TW200919778A - Light-emitting diode structure and method for manufacturing the same - Google Patents

Light-emitting diode structure and method for manufacturing the same Download PDF

Info

Publication number
TW200919778A
TW200919778A TW96140855A TW96140855A TW200919778A TW 200919778 A TW200919778 A TW 200919778A TW 96140855 A TW96140855 A TW 96140855A TW 96140855 A TW96140855 A TW 96140855A TW 200919778 A TW200919778 A TW 200919778A
Authority
TW
Taiwan
Prior art keywords
layer
emitting diode
light
buffer layer
forming
Prior art date
Application number
TW96140855A
Other languages
Chinese (zh)
Other versions
TWI355099B (en
Inventor
Jian-Jhong Chen
Chun-Liang Lin
Yan-Kuin Su
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW96140855A priority Critical patent/TWI355099B/en
Publication of TW200919778A publication Critical patent/TW200919778A/en
Application granted granted Critical
Publication of TWI355099B publication Critical patent/TWI355099B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode structure and a method for manufacturing the same are described. The method for manufacturing a light-emitting diodes structure comprises: providing a growth substrate; forming a buffer layer on the growth substrate, wherein a material of the buffer layer is oxide or nitride, and a surface of the buffer layer is set with a first pattern structure; forming an illuminant epitaxial structure on the surface of the buffer layer to make a surface of the illuminant epitaxial structure connected with the surface of the buffer layer include a second pattern structure, wherein the illuminant epitaxial structure is a GaN-based epitaxial structure; forming an adhesive layer on the illuminant epitaxial structure; disposing a high thermal conductivity substrate; and performing a set etching step on the buffer layer to remove the buffer layer and the growth substrate to expose the surface of the illuminant epitaxial structure.

Description

200919778 九、發明說明 【發明所屬之技術領域】 本發明是有關於一種發光二極體(LED)結構及其製造 方法,且特別是有關於一種具有高光取出效率之發光二極體 結構及其製造方法。 【先前技術】 在傳統氮化鎵相關材料(GaN-based)發光二極體結構的 製作方式中,氮化鎵相關材料之磊晶結構大都是先成長在藍 寶石所構成之原生基板上。待完成氮化鎵相關材料層之磊晶 程序,便於磊晶結構上利用貼附方式設置永久基板。而後, 即利用雷射剝離(Lift-off)技術來將藍寳石原生基板自發光 磊晶結構上剝除。 然而,雷射剝離技術所使用之設備非常昂貴,因而將造 成製程成本上相當大的負擔。此外,利用雷射來剝離原生基 板時,其製程良率不佳,不僅會造成發光二極體元件之效能 下降也會因不良品之數量的增加而導致製程成本的提高。 有鑑於此,目前亟需一種低成本且可輕易分離原生基板 與發光磊晶結構的技術,以降低製程成本,並提升發光二極 體元件之製程良率。 【發明内容】 因此,本發明之目的就是在提供一種發光二極體結構之 声k法,其係在原生基板上先設置氧化物或氮化物緩衝 θ再於緩衝層上成長發光磊晶結構並設置高導熱基板,而 200919778 後可藉由餞刻移除緩衝層的方式一併移除原纟基板。如此一 來’可以低成本的方式輕易移除原生基板,而可提高製程良 率。 本發明之另一目的是在提供一種發光二極體結構之製 =法’其係在原生基板上先設置表面具有圖案結構之氧化 物或氮化物緩衝層,再於緩衝層具有圖案結構之表面上蠢晶 成長發光磊晶結構’因此可使發光磊晶結構之表面具有圖案: 結構,而可有效提升發光二極體之光#出效率。 r β古本發月之又一目的是在提供一種發光二極體結構,具有 ^之光取出效率’而使發光二極體具有高亮度與高發光效 月&。200919778 IX. Description of the Invention [Technical Field] The present invention relates to a light emitting diode (LED) structure and a method of fabricating the same, and more particularly to a light emitting diode structure having high light extraction efficiency and manufacturing thereof method. [Prior Art] In the conventional GaN-based light-emitting diode structure, the epitaxial structure of the gallium nitride-related material is mostly grown on the original substrate composed of sapphire. The epitaxial process of the GaN-related material layer is to be completed, so that the permanent substrate can be set by the attaching method on the epitaxial structure. The sapphire native substrate is then stripped from the luminescent epitaxial structure using a lift-off technique. However, the equipment used in laser stripping technology is very expensive and therefore imposes a considerable burden on the process cost. In addition, when the laser is used to strip the original substrate, the process yield is not good, which not only causes the performance of the LED component to decrease, but also increases the process cost due to the increase in the number of defective products. In view of this, there is a need for a low cost and easy separation of the native substrate and the luminescent epitaxial structure to reduce process cost and improve the process yield of the LED component. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an acoustic k-method of a light-emitting diode structure in which an oxide or nitride buffer θ is first disposed on a primary substrate and a light-emitting epitaxial structure is grown on the buffer layer. A high thermal conductivity substrate is provided, and after 200919778, the original substrate can be removed by removing the buffer layer by engraving. In this way, the native substrate can be easily removed in a low-cost manner, and the process yield can be improved. Another object of the present invention is to provide a method for fabricating a light-emitting diode structure by first providing an oxide or nitride buffer layer having a patterned structure on a surface of a primary substrate, and having a patterned structure on the buffer layer. The stupid crystal grows into a light-emitting epitaxial structure, so that the surface of the luminescent epitaxial structure can have a pattern: structure, and the light-emitting efficiency of the light-emitting diode can be effectively improved. A further object of the present invention is to provide a light-emitting diode structure having a light extraction efficiency of ', and the light-emitting diode has high luminance and high luminous efficiency.

L i根據本發明之上述目的,提出―種發光二極體結構之製 ^方法至少包括:提供一原生基板丨形成一第一緩衝層於 :土基板上’其中第-緩衝層之材料為氧化物或氮化物,且 槿於i = f之Γ表面設有第—圖案結構;形成—發光蟲晶結 盘二緩衝層之表面上,以使發m结構之一表面 面緩衝層之表面接合,而使前述發光蟲晶結構之表 ::有第_圖案結構,其中發光磊晶結構係氮化鎵 成黏著層於發光磊晶結構上;設置一高導熱 土板於黏著層上;以 ”、、 移除第-緩衝層C 衝層進订一錢刻步驟,以 主 /、原生基板’而暴露出前述發光蟲晶結構之 表面。 依照本發明—±JU. » . _ 用濺鍍法。 較佳實施例,形成第一缓衝層之步驟係利 根據本發明$ s 目的,提出一種發光二極體結構之製造方 200919778According to the above object of the present invention, a method for fabricating a light-emitting diode structure includes at least providing a native substrate and forming a first buffer layer on the soil substrate, wherein the material of the first buffer layer is oxidized. a nitride or a nitride, and a surface pattern is formed on the surface of the surface of i = f; forming a surface of the buffer layer of the light-emitting insect crystal plate to bond the surface of the surface buffer layer of one of the m structures; The surface of the luminescent crystal structure is: a _ pattern structure, wherein the luminescent epitaxial structure is GaN to form an adhesive layer on the luminescent epitaxial structure; a high thermal conductive soil plate is disposed on the adhesive layer; Removing the first-buffer layer C to perform a step of engraving, exposing the surface of the luminescent crystal structure to the main/, primary substrate'. According to the invention - ±JU. » . _ by sputtering. In a preferred embodiment, the step of forming the first buffer layer is based on the object of the present invention, and proposes a manufacturer of the light-emitting diode structure 200919778.

