevent warping of the heat sink when heated. The size of the cooling fins is one of the main features of the present invention. Its height to thickness ratio (Η/T ratio) must be at least 3:] to ensure a sufficient heat dissipation. If the thickness of the sea is not uniform, such as the shape of the push, the average thickness of the single piece of Korean film is referred to. It should be noted that the Η/T ratio does not need to be the same for all single Korean films, that is, the Η/Τ ratio of each fin can be different. If, in addition to the fins satisfying the Η/T requirement, the heat sink also includes additional fins having a Η/T ratio outside the specified range, it does not detract from the present invention. Of course, these additional fins have a small contribution to the heat dissipation effect. However, the existence of such additional fins is not excluded by the text of the scope of the patent application. The "thickness" of a beta fin refers to the smallest dimension of the fin. The "height" of the fin refers to the size measured from the distal end of the tablet to the surface of the body of the heat sink. The "length" of the tab refers to the third dimension of the fin. Although the higher Η/τ ratio of one of the cooling fins improves the heat dissipation effect, the practical consideration may limit the Η/T ratio. A fin having a height does not provide a further improvement in the heat dissipation effect; the material of the present invention does not adequately conduct heat for very high chips to bring = to the top. From the viewpoint of mechanical stability and manufacturing capacity (4), the preferred Η/T ratio of the fins is in the range of 3:1 to 1〇:1; more preferably, the ratio is 5:1 to 8: Within the scope of 1. Film: For reasons of production technology and mechanical stability, the thickness of the cooling fins is preferably 〇.2mm, more preferably 0.3mm, and even more preferably 11 200924627 〇.5mm. Preferably, the thickness of the cooling fins such as 兮 ^ ° 系 is about 1 mm. Depending on the intended use of the optical module and the completed LCD, the cold field is preferably 20mm. Typically, the minimum length of the cooling fins is 10 mm. 5 10 15 20 Restrictions The absolute dimensions such as °H allow for a large amount of cooling per piece of surface area (the dense arrangement of the pieces), and therefore, the T surface area per unit weight of the heat sink is comparable to that of ' The overall size of the heat sink can be maintained in a controlled manner. It is particularly advantageous for a limited space to provide the backlight module, such as a backlight module for a built-in LCD navigation system, and Vehicle information processing system for dashboards of passenger vehicles, etc. In order to be able to maximize - the Hezheng heat-receiving fruit's better to arrange the fins as closely as possible; that is, the specific minimum distance between the fins is determined by the - value Below the Wei Hot Roll 75, the age is disturbed, and the surface area of the fins will no longer be able to enter by the flowing cooling air. Cooling fins such as °H are typically protruded from the outer surface of the body of the heat sink. We are remnant and rectified from the ground. Rather, it is advantageous to have the heat dissipation mt of the backlight module of the present invention such that the readings are primarily located where they would be most effective, i.e., near the source of light that would emit heat to be dissipated. The location, number, and actual dimensions (including thickness, dimension, and length) of the cooling fins of the 5H radiator can be determined by the professionals who manufacture the heat sink parts based on experience and routine testing. The fine-tuning of the material variables is a matter of the required heat dissipation effect and other matters governed by the manufacturing method and materials of the 3H radiator. The heat sink of the backlight module according to the present invention is a cooling fin prepared by any molding suitable for processing 12 200924627 thermoplastic material. Conventional methods are used to prepare. Preferably, the heat sink is shot, as the manufacturing method is particularly suitable for forming the slender 5

10 型性以製備該散熱器之熱塑性材料的可射出成 敎塑性性材料減有良好的流動性f。較好是,該 ‘才枓具有-至少麵的螺旋流動長度,更好為至少 80mm > ^ 又t馮至夕 w 奸為至少靡咖。該螺旋流動長度係如下地被 :壯將^叫熱祕㈣以—尺寸為28GXl5Xl_的長 二法、道孔穴中,而該材料所造成的流動長度即為其螺 卜動長度4材料係使用一22mm Engel 45BL/d= 19的射 出成里機來射出,其在缸筒溫度係高於該主聚合物成分的 炼』’而模溫為120C,且射出壓力為i〇c)Mpa的條件 下,會具有一38Cm3的理論射出體積。The type 10 is an ejectable plastic material which is a thermoplastic material for preparing the heat sink, and has a good fluidity f. Preferably, the ‘枓枓 has at least a surface spiral flow length, preferably at least 80 mm > ^ and t von 夕 w w 为 is at least 靡 。. The spiral flow length is as follows: the strong is called the heat secret (four) to the length of the 28GXl5Xl_ long two method, the hole hole, and the flow length caused by the material is the screw length 4 material system use A 22mm Engel 45BL/d=19 injection machine is used to shoot, and the cylinder temperature is higher than that of the main polymer component, and the mold temperature is 120C, and the injection pressure is i〇c)Mpa. Next, there will be a theoretical injection volume of 38 Cm3.

