TW200919498A - Inductor and core thereof - Google Patents

Inductor and core thereof Download PDF

Info

Publication number
TW200919498A
TW200919498A TW096139109A TW96139109A TW200919498A TW 200919498 A TW200919498 A TW 200919498A TW 096139109 A TW096139109 A TW 096139109A TW 96139109 A TW96139109 A TW 96139109A TW 200919498 A TW200919498 A TW 200919498A
Authority
TW
Taiwan
Prior art keywords
inductor
core
magnetic
layer
shell
Prior art date
Application number
TW096139109A
Other languages
Chinese (zh)
Inventor
Cheng-Chang Lee
Zong-Ting Yuan
Heng-Chung Chang
Huang-Kun Chen
Tai-Kang Shing
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to TW096139109A priority Critical patent/TW200919498A/en
Priority to US12/115,092 priority patent/US20090102589A1/en
Priority to JP2008130163A priority patent/JP2009105368A/en
Publication of TW200919498A publication Critical patent/TW200919498A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • H01F2017/046Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core helical coil made of flat wire, e.g. with smaller extension of wire cross section in the direction of the longitudinal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

An inductor includes a coil and a core. The core covers the coil and includes a plurality of magnetic particles. Each of the magnetic particles includes a nucleus and first shell around the nucleus. The nucleus and the first shell are made by different materials with different specific gravities. Each the nucleus or the shell includes a magnetic material, and vice versa.

