TW200924278A - Band-pass filter for organic substrate - Google Patents

Band-pass filter for organic substrate Download PDF

Info

Publication number
TW200924278A
TW200924278A TW96145453A TW96145453A TW200924278A TW 200924278 A TW200924278 A TW 200924278A TW 96145453 A TW96145453 A TW 96145453A TW 96145453 A TW96145453 A TW 96145453A TW 200924278 A TW200924278 A TW 200924278A
Authority
TW
Taiwan
Prior art keywords
metal piece
organic substrate
hole
substrate layer
circuit
Prior art date
Application number
TW96145453A
Other languages
Chinese (zh)
Other versions
TWI340499B (en
Inventor
Pao-Nan Li
Chi-Tsung Chiu
Original Assignee
Advanced Semiconductor Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Eng filed Critical Advanced Semiconductor Eng
Priority to TW096145453A priority Critical patent/TWI340499B/en
Publication of TW200924278A publication Critical patent/TW200924278A/en
Application granted granted Critical
Publication of TWI340499B publication Critical patent/TWI340499B/en

Links

Landscapes

  • Filters And Equalizers (AREA)

Abstract

The invention relates to a band-pass filter for organic substrate. The band-pass filter comprises a plurality of organic substrate layers and a plurality of circuit layers. The circuit layers comprise a plurality of inductors and a plurality of metal plates. The metal plates and the organic substrate layers form a plurality of capacitors. The capacitors and the inductors generate a first parasitic capacitor and a second parasitic capacitor. The above capacitors and inductors form a band-pass filter. The capacitances of the capacitors are very small so as to use in organic substrate to reduce the cost. The first parasitic capacitor and the second parasitic capacitor can improve the design of the filter, and they utilize parasitic effect without extra areas so as to reduce the total areas of the band-pass filter of the invention. Furthermore, the band-pass filter of the invention utilizes coupling between elements to create additional low-frequency and high-frequency transmission zeros to increase attenuation rate in the roll-off region.

Description

200924278 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種帶通濾波器,詳言之,係關於一種應 用於有機基板之帶通濾波器。 【先前技術】 參考圖1 ’其顯示習知τ型帶通濾波器之電路示意圖。該 習知τ型帶通濾波器10包括一第一電感丨丨、一第二電感 12、一第三電感13、一第一電容14及一第二電容15。目前 習知内埋式帶通濾波器技術主要採用低溫共燒陶兗(L〇wBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a band pass filter, and more particularly to a band pass filter applied to an organic substrate. [Prior Art] Referring to Fig. 1', a circuit diagram showing a conventional τ-type band pass filter is shown. The conventional τ-type band-pass filter 10 includes a first inductor 丨丨, a second inductor 12, a third inductor 13, a first capacitor 14, and a second capacitor 15. At present, the conventional buried bandpass filter technology mainly uses low temperature co-fired pottery (L〇w

Temperature Cofired Ceramic,LTCC)基板,主要的原因在 於LTCC基板具有多層佈局及相當薄的介電層結構,所以 月b產生的電谷值範圍大,因此,廣泛被運用於帶通據波器 設計中。習知内埋式帶通濾波器多採用兩並聯之譜振器以 一電容器耦合之(參考先前技術文獻[丨卜口])。然而運用於 目刖系統級封裝單體(System in package,SIp)的封裝技術 〇 中,LTCC有兩項難以突破的瓶頸,一為製作及開發成本 仍然遠大於傳統有機基板技術;另外,因為製程限制其 線路密度無法滿足SIP之高密度佈線需求。目前市場上之 主流封裝基板技術為有機基板,除製程技術成熟度高,成 本低以外,目前高密度的佈線能力也足以滿足微型化之 SIP設計需求。 但疋,有機封裝基板在實現多層板架構及薄介電層的製 程上仍然有其限制,蓉於内埋電容值的範圍與面積考量, 利用Pi型電路設計的帶通滤波器將使面積㉟大及實用性嚴 119428.doc 200924278 重受限。因此在有機基板上,採用不同於Pi型電路設計方 式(參考先前技術文獻[4][5]),但在製程變異上仍難以控 制。另外,有部分公司開始發展内埋高介電係數材料於有 機基板中,以提供足夠電容值供電路設計使用,目前已有 量產化之商品出現(參考先前技術文獻[6][7])。然而,内埋 高介電係數材料製程仍受限於開發成本及材料特性(參考 先前技術文獻[8] [9]),所以仍然無法廣泛被運用。 因此,有必要提供一種創新且具有進步性之應用於有機 基板之帶通濾波器,以解決上述問題。 先前技術文獻: 1. H.S. Song, and Y.S. Lee, UA miniaturized 2.4 GHz band multi-layer bandpass filter using capacitively loaded quarter-wavelength slow-wave resonator,in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 515-518.Temperature Cofired Ceramic, LTCC) substrate, the main reason is that the LTCC substrate has a multi-layer layout and a relatively thin dielectric layer structure, so the range of electric bucks generated by the month b is large, so it is widely used in the design of the band pass filter. . Conventional buried bandpass filters are mostly coupled by a two-parallel spectrum oscillator with a capacitor (refer to the prior art document [丨卜口]). However, in the packaging technology used to witness system in package (SIp), LTCC has two bottlenecks that are difficult to break. The cost of production and development is still much larger than that of traditional organic substrate technology. In addition, because of the process Limiting the line density does not meet the high-density cabling needs of SIP. At present, the mainstream package substrate technology on the market is an organic substrate. In addition to high process maturity and low cost, the current high-density wiring capability is sufficient to meet the miniaturized SIP design requirements. However, the organic package substrate still has its limitations in the process of realizing the multilayer board structure and the thin dielectric layer. The range and area of the buried capacitor value are considered. The band pass filter designed by the Pi type circuit will make the area 35. Great and practical. 119428.doc 200924278 Heavy restrictions. Therefore, on the organic substrate, a circuit design different from that of the Pi type is used (refer to the prior art document [4] [5]), but it is still difficult to control in process variation. In addition, some companies have begun to develop embedded high-k material in organic substrates to provide sufficient capacitance for circuit design. Currently, mass-produced products have emerged (refer to the previous technical literature [6][7]. ). However, the process of embedding high-k materials is still limited by development costs and material properties (refer to the prior art literature [8] [9]), so it is still not widely used. Therefore, it is necessary to provide an innovative and progressive band pass filter applied to an organic substrate to solve the above problems. Prior Technical Literature: 1. HS Song, and YS Lee, UA miniaturized 2.4 GHz band multi-layer bandpass filter using capacitively loaded quarter-wavelength slow-wave resonator, in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp 515-518.