見X老光抵組的預定用途而定,該背光模組可能需要 特定的機n尤其是包含該等纖細冷却鰭#的散熱器 者八垔地,该散熱器係由一熱塑性材料製成,其具有一 抗拉強度為至少伽Pa,較好為至少60MPa,且更好為至少 70MPa。典型地,該散熱器係由一熱塑性材料製成,其具 有斷W伸長率為至少〇·5%,較好為至少1 .〇%,更好為至 20少1.5%,且最好為至少18%。典型地該散熱器係由一熱 』性材料製成’其具有一楊氏模數(Young’s modulus)為至少 6000MPa $好為至少9QGQMpa。抗拉模數抗拉強度及破 裂伸長率係依據18〇 527在23。〇)及51]1]11/111丨11來決定;該要被 測試之熱塑性材料的乾料粒會被射出成型來形成符合IS Ο 13 200924627 527類型1A之具有4mm厚度之用於拉伸測試的測試條。 該散熱器的熱塑性材料具有一穿面熱傳導率在i至 10W/mK的範圍内,較好為1至5W/mK,更好為1至4\v/mK, 且最好為2至3W/mK。其中,該熱傳導率係由以雷射閃光技 5 術依據ASTM E1461-01在80x80x2mm的射出成型樣本上於 穿透平面方向所測得的熱擴散率(D),和鬆密度(p),及比熱 塑性(Cp),在2(TC,使用“聚合物測試’’(“Polymer Testing” 2005, 628-634)中所述的方法來被獲得。 該熱塑性材料的熱傳導率應請瞭解為一種材料性質, 10 其可為與走向有關的,且其亦有關於成分的歷史。為決定 一熱塑性材料的熱傳導率,該材料必須被成形為一適於進 行熱傳導率測量的形狀。視該熱塑性材料的組成成分,用 於該測量的形狀類型,其成形製程以及該成形製程中所施 用的條件等而定,該塑膠成分可能顯示出一各向相同的熱 15傳導率,或一各向相異即與走向相關的熱傳導率。假使該 熱塑性材料係被成形為一扁平的矩形形狀’則該與走向相 關的熱傳導率一般可用三個參數來描述:八1 ’八//及八±。 是該穿透平面熱傳導率,Λ//係為沿最大的平面中熱傳導率 之方向的平面中熱傳導率,而Λ±係為沿最小的平面中熱傳 20導率之方向的平面中熱傳導率。請注意該穿透平面熱傳導 率在別處亦被示為“橫貫,,熱傳導率。 該等參數的數目可被滅成二個或甚至一個,乃取決於 該熱傳導率是否僅在該三個方向之一者係為各向相異的, 或甚至各向相同的。假使/熱塑性材料在—定向具有熱導 14 200924627 性纖維之—主要的單方向走向,則Λ"會比八±更高甚多,而 Λ±可能非常接近或甚至等於Λ。假使一熱塑性材料在具有 X板之平面定向的平面中具有一板狀粒子的主要平行走 向則6亥塑膠成分可能顯示一各向相同的平面中熱傳導 5率,即八〃等於八±。假使一熱塑性材料具有一整體各向相同 的熱傳導率,則Λι、Λ//、及Λ±皆全部相等,且相同於各向 相同的熱傳導率八。 要測量Λ時,尺寸為80x80x2mm的樣本會由所要測試 的材料使用一射出成型機以射出成型來製備,該成型機設 10有一方形模具有適當的尺寸,並有一80mm寬及imm高的薄 閘a又在s亥方形模的一面上。該lmm厚之射出成型的板片之 熱擴散率D、密度(p)和熱容量(Cp)將會被決定。該熱擴散 率係依據ASTM E1461-01以Netzsch LFA 447雷射閃光設備 穿透平面(D」)來決定。Depending on the intended use of the X-rays, the backlight module may require a specific machine, especially a radiator containing the slim fins #, which is made of a thermoplastic material. It has a tensile strength of at least gamma Pa, preferably at least 60 MPa, and more preferably at least 70 MPa. Typically, the heat sink is made of a thermoplastic material having a W elongation of at least 〇·5%, preferably at least 〇%, more preferably at least 1.5%, and most preferably at least 18%. Typically the heat sink is made of a thermoplastic material having a Young's modulus of at least 6000 MPa $, preferably at least 9 QGQMpa. Tensile modulus tensile strength and elongation at break are based on 18〇 527 at 23. 〇) and 51]1]11/111丨11 to decide; the dry granules of the thermoplastic material to be tested will be injection molded to form a tensile test corresponding to IS Ο 13 200924627 527 Type 1A with a thickness of 4 mm Test strip. The thermoplastic material of the heat sink has a surface thermal conductivity in the range of i to 10 W/mK, preferably 1 to 5 W/mK, more preferably 1 to 4/v/mK, and most preferably 2 to 3 W/ mK. Wherein, the thermal conductivity is a thermal diffusivity (D) and a bulk density (p) measured by a laser flash technique in accordance with ASTM E1461-01 on an 80 x 80 x 2 mm injection molded sample in a plane of penetration plane, and Specific thermoplastic (Cp), obtained at 2 (TC, using the method described in "Polymer Testing" 2005 (628-634). The thermal conductivity of the thermoplastic should be understood as a material Properties, 10 which may be related to the direction, and which also relates to the history of the composition. To determine the thermal conductivity of a thermoplastic material, the material must be shaped into a shape suitable for thermal conductivity measurement. The composition, the type of shape used for the measurement, the forming process and the conditions applied in the forming process, etc., the plastic component may exhibit an identical thermal 15 conductivity, or an anisotropy The thermal conductivity associated with the trend. If the thermoplastic material is shaped into a flat rectangular shape, then the thermal conductivity associated with the trend can generally be described by three parameters: 八 1 '8// and 八±. The through-plane thermal conductivity, Λ// is the thermal conductivity in the plane along the direction of thermal conductivity in the largest plane, and Λ± is the thermal conductivity in the plane along the direction of heat transfer in the smallest plane. Please note that the through-plane thermal conductivity is also shown elsewhere as "transverse, thermal conductivity. The number of such parameters can be extinguished into two or even one, depending on whether the thermal conductivity is only in the three directions. One is different, or even the same. If the thermoplastic material is oriented in a direction that has a thermal conductivity, the main one-way trend, then Λ" will be much higher than eight ± And Λ± may be very close or even equal to Λ. If a thermoplastic material has a predominantly parallel course of plate-like particles in a plane oriented with the plane of the X-plate, the 6 HM plastic component may exhibit heat conduction in an isotropic plane. 5 rate, that is, eight turns equal to eight ±. If a thermoplastic material has an overall uniform thermal conductivity, then Λι, Λ//, and Λ± are all equal, and the same as the same heat transfer 8. When measuring Λ, a sample of size 80x80x2mm will be prepared from the material to be tested using an injection molding machine for injection molding. The molding machine 10 has a square mold of appropriate size and has a width of 80 mm and an height of imm. The thin gate a is again on one side of the square mold. The thermal diffusivity D, density (p) and heat capacity (Cp) of the 1 mm thick injection molded sheet will be determined. The thermal diffusivity is based on ASTM E1461. -01 is determined by the Netzsch LFA 447 laser flash device penetration plane (D").