Description

200919498 九、發明說明: 【發明所屬之技術領域】 本發明係指一種電感器及其鐵芯,尤其是指一種能 讓磁性物質均勻分布、簡化混合製程之電感器及其鐵芯。 【先前技術】 隨著科技的進步’要求電子產品的效能也隨之提 升,然而關鍵的因素往往決定於其搭配的零組件。例如 父換式電源供應器(swi tched p〇wer suppi丨打),隨著切 換頻率的增加’然而電感元件的頻率與感值(inductance) 呈反比的影響下,為了有效提升高頻環境下的效能,改 善電感元件中磁性元件的製程,已經成為了重要的關鍵 因素。 明 &gt; 閱第1圖’第1圖為習知磁性顆粒之剖面示意 圖。現今高頻、電源轉料職的f感元件,在製作: 會以下面的幾個方式製作:⑴騎用鐵氧體(ferrite) 粉末搭配上高溫燒結(大於_。〇的方式來製造。⑵ 則是將磁性顆粒1()加入適當比例(少於5㈣)的高分子 黏合材料後’再以模造方式施以適當的壓力與溫度(小於 200。〇來製造。(3)如庫 、 應用在+導體晶片上,則可以電 …鍍?者是混合高分子材料塗佈的方式來進行。然 而’利用南溫燒結的方式製作電感元件的方式,會有與 200919498 積體電路整合的困難,而不利於後續的應用’而以磁性 顆粒10搭配高分子材料塗佈的方式,則必須要考量到磁 性顆粒10與高分子材料的分散程度,故磁性顆粒1〇必 需要透過加人適當_合—_ agent)作為前處 理’才能夠改善分布不均,但仍無法避免磁性顆粒10 的結塊產生’導致製造完成的電感元件會有粒徑分布不 均的問題,而大於肌膚深度(skln的粒徑會形成 過大的涡流損(eddy c町ent lQSS),而相對的過小的粒 徑則會形成較大的構頑磁力(CGercive We),造成電 感兀件的局部區域效能不同,影響整個電感元件的效能。 有鑑於此,如何提供一種電感器及其鐵怒,能夠控 制磁性顆粒10的粒徑並能夠均勻的分布,達到整體電感 70件的效率,實為重要課題之一。 【發明内容】 為了解決上述問S ’本發明係H種電感器及其 鐵芯,可以解決傳統在製造電感時粒徑因分布不均所產 生的磁力損耗,進而產品在高頻使用之下的效能。 為達到上述的目的,提出一種鐵芯,包括複數個磁 性微粒,每磁性微粒包括一核心與一第一殼層,且每一 磁性微粒中第-殼層包覆於核心外,且核心與第一殼層 係包括不同材質。 200919498 為達到上述的目的,提出一種電感器,包括有一線 圈與一鐵芯,鐵芯包覆於線圈外,鐵芯包括複數個磁性 微粒,每一磁性微粒包括一核心與一第一殼層,且每一 磁性微粒中第一殼層係包覆於核心外,且核心與第一殼 層係包括不同材質。 如上述之電感器及其鐵芯,第一殼層與核心係包括 不同比重的材質,邱心或第—殼層係包括—第一磁性 材料’第-磁性材料包括—鐵、矽、鈷、鎳、鋁、鉬、 錳、鉻或其他金屬材料。當核心係為一高分子材質,第 -殼層係包括第一磁性材料,並且第一殼層以化學電鍍 (chemical plating)方式形錢包覆於核心,第一殼層 之厚度小於第-磁性材料之肌膚深度,且第—殼声係^ 非晶或微晶之結構,高分子材質係為—聚氯乙烯 胺。 再者,:芯更具有一第二殼層,第二殼層係包動 ^ 外,第二殼層係包括有-第二磁性材料,, 包括 =他金屬材料,第二殼層係以化學電鍍的方式形成, ===與:二磁性材料可為不同。當核· ·包括第-磁性材料… …之間更具有-絕緣層,絕緣層係為一 200919498 &quot; I 丨— 200919498 &quot; I 丨— 二氧化矽或其混合 氧化物,而氧化物為一金屬氧化物 物。 :二當核心為包括第一磁性材料時,第一殼層係為 二 材質’此高分子材質係為-聚氯乙埽或聚亞 a ’包覆於该第一殼層之外的第二殼層包括一第 二磁性材料,第二磁性材料包括鐵、石夕、銘、鋅、紹、 翻、猛、鉻或其他金屬材料,第二殼層係以化學電鍍的 方式形成,而第一磁性材料與第二磁性材料係為不同。 士另外,每磁性微粒之外表面更覆蓋有一外殼,而外 设為一絕緣材料’此絕緣材料為-環氧樹脂。而磁性微 粒係與-樹脂共同形成鐵芯,磁性微粒的形狀為一圓球 型、類球型或橢圓球型。而此鐵芯可應用於—電感器上, 例如為一扼流電感。 β如上述之電感器,線圈係由一圓形線、一方形線或 疋扁形線纏繞複數圈而組成。而此電感可應用於一交 換式電源供應器(⑽Hching PQWer supplier)。 為讓本發明之上述和其他目的、特徵和優點能更明 ’、'、頁易懂,下文特舉一較佳實施例,並配合所附圖式,作 詳細說明如下: 【實施方式】 請參閱第2A圖,第2A圖為依據本發明較佳實施例 200919498 之一種電感器之侧視剖面圖。本發明之電感器2,例如 為扼流電感,包括一線圈22與一鐵芯21,線圈22為一 圓形線、一方形線或是一扁形線纏繞複數圈所形成,鐵 - 芯21包覆於線圈22外’且鐵芯21由複數個磁性微粒混 合樹脂所共同形成。 請參閱第2B圖,第2B圖為依據本發明之磁性微粒 之剖面示意圖。本發明之磁性微粒2〇包括核心2〇 1與第 一殼層202,且第一殼層202係包覆於核心201之外, 且核心201與第一殼層202係為相異且比重不同之材 質’並且核心201或第一殼層202為一第一磁性材料。 在本實施例中’可先以高分子材質例如聚氯乙烯或聚亞 胺作成核心201 ’之後再將核心201混入具有第一磁性 材料的溶液之中’此第一磁性材料可為鐵、矽、鈷、鎳、 銘、銅、猛、鉻或其他金屬材料。之後,在適當的控制 時間等製程參數’化學電鍍的方式在核心201的外表面 鑛上第一殼層2 0 2。如此’即形成形狀為圓球型、類球 型或橢圓球型的磁性微粒2〇。 承上’利用本發明的磁性微粒20設計成核心201 ^ 设層202的核殼結構(nucleus-she 11 structure) ’由於核心2〇1的部位係採用比重較輕的高 分子材質’因此在製作第一殼層202時,核心201可以200919498 IX. Description of the Invention: [Technical Field] The present invention relates to an inductor and an iron core thereof, and more particularly to an inductor and an iron core thereof which can uniformly distribute a magnetic substance and simplify a mixing process. [Prior Art] With the advancement of technology, the performance of electronic products has been required to increase, but the key factors are often determined by the components they match. For example, the parent-changing power supply (swi tched p〇wer suppi), as the switching frequency increases, but the frequency of the inductive component is inversely proportional to the inductance, in order to effectively improve the high-frequency environment Performance, improving the process of magnetic components in inductive components, has become an important key factor. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view of a conventional magnetic particle. Nowadays, the f-sensing components of high-frequency and power-conversion jobs are produced in the following ways: (1) Ferrite powder for riding is matched with high-temperature sintering (greater than _.〇). (2) Then, magnetic particles 1 () are added to a suitable ratio (less than 5 (four)) of polymer adhesive material, and then molded by appropriate pressure and temperature (less than 200. 〇 to manufacture. (3) such as library, applied in On the conductor wafer, the plating can be carried out by means of a mixed polymer material. However, the method of fabricating the inductor element by means of the south temperature sintering method has difficulty in integrating the integrated circuit with 200919498. It is not conducive to the subsequent application', and the method of coating the magnetic particles 10 with the polymer material must consider the degree of dispersion of the magnetic particles 10 and the polymer material, so the magnetic particles must be properly _- _agent) as a pre-treatment can improve the uneven distribution, but it is still impossible to avoid the agglomeration of the magnetic particles 10, which leads to a problem that the manufactured inductor element has uneven particle size distribution, and is larger than Skin depth (skln particle size will form excessive eddy current loss (eddy c-cho ent lQSS), while the relatively small particle size will form a large CGercive We, resulting in local area efficiency of the inductor element Differently, it affects the performance of the entire inductive component. In view of this, how to provide an inductor and its iron anger, can control the particle size of the magnetic particles 10 and can be evenly distributed, and achieve the efficiency of 70 pieces of the overall inductance, which is an important issue. 