TW200919550A - A method of generating a pattern on a substrate - Google Patents

A method of generating a pattern on a substrate Download PDF

Info

Publication number
TW200919550A
TW200919550A TW097137080A TW97137080A TW200919550A TW 200919550 A TW200919550 A TW 200919550A TW 097137080 A TW097137080 A TW 097137080A TW 97137080 A TW97137080 A TW 97137080A TW 200919550 A TW200919550 A TW 200919550A
Authority
TW
Taiwan
Prior art keywords
pattern
substrate
layer
photoresist structure
item
Prior art date
Application number
TW097137080A
Other languages
Chinese (zh)
Inventor
Xiang-Shui Miao
Eng Keong Chua
Chun Yang Chong
Lu-Ping Shi
Jianming Li
Lung Tat Ng
Gaoqiang Yuan
Original Assignee
Agency Science Tech & Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency Science Tech & Res filed Critical Agency Science Tech & Res
Publication of TW200919550A publication Critical patent/TW200919550A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers

Abstract

A method of generating a desired pattern on a substrate, and a pattern on a substrate formed using the method. The method comprises forming a resist structure on the substrate, wherein the resist structure comprises at least a metallic glass thermal absorption layer, irradiating the resist structure with an energy beam, and developing the irradiated resist structure to form the desired pattern.

Description

200919550 九、發明說明: 【發明所屬之技術領域】 本發明大體上係關於一種在基板上產生圖樣的方法, 亚且關於一種使用該方法被形成在基板上的圖樣。 【先前技術】 在例如光碟壓片(optical disc stamper)、半導體器件、 生物感測器、微電機系統(MEMS)器件、微型電子元件、微 光學器件以及微機械器件的製作過程中,通常會利用被稱 為微影術的製程在一基板(例如矽晶圓)的一表面上產生不 同形狀與尺寸的圖樣。圖1八至1(:所示的係一典型的微影 製程。-被塗佈在基板1G4的—表面上的照射光阻⑽會 ^由一載有要被產生之圖樣的遮罩而被-雷射射束(LB)或 -電子射束⑽⑽照射。㈣,對該光阻進行顯影便會移 除已照射的部A 1G8或是未照射的部分11(),用以在基板 ::上產生所希的圖樣112。圖樣的維度與品質會取決於該 先子系統及光阻的性質。舉例來說,在微 用到一雷射射击拄 *立L *仗· 質及該雷射射ί的光尺寸會取決於光阻的性 射束的總照射量二;:寸2阻的反應性取決於該雷射 數量。因此r 被的吸收的光子或電子的 之來狀盘尺十阻中的累積吸收效應便會影響所產生圖樣 點尺寸係取決於•射丄“之,該雷射射束的光 、於田射波長;1以及該微影系統中 鏡的數值孔徑(NA)。#用目士 h 使用的物 )使用具有較短波長的雷射以及具有較 200919550 高να的的物鏡能夠形成精細的圖樣。 習知的微影技術(舉例來說,深υν微影術與Ε射束微 影術)係運时機光敏材料作為光m經由該光阻與該 雷射射束或該電子射束之㈣光誘發化學反應來產生、圖 樣。不過,產生深uv雷射光通常需要用到一複雜的光學系 統(如美國專利案第2003/01334〇2 Al號中所揭示)來將一長 波長雷射射束(舉例來說,、約1064奈米)轉換成_短波長雷 射射束(舉例來說,約266奈米)。另一方面,E射束系統則 需要用到一大型的真空反應室,該真空反應室含有主要由 -氣動主軸馬達與一移動平台所組成的高精密機械系統。 在高真空反應室中難以同時達成該主軸馬達的高精確性與 高速旋轉(日本應用物理期刊第40冊,第1653頁(2〇〇1 年))所以,因為固有的尚生產成本和嚴格的處理環境要求 的關係,通常不會使用深uv微影系統與E射束微影系統所 组成的複雜系統。 在美國專利案第20〇5/01065〇8 A1號中所揭示的相變 U衫技術則使用硫屬化合物(chaic〇genide)半導體相變材料 作為無機光阻’其會被沉積在一 Si基板之上。一蜂調變雷 射射束會被用來從與基板側相反的側處開始在結晶背景中 產生非晶圖樣。於顯影該硫屬化合物相變層之前,會先利 用反應離子蝕刻(RIE)蚀除介電層。該相變層會被沉浸在一 驗性溶液中,用以顯影該等圖樣。該等圖樣會因為該相變 材料在非晶狀態與結晶狀態中之溶解性差異的關係而形 成。不過’所運用的介質結構對光碟母片而言相當複雜, 200919550 其會造成複雜的顯影製程。 獨2_/G45332 A1揭示—種使用疏屬化合物半導體 相變材料的母片製程’該製程會簡化母片應用的介質社 構。美國專利案第綱5觸1842 A1號則揭Μ心與非 晶S:作為替代無機光阻以進行母片應用。此外,亦有人提 出以znS_si〇2及—硫屬化合物半導體相變材料作㈣代# 阻來進行奈㈣樣化,其能夠縮小圖樣尺寸(日本應用物理 f200919550 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a method of producing a pattern on a substrate, and a pattern formed on the substrate using the method. [Prior Art] In the production process of, for example, optical disc stampers, semiconductor devices, biosensors, microelectromechanical systems (MEMS) devices, microelectronic components, micro-optics, and micromechanical devices, A process known as lithography produces patterns of different shapes and sizes on a surface of a substrate, such as a germanium wafer. Figure 1 VIII to 1 (: shows a typical lithography process. - The illuminating photoresist (10) coated on the surface of the substrate 1G4 will be covered by a mask carrying the pattern to be produced. - laser beam (LB) or - electron beam (10) (10) illumination. (d), developing the photoresist removes the irradiated portion A 1G8 or the unirradiated portion 11 () for use on the substrate: The pattern 112 is generated. The dimension and quality of the pattern will depend on the nature of the subsystem and the photoresist. For example, a laser shot is used for the laser and the laser is used. The size of the light of the ί depends on the total amount of the beam of the resistive beam; the reactivity of the inch 2 depends on the number of lasers. Therefore, the photon or electron that is absorbed by r is the ruler. The cumulative absorption effect of the resistance affects the size of the resulting pattern. It depends on the “shooting”, the light of the laser beam, the wavelength of the field; 1 and the numerical aperture of the mirror in the lithography system (NA) #用的物士h) Using a laser with a shorter wavelength and an objective lens with a higher να than 200919550 can form a fine picture Conventional lithography techniques (for example, υ 微 微 Ε Ε Ε Ε ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 光敏 光敏 光敏 光敏 光敏 光敏 光敏 光敏 光敏 光敏 光敏 光敏 υ υ υ υ υ υ υ υ υ υ (d) Photoinduced chemical reactions to produce, patterns. However, the production of deep uv laser light usually requires the use of a complex optical system (as disclosed in US Patent No. 2003/01334〇2 Al) to convert a long wavelength laser. The beam (for example, about 1064 nm) is converted to a short-wavelength laser beam (for example, about 266 nm). On the other hand, the E-beam system requires a large vacuum reaction. The vacuum reaction chamber contains a high-precision mechanical system mainly composed of a pneumatic spindle motor and a moving platform. It is difficult to achieve high precision and high-speed rotation of the spindle motor in a high vacuum reaction chamber (Japanese Journal of Applied Physics) Volume 40, page 1653 (2〇〇1)) Therefore, because of the inherent cost of production and the strict requirements of the processing environment, the deep uv lithography system and the E-beam lithography system are usually not used. Complex system. in the United States The phase change U-shirt technique disclosed in Patent No. 20〇5/01065〇8 A1 uses a chaicone compound semiconductor phase change material as an inorganic photoresist which is deposited on a Si substrate. A bee-modulated laser beam is used to create an amorphous pattern in the crystalline background from the side opposite the substrate side. Prior to developing the chalcogenide phase change layer, reactive ion etching (RIE) is utilized. Etching the dielectric layer. The phase change layer is immersed in an assay solution for developing the pattern. The pattern may be due to the solubility of the phase change material in the amorphous state and the crystalline state. The relationship is formed. However, the medium structure used is quite complicated for the optical disc master. In 200919550, it will cause a complicated development process. Separate 2_/G45332 A1 discloses a master process using a sub-based compound semiconductor phase change material. This process simplifies the medium organization for master wafer application. U.S. Patent No. 5 Touch 1842 A1 reveals the use of non-crystalline S: as an alternative to inorganic photoresist for mastering applications. In addition, it has also been proposed to use znS_si〇2 and the chalcogenide semiconductor phase change material as the (four) generation # resistance to carry out the neat (four) sample, which can reduce the size of the pattern (Japanese Applied Physics f

期刊第45冊,第141()頁(2_年))。其使用到以—硫屬化 合物半導體相變材料GeSbTe作為光學吸收層的三層結構。 因為雷射曝光係從該基板的相反側處開始,所以,其可能 會創造出漸細圖樣,這在母片應用的壓印製作期間可能會 難以剝落。 配合快速顯影微型電子、光學、以及微機械器件,此 微米尺寸圖樣化會變成製造過程中的―必要製程步驟。所 以,必須提供一種在基板上產生所希圖樣的方法,用以解 決或克服上面問題中至少其中一者。 【發明内容】 根據本發明的第一項觀點,提供一種在基板上產生圖 樣的方法,δ亥方法包括:在該基板上形成一光阻結構,其 中,該光阻結構包括至少一金屬玻璃熱吸收層;利用一能 I射束來照射該光阻結構;以及顯影該已照射光阻結構, 用以形成該圖樣。 該光阻結構可能包括一被沉積在該金屬玻璃熱吸收層 200919550 上的主動層。 顯影該已照射光阻結構以形成該圖樣可能包括蝕刻該 金屬玻璃熱吸收層上的該主動層。 顯影該已照射光阻結構以形成該圖樣可能進一步包括 在I虫刻該主動層之後蝕刻該金屬玻璃熱吸收層。 該光阻結構可能進一步包括一被沉積在該金屬玻璃熱 吸收層與該基板之間的介電層。 顯影該已照射光阻結構以形成該圖樣可能包括在钱刻 該金屬玻璃熱吸收層之後蝕刻該介電層。 該金屬玻璃熱吸收層可能包括由下面所組成之群中的 一或多者:A1基、Mg基、Pd基、以及Zr基的金屬破螭。 該金屬玻璃熱吸收層可能包括由下面所組成之群中的 一或多個金屬元素:A卜Ni、Gd、Pd、Cu、Mg、γ、7 Ti、Pt、Ag、Pr、La、Hf、Ir、及其混合物或合金。 該金屬玻璃熱吸收層的厚度範圍為5奈米至奈米 該主動層可能包括由下面所組成之群中的一或多者. 一金屬的氧化物、氮化物、氟化物、以及碳化物。 該主動層可能包括由下面所組成之群中的其中一. 考:Journal 45, pp. 141 () (2_ years)). It uses a three-layer structure in which a -sulfur compound semiconductor phase change material GeSbTe is used as an optical absorption layer. Since the laser exposure starts from the opposite side of the substrate, it may create a tapered pattern that may be difficult to peel off during the imprinting of the master application. Combined with rapid development of microelectronics, optics, and micromechanical devices, this micron-sized patterning becomes a necessary process step in the manufacturing process. Therefore, it is necessary to provide a method of generating a pattern on a substrate to solve or overcome at least one of the above problems. SUMMARY OF THE INVENTION According to a first aspect of the present invention, a method for producing a pattern on a substrate is provided. The method of forming a photoresist includes: forming a photoresist structure on the substrate, wherein the photoresist structure comprises at least one metal glass heat An absorbing layer; illuminating the photoresist structure with an I-beam; and developing the irradiated photoresist structure to form the pattern. The photoresist structure may include an active layer deposited on the metallic glass heat absorbing layer 200919550. Developing the illuminated photoresist structure to form the pattern may include etching the active layer on the metallic glass heat absorbing layer. Developing the irradiated photoresist structure to form the pattern may further include etching the metallic glass heat absorbing layer after the active layer is inscribed. The photoresist structure may further comprise a dielectric layer deposited between the metallic glass heat absorbing layer and the substrate. Developing the illuminated photoresist structure to form the pattern may include etching the dielectric layer after etching the metallic glass heat absorbing layer. The metallic glass heat absorbing layer may comprise one or more of the group consisting of: an A1 group, a Mg group, a Pd group, and a Zr group metal ruthenium. The metal glass heat absorbing layer may include one or more metal elements in the group consisting of: A, Ni, Gd, Pd, Cu, Mg, γ, 7 Ti, Pt, Ag, Pr, La, Hf, Ir, and mixtures or alloys thereof. The thickness of the metallic glass heat absorbing layer ranges from 5 nanometers to nanometer. The active layer may comprise one or more of the group consisting of: a metal oxide, a nitride, a fluoride, and a carbide. The active layer may include one of the following groups.