15 該等板片的熱容量(CP)係藉使用同樣的Netzsch LFA 447雷射閃光5又備’並利用Nunes d〇s Santos, P. Mummery and A. Wallwork, Polymer Testing 14 (2005), 628-634中所述的程序來相較於一具有已知熱容量的參考 樣本(Pyroceram 9606)而被決定。由該等熱擴散率(D )、密 20度(P)和熱容量(Cp),則該等成型板片的熱傳導率將會依下 列公式沿-垂直於該等板片之平面的方向(Λ)來被決定: Λ = D xpxCp 典型地,该散熱器的熱塑性材料包含一熱塑性聚合物 與一熱傳導性填料。 15 200924627 適合的熱塑性聚合物係為一非結晶的、半結晶的、或 一液晶聚合物,一似橡膠彈性物,或其組合物。液晶聚合 物會較適佳,因其有高度結晶本性,且能為該填料提供一 良好基質。液晶聚合物之例乃包括熱塑性芳香族聚酯。 5 能被使用於該基質的適當熱塑性聚合物係例如:聚乙 烯、聚丙烯、丙烯酸、丙烯腈、乙烯、聚碳酸酯、聚酯、 聚醯胺、聚苯硫化物、聚苯氧化物、聚颯、聚丙烯酸酯、 聚醯亞胺、聚醚***酮、聚醚醯亞胺、及其混合物和共聚物。 適當的熱塑性彈性物包括例如:苯乙烯丁二烯共聚 10 物,聚氯丙烯,亞硝酸鹽橡膠,丁基橡膠,聚硫化物橡膠, 乙烯丙烯三元共聚物,聚矽氧烷(矽酮),及聚胺酯等。 較好是,該熱塑性聚合物係選自下列組群:聚酯、聚 醯胺、聚苯硫化物、聚苯氧化物、聚颯、聚丙烯酸酯、聚 醯亞胺、聚醚***酮、聚醚醯亞胺、及其混合物和共聚物。 15 適當的聚醯胺包括非結晶和半結晶的聚醯胺。適當的 聚醯胺係為精習於該領域之人士所習知的所有聚醯胺類, 包含可熔化處理的半結晶和非結晶性聚醯胺。依據本發明 之適當的聚醯胺之例係為脂肪族聚醯胺,比如PA-6, PA-n,PA-12,PA-4,6,PA-4,8,PA-4,10,PA-4,12, 20 PA-6,6,PA-6,9,PA-6,10,PA-6,12,PA-10,10,PA-12, 12,PA-6/6,6-共聚醯胺,PA-6/12-共聚醯胺,ΡΑ-6Π1-共 聚醯胺,PA-6,6/11-共聚醯胺,PA-6,6/12-共聚醯胺, PA-6/6,10-共聚酸胺,PA-6,6/6,10-共聚酸胺,PA-4, 6/6-共聚醯胺,PA-6/6,6/6,10-EEE元共聚醢胺,及由1,4- 16 200924627 壞己烷二羧酸及2,2,4-和2,4,4-三甲基己二胺,芳香族聚醯 胺#所獲得的共聚醞胺’例如PA-6,1,pa-6,1/6,6-共聚 醯胺 ’ PA-6,T ’ PA-6 ’ T/6-共聚醯胺,pA_6 ’ τ/6,6 共聚 醯胺,ΡΑ-6 ’ 1/6,Τ-共聚醯胺,ΡΑ_6,6/6,τ/6,1共聚醯 5 月女,ΡΑ-6,Τ_2_ΜρΜ〇Τ-共聚酿胺(2_MpMDT-2-甲基戊二 胺),A-9T ;由對一狄酸,2,2,4_和2,4,4_三甲基己二胺所獲 知的共聚醯胺,由異酞酸,月桂内醯胺和3,5_二甲基_4,4_ 二胺基-二環己甲賴獲得的共聚酿胺;由異酜酸,壬二酸 及/或癸二酸和4,4_二胺基二環己甲燒所獲得的共聚酿胺; 10由己内醯胺’異酞酸及/或對一醜酸和认工胺基二環己甲 烧所獲得的共聚醯胺;Φ己内醯胺,魏酸及/或對_狄酸和 異佛爾酮二賴觀的絲賴;由級酸及/或對-酜酸及 /或其它芳香《脂肪族二紐,可擇姚基置換的環己二 胺和烧基置換的4,4-二胺基二環己胺所獲得的共聚酿胺;以 15 及前述之聚醯胺的共聚醯胺和混合物等。 更好是,該熱塑性聚合物包含—種半結晶聚醯胺。半 結晶聚醯胺的優點係具有良好的熱性質和填模特性。又較 好是,該熱塑性聚合物包含一種半結晶聚醯胺,其熔點係 為至少200°C,更好為至少22CTC、24(TC或甚至26〇t,且 20最好為至少280°C。具有較高熔點的半結晶聚醯胺乃具有熱 性質會更改良的優點。於此所述的熔點應請瞭解係藉dsc 以5°C的加熱速率所測得之落在熔解範圍内並顯示出最高 熔解速率時的溫度。較好該半結晶聚醯胺係選自下列組 群:PA-6 ’ PA-6 ’ 6 ’ PA—6,1〇,PA_4,6,PA_U,pA l2 , 17 200924627 PA-12 ’ 12,PA-6,1,PA_6,τ,PA_6 , τ/6,6_共聚酿胺, PA-6 ’ T/6-共聚醯胺,PA_6/6,6_共聚醯胺,pA 6,6/6, T/6 ’ 1-共聚酸胺 ’ PA-6,τ/2-MPMDI-共聚醯胺,PA-9,τ, PA-4,6/6-共聚醯胺,及前述之聚醯胺的混合物和共聚醯 胺。更好是,PA-6,卜 ΡΑ_6,τ,PA_6,6,pA 6,6/6τ, PA-6 ’ 6/6 ’ T/6 ’ 1-共聚醯胺 ’ pA_6,T/2_MpMDT 共聚醯 胺’ PA-9 ’ T ’ PA-4,6或其混合物或共聚酿胺係被選作該 聚酿胺。又更好是,該半結晶聚醯胺包含pA_4,6。 10 15 20 在本發明的意義中’ 一“熱傳導性填料,,乃包含任何能 被散佈於該熱籠聚合財,且纽㈣熱塑性成分之孰 傳導率的材料。該熱傳導性填充材料具有一至少彻她的 本負…、傳導率’較好為至少1〇w/mK。熱傳導性填料的非限 :例乃包括.氮化硼、氮化矽 '氮化鋁、氧化鋁、氧化鈣、 减鈦、氧化鋅、碳材料譬如石墨、膨脹的石墨 '碳黑、 紹纖維例如'歷月和硬土類的碳纖維;陶究纖維和金屬例如 5鎂H銅。该填料顆粒可具有任何形狀,例如它 們可呈球體、橢破㉟ n 體、,、田片 '細條、多面體、和纖維包括 ^糸等之形狀。不同的填充材料和形狀之齡物亦可被使 熱傳導性填料係為氮化硼及/或石墨。 傳導它因素之外’視所擇的熱傳導性填料本身的熱 ,赦湖、Χ最後的熱塑性材料之所需物理性質而定,依據 料包括填料和其它選擇的成分之總重量,該: 性填^典型包含㈣㈣,較好為15至偏%的熱傳導 18 200924627 用以製造本發明的背光模組之散熱器的熱塑性材料, 除了該熱塑性聚合物和熱導性填料之外,亦可包含其它的 成分,於此稱為添加劑。 至於添加劑,該熱塑性材料可包含精習於該技術者所 5 習知之慣常使用於聚合物成分的任何輔助添加劑。較好 是,該等其它添加劑不會有損於本發明,或不會損及太大 程度。一添加劑是否適用於本發明的散熱器中,可由精習 製造用於散熱器之聚合物成分的專業人士以慣常的實驗和 簡單的測試來決定。此等其它添加劑尤其包括不考慮熱傳 10 導性的其它填料,譬如非傳導性的補強填料;色素;分散 助劑;處理助劑例如潤滑劑和脫模劑等;衝擊修正劑;塑 化劑;結晶化加速劑;成核劑;UV穩定劑;抗氧化劑;及 熱穩定劑。尤其是,該非傳導性填料包含非傳導性無機填 料。適合用作非傳導性無機填料者係為所有的填料,譬如 15 補強及延展填料,其乃為精習該技術者所習知,例如石綿、 雲母、黏土、鍛燒的黏土、撲粉、矽酸鹽比如鈣矽石和二 氧化矽,尤其是玻璃纖維。在本文中,“非熱傳導性”或“非 傳導性”係用來描述該填料具有一小於5 W/mK的本質熱傳 導率,而可使該等材料區別於上段所述的熱傳導性填料。 20 應請瞭解各種該等熱傳導性填料亦會具有一些補強效果。 但是,它們的熱傳導率令它們被分類成本發明之意義中的 熱傳導性填料。 在一較佳實施例中,該散熱器的熱塑性材料包含玻璃 纖維,依據該熱塑性材料包括填料和其它選擇成分的總重 19 200924627 量,典型有5至20wt%的玻璃纖維。 本發明亦有關一種液晶顯示器(LCD)包含一液晶面板 及一如上所述的背光模組。 該液晶面板可為任何習知的液晶顯示面板,例如一普 5 通的主動矩陣液晶顯示器典型包含一薄膜電晶體(TFT)陣 列,一彩色滤、光基板及一液晶層。該液晶面板可選擇地包 含一或多數光學薄膜,或被其所覆蓋。該液晶面板的設計 和類型並非本發明的重點。 當然,該背光模組和該LCD兩者皆可包含未被述及的 10 其它選擇性元件,譬如支撐元件和安裝裝置。 依據本發明的LCD可被使用於例如平板電視機、電腦 螢幕、筆記型電腦、可攜式資訊終端機、個人數位助理 (PDAs)、行動電話、鐘錶、數位電視攝影機、數位相片照 像機,及載客車輛之儀錶板中的LCD系統,譬如導航系統 15 和資訊處理系統。 本案之發明人等已特別成功地解決一背光系統的散熱 性能問題,其中該CCFL背光系統係被一LED式的背光系統 所取代。前者的方法係以鋁來取代原先散熱器的塑膠材料 雖可解決生熱問題,但亦會導致重量甚大地增加。該原先 20 散熱器並無任何冷却鰭片,而可使用一高熱傳導性的塑膠 材料來妥當地製成,但是,其散熱效能並不足以防止該液 晶面板之不能被接受的發熱。以具有本發明之高度和厚度 尺寸的冷却鰭片來修正該框,並使用一依據本發明的適當 熱傳導性材料,乃可解決該發熱問題。在該修正的散熱器 20 200924627 中使用一高度熱傳導性的塑膠材料將會造成有瑕疵地成型 及/或機械性不佳的冷抑鰭片。 【_式簡單説明】 第1圖係為一依據本發明的LCD之截面示意圖,包含一 5 液晶面板6及一背光模組係由以下各元件所構成:一散熱器 (殼體)1,冷刼鰭片2,一光導3,一LED陣列4安裝在一印刷 電路板(PCB)8上,及一反射板5。該液晶面板6係被一疊層 的光學薄膜7所覆蓋。 