2. C.W. Tang, Y.C. Lin, and C.Y. Chang, "Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane, IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2112-2118, Oct. 2003. 3. C.W. Tang, ^Harmonic-suppression LTCC filter with the step-impedance quarter-wavelength open stub^, IEEE Trans. Microwave Theory Tech., vol. 52, pp. 617-624, Feb. 2004. 4. G.A. Lee, M. Megahed, and F.D. Flaviis, “Design of multilayer spiral inductor resonator filter,in Proc. 53rd Electron. Comp. Technol. Conf., 2003, pp. 452-457. 5. G.A. Lee, M. Megahed, and F.D. Flaviis,“Design of multilayer spiral 119428.doc 200924278 inductor resonator filter and diplexer for system-in-a-package,’’ in MTT-SInt. Microwave Symp. Dig., 2003, pp. 527-530. 6. L. Li, P. Bowles, L.T. Hwang, and S. Plager, S·,“Embedded passives in organic substrate for bluetooth transceiver module,in Proc. 53rd Electron. Comp. Technol. Conf., 2003, pp. 464-469. 7. L. Li, “Embedded passives in organic substrate for RF module and assembly characterization,5, in Proc. HDPO4, 2004, pp. 74-82. ^8.1.R. Abothu, P.M. Raj, D. Balaraman, V. Govind, S. Bhattacharya, M.D. Sacks, M. Swaminathan, M.J. Lance, R.R. Tummala, “Development of high-k embedded capacitors on printed wiring board using sol-gel and foil-transfer processes,” in /Voc. «5伽 £7ec加Cb/n/7. Technol. Conf., 2004, pp. 514-520. 9. D. Balaraman, P.M. Raj, R. Abothu, S. Bhattacharya, M. Sacks, M. Lance, H. Meyer, M. Swaminathan, R. Tummala, “Exploring the limits of low cost, organics-compatible high-k ceramic thin films for embedded decoupling applications,” in Proc. 55th Electron. Comp. Technol. Conf., 2005, pp. 1215-1221.8. 【發明内容】 本發明之目的在於提供一種應用於有機基板之帶通濾波 器,其包括:複數個有機基板層及複數個電路層。該等電 路層與該等有機基板層間隔設置,該等電路層包括一第一 電感線路、一第二電感線路、一第三電感線路及複數個金 屬片,該等金屬片與該等有機基板層形成一第一電容、一 ' 第二電容及一第三電容,該第一電容及該第一電感線路產 119428.doc 200924278 生弟一寄生電容;該第二電容及該第二電感線路產生一 第二寄生雷交 , 上述之電容及電感形成一帶通濾波器。 本發明帶通t、波n之料電容值非常小,可應用於有機 基板内α知省成本。該第一寄生電容及該第二寄生電容 可提升該遽波器電路設計之自由度,且該第一寄生電容及 該第二寄生電容係利用寄生效應,不需增加額外面積,以 有效地降低本發明帶通遽波器之面積。另外,本發明帶通 ^ 心二係和用元件間之麵合以造成額外之低頻及高頻傳輸 零點,增加本發明帶通濾波器之禁帶衰減率。 【實施方式】 凊參閱圖2 ’其顯示本發明之帶通濾波器之電路圖。本 發明之帶通濾波器2〇包括:一第一電感21、一第二電感 22、一第三電感23、一第一電容24、一第二電容乃、一第 一電谷26、一第一寄生電容27及一第二寄生電容28。該第 一電感21、該第二電感22、該第三電感23、該第一電容24 及該第二電容25為一習知Τ型帶通濾波器(參考圖丨)。本發 月之帶通,慮波器20另包括該第三電容26、該第一寄生電容 27及該第二寄生電容28。 參考圖3,其顯示本發明應用於有機基板之帶通濾波器 之結構示意圖。本發明應用於有機基板之帶通濾波器3〇包 括·複數個有機基板層31、32、33及複數個電路層41、 42、43、44。該等電路層41 ' 42、43、44與該等有機基板 層31、32、33間隔設置。 在本實施例中’該等有機基板層包括一第一有機基板層 119428.doc -9- 200924278 31、一第二有機基板層32及一第三有機基板層33。該等電 路層包括一第一電路層41、一第二電路層42、一第三電路 層43及一第四電路層44。其中,該第一電路層41形成於該 第一有機基板層31上,該第二電路層42形成於該第一有機 基板層31及該第二有機基板層32之間,該第三電路層43形 成於該第二有機基板層32及該第三有機基板層33之間,該 第四電路層44形成於該第三有機基板層33下。 广 該第一電路層41包括:一第一電感線路411、一第二電 感線路412、一第三電感線路413、一第一金屬片414及一 第二金屬片415。該第一金屬片414、該第二金屬片415及 該第三電感線路41 3電性連接。 該第二電路層42包括一第三金屬片421及一第四金屬片 422。該第三金屬片421及該第四金屬片422分別與該第一 電感線路411及該第二電感線路412電性連接。在本實施例 中’該第一有機基板層31另包括一第一貫穿孔311及一第 i..i 二貫穿孔312,該第一貫穿孔311及該第二貫穿孔312貫穿 該第一有機基板層31,且該第一貫穿孔311及該第二貫穿 孔3 12具有導電性材質塗覆於該第一貫穿孔311及該第二貫 穿孔3 12之側壁,使得該第一貫穿孔3丨丨用以電性連接該第 二金屬片421與該第一電感線路411,該第二貫穿孔3以用 以電性連接該第四金屬片422與該第二電感線路412。 配合參考圖2及圖3,圖3之該第一電感線路411可等效為 圖2之第一電感(Lsel)21,該第二電感線路412可等效為第 , 一電感(Lse2)22,該第三電感線路413可等效為第三電感 119428.doc -10- 200924278 (Lsh)23。圖3之該第一金屬片414、該第一有機基板層31及 該第二金屬片421可等效為圖2之該第一電容(Csel)24,該 第一金屬片415、該第一有機基板層31及該第四金屬片422 可等效為該第二電容(Cse2)25。 該第二電路層43包括一第五金屬片431,該第五金屬片 431與該第—金屬片414、該第二金屬片415及該第三電感 線路41 3電性連接。在本實施例中,該第一有機基板層3 1 及該第二有機基板層32另包括一第三貫穿孔3 13,該第三 貫穿孔313貫穿該第一有機基板層31及該第二有機基板層 32’且該第三貫穿孔313具有導電性材質塗覆於該第三貫 穿孔313之側壁,使得該第三貫穿孔313用以電性連接該第 五金屬片431與該第一金屬片414、該第二金屬片415及該 第三電感線路413。 該第四電路層44包括一第六金屬片441、一第七金屬片 442及一第八金屬片443,該第六金屬片4“及該第七金屬 片442電性連接。配合參考圖2及圖3,圖3之該第六金屬片 441、第七金屬片料2、該第三有機基板層33及該第五金屬 片431可等效為圖2之該第三電容(Csh)26。 在本實施例中,該第一有機基板層31、及該第二有機基 板層32及該第三有機基板層33另包括一第四貫穿孔314, 該第四貫穿孔3 14貫穿該第一有機基板層31、該第二有機 基板層32及該第二有機基板層33,且該第四貫穿孔314具 有導電性材質塗覆於該第四貫穿孔314之側壁,使得該第 四貫穿孔314用以電性連接該第八金屬片443與該第三電感 119428.doc -11 - 200924278 ’ 線路413。該第六金屬片441、該第七金屬片442及該第八 金屬片443接地,以提供圖2之第三電感23及第三電容26之 接地。 依據本發明實施例圖3之該等電路層結構,該第一電容 (該第一金屬片414、該第一有機基板層31及該第三金屬片 421)及該第一電感線路411可由寄生效應產生圖2之該第一 寄生電容(Cpl)26 ;該第二電容(該第二金屬片415、該第一 ^ 有機基板層31及該第四金屬片422)及該第二電感線路413 可由寄生效應產生圖2之該第二寄生電容(Cp2)27。 該第一寄生電容(CPi)26及該第二寄生電容(Cp2)27可提 升該帶通濾波器20電路設計之自由度,且該第一寄生電容 (CP1)26及該第二寄生電容(Cp2)27係利用寄生效應不需 在圖3之結構中增加額外面積,以有效地降低本發明帶通 濾波器之面積。 