ZnS-Si02、AIN、Si3N4、Zn02-Si02 〇 該介電層可能包括ZnS-Si02。 該基板可能包括由下面所組成之群中的一或多 1 ·聚 碳酸酯、聚甲基丙烯酸甲酯、非晶聚烯烴、陶究、石乂 矽土、以及玻璃。 、 該能量射束可能包括由下面所組成之群中的其中 9 200919550 者:雷射射束、電子射束、以及離子射束。 ^ °亥方法可能進—步包括在該基板的一旋轉速度範圍中 藉由以脈衝串的形式調變一雷射功_來進行離散圖樣形 成其會在不同的旋轉速度群中採用不同的寫入策略。 該方去可此包括:(a) 一用於中速旋轉速度的記錄策 略,(b)用於慢速旋轉速度之具有較短脈衝的記錄策略; (c) 一用於尚速旋轉速度之具有城堡形狀波形的記錄策略。 • °亥光阻結構可利用由下面所組成之群中的一或多者來 衣備·真空沉積;電子射束真空沉積;化學氣相沉積;離 子電鍍;濺鍍;以及蒸發。 顯影該已照射光阻結構以形成該圖樣可能包括濕式化 學蝕刻製程、乾式蝕刻製程、或是兩者。 根據本發明的第二項觀點,提供一種使用如第一項觀 點中所定義之方法而形成在一基板上的圖樣。 【實施方式】 圖2A所不的係在一範例實施例中的雷射熱微影術光阻 結構200的概略示意圖。該光阻結構2〇〇包括:一約〇 6毫 米厚的聚碳酸酯基板202 ;以及一被稱為無機光阻層2〇4的 圖樣產生層。該無機光阻層204包括:一約】丨〇奈米厚的 ZnS-Si〇2下介電層206 ; —約20奈米的熱吸收AiNiGd金 屬破璃層208 ;以及一約100奈米厚的ZnS_si〇2主動層 210。下介電層2〇6會藉由射頻(RF)濺鍍被沉積在基板2〇2 之上’而金屬玻璃層208則會藉由直流(DC)磁控濺鍍被沉 200919550 積在該下介電I 206之上。背景真空為〜χΐ〇-7毫巴 (mbar),而工作壓力為約4 5至約5 5χ1〇-3毫巴,其係以 每分鐘約15標準毫升(⑽)、流速的Ar作為處理氣體二 ▲下介電$ 206係用來調整介質的光學特性並且用以保 遵基板2G2。下介電層2()6的折射率範圍可能在約μ至約 5之中°主動層21G係用於圖樣形成。主動層210的導熱係 數為約〇.01焦耳/mKs至約5〇〇焦、耳/mKs。主動層21〇的'厚 度會取決於圖樣需求。主動層21〇和下介電層2〇6兩者的 厚度均可被設在約5奈米至約則奈米的範圍内。金屬玻 璃層208係充當一散熱片以及一圖樣產生器來作用,其會 及收用來疋義圖樣形狀與尺寸的雷射能量。金屬玻璃層則 的厚度可能係在約5至約5〇奈米的範圍中。被金屬玻璃層 2〇8吸收的熱最後會傳輸至主動層2H)和下介電層206,端 視雷射功率與寫入策略而定。 整個;I貝堆豎上的熱散佈係一會影響圖樣產生的因 素,f可藉由改變介質堆疊結構、雷射功率、以及寫入策 略而又到控制。可以使用有限元素法(fem)來模擬—具有光 阻結構2GG之結構的薄膜堆疊溫度散佈。圖3A所示的係利 % \田射脈衝以循執方向中的距離為基準所繪製的模擬 關係圖300。關係圖3〇〇顯示的係介於一熱吸收層與〆 層之間的;丨面處之溫度輪廓的模擬結果。從圖中矸以 溫度散佈形成—鈴錄形狀(beiishape),而該介面處的 距離為基準所所示的係以厚度方向中的 1的模擬&度關係圖302。關係圖302顯乔 200919550 出,在該厚度方向中的主動層的溫度輪廓形成一鈴鐺形 狀。該主動層的溫度為約攝氏300度至約攝氏39〇度。 在該範例實施例中,能量射束會從該基板側或該基板 的相反侧處來照射該光阻。該金屬玻璃層係充當一吸熱層 亚且會吸收該能量,該主動層則會如同上面的模擬被加 熱。在對應於該溫度散佈之鈴鐺形狀的尖峰溫度區域處(對 照圖3B)’該主動層在此區域中的溫度足以因退火的關係而 造成蝕刻速率的差異,因而會形成蝕刻區。該等生成的圖 樣接著會藉由一顯影製程而浮現。藉由本發明的範例實施 例中的光阻結構與寫入策略可以有利的方式來精密控制該 等離散或連續圖樣的形狀與尺寸。 可此係由下面的材料所製 碳酸酯、聚甲基丙烯酸甲 矽土、陶瓷、以及玻璃。 光阻結構200的基板202 成’其包含,但是並不受限於: 酯(PMMA)、非晶聚烯烴、石英、 於此實施例中,基板202可能係碟形,其直徑至少約18〇 奈米而厚度則從約0.6毫米至約h2毫米。在不同的實施例 中可以使用該基板202的其它形狀與維度。該光阻結構2〇〇ZnS-SiO2, AIN, Si3N4, Zn02-SiO2 〇 The dielectric layer may include ZnS-SiO2. The substrate may include one or more of a group consisting of polycarbonate, polymethyl methacrylate, amorphous polyolefin, ceramic, sarcophagus, and glass. The energy beam may comprise one of the following groups: a laser beam, an electron beam, and an ion beam. The ^H method may further include performing a discrete pattern formation by modulating a laser power in the form of a pulse train in a range of rotational speeds of the substrate, which may use different writes in different groups of rotational speeds. Into the strategy. The party can include: (a) a recording strategy for medium-speed rotational speed, (b) a recording strategy with a shorter pulse for slow rotational speeds; (c) one for a faster rotational speed A recording strategy with a castle shape waveform. • The °H photoresist structure can be fabricated by one or more of the following groups: vacuum deposition; electron beam vacuum deposition; chemical vapor deposition; ion plating; sputtering; Developing the illuminated photoresist structure to form the pattern may include a wet chemical etching process, a dry etching process, or both. According to a second aspect of the present invention, there is provided a pattern formed on a substrate using a method as defined in the first aspect. [Embodiment] FIG. 2A is a schematic diagram showing a laser thermal lithography photoresist structure 200 in an exemplary embodiment. The photoresist structure 2 includes: a polycarbonate substrate 202 of about 6 mm thick; and a pattern generating layer called an inorganic photoresist layer 2〇4. The inorganic photoresist layer 204 comprises: a dielectric layer 206 of about ZnS-Si〇2 thick; a heat-absorbing AiNiGd metal frit layer 208 of about 20 nm; and a thickness of about 100 nm. The ZnS_si〇2 active layer 210. The lower dielectric layer 2〇6 is deposited on the substrate 2〇2 by radio frequency (RF) sputtering, and the metallic glass layer 208 is deposited by direct current (DC) magnetron sputtering. Above dielectric I 206. The background vacuum is ~χΐ〇-7 mbar (mbar), and the working pressure is about 45 to about 5 5χ1〇-3 mbar, which is about 15 standard milliliters per minute ((10)), the flow rate of Ar as the processing gas. Two ▲ lower dielectric $ 206 is used to adjust the optical properties of the medium and to ensure compliance with the substrate 2G2. The lower dielectric layer 2() 6 may have a refractive index ranging from about μ to about 5. The active layer 21G is used for pattern formation. The thermal conductivity of the active layer 210 is from about 0.101 Joules/mKs to about 5 〇〇 joules, ears/mKs. The thickness of the active layer 21〇 will depend on the pattern requirements. Both the active layer 21 〇 and the lower dielectric layer 2 〇 6 may have a thickness ranging from about 5 nm to about 7 nm. The metallic glass layer 208 acts as a heat sink and a pattern generator that combines the laser energy used to shape and size the pattern. The thickness of the metallic glass layer may be in the range of from about 5 to about 5 nanometers. The heat absorbed by the metallic glass layer 2〇8 is ultimately transferred to the active layer 2H) and the lower dielectric layer 206, depending on the laser power and the write strategy. The entire thermal dispersion of the I-pillar stack affects the factors produced by the pattern, and f can be controlled by changing the dielectric stack structure, laser power, and writing strategy. A finite element method (fem) can be used to simulate the film stack temperature spread of the structure having the photoresist structure 2GG. The simulation diagram 300 shown in Fig. 3A is plotted against the distance in the direction of the continuation. The relationship shown in Figure 3〇〇 is between a heat absorbing layer and a 〆 layer; the simulation results of the temperature profile at the 丨 surface. From the figure, the temperature is spread to form a beiishape, and the distance at the interface is the simulation & degree relationship diagram 302 of the thickness direction shown by the reference. The relationship diagram 302 shows that the temperature profile of the active layer in the thickness direction forms a bell shape. The temperature of the active layer is from about 300 degrees Celsius to about 39 degrees Celsius. In this exemplary embodiment, the energy beam will illuminate the photoresist from the substrate side or the opposite side of the substrate. The metallic glass layer acts as a heat absorbing layer and absorbs this energy, which is then heated as in the above simulation. At the peak temperature region corresponding to the bell-shaped shape of the temperature spread (refer to Fig. 3B), the temperature of the active layer in this region is sufficient to cause a difference in etching rate due to the annealing relationship, and thus an etching region is formed. The resulting pattern then emerges by a development process. The shape and size of the discrete or continuous patterns can be precisely controlled by the photoresist structure and write strategy in an exemplary embodiment of the present invention. This can be made from the following materials: carbonate, polymethylmethacrylate, ceramic, and glass. The substrate 202 of the photoresist structure 200 is included, but is not limited to: ester (PMMA), amorphous polyolefin, quartz. In this embodiment, the substrate 202 may have a dish shape with a diameter of at least about 18 〇. The thickness of the nanometer is from about 0.6 mm to about h2 mm. Other shapes and dimensions of the substrate 202 can be used in different embodiments. The photoresist structure 2〇〇