曰 【主要元件符號說明】 i···散熱器 2.. .冷却縛片 3.. .光導 4.. ‘LED 陣列 1...勒敲哭 5. · ·反射板 6· · ·液晶面板 7.-.光學薄膜 8···印刷電路板 2115 The heat capacity (CP) of these plates is made using the same Netzsch LFA 447 Laser Flash 5 and utilizes Nunes d〇s Santos, P. Mummery and A. Wallwork, Polymer Testing 14 (2005), 628- The procedure described in 634 is determined in comparison to a reference sample (Pyroceram 9606) having a known heat capacity. From the thermal diffusivity (D), the dense 20 degree (P) and the heat capacity (Cp), the thermal conductivity of the formed sheets will be along the direction perpendicular to the plane of the sheets according to the following formula (Λ It is decided that: Λ = D xpxCp Typically, the thermoplastic material of the heat sink comprises a thermoplastic polymer and a thermally conductive filler. 15 200924627 Suitable thermoplastic polymers are a non-crystalline, semi-crystalline, or a liquid crystal polymer, a rubber-like elastomer, or a combination thereof. Liquid crystal polymers are preferred because of their high crystalline nature and provide a good substrate for the filler. Examples of liquid crystal polymers include thermoplastic aromatic polyesters. 5 Suitable thermoplastic polymers which can be used in the matrix are, for example, polyethylene, polypropylene, acrylic, acrylonitrile, ethylene, polycarbonate, polyester, polyamine, polyphenyl sulfide, polyphenyl oxide, poly Bismuth, polyacrylate, polyimide, polyetheretherketone, polyetherimine, and mixtures and copolymers thereof. Suitable thermoplastic elastomers include, for example, styrene butadiene copolymer 10, polychloropropylene, nitrite rubber, butyl rubber, polysulfide rubber, ethylene propylene terpolymer, polyoxyalkylene (fluorenone). , and polyurethane and so on. Preferably, the thermoplastic polymer is selected from the group consisting of polyester, polyamine, polyphenyl sulfide, polyphenylene oxide, polyfluorene, polyacrylate, polyimide, polyetheretherketone, poly Ether quinone imines, and mixtures and copolymers thereof. 15 Suitable polyamines include non-crystalline and semi-crystalline polyamines. Suitable polyamines are all polyamines well known to those skilled in the art, including melt-processable semi-crystalline and non-crystalline polyamines. Examples of suitable polyamines according to the invention are aliphatic polyamines such as PA-6, PA-n, PA-12, PA-4, 6, PA-4, 8, PA-4, 10, PA-4,12, 20 PA-6,6,PA-6,9,PA-6,10,PA-6,12,PA-10,10,PA-12, 12,PA-6/6,6 - copolyamine, PA-6/12-copolyamine, ΡΑ-6Π1-copolyamine, PA-6, 6/11-copolyamine, PA-6, 6/12-copolyamine, PA-6 /6,10-Copolymeric amine, PA-6,6/6,10-co-amine, PA-4, 6/6-copolyamine, PA-6/6,6/6,10-EEE copolymer Guanamine, and copolymerized decylamine obtained from 1,4- 16 200924627 bad hexane dicarboxylic acid and 2,2,4- and 2,4,4-trimethylhexamethylenediamine, aromatic polyamine # 'eg PA-6,1,pa-6,1/6,6-copolyamine 'PA-6, T 'PA-6 ' T/6-copolyamine, pA_6 ' τ/6,6 copolyamide , ΡΑ-6 ' 1/6, Τ-co-amine, ΡΑ6,6/6, τ/6,1 copolymer 醯5 month female, ΡΑ-6, Τ_2_ΜρΜ〇Τ-copolymerized amine (2_MpMDT-2-methyl Pentylamine), A-9T; copolymerized decylamine known from mono-dicarboxylic acid, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, from isophthalic acid, laurylamine And 3 , 5_Dimethyl-4,4-diamino-dicyclohexylcarbene obtained by copolymerization of chitosan; from isophthalic acid, azelaic acid and/or sebacic acid and 4,4-diaminobicyclohexane a copolymerized amine obtained by the smoldering; 10 a copolymerized decylamine obtained from caprolactam 'isodecanoic acid and/or a ruthenium acid and an amino dicyclohexylcarbamate; Φ caprolactam, formic acid And/or lysine and isophorone bismuth; from the acid and/or p-citric acid and / or other aromatic "aliphatic nucleus, can be substituted for the hexyl diamine Copolymerized amine obtained by calcination with 4,4-diaminodicyclohexylamine; copolymerized