本發明帶通濾波器之等效電路為圖2 ’圖3之有機基板層 。 丨電路層結構係為實現該圖2之等效電路,僅為一說明實 施例。因此,本發明帶通濾波器不限於圖3之有機基板層 及電路層結構,可利用其他之有機基板層及電路層結構實 現圖2之等效電路。 本發明帶通濾波器係㈣元件間之耦合以造成額外之低 頻及高頻傳輪零點,增加本發明帶通濾波器之禁帶衰減 率。本發明帶通壚波器可應用於2 45 GHz無線區域網路 ( )仁不限於上述之應用。參考圖4,其顯示本發明 帶通/慮波器之實際電路模擬及電磁軟體模擬(EM_ 119428.doc -12- 200924278 simulation)之折返損耗曲線圖;參考圖5,其顯示本發明帶 通濾波器之實際電路模擬及電磁軟體模擬(EM-simulation) 之***損耗曲線圖。其中,曲線5 1為本發明帶通濾波器之 電磁軟體模擬之折返損耗曲線,曲線52為本發明帶通濾波 器之實際電路模擬之折返損耗曲線,曲線53為本發明帶通 /慮波器之電磁軟體模擬之***損耗曲線,曲線5 4為本發明 帶通濾波器之實際電路模擬之***損耗曲線。 由圖4及圖5顯示,本發明帶通濾波器在帶通頻率内具有 約1.5 dB之***損耗及最大15 dB之折返損耗。因此,本發 明帶通濾波器可應用於有機基板,且在嚴格之尺寸限制下 亦能達到上述之電路效能。 惟上述實施例僅為說明本發明之原理及其功效,而2. CW Tang, YC Lin, and CY Chang, "Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane, IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2112-2118, Oct. 2003 3. CW Tang, ^Harmonic-suppression LTCC filter with the step-impedance quarter-wavelength open stub^, IEEE Trans. Microwave Theory Tech., vol. 52, pp. 617-624, Feb. 2004. 4. GA Lee , M. Megahed, and FD Flaviis, "Design of multiple spiral inductor resonator filter, in Proc. 53rd Electron. Comp. Technol. Conf., 2003, pp. 452-457. 5. GA Lee, M. Megahed, and FD Flaviis, "Design of multilayer spiral 119428.doc 200924278 inductor resonator filter and diplexer for system-in-a-package,'' in MTT-SInt. Microwave Symp. Dig., 2003, pp. 527-530. 6. L. Li, P. Bowles, LT Hwang, and S. Plager, S., "Embedded passives in organic substrate for bluetooth transceiver module, in Proc. 53rd Electron. Comp. Technol. Conf., 2003, pp. 464-469. 7 L. Li, “Embedded p Assives in organic substrate for RF module and assembly characterization,5, in Proc. HDPO4, 2004, pp. 74-82. ^8.1.R. Abothu, PM Raj, D. Balaraman, V. Govind, S. Bhattacharya, MD Sacks , M. Swaminathan, MJ Lance, RR Tummala, "Development of high-k embedded capacitors on printed wiring board using sol-gel and foil-transfer processes," in /Voc. «5 伽£7ec plus Cb/n/7. Technol. Conf., 2004, pp. 514-520. 9. D. Balaraman, PM Raj, R. Abothu, S. Bhattacharya, M. Sacks, M. Lance, H. Meyer, M. Swaminathan, R. Tummala, "Exploring the limits of low cost, organics-compatible high-k ceramic thin films for embedded decoupling applications," in Proc. 55th Electron. Comp. Technol. Conf., 2005, pp. 1215-1221.8. The purpose of the invention is to provide a band pass filter applied to an organic substrate, comprising: a plurality of organic substrate layers and a plurality of circuit layers. The circuit layers are spaced apart from the organic circuit layers, and the circuit layers include a first inductor circuit, a second inductor circuit, a third inductor circuit, and a plurality of metal sheets, the metal sheets and the organic substrates The layer forms a first capacitor, a 'second capacitor and a third capacitor, the first capacitor and the first inductor circuit produce a parasitic capacitance; the second capacitor and the second inductor line generate A second parasitic thunder, the capacitance and inductance described above form a bandpass filter. The material of the band pass t and the wave n of the invention has a very small capacitance value, and can be applied to an organic substrate to save cost. The first parasitic capacitance and the second parasitic capacitance can improve the degree of freedom of the chopper circuit design, and the first parasitic capacitance and the second parasitic capacitance utilize parasitic effects, and no additional area is needed to effectively reduce The area of the band pass chopper of the present invention. In addition, the present invention combines the interface between the components and the components to cause additional low frequency and high frequency transmission zeros, increasing the band gap attenuation rate of the bandpass filter of the present invention. [Embodiment] Referring to Fig. 2', a circuit diagram of a band pass filter of the present invention is shown. The band pass filter 2 of the present invention includes: a first inductor 21, a second inductor 22, a third inductor 23, a first capacitor 24, a second capacitor, a first valley 26, and a first A parasitic capacitor 27 and a second parasitic capacitor 28. The first inductor 21, the second inductor 22, the third inductor 23, the