的金屬玻璃層208可能係由下面的材料所製成,其包含, 但是並不受限於:A1基、Mg基、Pd基、或是&基的金屬 玻璃。該金屬玻璃包含由下面元素所組成之群中 少—金屬元素:A卜 Ni、Gd、Pd、Cu、Mg、γ、 及其混合物或合金;並且可以部分甚至完全利用pt、Ag、 pr' La、Hf、Ιι·、…等元素來取代。主動層21〇可能係由下 面的材料所製成,其包含,但是並不受限於一金屬或一混 12 200919550 合物的氧化物、氮化物、氟化物、或是碳化物,例如:The metallic glass layer 208 may be made of the following materials, including, but not limited to, A1 based, Mg based, Pd based, or & base metallic glasses. The metallic glass comprises a small group of metal elements: A, Ni, Gd, Pd, Cu, Mg, γ, and mixtures or alloys thereof; and may partially or completely utilize pt, Ag, pr' La , Hf, Ιι·, ... and other elements to replace. The active layer 21 may be made of the underlying material, but is not limited to a metal or a mixture of oxides, nitrides, fluorides, or carbides, such as:

ZnS-Si02、AIN、Si3N4、Zn02-Si〇2 〇 本實施例會在一曝光設備中進行一選擇性曝光製程。 於此實施例中,該曝光設備係一標準的光學平台。一能量 射束(例如具有約650奈米波長的雷射射束)會從該基板側 處經由一數值孔徑約0.65的物鏡被照射在該光阻結構2〇〇 上。於其它實施例中,該雷射射束可能會從與該基板2〇2 t 相反的側處來照射該光阻結構2〇〇。於其它實施例中,可以 (使用電子射束或離子射束來取代該雷射射束。該聚碳酸醋 基板的折射率為約1.61。一雷射脈衝串會被用來控制雷射 力率位準’俾使§亥等已曝光區和未曝光區會對應於要產生 的圖樣。該雷射功率已經過調變,用以形成如圖4中所示 的雷射脈衝串。該雷射功率可能會被控制在三個位準處, 也就疋,大峰功率Pw、抹除功率ρ。、以及底部功率^。τ =參考時脈時間持續長度,其範圍係在約1〇奈秒至約1〇〇 :秒。前緣雷射脈衝位置係由第一脈衝位移〜和第一脈衝 間持續長度丁 f來定義。連續脈衝時間持續長度係由L來 疋義’其範圍在約〇.2T至約〇9T之中。最後的冷卻脈衝時 間持續長度則係由t1s來定義。尖峰功率Pw、抹除功率Pe、 X及底部功率Pb會根據該介質的旋轉速度而被選出與最佳 ^ °於此實施例中,Pw係被設在約26毫瓦處,&係被設在 4毫瓦處,而Pb則係被設在約1.4毫瓦處。經過雷射退 、後會藉由加熱該金屬玻璃層208而在該剛沉積的膜 中开V成系列的連續已曝光區214,如圖2B中所示。 13 200919550ZnS-SiO2, AIN, Si3N4, Zn02-Si〇2 〇 This embodiment performs a selective exposure process in an exposure apparatus. In this embodiment, the exposure apparatus is a standard optical platform. An energy beam (e.g., a laser beam having a wavelength of about 650 nm) is illuminated from the substrate side onto the photoresist structure 2A via an objective lens having a numerical aperture of about 0.65. In other embodiments, the laser beam may illuminate the photoresist structure 2 from the side opposite the substrate 2〇2 t. In other embodiments, the laser beam may be replaced by an electron beam or an ion beam. The polycarbonate substrate has a refractive index of about 1.61. A laser pulse train is used to control the laser force rate. The level '俾' causes the exposed and unexposed areas, such as §Hai, to correspond to the pattern to be produced. The laser power has been modulated to form a laser burst as shown in Figure 4. The power may be controlled at three levels, that is, the peak power Pw, the erase power ρ, and the bottom power ^.τ = the reference clock duration duration, which ranges from about 1 nanosecond to About 1 〇〇: sec. The position of the leading edge laser pulse is defined by the first pulse displacement 〜 and the duration of the first pulse 丁f. The continuous pulse time duration is determined by L. 2T to about 〇9T. The last cooling pulse duration is defined by t1s. The peak power Pw, the erase power Pe, X and the bottom power Pb are selected according to the rotation speed of the medium. ° In this embodiment, the Pw system is set at about 26 mW, & is set 4 mW, and Pb is set at about 1.4 mW. After the laser is retracted, the V-series continuous exposed area is opened in the as-deposited film by heating the metallic glass layer 208. 214, as shown in Figure 2B. 13 200919550