1. SUMMARY OF THE INVENTION In order to solve the above problem, the present invention is an H-type inductor and an iron core thereof, which can solve the magnetic loss caused by the uneven distribution of the particle size in the conventional manufacturing of the inductor, and the product is used at a high frequency. In order to achieve the above object, an iron core is provided, which comprises a plurality of magnetic particles, each of which comprises a core and a first shell, and the first shell of each magnetic particle is coated outside the core, And the core and the first shell layer comprise different materials. 200919498 In order to achieve the above object, an inductor is provided, which comprises a coil and an iron core, and the iron core is covered outside the coil The iron core includes a plurality of magnetic particles, each magnetic particle includes a core and a first shell layer, and the first shell layer of each of the magnetic particles is coated outside the core, and the core and the first shell layer are different As the above-mentioned inductor and its iron core, the first shell layer and the core layer comprise materials of different specific gravity, and the Qiu heart or the first shell layer includes - the first magnetic material 'the first magnetic material includes - iron, bismuth, Cobalt, nickel, aluminum, molybdenum, manganese, chromium or other metal materials. When the core is a polymer material, the first shell layer comprises a first magnetic material, and the first shell layer is formed by chemical plating. The money is coated on the core, the thickness of the first shell layer is smaller than the skin depth of the first magnetic material, and the structure of the first shell sound system is amorphous or microcrystalline, and the polymer material is polyvinyl chloride. Furthermore, the core further has a second shell layer, and the second shell layer comprises a second shell layer comprising - a second magnetic material, including = metal material, and the second shell layer is chemically The method of electroplating is formed, === and: the two magnetic materials can be different. When the core includes a first-magnetic material, the insulating layer is a 200919498 &quot; I 丨 - 200919498 &quot; I 丨 - cerium oxide or a mixed oxide thereof, and the oxide is one Metal oxides. When the core is included in the first magnetic material, the first shell layer is a second material 'this polymer material is - polyvinyl chloride or polya-a' coated second outside the first shell layer The shell layer comprises a second magnetic material, and the second magnetic material comprises iron, Shi Xi, Ming, Zinc, Shao, Fen, Meng, Chromium or other metal materials, and the second shell layer is formed by electroless plating, and the first layer The magnetic material is different from the second magnetic material. In addition, the outer surface of each magnetic particle is covered with an outer casing, and the outer surface is made of an insulating material. The insulating material is - epoxy resin. The magnetic microparticles and the resin together form a core, and the magnetic particles have a spherical shape, a spheroidal shape or an ellipsoidal shape. The core can be applied to an inductor, such as a choke inductor. β is the inductor as described above, and the coil is composed of a circular wire, a square wire or a flat wire wound around a plurality of turns. This inductor can be applied to a switching power supply ((10) Hching PQWer supplier). The above and other objects, features and advantages of the present invention will become more apparent <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Referring to Figure 2A, Figure 2A is a side cross-sectional view of an inductor in accordance with a preferred embodiment of the present invention 200919498. The inductor 2 of the present invention, for example, a choke inductor, includes a coil 22 and an iron core 21, and the coil 22 is formed by a circular wire, a square wire or a flat wire wound a plurality of turns, and the iron core 21 package The outer core of the coil 22 is covered and the iron core 21 is formed by a plurality of magnetic fine particle mixed resins. Referring to Figure 2B, Figure 2B is a schematic cross-sectional view of magnetic particles in accordance with the present invention. The magnetic particle 2〇 of the present invention comprises a core 2〇1 and a first shell layer 202, and the first shell layer 202 is coated outside the core 201, and the core 201 and the first shell layer 202 are different and have different specific gravity. The material 'and the core 201 or the first shell 202 is a first magnetic material. In the present embodiment, the core 201 may be mixed into a solution having a first magnetic material by using a polymer material such as polyvinyl chloride or polyimine as the core 201'. The first magnetic material may be iron or tantalum. , cobalt, nickel, Ming, copper, fierce, chrome or other metallic materials. Thereafter, the first shell layer 2 0 2 is deposited on the outer surface of the core 201 by a chemical plating method at a suitable control time. Thus, magnetic particles 2 of a spherical shape, a spheroidal shape or an ellipsoidal shape are formed. The magnetic particle 20 of the present invention is designed to have a core-shell structure (nucleus-she 11 structure) of the core layer 201. Since the core 2〇1 portion is made of a light-weight polymer material, it is produced. When the first shell 202 is used, the core 201 can