first capacitor 24, and the second capacitor 25 are a conventional 带-type bandpass filter (refer to FIG. The passband of the present month further includes the third capacitor 26, the first parasitic capacitor 27, and the second parasitic capacitor 28. Referring to Fig. 3, there is shown a schematic structural view of a band pass filter of the present invention applied to an organic substrate. The band pass filter 3 applied to the organic substrate of the present invention comprises a plurality of organic substrate layers 31, 32, 33 and a plurality of circuit layers 41, 42, 43, 44. The circuit layers 41'42, 43, 44 are spaced apart from the organic substrate layers 31, 32, 33. In the present embodiment, the organic substrate layers include a first organic substrate layer 119428.doc -9-200924278 31, a second organic substrate layer 32, and a third organic substrate layer 33. The circuit layers include a first circuit layer 41, a second circuit layer 42, a third circuit layer 43, and a fourth circuit layer 44. The first circuit layer 41 is formed on the first organic substrate layer 31. The second circuit layer 42 is formed between the first organic substrate layer 31 and the second organic substrate layer 32. The third circuit layer is formed. 43 is formed between the second organic substrate layer 32 and the third organic substrate layer 33, and the fourth circuit layer 44 is formed under the third organic substrate layer 33. The first circuit layer 41 includes a first inductor circuit 411, a second inductor circuit 412, a third inductor circuit 413, a first metal strip 414 and a second metal strip 415. The first metal piece 414, the second metal piece 415 and the third inductance line 41 3 are electrically connected. The second circuit layer 42 includes a third metal piece 421 and a fourth metal piece 422. The third metal piece 421 and the fourth metal piece 422 are electrically connected to the first inductance line 411 and the second inductance line 412, respectively. In the present embodiment, the first organic substrate layer 31 further includes a first through hole 311 and an ith i..i second through hole 312. The first through hole 311 and the second through hole 312 extend through the first The first through hole 311 and the second through hole 312 have a conductive material applied to the sidewalls of the first through hole 311 and the second through hole 312, such that the first through hole The second through hole 3 is electrically connected to the fourth metal piece 422 and the second inductance line 412. Referring to FIG. 2 and FIG. 3, the first inductor circuit 411 of FIG. 3 can be equivalent to the first inductor (Lsel) 21 of FIG. 2, and the second inductor circuit 412 can be equivalent to the first inductor (Lse2) 22 The third inductor circuit 413 can be equivalent to the third inductor 119428.doc -10- 200924278 (Lsh) 23. The first metal piece 414, the first organic substrate layer 31 and the second metal piece 421 of FIG. 3 can be equivalent to the first capacitor (Csel) 24 of FIG. 2, the first metal piece 415, the first The organic substrate layer 31 and the fourth metal piece 422 can be equivalent to the second capacitance (Cse2) 25. The second circuit layer 43 includes a fifth metal piece 431 electrically connected to the first metal piece 414, the second metal piece 415 and the third inductance line 41 3 . In this embodiment, the first organic substrate layer 3 1 and the second organic substrate layer 32 further include a third through hole 3 , the third through hole 313 penetrating the first organic substrate layer 31 and the second The third through hole 313 is electrically connected to the sidewall of the third through hole 313, and the third through hole 313 is electrically connected to the fifth metal piece 431 and the first a metal piece 414, the second metal piece 415, and the third inductance line 413. The fourth circuit layer 44 includes a sixth metal piece 441, a seventh metal piece 442, and an eighth metal piece 443. The sixth metal piece 4 and the seventh metal piece 442 are electrically connected. 