中,端視圖樣形狀與尺寸而定。該 約1:100的範圍中為較佳。一圖樣: 二。邊比例以被設在約1:2 〇至 圖樣2 1 6會被形成在該主動層 如圖2C中所示 一 5B所示的係針對一範例實施例分別產生在一 約8X8微米掃摇區與一約加冑米掃描區處所產生的3T標 記圖樣的原子力顯微鏡(趣)圖像。該3T圖樣的高度為: 6〇奈米,而高度與寬度則分別為約383奈米與約313奈米。 圖13所示的係使用在本發明實施例中的一光學寫入系 統1300的概略示意圖。個人電腦(11(:)13〇2為使用者提供圖 形使用者介面,用以控制該光學寫入系統1300。Pc 13〇2 也會將資料饋送至脈衝產生器13〇4,用以透過驅動器η% 和雷射二極體(LD)1308來產生寫入脈衝,用以寫入一碟片 13 10上的光阻。PC 13〇2還會與數位訊號處理器 進行通訊,用以控制該光學寫入系統的其它部分。光學拾 取頭1316中用於聚焦與循軌的伺服系統Π14會被耗合至 DSP 1312。該伺服系統1314還會透過個別的數位至類比 (D/A)轉換器1319、1321以及個別的驅動器1323與1325 被麵合至滑動馬達1318與主抽馬達1320。主轴馬達1320 200919550 與滑動馬達1318會在伺服系統1314的控制下為碟片i3i〇 提供旋轉與線性平移。LD 1308會發出雷射,用以經由光學 元件1322來進行寫入與回授。光學拾取頭i3i6的光二= 體(PD)1324會提供用於進行RF訊號债測所需要的光學至 電氣回授。PD B24會會透過一前置放大器⑽與一類比 至數位(A/D)轉換器1328被麵合至DSP 13 12。 影響圖樣產生的另-項因素係在熱處理下主動層材料 在HF溶液中的溶解速率差異。在—機密的實驗中,使用到 兩組樣本來決定該主動層材料ZnS_Si〇2的溶解速率。厚度 約100奈米的ZnS-Si〇2層已被沉積在一石夕(Si)晶圓之上。其 中 '組樣本會在約攝氏400度的溫度處於真空中被退火約 15分鐘:而另-組則會保持在剛沉積的狀態中。針對不同 的時間持續長度’該些樣本接著會被浸人抑溶液之中。接 著會進行AFM測量’用以決定_之後該主動層21〇的厚 度。圖6A所示的係分別以蝕刻時間為基準所繪製之剛沉積 的ZnS-Si〇2樣本和已退火ZnS 接 4» a I- 人乙ni^Sl02樣本的厚度關係圖。關 係圖602所示的係以姓刻時間為基準所緣製之剛沉積的 ZnS-Si〇2樣本的厚度;而關係圖6()4所示的則係以餘刻時 間為基準所繪製之已退火ZnS_SK)2樣本的厚度。從關係圖 6〇2與604中可以看見,加柳2樣本在剛沉積狀態中和在 已退火狀態中的溶解速率分別為約7.5奈米/s和約〇.18奈 米/s。ZnS_Si〇2樣本在剛沉積狀態中的溶解速率和ZnS_si〇 樣本在已退火狀nn容解速率的比例為肖4q:i。為精確 控制圖樣形狀與尺寸,較佳的係’該等溶解速率有極高的 15 200919550 比例。該等溶解速率的比例可能 圍中,而較佳的伤+ & 刁乂1至約100:1的範 進一=的係在約2():1至約50:1的範圍中。 , 之為進行圖樣轉移和母片準 影製程之後以具有平,Μ 4月旱備在進仃顯 λ±Α, 4 π圖樣表面為佳。粗糙表面可能會引 末低頻雜訊並且可和备 兑了此會影響圖樣品質。圖6Β 以蝕刻時間為基準所給制4 m 0 丁幻你刀別 火積的ZnS_Si〇2樣本和已退 少 2樣本的表面粗糙度關係圖,關係圖606 係以姓刻時間為基準 的 斤繪裟之剛〉儿積的ZnS-Si〇2樣本的表 面粗糖度;而㈣、® _心_細㈣時料基準所 曰製之已退火ZnS_SlC>2樣本的表面粗链度。從關係圖606 與608中可以看見,剛沉積的樣本的表面粗缝度增加的速 度快過已退火的樣本。該等已退火樣本的表面粗縫度於360 秒之後仍保持在2.0奈米以下。 本案土月人發現,從熔融物淬火而成之金屬玻璃的形 成主要係依賴於抑制(亞穩或平衡的)結晶相之凝核作用的 能力。這通常係藉由大小約1〇5至約1〇6Ks、快速淬火速 率來達成’雖然A1基、Mg基、Ln基(Ln5鑭系金屬)、Zr 基、Pd基、Ti基、Fe基、Co基、以及Ni基的非晶合金已 經被成功地合成,作為可記錄光學介質的金屬玻璃已經被 揭示在WO 2006/036123 A1之中;不過,金屬玻璃尚未被 用來生產微影光阻技術。 本案發明人發現’某些經驗法則(例如,混亂原則 (confusion principle))並不適用於A1基金屬玻璃中的玻 璃形成能力(GFA)。該玻璃形成系統可能建議採用合金方式 16 200919550 來達成金屬玻璃形成並且可能係成功的去玻化 (devitrification)策略所必要的。 f ί 本案發明人發現,藉由開發出一種由被埋置在一非曰 母體中之高密度(約o.10m)小奈米晶體(直徑約5至2〇奈米9曰) 所組成的奈米複合結構,便能夠同時改善金屬玻璃的丁延展 性(尤其是在壓擠中)以及斷裂強度。這已經在pd基、Μ基、 Mg基、以及Zr基的金屬玻璃中觀察到。藉由在合宜的田 度處去溶、玻化該等玻璃,便可達成奈采複合微結構。: 過,卻可能會出現複雜的晶化製程(舉例來說,初級晶化、 多構式晶化、以及共熔晶化),端視複合與退火條件而定, 该些條件可能會*利於機械特性。對三元ai_tm_re(tm5 2渡金屬’ RE5鹼土元素)玻璃來說,理想的去玻化微結構 又(ϋ m )的fcc-A1奈米晶體,其最佳的體 /刀比為約鳩。此種高奈米結晶密度需要有fee-A1相的 =動力以進行凝核以及超遲緩成㈣力,料還要抑制 ,、匕結晶(亞穩或平衡)合成相的凝核作用。三it Al-Ni-Gd 統的相圖資料係在複合範圍G<Gd<33的原子百分比中由 刀的攝氏800度等溫線所組成。本案發明人最近在μ之 原子百刀比為70%的複合範圍中對部分攝g :進行的相平衡研究顯示出A1最富的三元合成相具有等= ^ AM Μ 在該Μ量豐富區域中的其它已知三元合成相 A 咖 ’ A17 Ni3 Gd2 ’ A1 3Ni2 Gdl,A12 NiGd,以及 ^ NiGd’因為他們並未出現在目前感興趣的相域中,所以, 匕們均可以被接受而不需要作修改。 17 200919550 雖然在先前技術中已經提出以該金屬玻璃作為光學記 錄介質,其係使用從非晶變成結晶狀態的相變效應,但是 在先i技術中卻未揭示或承認使用金屬玻璃作為光阻。在 本發明的範例實施例中,該金屬玻璃係作為光阻中的熱吸 4不過應該注意的係,該等範例實施例並未使用該 金屬玻璃的已知相變效應。在該等範例實施例中使用該金 屬玻璃作為熱吸收層會有數項優點,纟包含:提供低成本 的方式,高效能(例如高選擇性與高高寬比),寬鬆的環境要 长 无有的熱吸收層材料(例如GeSbTe、AglnSbTe)更為 可靠與穩定。 於另—實施例中,會使用配備著一約65〇奈米雷射和 一約0.65NA物鏡的標準光學平台來對圖2A的雷射熱微影 光阻結構200的表面上進行曝光製程。一連續雷射射束會 在約6.98公尺/秒的旋轉速度處從聚碳酸酯基板側212處來 照射該光阻。該雷射射束可能會從與該基板202相反的側 處來照射該光阻結構200。於其它實施例中,可能會使用電 子射束或離子射束來取代該雷射射束。尖峰功率的數值係 被设在約1 8毫瓦處。該光阻會被浸入HF溶液之中,HF與 水的比例為約1:5〇。在該金屬玻璃層2〇8的表面上會產生 一連續線圖樣。 應該注意的係,可被使用在本文所述之範例實施例中 的標準光學平台中的連續雷射以及脈衝串具有極大差異。 該連續雷射在寫入製程中的任何時候均使用一恆定功率, 而該脈衝串在該寫入製程期間則具有相依於該脈衝時間持 200919550 續長度和脈衝位移的變動雷射功率,如圖4中所示。用於 寫入的尖峰功率以及基板的旋轉速度可以針對所希的圖樣 來進打最佳化與匹配。為完整起見,還應該注意的係因 為該基板會配合該寫人系統中的主軸馬達來旋轉,所以, 在整個基板表面中的圖樣線會係―螺旋線。不過,在圖中 所示的微米範圍中,該線則看來好像一直線。 已顯影的介質會進行AFM測量。圖7A與7B所示的係 在:乾例實施例中,分別在一約8χ8微米掃描區與—約2x2 U米掃描區處的線圖樣的圖式。該線圖樣的高度為約1 Η 奈米,而該線圖樣的寬度則為約375奈米。結果還顯示出, 使用AlNiGd的光阻的高寬比(也就是,約29 87%)優於使用 ’>·屬化合物半導體材料GeTe的光阻(也就是,約2 1 95%) 以及使用Gedbje5的光阻(也就是,約21.40%)。藉由改變 光阻結構、旋轉速度、雷射功率、寫入策略、以及顯影製 程’便可以改變該線圖樣的高度與寬度。該線圖樣的高度 可能係在約1奈米至約2000奈米的範圍中,而較佳的係, 在約5奈米至約5000奈米的範圍中。該線圖樣的寬度可能 係在約50奈米至約5000奈米的範圍中,而較佳的係,在 約100奈米至約2000奈米的範圍中。 圖8A所示的係另一雷射熱微影光阻結構8〇〇的概略示 意圖。該光阻結構800包括一約〇·6毫米厚的聚碳酸醋基板 802 ;以及一被稱為無機光阻層804的圖樣產生層。該無機 光阻層包括:一約11〇奈米厚的ZnS-Si〇2下介電層 —約2〇奈米的熱吸收AlNiGd金屬玻璃層808 ;以及一約 19 200919550 奈米厚的znS-si〇2主動層810。下介電層8〇6會藉由 RF濺鍍被沉積在基板802之上,而金屬玻璃層8〇8則會藉 由DC磁控濺鍍被沉積在該下介電層8〇6之上。 約1.2X10-7毫巴,而工作壓力為約4 5 χ1〇.3至約5.如〇二 毫巴’其係以每分鐘約15標準毫升流速的&作為處理氣 體。 接著’會使用配備著-約65〇奈米雷射和__約〇 UNA 物鏡的標準光學平台在該光阻結# _的表面上進行曝光 製程。於此實施例中,一雷射射束會從基板侧M2處來昭 射該光阻結構_。於其它實施例中,該雷射射束可能會從 與該基板8〇2相反的側處來照射該光阻結構8〇〇。於盆它實 施例中’可能會使用電子射束或離子射束來取代該雷射射 束。圖8B所示的係藉由加熱該金屬玻璃層8()8而形成在該 金屬玻璃層808中的-系列連續已曝光區814。該光阻结構 謂會在HF溶液之中被顯影,耶與水的比例為約15〇。 圖8C所示的係形成在該金屬玻璃層8〇8之表面上的一圖樣 816。藉由改變光阻結構、旋轉速度、雷射功率、寫入策略,、 以及顯影製程’便可以改變該圖樣816的高度與寬度。 藉由將該光阻結構800浸沟A 又 β沒在另一化學溶液(例如鹼性 >谷液)中,便可進一步處理該光阻結構800。圖80所示的係 要形成在該金屬玻璃層808之中的一圖樣818 816與818所組成的新圖樣該新圖樣m的厚 又曰相依於該金屬玻璃f 8G8與主動層81G的厚 圖樣820會形成在下介電層8〇6的頂端表@。 人 20 200919550 因為下介電層806與主動層810兩者均係由ZnS_Si〇2 所製成,所以,藉由將該光阻結構800浸沒在HF溶液中, 便可進一步處理該光阻結構8〇〇。圖8E所示的係要形成在 該下介電層806之中的一圖樣822,該圖樣與主動層81〇中 的圖樣816雷同。其會形成一由圖樣816、818、以及822 所組成的新圖樣824。該新圖樣824的厚度會相依於下介電 層806、金屬玻璃層8〇8、以及主動層81〇的厚度。該新圖 樣824會形成在基板802的頂端表面。 藉由選擇性地移除每一個圖樣產生層的材料便可形成 該等圖樣。藉由使用該顯影製程的各式各樣顯影溶液便可 以改變該等各種圖樣的深度。圖樣的高度可能在約丨奈米 至約2000奈米的範圍中,而較佳的係,在約$奈米至約5〇〇 奈米的範圍中。圖樣的寬度可能在約5〇奈米至約5〇〇〇奈 米的範圍中,而較佳的係,在約1〇〇奈米至約2〇〇〇奈米的 範圍中。 於另一實施例中,會使用氮化物基介電材料(例如A1N 與Si#4)作為上面所述之光阻的主動層。影響圖樣產生的其 中一項因素係在熱處理下該等氮化物基介電材料在HF溶液 中的溶解速率差異。在一機密的實驗中,準備了五組樣本 來決定該氮化物基介電材料相對於溫度的溶解速率。厚度 約1 00奈米的氮化物基介電層已被沉積在一 Si晶圓之上。 第一組至第四組樣本會分別在約攝氏200度、攝氏4〇〇度、 攝氏600度、以及攝氏800度的溫度處於氮氣中被退火約 30分鐘;而最後一組則會保持在剛沉積的狀態中。該些樣 21 200919550 1:5 0的HF溶液之中維持恆 本會被浸入hf與水的比例為約 定的時間持續長度。 著a進仃AFM測ϊ ’用以決定ϋ刻之後該等樣本的 :。該等奸5個個別細與邮4樣本的蚀刻速率會以溫度 …函數被算出且繪出’如圖9A中所示。從圖9A中可以觀 察到、’剛沉積的Si3N4樣本在册溶液中的溶解速率約為高 出已退火SiW4樣本在攝氏8〇〇度處的溶解速率的5 $倍。 此外’剛沉積的則樣本的溶解速率約為高出已退火A1N 樣本在攝氏_度處的溶解速率的74倍。高比例的溶解速 率會有利於精確控制圖樣形狀與尺寸。溶解速率的比例可 能係在約5:1至約i00:i的範圍中。 圖9B所示的係以退火溫度為基準所繪製之ain樣本與 Si#4樣本分別的表面粗糙度的關係圖。該等剛沉積樣本盘 該等攝氏800度已退火樣本的表面粗糙度在顯影之後在 奈米以下。為進行圖樣轉移和母片準備,在進行顯影 之後以具有平滑圖樣表面為佳。粗糙表面可能會引來低頻 雜訊並且可能會影響圖樣品質。為操作在約2〇:1至約 的較佳溶解速率比例範圍中,挑選蝕刻劑(舉例來說,藉由 使用磷酸H3P〇4取代HF)便能夠改善選擇能力。 於另一實施例中,會使用氧化物基介電材料(舉例來 說,Zr〇2_Si〇2)作為上面所述之光阻的主動層。影響圖樣產 生的其中一項因素係在熱處理下該等氧化物基介電材料(舉 例來說’ Zr〇2_Si〇2)在HF溶液中的溶解速率差異。在—機 密的實驗中,準備了五組樣本來決定該Zr〇2_Si〇2材料相對 22 200919550 於溫度的溶解速率。厚度約100奈米的21*〇2_8丨02層已被沉 積在一 Si晶圓之上。第一組至第四組樣本會分別在約攝氏 2〇〇度、攝氏400度、攝氏600度、以及攝氏800度的溫度 處於氮氣中被退火約3 0分鐘;而最後一組則會保持在剛沉 積的狀態中。該些樣本會被浸入HF與水的比例為約1:5〇 的HF溶液之中維持恆定的時間持續長度。 接著會進行AFM測量,用以決定蝕刻之後的厚度。全 部5個樣本的蝕刻速率會以溫度為函數被算出且繪出,如 圖10A中所不。從圖1〇A中可以觀察到,剛沉積的Zr〇2_Si〇2 樣本在HF溶液中的溶解速率約為高出已退火Zr〇2_si〇2樣 本在攝氏600度處的溶解速率的8·7倍。高比例的溶解速率 會有利於精確控制圖樣形狀與尺寸。溶解速率的比例可能 係在約5:1至約100:1的範圍中。 之 Zr〇2-Si〇2Medium, end view shape and size. This is preferably in the range of about 1:100. A pattern: two. The edge ratios are set at about 1:2 〇 to pattern 2 1 6 and will be formed in the active layer as shown in FIG. 2C as shown in FIG. 2C. For an exemplary embodiment, respectively, a bump region of about 8×8 micrometers is generated. Atomic force microscopy (fun) image with a 3T mark pattern produced at a scan area of approximately plus glutinous rice. The height of the 3T pattern is: 6 〇 nanometer, and the height and width are about 383 nm and about 313 nm, respectively. Fig. 13 is a schematic diagram showing the use of an optical writing system 1300 in the embodiment of the present invention. The personal computer (11(:)13〇2 provides the user with a graphical user interface to control the optical writing system 1300. The Pc 13〇2 also feeds the data to the pulse generator 13〇4 for transmitting through the drive. η% and a laser diode (LD) 1308 generate a write pulse for writing the photoresist on a disc 13 10. The PC 13〇2 also communicates with the digital signal processor to control the Other portions of the optical writing system. The servo system 14 for focusing and tracking in the optical pickup 1316 is consuming to the DSP 1312. The servo system 1314 also passes through individual digital to analog (D/A) converters. 1319, 1321 and individual drivers 1323 and 1325 are coupled to slide motor 1318 and main draw motor 1320. Spindle motor 1320 200919550 and slide motor 1318 provide rotation and linear translation for disc i3i upon control of servo system 1314. The LD 1308 emits a laser for writing and feedback via the optical element 1322. The optical multiplexer (PD) 1324 of the optical pickup head i3i6 provides the optical to electrical feedback required for RF signal testing. PD B24 will pass through a front The amplifier (10) is combined with an analog to digital (A/D) converter 1328 to the DSP 13 12. Another factor affecting the pattern generation is the difference in dissolution rate of the active layer material in the HF solution under heat treatment. In the experiment, two sets of samples were used to determine the dissolution rate of the active layer material ZnS_Si〇2. The ZnS-Si〇2 layer with a thickness of about 100 nm has been deposited on a Si (Si) wafer. The set of samples will be annealed in a vacuum at a temperature of about 400 degrees Celsius for about 15 minutes: while the other set will remain in the as-deposited state. For different time durations, the samples will then be immersed in the solution. The AFM measurement is then performed to determine the thickness of the active layer 21〇. The Figure 6A shows the as-deposited ZnS-Si〇2 sample and the annealed ZnS, respectively, based on the etching time. The thickness relationship diagram of the sample of 4» a I-human B. The relationship 602 shows the thickness of the as-deposited ZnS-Si〇2 sample based on the time of the surname; () 4 is drawn based on the remaining time. The thickness of the fire ZnS_SK) 2 sample. As can be seen from the relationship diagrams 6〇2 and 604, the dissolution rates of the Jialiu 2 sample in the as-deposited state and in the annealed state were about 7.5 nm/s and about 1818 nm/s, respectively. The dissolution rate of the ZnS_Si〇2 sample in the as-deposited state and the ratio of the ZnS_si〇 sample to the annealed nn-tolerance rate are XI4q:i. In order to accurately control the shape and size of the pattern, it is preferred that the dissolution rates have an extremely high ratio of 15 200919550. The ratio of such dissolution rates may be in the range, and the preferred wound + & 1 to about 100:1 is in the range of about 2 (): 1 to about 50:1. In order to carry out the pattern transfer and the master film preparation process, it is better to have a flat, Μ April dry preparation in the 仃 仃 ± Α, 4 π pattern surface is better. Rough surfaces may introduce low-frequency noise and can be mixed to affect the quality of the sample. Figure 6Β The surface roughness relationship between the sample of ZnS_Si〇2 and the sample with 2 samples that have been reduced by 4 m 0 is determined based on the etching time. The relationship diagram 606 is based on the time of the surname. The surface roughness of the ZnS-Si〇2 sample of the 积 裟 〉 儿 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 As can be seen from graphs 606 and 608, the surface roughness of the as-deposited sample increases faster than the annealed sample. The surface roughness of the annealed samples remained below 2.0 nm after 360 seconds. In this case, the Luyue people found that the formation of metallic glass from the quenching of the molten material mainly depends on the ability to suppress the coagulation of the (metastable or balanced) crystalline phase. This is usually achieved by a rapid quenching rate of about 1〇5 to about 1〇6Ks, although the A1 group, the Mg group, the Ln group (Ln5 lanthanide metal), the Zr group, the Pd group, the Ti group, the Fe group, Co-based, and Ni-based amorphous alloys have been successfully synthesized, and metallic glass as a recordable optical medium has been disclosed in WO 2006/036123 A1; however, metallic glass has not been used to produce lithographic photoresist technology. . The inventors of the present invention have found that certain rules of thumb (e.g., the confusion principle) do not apply to the glass forming ability (GFA) in A1 based metallic glasses. The glass forming system may suggest alloying methods 16 200919550 to achieve metallic glass formation and may be necessary for a successful devitrification strategy. f ί The inventor of the present invention found that by developing a high-density (about o.10 m) small nanocrystal (about 5 to 2 nm in diameter 9 被) embedded in a non-ruthenium matrix. The nanocomposite structure can simultaneously improve the ductility of the metallic glass (especially during extrusion) and the breaking strength. This has been observed in pd-based, fluorenyl, Mg-based, and Zr-based metallic glasses. The Naicai composite microstructure can be achieved by dissolving and vitrifying the glass at a suitable field. : However, complex crystallization processes (for example, primary crystallization, multi-configuration crystallization, and eutectic crystallization) may occur, depending on the compounding and annealing conditions, which may be beneficial. Mechanical properties. For the ternary ai_tm_re (tm5 2 ferrometallic 'RE5 alkaline earth element) glass, the ideal devitrification microstructure and (ϋ m ) fcc-A1 nanocrystal, the best body / knife ratio is about 鸠. This high-nano crystal density requires the presence of the fe-A1 phase = power for the nucleation and the ultra-slowing (four) force, which is expected to inhibit the nucleation of the crystallization (stabilization or equilibrium). The phase diagram data of the three-it Al-Ni-Gd system consists of an 800 degree isotherm of the knife in the atomic percentage of the compound range G<Gd<33. The inventors of the present invention recently conducted a phase equilibrium study on a partial gamma in a composite range of 70% atomic ratio of μ, showing that the most abundant ternary synthesis phase of A1 has equal = ^ AM Μ in the abundant region Other known ternary synthetic phases A coffee 'A17 Ni3 Gd2 ' A1 3Ni2 Gdl, A12 NiGd, and ^ NiGd', because they do not appear in the current phase of interest, so we can all be accepted No changes are required. 