法至/包括‘k供一原生基板*形成一第一缓衝層於原生 基板上’其中第一缓衝層之材料為氧化物或氮化物,且第一 緩衝層之表面s又有第一圖案結構,形成一發光屋晶結構於 前述第一缓衝層之表面上,以使發光磊晶結構之一表面與第 一缓衝層之表面接合,而使發光磊晶結構之表面具有第二圖 案、、Ό構其中發光蠢晶結構係亂化鎵相關材料蟲晶結構;形 成一第一黏著層於發光磊晶結構上;設置一暫時基板於第一 黏著層上;對第一緩衝層進行一濕蝕刻步驟,以移除第一緩 衝層與原生基板,而暴露出前述發光磊晶結構之表面;形成 一第二黏著層於前述發光磊晶結構之表面上;設置一高導熱 基板於第二黏著層上;以及移除第一黏著層與暫時基板,以 暴露出發光磊晶結構。 依肊本發明一較佳實施例,於上述形成發光磊晶結構之 步驟與形成第-緩衝層之步驟之間,更至少包括形成一氮化 物保護層覆蓋在第一緩衝層上。 土根據本發明之另一目的’提出一種發光二極體結構之製 方法,至少包括:提供一原生基板;形成一第一緩衝層於 原生基板上,其中第一緩衝層之材料為氧化物或氮化物,且 第緩衝層之-表面設有一第一圖案結構;形成一發光蟲晶 :構:第-緩衝層之表面上,以使發光遙晶結構之一表面與 弟:緩:層之表面接合,而使發光磊晶結構之表面具有-第 圖案、’”構’其中發光磊晶結構係-氮化鎵相關材料磊晶結 ,形成一反射鏡面層於發光磊晶結構上;電鍍一高導熱基 '反射鏡面層上;以及對該第一緩衝層進行一濕蝕刻步 、移除第.緩衝層與原生基板,而暴露出發光磊晶結構 200919778 之表面。 光二:=Γ:Τ實施例,於_步驟後,上述之發 於發光磊曰姓方去更至少包括形成-第-電性電極 於高導熱基板上。 hi及形成—第二電性電極 根據本發明之又一目的,提屮 ^ ^ , 種心光二極體結構,至 it 具有相對之第—表㈣及第二表面; Γ :黏…於高導熱基板之第—表面上;以及—發光蟲晶結 動声、一笛一曰上之—弟二電性侷限層、一主 : 侷限層以及-緩衝層,其中緩衝層之一表 晶::構,一第圖案:構’且發光蟲晶結構係-氮化鎵相關材料蟲 Ζ構,弟一電性侷限層之電性不同於第二電性偈限層之電 少包:據本發明之再一目的’提出—種發光二極體結構,至 -黏…:導有相對之第一表面以及第二表面; 構ii!:導熱基板之第—表面上;以及-發光蠢晶結 包括依序堆疊在黏著層上之_緩衝層、—第—電性偈 J層拯八主動層以及一第—電性侷限層’其中緩衝層之與黏 者灣接合之一表面具有—圖査 化鎵相關_晶結構,第一電:二= 電性侷限層之電性。帛㈣侷限層之電性不同於第二 少勺=據本發明之再—目的’提出-種發光二極體結構,至 反2:―電鑛基板具有相對之第-表面以及第二表面;一 材==設於電鍵基板之第一表面上,其中反射鏡面層之 導電,以及一發光蟲晶結構至少包括依序堆疊在反射 200919778 鏡面層上之一第二電性侷限層、一主動層、一第— „ 電性侷限 層以及一緩衝層’其中緩衝層之一表面具有一圖笨 木結構,且 發光蟲晶結構係一氮化鎵相關材料磊晶結構,第— ^ 電性偈限 層之電性不同於第二電性侷限層之電性。 【實施方式】 本發明揭露一種發光二極體結構及其製造方法。為了使 f 本發明之敘述更加詳盡與完備,可參照下列描述並配合第 1A圖至第3G圖之圖式。 口 請參照第1Α圖至第1Ε圖,係繪示依照本發明第一較 佳實施例的一種發光二極體結構之製程剖面圖。在—示範^ 施例中’製作適用於製作發光二極體元件之發光二極體結構 時,先提供原生基板100,以供發光結構磊晶成長於其上, 其中原生基板1GG之材料可例如為藍f石。接下來,先利用 例如濺鍍方式形成緩衝層1〇2於原生基板1〇〇之表面上,再 利用例如乾蝕刻技術對緩衝们〇2之表φ 1〇4$行圖案定 義’以在緩衝層102之表面1〇4中定義出圖案結構1〇6,如 第1Α/所不。在_實施例中’緩衝層m之材料可為氮化 物或氧化物’例如氧化鋅(Ζη〇)β在另一示範實施例中,為 ,免例如由氧化鋅所纽成之緩制1Q2在後㈣晶過 ,到腐蚀’可選擇性地在緩衝層⑽之表面刚上覆蓋一芦 氮化物保護層(未繪示)。 a 完成緩衝層1 〇2 沉積法(MOC VD)方式 長發光磊晶結構1丨8。 之设置後’利用例如有機金屬化學氣相 ,於緩衝層102之表面104上磊晶成 在一實施例中,發光磊晶結構丨〗8可 200919778 例如為氮化鎵相關材料磊晶結構。在本 鉻止石B, 觀貫施例中,形成 日日結構118 m形成緩衝層_於緩衝層102 之表面104上,而使發光遙晶結構118之緩衝層⑽愈緩衝 層102之表面104面對接合的表面120具有圖案結構⑽, 其中此圖案結構110與緩衝層1〇2之表 1Λ^ 衣命1〇4的圖案結構 1〇6互補。在一實施例中,緩衝層1〇8之材料可例如為氮化 鎵系列材料,以利提升後續成長之磊晶結構的磊晶品質。接 著,依序磊晶堆疊第一電性侷限層112於緩衝層1〇8^、主The method comprises/incorporating 'k for a primary substrate* to form a first buffer layer on the primary substrate' wherein the material of the first buffer layer is an oxide or a nitride, and the surface s of the first buffer layer has a first a pattern structure, forming a luminescent house crystal structure on the surface of the first buffer layer such that one surface of the luminescent epitaxial structure is bonded to the surface of the first buffer layer, and the surface of the luminescent epitaxial structure has a second surface The pattern and the structure of the light-emitting structure are disordered to form a first crystal of the gallium-related material; a first adhesive layer is formed on the light-emitting epitaxial structure; a temporary substrate is disposed on the first adhesive layer; and the first buffer layer is disposed a wet etching step to remove the first buffer layer and the native substrate to expose the surface of the luminescent epitaxial structure; forming a second adhesive layer on the surface of the luminescent epitaxial structure; and providing a high thermal conductive substrate On the second adhesive layer; and removing the first adhesive layer and the temporary substrate to expose the luminescent epitaxial structure. According to a preferred embodiment of the present invention, between the step of forming the luminescent epitaxial structure and the step of forming the first buffer layer, at least comprising forming a nitride protective layer overlying the first buffer layer. According to another object of the present invention, a method for fabricating a light emitting diode structure includes at least: providing a native substrate; forming a first buffer layer on the native substrate, wherein the material of the first buffer layer is oxide or Nitride, and the surface of the first buffer layer is provided with a first pattern structure; forming a luminescent crystal: on the surface of the first buffer layer, so that one surface of the luminescent crystal structure is Bonding, the surface of the luminescent epitaxial structure has a -first pattern, a ''structure', wherein the luminescent epitaxial structure-gallium nitride-related material is epitaxially formed, forming a mirror surface layer on the luminescent epitaxial structure; a thermally conductive base on the mirror surface layer; and performing a wet etching step on the first buffer layer, removing the buffer layer and the native substrate, and exposing the surface of the light emitting epitaxial structure 200919778. Light II: =Γ:ΤExample After the step of _, the above-mentioned radiance is further included to form at least the -electro-electrode on the highly thermally conductive substrate. hi and formation - the second electrical electrode according to another object of the present invention屮^ ^ , a cardo-diode structure, to which has a relative surface (four) and a second surface; Γ: a sticky surface on the first surface of the highly thermally conductive substrate; and - a luminescent crystal, a sound, a flute - Dielectrical confinement layer, one main: confined layer and - buffer layer, wherein one of the buffer layer: crystal, a first pattern: structure 'and luminescent crystal structure - gallium nitride related material insect structure The electrical property of the second electrical layer is different from that of the second electrical barrier layer: according to another object of the present invention, a light-emitting diode structure is proposed, which is to-adhesive: a first surface and a second surface; a ii!: a first surface of the thermally conductive substrate; and a luminescent sub-crystal comprising a buffer layer sequentially stacked on the adhesive layer, and a first layer of the electrical layer The layer and a first-electron confinement layer, wherein one of the buffer layer and the surface of the bonding bay has a gallium-related crystal structure, the first electric: two = electrical confinement layer electrical. 帛 (four) limitations The electrical properties of the layer are different from the second less spoon = according to the re-purpose of the present invention - the kind of light-emitting diode structure, to the reverse 2: - electricity The substrate has a first surface and a second surface; a material == is disposed on the first surface of the key substrate, wherein the conductive layer of the mirror layer, and a luminescent crystal structure at least comprises sequentially stacking on the mirror layer of the reflection 200919778 a second electrically limited layer, an active layer, a first - an electrically limited layer and a buffer layer, wherein one surface of the buffer layer has a stupid wood structure, and the luminescent crystal structure is a gallium nitride-related The epitaxial structure of the material is different from the electrical property of the second electrically limited layer. Embodiments The present invention discloses a light emitting diode structure and a method of fabricating the same. In order to make the description of the present invention more detailed and complete, reference is made to the following description and in conjunction with the drawings of Figures 1A through 3G. Referring to Figures 1 through 1, there is shown a process cross-sectional view of a light emitting diode structure in accordance with a first preferred embodiment of the present invention. In the exemplary embodiment, when a light-emitting diode structure suitable for fabricating a light-emitting diode element is fabricated, a native substrate 100 is first provided for epitaxial growth of the light-emitting structure thereon, wherein the material of the native substrate 1GG can be, for example, For the blue f stone. Next, the buffer layer 1〇2 is first formed on the surface of the native substrate 1 by sputtering, for example, and the pattern of the buffers φ2 〇4$ row is defined by the dry etching technique, for example, to buffer The pattern structure 1〇6 is defined in the surface 1〇4 of the layer 102, as in the first Α/n. In the embodiment, the material of the buffer layer m may be a nitride or an oxide such as zinc oxide (βη〇) β in another exemplary embodiment, in order to avoid, for example, the retardation of zinc oxide. After the (four) crystallized, to the corrosion 'optionally, the surface of the buffer layer (10) is just covered with a protective layer of a ruthenium nitride (not shown). a Complete buffer layer 1 〇 2 deposition method (MOC VD) method Long luminescent epitaxial structure 1 丨 8. After being disposed, it is epitaxially grown on the surface 104 of the buffer layer 102 by, for example, an organometallic chemical vapor phase. In one embodiment, the luminescent epitaxial structure can be, for example, a gallium nitride-related material epitaxial structure. In the present chrome stop B, in the embodiment, a day-to-day structure 118 m is formed to form a buffer layer _ on the surface 104 of the buffer layer 102, so that the buffer layer (10) of the luminescent crystal structure 118 is over the surface 104 of the buffer layer 102. The surface 120 facing the joint has a pattern structure (10), wherein the pattern structure 110 is complementary to the pattern structure 1〇6 of the surface of the buffer layer 1〇2. In one embodiment, the material of the buffer layer 〇8 may be, for example, a gallium nitride series material to enhance the epitaxial quality of the subsequently grown epitaxial structure. Then, the first electrical confinement layer 112 is sequentially epitaxially stacked on the buffer layer 1〇8^, the main

動層114於第一電性侷限層112上、以及第二a電性侷限層 116於主動層i14上,而完成本示範實施例之發光磊晶結構 118的製作,如第1B圖所示。其中,第—電性不同於第二 電性’舉例而言’當一者為N型時,另—者則為p型。 接著,形成黏著層124於發光磊晶結構U8之上,以利 後續發光磊晶結構118與高導熱基板126之接合。然後,即 提供兩導熱基板126,再利用例如熱壓合方式,而透過黏The movable layer 114 is formed on the first electrically confined layer 112 and the second a electrically confined layer 116 on the active layer i14 to complete the fabrication of the luminescent epitaxial structure 118 of the exemplary embodiment, as shown in FIG. 1B. Wherein, the first electrical property is different from the second electrical property, for example, when one is an N-type, and the other is a p-type. Next, an adhesive layer 124 is formed over the luminescent epitaxial structure U8 to facilitate bonding of the subsequent luminescent epitaxial structure 118 to the highly thermally conductive substrate 126. Then, two thermally conductive substrates 126 are provided, which are then viscous by, for example, thermal compression bonding.