3, the sixth metal piece 441, the seventh metal piece 2, the third organic substrate layer 33, and the fifth metal piece 431 of FIG. 3 can be equivalent to the third capacitor (Csh) 26 of FIG. In this embodiment, the first organic substrate layer 31, the second organic substrate layer 32, and the third organic substrate layer 33 further include a fourth through hole 314, and the fourth through hole 3 14 extends through the first An organic substrate layer 31, the second organic substrate layer 32 and the second organic substrate layer 33, and the fourth through hole 314 has a conductive material applied to the sidewall of the fourth through hole 314, so that the fourth through hole The hole 314 is electrically connected to the eighth metal piece 443 and the third inductor 119428.doc -11 - 200924278 'the line 413. The sixth metal piece 441, the seventh metal piece 442 and the eighth metal piece 443 are grounded. Providing the grounding of the third inductor 23 and the third capacitor 26 of FIG. 2. The circuits of FIG. 3 according to an embodiment of the present invention The first capacitor (the first metal piece 414, the first organic substrate layer 31 and the third metal piece 421) and the first inductor circuit 411 can generate the first parasitic capacitance of FIG. 2 by parasitic effects (Cpl The second capacitor (the second metal piece 415, the first organic substrate layer 31 and the fourth metal piece 422) and the second inductance line 413 can generate the second parasitic capacitance of FIG. 2 by parasitic effects. (Cp2) 27. The first parasitic capacitance (CPi) 26 and the second parasitic capacitance (Cp2) 27 can increase the degree of freedom in circuit design of the band pass filter 20, and the first parasitic capacitance (CP1) 26 and the The second parasitic capacitance (Cp2) 27 utilizes parasitic effects without adding extra area in the structure of FIG. 3 to effectively reduce the area of the band pass filter of the present invention. The equivalent circuit of the band pass filter of the present invention is shown in FIG. The organic substrate layer of Fig. 3. The circuit layer structure is the equivalent circuit of Fig. 2, and is only an illustrative embodiment. Therefore, the band pass filter of the present invention is not limited to the organic substrate layer and circuit layer structure of Fig. 3. , can use other organic substrate layer and circuit layer structure to achieve Figure 2 The equivalent circuit of the present invention. The bandpass filter of the present invention (4) couples between components to cause additional low frequency and high frequency transmission zeros, and increases the forbidden band attenuation rate of the bandpass filter of the present invention. The bandpass chopper of the present invention can be applied. The 2 45 GHz wireless local area network ( ) is not limited to the above applications. Referring to Figure 4, the actual circuit simulation and electromagnetic software simulation of the band pass/wave filter of the present invention is shown (EM_119428.doc -12-200924278 simulation) The fold loss loss graph; referring to FIG. 5, the actual circuit simulation of the band pass filter of the present invention and the insertion loss loss graph of the electromagnetic software simulation (EM-simulation) are shown. Wherein, curve 51 is the foldback loss curve of the electromagnetic software simulation of the band pass filter of the present invention, curve 52 is the foldback loss curve of the actual circuit simulation of the band pass filter of the present invention, and curve 53 is the band pass/wave filter of the present invention. The insertion loss curve of the electromagnetic software simulation, curve 5.4 is the insertion loss curve of the actual circuit simulation of the band pass filter of the present invention. As shown in Figures 4 and 5, the bandpass filter of the present invention has an insertion loss of about 1.5 dB and a foldback loss of up to 15 dB in the bandpass frequency. Therefore, the band pass filter of the present invention can be applied to an organic substrate, and the above circuit performance can be achieved under strict size constraints. However, the above embodiments are merely illustrative of the principles and effects of the present invention.