17 200919550 Although the metallic glass has been proposed as an optical recording medium in the prior art, which uses a phase change effect from amorphous to crystalline state, the prior art does not disclose or recognize the use of metallic glass as a photoresist. In an exemplary embodiment of the invention, the metallic glass is used as a heat sink in the photoresist, but the known phase transition effects of the metallic glass are not used in the exemplary embodiments. The use of the metallic glass as a heat absorbing layer in these exemplary embodiments has several advantages, including: providing a low cost, high performance (e.g., high selectivity and high aspect ratio), and a relaxed environment The heat absorbing layer materials (such as GeSbTe, AglnSbTe) are more reliable and stable. In another embodiment, an exposure process will be performed on the surface of the laser lithography structure 200 of Figure 2A using a standard optical table equipped with an approximately 65 Å nano laser and an approximately 0.65 NA objective. A continuous laser beam will illuminate the photoresist from the polycarbonate substrate side 212 at a rotational speed of about 6.98 meters per second. The laser beam may illuminate the photoresist structure 200 from the side opposite the substrate 202. In other embodiments, an electron beam or ion beam may be used in place of the laser beam. The value of the peak power is set at approximately 18 mW. The photoresist is immersed in an HF solution with a ratio of HF to water of about 1:5 Torr. A continuous line pattern is produced on the surface of the metallic glass layer 2〇8. It should be noted that the continuous lasers and pulse trains that can be used in the standard optical platform in the exemplary embodiments described herein have great differences. The continuous laser uses a constant power at any time during the writing process, and the pulse train has a varying laser power that is dependent on the pulse length and the pulse length of 200919550 during the writing process, as shown in the figure. Shown in 4. The peak power for writing and the rotational speed of the substrate can be optimized and matched for the desired pattern. For the sake of completeness, it should also be noted that the substrate will rotate in conjunction with the spindle motor in the writer system, so that the pattern line in the entire substrate surface will be a spiral. However, in the micron range shown in the figure, the line appears to be a straight line. The developed media will undergo AFM measurements. 7A and 7B are diagrams of line patterns at a scanning area of about 8 χ 8 μm and a scanning area of about 2 x 2 U meters, respectively, in the example of the embodiment. The line pattern has a height of about 1 奈 nanometer and the line pattern has a width of about 375 nm. The results also show that the aspect ratio (i.e., about 29 87%) of the photoresist using AlNiGd is superior to the photoresist using the '> compound semiconductor material GeTe (i.e., about 21 95%) and use. The photoresist of Gedbje5 (that is, about 21.40%). The height and width of the line pattern can be changed by changing the photoresist structure, rotational speed, laser power, writing strategy, and development process. The height of the line pattern may range from about 1 nanometer to about 2000 nanometers, and more preferably from about 5 nanometers to about 5000 nanometers. The width of the line pattern may be in the range of from about 50 nanometers to about 5000 nanometers, and more preferably in the range of from about 100 nanometers to about 2000 nanometers. Figure 8A is a schematic illustration of another laser thermal lithography photoresist structure 8A. The photoresist structure 800 includes a polycarbonate substrate 802 about 6 mm thick; and a pattern generating layer called an inorganic photoresist layer 804. The inorganic photoresist layer comprises: a dielectric layer of about 117 Å thick ZnS-Si 〇 2 - a heat absorbing AlNiGd metallic glass layer 808 of about 2 〇 nanometer; and a znS- of about 19 200919550 nanometer thick The si〇2 active layer 810. The lower dielectric layer 8〇6 is deposited on the substrate 802 by RF sputtering, and the metallic glass layer 8〇8 is deposited on the lower dielectric layer 8〇6 by DC magnetron sputtering. . It is about 1.2X10-7 mbar, and the working pressure is about 4 5 χ1 〇.3 to about 5. For example, 〇2 mbar' is a treatment gas at a flow rate of about 15 standard milliliters per minute. The exposure process is then performed on the surface of the photoresist junction # _ using a standard optical table equipped with - about 65 nanometers of laser and __about UNA objective lens. In this embodiment, a laser beam will illuminate the photoresist structure from the substrate side M2. In other embodiments, the laser beam may illuminate the photoresist structure 8 from the side opposite the substrate 8〇2. In the embodiment of the basin, it is possible to replace the laser beam with an electron beam or an ion beam. The series of continuous exposed regions 814 in the metallic glass layer 808 are formed by heating the metallic glass layer 8 () 8 as shown in Fig. 8B. The photoresist structure is said to be developed in an HF solution, and the ratio of yaw to water is about 15 Å. A pattern 816 formed on the surface of the metallic glass layer 8〇8 is shown in Fig. 8C. The height and width of the pattern 816 can be varied by varying the photoresist structure, rotational speed, laser power, writing strategy, and development process. The photoresist structure 800 can be further processed by dipping the photoresist structure 800 into the trench A and β in another chemical solution (e.g., alkaline > valley solution). Figure 80 shows a new pattern of a pattern 818 816 and 818 formed in the metallic glass layer 808. The thickness of the new pattern m depends on the thick pattern of the metallic glass f 8G8 and the active layer 81G. 820 will form the top table @ on the lower dielectric layer 8〇6. Person 20 200919550 Since both the lower dielectric layer 806 and the active layer 810 are made of ZnS_Si〇2, the photoresist structure 8 can be further processed by immersing the photoresist structure 800 in the HF solution. Hey. A pattern 822 to be formed in the lower dielectric layer 806 is shown in Fig. 8E, which is identical to the pattern 816 in the active layer 81A. It will form a new pattern 824 consisting of patterns 816, 818, and 822. The thickness of the new pattern 824 will depend on the thickness of the lower dielectric layer 806, the metallic glass layer 8〇8, and the active layer 81A. This new pattern 824 is formed on the top end surface of the substrate 802. The patterns can be formed by selectively removing the material of each pattern generation layer. The depth of the various patterns can be varied by using a wide variety of developing solutions of the developing process. The height of the pattern may range from about 丨 nanometers to about 2,000 nanometers, and preferably, in the range of from about $ nanometers to about 5 nanometers. The width of the pattern may range from about 5 nanometers to about 5 nanometers, and more preferably from about 1 nanometer to about 2 nanometers. In another embodiment, a nitride based dielectric material (e.g., A1N and Si#4) is used as the active layer of the photoresist described above. One of the factors affecting the pattern generation is the difference in the dissolution rate of the nitride-based dielectric materials in the HF solution under heat treatment. In a confidential experiment, five sets of samples were prepared to determine the rate of dissolution of the nitride-based dielectric material relative to temperature. A nitride-based dielectric layer having a thickness of about 100 nm has been deposited over a Si wafer. The first to fourth sets of samples are annealed in nitrogen for about 30 minutes at temperatures of about 200 degrees Celsius, 4 degrees Celsius, 600 degrees Celsius, and 800 degrees Celsius; the last group will remain in the air. In the state of deposition. These samples 21 200919550 1:50 0 HF solution maintained constant will be immersed in the ratio of hf to water for a predetermined period of time. A is used to determine the sample after the engraving. The etch rate of the 5 individual fine and post 4 samples will be calculated as a function of temperature and plotted as shown in Figure 9A. It can be observed from Fig. 9A that the dissolution rate of the as-deposited Si3N4 sample in the book solution is about 5 times higher than the dissolution rate of the annealed SiW4 sample at 8 degrees Celsius. In addition, the dissolution rate of the sample just deposited is about 74 times higher than the dissolution rate of the annealed A1N sample at _ degrees Celsius. A high rate of dissolution will help to accurately control the shape and size of the pattern. The ratio of dissolution rates may range from about 5:1 to about i00:i. Fig. 9B is a graph showing the relationship between the surface roughness of the ain sample and the Si#4 sample, which are plotted on the basis of the annealing temperature. The just-deposited sample disks have a surface roughness of 800 degrees Celsius annealed samples below the nanometer after development. For pattern transfer and master preparation, it is preferred to have a smooth pattern surface after development. Rough surfaces may introduce low frequency noise and may affect the quality of the sample. In order to operate in a preferred range of dissolution rate ratios of from about 2:1 to about 1, the etchant is selected (for example, by replacing HF with phosphoric acid H3P〇4) to improve the selectivity. In another embodiment, an oxide based dielectric material (for example, Zr 〇 2 _Si 〇 2) is used as the active layer of the photoresist described above. One of the factors affecting the pattern generation is the difference in dissolution rate of the oxide-based dielectric materials (for example, 'Zr〇2_Si〇2) in the HF solution under heat treatment. In a confidential experiment, five sets of samples were prepared to determine the dissolution rate of the Zr〇2_Si〇2 material relative to 22 200919550. A 21*〇2_8丨02 layer having a thickness of about 100 nm has been deposited on a Si wafer. The first to fourth sets of samples are annealed in nitrogen for about 30 minutes at temperatures of about 2 degrees Celsius, 400 degrees Celsius, 600 degrees Celsius, and 800 degrees Celsius; the last group will remain in Just in the state of deposition. The samples were immersed in an HF solution having a ratio of HF to water of about 1:5 Torr for a constant duration of time. An AFM measurement is then performed to determine the thickness after etching. The etch rate for all five samples is calculated and plotted as a function of temperature, as shown in Figure 10A. It can be observed from Fig. 1A that the dissolution rate of the as-deposited Zr〇2_Si〇2 sample in the HF solution is about 8.7 higher than the dissolution rate of the annealed Zr〇2_si〇2 sample at 600 degrees Celsius. Times. A high rate of dissolution will facilitate precise control of the shape and size of the pattern. The ratio of dissolution rates may range from about 5:1 to about 100:1. Zr〇2-Si〇2