200919498 均勻的分布在具有第一磁性 域丨生材科的溶液中, 控制第-殼層201的厚度與組 更i有# 、’、、成’而不舍古曰 均而導致的渦流損,而依 ’一 更有利於一致化的製造。-的電感器變異變小’ 再者,在高頻環境運作下, a 第一磁性材料的厚度將 :’、疋電感器2良窥的重要關鍵’故用於製作電感器 時’在預先已知操作頻率與磁性材料的情況下,在不破 壞第一殼層2〇2内部結構的條件下,將第-殼層202之 厚度適當的㈣在小於第—磁性㈣的肌膚深度,如此 磁性微粒2 0可完全刺用# 凡王才J用於導磁,避免因第一殼層202 的厚度過厚,而導致渦流損變大的情況。 然’除了控制厚度之外,本發明更藉由製程上的改 良讓第成層202形成非晶(am〇rph〇us)或微晶 (miCr〇Crystalline)之結構,如此阻值也隨之減少,更 可以進一步的降低渦流損。如此,使得本發明之磁性微 粒20在高頻應用環境下,更具有優異的性質。 而本發明之變化態樣並不限於上,請同時參閱第3a 圖與第3B圖,其為本發明之磁性微粒另二種實施例之示 意圖。磁性微粒30A可視情況,可於第一殼層3〇2a外再 §支置一第二殼層303a’此第二殼層303a同樣以化學電 鍍包覆於第一殼層302a外,且具有第二磁性材料,而第 200919498 二磁性材料同樣可為mm鐘、絡 或其他金屬材料所形成,因此第—殼層⑽的第一磁性 材料與第二殼層3G3a的第二磁性材料可為相同,或亦可 不同’舉例來說’當第一殼^ 202可為鐵錄鱗合金 (FeNiP)’第二殼層2〇3可為鐵鈷合金(FeC〇)。然,為了 避免第一殼層302a與第二殼層施相鄰太近所產生的 渦流損,可較佳地在第一殼層3〇2a與第二殼層啊之 間設置-氧化物作為絕緣層3()4a,此氧化物可為金屬氧 化物、二氧化石夕或其混合物,如第3A圖所示。或者,若 將核^ 301b為第一磁性材料而第一殼層3〇2匕改為高分 子材料時,當第二殼層腿覆蓋於第一殼層3G2a時: 由於核心301b的第一磁性材料與第二殼層難的第二 磁性材料已被第—殼層腿所隔絕,則無需在另外設絕 緣層’可簡化磁性微粒3〇B的製作流程,如第兆圖所示。 夕承上,當磁性微粒變更為多層的殼層結構,只需在 夕個磁性材料之間以絕緣層作區隔,亦可以達到相似的 效果。 ^另卜如考1到多個磁性微粒彼此之間的絕緣性, 可X在磁f生彳政粒之外表面覆蓋絕緣材料。請參閱第4 圖第4圖為依照本發明之磁性微粒之再—實施例,此 ’、、邑緣材料可為環氧樹脂,而包覆的絕緣材料則形成了磁 11 200919498 性微粒40的外殼405。如此,在製造電感器時,磁性微 粒40之間會因絕緣的外殼4〇5的隔離,不會互相干擾而 形成的渦流損’更能提升電感器在高頻應用時的優越性 質。 然’本發明之電感器2的鐵芯,除可用第2B、3A、 3B與第4圖中單一種磁性微粒形成之外,更可混合多種 如第2B圖至第3A圖所示之磁性微粒而形成鐵芯21,其 混合的比例則依照實際需求來作調整。如此’更具有其 變化應用空間。 綜上所述,採用本發明之磁性微粒,運用在製造電 感器2尤其疋扼流電感時,由於磁性微粒内具有比重 車乂幸工的同刀子材貝’在與高分子黏合劑(例如樹脂)的溶 劑混合時,容易懸浮於溶劑之上,而不會因聚集而形成 過大的顆粒。並且,以化學電鑛製作的磁性微粒,更能 夠精準將磁性物質的比例與厚度控制在最適當的條件 下’避免渦流損的產生’應用在高頻的操作環境下,例 如交換式電源供應器,更能有效發揮電感器的效能。 以上所述僅為舉缝,㈣為限龍者 離本發明之精神與“,而對其進行之等效修改^ 更,均應包含於後附之申請專利範圍中。 文或&amp; 【圖式簡單說明】 200919498 第1圖為習知磁性顆粒之剖面示意圖。 第2A圖為依據本發明較佳實施例之一種電感器之 側視剖面圖。 第2B圖為依據本發明之磁性微粒之剖面示意圖。 第3A與3B圖為本發明之磁性微粒另二種實施例之 示意圖。 第4圖為本發明之磁性微粒之再一實施例。 【主要元件符號說明】 10 :磁性顆粒 2 :電感元件 20、30A、30B、40 :磁性微粒 201、 301a、301b :核心 202、 302a、302b :第一殼層 303a、303b :第二殼層 21 :鐵芯 22 :線圈 304 :絕緣層 405 :外殼 13200919498 is evenly distributed in the solution having the first magnetic domain, and controls the thickness of the first-shell layer 201 to be eddy-induced by the #, ', and ''' And according to 'one is more conducive to uniform manufacturing. - The inductance of the inductor becomes smaller. Furthermore, in the high-frequency environment, the thickness of the first magnetic material will be: ', the important key to the good inductance of the inductor 2, so when used to make the inductor' Knowing the operating frequency and the magnetic material, the thickness of the first shell layer 202 is appropriately (4) less than the skin depth of the first magnetic (four) without destroying the internal structure of the first shell layer 2, such magnetic particles. 2 0 can be completely used #凡王才J for magnetic conduction, to avoid the eddy current loss caused by the thickness of the first shell 202 is too thick. However, in addition to controlling the thickness, the present invention further forms the structure of the amorphous layer (am〇rph〇us) or the crystallite (miCr〇Crystalline) by the improvement of the process, so that the resistance is also reduced. The eddy current loss can be further reduced. Thus, the magnetic microparticles 20 of the present invention are more excellent in a high frequency application environment. While the present invention is not limited to the above, please refer to Figs. 3a and 3B, which are schematic views of two other embodiments of the magnetic particles of the present invention. The magnetic particles 30A may optionally have a second shell layer 303a' disposed outside the first shell layer 3〇2a. The second shell layer 303a is also chemically plated to the outside of the first shell layer 302a. a second magnetic material, and the second magnetic material of the second shell layer (10) may be the same as the second magnetic material of the second shell layer 3G3a, and the second magnetic material of the first shell layer (10) may be the same. Or it may be different 'exemplary' when the first shell ^ 202 may be an iron-alloyed alloy (FeNiP) 'the second shell layer 2 〇 3 may be an iron-cobalt alloy (FeC 〇). However, in order