權利範圍應如後述之申請專利範圍所列。 【圖式簡單說明】 圖1為習知T型帶通濾波器之電路示意圖; 圖2為本發明帶通濾波器之電路示意圖;The scope of rights should be as listed in the scope of the patent application described later. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic circuit diagram of a conventional T-type band pass filter; FIG. 2 is a circuit diagram of a band pass filter of the present invention;

圖4為本發明帶通濾波器之實際電路模 蜓及電磁軟體模 擬之折返損耗曲線圖;及 圖5為本發明帶通濾波器之實際電路模 擬之***損耗曲線圖。 幾及電磁軟體模 119428.doc •13- 200924278 Γ 1 【主要元件符號說明】 10 習知T型帶通濾波器 11 第一電感 12 第二電感 13 第三電感 14 第一電容 15 第二電容 20 本發明之帶通濾波器 21 第一電感 22 第二電感 23 第三電感 24 第一電容 25 第二電容 26 第三電容 27 第一寄生電容 28 第二寄生電容 30 本發明應用於有機基 31 第一有機基板層 32 第二有機基板層 33 第三有機基板層 41 第一電路層 42 第二電路層 43 第三電路層 44 第四電路層 119428.doc -14. 200924278 311 312 313 314 411 412 413 414 415 421 422 431 441 442 443 第一貫穿孔 第二貫穿孔 第三貫穿孔 第四貫穿孔 第一電感線路 第二電感線路 第三電感線路 第一金屬片 第二金屬片 第三金屬片 第四金屬片 第五金屬片 第六金屬片 第七金屬片 第八金屬片 119428.doc -15-4 is a graph showing the actual circuit mode of the band pass filter and the fold loss loss of the electromagnetic software simulation of the present invention; and FIG. 5 is a graph showing the insertion loss of the actual circuit simulation of the band pass filter of the present invention. Several electromagnetic soft body 119428.doc •13- 200924278 Γ 1 [Main component symbol description] 10 Conventional T-type bandpass filter 11 First inductance 12 Second inductance 13 Third inductance 14 First capacitance 15 Second capacitance 20 Bandpass filter 21 of the present invention First inductor 22 Second inductor 23 Third inductor 24 First capacitor 25 Second capacitor 26 Third capacitor 27 First parasitic capacitor 28 Second parasitic capacitor 30 The present invention is applied to an organic base 31 An organic substrate layer 32 a second organic substrate layer 33 a third organic substrate layer 41 a first circuit layer 42 a second circuit layer 43 a third circuit layer 44 a fourth circuit layer 119428.doc -14. 200924278 311 312 313 314 411 412 413 414 415 421 422 431 441 442 443 first through hole second through hole third through hole fourth through hole first inductance line second inductance line third inductance line first metal piece second metal piece third metal piece fourth Metal sheet fifth metal sheet sixth metal sheet seventh metal sheet eighth metal sheet 119428.doc -15-