圖10Β所示的係以退火溫度為基準所繪製 樣本的表面㈣度的關係圖。該剛 23 200919550 生過程所以,對上面所述之雷射熱微影光阻來說以開發 出多重速度相容寫人策略為#,用以控制該圖樣的形狀與 尺寸並且用以幫助形成一離散圖樣。在一旋轉速度範圍中 可以利用一恆定雷射功率來形成一連續圖樣。 對中速來說,合宜地調整記錄功率便可以使用習知的 寫入策略。圖11(a)所示的係用於中速的5Τ脈衝串,其中, P^w>P2Pb。前緣脈衝的脈衝時間持續長度和連續脈衝的脈衝 時間持續長度會與記錄速度有關。最後的脈衝稱為冷卻脈 衝,其係用於㈣已記錄標記結束處來控^良好定義的標 5己形狀。可以根據記錄速度與記錄功率來調整冷卻脈衝時 間持續長度Tls。 合f對低速來說,較佳的係,整個介質堆疊中的熱擴散均 會受到控制。超額的熱擴散可能會不利於圖樣的形狀與尺 寸。寫入功率Pw的脈衝時間持續長度會大幅地縮短,以便 控制標記形狀’如圖11(b)中所示。在第—個寫人脈衝的之 前會加入一個時間持續長度從約0至約091的冷卻脈衝, 用以防止過熱。 對高速來說,參考時脈時間持續長度τ會變短。結果, 在達成整個介質堆疊之有效加熱與冷卻方面會有問題。因 為冷卻速率會隨著旋轉速度增加而增加,所以,可能會發 ^不充分加熱的情形。解決此問題的其中一種方式便係提 尚寫入功率。不過,雷射功率卻係有限的。另一種方式則 係藉由增加冷卻功率Pb來調整脈衝串形狀,舉例來說\使 用如圖U(c)中所示之I^Pe的城堡形狀波形。因此°,熱吸 24 200919550 收層便能夠在雷射射束被關閉之後仍保有足夠的溫度。 圖12A所示的係另一雷射熱微影光阻結構1200的概略 示意圖。該光阻結構1200包括一約0.6毫米厚的聚碳酸酯 基板1202 ;以及一同樣被稱為無機光阻層12〇4的圖樣產生 層。該無機光阻層1204包括:一約20奈米的熱吸收AlNiGd 金屬玻璃層1206 ;以及一約1〇〇奈米厚的ZnS-Si02主動層 1208 °金屬玻璃層12〇6會藉由DC磁控濺鍍被沉積在該基 板1202之上’而主動層1208則會藉由RF濺鍍被沉積在該 金屬玻璃層12〇6之上。背景真空為約丨2χ1〇-7毫巴,而工 作壓力為約4.5 ΧΙΟ.3至約5·5χ10-3毫巴,其係以每分鐘約 1 5標準毫升流速的Ar作為處理氣體。 主動層120 8的厚度可被設在約5奈米至約3 〇〇奈米的 範圍内。該主動層1208係用於圖樣形成而且該主動層1208 的厚度會與圖樣要求有關。金屬玻璃層12〇6係充當一散熱 片以及一圖樣產生器,其會吸收用來定義圖樣形狀與尺寸 的雷射能量。金屬玻璃層12〇6的厚度係在約5奈米至約5〇 奈米的範圍中。被金屬玻璃層1206吸收的熱最後會傳輸至 主動層1208,端視雷射功率與寫入策略而定。整個介質堆 疊上的熱散佈係—會影響圖樣產生的因素’其可藉由改變 介質堆疊結構、雷射功率、以及寫入策略而受到控制。 光阻結構1200的基板12〇2可能係由下面的材料所製 成’其包含,但是並不受限於此:碳酸醋、聚甲基丙稀酸 曱醋(PMMA)、非晶聚稀烴、陶£、以及玻璃。於此實施例 中基板1202可能係碟形,其直徑至少、約18〇奈米而厚度 25 200919550 則從約ο·6毫米至約12毫米或甚至更厚。在不同的實施例 中可以使用該基板12G2的其它形狀與維度。該光阻結構 12〇〇的金屬玻璃層12〇6可能係由下面的材料所製成,其包 含,但是並不受限於:A1基、Mg基、“基、或是汾基的 金屬玻璃’其包含至少一金屬元素並且主要係從下面元素 所組成之群中所選出的:A卜Ni、Gd、Pd、Cu、Mg、γ、Figure 10A shows the relationship between the surface (four degrees) of the sample plotted against the annealing temperature. Therefore, the development of the multi-speed compatible writing strategy for the laser thermal lithography photoresist described above is used to control the shape and size of the pattern and to help form a Discrete pattern. A constant laser power can be utilized in a range of rotational speeds to form a continuous pattern. For medium speeds, a conventional write strategy can be used to adjust the recording power expediently. The Fig. 11(a) is for a medium speed 5 Τ burst, where P^w > P2Pb. The duration of the pulse duration of the leading edge pulse and the duration of the pulse duration of the continuous pulse are related to the recording speed. The last pulse is called the cooling pulse, which is used to control the well-defined mark shape at the end of the recorded mark. The cooling pulse time duration Tls can be adjusted in accordance with the recording speed and the recording power. For low speeds, it is preferred that the thermal diffusion in the entire dielectric stack is controlled. Excessive thermal diffusion may be detrimental to the shape and size of the pattern. The pulse duration of the write power Pw is greatly shortened to control the mark shape as shown in Fig. 11(b). A cooling pulse of a duration of from about 0 to about 091 is added before the first write pulse to prevent overheating. For high speed, the reference clock time duration τ will be shorter. As a result, there is a problem in achieving effective heating and cooling of the entire dielectric stack. Since the cooling rate increases as the rotational speed increases, there may be cases where insufficient heating occurs. One way to solve this problem is to increase the write power. However, laser power is limited. Alternatively, the pulse train shape can be adjusted by increasing the cooling power Pb, for example, using the castle shape waveform of I^Pe as shown in Fig. U(c). Therefore, the heat absorption 24 200919550 layer can maintain sufficient temperature after the laser beam is turned off. A schematic diagram of another laser thermal lithography photoresist structure 1200 is shown in Figure 12A. The photoresist structure 1200 includes a polycarbonate substrate 1202 of about 0.6 mm thick; and a pattern generating layer, also referred to as an inorganic photoresist layer 12〇4. The inorganic photoresist layer 1204 comprises: a heat absorbing AlNiGd metallic glass layer 1206 of about 20 nm; and a ZnS-SiO 2 active layer of about 1 〇〇 nanometer thick. The 1208 ° metallic glass layer 12 〇 6 is controlled by DC magnetic Controlled sputtering is deposited on the substrate 1202' and the active layer 1208 is deposited over the metallic glass layer 12?6 by RF sputtering. The background vacuum is about χ2χ1〇-7 mbar, and the working pressure is about 4.5 ΧΙΟ.3 to about 5·5 χ10-3 mbar, which is a treatment gas at a flow rate of about 15 standard milliliters per minute. The thickness of the active layer 120 8 can be set in the range of from about 5 nanometers to about 3 nanometers. The active layer 1208 is used for pattern formation and the thickness of the active layer 1208 will be related to the pattern requirements. The metallic glass layer 12〇6 acts as a heat sink and a pattern generator that absorbs the laser energy used to define the shape and size of the pattern. The thickness of the metallic glass layer 12〇6 is in the range of from about 5 nm to about 5 Å. The heat absorbed by the metallic glass layer 1206 is ultimately transferred to the active layer 1208, depending on the laser power and write strategy. The heat spread on the entire stack of media—the factors that can affect the pattern generation—can be controlled by changing the dielectric stack structure, laser power, and write strategy. The substrate 12〇2 of the photoresist structure 1200 may be made of the following materials, which include, but are not limited to, carbonated vinegar, polymethyl methacrylate vinegar (PMMA), amorphous polyhydrocarbon , Tao, and glass. The substrate 1202 in this embodiment may be dish-shaped having a diameter of at least about 18 nanometers and a thickness of 25 200919550 of from about ο6 mm to about 12 mm or even thicker. Other shapes and dimensions of the substrate 12G2 can be used in different embodiments. The metallic glass layer 12〇6 of the photoresist structure 12〇〇 may be made of the following materials, including but not limited to: A1 based, Mg based, “based, or bismuth based metallic glass” 'It contains at least one metal element and is mainly selected from the group consisting of: A, Ni, Gd, Pd, Cu, Mg, γ,