to avoid the eddy current loss caused by the first shell layer 302a and the second shell layer being too close to each other, it is preferable to provide an oxide as the insulating layer 3 between the first shell layer 3〇2a and the second shell layer. () 4a, the oxide may be a metal oxide, a dioxide dioxide or a mixture thereof, as shown in Figure 3A. Alternatively, if the core 301b is the first magnetic material and the first shell layer 3〇2匕 is changed to the polymer material, when the second shell leg covers the first shell layer 3G2a: due to the first magnetic property of the core 301b The second magnetic material, which is difficult for the material and the second shell layer, has been isolated by the first shell leg, so that the insulating layer can be omitted to simplify the fabrication process of the magnetic particles 3〇B, as shown in the mega diagram. On the eve of the eve, when the magnetic particles are changed into a multi-layered shell structure, it is only necessary to separate the insulating layers between the magnetic materials, and a similar effect can be achieved. ^ In addition, as shown in Figure 1, the magnetic particles are insulated from each other, and X may be covered with an insulating material on the outer surface of the magnetic particle. 4 is a re-embodiment of the magnetic particles according to the present invention, wherein the edge material may be an epoxy resin, and the coated insulating material forms a magnetic 11 200919498 particle 40 Housing 405. Thus, in the manufacture of the inductor, the eddy current loss formed by the isolation of the insulating outer casing 4〇5 between the magnetic microparticles 40 does not interfere with each other, and the superiority of the inductor in high-frequency applications can be improved. However, the core of the inductor 2 of the present invention can be mixed with a plurality of magnetic particles as shown in FIGS. 2B to 3A in addition to the magnetic particles of the second type, the second magnetic particles, and the second magnetic field. The core 21 is formed, and the proportion of the mixture is adjusted according to actual needs. This is more of a change in its application space. In summary, the magnetic particles of the present invention are used in the manufacture of the inductor 2, especially the turbulent inductor, because the magnetic particles have the same knives in the magnetic particles, and the polymer is bonded to the polymer (for example, resin). When the solvent is mixed, it is easily suspended on the solvent without forming excessive particles due to aggregation. Moreover, the magnetic particles made of chemical electric ore can accurately control the proportion and thickness of the magnetic substance under the most appropriate conditions to avoid the generation of eddy current loss, which is applied in a high-frequency operating environment, such as an exchange power supply. , can effectively use the performance of the inductor. The above is only a sew, and (4) is the spirit of the invention and the equivalent modification of the invention, and should be included in the scope of the appended patent application. Text or &amp; BRIEF DESCRIPTION OF THE DRAWINGS 200919498 Fig. 1 is a schematic cross-sectional view of a conventional magnetic particle. Fig. 2A is a side sectional view showing an inductor according to a preferred embodiment of the present invention. Fig. 2B is a cross section of a magnetic particle according to the present invention. 3A and 3B are schematic views showing two other embodiments of the magnetic particles of the present invention. Fig. 4 is a view showing still another embodiment of the magnetic fine particles of the present invention. [Description of main components] 10: Magnetic particles 2: Inductive components 20, 30A, 30B, 40: magnetic particles 201, 301a, 301b: cores 202, 302a, 302b: first shell layers 303a, 303b: second shell layer 21: iron core 22: coil 304: insulating layer 405: outer casing 13