Claims (1)

200924278 十、申請專利範圍: ί. 一種應用於有機基板之帶通濾波器,包括: 複數個有機基板層及複數個電路層, 曰6亥#電路層與該 羊有機基板層間隔設置,該等電路層句 曰—第_電咸線 路、一第二電感線路、-第三電感線路及複數個金屬 片,該等金屬片與該等有機基板層形成—第一電容、一 第二電容及一第三電容,該第—電容 电各及该第一電感線路 π、 產生-第-寄生電容,·該第二電容及該第二電感線路產 生-第二寄生電容’上述之電容及電感形成一帶通濟波 器。 〜 2.如請求項1之帶通遽波器’其中該等有機基板層包括一 第-有機基板層、一第二有機基板層及—第三有機基板 層;該等電路層包括一第一電路層、_第二電路層、一 第三電路層及一第四電路屏.甘士 电硌層,其中’該第-電路層形成 於該第-有機基板層上’該第二電路層形成於該第一有 機基板層及該第二有機基板層之間,該第三電路層形成 於該第二有機基板層及該第三有機基板層之間,該第四 電路層形成於該第三有機基板層下。 3 ·如請求項2之帶通濾波器,其中, 該第-電路層包括該第—電感線路、該第二電感線 路、該第三電感線路、—第一金屬片及一第二金屬片, 該第-金屬片、該第二金屬片及該第三電感線路電性連 接; 該第二電路層包括一第三金屬片及-第四金屬片,該 119428.doc 200924278 第二金屬片及該第四金屬片分別與該第一電感線路及該 第二電感線路電性連接,該第一金屬月、該第一有機基 板層及該第二金屬片形成該第—電容該第二金屬片、 該第一有機基板層及該第四金屬片开^該第二電容; 々次第二電路層包括—第五金屬片,該第五金屬片與該 第金屬片、該第二金屬片及該第三電感線路電性連 接; —該第四電路層包括一第六金屬片、一第七金屬片及— 第八金屬片,該第六金屬片及該第七金屬片電性連接, 該第六金屬片、第七金屬片、該第三有機基板層及該第 五金屬片形成該第三電容。 4_ ::求項3之帶通濾波器,另包括一第一貫穿孔及一第 貝穿孔,該第一貫穿孔用卩電性連接該第三金屬片與 該第-電感線路,該第二貫穿孔用以電性連接該第四金 屬片與該第二電感線路。 5. 如請求項4之帶通爐波器,其中該第一貫穿孔及二 貫穿孔貫穿該第一有機基板層,且該第-貫穿孔㈣i -貫穿孔具有導電性材質塗覆於該第一貫穿孔及該第二 貫穿孔之側壁。 6. 如:求項3之帶通遽波器’另包括一第三貫穿孔及一第 四貝穿孔’該第三貫穿孔用以電性連接該第五金屬片盥 該第-金屬片、該第二金屬片及該第三電感線路,該第 2穿孔用以電性連接該第八金屬片與該第三電感線 119428.doc 200924278 j 7.如請求項6之帶通濾波器,其中該第三貫穿孔貫穿該第 一有機基板層及該第二有機基板層,該第四貫穿孔貫穿 該第一有機基板層、該第二有機基板層及該第三有機基 板層’且該第三貫穿孔及該第四貫穿孔具有導電性材質 塗覆於該第三貫穿孔及該第四貫穿孔之側壁。 8.如清求項3之帶通遽波器,其中,該第六金屬片、該第 七金屬片及該第八金屬片接地。200924278 X. Patent application scope: ί. A bandpass filter applied to an organic substrate, comprising: a plurality of organic substrate layers and a plurality of circuit layers, and a circuit layer of the 曰6hai# and the organic substrate layer of the sheep are spaced apart, a circuit layer sentence—a _ electric salt line, a second inductor line, a third inductor line, and a plurality of metal sheets, the metal sheets being formed with the organic substrate layers—a first capacitor, a second capacitor, and a a third capacitor, the first capacitor circuit and the first inductor line π, generating a -th parasitic capacitance, the second capacitor and the second inductor line generating a second parasitic capacitor 'the above capacitance and inductance forming a band Tongji wave device. 2. The bandpass chopper of claim 1 wherein the organic substrate layer comprises a first organic substrate layer, a second organic substrate layer and a third organic substrate layer; the circuit layers comprise a first a circuit layer, a second circuit layer, a third circuit layer, and a fourth circuit screen. The gemstone layer, wherein the 'the first circuit layer is formed on the first organic substrate layer' Between the first organic substrate layer and the second organic substrate layer, the third circuit layer is formed between the second organic substrate layer and the third organic substrate layer, and the fourth circuit layer is formed in the third Under the organic substrate layer. The band pass filter of claim 2, wherein the first circuit layer comprises the first inductance line, the second inductance line, the third inductance line, the first metal piece and a second metal piece, The first metal piece, the second metal piece and the third inductor line are electrically connected; the second circuit layer comprises a third metal piece and a fourth metal piece, the 119428.doc 200924278 second metal piece and the The fourth metal piece is electrically connected to the first inductor line and the second inductor line, respectively, the first metal moon, the first organic substrate layer and the second metal piece form the second capacitor, the second metal piece, The first organic substrate layer and the fourth metal piece open the second capacitor; the second second circuit layer includes a fifth metal piece, the fifth metal piece, the second metal piece, the second metal piece, and the The third circuit layer is electrically connected; the fourth circuit layer includes a sixth metal piece, a seventh metal piece, and an eighth metal piece, and the sixth metal piece and the seventh metal piece are electrically connected, the first Six metal pieces, seventh metal piece, the third organic Plate layer and the fifth metal sheet forming the third capacitor. 4_: the band pass filter of claim 3, further comprising a first through hole and a first through hole, the first through hole electrically connecting the third metal piece and the first inductance line, the second The through hole is configured to electrically connect the fourth metal piece and the second inductance line. 5. The band-passing wave device of claim 4, wherein the first through hole and the second through hole penetrate the first organic substrate layer, and the first through hole (four) i - through hole has a conductive material coated on the first The perforation and the side wall of the second through hole are consistently formed. 6. The bandpass chopper of claim 3, further comprising a third through hole and a fourth through hole, wherein the third through hole is electrically connected to the fifth metal piece, the first metal piece, The second metal strip and the third inductor line are electrically connected to the eighth metal piece and the third inductor line 119428.doc 200924278 j 7. The band pass filter of claim 6, wherein The third through hole penetrates the first organic substrate layer and the second organic substrate layer, and the fourth through hole penetrates the first organic substrate layer, the second organic substrate layer, and the third organic substrate layer ' The three through holes and the fourth through hole have a conductive material applied to the sidewalls of the third through hole and the fourth through hole. 8. The bandpass chopper of claim 3, wherein the sixth metal piece, the seventh metal piece, and the eighth metal piece are grounded. 119428.doc119428.doc
TW096145453A 2007-11-29 2007-11-29 Band-pass filter for organic substrate TWI340499B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096145453A TWI340499B (en) 2007-11-29 2007-11-29 Band-pass filter for organic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096145453A TWI340499B (en) 2007-11-29 2007-11-29 Band-pass filter for organic substrate