decylamine and mixture of 15 and the aforementioned polydecylamine. More preferably, the thermoplastic polymer comprises a semi-crystalline polyamine. The advantages of semi-crystalline polyamides are good thermal properties and model filling. Still preferably, the thermoplastic polymer comprises a semicrystalline polyamine having a melting point of at least 200 ° C, more preferably at least 22 CTC, 24 (TC or even 26 〇t, and 20 preferably at least 280 ° C The semi-crystalline polyamine with higher melting point has the advantage that the thermal properties will change well. The melting point described here should be understood to be within the melting range measured by the dsc at a heating rate of 5 °C. The temperature at which the highest melting rate is exhibited. Preferably, the semi-crystalline polyamine is selected from the group consisting of PA-6 'PA-6 ' 6 ' PA-6, 1 〇, PA_4, 6, PA_U, pA l2 , 17 200924627 PA-12 ' 12,PA-6,1,PA_6,τ,PA_6 ,τ/6,6_copolymerized amine, PA-6 'T/6-copolyamine, PA_6/6,6_copolymer Amine, pA 6,6/6, T/6 '1-copolymeric amine' PA-6,τ/2-MPMDI-copolyamine, PA-9,τ, PA-4,6/6-copolyamine And a mixture of the aforementioned polyamines and a copolymerized guanamine. More preferably, PA-6, dip-6, τ, PA_6, 6, pA 6, 6/6τ, PA-6 '6/6 'T/6 ' 1-co-amidamine 'pA_6, T/2_MpMDT copolyamine ' PA-9 ' T ' PA-4, 6 or a mixture thereof Or a copolymerized amine is selected as the polyamine. More preferably, the semicrystalline polyamine comprises pA_4, 6. 10 15 20 In the meaning of the present invention, a thermal conductive filler, A material that can be interspersed with the thermal conductivity of the heat-carrying polymer and the neodymium (T) thermoplastic component. The thermally conductive filler material has at least one of its negative..., and the conductivity 'is preferably at least 1 〇 w/mK. Non-limiting examples of thermally conductive fillers include: boron nitride, tantalum nitride 'aluminum nitride, aluminum oxide, calcium oxide, titanium minus, zinc oxide, carbon materials such as graphite, expanded graphite 'carbon black, Shao fiber, for example Carbon fibers of the calendar month and hard soil; ceramic fibers and metals such as 5 mg H copper. The filler particles may have any shape, for example, they may be spheres, ellipsoidal 35 n bodies, , field strips, thin strips, polyhedrons, And the shape of the fiber includes the shape of the crucible, etc. The different filler materials and the age of the shape may also be such that the thermally conductive filler is boron nitride and/or graphite. Conducting the factor other than the selected thermal conductive filler itself Heat, 赦湖, Χ last thermoplastic material Depending on the physical properties required, the material comprises the total weight of the filler and other selected components, which typically comprises (4) (4), preferably 15 to % by weight of heat conduction 18 200924627 for making the backlight module of the present invention The thermoplastic material of the heat sink may comprise, in addition to the thermoplastic polymer and the thermally conductive filler, other components, referred to herein as additives. As regards the additive, the thermoplastic material may comprise those skilled in the art. Any auxiliary additive commonly used in polymer compositions. Preferably, such other additives are not detrimental to the invention or are not compromised to a large extent. Whether an additive is suitable for use in the heat sink of the present invention can be determined by routine experimentation and simple testing by professionals skilled in the manufacture of polymer components for heat sinks. Such other additives include, inter alia, other fillers which do not take into account heat transfer conductivity, such as non-conductive reinforcing fillers; pigments; dispersing aids; processing aids such as lubricants and mold release