著層124將高導熱基板126接合在發光磊晶結構118之上。 當黏著層124及/或高導熱基板126之材質具有良好之反射 性時’可無需在黏著層1 2 4與發光蟲晶結構11 8之間設置額 外之反射結構。然而,當黏著層124及高導熱基板126均不 具有良好之反射性時’此時可選擇性地在形成黏著層124 之前,先沉積反射鏡面層122於發光磊晶結構丨丨8上,以使 反射鏡面層122爽設在第二電性侷限層116與黏著層124 之間’以利反射發光蠢晶結構11 8射向高導熱基板12 6之 光,再形成黏著層124於反射鏡面層122上,而後再利用例 如熱壓合方式將高導熱基板126接合在黏著層124上,如第 200919778 1C圖所示。 黏著層m之材料可為導電㈣,例如録錫,或不導電 材料,例如高分子聚合物。反射鏡面層122之材料可 Γ 材料或不導電材料,其中反射鏡面層122可包括一層或多層 反射材料層。在-實施例中,反射鏡面層122可包括一層 多層金屬層。在另-實施例中’反射鏡面層122可由數層介 電層所堆疊而成。高導熱基板126之材料可選自於由銅及盆 =組成之一族群。在另一實施例,,高導熱基板m =可選自於由鎳及其合金所組成之一族群。 待完成高㈣基板126與發光蟲晶結構118之接合後, 利用化學㈣液對緩衝層1G2進行濕㈣步驟,來移除 層1〇2’而藉此將原生基板_自發光蟲晶結構川之緩衝 :::::表面、120上移除’而使原生基板ι〇〇與發光蟲晶結 力開’並暴露出發光H结構118之緩衝層⑽的表 面120,如帛1D圖所*。由於發光遙晶結構m之緩衝層 :士0:的表面120具有圖案結構11〇,因此可提高發光二極體 、、·吉構之光取出率,而可挺4 平而了k升發先二極體元件之發光效能與發 光度。 八開刻移除緩衝層1(32的方式,即可輕易且有效地 赶土 100與發光磊晶結構U8,而無需使用雷射剝 離技術,因此可有效降低製程設備成本,並可提高生產良率。 在一實施例中,春i f a U pi 熱基板m之材料可田導t 射鏡面層122與高導 於發#石曰钍 電時,可直接形成第一電性電極128 並形::::構118之緩衝層1〇8的表面120的-部分上, "性電極13〇a於高導熱基板126之表面上,而 11 200919778 形成發光二極體結構132a,其中第二電性電極13〇a與黏著 層124位於高導熱基板126之相對二表面上,如第1E圖所 7Jx 〇 然而,在另一實施例中,當黏著層124、反射鏡面層i22 與高導熱基板126之材料可導電或不可導電時,均可^用例 如微影與蝕刻技術等圖案定義技術,先對發光磊晶結構工工8 進行圖案定義,以移除部分之缓衝層1〇8、部分之第一電性 侷限層112與部分之主動層114,直至暴露出底下之第二電 性侷限層116的部分表面134。接著,形成第一電性電極 於發光磊晶結構118之緩衝層1〇8的表面12〇的一部分上, 並形成第二電性電極13〇b於第二電性侷限層ιΐ6遭暴露出 之表面134的—部分上’而形成發光二極體結構132b,如 請參照第2A圖至第2G圖,係繪示依照本發明第 佳實施例的-種發光二極體結構之製程剖面圖。在— 施例中,製作適用於製作 、The layer 124 bonds the highly thermally conductive substrate 126 over the luminescent epitaxial structure 118. When the material of the adhesive layer 124 and/or the highly thermally conductive substrate 126 has good reflectivity, it is not necessary to provide an additional reflective structure between the adhesive layer 1 24 and the luminescent crystal structure 11 8 . However, when both the adhesive layer 124 and the high thermal conductive substrate 126 do not have good reflectivity, the mirror surface layer 122 may be deposited on the luminescent epitaxial structure 丨丨8 before the adhesive layer 124 is selectively formed. The mirror surface layer 122 is disposed between the second electrical confinement layer 116 and the adhesive layer 124 to facilitate reflection of the light emitted by the light emitting structure 11 8 toward the high thermal conductive substrate 12 6 , and then the adhesive layer 124 is formed on the mirror surface layer. At 122, the highly thermally conductive substrate 126 is then bonded to the adhesive layer 124 by, for example, thermocompression bonding, as shown in Figure 200919778 1C. The material of the adhesive layer m may be electrically conductive (tetra), such as tin, or a non-conductive material such as a high molecular polymer. The material of the mirror surface layer 122 may be a material or a non-conductive material, wherein the mirror surface layer 122 may comprise one or more layers of reflective material. In an embodiment, the mirror face layer 122 can comprise a plurality of layers of metal. In another embodiment, the mirror layer 122 can be stacked from a plurality of dielectric layers. The material of the highly thermally conductive substrate 126 may be selected from the group consisting of copper and pot =. In another embodiment, the high thermal conductivity substrate m = may be selected from a group consisting of nickel and its alloys. After the high (four) substrate 126 is bonded to the luminescent crystal structure 118, the buffer layer 1G2 is subjected to a wet (four) step using a chemical (four) liquid to remove the layer 1 〇 2 ′ and thereby the native substrate _ self-luminous worm crystal structure The buffer::::: surface, 120 is removed 'and the native substrate ι〇〇 and the luminescent worm are crystallized open' and exposes the surface 120 of the buffer layer (10) of the luminescent H structure 118, as shown in FIG. . Since the buffer layer of the light-emitting crystal structure m: the surface 120 of the ±0: has a pattern structure of 11〇, the light extraction rate of the light-emitting diode, the Jiji structure can be improved, and the light-emitting rate of the light-emitting diode can be improved. Luminous efficacy and luminosity of a diode element. Eight times to remove the buffer layer 1 (32 way, you can easily and effectively catch the earth 100 and the light-emitting epitaxial structure U8 without using the laser stripping technology, thus effectively reducing the cost of the process equipment and improving the production yield. In an embodiment, the material of the spring ifa U pi thermal substrate m can directly form the first electrical electrode 128 and form a shape when the material is conductive to the surface of the mirror layer 122 and the high conductivity of the substrate 12::: On the portion of the surface 120 of the buffer layer 1〇8 of the structure 118, the "electrode 13a is on the surface of the highly thermally conductive substrate 126, and 11 200919778 forms the light emitting diode structure 132a, wherein the second electrical electrode 13〇a and the adhesive layer 124 are located on opposite surfaces of the high thermal conductive substrate 126, as in FIG. 1E, 7Jx. However, in another embodiment, when the adhesive layer 124, the mirror surface layer i22 and the high thermal conductive substrate 126 are made of materials, When it is conductive or non-conductive, it can use pattern definition techniques such as lithography and etching technology to first define the pattern of the luminescent epitaxial structure 8 to remove part of the buffer layer 1〇8, part of the first An electrically confined layer 112 and a portion of the active layer 114 until A portion of the surface 134 of the underlying second electrically confined layer 116 is exposed. Next, a first electrical electrode is formed on a portion of the surface 12 of the buffer layer 1 〇 8 of the luminescent epitaxial structure 118, and a second electrical electrode is formed. 13〇b forms a light-emitting diode structure 132b on the portion of the exposed surface 134 of the second electrical localized layer ι6, as shown in FIGS. 2A-2G, which is preferred according to the present invention. A cross-sectional view of a process of a light-emitting diode structure of an embodiment. In the embodiment, the fabrication is suitable for fabrication,

L 時,先…… 牛之發光二極體結構 , 原生基板_,以供發光H结構成長於其上, 其中原生基板200之材料可例如為藍寳石。接著,先利 如濺鐘方式形成緩衝層2G2於原生基板細之表面上, 用例如乾蝕刻技術對緩衝層202之表面204進行 以在緩衝層202之表面2 4订圖木疋義’ 結構·,如第2A圖所 可增進光取出率之圖案 职乐圖所不。緩衝 氮化物或氧化物,例如氧- 厂父么可採用 性地在緩衝層2G2之表面編範實施例中’可選擇 綠上覆蓋一層氮化物保護層f去 繪不),以避免例如由氧化 勿保制(未 〒所、、且成之緩衝層202在後續磊 12 200919778 晶過程中遭到腐蝕。 接下來,利用例如有機金屬化學氣相沉積法方式 衝層搬<表面綱上蟲晶成長發光蟲晶結肖218。在一實 施例中,發光遙晶結構218可例如為氮化鎵相 構。在本示範實施例中,形成發 曰 a>'° 取七光>εε晶結構2 1 8 .時,可於緩 衝層搬之表面204上依序以堆疊緩衝層跡第一電性 偈限層212於緩衝層纖上、主動層214於第—電性偈限層 212上、以及第二電性侷限層216於主動層214上,而完成 本示範實施例之發光遙晶結# 218的製作,如第2B圖所 示。其中’第-電性不同於第二電性,舉例而言,當一者為 N型時’另一者則為P型。由於緩衝層2〇2之表面2〇4具有 圖案結構206’因此與緩衝層2〇2之表面2〇4面對接合^緩 衝層208的表面220具有圖案結構21〇,其中此圖案結構21〇 與緩衝層202之表面204的圖案結構2〇6互補。在一實施例 中,緩衝層208之材料可例如為氮化鎵系列材料,以利提升 後續成長之遙晶結構的蟲晶品質。 接著,形成黏著層222於發光磊晶結構218之上,以利 後續發光磊晶結構218與暫時基板224的接合。然後,即可 提供暫時基板224,並利用例如熱壓合方式,而透過黏著層 222將暫時基板224接合在發光磊晶結構218之上藉以提 供發光磊晶結構21 8在結構上的支撐,如第2C圖所示。完 成暫時基板224之設置後,此時可利用化學蝕刻液對緩衝層 202進行濕蝕刻步驟,來移除缓衝層2〇2,而藉此將原生基 板200自發光磊晶結構218之緩衝層208的表面220上移 除,而使原生基板200與發光磊晶結構218分開,並暴露出 13 200919778 發光磊晶結構218之緩衝層208的表面220,如第2D圖所 示° 接下來,形成黏著層226覆蓋在發光磊晶結構2丨8之緩 衝層208的表面220上。黏著層226之材料可為導電材料, 例如銲錫,或不導電材料,例如高分子聚合物。再提供高導 熱基板230,並利用例如熱壓合方式,而透過黏著層將 高導熱基板230接合在發光磊晶結構218之緩衝層2〇8上。 當黏著層226及/或高導熱基板230之材質具有良好之反射 性時’可無需在黏著層226與高導熱基板230之間設置額外 之反射結構。然而’當黏著層226及高導熱基板230均不具 有良好之反射性時,此時可選擇性地在壓合高導熱基板23〇 之前’先沉積反射鏡面層228於高導熱基板230上,再將高 導熱基板230與反射鏡面層228之組合壓合至黏著層226 上’以使反射鏡面層228夾設在高導熱基板230與黏著層 226之間,以利反射發光磊晶結構218射向高導熱基板230 之光’如第2E圖所示。 反射鏡面層228之材料可為導電材料或不導電材料,其 中反射鏡面層228可包括·一層或多層反射材料層。在一實施 例中’反射鏡面層228可包括一層或多層金屬層。在另一實 施例中’反射鏡面層228可由數層介電層所堆疊而成。高導 熱基板230之材料可選自於由銅及其合金所組成之一族 群。在另一實施例中,高導熱基板230之材料可選自於由鎳 及其合金所組成之一族群。 待完成高導熱基板230與發光磊晶結構218之接合後, 即可移除暫時基板224與黏著層222,而暴露出發光磊晶結 200919778 構118之第二電性侷限層216,如帛2F圖所示。在一實施 例中,當黏著層226 '反射鏡面層228與高導熱基板23〇之 材料可導電時’可直接形成第二電性電極说於發光蟲晶結 構218之第二電性偈限層216的_部分上,並形成第一電性 電極234a於南導熱基板23G之表面上,而形成發光二極體 結構236a’其中第_電性電極加與反射鏡面層228位於 面導熱基板230之相對二表面上,如第 Γ c, 然而,在另一實施例中,當黏著層咖、反射鏡面層咖 與尚導熱基板230之材料可導電或不可導電時,均可利 如微影與㈣技術等圖案定義技術,先對發光蟲晶結構218 進订圖案定義’以移除部分之第二電性侷限層216、部分之 主動層214與部分之第—電性侷限層212,直至暴露出 之緩衝層雇的部分表面238。接著,形成第一電性電極⑽ 於發光蠢晶結構218之緩衝層2〇8的暴露表面238的八 上,並形成第二電性電極232於第二電性侷限層216的二 分上,而形成發光二極體結構236b,如第211圖所干。 請參照第3A圖至第奸圖,係繪示依照本發明第三較 佳實施例的一種發光二極體結構之製程剖面圖。在一 施例中’製作適用於製作發光二極體元件之發光二極體 時,先提供原生基板3GG,以供發光結構蟲晶成長於其上, 其中原生基板300之材料可例如為藍寶石。接下來, 例如濺鍍方式形成緩衝層3〇2於原生基板3〇〇之表面上, 利用例如乾蝕刻技術對緩衝層3〇2之表面3〇4 義;:在緩衝請之表面3〇4中定義出圖案二 第3A圖所示。在一實施例中,缓衝層3〇2之材料可為氮化 15 200919778 =化物,例如氧化鋅。在另一示範實施例中,為避免例L, first... the light-emitting diode structure of the cow, the primary substrate _, for the light-emitting H structure to grow thereon, wherein the material of the native substrate 200 may be, for example, sapphire. Then, the buffer layer 2G2 is formed on the surface of the original substrate as a splash-like method, and the surface 204 of the buffer layer 202 is applied to the surface of the buffer layer 202 by, for example, a dry etching technique. As shown in Figure 2A, the pattern of the light extraction rate can be improved. Buffering nitrides or oxides, such as oxygen - can be used in the surface-patterned embodiment of buffer layer 2G2 to 'select green to cover a layer of nitride protective layer f to avoid, for example, to oxidize Do not protect (the unfinished, and formed buffer layer 202 is corroded in the subsequent process of crystallization in the subsequent 12 200919778. Next, using the organometallic chemical vapor deposition method, the layer is moved. The luminescent crystal crystallization 218 is grown. In one embodiment, the luminescent crystal structure 218 can be, for example, a gallium nitride phase. In the present exemplary embodiment, the hair 曰 a> ° 取 七 七 七 、 、 、 、 、 、 、 2 1 8 , the buffer layer can be stacked on the surface 204 of the buffer layer to sequentially stack the first electrical barrier layer 212 on the buffer layer, and the active layer 214 on the first electrical barrier layer 212. And forming the second electrically limited layer 216 on the active layer 214 to complete the fabrication of the illuminated teleconnection #218 of the exemplary embodiment, as shown in FIG. 2B, wherein 'the first electrical property is different from the second electrical property. For example, when one is N-type and the other is P-type, due to buffer layer 2 The surface 2〇4 of the surface 2 has a pattern structure 206' and thus faces the surface 2〇4 of the buffer layer 2〇2. The surface 220 of the buffer layer 208 has a pattern structure 21〇, wherein the pattern structure 21〇 and the buffer layer 202 The pattern structure 2 〇 6 of the surface 204 is complementary. In an embodiment, the material of the buffer layer 208 may be, for example, a gallium nitride series material to enhance the crystal quality of the subsequently grown crystal structure. Next, the adhesive layer 222 is formed. The light-emitting epitaxial structure 218 is disposed on the surface of the light-emitting epitaxial structure 218 to facilitate the bonding of the subsequent light-emitting epitaxial structure 218 to the temporary substrate 224. Then, the temporary substrate 224 is provided, and the temporary substrate 224 is transferred through the adhesive layer 222 by, for example, thermal pressing. Bonding on the luminescent epitaxial structure 218 provides structural support for the luminescent epitaxial structure 218, as shown in FIG. 2C. After the temporary substrate 224 is disposed, the buffer layer 202 can be performed using a chemical etchant. The wet etching step removes the buffer layer 2〇2, thereby removing the native substrate 200 from the surface 220 of the buffer layer 208 of the light-emitting epitaxial structure 218, thereby separating the native substrate 200 from the light-emitting epitaxial structure 218. And violence 13 200919778 Surface 220 of buffer layer 208 of luminescent epitaxial structure 218, as shown in FIG. 2D. Next, an adhesive layer 226 is formed overlying surface 220 of buffer layer 208 of luminescent epitaxial structure 2丨8. Adhesive layer The material of 226 may be a conductive material, such as solder, or a non-conductive material, such as a high molecular polymer. A high thermal conductive substrate 230 is further provided, and the high thermal conductive substrate 230 is bonded to the luminescent exponential through an adhesive layer by, for example, thermocompression bonding. The buffer layer 2 〇 8 of the crystal structure 218. When the material of the adhesive layer 226 and/or the high thermal conductive substrate 230 has good reflectivity, it is not necessary to provide an additional reflective structure between the adhesive layer 226 and the high thermal conductive substrate 230. However, when both the adhesive layer 226 and the high thermal conductive substrate 230 do not have good reflectivity, the mirror surface layer 228 can be selectively deposited on the high thermal conductive substrate 230 before the high thermal conductive substrate 23 is pressed. The combination of the high thermal conductive substrate 230 and the mirror surface layer 228 is pressed onto the adhesive layer 226 to sandwich the mirror surface layer 228 between the high thermal conductive substrate 230 and the adhesive layer 226 to facilitate the reflection of the light emitting epitaxial structure 218. The light of the high thermal conductive substrate 230 is as shown in Fig. 2E. The material of the mirror surface layer 228 can be a conductive material or a non-conductive material, wherein the mirror surface layer 228 can include one or more layers of reflective material. In an embodiment the 'mirror layer 228' may comprise one or more layers of metal. In another embodiment, the mirror layer 228 can be stacked from a plurality of dielectric layers. The material of the high thermal conductivity substrate 230 may be selected from the group consisting of copper and its alloys. In another embodiment, the material of the highly thermally conductive substrate 230 may be selected from the group consisting of nickel and its alloys. After the bonding of the high thermal conductive substrate 230 and the luminescent epitaxial structure 218 is completed, the temporary substrate 224 and the adhesive layer 222 can be removed, and the second electrical limiting layer 216 of the luminescent epitaxial junction 200919778 is exposed, such as 帛2F. The figure shows. In an embodiment, when the adhesive layer 226' reflects the mirror layer 228 and the material of the high thermal conductive substrate 23 is electrically conductive, the second electrical electrode can be directly formed. The second electrical limiting layer of the luminescent crystal structure 218 is formed. The first electrical electrode 234a is formed on the surface of the south conductive substrate 23G, and the light emitting diode structure 236a' is formed, wherein the first electrical electrode and the mirror surface layer 228 are located on the surface heat conducting substrate 230. On the opposite surfaces, such as the second layer c, however, in another embodiment, when the adhesive layer, the mirror layer layer and the material of the heat conductive substrate 230 are conductive or non-conductive, they may be like lithography and (4) A pattern defining technique such as technology, first defining a pattern of the illuminating crystal structure 218 to remove a portion of the second electrically confined layer 216, a portion of the active layer 214, and a portion of the first electrical confinement layer 212 until exposed A portion of the surface 238 that is employed by the buffer layer. Next, a first electrical electrode (10) is formed on the exposed surface 238 of the buffer layer 2〇8 of the light-emitting amorphous structure 218, and a second electrical electrode 232 is formed on the second electrical limiting layer 216. A light emitting diode structure 236b is formed, as shown in Fig. 211. Referring to Fig. 3A to Fig. 3, there is shown a process sectional view of a light emitting diode structure in accordance with a third preferred embodiment of the present invention. In one embodiment, when a light-emitting diode suitable for fabricating a light-emitting diode element is fabricated, a native substrate 3GG is first provided for the light-emitting structure crystallite to grow thereon, wherein the material of the native substrate 300 may be, for example, sapphire. Next, for example, a buffer layer is formed on the surface of the native substrate 3 by sputtering, and the surface of the buffer layer 3〇2 is defined by, for example, a dry etching technique; on the surface of the buffer 3〇4 The pattern 2 is shown in Figure 3A. In one embodiment, the material of the buffer layer 3〇2 may be nitrided, such as zinc oxide. In another exemplary embodiment, to avoid examples