Zr、T!、及其混合物或合金;並且可以部分甚至完全利用Zr, T!, and mixtures or alloys thereof; and may be partially or even fully utilized

Pt、Ag、Pr、La、Hf、Ir、Ag、等元素來取代。 在使用上面寫入平台的曝光設備中進行一選擇性曝 光製程。一具有約650奈米波長的雷射射束會從基板侧1210 處經由一數值孔徑約〇·65的物鏡被照射在該光阻上。於其 它實施例中,該雷射射束可能會從與該基板相反的側處來 照射該光阻。於其它實施例中,可以使用電子射束或離子 射束來取代該雷射射束。一雷射脈衝串會被用來控制雷射 功率位準,俾使該等已曝光區和未曝光區會對應於要產生 的圖樣。經過雷射退火之後,會藉由加熱該金屬玻璃層12〇8 在一剛沉積的膜之中形成一系列的連續已曝光區1212,如 圖12Β中所示。接著,會藉由將該已曝光的光阻結構12〇〇 π沒在一化學溶液(例如,HF溶液)中來實施顯影製程。一 圖樣1216會被形成在該金屬玻璃層12〇8之中,如圖i2c 中所示。 圖14所示的係根據一範例實施例用於在一基板上產生 一所希圖樣的方法的流程圖1400。在步驟14〇2處,會在基 板上形成一光阻結構,其中,該光阻結構包括至少一金屬 26 200919550 ,璃熱吸收層。在步驟1404處,會利用一能量射束來照射 :光阻、了 #在步驟1406處,該已照射的光阻結構會被顯 影,用以形成所希的圖樣。 該等實施例用來製造雷射熱微影光阻的方法的優點係 成本低、可靠、以及穩定m的優點係會提供高效能, 例如高選擇性與高高寬比並且會提供—高速圖樣產生與顯 衫製程。該方法的優點係可使用在小型與精簡的系統中而 且不需要嚴格的環境必要條件。進—步言<,該方法的優 點係可以使用簡易光阻。 —熟習本技術的人士便會明白,可以對特定實施例中所 示的本發明進行眾多改變及/或修正,廣義言之,其並不會 脫離本發明的精神或範嘴。所以,本發 ^ 呷货Η月貫施例在各方面 均應被視為僅具解釋性而沒有限制意義。 【圖式簡單說明】Pt, Ag, Pr, La, Hf, Ir, Ag, and the like are substituted. A selective exposure process is performed in the exposure apparatus using the above writing platform. A laser beam having a wavelength of about 650 nm is incident on the photoresist from the substrate side 1210 via an objective lens having a numerical aperture of about 65. In other embodiments, the laser beam may illuminate the photoresist from the side opposite the substrate. In other embodiments, an electron beam or ion beam may be used in place of the laser beam. A laser burst is used to control the laser power level so that the exposed and unexposed areas correspond to the pattern to be produced. After laser annealing, a series of successive exposed regions 1212 are formed in a as-deposited film by heating the metallic glass layer 12A8, as shown in Figure 12A. Next, the development process is carried out by leaving the exposed photoresist structure 12 π π in a chemical solution (for example, an HF solution). A pattern 1216 will be formed in the metallic glass layer 12A8 as shown in Figure i2c. Figure 14 is a flow diagram 1400 of a method for generating a pattern on a substrate in accordance with an exemplary embodiment. At step 14〇2, a photoresist structure is formed on the substrate, wherein the photoresist structure comprises at least one metal 26 200919550, a glass heat absorbing layer. At step 1404, an energy beam is used to illuminate: the photoresist, # at step 1406, the illuminated photoresist structure is developed to form the desired pattern. The advantages of the methods used in these embodiments for fabricating laser thermo-lithographic photoresists are low cost, reliable, and stable m advantages that provide high performance, such as high selectivity and high aspect ratio, and provide - high speed patterns Produce and show the process. The advantages of this method can be used in small and streamlined systems without the need for strict environmental requirements. In-steps <, the advantage of this method is that simple photoresist can be used. It will be apparent to those skilled in the art that many changes and/or modifications may be made to the inventions described in the specific embodiments. In the broad sense, it does not depart from the spirit or scope of the invention. Therefore, the monthly application of this issue should be considered as merely illustrative and not limiting in all respects. [Simple description of the map]

其中: 熟習本技術的人士從上面僅透過範例為之的書面說明 中’配合圖式,將會更瞭解且很容易明白本發明的^施例, 圖以至1C所示的係、—典型微影製程的概略示意圖·, 圖2A至2C所示的係根據一實施例在—三層光阻結構 上的圖樣產生製程的概略示意圖; 圖3 A所示的係根據該實施例以循軌方 机万向中的距離為基 準所繪製的模擬溫度關係圖; 圖3B所示的係根據該實施例以厚度方 及万向中的距離為基 27 200919550 準所繪製的模擬溫度關係圖; 圖4所示的係根據該實施例用於圖樣產生製程的雷射 脈衝串; 圖5A與5B所示的係根據該實施例,分別產生在 微米與2x2微米面積的光阻結構表面上的3T圖樣的原子力 顯微鏡(AFM)測量結果; 圖6A所不的係根據該實施例分別以蝕刻時間為基準所 繪製之剛沉積的ZnS-Si〇2樣本和已退火ZnS_Si〇2樣本的厚 度關係圖; 圖6B所不的係根據該實施例分別以蝕刻時間為基準所 繪製之剛沉積的ZnS-Si〇2樣本和已退火ZnS_Si〇2樣本的表 面粗链度關係圖; 圖7 A與7B所不的係根據另一實施例,分別產生在8χ8 微米與2x2微米面積的光阻結構表面上的一線圖樣的原子 力顯微鏡(AFM)測量結果; 囷8 A至8 E所示的係根據另一實施例在一光阻結構上 的圖樣產生製程的概略示意圖; 圖9A所示的係根據另一實施例分別以退火溫度為基準 所繪製之A1N與Si^4主動層的蝕刻速率的關係圖; 圖9B所不的係根據另一實施例分別以退火溫度為基準 所繪製t A1N肖Si3N4主動層的表面粗糙度的關係圖; 圖1 0Λ所不的係根據另一實施例分別以退火溫度為基 準所繪製的Zr〇2-Si〇2樣本的蝕刻速率的關係圖; 圖1 0B所不的係根據另一實施例分別以退火溫度為基 28 200919550 準所繪製的Zr〇2_Si〇2樣本的表面粗糙度的關係圖; 圖1 1 (a)至11 (c)所示的係根據另一實施例分別用於中 速、慢速、以及尚速的圖樣產生的寫入策略; 圖12A至12C所示的係根據一實施例在一雙層光阻結 構上的圖樣產生製程的概略示意圖; 圖1 3所不的係使用在本發明實施例中的一光學寫入系 統的概略示意圖;以及 圖14所示的係根據一範例實施例用於在一基板上產生 一所希圖樣的方法的流程圖14〇()。 【主要元件符號說明】 102 光阻 104 基板 106 雷射射束或電子射束 108 已照射的部分 110 未照射的部分 112 圖樣 200 光阻結構 202 聚碳酸酯基板 204 無機光阻層 206 下介電層 208 金屬玻璃層 210 主動層 212 基板側 29 200919550 214 已曝光區 216 圖樣 302 關係圖 304 關係圖 602 關係圖 604 關係圖 606 關係圖 608 關係圖 800 光阻結構 802 聚碳酸酯基板 804 無機光阻層 806 下介電層 808 金屬玻璃層 810 主動層 812 基板側 814 已曝光區 816 圖樣 818 圖樣 820 圖樣 822 圖樣 824 圖樣 1200 光阻結構 1202 聚碳酸酯基板 1204 無機光阻層 30 200919550 1206 金屬玻璃層 1208 主動層 1210 基板侧 1212 已曝光區 1216 圖樣 1300 光學寫入系統 1302 個人電腦 1304 脈衝產生器 1306 驅動器 1308 雷射二極體 13 10 碟片 13 12 數位訊號處理器 13 14 伺服系統 13 16 光學拾取頭 1318 滑動馬達 13 19 數位至類比轉換器 1320 主軸馬達 1321 數位至類比轉換器 1322 光學元件 1323 驅動器 1324 光二極體 1325 驅動器 1326 前置放大器 1328 類比至數位轉換器 31Among them: Those skilled in the art will understand and understand the embodiment of the present invention from the above description by way of example only, and the figure shown in 1C, typical lithography BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2A to FIG. 2C are schematic diagrams showing a pattern generation process on a three-layer photoresist structure according to an embodiment; FIG. 3A shows a tracking machine according to the embodiment. The distance in the universal direction is the simulated temperature relationship diagram drawn by the reference; FIG. 3B is the simulated temperature relationship diagram based on the thickness of the square and the distance in the universal direction according to the embodiment; 2009-1950; The laser pulse train for the pattern generation process according to this embodiment is shown; Figures 5A and 5B show the atomic force of the 3T pattern on the surface of the photoresist structure of the micrometer and 2x2 micron area, respectively, according to this embodiment. Microscopic (AFM) measurement results; FIG. 6A is a graph showing the relationship between the thickness of the as-deposited ZnS-Si〇2 sample and the annealed ZnS_Si〇2 sample, which are plotted based on the etching time according to the embodiment; FIG. 6B Nope According to the embodiment, the surface roughness relationship diagram of the as-deposited ZnS-Si〇2 sample and the annealed ZnS_Si〇2 sample are respectively plotted based on the etching time; FIG. 7A and 7B are based on another Embodiments produce atomic force microscope (AFM) measurements of a line pattern on the surface of a photoresist structure of 8 χ 8 μm and 2 x 2 μm, respectively; 囷 8 A to 8 E are according to another embodiment in a photoresist structure FIG. 9A is a schematic diagram showing the relationship between the etching rate of the A1N and the Si^4 active layer, which is based on the annealing temperature, according to another embodiment; FIG. 9B is based on In another embodiment, the relationship between the surface roughness of the t A1N Xiao Si 3 N 4 active layer is plotted based on the annealing temperature, respectively. FIG. 1 is a Zr 〇 2 drawn according to an annealing temperature. FIG. 1B is a diagram showing the relationship between the surface roughness of the Zr〇2_Si〇2 sample drawn according to another embodiment based on the annealing temperature 28 200919550; Figure 1 1 (a) to 11 (c) shows a writing strategy for pattern generation according to another embodiment for medium, slow, and still speeds; FIGS. 12A through 12C are diagrams showing a double layer of photoresist according to an embodiment. A schematic diagram of a process for generating a pattern on a structure; FIG. 13 is a schematic diagram of an optical writing system used in an embodiment of the present invention; and FIG. 14 is used in an exemplary embodiment for A flow chart 14〇() of a method for generating a pattern on a substrate. [Main component symbol description] 102 Photoresist 104 Substrate 106 Laser beam or electron beam 108 Irradiated portion 110 Unirradiated portion 112 Pattern 200 Photoresist structure 202 Polycarbonate substrate 204 Inorganic photoresist layer 206 Lower dielectric Layer 208 Metallic Glass Layer 210 Active Layer 212 Substrate Side 29 200919550 214 Exposure Area 216 Pattern 302 Diagram 304 Diagram 602 Diagram 604 Diagram 606 Diagram 608 Diagram 800 Resistor Structure 802 Polycarbonate Substrate 804 Inorganic Resistor Layer 806 Lower Dielectric Layer 808 Metallic Glass Layer 810 Active Layer 812 Substrate Side 814 Exposure Area 816 Pattern 818 Pattern 820 Pattern 822 Pattern 824 Pattern 1200 Photoresist Structure 1202 Polycarbonate Substrate 1204 Inorganic Photoresist Layer 30 200919550 1206 Metallic Glass Layer 1208 Active Layer 1210 Substrate Side 1212 Exposure Area 1216 Pattern 1300 Optical Write System 1302 Personal Computer 1304 Pulse Generator 1306 Driver 1308 Laser Diode 13 10 Disc 13 12 Digital Signal Processor 13 14 Servo System 13 16 Optical Pickup Head 1318 sliding motor 13 19 Digital to Analog Converter 1320 Spindle Motor 1321 Digital to Analog Converter 1322 Optical Component 1323 Driver 1324 Light Diode 1325 Driver 1326 Preamplifier 1328 Analog to Digital Converter 31