agents; impact modifiers; plasticizers ; crystallization accelerator; nucleating agent; UV stabilizer; antioxidant; and heat stabilizer. In particular, the non-conductive filler comprises a non-conductive inorganic filler. Suitable for use as a non-conductive inorganic filler for all fillers, such as 15 reinforcing and ductile fillers, which are well known to those skilled in the art, such as asbestos, mica, clay, calcined clay, fluff powder, tannin Salts such as ettringite and cerium oxide, especially glass fibers. As used herein, "non-thermally conductive" or "non-conductive" is used to describe that the filler has an intrinsic thermal conductivity of less than 5 W/mK that distinguishes the materials from the thermally conductive fillers described in the above paragraph. 20 It should be understood that these various thermally conductive fillers also have some reinforcing effects. However, their thermal conductivity makes them classified as thermally conductive fillers in the sense of the invention. In a preferred embodiment, the thermoplastic material of the heat sink comprises glass fibers, typically 5 to 20 wt% of glass fibers, based on the total weight of the thermoplastic material including filler and other optional ingredients. The invention also relates to a liquid crystal display (LCD) comprising a liquid crystal panel and a backlight module as described above. The liquid crystal panel can be any conventional liquid crystal display panel. For example, a conventional active matrix liquid crystal display typically includes a thin film transistor (TFT) array, a color filter, a light substrate, and a liquid crystal layer. The liquid crystal panel optionally includes or is covered by one or more optical films. The design and type of the liquid crystal panel are not the focus of the present invention. Of course, both the backlight module and the LCD can include 10 other optional components not mentioned, such as support members and mounting devices. The LCD according to the present invention can be used, for example, in a flat panel television, a computer screen, a notebook computer, a portable information terminal, a personal digital assistant (PDAs), a mobile phone, a clock, a digital television camera, a digital photo camera, And LCD systems in the dashboard of passenger vehicles, such as navigation system 15 and information processing systems. The inventors of the present invention have particularly succeeded in solving the heat dissipation performance problem of a backlight system in which the CCFL backlight system is replaced by an LED backlight system. The former method is to replace the plastic material of the original radiator with aluminum. Although it can solve the heat generation problem, it will also lead to a very large increase in weight. The original 20 heat sink does not have any cooling fins, but can be properly fabricated using a highly thermally conductive plastic material, but its heat dissipation performance is not sufficient to prevent unacceptable heating of the liquid crystal panel. The heat generation problem can be solved by modifying the frame with cooling fins having the height and thickness dimensions of the present invention and using a suitable thermally conductive material in accordance with the present invention. The use of a highly thermally conductive plastic material in the modified heat sink 20 200924627 will result in flawlessly formed and/or mechanically poor cold fins. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a LCD according to the present invention, comprising a liquid crystal panel 6 and a backlight module composed of the following components: a heat sink (housing) 1, cold The fins 2, a light guide 3, an LED array 4 are mounted on a printed circuit board (PCB) 8, and a reflector 5. The liquid crystal panel 6 is covered by a laminated optical film 7.曰[Main component symbol description] i···heat sink 2.. Cooling tab 3.. .Light guide 4.. 'LED array 1...Looking and crying 5. · Reflector 6 · · · LCD panel 7.-. Optical film 8···Printed circuit board 21