口由氧化鋅所組成之缓衝層3G2在後續蟲晶過程中遭到腐 蝕,可選擇性地在緩衝層302 A 保護層(未繚示)。 表面304上覆蓋-層氮化物 完成緩衝層302之設置後,利用例如有機金屬 沉積法方式,於緩衝層逝之表面3〇4上^成長發光= 318。在一實施例中’發光蟲晶結構318可例如為氮化 ㈣晶結構。在本示範實施例中,形成發光蟲晶結 構318時’可於緩衝層繼之表面3()4上依序蟲晶堆疊緩衝 層308、第一電性侷限層312於緩衝層3〇8上、主動層gw 於第—電性侷限層312上、以及第二電性侷限層316於主動 層314上,而完成本示範實施例之發光磊晶結構us的製 作’如第3B圖所示。其中’第一電性不同於第二電性,舉 例而言’當-者為N型時’另—者則為^。由於緩衝層 3〇2之表面304具有圖案結構3〇6,因此與緩衝層之表 面304面對接合之緩衝層308的表面320具有圖案結構 \1〇,其中此圖案結構310與緩衝層3〇2之表面3〇4的圖案 =構306互補。在一實施例中,緩衝層3〇8之材料可例如為 氮化鎵系列材料’以利提升後續成長之蟲晶結構的遙晶品 質。 接著靖參照第3C圖,形成反射鏡面層322於發光蟲 曰曰、’Q構3 1 8之第二電性侷限層322上,以利反射發光磊晶結 構318射向高導熱基板324(請先參照第3D圖)之光。其中, 反射鏡面層322較佳為可導電材質,以作為後續電鍍高導熱 基板324時之基礎。在一實施例中,反射鏡面層322可包括 16 200919778 一層或多層金屬層。然後’利用電鍍方式於反射鏡面層322 上成長局導熱基板324。因此,高導熱基板324係一電鍍基 板。在一實施例中,高導熱基板324之材料可選自於由銅及 其合金所組成之一族群。在另一實施例中,高導熱基板324 之材料可選自於由鎳及其合金所組成之一族群。 f ·. 待完成高導熱基板324之電鍍後,利用化學蝕刻液對緩 衝層302進行濕钱刻步驟,以移除緩衝層3,而藉此將原 生基板300自發先磊晶結構318之緩衝層的表面 上移除,而使原生基板3〇〇與發光磊晶結構3丨8分開,並暴 露出發光磊晶結構318之緩衝層3〇8的表面32〇,如第3E 圖所不。由於發光磊晶結構318之緩衝層3〇8的表面 具有圖案結才冓310,因此可提高發光二極體結構之光取出 率’而可提升發光二極體元件之發光效能與發光亮度。藉由 濕蚀刻移除緩衝層3G2的方式,即可輕易且有效地分開原生 基板300與發光蟲晶結構3 1 8,而無需使用雷射剝離技術, 因此可有2降低製程設備成本,並可提高生產良率。 在只施例中,可直接形成第一電性電極326於發光磊 晶結構318之缓衝層3〇8的表面32〇的一部分上,並形成第 -電性電極328a於高導熱基板324之表面上,而形成發光 -極體結構33〇a’其中第二電性電極伽與反射鏡面層似 位於尚導熱基板324之相對二表面上,如第郊圖所示。 然而’在另·一實施例中,沉在丨丨田/丨 (g, ^ ^ ^ 中了幻用例如微影與蝕刻技術等 圖案疋義技術,先對發光磊θ έ士接1 除部分之緩衝層·、構電3;進行圖案 主動層314,直至暴露出::第:電性侷限層312與部分之 、 底下之第一電性侷限層3 16的部分 17 200919778 表面332。接著,形成第—電 之緩衝層的表φ 320的—於發光蟲晶結構318 328b於第二電性侷限層 刀亚形成第-電性電極 L ,丄 义暴蕗出之表面332的—邱八 上,極體結構33〇b,如第π圖所示。。刀 二極體結構之製造方法係在原 =二The buffer layer 3G2 composed of zinc oxide is etched during subsequent crystallization, and is selectively protected on the buffer layer 302 A (not shown). The surface 304 is covered with a layer of nitride. After the buffer layer 302 is disposed, the surface is grown on the surface of the buffer layer by using, for example, an organic metal deposition method. In one embodiment, the luminescent crystal structure 318 can be, for example, a nitrided (tetra) crystal structure. In the exemplary embodiment, when the luminescent crystal structure 318 is formed, the buffer layer 308 and the first electrical localization layer 312 may be sequentially disposed on the buffer layer 3〇8 on the surface of the buffer layer 3()4. The active layer gw is on the first electrical limiting layer 312 and the second electrical limiting layer 316 is on the active layer 314, and the fabrication of the luminescent epitaxial structure us of the exemplary embodiment is completed as shown in FIG. 3B. Where 'the first electrical property is different from the second electrical property, for example, when the one is the N type and the other is the ^. Since the surface 304 of the buffer layer 3〇2 has the pattern structure 3〇6, the surface 320 of the buffer layer 308 facing the surface 304 of the buffer layer has a pattern structure, wherein the pattern structure 310 and the buffer layer 3〇 The pattern of surface 3〇4 of 2 is complementary to structure 306. In one embodiment, the material of the buffer layer 3 〇 8 may be, for example, a gallium nitride series material to enhance the telecrystalline quality of the subsequently grown serpentine structure. Next, referring to FIG. 3C, a mirror surface layer 322 is formed on the second electrically conductive layer 322 of the luminescent structure, the 'Q structure 318, to facilitate the reflection of the luminescent epitaxial structure 318 toward the high thermal conductivity substrate 324 (please Refer to the light of Figure 3D first. The mirror surface layer 322 is preferably an electrically conductive material for use as a basis for subsequent electroplating of the high thermal conductivity substrate 324. In an embodiment, the mirror surface layer 322 can include 16 200919778 one or more metal layers. Then, the thermal conductive substrate 324 is grown on the mirror surface layer 322 by electroplating. Therefore, the highly thermally conductive substrate 324 is an electroplated substrate. In one embodiment, the material of the highly thermally conductive substrate 324 may be selected from the group consisting of copper and alloys thereof. In another embodiment, the material of the highly thermally conductive substrate 324 may be selected from the group consisting of nickel and its alloys. After the electroplating of the high thermal conductive substrate 324 is completed, the buffer layer 302 is subjected to a wet etching step by using a chemical etching solution to remove the buffer layer 3, thereby thereby absorbing the buffer layer of the native substrate 300 from the epitaxial structure 318. The surface is removed, and the native substrate 3〇〇 is separated from the luminescent epitaxial structure 3丨8, and the surface 32〇 of the buffer layer 3〇8 of the luminescent epitaxial structure 318 is exposed, as shown in FIG. 3E. Since the surface of the buffer layer 3〇8 of the light-emitting epitaxial structure 318 has a pattern junction 310, the light extraction rate of the light-emitting diode structure can be improved, and the light-emitting efficiency and the light-emitting luminance of the light-emitting diode element can be improved. By removing the buffer layer 3G2 by wet etching, the native substrate 300 and the luminescent crystal structure 31 can be easily and effectively separated without using the laser stripping technology, so that the cost of the process equipment can be reduced by 2, and Improve production yield. In the embodiment, the first electrical electrode 326 can be directly formed on a portion of the surface 32 of the buffer layer 3 8 of the light emitting epitaxial structure 318, and the first electrical electrode 328a can be formed on the high thermal conductive substrate 324. On the surface, a light-polar body structure 33A' is formed in which the second electrical electrode galax and the mirror surface layer are located on opposite surfaces of the heat-conducting substrate 324, as shown in the sub-sub-graph. However, in another embodiment, sinking in Putian/丨 (g, ^ ^ ^ used magical techniques such as lithography and etching techniques, first to the illuminating θ έ 接 1 The buffer layer ·, the structure 3; the pattern active layer 314 is performed until the:: electrical localization layer 312 and a portion of the bottom portion of the first electrical confinement layer 3 16 17 200919778 surface 332. Then, Forming the surface of the first-electric buffer layer φ 320 - the luminescent crystal structure 318 328b forms a first-electrode electrode L in the second electrically-restricted layer, and the surface 332 of the 蕗 蕗 蕗 — , the polar body structure 33〇b, as shown in the figure π. The manufacturing method of the knife diode structure is in the original = two