Claims (1)

200919550 十、申請專利範圍: 1. 一種在基板上產生圖樣的方法,該方法包括 在該基板上形成一光阻結構; 利用一能量射束來照射該光阻結構;以及 顯影該已照射光阻結構,用以形成該圖樣, 其中,該光阻結構包括至少-金屬麵熱吸收層。 2. 如申請專利範圍第^之方法,其中,該光阻結構包 括一被沉積在該金屬破璃熱吸收層上的主動層。 3. 如申請專利範圍第2項之方法,其中二影該已照射 光阻結構以形成該圖樣包括罐金屬破璃熱吸收層上的 該主動層。 4. 如申請專利範圍第3項之方法,其中,顯影該已照射 光阻結構以形成該圖樣進—步包括在#刻該主動層之後姓 刻該金屬玻璃熱吸收層。 5. 如前述申請專利範圍中任一項之方法,其中,該光阻 結構進-步包括一被沉積在該金屬玻璃熱吸收層與該基板 之間的介電層。 6·如申請專利範圍第5項之方法,其中,顯影該已照射 光阻結構以形成該圖樣包括在關該金屬玻璃熱吸收層之 後蝕刻該介電層。 7·如申請專利範圍帛1項至第4項任一項之方法,其 中,該金屬坡璃熱吸收層包括由下面所組成之群中的一或 多者:A1基、Mg基、pd基、以及&基的金屬破璃。 8.如申請專利範圍帛i項至第4項任一項之方法,其 32 200919550 中,該金屬玻璃熱吸收層包括由下面所組成之群中的一或 多個金屬元素:A1、Ni、Gd、Pd、Cu、Mg、Y、Zr、Ti、 Pt、Ag、Pr、La、Hf、Ir、及其混合物或合金。 9 ·如申請專利範圍第1項至第4項任一項之方法,其 中’該金屬玻璃熱吸收層的厚度範圍為5奈米至奈米。 10. 如申請專利範圍第2項之方法,其中,該主動層包 括由下面所組成之群中的一或多者:一金屬的氧化物、氮 化物、氟化物、以及碳化物。200919550 X. Patent application scope: 1. A method for producing a pattern on a substrate, the method comprising: forming a photoresist structure on the substrate; irradiating the photoresist structure with an energy beam; and developing the irradiated photoresist a structure for forming the pattern, wherein the photoresist structure comprises at least a metal surface heat absorbing layer. 2. The method of claim 2, wherein the photoresist structure comprises an active layer deposited on the metal frit heat absorbing layer. 3. The method of claim 2, wherein the second layer of the photoresist structure has been irradiated to form the pattern comprising the active layer on the can-glass glazing heat absorbing layer. 4. The method of claim 3, wherein developing the irradiated photoresist structure to form the pattern further comprises surging the metal glass heat absorbing layer after engraving the active layer. The method of any of the preceding claims, wherein the photoresist structure further comprises a dielectric layer deposited between the metallic glass heat absorbing layer and the substrate. 6. The method of claim 5, wherein developing the irradiated photoresist structure to form the pattern comprises etching the dielectric layer after the metal glass heat absorbing layer is turned off. The method of any one of claims 1 to 4, wherein the metal glazing heat absorbing layer comprises one or more of the group consisting of: A1 group, Mg group, pd group And the metal of the & base. 8. The method of any one of claims 4 to 4, wherein the metal glass heat absorbing layer comprises one or more metal elements in the group consisting of: A1, Ni, Gd, Pd, Cu, Mg, Y, Zr, Ti, Pt, Ag, Pr, La, Hf, Ir, and mixtures or alloys thereof. The method of any one of claims 1 to 4, wherein the metal glass heat absorbing layer has a thickness ranging from 5 nm to nanometer. 10. The method of claim 2, wherein the active layer comprises one or more of the group consisting of: a metal oxide, a nitride, a fluoride, and a carbide. 11. 如申請專利範圍第2項之方法,其中,該主動層包 括由下面所組成之群中的其中一者:Zns_si02、A1N、si3N4、 Zr〇2-Si〇2。 T堉寻利範圍第 括 ZnS-Si〇2 ο I3.如申請專利範圍第1項至第4項、第10項與第η 項任一項之方法,#中’該基板包括由下面所組成之群中 的一或多者:聚碳酸^ H聚甲基丙賴m非晶聚燁烴、 陶竞、石英、矽土、以及破璃。 14 _如申請專利笳囹 乾圍第1項至第4項、第10項鱼第 項任-項之方法,其中,該: 群中的其中一者:雷下面所組成之 15.如申請專利範圍I 束、以及離子射束。 項任-項之方法,其 項至第4項、第1G項與第11 圍中藉由以脈衝争的形式:二::該基板的-旋轉速度範 形成’其會在不同的…一雷射功率來進行離散圖樣 轉速度群中採用不㈤的寫入策略。 33 200919550 16.如申請專利範圍第b項之方法,其包括: (a) —用於中速旋轉速度的記錄策略; (b) —用於慢速旋轉速度之具有較短脈衝的記錄 略; ° (c) 一用於高速旋轉速度之具有城堡形狀波形 策略。 V » Ί 心!_7.如中請專利範圍第1項㈣4項、第項與第u 之:中:::Γ者’該光阻結構係利用由下面所組成 化學氣相沉積:離4::真空沉積;電子射束真空沉積; 丁电锻,濺鍍;以及蒸發。 18.如申請專利範圍第 項任-項之方、、…广 項、第1〇項與第11 ^ 1 項之方法,其中,顯马访口 圖樣包括渴弋化與# μ# .以 '"已‘、、、射光阻結構以形成該 圃银匕栝濕式化學蝕刻製程、乾 19·-種使用前述申 八程、或是兩者。 在-基板上的圖樣。 乾圍中任-項之方法而形成 十一、圖式: 如次頁 3411. The method of claim 2, wherein the active layer comprises one of the group consisting of: Zns_si02, A1N, si3N4, Zr〇2-Si〇2.堉 堉 Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn One or more of the group: polycarbonate H polymethyl propyl ray m amorphous polyanthracene, pottery, quartz, alumina, and broken glass. 14 _If applying for a patent, 笳囹 围 第 第 第 第 、 、 、 、 、 、 , , , , , , , , , , , , , , , , , , , , , , , , , Range I beam, and ion beam. The method of the item-item, the item to the fourth item, the 1G item and the 11th circumference by the form of pulse convection: two: the substrate-rotation speed vane forms 'it will be different... one thunder The power is applied to perform a write strategy that does not (five) in the discrete pattern rotation speed group. 33 200919550 16. The method of claim b, comprising: (a) - a recording strategy for medium speed rotational speed; (b) - a record with a shorter pulse for slow rotational speed; ° (c) A castle-shaped waveform strategy for high-speed rotational speed. V » Ί心!_7. For the patent scope, item 1 (4), item 4, and item u: Medium::: The latter's photoresist structure is composed of chemical vapor deposition consisting of: : vacuum deposition; electron beam vacuum deposition; Ding forging, sputtering; and evaporation. 18. For the method of applying for the scope of the patent scope, the terms of the broad term, the first item and the 11th item, wherein the pattern of the visitor includes the thirst and the #μ#. " has been ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The pattern on the - substrate. Formed by the method of the syllabus - XI. Schema: as the next page 34
TW097137080A 2007-09-28 2008-09-26 A method of generating a pattern on a substrate TW200919550A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2007/000329 WO2009041916A1 (en) 2007-09-28 2007-09-28 A method of generating a pattern on a substrate

Publications (1)

Publication Number Publication Date
TW200919550A true TW200919550A (en) 2009-05-01

Family

ID=40511702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097137080A TW200919550A (en) 2007-09-28 2008-09-26 A method of generating a pattern on a substrate

Country Status (2)

Country Link
TW (1) TW200919550A (en)
WO (1) WO2009041916A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210045476A1 (en) 2019-08-12 2021-02-18 Nike, Inc. Apparel with adaptive fit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149034A (en) * 1980-04-21 1981-11-18 Nippon Telegr & Teleph Corp <Ntt> Inorganic resist material
JPS56148829A (en) * 1980-04-21 1981-11-18 Nippon Telegr & Teleph Corp <Ntt> Forming method for pattern
JPS6046552A (en) * 1983-08-25 1985-03-13 Toppan Printing Co Ltd Image forming material
US4957824A (en) * 1987-03-24 1990-09-18 Kabushiki Kaisha Toshiba Information storage medium and method of manufacturing the same
JPH10213893A (en) * 1997-01-30 1998-08-11 Toshiba Corp Exposure mask and its production
DE60336928D1 (en) * 2003-01-09 2011-06-09 Sony Corp MANUFACTURING PROCESS FOR AN ORIGINAL DATA CARRIER FOR THE PRODUCTION OF AN OPTICAL DATA SUPPORT UNGER
CN101019214A (en) * 2004-08-05 2007-08-15 加州理工大学 Method for fabricating crystalline silicon

Also Published As

Publication number Publication date
WO2009041916A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR100946009B1 (en) Resist Material and Microfabrication Method
Lin et al. Ultrafast-laser-induced parallel phase-change nanolithography
JP4607139B2 (en) Write-once information recording medium and master substrate
KR20050053524A (en) Method of producing optical disk-use original and method of producing optical disk
JP5723274B2 (en) Functionally inclined inorganic resist, substrate with functionally inclined inorganic resist, cylindrical substrate with functionally inclined inorganic resist, method of forming functionally inclined inorganic resist, and method of forming fine pattern
JP2006110434A (en) Pattern forming method and working method of structure using the same
TWI335033B (en) Laser beam directed pattern formation for disc stamper creation
JP2004348830A (en) Multi-layer structure for plotting minute structure and plotting method, and manufacturing method of original disk of optical disk and mastering method
JP3879726B2 (en) Manufacturing method of optical disc master and manufacturing method of optical disc
JP4320312B2 (en) Method for manufacturing recording medium including phase change film
TW200919550A (en) A method of generating a pattern on a substrate
US8295141B2 (en) Pattern and method for forming the same
TWI326001B (en) Coatable inorganic material and method of forming pattern by utilizing the same
JP2008135090A (en) Resist, manufacturing method of stamper for optical disk using the same and stamper for optical disk
JP4101736B2 (en) Master, stamper, optical recording medium, and ROM disk manufacturing method
CN100582936C (en) Resist material and nanofabrication method
TWI236010B (en) Manufacturing method to associate solid immersion lens and nanometer aperture, and device thereof
JP2007212655A (en) Resist film and microfabrication method
JP5545808B2 (en) Laminated structure
JP4463224B2 (en) Convex structure base and manufacturing method thereof, master for recording medium comprising convex structure base and manufacturing method thereof
JP2007293943A (en) Micro-fabrication method and micro-fabrication product formed by the method
JP2013242946A (en) Information recording medium, and method of manufacturing information recording medium
JP2002116131A (en) Near-field probe and its manufacturing method