Claims (1)

200924627 十、申請專利範圍: 1. 一種用於液晶顯示器(LCDs)的背光模組,該背光模組包含: 至少一光源; 及一散熱器含有冷却鰭片作為一整體部份; 5 其特徵在於:該散熱器包括該等冷却鰭片係由一熱 塑性材料所製成,其具有一穿透平面傳導率係在1至 10W/mK的範圍内,且該等冷却鰭片具有高度(H)和厚度 (T)尺寸,其中該Η/T比係為至少3 : 1,而該熱傳導率係 由以雷射閃光技術依據ASTM E1461-01在80x80x2mm 10 的射出成型樣本上於穿透平面方向所測得的熱擴散 (D),和鬆密度(p),及比熱(cP),在20。(:,使用在“聚合 物測試’’(“Polymer Testing” 2005,628-634)中所述的方 法來被獲得。 2. 如申清專利範圍第1項之背光模組,其中該光源包含多 15 數的發光二極體(LEDs)安裝在一印刷電路板上,較好為 一金屬核心印刷電路板(MC-PCB)。 3. 如申請專利範圍第1或2項之背光模組,更包含一光導。 4. 如申請專利範圍第1或2項之背光模組,其中該等冷却鰭 片的Η/T比係為3: 1至1〇: 1的範圍内,較好為5: n i。 20 5.如申請專利範圍第1或2項之背光模組,其中該等冷却鳍 片的厚度係為至少〇.2mm及/或其中該等冷却鰭片的高 度為最多20mm。 6 ·如申請專利範圍帛i或2項之背光模組,其中該散熱器係 被以射出成型來製備。 22 200924627 7. 如申請專利範圍第丨或2項之背光模組,其中該熱塑性材 料具有一至少6〇mm的螺旋流動長度及/或該熱塑性材 料具有一至少4〇MPa的的抗拉強度,一至少0.5%的破裂 伸長率’及一至少6〇〇〇MPa的揚氏模數(Young’s modulus) ° 8. 如申請專利範圍第1或2項之背光模組,其中該熱塑性材 料的穿透平面傳導率係在1至5^¥/1111<:的範圍内,較好為2 至 3W/mK。 9. 如申請專利範圍第1或2項之背光模組,其中該熱塑性材 料包含一熱塑性聚合物與一熱傳導性填料,及選擇性的 玻璃纖維。 10. 如申請專利範圍第9項之背光模組,其中依據該熱塑性 材料的成重量,該熱塑性材料包含5至2〇wt%的玻璃纖維。 U.—種液晶顯示器(LCD),包含一液晶面板及一依據申請 專利範圍第1至1 〇項之任一項的背光模組。 12.將申請專利範圍第11項之該液晶面板(LCD)使用於平板 電視機,電腦螢幕,筆記型電腦,可攜式資訊終端機, 個人數位助理(PDAs),行動電話,鐘錶,數位電視攝影 機’數位相片照像機,及在載客車輛之儀錶板中的 系統等之用途。 23200924627 X. Patent application scope: 1. A backlight module for liquid crystal displays (LCDs), the backlight module comprising: at least one light source; and a heat sink including cooling fins as an integral part; The heat sink includes the cooling fins made of a thermoplastic material having a through-plane conductivity in the range of 1 to 10 W/mK, and the cooling fins have a height (H) and a thickness (T) dimension, wherein the Η/T ratio is at least 3:1 and the thermal conductivity is measured in a plane of penetration through an injection molding sample of 80x80x2 mm 10 in accordance with ASTM E1461-01 by laser flash technology. The thermal diffusion (D), and bulk (p), and specific heat (cP) are obtained at 20. (:, obtained by the method described in "Polymer Testing" 2005 (628-634). 2. The backlight module of claim 1, wherein the light source comprises A plurality of LED light-emitting diodes (LEDs) are mounted on a printed circuit board, preferably a metal core printed circuit board (MC-PCB). 3. A backlight module according to claim 1 or 2, Further includes a light guide. 4. The backlight module of claim 1 or 2, wherein the cooling fins have a Η/T ratio of 3:1 to 1〇:1, preferably 5 5. The backlight module of claim 1 or 2, wherein the cooling fins have a thickness of at least 〇2 mm and/or wherein the cooling fins have a height of at most 20 mm. A backlight module as claimed in claim ii or 2, wherein the heat sink is prepared by injection molding. 22 200924627 7. The backlight module of claim 2 or 2, wherein the thermoplastic material has a spiral flow length of at least 6 mm and/or the thermoplastic material has an resistance of at least 4 MPa Strength, a rupture elongation of at least 0.5% and a Young's modulus of at least 6 MPa. 8. A backlight module according to claim 1 or 2, wherein the thermoplastic material The penetration plane conductivity is in the range of 1 to 5^¥/1111<:, preferably 2 to 3 W/mK. 9. The backlight module of claim 1 or 2, wherein the thermoplastic material comprises A thermoplastic polymer and a thermally conductive filler, and a selective glass fiber. 10. The backlight module of claim 9, wherein the thermoplastic material comprises 5 to 2% by weight based on the weight of the thermoplastic material. a glass fiber. U. A liquid crystal display (LCD) comprising a liquid crystal panel and a backlight module according to any one of claims 1 to 1. 12. Liquid crystal panel (LCD) for flat panel TVs, computer screens, notebook computers, portable information terminals, personal digital assistants (PDAs), mobile phones, clocks, digital TV cameras, digital photo cameras, and Passenger vehicle Table plate system of purposes. 23