Claims (1)

200919498 十、申請專利範圍: 1、 一種鐵芯,包括: 複數個磁性微粒,每該磁性微粒包括一核心與一第 一殼層,且於每該磁性微粒中,該第一殼層係包覆於該 核心之外’且該核心與該第一殼層係包括不同材質。 2、 如申請專利範圍第1項所述之鐵芯,其中於每該磁 性微粒中,該第一殼層與該核心係包括不同比重的材 質,且该核心或該第一殼層包括有—第一磁性材料。 3、 如申請專利範圍第2項所述之鐵芯,其中該第一磁 =材料包括鐵H、鎳、銘、鉬、猛、鉻或其他金 屬材料。 4、 如申請專利範圍第2項所述之 殼層包括該磁性材料時,該核心係包括—高分;材夂 材所# 利^圍帛4項所述之鐵芯’其中該高分子 才貝係匕括聚氯乙稀或聚亞胺。 層:二申Λ專利範圍第4項所述之鐵芯,其中該第-殼 層係以化學電鍍的方式形成。 7、 如中請專利範圍帛4項 層8之厚Λ係小於該第-磁性材料之肌歧度 8、 如申請專利範圍第4 層係為非晶或微晶之結構。“之鐵芯,其中該第-殼 微粒更具圍第4項所述之鐵芯’其中每該磁性 n 示一威摩,且古女黎-_L 殼層之外。 第一设層係包覆於該第一 忒層係具有—第二磁性材料 1〇如申凊專利範圍第9項&amp;、+、 良有一笛-,負所迷之鐵忽’其中每該第 14 200919498 11、 如申請專利範圍第1 ο項所述之鐵芯,其中該第 二磁性材料包括鐵、矽、鈷、鎳、鋁、鉬、錳、鉻或其 他金屬材料。 、 12、 如申請專利範圍第1 〇項所述之鐵芯,其中該第 二殼層係以化學電鍍的方式形成。 13、 如申請專利範圍第1〇項所述之鐵芯,其中該第 一磁性材料與第二磁性材料係不同。 &lt; 14:如申請專利範圍第1〇項所述之鐵芯,其中每該 第一殼層與該第二殼層之間更具有一絕緣層。 15、如申請專利範圍第14項所述之鐵芯,其中該些 絕緣層係為一氧化物。 16 :如申請專利範圍第15項所述之鐵芯,其中該氧 化物係包括一金屬氧化物、二氧化矽或其混合物。 17、 如申請專利範圍第2項所述之鐵芯,其中當該核 心包括該磁性材料時,該第一殼層係包括一高分子材質。 18、 如申請專利範圍第17項所述之鐵芯,其中該高 分子材質係包括聚氣乙烯或聚亞胺。 、19、如申請專利範圍第17項所述之鐵芯,其中每該 = 粒更具有—第二殼層’且該第二殼層係包覆於該 第一殼層之外。 ★ 20、如申請專利範圍第19項所述之鐵芯,其中每該 第二殼層係具有一第二磁性材料。 一 21 如申請專利範圍第20項所述之鐵芯,豆中該第 =材料包括鐵、矽、鈷、鎳、鋁、鉬、錳:鉻或其 他金屬材料。 22 如申睛專利範圍第20項所述之鐵芯,其中該第 15 200919498 一殼層係以化學電鍍的方式形成。 23、 如申請專利範圍第20項所述之鐵芯,其中該第 一磁性材料與第二磁性材料係不同。 24、 如申請專利範圍第i項所述之鐵芯,其中每該磁 性微粒之外表面更覆蓋有一外殼。 士 2,5、如申請專利範圍第24項所述之鐵芯,其中該外 设係包括一絕緣材料。 26、 如申請專利範圍第託項所述之鐵芯,其中該絕 緣材料係為一環氧樹脂。 其中該些磁 27、 如申請專利範圍第1項所述之鐵芯 性微粒係與一樹脂共同形成該鐵芯。 其中該些磁 其中該鐵足 係應用於一電感器 ^8、如申請專利範圍第i項所述之鐵芯 性微粒係為一圓球型、類球型或橢圓球型 29、如申請專利範圍第丨項所述之鐵芯 30 '如申請專利範圍第 感器係為一扼流電感。 31、一種電感器,包括 一線圈;以及 29項所述之鐵芯,其中該電 鐵心,係包覆於該線圈外,且該鐵芯包括複數 、性微粒,每該磁性微粒包括一核心與一第一殼層, 二於每該磁性微粒中’該第一殼層係包覆於該核心之 卜,且該核心與該第一殼層係包括不同材質。 &gt; 32、如申請專利範圍第31項所述之電感器,其中於 =磁性微粒中,該第-殼層與該核心係包括不同比重 、質’且該核心或該第一殼層包括有一第一磁性材料。 16 200919498 33、如申請專利範圍第32項所述之電感器,其中該 第一磁性材料包括鐵、矽、鈷、鎳、鋁、鉬、錳、鉻或 其他金屬材料。 料、±如申請專利範圍第32項所述之電感器,其中當 該第一殼層包括該第一磁性材料時,該核心係包括一高 分子材質。 35、 如申請專利範圍第34項所述之電感器,其中該 高分子材質係包括聚氯乙烯或聚亞胺。 36、 如申請專利範圍第34項所述之電感器,其中該 第一殼層係以化學電鍍的方式形成。 *37:如申請專利範圍第34項所述之電感器,其中該 第一殼層之厚度係小於該第一磁性材料之肌膚深度。 38 '如申請專利範圍第34項所述之電感器,其中該 第一殼層係為非晶或微晶之結構。 上39、如申請專利範圍第34項所述之電感器,其中每 :亥磁性微粒更具有一第二殼層,且該第二殼層係包覆於 該第一殼層之外。 &gt; 4〇、如申請專利範圍第39項所述之電感器,其中每 該第二殼層係包括有一第二磁性材料。 41、如申請專利範圍第40項所述之電感器,其中該 第二磁性材料包括鐵、矽、鈷、鎳、鋁、鉬、錳 其他金屬材料。 又 4_2、如申請專利範圍第40項所述之電感器,其中該 第一设層係以化學電鍍的方式形成。 43、如申請專利綱4〇項所述之電感器,其中該 第一磁性材料與第二磁性材料係不同。 ° 17 200919498 =W申f專利範圍第4〇項所述之電感器,其中每 该第一设層與該第二殼層之間更具有一絕緣層。 :緣^第44項所述之電感器,其中該 童專利範圍帛45項所述之電感器,其中該 乳化物係包括一金屬氧化物、二氧化石夕或其混合物。 7、如申請專利範圍第32項所述之電感器,其中當 括該第一磁性材料時,該第一殼層係包括一高 分子材質。 乂8;二Π專利範圍第47項所述之電感器,其中該 问刀子材為係包括聚氯乙烯或聚亞胺。 中请專利範圍第47項所述之電感11,其中每 更t有一第二殼層,且該第二殼層係包覆於 該第一殼層之外。 二°:::Λ專利範圍第49項所述之電感器,其中每 該弟一设層係包括有一第二磁性材料。 第5-1磁二利範圍第5。項所述之電感器,其中該 第一磁性材料包括鐵、矽、 其他金屬㈣。 錄銘、錮、猛、鉻或 篦5二二申凊專利範圍第50項所述之電感器,其中該 第一 Λ又層係以化學電鍍的方式形成。 第53磁圍第50項所述之電感器,其中該 第一磁性材料與第二磁性材料係不同。 =性:粒申r夕範圍第31項所述之電感器,其中每 。亥磁性楗粒之外表面更覆蓋有一外殼。 申明專利$11圍第54項所述之電感器,其中該 18 200919498 外忒係包括一絕緣材料。 其中該 56、如申請專利範圍第5 絕緣材料係為—環氧樹脂。項所迷之電感器 57如申睛專利範圍第31 些:鳴係與一樹脂共同形成該::電感器,其中該 其中該 些磁性微粒申圍第31項所述之電感器 59、為一圓球型、類球型或橢圓球型 其中該 電戌5|传〇炎清專利範圍第31項所述之電感器 電感器係為一扼流電感。 蠄酺总申凊專利範圍第31項所述之電感器,其中該 m ’、匕括—圓形線、一方形線或是一扁形線纏繞複數 圈0 p -I 如申請專利範圍第31項所述之電感器,係應用 於一交換式電源供應器。 19200919498 X. Patent application scope: 1. An iron core comprising: a plurality of magnetic particles, each of the magnetic particles comprising a core and a first shell layer, and in each of the magnetic particles, the first shell layer is coated Outside the core' and the core and the first shell layer comprise different materials. 2. The iron core according to claim 1, wherein in each of the magnetic particles, the first shell layer and the core layer comprise materials of different specific gravity, and the core or the first shell layer comprises - The first magnetic material. 3. The iron core of claim 2, wherein the first magnetic material comprises iron H, nickel, indium, molybdenum, lanthanum, chromium or other metal materials. 4. If the shell layer described in item 2 of the patent application scope includes the magnetic material, the core system includes - a high score; a material of the coffin material #利^围帛4 of the iron core, wherein the polymer Shellfish include polyvinyl chloride or polyimine. The core of the invention of claim 4, wherein the first shell layer is formed by electroless plating. 7. For example, the patent scope is 帛4. The thickness of the layer 8 is less than the muscle viscosity of the first-magnetic material. 8. The fourth layer of the patent application is amorphous or microcrystalline. "The iron core, wherein the first-shell particles are further surrounded by the iron core of the fourth item, wherein each of the magnetic properties n shows a weimore, and the ancient female lig-_L shell is outside. Covering the first layer of the layer has a second magnetic material 1 such as the scope of the patent patent item 9 &amp;, +, Liang has a flute - the negative iron of the iron "everyth of the 14th 200919498 11 , such as The iron core according to claim 1, wherein the second magnetic material comprises iron, bismuth, cobalt, nickel, aluminum, molybdenum, manganese, chromium or other metal materials. 12, as claimed in claim 1 The iron core of the present invention, wherein the second magnetic layer is formed by electroless plating. The iron core according to claim 1, wherein the first magnetic material is different from the second magnetic material &lt; 14: The iron core of claim 1, wherein each of the first shell layer and the second shell layer further has an insulating layer. 15. According to claim 14 The iron core, wherein the insulating layers are mono-oxides. 16 : as described in claim 15 The iron core, wherein the oxide system comprises a metal oxide, cerium oxide or a mixture thereof. 17. The iron core according to claim 2, wherein the first shell is when the core comprises the magnetic material The layer includes a polymer material. 18. The iron core according to claim 17, wherein the polymer material comprises polyethylene or polyimine. 