:物緩衝層,再於緩衝層上成長發光屋晶結構並:置 =板,錢可藉由㈣移除緩衝層的方式—併移除原^ 提高製程良率。_成本的方式輕易移除原生基板,而可 由上述示範實施例可知,本發明之另—優點就是因為發 光二極體結構之製造方法係在原生基板上先設置表面 圖案結構之氧化物或氮化物緩衝層,再於緩衝層具有圖案结 構之表面上蟲晶成長發光蟲晶結構,因此可使發m结構 之表面具有圖案結構,而可有效提升發光:極體之光取出效 率 〇 一由上述示範實施例可知,本發明之又一優點就是因為發 光一極體結構具有提高之光取出效率,進而可增進發光二極 體之亮度與發光效能。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 18 200919778 第1A圖至第1E圖係繪示依照本發明第一較佳實施例 的一種發光二極體結構之製程剖面圖。 第1F圖係繪示依照本發明第一較佳實施例的另一種發 光二極體結構之剖面圖。 第2A圖至第2G圖係繪示依照本發明第二較佳實施例 的一種發光二極體結構之製程剖面圖。 第2H圖係繪示依照本發明第二較佳實施例的另一種發 光一極體結構之剖面圖。 第3A圖至第3F圖係繪示依照本發明第三較佳實施例 的—種發光二極體結構之製程剖面圖。 光二極體結構之剖面圖。 【主要元件符號說明】 100 :原生基板 102 :緩衝層 104 :表面 106 :圖案結構 108 :緩衝層 110 :圖案結構 112 :第一電性偈限層 114 :主動層 116 :第二電性侷限層 118:發光蟲晶結構 120 :表面 122 :反射鏡面層 12 4 .黏著層 126 :高導熱基板 128:第一電性電極 130a :第二電性電極 130b:第二電性電極 132a :發光二極體結 132b :發光二極體結構 134 :表面 200 :原生基板 202 :緩衝層 第3G圖係繪示依照本發明第三較佳實施例的另一種發 19 200919778 204 : 表面 208 : 缓衝層 212 : 第一電性揭限層 216 : 第二電性侷限層 220 : 表面 224 : 暫時基板 228 : 反射鏡面層 232 : 第二電性電極 234b :第一電性電極 236b :發光二極體結構 300 : 原生基板 304 : 表面 308 : 缓衝層 312 : 第一電性侷限層 316 : 第二電性侷限層 320 : 表面 324 : 向導熱基板 328a :第二電性電極 330a :發光二極體結構 332 : 表面: The material buffer layer, and then grows the luminescent house crystal structure on the buffer layer and: = plate, money can be removed by means of (4) removing the buffer layer - and removing the original ^ to improve the process yield. In a cost-effective manner, the native substrate can be easily removed, and as can be seen from the above exemplary embodiments, another advantage of the present invention is that the manufacturing method of the light-emitting diode structure is to first provide an oxide or nitride of the surface pattern structure on the primary substrate. The buffer layer, and the surface of the buffer layer having the patterned structure, grows the luminescent crystal structure, so that the surface of the m-structure can have a pattern structure, and the illuminating can be effectively improved: the light extraction efficiency of the polar body is exemplified by the above demonstration It can be seen from the embodiment that another advantage of the present invention is that the light-emitting diode structure has improved light extraction efficiency, thereby improving the brightness and luminous efficacy of the light-emitting diode. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is intended that various modifications may be made without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS 18 200919778 FIGS. 1A to 1E are cross-sectional views showing a process of a light emitting diode structure in accordance with a first preferred embodiment of the present invention. Fig. 1F is a cross-sectional view showing another light-emitting diode structure in accordance with a first preferred embodiment of the present invention. 2A through 2G are cross-sectional views showing a process of a light emitting diode structure in accordance with a second preferred embodiment of the present invention. Fig. 2H is a cross-sectional view showing another light-emitting diode structure in accordance with a second preferred embodiment of the present invention. 3A to 3F are cross-sectional views showing a process of a light-emitting diode structure in accordance with a third preferred embodiment of the present invention. A cross-sectional view of the photodiode structure. [Main component symbol description] 100: Native substrate 102: Buffer layer 104: Surface 106: Pattern structure 108: Buffer layer 110: Pattern structure 112: First electrical threshold layer 114: Active layer 116: Second electrical confinement layer 118: luminescent crystal structure 120: surface 122: mirror surface layer 12 4. adhesive layer 126: high thermal conductivity substrate 128: first electrical electrode 130a: second electrical electrode 130b: second electrical electrode 132a: light emitting diode Body junction 132b: Light-emitting diode structure 134: Surface 200: Native substrate 202: Buffer layer 3G is a diagram showing another hairpiece according to a third preferred embodiment of the present invention. 19 200919778 204: Surface 208: Buffer layer 212 The first electrical limiting layer 216 : the second electrical limiting layer 220 : surface 224 : temporary substrate 228 : mirror surface layer 232 : second electrical electrode 234b : first electrical electrode 236b : light emitting diode structure 300 : Primary substrate 304 : Surface 308 : Buffer layer 312 : First electrical confinement layer 316 : Second electrical confinement layer 320 : Surface 324 : Guide thermal substrate 328a : Second electrical electrode 330a : Light-emitting diode Body structure 332 : surface

206 :圖案結構 210 :圖案結構 214 :主動層 2 1 8 :發光磊晶結構 222 :黏著層 226 :黏著層 230.南導熱基板 234a :第一電性電極 236a ··發光二極體結構 238 :表面 302 :緩衝層 306 :圖案結構 3 10 :圖案結構 3 14 :主動層 3 1 8 :發光磊晶結構 322 :反射鏡面層 326 :第一電性電極 328b :第二電性電極 330b :發光二極體結構 20206: Pattern structure 210: Pattern structure 214: Active layer 2 1 8: Light-emitting epitaxial structure 222: Adhesive layer 226: Adhesive layer 230. South heat-conducting substrate 234a: First electrical electrode 236a · Light-emitting diode structure 238: Surface 302: buffer layer 306: pattern structure 3 10 : pattern structure 3 14 : active layer 3 1 8 : light emitting epitaxial structure 322 : mirror surface layer 326 : first electrical electrode 328b : second electrical electrode 330b : light emitting two Polar body structure 20

Claims (1)