TW097137498A 2007-10-01 2008-09-30 Backlight module for liquid crystal displays TW200924627A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07019268 2007-10-01

Publications (1)

Publication Number Publication Date
TW200924627A true TW200924627A (en) 2009-06-01

Family

ID=39144345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097137498A TW200924627A (en) 2007-10-01 2008-09-30 Backlight module for liquid crystal displays

Country Status (2)

Country Link
TW (1) TW200924627A (en)
WO (1) WO2009043849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400532B (en) * 2010-01-29 2013-07-01 Radiant Opto Electronics Corp Backlight module and liquid crystal display device including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313356B2 (en) * 2009-09-11 2013-10-09 旭化成ケミカルズ株式会社 Reflector for light emitting device and light emitting device
TWI542277B (en) * 2014-09-30 2016-07-11 旭德科技股份有限公司 Heat dissipation module
US11240944B2 (en) * 2019-07-16 2022-02-01 Ford Global Technologies, Llc Rear method of heat sinking screens and electronics in enclosed areas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222350A (en) * 1990-01-29 1991-10-01 Hitachi Ltd Resin-sealed semiconductor device and mounting structure thereof
US20030183379A1 (en) * 2002-03-29 2003-10-02 Krassowski Daniel W. Optimized heat sink using high thermal conducting base and low thermal conducting fins
US7205719B2 (en) * 2004-12-27 2007-04-17 Industrial Technology Research Institute Light source with LED and optical protrusions
CN1844984A (en) * 2005-04-06 2006-10-11 鸿富锦精密工业(深圳)有限公司 LED module assembly and backlight system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400532B (en) * 2010-01-29 2013-07-01 Radiant Opto Electronics Corp Backlight module and liquid crystal display device including the same

Also Published As

Publication number Publication date
WO2009043849A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
TWI418062B (en) LED light source unit
TWI324166B (en) Backlight unit having heat dissipating layer, display device having heat dissipating layer, and method for manufacturing heat dissipating layer
US7101055B2 (en) Direct back light unit with heat exchange
KR101282125B1 (en) Back-light assembly and display device having the same
US20080232134A1 (en) Replaceable LED light source device used in backlight module
CN200993712Y (en) Backlight module
TWI310858B (en) Bottom lighting type backlight module
TW200810073A (en) Light unit and liquid crystal display device having the same
CN201561339U (en) Backlight module
WO2007037605A1 (en) Led board and illumination unit having the same
TW200924627A (en) Backlight module for liquid crystal displays
TW201319194A (en) Thermally-conductive pressure-sensitive adhesive composition, thermally-conductive pressure-sensitive adhesive sheet-shaped body, method for producing the same, and electronic component
TW201020639A (en) Backlight module structure and the liquid crystal display using the same
CN104267538A (en) Efficient cooling LED backlight device
TWM361214U (en) Display
US7427148B1 (en) Light modules
US20090009974A1 (en) Display device
CN102155688A (en) Reflection plate for backlight unit and backlight unit of liquid crystal display having good thermal conductivity
JP2007042552A (en) Light source for illumination
CN102374509A (en) Liquid crystal display device, backlight module and heat radiating method thereof
CN101975376B (en) Luminous source heat-dissipation structure of backlight module
TWI412701B (en) Heat sinking sheet metal member and applications of the same
CN102606958A (en) Backlight module
KR20060082468A (en) Radiant heat sheet and backlight unit and liquid crystal display comprising the same
CN201606844U (en) LED side backlight heat sink