19 is as described in claim 17 An iron core, wherein each of the particles has a second shell layer and the second shell layer is coated outside the first shell layer. ★ 20. The iron core according to claim 19 Each of the second shell layers has a second magnetic material. A core according to claim 20, wherein the material of the second material comprises iron, bismuth, cobalt, nickel, aluminum, molybdenum, Manganese: chrome or other metal material. 22 The iron core according to claim 20, wherein the 15th 200919498 shell is formed by electroless plating. 23, as described in claim 20 Iron core, wherein the first magnetic material and the second magnetic material 24. The iron core according to claim i, wherein the outer surface of each of the magnetic particles is further covered with an outer casing. 2. 2, 5, as claimed in claim 24 Wherein the peripheral device comprises an insulating material. 26. The iron core of claim 1, wherein the insulating material is an epoxy resin, wherein the magnetic material 27, such as claim 1 The core particles are formed together with a resin to form the core. The magnetic core is used in an inductor, and the core particle system as described in claim i is A spheroidal, spheroidal or ellipsoidal shape 29, as described in the scope of the patent application, the core 30' is a turbulent inductor. 31. An inductor comprising: a coil; and the iron core of claim 29, wherein the electrical core is wrapped around the coil, and the core comprises a plurality of particles, each of the magnetic particles comprising a core and a first shell layer, two in each of the magnetic particles, the first shell layer is coated on the core, and the core and the first shell layer comprise different materials. [32] The inductor of claim 31, wherein in the magnetic particle, the first shell layer and the core layer comprise different specific gravity, and the core or the first shell layer comprises The first magnetic material. The inductor of claim 32, wherein the first magnetic material comprises iron, ruthenium, cobalt, nickel, aluminum, molybdenum, manganese, chromium or other metallic materials. The inductor of claim 32, wherein when the first shell comprises the first magnetic material, the core comprises a high molecular material. 35. The inductor of claim 34, wherein the polymer material comprises polyvinyl chloride or polyimine. 36. The inductor of claim 34, wherein the first shell is formed by electroless plating. *37: The inductor of claim 34, wherein the thickness of the first shell layer is less than the skin depth of the first magnetic material. 38. The inductor of claim 34, wherein the first shell is amorphous or microcrystalline. The inductor of claim 34, wherein each of the magnetic particles further has a second shell layer, and the second shell layer is coated outside the first shell layer. The inductor of claim 39, wherein each of the second shells comprises a second magnetic material. The inductor of claim 40, wherein the second magnetic material comprises iron, tantalum, cobalt, nickel, aluminum, molybdenum, manganese or other metal materials. The inductor of claim 40, wherein the first layer is formed by electroless plating. 43. The inductor of claim 4, wherein the first magnetic material is different from the second magnetic material. The inductor of the fourth aspect of the invention, wherein there is an insulating layer between each of the first layer and the second layer. The inductor of claim 44, wherein the emulsifier comprises a metal oxide, a cerium oxide or a mixture thereof. 7. The inductor of claim 32, wherein the first shell comprises a high molecular material when the first magnetic material is included.电感8; The inductor of claim 47, wherein the knife material comprises polyvinyl chloride or polyimine. In the inductor 11 described in claim 47, each of the t has a second shell layer, and the second shell layer is coated outside the first shell layer. The inductor of claim 49, wherein each of the layers comprises a second magnetic material. The 5-1th magnetic second range is 5th. The inductor of item, wherein the first magnetic material comprises iron, tantalum, and other metals (four). The inductor of claim 50, wherein the first layer is formed by electroless plating. The inductor of item 50, wherein the first magnetic material is different from the second magnetic material. = Sex: The inductors described in item 31 of the granules, each of which. The outer surface of the magnetic particle is covered with an outer casing. An inductive device as claimed in claim 54 of the invention, wherein the 18 200919498 outer casing comprises an insulating material. Wherein 56, as in the scope of patent application, the fifth insulating material is epoxy resin. The inductor 57 of the present invention is the 31st of the patent scope: the sound system and a resin together form the inductor: the inductor, wherein the magnetic particles surround the inductor 59 described in item 31, which is a circle A spherical type, a spheroidal type, or an ellipsoidal type, wherein the inductor inductor is a turbulent inductor as described in claim 31.电感 凊 凊 凊 凊 凊 凊 凊 凊 凊 , , , , , , , , , , , , , , , , , , 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感 电感The inductor is applied to an exchange power supply. 19
TW096139109A 2007-10-19 2007-10-19 Inductor and core thereof TW200919498A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW096139109A TW200919498A (en) 2007-10-19 2007-10-19 Inductor and core thereof
US12/115,092 US20090102589A1 (en) 2007-10-19 2008-05-05 Inductor and core thereof
JP2008130163A JP2009105368A (en) 2007-10-19 2008-05-16 Inductor and core thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096139109A TW200919498A (en) 2007-10-19 2007-10-19 Inductor and core thereof