200919778 十、申請專利範圍 ' 1. 一種發光二極體結構之製造方法,至少包括: 提供一原生基板; 形成一第一缓衝層於該原生基板上,其中該第一緩衝 層之材料為氧化物或氮化物,且該第一缓衝層之一表面設 有一第一圖案結構; 形成一發光磊晶結構於該第一缓衝層之該表面上,以 r 使該發光磊晶結構之一表面與該第一缓衝層之該表面接 \ 合,而使該發光磊晶結構之該表面具有一第二圖案結構, 其中該發光蟲晶結構係一氮化蘇相關材料蠢晶結構, 形成一黏著層於該發光磊晶結構上; 設置一高導熱基板於該黏著層上;以及 對該第一缓衝層進行一濕姓刻步驟,以移除該第一缓 衝層與該原生基板》而暴露出該發光蠢晶結構之該表面。 , 2.如申請專利範圍第1項所述之發光二極體結構之 製造方法,其中該原生基板之材料為藍寶石。 3. 如申請專利範圍第1項所述之發光二極體結構之 製造方法,其中該第一缓衝層之材料為氧化辞。 4. 如申請專利範圍第3項所述之發光二極體結構之 - 製造方法,於形成發光磊晶結構之步驟與形成該第一缓衝 . 層之步驟之間,更至少包括形成一氮化物保護層覆蓋在該 21 200919778 第一緩衝層之該表面上。 * 5·如中請專利範圍第1項所述之發光:極體結構之 製造方法’其中形成該發光蟲晶結構之步驟至少包括: 形成一第二緩衝層於該第一緩衝層上; 形成一第一電性侷限層於該第二緩衝層上; 形成一主動層於該第一電性侷限層上;以及 形成一第二電性侷限層於該主動層上,其中該第— Γ 性侷限層之電性不同於該第二電性侷限層之電性Λ。電 6. 如申請專利範圍第5項所述之發 製造方法,其中該第二、、°構史 後衡層之材枓為氮化鎵系列材料。 7. 如申請專利範圍第5項所述之發光二極體結構之 、方法’其中形成該第二緩衡層之步驟、形成該第 性侷限層之步驟、形成該主動層之步驟、以及形 電性偈限層之步驟係利用-有機金屬化學氣相沉積法Γ 1專利範圍第5項所述之發光二極體結構之 I造方法,於形成該發夯石S 發先猫日日結構之步驟與形成該黏著層 之步驟之間,更至少句括带士、 社 L括形成—反射鏡面層於該發光磊晶 、-,口稱之另一表面上,里Φ纺 ^ 、發先秘晶結構之該另一表面相 對於該發先磊晶結構之該表面。 9.如申請專利範圍第 8項所述之發光二極體結構之 22 200919778 製造方法5 姑 ^ 1( ,、 孩黏著層、該反射鏡面層與該高導熱基板 . 之材料導電。 製4 1〇.、如申請專利範圍第9項所述之發光二極體結構之 這方法,其中該黏著層之材料為銲錫。 製i 1 ·、如申請專利範圍第9項所述之發光二極體結構之 f \ &方法,於該濕蝕刻步驟後,更至少包括: w 卜 —第一電性電極於該發光磊晶結構之該表面的 〜部分;以及 形成一第二電性電極於該高導熱基板上。 12.如申請專利範圍第8項所述之發光二極體結構之 X J 、’其中該反射鏡面層包括至少一反射材料層。 ( 製、生Ο.如申請專利範圍第8項所述之發光二極體結構之 、方法,其中該反射鏡面層包括至少一金屬層。 制、 如申°月專利範圍第8項所述之發光二極體結構之 ,/、中該反射鏡面層包括複數個介電層。 製&丨5·如申請專利範圍第5項所述之發光二極體結構之 ' 造方法,其中該黏著層之材料為高分子聚合物。 16.如申請專利範圍第15項所述之發光二極體結構 23 200919778 之製造方法,於該濕蝕刻步驟後,更至少包括: 對該發光磊晶結構進行一定義步驟,以移除部分之該 第二緩衝層、部分之該第一電性侷限層'以及部分之該主 動層’直至暴露出部分之該第二電性侷限層; 形成一第一電性電極於該發光磊晶結構之該表面的 一部分;以及 形成一第二電性電極於該第二電性侷限層之該部分 的一部分上。 17.如申請專利範圍第1項所述之發光二極體結構之 製造方法’其中形成該第一緩衝層之步驟係利用一濺鍍 法0 18. 如申請專利範圍第1項所述之發光二極體結構之 製造方法,其中該高導熱基板之材料係選自於由銅及其合 金所組成之一族群。 19. 如申請專利範圍第1項所述之發光二極體結構之 製造方法’其中該高導熱基板之材料係選自於由鎳及其合 金所組成之一族群。 20. —種發光二極體結構之製造方法,至少包括: 提供一原生基板; 形成一第一緩衝層於該原生基板上,其中該第一緩衝 層之材料為氧化物或氮化物’且該第一緩衝層之一表面設 24 200919778 有一第一圖案結構; 形成一發光磊晶結構於該第一緩衝層之該表面上,以 •使該發光磊晶結構之一表面與該第一緩衝層之該表面接 合,而使該發光磊晶結構之該表面具有一第二圖案結構, 其中該發光磊晶結構係一氮化鎵相關材料磊晶結構; 形成一第一黏著層於該發光磊晶結構上; 設置一暫時基板於該第一黏著層上; 對該第一緩衝層進行一濕蝕刻步驟,以移除該第一緩 ) 衝層與該原生基板,而暴露出該發光磊晶結構之該表面; 形成一第二黏著層於該發光磊晶結構之該表面上; 設置一高導熱基板於該第二黏著層上;以及 移除該第一黏著層與該暫時基板,以暴露出該發光磊 晶結構。 21.如申請專利範圍第2〇項所述之發光二極體結構 之製造方法,其中該原生基板之材料為藍寶石。 22,如申請專利範圍第2〇項所述之發光二極體結構 之製造方法,其中該第一緩衝層之材料為氧化鋅。 23’如申晴專利範圍第22項所述之發光二極體結構 之製造方法,於形成發光磊晶結構之步驟與形成該第一緩 衝層之步騍之間,更至少包括形成一氮化物保護層覆蓋在 該第一緩衝層之該表面上。 25 200919778 二4.如申請專利範圍第2〇項所述之發光二極體結構 製這方法其中形成該發光磊晶結構之步驟至少包括: 形成一第二緩衝層於該第一緩衝層上; . 形成一第一電性侷限層於該第二緩衝層上; 形成主動層於該第一電性侷限層上;以及 形成一第二電性侷限層於該主動層上,其中該第一電 !生侷限層之電性不同於該第二電性侷限層之電性。 如中請專利範圍第24項所述之發光二極體結構 之^方法,其中該第二緩衝層之材料為氮化鎵系列材 制:如申請專利範圍第24項所述之發光二極體結構 、方法纟中形成該第二緩衝層之步驟、形成該第— 電性侷限層之步驟、开彡士、# $成該主動層之步驟、以及形成該第 二電性侷限層之步驟係刹田 .^ „ 係利用一有機金屬化學氣相沉積法。200919778 X. Patent Application Scope 1. A method for fabricating a light emitting diode structure, comprising at least: providing a native substrate; forming a first buffer layer on the native substrate, wherein the material of the first buffer layer is oxidized Or a nitride, and a surface of the first buffer layer is provided with a first pattern structure; forming a luminescent epitaxial structure on the surface of the first buffer layer, and r is one of the luminescent epitaxial structures The surface is coupled to the surface of the first buffer layer, and the surface of the luminescent epitaxial structure has a second pattern structure, wherein the luminescent crystal structure is a stupid crystal structure of a nitrite-related material, forming An adhesive layer is disposed on the luminescent epitaxial structure; a high thermal conductive substrate is disposed on the adhesive layer; and the first buffer layer is subjected to a wet etching step to remove the first buffer layer and the native substrate The surface of the luminescent crystal structure is exposed. 2. The method of manufacturing a light-emitting diode structure according to claim 1, wherein the material of the primary substrate is sapphire. 3. The method of fabricating a light-emitting diode structure according to claim 1, wherein the material of the first buffer layer is an oxidized word. 4. The method of manufacturing a light-emitting diode structure according to claim 3, wherein the step of forming the light-emitting epitaxial structure and the step of forming the first buffer layer further comprise at least forming a nitrogen A protective layer of the layer covers the surface of the 21 200919778 first buffer layer. The illuminating method of the first embodiment of the invention, wherein the step of forming the luminescent structure is at least: forming a second buffer layer on the first buffer layer; forming a first electrical layer is disposed on the second buffer layer; an active layer is formed on the first electrical confinement layer; and a second electrically confined layer is formed on the active layer, wherein the first The electrical properties of the localized layer are different from the electrical properties of the second electrically confined layer. 6. The method of manufacturing according to claim 5, wherein the material of the second layer and the history of the second layer is a gallium nitride series material. 7. The method of forming a light-emitting diode structure according to claim 5, wherein the step of forming the second balance layer, the step of forming the first-order localization layer, the step of forming the active layer, and the shape The step of electrically limiting the layer is by using the method of forming a light-emitting diode structure according to the fifth aspect of the patented metal-organic chemical vapor deposition method. Between the steps of forming the adhesive layer and at least the steps of forming the adhesive layer, the mirror layer is formed on the other surface of the luminescent projection, and the nickname is Φ ^ The other surface of the crystal structure is opposite the surface of the epitaxial structure. 9. The structure of the light-emitting diode structure as described in claim 8 of the patent application No. 8 200919778. The method of manufacturing the method 5, the adhesive layer of the child, the mirror surface layer and the material of the high thermal conductivity substrate are electrically conductive. The method of claim 9, wherein the material of the adhesive layer is solder. The light-emitting diode according to claim 9 is applied. The f \ & method of the structure, after the wet etching step, further comprises: at least: a portion of the surface of the surface of the luminescent epitaxial structure; and forming a second electrical electrode 12. The XJ of the light-emitting diode structure according to Item 8 of the patent application, wherein the mirror surface layer comprises at least one layer of reflective material. (Production, production, etc. The method of the present invention, wherein the mirror surface layer comprises at least one metal layer. The light-emitting diode structure according to item 8 of the patent scope of the patent application, /, the reflection Mirror layer includes a plurality of layers The method of manufacturing a light-emitting diode structure according to claim 5, wherein the material of the adhesive layer is a high molecular polymer. The manufacturing method of the light emitting diode structure 23 200919778, after the wet etching step, further comprises: performing a defining step on the light emitting epitaxial structure to remove part of the second buffer layer, the portion of the first An electrically confined layer 'and a portion of the active layer' up to the exposed portion of the second electrically confined layer; forming a first electrical electrode on a portion of the surface of the luminescent epitaxial structure; and forming a second The electrical electrode is on a portion of the portion of the second electrically conductive layer. 17. The method of fabricating a light emitting diode structure according to claim 1, wherein the step of forming the first buffer layer is utilized A method of fabricating a light-emitting diode structure according to claim 1, wherein the material of the high thermal conductivity substrate is selected from the group consisting of copper and an alloy thereof. Such as The method for manufacturing a light-emitting diode structure according to the first aspect of the invention, wherein the material of the high heat conductive substrate is selected from the group consisting of nickel and an alloy thereof. 20. A light-emitting diode structure The manufacturing method includes at least: providing a primary substrate; forming a first buffer layer on the native substrate, wherein the first buffer layer is made of an oxide or a nitride and the surface of the first buffer layer is 24 200919778 Forming a first pattern structure; forming a luminescent epitaxial structure on the surface of the first buffer layer to enable a surface of the luminescent epitaxial structure to be bonded to the surface of the first buffer layer The surface of the crystal structure has a second pattern structure, wherein the luminescent epitaxial structure is a GaN-related material epitaxial structure; forming a first adhesive layer on the luminescent epitaxial structure; Depositing a first buffer layer with a wet etching step to remove the first buffer layer and the native substrate to expose the surface of the luminescent epitaxial structure; A second adhesive layer on the surface of the epitaxial emission structures; a metal substrate disposed on the second adhesive layer; and removing the first adhesive layer and the temporary substrate to expose the light emitting Lei crystal structure. 21. The method of fabricating a light emitting diode structure according to claim 2, wherein the material of the native substrate is sapphire. The method of manufacturing a light-emitting diode structure according to claim 2, wherein the material of the first buffer layer is zinc oxide. 23' The method for manufacturing a light-emitting diode structure according to claim 22, wherein at least the step of forming the luminescent epitaxial structure and the step of forming the first buffer layer further comprises forming a nitride. A protective layer overlies the surface of the first buffer layer. The method of forming the luminescent epitaxial structure according to the method of claim 2, wherein the step of forming the luminescent epitaxial structure comprises: forming a second buffer layer on the first buffer layer; Forming a first electrically limited layer on the second buffer layer; forming an active layer on the first electrically confined layer; and forming a second electrically confined layer on the active layer, wherein the first The electrical conductivity of the biofilm layer is different from the electrical property of the second electrical confinement layer. The method of fabricating a light-emitting diode according to claim 24, wherein the material of the second buffer layer is made of a gallium nitride series material: the light-emitting diode according to claim 24; The step of forming the second buffer layer in the structure, the method, the step of forming the first electrical layer, the step of opening the gentleman, the step of forming the active layer, and the step of forming the second electrical layer刹田.^ „ uses an organometallic chemical vapor deposition method. ,.如U利$&圍第24項所述之發光二極體結構 之製造方法,於形成該第二黏著層之步驟與設置該高導熱 基板之步驟之間,更至少台紅 夕匕括形成一反射鏡面層於該高蓬 熱基板上。 2 8 ·如申請專利範圖窜 圍弟27項所述之發光二極體結 之製造方法,其中該第-机—見 再 弟一黏者層、該反射鏡面層與該高 熱基板之材料導電。 ^ 26 200919778 29. 如申請專利範圍第μ項所述之發光二極體結構 之製造方法,其中該第二黏著層之材料為銲錫。 30. 如申請專利範圍第28項所述之發光二極體結構 之製造方法,更至少包括: 形成一第一電性電極於該高導熱基板上;以及 形成一第二電性電極於該第二電性侷限層的一部分 上。 3 1.如申請專利範圍第27項所述之發光二極體結構 之製造方法,其中該反射鏡面層包括至少一金屬層。 32·如申請專利範圍第27項所述之發光二極體結構 之製造方法,其中該反射鏡面層包括複數個介電層。 33. 如申凊專利範圍第24項所述之發光二極體結構 之製造方法,纟中該帛二黏著層t材料為高分子聚合物。 34. 如申請專利範圍第33項所述之發光二極體結構 之製造方法’於該移除該第—黏著層與該暫時基板之步驟 後,更至少包括: 對該發光遙晶結構進杆一定墓半跡,、,切λ 何運仃一疋義步驟,以移除部分之該 第二電性偈限層、部分之該主動層、以及部分之該 性侷限層,直至暴露出部分之該第二緩衝層;^ 電 27 200919778 形成一第一電性電極於該第二緩衝層之該部分的一 ' 部分上;以及 . 形成一第二電性電極於該第二電性偈限層的一部分 上。 35.如申請專利範圍第2〇項所述之發光二極體結構 之製造方法,其中形成該第一緩衝層之步驟係利用—濺鍍 法。 36. 如申請專利範圍第20項所述之發光二極體結構 之製造方法,其中該高導熱基板之材料係選自於由鋼及其 合金所組成之一族群。 37. 如申請專利範圍第2〇項所述之發光二極體結構 之製造方法,其中該高導熱基板之材料係選自於由鎳及其 合金所組成之一族群。 38. —種發光二極體結構之製造方法,至少包括: 提供一原生基板; 形成一第一缓衝層於該原生基板上,其中該第一緩衝 層之材料為氧化物或氮化物,且該第—緩衝層之一表面設 有一第一圖案結構; 又 形成一發光磊晶結構於該第一緩衝層之該表面上,以 使該發光磊晶結構之一表面與該第—緩衝層之該表面接 合’而使該發Μ晶結構之該表面具有—第二圖案結構, 28 200919778 其中該發光蟲晶結構係一氮化録相關材料蟲晶結構; 形成一反射鏡面層於該發光磊晶結構上; 電鑛一高導熱基板於該反射鏡面層上;以及 對該第一缓衝層進行一濕蝕刻步驟,以移除該第一缓 衝層與該原生基板,而暴露出該發光磊晶結構之該表面。 39·如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中該原生基板之材料為藍寶石。 40. 如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中該第一緩衝層之材料為氧化鋅。 41. 如申請專利範圍第4〇項所述之發光二極體結構 之製造方法,於形成發光磊晶結構之步驟與形成該第一缓 衝層之步驟之間,更至少包括形成一氮化物保護層覆蓋在 該第一緩衝層之該表面上。 42·如申印專利範圍第3 8項所述之發光二極體結構 之製ia方法,其中形成該發光磊晶結構之步驟至少包括: 形成一第二緩衝層於該第一緩衝層上; 形成一第一電性侷限層於該第二緩衝層上; 形成—主動層於該第一電性侷限層上;以及 形成一第二電性侷限層於該主動層上,其中該第一電 性侷限層之電性不同於該第二電性侷限層之電性。 29 200919778 ‘ 43.如申請專利範圍第42項所述之發光二極體結構 之製造方法,於該濕餘刻步驟後,更至少包括: • 對该發光磊晶結構進行一定義步驟,以移除部分之該 第二缓衝層、部分之該第—電性侷限層、以及部分之該主 動層,直至暴露出部分之該第二電性侷限層; 形成一第一電性電極於該發光磊晶結構之該表面的 一部分;以及 形成一第二電性電極於該第二電性侷限層之該部分 (、. 的一部分上。 44. 如申請專利範圍第42項所述之發光二極體結構 之製造方法,其十該第二緩衝層之材料為氮化鎵系列材 料。 45. 如申請專利範圍第42項所述之發光二極體結構 之製造方法,其中形成該第二緩衝層之步驟、形成該第一 C,i 電性侷限層之步驟、形成該主動層之步驟、以及形成該第 一電性侷限層之步驟係利用一有機金屬化學氣相沉積法。 46. 如申請專利範圍第38項所述之發光二極體結構 之製造方法,於該濕蝕刻步驟後,更至少包括: 形成一第一電性電極於該發光磊晶結構之該表面的 —部分;以及 形成一弟一電性電極於該高導熱基板上。 200919778 47_如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中該反射鏡面層包栝至少—金屬層。 48.如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中形成該第一缓衝層之步驟係利用一濺鍍 法0 49. 如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中該高導熱基板之材料係選自於由銅及其 合金所組成之一族群。 50. 如申請專利範圍第38項所述之發光二極體結構 之製造方法,其中該高導熱基板之材料係選自於由鎳及其 合金所組成之一族群。 51. —種發光二極體結構,至少包括: 一南導熱基板’具有相對之一第一表面以及一第二表 面; 一黏著層,設於該高導熱基板之該第一表面上;以及 一發光磊晶結構,至少包括依序堆疊在該黏著層上之 一第二電性侷限層、一主動層、一第一電性侷限層以及一 緩衝層,其中該,緩衝層之-表面具有—圖案結冑,且該發 光蟲晶結#係、-氮化鎵相關材料蟲晶結構,該第_電性偈 限層之電性不同於該第二電性侷限層之電性。 31 200919778 52.如申請專利範圍第5 1項所述之發光二極體結 ' 構’其中該緩衝層之材料為氮化鎵系列材料。 5 3 .如申請專利範圍第5 1頊所述之發光二極體結 構’更至少包括一反射鏡面層,設於該黏著層與該第二電 性侷限層之間。 54. 如申請專利範圍第53項所述之發光二極體結 構’其中該黏著層、該反射鏡面層與該局導熱基板之材料 導電。 55. 如申請專利範圍第54項所述之發光二極體結 構,更至少包括: 一第一電性電極,設於該緩衡層之該表面之—部分 上;以及 一第二電性電極,設於該高導熱基板之該第二表面。 56. 如申請專利範圍第5ι項所述之發光二極體結 構,其中該主動層、該第一電性偈限層與該緩衝層之堆疊 結構位於該第二電性侷限層之—部分上,而暴露出該第二 電性揭限層之另一部分。 57. 如申請專利範圍第56項所述之發光二極體結 構,更至少包括: 一第一電性電極’設於該緩衝層之該表面的一部分; 32 200919778 以及 一第二電性電極’設於該第二電性侷限層之該另一部 分的一部分上。 58. 如申請專利範圍第51項所述之發光二極體結 構,其中該高導熱基板之材料係選自於由銅及其合金所組 成之一族群。 59. 如申請專利範圍第5 1項所述之發光二極體結 構,其中該高導熱基板之材料係選自於由鎳及其合金所組 成之一族群。 60. —種發光二極體結構,至少包括: 一南導熱基板,具有相對之一第一表面以及一第二表 面; 一黏著層,設於該高導熱基板之該第一表面上;以及 一發光磊晶結構,至少包括依序堆疊在該黏著層上之 一缓衝層、一第一電性侷限層、一主動層以及一第二電性 侷限層,其中該緩衝層之與該黏著層接合之一表面具有— 圖案、構且5亥發光磊晶結構係一氮化鎵相關材料磊晶結 構’該第一電性侷限層之電性不同於該第二電性侷限層之 電性。 λ申請專利乾圍第6〇項所述之發光二極體結 構’其中該緩衝層之材料為氮化鎵系列材料。 33 200919778 62. 如申請專利範圍帛6〇工員所述之發光二極 構’更至少包括—反射鏡面層’設於該黏著層與該高導: 基板之該第一表面之間。 等熟 63. 如申請專利範圍第62項所述之發光二極體社 構,其中該黏著層、該反射鏡面層與該高導熱基板之: 導電。 料 04.如申請專利範圍第63項所述之發光二極體結 構,更至少包括: 一第一電性電極,設於該第二電性侷限層上;以及 一第二電性電極,設於該高導熱基板之該第二表面。 65. 如申請專利範圍第60項所述之發光二極體結 構’其中該第二電性侷限層、該主動層與該第一電性侷限 層之堆疊結構位於該緩衝層之一部分上,而暴露出該緩衝 層之另一部分。 66. 如申請專利範圍第65項所述之發光二極體結 構,更至少包括: 一第二電性電極,設於該第二電性侷限層之一部分; 以及 一第一電性電極,設於該緩衝層之该另一部分的一部 分上。 34 200919778 67·如申請專利範圍第60項所述之發光二極體結 構,其中該高導熱基板之材料係選自於由銅及其合金所組 成之一族群。 68.如申請專利範圍第60項所述之發光二極體結 構’其中該高導熱基板之材料係選自於由錄及其合金所組 成之一族群。 6 9. —種發光二極體結構,至少包括: 一電鍍基板’具有相對之一第一表面以及一第二表 面; 一反射鏡面層,設於該電鍍基板之該第一表面上,其 中該反射鏡面層之材料可導電;以及 一發光蟲晶結構’至少包括依序堆疊在該反射鏡面層 上之一第二電性侷限層、一主動層、一第一電性侷限層以 及一緩衝層’其中該緩衝層之一表面具有一圖案結構,且 該發光磊晶結構係一氮化鎵相關材料磊晶結構,該第一電 性侷限層之電性不同於該第二電性偈限層之電性。 