Publications (2)

Publication Number Publication Date
TW200924278A true TW200924278A (en) 2009-06-01
TWI340499B TWI340499B (en) 2011-04-11

Family

ID=44728946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145453A TWI340499B (en) 2007-11-29 2007-11-29 Band-pass filter for organic substrate

Country Status (1)

Country Link
TW (1) TWI340499B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479640B (en) * 2012-12-25 2015-04-01 Ind Tech Res Inst Chip stacking structure
CN107947752A (en) * 2017-12-29 2018-04-20 中国电子科技集团公司第四十三研究所 A kind of bandpass filter
CN111681851A (en) * 2020-05-14 2020-09-18 成都华微电子科技有限公司 High-speed differential signal input-output circuit and integrated circuit chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479640B (en) * 2012-12-25 2015-04-01 Ind Tech Res Inst Chip stacking structure
US9013892B2 (en) 2012-12-25 2015-04-21 Industrial Technology Research Institute Chip stacking structure
CN107947752A (en) * 2017-12-29 2018-04-20 中国电子科技集团公司第四十三研究所 A kind of bandpass filter
CN111681851A (en) * 2020-05-14 2020-09-18 成都华微电子科技有限公司 High-speed differential signal input-output circuit and integrated circuit chip

Also Published As

Publication number Publication date
TWI340499B (en) 2011-04-11

Similar Documents

Publication Publication Date Title
US7489914B2 (en) Multi-band RF transceiver with passive reuse in organic substrates
US8018299B2 (en) Band-pass filter circuit and multi-layer structure and method thereof
EP1536558B1 (en) Balun
CN109462000B (en) Multi-layer substrate integrated waveguide third-order filtering power divider
JP2004289760A (en) Wiring board with built-in low-pass filter
JP2004254257A (en) Wiring board with built-in low-pass filter
CN106876847A (en) Broadband band-pass filter based on interdigital coupled resonators
TW200924278A (en) Band-pass filter for organic substrate
CN113922027A (en) High-suppression dielectric filter
JP4693588B2 (en) Bandpass filter
CN115694394A (en) IPD band-pass filter chip suitable for WIFI 5G frequency channel
CN107508018A (en) A kind of multilayer ultra-wide band filter
CN111262545B (en) Low pass filter
CN216531259U (en) LTCC band-pass filter with matched ports
CN115603690B (en) N77 frequency band miniaturized filter based on IPD technology
JP2003023332A (en) Wiring board for electronic circuit
CN216873167U (en) Low-pass and band-pass duplexer based on LTCC process
Yang et al. Design of 60GHz millimetre-wave integrated SIR-MH microstrip bandpass filters on bulk CMOS
TWI323559B (en) Miniature lumped-type bandpass filters for organic ic package substrate
JP7383215B2 (en) circuit board
CN214898813U (en) LTCC band-pass filter with multilayer structure
Tang Design of a microstrip filter using multiple capacitively loaded coupled lines
CN109786906B (en) Filter based on coplanar waveguide transmission line
Chen Simulation and discussion of typical radio frequency filters
Xu et al. 34 GHz bandpass filter for low-temperature co-fired ceramic system-in-package application