Publications (1)

Publication Number Publication Date
TW200919498A true TW200919498A (en) 2009-05-01

Family

ID=40562910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096139109A TW200919498A (en) 2007-10-19 2007-10-19 Inductor and core thereof

Country Status (3)

Country Link
US (1) US20090102589A1 (en)
JP (1) JP2009105368A (en)
TW (1) TW200919498A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036566A1 (en) * 2006-08-09 2008-02-14 Andrzej Klesyk Electronic Component And Methods Relating To Same
US20200185146A1 (en) * 2007-04-05 2020-06-11 Grant A. MacLennan Cooled / cast inductor apparatus and method of use thereof
MY173040A (en) 2010-03-30 2019-12-20 Ns Solutions Corp Information processing apparatus, system, vacant space guidance method and program
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
JP4866971B2 (en) 2010-04-30 2012-02-01 太陽誘電株式会社 Coil-type electronic component and manufacturing method thereof
JP6081051B2 (en) 2011-01-20 2017-02-15 太陽誘電株式会社 Coil parts
JP2012238841A (en) 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP4906972B1 (en) 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP5048155B1 (en) 2011-08-05 2012-10-17 太陽誘電株式会社 Multilayer inductor
JP5082002B1 (en) 2011-08-26 2012-11-28 太陽誘電株式会社 Magnetic materials and coil parts
KR101285220B1 (en) 2011-10-20 2013-07-11 한국조폐공사 Magnetic Particle and the Fabrication Method Thereof
JP6091744B2 (en) * 2011-10-28 2017-03-08 太陽誘電株式会社 Coil type electronic components
JP5960971B2 (en) 2011-11-17 2016-08-02 太陽誘電株式会社 Multilayer inductor
JP6012960B2 (en) 2011-12-15 2016-10-25 太陽誘電株式会社 Coil type electronic components
KR20140061036A (en) 2012-11-13 2014-05-21 삼성전기주식회사 Multilayered power inductor and method for preparing the same
KR101662208B1 (en) * 2014-09-11 2016-10-06 주식회사 모다이노칩 Power inductor and method of manufacturing the same
JP7107283B2 (en) * 2019-06-10 2022-07-27 株式会社村田製作所 inductor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744945B2 (en) * 1992-03-16 1998-04-28 日本電信電話株式会社 Magnetic multilayer film
JP3231149B2 (en) * 1993-07-30 2001-11-19 アルプス電気株式会社 Noise filter
JP3091817B2 (en) * 1994-03-11 2000-09-25 株式会社アモルファス・電子デバイス研究所 Micro magnetic element core
JPH08236332A (en) * 1995-02-22 1996-09-13 Kobe Steel Ltd High-frequency dust core and its manufacture
JP3670575B2 (en) * 2000-01-12 2005-07-13 Tdk株式会社 Method for manufacturing coil-enclosed dust core and coil-enclosed dust core
DE10024824A1 (en) * 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
JP3755023B2 (en) * 2000-09-14 2006-03-15 国立大学法人東京工業大学 Radio wave absorber and manufacturing method thereof
CA2435249A1 (en) * 2001-01-23 2002-08-01 Harrie R. Buswell Wire core inductive devices having a biassing magnet and methods of making the same
JP2003133115A (en) * 2001-08-10 2003-05-09 Rikogaku Shinkokai Composite magnetic material capable of setting permeability and permeability, and radio wave absorber
JP2003282333A (en) * 2002-03-27 2003-10-03 Tdk Corp Coil-sealed dust core
JP2005187918A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Insulating coated iron powder for powder compact magnetic core
JP4457682B2 (en) * 2004-01-30 2010-04-28 住友電気工業株式会社 Powder magnetic core and manufacturing method thereof
JP4650722B2 (en) * 2005-03-11 2011-03-16 日立金属株式会社 Fine metal particles, method for producing the same, and magnetic beads
TWI339847B (en) * 2005-06-10 2011-04-01 Delta Electronics Inc Inductor and magnetic body thereof
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
US20090091412A1 (en) * 2007-10-04 2009-04-09 Isu Corporation Coil Integrated Inductor

Also Published As

Publication number Publication date
US20090102589A1 (en) 2009-04-23
JP2009105368A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
TW200919498A (en) Inductor and core thereof
JP6639626B2 (en) Coil component and method of manufacturing the same
JP6601955B2 (en) Manufacturing method of electronic parts
JP6408688B2 (en) Power inductor
TWI575541B (en) Laminated magnetic component, manufacture with soft magnetic powder polymer composite sheets and product formed by the manufacture method
CN107799260B (en) Magnetic powder and inductor containing the same
JP2017098523A (en) Coil component and method of manufacturing the same
JP2001185421A (en) Magnetic device and manufacuring method thereof
JP2016092403A (en) Soft magnetic metal complex
CN108701538A (en) Coil pattern and forming method thereof and chip device comprising it
KR101681405B1 (en) Power inductor
CN103811161A (en) Multilayered Power Inductor And Method For Preparing The Same
JP2005317679A (en) Magnetic device and its manufacturing method
TW201712699A (en) Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
CN109509613A (en) A kind of integrally-formed inductor
JP6291789B2 (en) Multilayer coil parts
JP7392249B2 (en) coil parts
WO2022241736A1 (en) Magnetic powder for manufacturing magnet, and magnet and magnetic element
JP2006080166A (en) Dust core
KR20230092988A (en) High Frequency Power Inductor Materials Containing Magnetic Multilayer Flakes
KR102016477B1 (en) Composition and inductor manufactured using the same
CN109599240B (en) Ferrite soft magnetic powder core and preparation method thereof
WO2023006124A1 (en) Magnetic powder material, magnetic device, and electronic device
WO2023189569A1 (en) Magnetic powder and composite magnetic body
CN109791829A (en) Integrated inductance element and its manufacturing method