70.如申請專利範圍第69項所述之發光二極體結 構’其中該緩衝層之材料為氮化鎵系列材料。 71·如申請專利範圍第69項所述之發光二極體結構 更至少包括: 35 200919778 一第一電性電極,設於該緩衝層之該表面之一部分 " 上;以及 • 一第二電性電極,設於該電鍍基板之該第二表面。 72. 如申請專利範圍第69項所述之發光二極體結 構,其中該主動層、該第一電性侷限層與該緩衝層之堆疊 結構位於該第二電性偈限層之一部分上,而暴露出該第二 電性侷限層之另一部分。 Γ" ·, 73. 如申請專利範圍第72項所述之發光二極體結 構,更至少包括: 一第一電性電極,設於該緩衝層之該表面的一部分; 以及 一第二電性電極’設於該第二電性侷限層之該另一部 分的一部分上。 74·如申請專利範圍第69項所述之發光二極體結 構,其中該高導熱基板之材料係選自於由銅及其合金所組 成之一族群。 75.如申請專利範圍第69項所述之發光二極體結 構,其中該高導熱基板之材料係選自於由鎳及其合金所組 成之一族群。 36For example, the manufacturing method of the light-emitting diode structure described in Item 24, between the step of forming the second adhesive layer and the step of providing the high thermal conductive substrate, is at least Forming a mirror surface layer on the high heat substrate. 2 8 · A method for manufacturing a light-emitting diode junction as described in claim 27, wherein the first machine--see another layer of the adhesive layer, the mirror surface layer and the material of the high-heat substrate are electrically conductive . The manufacturing method of the light-emitting diode structure according to the invention of claim 5, wherein the material of the second adhesive layer is solder. 30. The method for fabricating a light emitting diode structure according to claim 28, further comprising: forming a first electrical electrode on the high thermal conductive substrate; and forming a second electrical electrode Part of the second electrical limitation layer. 3. The method of fabricating a light emitting diode structure according to claim 27, wherein the mirror surface layer comprises at least one metal layer. 32. The method of fabricating a light emitting diode structure according to claim 27, wherein the mirror surface layer comprises a plurality of dielectric layers. 33. The method for manufacturing a light-emitting diode structure according to claim 24, wherein the material of the second adhesive layer is a high molecular polymer. 34. The method for manufacturing a light-emitting diode structure according to claim 33, after the step of removing the first adhesive layer and the temporary substrate, further comprising: inserting the light-emitting crystal structure into the rod a certain tomb, and a step of removing the portion of the second electrical barrier layer, a portion of the active layer, and a portion of the localized layer until the portion is exposed a second buffer layer; a battery 27 200919778 forms a first electrical electrode on a portion of the portion of the second buffer layer; and a second electrical electrode is formed on the second electrical threshold layer Part of it. 35. A method of fabricating a light emitting diode structure according to claim 2, wherein the step of forming the first buffer layer is by sputtering. The method of fabricating a light-emitting diode structure according to claim 20, wherein the material of the high thermal conductivity substrate is selected from the group consisting of steel and alloys thereof. 37. A method of fabricating a light emitting diode structure according to claim 2, wherein the material of the high thermal conductivity substrate is selected from the group consisting of nickel and its alloys. 38. A method of fabricating a light emitting diode structure, comprising: providing a native substrate; forming a first buffer layer on the native substrate, wherein the first buffer layer is made of an oxide or a nitride, and One surface of the first buffer layer is provided with a first pattern structure; and a light emitting epitaxial structure is formed on the surface of the first buffer layer to make one surface of the light emitting epitaxial structure and the first buffer layer The surface is bonded to the surface of the crystallized structure having a second pattern structure, 28 200919778 wherein the luminescent crystal structure is a nitride crystal structure related to the material; a mirror surface layer is formed on the luminescent epitaxial layer Structurally; an electromine-high thermal conductive substrate on the mirror surface layer; and a wet etching step on the first buffer layer to remove the first buffer layer and the native substrate to expose the luminescent protrusion The surface of the crystal structure. 39. The method of fabricating a light-emitting diode structure according to claim 38, wherein the material of the native substrate is sapphire. 40. The method of fabricating a light-emitting diode structure according to claim 38, wherein the material of the first buffer layer is zinc oxide. 41. The method of fabricating a light emitting diode structure according to claim 4, wherein at least a step of forming a light emitting epitaxial structure and forming the first buffer layer comprises forming a nitride A protective layer overlies the surface of the first buffer layer. The method of forming the luminescent diode structure according to the ninth aspect of the invention, wherein the step of forming the luminescent epitaxial structure comprises: forming a second buffer layer on the first buffer layer; Forming a first electrically limited layer on the second buffer layer; forming an active layer on the first electrically confined layer; and forming a second electrically confined layer on the active layer, wherein the first The electrical properties of the localized confinement layer are different from the electrical properties of the second electrically confined layer. 29 200919778 ' 43. The method for manufacturing a light-emitting diode structure according to claim 42 , after the wet residual step, further comprises: • performing a definition step on the light-emitting epitaxial structure to move Except for a portion of the second buffer layer, a portion of the first electrical localization layer, and a portion of the active layer until a portion of the second electrical localization layer is exposed; forming a first electrical electrode for the illumination a portion of the surface of the epitaxial structure; and forming a second electrical electrode on the portion of the second electrically confined layer (., a portion of the portion. 44. The luminescent diode as described in claim 42 The manufacturing method of the bulk structure, wherein the material of the second buffer layer is a gallium nitride series material. The method for manufacturing the light emitting diode structure according to claim 42, wherein the second buffer layer is formed The step of forming the first C, i electrically confined layer, the step of forming the active layer, and the step of forming the first electrically confined layer are performed by an organometallic chemical vapor deposition method. The method for fabricating the LED structure of claim 38, after the wet etching step, further comprises: forming a portion of the first electrical electrode on the surface of the luminescent epitaxial structure; and forming A method of manufacturing a light-emitting diode structure according to claim 38, wherein the mirror surface layer comprises at least a metal layer. The method for fabricating a light-emitting diode structure according to claim 38, wherein the step of forming the first buffer layer is performed by a sputtering method. The light-emitting diode is as described in claim 38. The manufacturing method of the body structure, wherein the material of the high thermal conductivity substrate is selected from the group consisting of copper and an alloy thereof. 50. The method for manufacturing a light emitting diode structure according to claim 38, wherein The material of the high thermal conductivity substrate is selected from the group consisting of nickel and its alloys. 51. A light-emitting diode structure comprising at least: a south heat-conducting substrate having a first surface opposite to a second surface; an adhesive layer disposed on the first surface of the high thermal conductivity substrate; and a luminescent epitaxial structure comprising at least one of the second electrically limited layers sequentially stacked on the adhesive layer a layer, a first electrical confinement layer, and a buffer layer, wherein the surface of the buffer layer has a pattern crucible, and the luminescent crystal crystal structure, the gallium nitride related material worm crystal structure, the _ The electrical conductivity of the electrical barrier layer is different from the electrical conductivity of the second electrically conductive layer. 31 200919778 52. The light-emitting diode structure of claim 51, wherein the material of the buffer layer A gallium nitride series material. The light-emitting diode structure as described in claim 51 further includes at least one mirror surface layer disposed between the adhesive layer and the second electrical localization layer. . 54. The light-emitting diode structure of claim 53, wherein the adhesive layer, the mirror surface layer and the material of the heat-conducting substrate are electrically conductive. 55. The light emitting diode structure of claim 54, further comprising: a first electrical electrode disposed on a portion of the surface of the buffer layer; and a second electrical electrode Provided on the second surface of the high thermal conductivity substrate. The light emitting diode structure of claim 5, wherein the active layer, the first electrical limiting layer and the buffer layer are stacked on a portion of the second electrically limited layer And exposing another portion of the second electrical uncovering layer. 57. The light emitting diode structure of claim 56, further comprising: a first electrical electrode 'providing a portion of the surface of the buffer layer; 32 200919778 and a second electrical electrode Provided on a portion of the other portion of the second electrical confinement layer. 58. The luminescent diode structure of claim 51, wherein the material of the high thermal conductivity substrate is selected from the group consisting of copper and alloys thereof. 59. The light-emitting diode structure of claim 5, wherein the material of the high thermal conductivity substrate is selected from the group consisting of nickel and its alloys. 60. A light emitting diode structure comprising at least: a south heat conducting substrate having a first surface and a second surface; an adhesive layer disposed on the first surface of the high thermal conductive substrate; and a The luminescent epitaxial structure comprises at least one buffer layer, a first electrical confinement layer, an active layer and a second electrical confinement layer stacked on the adhesive layer, wherein the buffer layer and the adhesive layer One of the surfaces of the joint has a pattern, a structure, and a gallium-emitting epitaxial structure is a gallium nitride-related material epitaxial structure. The electrical property of the first electrical confinement layer is different from the electrical property of the second electrically confined layer. The light-emitting diode structure described in the sixth aspect of the invention is wherein the material of the buffer layer is a gallium nitride series material. 33 200919778 62. The illuminating diode as described in the scope of the patent application 更 6 further includes at least a mirror surface layer disposed between the adhesive layer and the first surface of the high conductivity: substrate. The light-emitting diode structure of claim 62, wherein the adhesive layer, the mirror surface layer and the high thermal conductivity substrate are: electrically conductive. The light-emitting diode structure of claim 63, further comprising: a first electrical electrode disposed on the second electrical localization layer; and a second electrical electrode disposed And the second surface of the high thermal conductivity substrate. 65. The light-emitting diode structure of claim 60, wherein a stacking structure of the second electrical limiting layer, the active layer and the first electrical limiting layer is located on a portion of the buffer layer, and Another portion of the buffer layer is exposed. 66. The light emitting diode structure of claim 65, further comprising: a second electrical electrode disposed in one of the second electrical limiting layers; and a first electrical electrode On a portion of the other portion of the buffer layer. The light-emitting diode structure of claim 60, wherein the material of the high thermal conductivity substrate is selected from the group consisting of copper and its alloys. 68. The light-emitting diode structure of claim 60, wherein the material of the high thermal conductivity substrate is selected from the group consisting of recorded and alloys thereof. The light-emitting diode structure comprises: a plated substrate having a first surface and a second surface; and a mirror surface layer disposed on the first surface of the plating substrate, wherein the The material of the mirror surface layer is electrically conductive; and a luminescent crystal structure 'comprising at least one of a second electrical confinement layer, an active layer, a first electrical confinement layer and a buffer layer sequentially stacked on the mirror surface layer Wherein one surface of the buffer layer has a pattern structure, and the luminescent epitaxial structure is a gallium nitride-related material epitaxial structure, and the electrical property of the first electrical limiting layer is different from the second electrical limiting layer Electrical properties. 70. The light-emitting diode structure of claim 69, wherein the material of the buffer layer is a gallium nitride series material. 71. The light-emitting diode structure of claim 69, wherein the light-emitting diode structure further comprises: 35 200919778 a first electrical electrode disposed on a portion of the surface of the buffer layer; and a second The electrode is disposed on the second surface of the plating substrate. The light emitting diode structure of claim 69, wherein the active layer, the first electrically limited layer and the buffer layer are stacked on a portion of the second electrical limiting layer, Another portion of the second electrical confinement layer is exposed. The light-emitting diode structure of claim 72, further comprising: a first electrical electrode, a portion of the surface of the buffer layer; and a second electrical property An electrode ' is disposed on a portion of the other portion of the second electrically confined layer. The light-emitting diode structure of claim 69, wherein the material of the high thermal conductivity substrate is selected from the group consisting of copper and alloys thereof. The light-emitting diode structure of claim 69, wherein the material of the high thermal conductivity substrate is selected from the group consisting of nickel and its alloys. 36
TW96140855A 2007-10-30 2007-10-30 Light-emitting diode structure and method for manu TWI355099B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96140855A TWI355099B (en) 2007-10-30 2007-10-30 Light-emitting diode structure and method for manu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96140855A TWI355099B (en) 2007-10-30 2007-10-30 Light-emitting diode structure and method for manu

Publications (2)

Publication Number Publication Date
TW200919778A true TW200919778A (en) 2009-05-01
TWI355099B TWI355099B (en) 2011-12-21

Family

ID=44727228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140855A TWI355099B (en) 2007-10-30 2007-10-30 Light-emitting diode structure and method for manu

Country Status (1)

Country Link
TW (1) TWI355099B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910807A (en) * 2017-03-09 2017-06-30 东莞市中镓半导体科技有限公司 A kind of compound substrate for growing epitaxial wafer and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201349576A (en) * 2012-05-22 2013-12-01 High Power Optoelectronics Inc LED with reflector protection layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910807A (en) * 2017-03-09 2017-06-30 东莞市中镓半导体科技有限公司 A kind of compound substrate for growing epitaxial wafer and preparation method thereof
CN106910807B (en) * 2017-03-09 2019-03-26 东莞市中镓半导体科技有限公司 A kind of compound substrate and preparation method thereof for growing epitaxial wafer

Also Published As

Publication number Publication date
TWI355099B (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5855422B2 (en) Light emitting device and manufacturing method thereof
TWI269467B (en) Light-emitting diode
TWI487133B (en) Roughened high refractive index layer/led for high light extraction
TWI493757B (en) High efficiency light emitting diode
US9349712B2 (en) Doubled substrate multi-junction light emitting diode array structure
US8722441B2 (en) Manufacturing process for solid state lighting device on a conductive substrate
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
CN106057987B (en) Contact for semiconductor light emitting device
US20080191233A1 (en) Light-emitting diode and method for manufacturing the same
TW200828626A (en) Light-emitting diode and method for manufacturing the same
US20080230799A1 (en) Semiconductor Light-Emitting Device with Electrode for N-Polar Ingaain Surface
TW201230407A (en) Method of fabricating light emitting diode package and light emitting diode device
TW201007987A (en) Light emitting diodes
TW201025556A (en) A chip level package of light-emitting diode
TW200534512A (en) Fabrication of reflective layer on semiconductor light emitting diodes
KR101182920B1 (en) Light emitting device and fabrication method thereof
TW200828628A (en) High efficiency light-emitting diode and method for manufacturing the same
TW201121099A (en) Semiconductor light-emitting device and method for manufacturing the same
TW201135979A (en) Light emitting device
CN110010752A (en) Micro- LED construction body and its manufacturing method
US20110272727A1 (en) Light-emitting diode and method for manufacturing the same
US7910389B2 (en) Vertical semiconductor light-emitting device and method of manufacturing the same
WO2012020968A2 (en) Semiconductor light emitting diode having ohmic electrode structure and method for manufacturing same
US20160104814A1 (en) Vertical-type semiconductor light-emmitting device and method of fabricating the vertical-type light-emitting device
TWI260800B (en) Structure of light-emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees