TW200918570A - Prepolymers and polymers for elastomers - Google Patents

Prepolymers and polymers for elastomers Download PDF

Info

Publication number
TW200918570A
TW200918570A TW097136057A TW97136057A TW200918570A TW 200918570 A TW200918570 A TW 200918570A TW 097136057 A TW097136057 A TW 097136057A TW 97136057 A TW97136057 A TW 97136057A TW 200918570 A TW200918570 A TW 200918570A
Authority
TW
Taiwan
Prior art keywords
polyol
prepolymer
polybutadiene
isocyanate
weight percent
Prior art date
Application number
TW097136057A
Other languages
Chinese (zh)
Inventor
Phillip S Athey
Woo-Sung Bae
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200918570A publication Critical patent/TW200918570A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention is to the preparation and application of isocyanate based polymers, particularly polyurea elastomeric polymers. By incorporating polybutadiene with a natural oil based polyol in a thermoplastic system, particularly in the formation of a prepolymer the produced elastomer display good chemical resistance. Such prepolymers are an isocyanate terminate prepolymer wherein the polyol composition for the production of the prepolymer comprises a polybutadiene polyol and a natural oil based polyol.

Description

200918570 九、發明說明: 【發明所屬之技術領域3 發明領域 本發明係涉及多元醇、預聚合物,尤其是異氰酸酯以 5 及多元醇的預聚合物,較佳地有用於製造由該等多元醇、 該等預聚合物或其等之組合所構成的彈性體之預聚合物。 【先前技術3 發明背景 彈性體一般而言於張力下延伸,具有高的抗拉強度, 10 以及當施加的應力釋放時,快速地縮回原始的尺寸。此等 彈性體能被使用於各種的應用,包括:開放式鑄造技術、 射出成形以及表面的喷霧塗覆。 喷塗彈性體是相當年輕類型的聚胺基甲酸酯彈性體材 料,其等已經在大約20年前便引進塗料工業。在過去十年 15 期間,此等應用聚胺基曱酸酯和聚脲聚合物的噴霧已經由 於其等之高反應性、施用速度以及機械強度和韌性而於保 護塗料工業中得到快速的接受。此等彈性體廣泛地使用作 為各種基材上的塗料,例如:金屬、塑膠、木頭以及混凝 土。舉例而言,大的容器、導管外套,等等均是承受高度 20 磨蝕的條件的品目以及能用一彈性、耐磨的覆蓋物予以保 護的。 近來,承包商和敷料者已由於其等冒險進入粗糙的施 用環境之成功而感到鼓舞,像是:化學加工基礎建設、發 電、造紙或是採礦。 5 200918570 然而,由於化學及/或熱暴露的嚴酷,喷塗彈性體僅僅 最低限度地於此等應用中執行以及尚未證實為現行的保護 解决方案,像是環氧、聚酯或是乙烯基酯塗料,之可實行 的選揮。 Λ 5 美國專利6,797,789說明一種報導具有改善的抗化學 性之酚的/聚脲彈性的塗料系統。此一系統係以—異氰酸酯 之異氰酸酯半預聚合物(quasi_prep〇lymer)為主以及其他的 反應性組份係含有一胺封端的聚醚多元醇、胺封端的鏈伸 長劑和酚樹脂。美國專利5,077,349說明抗化學品之高度可 10撓的聚胺基甲酸酯塑膠和塗料以及一種用於其等之生產的 方法。該反應性系統具有一個聚異氰酸酯組份,其係與一 經基封端的聚丁二稀多元醇、水、驗土金屬氯氧化物^是 氧化物以及有機輔助劑,像是瀝青和添加劑予以反應。該 聚合物係用,例如:滾筒或抹刀予以處理,以及特別地適 15合於混凝土表面上的大面積的密封,像是,例如:車庫平 台或是橋樑。 縱然聚丁二歸多元醇提供彈性體良好的抗化學性,但 由於此等夕7L醇的花費,找到一提供費用的優勢同時提供 有良好的物理性質和良好的抗化學性之彈性體的取代物是 20所右人的α又右4多讀的一部份能生產自一可再生的資源 也會是所欲的。 、’' 本發明的目的是要提供非多孔性異氰酸酿為主的聚合 物’其等展現良好的抗化學性,特別是抗酸性,同時維持 最佳的設定速率和流動性。該等聚合物亦具有良好的附著 200918570 性質以允許聚合物附著至一基材以提供一保護性塗料。 【發明内容】 發明概要 現在已經發現由至少一個衍生自一可再生的資源之多 5 元醇組合以一聚丁二烯多元醇製備的預聚合物,當使用於 製造彈性體時,係提供用於形成具有良好的物理和抗化學 性性質之彈性體。 本發明係有關一種異氰酸酯封端的預聚合物 (isocyanate terminate prepolymer),其具有自 5至25重量百分 10 比的含量之異氰酸酯(NC0),該預聚合物包含化學計量過量 的一或多個二-或聚異氰酸酯與一第一多元醇組份的反應 產物,其中該第一多元醇組份包含自10至90重量百分比的 至少一以天然油為主的多元醇;自10至90重量百分比的至 少一聚丁二烯多元醇;以及選擇性地於額外的多元醇或多 15 個多元醇的存在之下。 於一個另外的實施例中,該聚丁二烯多元醇具有1.8至 2.1的官能度以及500至10,000的一平均分子量。 於還有一個實施例中,以天然油為主的多元醇係為至 少一聚酯多元醇或脂肪酸所衍生的多元醇,其係至少一個 20 起始劑和至少一個脂肪酸的反應產物,脂肪酸或脂肪酸的 衍生物的一混合物包含至少大約45重量百分比的單未飽和 脂肪酸或是其等之衍生物,其中該多元醇係衍生自一具有 平均1.7至4個反應性基團的起始劑。於又另一個實施例 中,以天然油為主的多元醇具有500至5,000的一平均分子 7 200918570 量。 於本發明的一個另外的態樣中,本發明係為一種彈性 體,其包含以下的混合: a) —個異氰酸酯封端的預聚合物,其具有自5至25重 5 量百分比的異氰酸酯(NCO)含量,該預聚合物包含化學計量 過量的一或多個二-或聚異氰酸酯與一第一多元醇組份之 反應產物,其中該第一多元醇組份包含自10至90重量百分 比的至少一以天然油為主的多元醇;自10至90重量百分比 的至少一聚丁二烯多元醇;以及選擇性地於額外的多元醇 10 或多個多元醇的存在之下; b) —第二多元醇組份,其中不是一聚丁二烯多元醇或 天然油多元醇的任何多元醇係一多元醇或多元醇摻和物, 其具有1.8至2.5的標稱官能度以及500至10,000的平均分子 量; 15 C)選擇性地於鏈伸長劑及/或交聯劑的存在之下,以及 d)選擇性地於催化劑與彈性體的生產上當然知道的 其他添加劑存在之下。 於另一個態樣中,本發明係一種用於生產一彈性體的 方法,其包含換合: 20 a) —個異氰酸酯封端的預聚合物,其具有一自5至25 重量百分比的含量之異氰酸酯(NCO),該預聚合物包含化學 計量過量的一或多個二-或聚異氰酸酯與一第一多元醇組 份的反應產物,其中該第一多元醇組份包含自10至90重量 百分比的至少一以天然油為主的多元醇;自10至90重量百 200918570 分比的至少一聚丁二烯多元醇;以及選擇性地於額外的多 元醇或多個多元醇的存在之下; b) —第二多元醇組份,其中不是一聚丁二烯多元醇或 天然油多元醇的任何多元醇係一多元醇或多元醇摻和物, 5 其具有1.8至2.5的標稱官能度和500至10,000的一平均分子 量; c) 選擇性地於鏈延長劑及/或交聯劑存在之下,以及 d) 選擇性地於催化劑與彈性體的生產上當然知道的 其他添加劑存在之下。 10 於另一個態樣中,本發明係一物件、塗料、黏著劑、 結合劑、或是熱塑性塑膠,其包含該本發明的彈性體或是 由預聚合物所形成的彈性體或是使用本發明的方法形成的 彈性體。 15 圖式簡單說明 第1圖係比較實施例7的彈性體在暴露至硫酸或硝酸歷 時不同的時間之後的應力/張力曲線圖。比較實施例7的彈 性體係以具有以天然油為主的多元醇之預聚合物為主。第1 圖使用的大豆係代表操作的實施例中使用的以多元醇S為 20 主的預聚合物。 第2圖係比較實施例8的彈性體在暴露至硫酸或硝酸歷 時不同的時間之後的應力/張力曲線圖。比較實施例8的彈 性體係以具有以聚醚多元醇的預聚合物為主。第2圖使用的 Voranol係代表操作的實施例中使用的以多元醇V為主的預 9 200918570 聚合物。 第3圖係比較實施例11的彈性體在暴露至硫酸或硝酸 歷時不同的時間之後的應力/張力曲線圖。比較實施例11的 彈性體係以具有聚醚和聚丁二烯多元醇的預聚合物為主。 5 第4圖係實施例4的彈性體在暴露至硫酸或硝酸歷時不 同的時間之後的應力/張力曲線圖。實施例4的彈性體係以 具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 1 : 3之預聚合物為主。 第5圖係實施例5的彈性體在暴露至硫酸或硝酸歷時不 10同的時間之後的應力/張力曲線圖。實施例5的彈性體係以 具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 1 : 1之預聚合物為主。 第6圖係實施例6的彈性體在暴露至硫酸或硝酸歷時不 同的時間之後的應力/張力曲線圖。實施例6的彈性體係以 15具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 3 : 1之預聚合物為主。 【貧施方式3 較佳實施例之詳細說明 本發明係有關多組份的塗料系統之製備和應用,其等 20與以聚丁二烯或是聚醚為主的彈性體為主的系統比較係展 現可相比的或提高的抗化學性。該等改善的性質使得此等 塗料系統適合使用於腐触性的環境中。 當於本文中使用,術語多元醇係具有至少一個基團的 材料,該至少-個基團含有一能夠接受與一異氮酸醋的反 200918570 應之活性氫原子。在此等化合物之中,較佳的係為以下的 材料,每個分子具有至少二個羥基,一級或二級,或是至 少二個胺,一級或二級,羧酸,或是硫醇基團。每個分子 具有至少二個羥基基團的化合物是特別佳的,由於其等之 5 所欲的與聚異氰酸酯之反應性。 當於本文中使用,術語“慣用的多元醇”或是“額外的 多元醇’’係使用以表明除了一聚丁二烯多元醇或一天然油 多元醇以外的一多元醇。 術語“以天然油為主的多元醇”(NOBP)係於本文中使 10 用以指出具有羥基基團的化合物,該等化合物係單離自天 然油、衍生自天然油或是係由天然油予以製造,天然油包 括動物和植物油,較佳地植物油。 術語“脂肪酸衍生的多元醇’’係於本文中使用以指出 NOBP化合物,其等係衍生自可得自於天然油的脂肪酸。譬 15 如,脂肪酸係與以下的化合物反應,該等化合物範圍涉及 空氣或氧至包括胺和醇的有機化合物。頻繁地,脂肪酸内 的未飽和係被轉化成羥基基團或是成為一隨後能與一具有 羥基基團的化合物反應之基團,藉此獲得一多元醇。 作為用於生產本發明的非多孔性聚合物,亦即彈性體 20 之多元醇組份的部分之聚丁二烯和NOBP的存在係提供了 具有良好的抗化學性之聚合物。據信羥基封端的聚丁二烯 和NOBP樹脂之疏水性本質授予此等彈性體對抗各種的媒 介之抗化學性,像是水性酸和驗、一些溶劑以及各種鹽的 水溶液。 11 200918570 當多元醇組份b)、鏈延長劑,及/或交聯劑含有活性胺 氫基團時,此等活性胺氫基團與a)的異氰酸酯組份之反應 導致脲的形成或是脲鍵結。當多元醇組份的、鏈延長劑, 及/或交聯劑含有活性羥基氫基團時,此等活性羥基氫基團 5與3)的異氰酸酯組份之反應導致聚胺基曱酸酯的形成或是 聚胺基甲酸酯鍵結。因而,本發明的彈性體可以是一聚胺 基甲酸酯、聚脲或一聚胺基甲酸酯/聚脲混雜彈性體。 本發明中使用的聚丁二稀是一非分支的經基封端的聚 丁二烯,其含有平均1.8至2.0的終端羥基基團以及具有5〇〇 10至1〇,〇〇〇的一平均分子量,較佳地自700至8,000,且更佳地 大約1,000至5,000。更佳地’該聚丁二烯具有1,5〇〇至4,〇〇〇 的一平均分子量。此等非分支的聚丁二烯係衍生自陰離子 的聚合作用且係商業上可得的,舉例而言:得自Sart〇mer, 像是Krasol™ LBH 2000、3000和 5000。 15 較佳地,該聚丁二烯組份係使用作為用於生產一預聚 合物的第一多元醇組份的一部份。一般而言,該聚丁二烯 會是第一多元醇組份的10至9〇重量百分比。較佳地,該聚 丁二烯會包含第一多元醇組份的至少20且更佳地至少35重 量百分比。於一實施例中,該第一多元醇包含至少45重量 20百分比的聚丁二烯。該聚丁二烯可以包含高至75且更佳地 高至66重量百分比的第一多元醇。於一實施例中,該第一 多元醇包含高至55重量百分比的聚丁二烯。 以天然油為主的多元醇(N〇BP)係根據或是係衍生自 可再生的資源的多元醇,例如:天然的及/或基因修飾的 12 200918570 (GMO)農作物植物子油及/或動物來源脂肪及/或海藻。此等 油及/或脂肪一般而言包含三酸甘油酯,亦即,與甘油連結 在一起的脂肪酸。較佳的係為三酸甘油酯中具有至少大約 50百分比且更佳地至少80重量百分比的未飽和脂肪酸之植 5物油。甚至更佳地係為天然的產物,其含有至少大約85重 量百分比的的未飽和脂肪酸。於一實施例中,天然油包括 90重量百分比或更多的未飽和脂肪酸。 可以使用的植物和動物油之實例包括,但不限於:大 豆油、紅花油、亞麻子油、蓖麻油、玉米油、葵花油、撖 10 欖油、介花油、芝麻油、棉花子油、棕棚油、菜籽油、柄 油、魚油,或是此等油的任何一者之一摻和物。任擇地, 任何部分氫化的或是環氧化的天然油或是基因修飾的天然 油能被使用以獲得所欲的羥基含量。此等油之實例包括, 但不限於:高油酸紅花油、高油酸大豆油、高油酸花生油、 15 尚油酸葵花油(例如:NuSun葵花油)、高油酸芬花油,以 及高芥子菜籽油(例如:Crumbe油)。天然油多元醇係為本 技藝中該等具有技術者的知識範圍内,譬如,如以下所揭 示的:Colvin等人,UTECH Asia, Low Cost Polyols from Natural Oils, Paper 36, 1995 以及 “Renewable raw 20 materials—an important basis for urethane chemistry · Urethane Technology : vol. 14, No. 2, Apr./May 1997, Crain200918570 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to polyols, prepolymers, especially prepolymers of isocyanates with 5 and polyols, preferably for the manufacture of such polyols. And a prepolymer of the elastomer composed of the prepolymer or a combination thereof. [Prior Art 3 BACKGROUND OF THE INVENTION Elastomers generally extend under tension, have high tensile strength, 10, and rapidly retract the original size when applied stress is released. These elastomers can be used in a variety of applications including: open casting techniques, injection molding, and spray coating of surfaces. Spray elastomers are quite young types of polyurethane elastomers that have been introduced into the coatings industry about 20 years ago. Over the past decade and fifteen, the application of such polyamine phthalate and polyurea polymer sprays has been rapidly accepted in the protective coatings industry due to their high reactivity, application speed, and mechanical strength and toughness. These elastomers are widely used as coatings on various substrates such as metals, plastics, wood, and concrete. For example, large containers, conduit jackets, and the like are items that are subject to a high degree of abrasion and can be protected with a resilient, wear resistant cover. Recently, contractors and dressers have been encouraged by their success in adventuring into rough application environments such as chemical processing infrastructure, power generation, papermaking or mining. 5 200918570 However, due to the harsh chemical and/or thermal exposures, sprayed elastomers are only minimally implemented in such applications and have not proven to be current protection solutions such as epoxy, polyester or vinyl esters. Paint, the practicable selection. U.S. Patent No. 6,797,789 describes a coating system for the detection of improved chemically resistant phenolic/polyurea elastomers. This system is based on an isocyanate isocyanate semi-prepolymer (quasi_prep〇lymer) and the other reactive components contain an amine terminated polyether polyol, an amine terminated chain extender and a phenol resin. U.S. Patent No. 5,077,349, the disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure The reactive system has a polyisocyanate component which is reacted with a base-terminated polybutadiene polyol, water, a soil metal oxide, an oxide, and an organic adjuvant such as a bitumen and an additive. The polymer is treated with, for example, a roller or spatula, and in particular a large area seal on the concrete surface, such as, for example, a garage deck or a bridge. Although polybutadiene polyols provide excellent chemical resistance to elastomers, due to the cost of such 7L alcohols, a cost advantage is found while providing an elastomer with good physical properties and good chemical resistance. It is also a part of the 20 right-handed α and the right 4 more readings that can be produced from a renewable resource. The purpose of the present invention is to provide a non-porous isocyanate-based polymer which exhibits good chemical resistance, particularly acid resistance, while maintaining optimum set rate and flow. These polymers also have good adhesion properties of 200918570 to allow the polymer to adhere to a substrate to provide a protective coating. SUMMARY OF THE INVENTION It has now been discovered that a prepolymer prepared from a polybutadiene polyol from at least one combination of a plurality of 5-membered alcohols derived from a renewable resource, when used in the manufacture of elastomers, is provided. To form an elastomer with good physical and chemical resistance properties. The present invention relates to an isocyanate terminated prepolymer having an isocyanate (NC0) content of from 5 to 25 weight percent and a ratio of 10 to a stoichiometric excess of one or more Or a reaction product of a polyisocyanate and a first polyol component, wherein the first polyol component comprises from 10 to 90 weight percent of at least one natural oil-based polyol; from 10 to 90 weight a percentage of at least one polybutadiene polyol; and optionally in the presence of an additional polyol or more than 15 polyols. In a further embodiment, the polybutadiene polyol has a functionality of from 1.8 to 2.1 and an average molecular weight of from 500 to 10,000. In still another embodiment, the natural oil-based polyol is a polyol derived from at least one polyester polyol or fatty acid, which is a reaction product of at least one 20 initiator and at least one fatty acid, a fatty acid or A mixture of fatty acid derivatives comprises at least about 45 weight percent of a monounsaturated fatty acid or a derivative thereof, wherein the polyol is derived from an initiator having an average of 1.7 to 4 reactive groups. In yet another embodiment, the natural oil based polyol has an average molecular weight of from $500 to 5,000. In a further aspect of the invention, the invention is an elastomer comprising the following: a) an isocyanate-terminated prepolymer having from 5 to 25 weight percent isocyanate (NCO) a prepolymer comprising a stoichiometric excess of the reaction product of one or more di- or polyisocyanates with a first polyol component, wherein the first polyol component comprises from 10 to 90 weight percent At least one natural oil-based polyol; from 10 to 90 weight percent of at least one polybutadiene polyol; and optionally in the presence of an additional polyol 10 or more polyols; b) a second polyol component, wherein the polyol is not a polybutadiene polyol or a natural oil polyol, any polyol-polyol or polyol blend having a nominal functionality of from 1.8 to 2.5 and An average molecular weight of from 500 to 10,000; 15 C) optionally in the presence of a chain extender and/or crosslinker, and d) optionally other additives which are of course known in the production of catalysts and elastomers . In another aspect, the invention is a method for producing an elastomer comprising the following: 20 a) an isocyanate-terminated prepolymer having an isocyanate content of from 5 to 25 weight percent (NCO), the prepolymer comprises a stoichiometric excess of the reaction product of one or more di- or polyisocyanates with a first polyol component, wherein the first polyol component comprises from 10 to 90 weight a percentage of at least one natural oil-based polyol; from 10 to 90 parts by weight of at least one polybutadiene polyol of 200918570; and optionally in the presence of an additional polyol or polyols b) a second polyol component, which is not a polybutadiene polyol or a natural oil polyol, any polyol-polyol or polyol blend, 5 having a rating of 1.8 to 2.5 Functionality and an average molecular weight of from 500 to 10,000; c) optionally in the presence of chain extenders and/or crosslinkers, and d) other additives which are of course known in the production of catalysts and elastomers Exist. In another aspect, the invention is an article, a coating, an adhesive, a binder, or a thermoplastic, comprising the elastomer of the invention or an elastomer formed from a prepolymer or using the same The elastomer formed by the inventive method. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing stress/tension curves of the elastomer of Comparative Example 7 after exposure to sulfuric acid or nitric acid for various times. The elastic system of Comparative Example 7 was mainly composed of a prepolymer having a polyol mainly composed of natural oil. The soybeans used in Figure 1 represent the prepolymers having a polyol S of 20 as used in the examples of the operation. Fig. 2 is a graph showing the stress/tension curve of the elastomer of Comparative Example 8 after exposure to sulfuric acid or nitric acid for various times. The elastic system of Comparative Example 8 was mainly composed of a prepolymer having a polyether polyol. The Voranol series used in Figure 2 represents a polyol 9 based pre-2009 18570 polymer used in the examples of the operation. Fig. 3 is a graph showing the stress/tension curve of the elastomer of Comparative Example 11 after exposure to sulfuric acid or nitric acid for various times. The elastomeric system of Comparative Example 11 was predominantly a prepolymer having a polyether and a polybutadiene polyol. 5 Fig. 4 is a graph of stress/tension after the time when the elastomer of Example 4 was exposed to sulfuric acid or nitric acid for a different period of time. The elastic system of Example 4 was mainly composed of a prepolymer having a weight ratio of a polyol of a natural oil to a polybutadiene polyol of 1:3. Figure 5 is a graph of stress/tension for the elastomer of Example 5 after exposure to sulfuric acid or nitric acid for a period of time other than ten. The elastic system of Example 5 was mainly composed of a prepolymer having a weight ratio of a natural oil-based polyol to a polybutadiene polyol of 1:1. Figure 6 is a graph of the stress/tension curve of the elastomer of Example 6 after exposure to sulfuric acid or nitric acid for a different time. The elastic system of Example 6 was mainly composed of a prepolymer having a weight ratio of a natural oil-based polyol to a polybutadiene polyol of 3:1. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to the preparation and application of a multi-component coating system, and the comparison of the system with a polybutadiene or a polyether-based elastomer. The system exhibits comparable or improved chemical resistance. These improved properties make these coating systems suitable for use in a corrosive environment. As used herein, the term polyol is a material having at least one group containing an active hydrogen atom capable of accepting an anti-200918570 acid. Among these compounds, preferred are the following materials, each molecule having at least two hydroxyl groups, one or two stages, or at least two amines, one or two stages, a carboxylic acid, or a thiol group. group. Compounds having at least two hydroxyl groups per molecule are particularly preferred due to their reactivity with polyisocyanates. As used herein, the terms "conventional polyol" or "additional polyol" are used to indicate a polyol other than a polybutadiene polyol or a natural oil polyol. Natural oil-based polyols (NOBP) are used herein to indicate 10 compounds having hydroxyl groups which are isolated from natural oils, derived from natural oils or made from natural oils. Natural oils include animal and vegetable oils, preferably vegetable oils. The term "fatty acid derived polyol" is used herein to indicate a NOBP compound, which is derived from a fatty acid obtainable from a natural oil.譬 15 For example, a fatty acid is reacted with a compound ranging from air or oxygen to an organic compound including an amine and an alcohol. Frequently, the unsaturated chain in the fatty acid is converted into a hydroxyl group or becomes a group which can subsequently react with a compound having a hydroxyl group, thereby obtaining a polyol. The presence of polybutadiene and NOBP as part of the non-porous polymer used in the production of the present invention, i.e., the polyol component of the elastomer 20, provides a polymer having good chemical resistance. It is believed that the hydrophobic nature of the hydroxyl terminated polybutadiene and NOBP resins confers these elastomers resistance to various media chemical resistances, such as aqueous acids and assays, some solvents, and aqueous solutions of various salts. 11 200918570 When the polyol component b), chain extender, and/or crosslinker contains a reactive amine hydrogen group, the reaction of such reactive amine hydrogen groups with the isocyanate component of a) results in the formation of urea or Urea bond. When the polyol component, chain extender, and/or crosslinker contains a reactive hydroxyhydro group, the reaction of the reactive hydroxyhydrogen groups 5 with the isocyanate component of 3) results in a polyamino phthalate Forming or polyurethane bonding. Thus, the elastomer of the present invention may be a polyurethane, polyurea or a polyurethane/polyurea hybrid elastomer. The polybutylene diene used in the present invention is a non-branched trans-capped polybutadiene containing an average of 1.8 to 2.0 terminal hydroxyl groups and an average of 5 to 10 to 1 Å. The molecular weight is preferably from 700 to 8,000, and more preferably from about 1,000 to 5,000. More preferably, the polybutadiene has an average molecular weight of 1,5 to 4, 〇〇〇. Such non-branched polybutadienes are derived from the polymerization of anions and are commercially available, for example: from Sart®, such as KrasolTM LBH 2000, 3000 and 5000. Preferably, the polybutadiene component is used as part of the first polyol component used to produce a prepolymer. In general, the polybutadiene will be from 10 to 9 weight percent of the first polyol component. Preferably, the polybutadiene will comprise at least 20 and more preferably at least 35 weight percent of the first polyol component. In one embodiment, the first polyol comprises at least 45 weight percent of polybutadiene. The polybutadiene may comprise up to 75 and more preferably up to 66 weight percent of the first polyol. In one embodiment, the first polyol comprises up to 55 weight percent polybutadiene. Natural oil-based polyols (N〇BP) are based on or derived from renewable resources such as natural and/or genetically modified 12 200918570 (GMO) crop plant oil and/or Animal sources of fat and / or seaweed. Such oils and/or fats generally comprise triglycerides, i.e., fatty acids linked to glycerol. Preferred are plant oils having at least about 50% and more preferably at least 80% by weight of unsaturated fatty acids in the triglyceride. Even more preferably, it is a natural product which contains at least about 85 weight percent of unsaturated fatty acids. In one embodiment, the natural oil comprises 90% by weight or more of unsaturated fatty acids. Examples of plant and animal oils that may be used include, but are not limited to, soybean oil, safflower oil, linseed oil, castor oil, corn oil, sunflower oil, eucalyptus oil, eucalyptus oil, sesame oil, cottonseed oil, brown shed Oil, rapeseed oil, stalk oil, fish oil, or a blend of any of these oils. Optionally, any partially hydrogenated or epoxidized natural oil or genetically modified natural oil can be used to achieve the desired hydroxyl content. Examples of such oils include, but are not limited to, high oleic safflower oil, high oleic soybean oil, high oleic peanut oil, 15 still oleic sunflower oil (eg, NuSun sunflower oil), high oleic acid fen, and High mustard seed oil (eg Crumbe oil). Natural oil polyols are within the skill of those skilled in the art, for example, as disclosed below: Colvin et al, UTECH Asia, Low Cost Polyols from Natural Oils, Paper 36, 1995 and "Renewable raw 20" Materials—an important basis for urethane chemistry · Urethane Technology : vol. 14, No. 2, Apr./May 1997, Crain

Communications 1997, WO 01/04225 ; WO 040/96882 ; WO 040/96883 ; US 6686435、US 643312卜 US 4508853、US 6107403、US公開案20060041157,以及20040242910。 13 200918570 較佳的植物油之實例包括,舉例而今 豆、撖檀、花生、菜籽、玉米、 亞麻子、棕櫊、葵花子油,或其等 產物之實例包括:豬油、牛油、砉 :來自蓖麻、大Communications 1997, WO 01/04225; WO 040/96882; WO 040/96883; US 6,686,435, US 643, 312, US 4, 508, 853, US 6,107, 403, US Publication No. 20060041157, and 20040242910. 13 200918570 Examples of preferred vegetable oils include, for example, examples of beans, pecans, peanuts, rapeseed, corn, linseed, palm stalk, sunflower oil, or the like, including: lard, butter, mash: from Castor, big

或其等之組合的該等。動物的 油、魚油以及其等之混合物。 植物和動物為主的油/脂肪的一組合亦可以使用。較佳地 NOBP係衍生自大豆及/或蓖麻及/或芬花油。 般而言’修飾天_材料以提供該材料異氰酸醋反Or such a combination of these. Animal oil, fish oil, and mixtures thereof. A combination of plant and animal based oils/fats can also be used. Preferably, the NOBP is derived from soy and/or castor and/or fennel oil. Generally speaking, 'modification days _ materials to provide the material isocyanate vine

2003/029182之中說明的;酯化,例如:於仍6,897,283 ; 6,962,636或疋6,979,477之中說明的;氫甲醯化,如於w〇 15 2004/096744之中說明的;接枝,例如:於us 4 640 801之 中說明的;或是烧氧化’如於US 4,534,907或是WO 2004/020497之中說明的。以上引用的用於修飾天然的產物 之參考文獻係併入本文中以作為參考資料。 於另一個實施例中,NOBP係藉由以上修飾技術的一組 20 合予以獲得,如於PCT公開案WO 2004/096882和 2004/096883,以及申請人的共審查申請案序號 60/676,348,名為“Polyester Polyols Containing Secondary alcohol Groups and Their Use in Making Polyurethanes Such as Flexible Polyurethane Foams”中所揭示的,其等之揭示係 14 200918570 併入本文中以作為參考資料。 於一個甚至更佳的實施例中’本發明的多元醇係藉由 W02004/096882之中s兒明的具有一故基或多經基官能性物 種之植物油為主的單體(VOB’s)之轉酯化予以生產。如其中 所說明的’此等VOB’s係特徵在於於一脂肪酸部分上含有自 〇至3個-級OH物種之結構。此等V0B,S的官能度分佈能被 控制以及根據脂肪酸的起始組成予以變化咬是料由八 f V0B’S其等自身或是其等之前躺物。簡言之,該方法係涉及 -種多步驟的方法,其中動物紐物油/脂肪係接受轉醋化 10 以及該等構成的脂肪酸係予以回收。此步驟係接著氮甲酿 化構成的脂肪酸内的碳-碳雙鍵以形成羥甲基美團,以 而藉由經甲基化的脂肪酸與-適合的起始劑^合物^ = 而形成-聚醋或是聚醚/聚醋。較佳地,本發明中使用的 N0BP係根據-經甲基化的脂肪酸與—起始劑的反應之聚 15 酯多元醇。 〜人 供使用於用於生產多元醇的多步驟的方法中之起始劑 係為通常使用於慣用的聚醚多元醇的生產上的誃等 較佳地,起始劑係選自於以下所構 : 20 醇;—三曱基一戍四醇;:梨=了 蔑糖;甘油;二乙醇胺;燒二醇,例如:1,6Am 丁二醇;1,4-環己二醇;2,5_己二 吁 一 醇(ethylene glycol”二乙二醇、三甘醇;雙_3_胺丙基甲基胺;乙二胺; 二乙三胺;9(1)-羥甲基十八烷醇、丨3或 ^或1,4-雙羥甲基環己 烧或是其等之混合物;8,8_雙(經甲基)三環[切則癸 15 200918570 稀;德美羅醇(Dimerol alcohol);氫化雙紛;9,9(10,10)-雙 羥甲基十八烷醇;1,2,6-己三醇以及其等之組合。 適合的起始劑亦包括:該等以上指出的起始劑,其等 係用環氧乙烷或是乙烯和至少一個其他的環氧烷的一混合 5 物予以烷氧化以提供一具有200至6000,尤其自400至2000 的分子量之烧氧化的起始劑。較佳地,烧氧化的起始劑具 有自500至1000的一分子量。 脂肪酸衍生的多元醇有利地每個分子具有能與脂肪族 或是芳香族的異氰酸酯基團,較佳地羥基基團,反應的一 10 平均數的之官能基,至少大約1.7,較佳地至少大約1.8,更 佳地至少大約1.9,最佳地至少大約1.95,以及較佳地最多 大約3.5,更佳地最多大約3,以及於一實施例中,最佳地 最多大約2。於一實施例中,脂肪酸衍生的多元醇有利地具 有至少大約45,較佳地至少大約65,更佳地至少大約80, 15 最佳地至少大約85,以及高至100重量百分比之具有2個基 團與芳香族的異氰酸酯基團,較佳地羥基基團,反應的分 子。 而且,該脂肪酸衍生的多元醇有利地具有至少足夠以 形成彈性體的數量平均分子量,也就是有利地至少大約 20 1000,較佳地至少大約1500,更佳地至少大約2000,以及 較佳地最多大約5000,更佳地最多大約4000,最佳地最多 大約3000。 較佳地,NOBP係使用作為用於生產一預聚合物的該第 一多元醇組份的一部份。一般而言,NOBP會是該第一多元 16 200918570 醇組份的10至90重量百分比。較佳地,nopb會包含該第一 多元醇組份之至少20且更佳地至少35重量百分比。於一實 施例中,該第一多元醇包含至少45重量百分比的^^〇31>。較 佳地,ΝΟΒΡ會包含該第一多元醇的高至75且更佳地高至 5重量百分比。於一實施例中,該第一多元醇包含高至55重 量百分比的Ν0ΒΡ。 關於第二多元醇組份b),能使用本技藝中已知的用於 生產聚胺基甲酸酯或是聚脲彈性體之多元醇。多元醇的代 表包括:聚醚多元醇、聚酯多元醇、聚羥基封端的縮醛樹 10脂,以及羥基封端的胺。此等以及其他適合的異氰酸酯反 應材料之實例係於美國專利4,394,491中更充分地說明。可 以使用之任擇的多元醇包括:聚碳酸化亞烴(p〇lyalkylene carbonate)為主的多元醇以及聚磷酸鹽為主的多元醇。較佳 的係為聚醚或是聚酯多元醇。更佳地係為藉由添加_環氧 15烷(alkyleneoxide) ’例如:環氧乙烷、環氧丙烷、環氧丁烷 或其4之組合,至一具有2至8個,較佳地2至6個且更佳地2 至4個活性氫原子的起始劑之中予以製備之聚醚多元醇。此 聚合作用之催化可以是陰離子或是陽離子的,伴隨催化 劑,例如:K0H、CsOH、三氟化硼,或是雙氰化物錯合物 20 (DMC)催化劑’例如:六氰基鈷酸鋅或是四價碟猜 (quaternary phosphazenium)化合物。 可以使用多元醇摻和物以及此一掺和物一般而言會具 有1.8至4,且更佳地自1.8至3,更佳地自18至2 5的平均官 能度。為了生產聚胺基甲酸酯彈性體,多元醇摻和物的官 17 200918570 旎度係自1·8至2·2。多元醇摻和物的平均官能度不包括:任 何於本文中更充分地說明的鏈延長劑或交聯劑。多元醇或 多元醇摻和物的平均當量一般而言係自5〇〇至3,〇〇〇,較佳 地自750至2,500,且更佳地自1,〇〇〇至2,200。 5 聚醚多元醇之例示性的起始劑包括,舉例而言:乙二 醇(ethanediol)、1,2-和 1,3-丙二醇、二乙二醇、二丙二醇、 三丙二醇(tripropyleneglycol);聚乙二醇、聚丙二醇;14_ 丁二醇、1,6-己二醇、甘油、季戊四醇、山梨糖醇、蔗糖、 新戊一醇,1,2-丙二醇,二曱基醇丙烧甘油醋;1,6-己二醇; 10 2,5-己一醇,1,4-丁 二醇;1,4-環己二醇;乙二醇(ethylene glycol);二乙二醇;三甘醇;9(1)-羥甲基十八烷醇、1,3-或1,4-雙羥曱基環己烷或是其等之混合物;8,8_雙(羥曱基) 三環[5,2,1,02,6]癸烯;德美羅醇(36碳二醇(36 carbon diol) ’ 可得自於Henkel股份有限公司);氫化雙酚;9,9(10,10)-雙 15 羥甲基十八烷醇;1,2,6-己三醇;以及其等之組合。 其他的聚醚多元醇起始劑包括:含有一胺的線狀和環 狀化合物。例示性的聚胺起始劑包括:乙二胺、新戊二胺、 1,6-二胺己烷;雙胺甲基三環癸烷;雙胺環己烷 (bisaminocyclohexane);二乙三胺;雙-3-胺丙基曱基胺;三 20 乙四胺;曱苯二胺各種的同分異構物;二苯基曱烷二胺; N-甲基-1,2-乙二胺、N-曱基-1,3-丙二胺、N,N-二曱基-1,3-二胺丙烷、N,N-二甲基乙醇胺、3,3’-二胺-N-甲基二丙基 胺 、Ν,Ν- 二曱基雙亞丙基三胺 (Ν,Ν-dimethyldipropylenetriamine)、胺丙基°米°坐。 18 200918570 作例證的聚酯多元醇可以由以下予以製備:具有自2 至12個碳原子的有機二曱酸(dicarboxylic acid),較佳地具 有自8至12個碳原子的芳香族的二曱酸,以及具有自2炱I2 個,較佳地自2至8個且更佳地2至6個碳原子的多元醇’較 5 佳地二醇。二曱酸之實例是琥珀酸、戊二酸、已二酸、辛 二酸、壬二酸、癸二酸、癸烷二羧酸、丙二酸、庚二酸、 2-甲基-1,6-已酸、十二烷二酸、順丁烯二酸,以及反丁烯 二酸。較佳的芳香族的二甲酸係為苯二甲酸、異苯二甲酸、 對苯二甲酸以及萘-二曱酸的同分異構物。此等酸可以單獨 10 地使用或是作為混合物。二元和多元醇之實例包括:乙二 醇、二乙二醇、三甘醇、1,2-和1,3-丙二醇、二丙二醇、1,4_ 丁二醇和其他的丁二醇、1,5-戊二醇和其他的戊二醇、 己二醇、1,10-癸二醇、甘油,以及三甲基醇丙烷。作例證 的聚酯多元醇係為聚(己二醇己二酸酯)(poly(hexanedi〇l 15 adipate))、聚(丁二醇己二酸酯)、聚(乙二醇己二酸 S 旨)(poly(ethylene glycol adipate))、聚(二乙二醇己二酸 酯)(poly(diethylene glycol adipate))、聚(己二醇草酸酯)、聚 (乙二醇癸二酸酯)(poly(ethylene glycol sebecate)),以及類 似物。 2〇 雖然該等聚酯多元醇能由實質純的反應物材料予以製 備,但是能使用更複雜的組成部分,例如:苯二甲酸(phtalie acid)、對苯二甲酸(terephtalic acid)、對苯二曱酸二甲醋、 聚對苯二曱酸乙二酯(polyethylene terephtalate)以及類似物 的製造之旁流、廢料或是碎片殘餘物。其他的來源是再利 19 200918570 用的PE取對苯二甲酸乙二醋)。在轉醋化或是醋化之後, 該專反應產物能選擇性地與一環氧燒反應。 另一類可以使用的聚酯是聚内酯多元醇。此等多元醇 係藉由一内酯單體與一具有活性的含氫基團之起始劑的反 5應予以製備;内酯單體之例證係&戊内酯、ε_己内酯、ε_ 甲基-ε-己内酯,ξ_庚内酯,以及類似物;起始劑之例證係乙 二醇、二乙二醇、丙二醇、丨,4-丁二醇、it己二醇 '三曱 基醇丙烷,以及類似物。此等多元醇的生產是本技藝中已 知的,參見’舉例而言:美國專利3,丨69,945、3,248,417、 10 3,021,309以及3,021,317。較佳的内酯多元醇係為已知為聚 己内酯多元醇的二-、三-,以及四羥基官能性己内酯多元 醇。 為了生產聚脲,組份b)或c)會含有胺封端的分子。當該 第二多元醇b)的部分時,此等含有活性胺氫材料較佳地係 15胺封端的聚醚。此等胺封端的多元醇具有大於1,000的分子 量,以及/般而言大於1,500。較佳的胺封端的聚謎應選自 於胺化二醇或三醇,以及可以使用胺化二醇及/或三醇的一 摻和物。特別地’具有大於1000,甚至更期望的大於1500 的一分子量,自大約2至大約6的官能度之一級和二級胺封 2〇端的聚鍵,以及自大約750至大約4000的一當量的胺係為較 佳的。於〆實施例中’此等具有的官能度自大約2至大約3 的胺封端的聚謎係被使用。此荨材料可以藉由本技藝中已 知的各種方法予以製造。 胺封端的聚醚可以是,舉例而言:由以下方式構成的 20 200918570 聚醚樹脂,添加低級環氧炫,例如:環氧乙燒、環氧丙炫、 %乳丁炫’或其等之混合物至一適合的起始劑内,且形成 _基封端的多元醇接而被胺化。當使用二❹個氧化物 時,其等可以存在為無規的混合物或是為一或另一個聚醚 5的嵌段。於胺化步驟中,為了易於胺化高度地期望該多元 醇内的終端的經基基團實質上全部是二級經基基團。如此 製備的多元醇接而藉由已知的技術予以還原胺化,例如, 舉例而言:於美國專利案號3,654,37〇之中說明的,其等之 内谷係併入本文中以作為參考資料。按慣例,胺化步驟並 10不會70全地取代羥基基團的全部。然而,羥基基團的之最 大多數係由胺基團予以取代。因此,該等胺封端的聚醚樹 脂一般而§擁有大於大約9〇百分比的其等之活性氫以胺氫 的形式。 此等胺封端的聚醚之實例是可得自於Huntsman股份 I5 有限公司之JEFFAMINE®品牌系列的聚醚胺。其等包括: JEFFAMINE® D-2000、JEFFAMINE® D-4000、 JEFFAMINE® T-3000以及JEFFAMINE® T-5000。其他相似 的聚醚胺係商業上可得自於BASF和Arch Chemicals。 供用於本發明之異氰酸酯封端的預聚合物係藉由本技 20 藝中具有技術者所熟知的標準程序予以製備,以及例如: 美國專利4,294,951 ; 4,555,562 ; 4,182,825或是PCT公開案 W02004074343中揭露的。組份典型地係一起混合以及予以 加熱以促進多元醇和聚異氰酸酯之反應。反應溫度一般會 落在大約30°C至大約150°C的範圍之内;一更佳的範圍係為 21 200918570 自大約60°C至大約100°C。反應有利地係於無水的氛圍中執 行。一純氣,例如:氮、氬或類似物能被使用以掩蓋反應 混合物。設若所欲的話,一惰性溶劑能在預聚合物的製備 期間之内使用,雖然不需要任何一種。一種促進胺曱酸酯 5 鍵的形成的催化劑亦可以使用。 異氰酸酯係以化學計量過量予以使用以及使用慣用的 預聚合物反應的技術與多元醇組份反應,以製備具有至5至 25重量百分比游離的NCO基團的預聚合物。該等預聚合物 一般而言具有自8至20重量百分比的游離的NCO基團,較佳 10 地自10至18重量百分比,且更佳地自14至17重量百分比的 游離的NCO基團。 當預聚合物含有一聚丁二烯和NOBP為主的多元醇 時,可以生產個別的預聚合物,以該異氰酸酯和聚丁二烯 為主的一者以及異氰酸酯和NOBP為主的另一者。形成的預 15 聚合物接而能被摻和在一起。任擇地,該預聚合物可以藉 由將聚丁二烯和NOBP多元醇於同一程序中同時地與異氰 酸西旨反應予以製備。 適合用於生產該等預聚合物之聚異氰酸酯係包括:芳 香族的、環脂肪族的以及脂肪族的異氰酸酯。此等異氰酸 20 酯係本技藝中熟知的。 適合的芳香族的異氰酸酯之實例包括:二苯基甲烷二 異氰酸酯(MDI)之4,4'-、2,4'和2,2’-的同分異構物,其等之摻 和物以及聚合性和單體MDI摻和物、甲苯-2,4-和2,6-二異氰 酸酯(TDI)、間苯二異氰酸酯和對苯二異氰酸酯、氣對苯 22 200918570 -2,4-二異氰酸酯、二亞苯-4,4’-二異氰酸酯、4,4'-二異氰酸 -3,3'-二曱基二苯(4,4'-diisocyanate-3,3'-dimehtyldiphenyl)、 3-甲基二苯基-甲烷-4,4’-二異氰酸酯和二苯基醚二異氰酸 酯,以及2,4,6-三異氰酸甲苯和2,4,4'-三異氰酸二苯醚。 5 一粗製的聚異氰酸酯亦可以於本發明的實施中使用, 例如:藉由甲苯二胺的一混合物之光氣作用獲得的粗製二 異氰酸甲苯或是藉由粗製的二苯胺甲烧(methylene diphenylamine)之光氣作用獲得的粗製的二苯基甲烧二異 氰酸酯。於一實施例中,TDI/MDI摻和物係被使用。 10 脂肪族的聚異氰酸酯之實例包括:乙二異氰酸酯 (ethylene diisocyanate)、1,6-六亞曱基二異氰酸酯、1,3-及/ 或1,4-雙(異氰酸甲基)環己烷(包括順-或反-的同分異構物 任何一個)、二異氰酸異佛爾酮(IPDI)、四亞甲基-1,4-二異 氰酸酯、亞曱基雙(環己異氰酸酯)(H12MDI)、環己烷1,4-15 二異氰酸酯、4,4'-二環己基曱烷二異氰酸酯,以上提及的 芳香族的異氰酸酯之飽和類似物以及其等之混合物。 含有雙脲、脲、碳二醯亞胺、尿基甲酸S旨(allophonate) 及/或異氰尿酸酯基團之前述的聚異氰酸酯基團的任何一 者之衍生物也能使用。此等的衍生物常具有增加的異氰酸 20 酯的官能度以及當一更高度地交聯產物是所欲的時是期望 使用的。 較佳地,聚異氰酸酯係為二苯基曱烷-4,4'-二異氰酸 酯、二苯基曱烷-2,4’-二異氰酸酯,其等之聚合物或衍生物 或是其等之混合物。於一個較佳的實施例中’異氰酸酯封 23 200918570 端的預聚合物(iS0Cyanate-terminated prepolymers)係用 -MDI,或是其他的含有大量的部分之mdi摻和物或是 如上說明之4·4,-同分異構物或修飾的MDI予以製備。較佳 地’ MDI含有45至95重量百分比的4,4,-同分異構物。 5 使用一或多個鏈延長劑用於生產本發明的聚胺基甲酸 酯聚合物和彈性體亦是可能的。一鏈延長劑的存在提供形 成的聚合物所欲的物理性質。鏈延長劑在聚胺基曱酸酯聚 合物的形成期間之内可以摻和與該多元醇組份⑴或是可以 存在為一個別的物流。為了本發明的目的,一鏈延長劑係 10為一材料,其每個分子具有2個異氰酸酯反應基團以及具有 每個異氰酸酯反應基團低於4〇〇的當量,較佳地低於3〇〇, 以及尤其31-125道爾頓。適合的鏈延長劑的代表包括:多 元醇、包括聚氧烧二胺(p〇ly〇xyalkylenediamines)之脂肪族 的二胺、芳香族的二胺以及其等之混合物。異氰酸酯反應 15基團較佳地是羥基、一級脂肪族或芳香族的胺或是二級脂 肪族或芳香族的胺基團。鏈延長劑的代表包括:乙二醇、 二乙二醇、1,3-丙二醇、1,3-或是1,4-丁二醇、二丙二醇、 1,2-和2,3-丁 一醇、1,6-己二醇、新戊二醇、三丙二醇、乙 一胺、1,4-丁二胺(1,4-butylenediamine)、1,6-六亞甲基二 20胺、對苯二胺、1,5-戊二醇、1,3或1,4-雙羥甲基環己烷或其 等之混合物、1,6-己二醇、雙(3-氣-4-胺苯基)甲烷、3,3,-二 氯-4,4-二胺基二苯基曱烧、4,4,-二胺基二苯基甲院、雙紛 _A、雙紛-F、1,3-丙烧二氯-對-胺基苯(1,3-propane di-p-aminobenzene)、二鄰氣苯胺甲烷(MOCA)、1,3-環己二 24 200918570 醇、1,4-環己二醇;2,4-二胺基-3,5-二乙曱苯1,3-環己烷二 甲醇、1,4-環己烷二甲醇,以及其等之混合物。設若使用時, 鏈延長劑典型地係以多元醇組份的每100份之重量計大約 0.5至大約20份重量計的一量存在,尤其大約2至大約16份 5 重量計。此等鏈延長劑一般而言係於彈性體的生產中被添 加。鏈延長劑一般而言係添加至第二多元醇組份,然而, 設若所欲的話,鏈延長劑係被添加至異氰酸酯封端的預聚 合物以部分地反應掉游離的異氰酸酯基團。 交聯劑亦可以包括於用於生產本發明的聚胺基曱酸酯 10 聚合物的配方之中。為了本發明的目的,“交聯劑”是以下 材料,其等每個分子具有3或多個異氰酸酯反應基團以及每 個異氰酸酯反應基團低於400的當量。交聯劑較佳地每個分 子包括自3-8個,尤其自3-4個羥基,一級胺或二級胺基團以 及具有自30至大約200,尤其自50-125的當量。適合的交聯 15 劑之實例包括:二乙醇胺、單乙醇胺、三乙醇胺、單-、二 -或是三(異丙醇)胺、甘油、三甲基醇丙烷、季戊四醇、山 梨糖醇、二乙基甲苯二胺(DETA)、偏二苯胺,以及本技藝 中具有技術者所知道的其他的二胺交聯劑。 為了生產一聚胺基甲酸酯為主的彈性體,通常使用的 20 交聯劑的量以每100份多元醇的重量計係自大約0.1至大約 1份以重量計,尤其是自大約0.25至大約0.5份以重量計。 當生產聚脲彈性體時,脲的含量可以係來自異氰酸酯 與胺封端的多元醇的反應,該胺封端的多元醇係存在於該 第二多元醇b)之内的或是藉由胺封端的鏈延長劑或胺封端 25 200918570 的預聚合物的存在所提供的。因而,本文中提及的聚脲彈 性體係為該等由反應混合物形成的,其等具有以胺基圑的 形式之至少大約50百分比的活性氫基團。較佳地,反應混 合物具有以胺基團的形式之至少大約60百分比,且更佳地 5 大約70百分比的活性胺氫基團。於一個更佳的實施例中, 反應混合物具有以胺基團的形式之至少大約9 0百分比的活 性氫基團。 於聚異氰酸酯a)内的異氰酸酯基團對於多元醇組份b) 内加上由於任何添加的鏈延長劑或交聯劑而存在的活性氫 10 之當量比一般而言係自85至115。較佳地,異氰酸酯指數是 90至110的比率,且更佳地自95至110的比率。異氰酸酯指 數係本技藝中該等具有技術者所知道的以及係為異氰酸酯 (NCO)的莫耳當量除以一配方内存在的異氰酸酯反應性氫 原子的總莫耳當量,乘上100。 15 為了獲得適當的固化速率,一種催化劑可以包括於多 元醇組份之中。適合的催化劑包括:三級胺和有機金屬化 合物,例如:於U.S.專利4,495,081之中說明的。當使用一 胺催化劑時,有利地存在以多元醇的總重量計自0.1至3, 較佳地自0.1至1且更佳地自0.4至0.8的重量百分比以及選 20 擇性的鏈延長劑。當催化劑係一有機金屬催化劑時,有利 地存在以多元醇的總重量計自0.001至0.2,較佳地自0. 002 至0.1且更佳地自0.01至0.05的重量百分比以及選擇性的鏈 延長劑。特別有用的催化劑包括:於胺催化劑的情況下: 三乙二胺、雙(N,N-二甲基胺乙基)醚,和二(Ν,Ν-二甲基胺 26 200918570 乙基)胺;以及於有機金屬催化劑的情況下:辛酸亞錫、二 月桂酸二丁錫,以及二丁基錫二醋酸酯。胺和有機金屬催 化劑的組合可以被使用。 預聚合物的黏性可以藉由混合以本技藝中該等具有技 5 術者所知道的稀釋劑予以降低。一較佳的稀釋劑是碳酸丙 稀酉旨。 本技藝中該等具有技術者所普遍知道的各種其他的添 加劑能添加至彈性體。舉例而言,色素,例如:二氧化鈦 ^ 及/或碳黑,可以併入至彈性體系統内以授予顏色性質。色 10 素可以是以固體的形式或是該等固體可以被預分散於一樹 脂載體中。強化物,舉例而言:薄片或是磨碎玻璃,以及 發煙矽,也可以被併入至該彈性體系統内以授予某些性 質。其他的添加劑,例如:UV安定劑、抗氧化劑、脫泡劑、 附著促進劑,或是結構強化劑,可以視終產物的所欲特性 15 而被添加至混合物。此等係為本技藝中該等具有技術者所 普遍知道的。任何此等添加劑的量在決定終聚合物内的聚 f : l 丁二烯之重量百分比的時候係未列入考慮的。 本發明的彈性體係可應用於以下的應用中的,該等要 求防腐蝕重負荷的性質之應用,像是化學或是食品加工工 20 廠的地板、小貨車貨台内襯、貯存器内襯、貯存槽、地板 等等。任擇地,該等聚合物能供使用於要求更高的抗熱性 的應用或是要求高的耐水解性的應用,像是航海的塗料。 依據本發明的方法製備之聚胺基甲酸酯聚合物係為一 固體或是一微細聚胺基甲酸酯聚合物。此一聚合物典型地 27 200918570 係藉由以下方式予以製備:在室溫下或是一稍微提高的溫 度下詳盡地混合反應組份歷時一段短的期間以及接而傾注 形成的混合物至一開放模具,或是射出形成的混合物至封 閉式模具中,該模具在任一情況中岣係加熱的。反應完全 5的混合物具有模具的形狀以生產一預設結構的聚胺基甲酸 酯聚合物,其接而當經充分地固化時能以大於其所計畫的 目標應用所允許的最小招致變形的風險而自該模具移除。 用於促進聚合物的固化之適合的條件包括:典型地自2〇〇(^ 至150°C.,較佳地自35°C至75°C,且更佳地自45乂至55〇(: 10的成形溫度。此等溫度一般而言允許典型地於詳貪地混八 反應物之後1至10分鐘以及更典型地自1至5分鐘之内自該 模具移除經充分地固化的聚合物。最佳的固化條件將視特 定的組份而定,包括催化劑和用於製備聚合物的量以及還 有製造的物件的大小與形狀。 15 為了彈性的喷霧塗覆,該專組份一般而言係經由透過 多個高壓的喷霧機器之處理予以塗覆。多組件的設備組合 該二組份a)和b),而b)組份一般而言包括如上說明的其他的 添加劑。異氣酸自旨a)和多元醇b)較佳地係在高壓下予以組合 或混合。於一個較佳的實施例中,其等係於高壓的噴霧設 2〇 備中直接地衝擊混合。此設備舉例而言包括:安裝一 GUSMER GX-7、GUSMER GX-7 400系列或是GUSMER GX-8衝擊混合噴搶任一者之GUSMER H-2000、GUSMER H-3500、GUSMER H-20/35以及Glas-Craft MH型的配比單 元。該二組份係於喷搶内在高壓下予以混合,因而形成塗 28 200918570 料/内襯系統,其係接而經由喷搶予以塗覆至所欲的基材。 然而’多組份的喷霧設備的使用對本發明不是關鍵性的, 以及僅异疋用於混合本發明的異氰酸酯和多元醇組份的一 適合的方法之實例。 5 七供以下的貝靶例以闡明本發明。該等實施例不欲限 制本發明的範噼且不應被如此解釋。全部的百分比係以重 量計,除非另外指明。 實施例中使用的未加工的材料之說明係如下。 K 係為使用於有Krasol LBH2000之商業命名的聚 10 丁二烯多元醇(二醇)之稱號,其具有報告官能度 大約1.9以及平均]vrw 2000 ;(範圍1800 - 2500), OH# 40 - 65 mg KOH/g,黏性 @ 25°C 5000 — 20000 mPa s。Krasol係 Sartomer Europe的一商 標。 15 DETA 係為係得自於Albemarle的二乙基甲苯二胺 (DETDA),其係二官能基的芳香族的胺鏈延長 劑。 T-5000 係為可得自於The Hanson Group,LLC 之5000 MW聚醚胺。T-5000之報導的同義字是阿伐 20 (alpha,脉)、阿伐’、阿伐丙二基參(亞米Illustrated in 2003/029182; esterification, for example: as described in still 6,897, 283; 6, 962, 636 or 疋 6, 979, 477; hydroformylation, as described in WO 15 2004/096744; grafting, for example: Illustrated in US 4 640 801; or as described in US 4,534,907 or WO 2004/020497. The above cited references for modifying natural products are incorporated herein by reference. In another embodiment, the NOBP is obtained by a set of 20 combinations of the above modification techniques, as in PCT Publication Nos. WO 2004/096882 and 2004/096883, and the applicant's co-reviewed application Serial No. 60/676,348, For the disclosure of "Polyester Polyols Containing Secondary alcohol Groups and Their Use in Making Polyurethanes Such as Flexible Polyurethane Foams", the disclosure of which is incorporated herein by reference. In an even more preferred embodiment, the polyol of the present invention is a vegetable oil-based monomer (VOB's) having a virgin or poly-based functional group as described in WO2004/096882. Esterification is produced. As described therein, these VOB's are characterized by a structure comprising a self-derivative to a 3-grade OH species on a fatty acid moiety. The functional distribution of these V0B, S can be controlled and varied depending on the initial composition of the fatty acid. The bite is made from eight f V0B'S itself or its pre-dise. Briefly, the method involves a multi-step process in which the animal feed oil/fat system is subjected to transacetalization 10 and the fatty acids of the composition are recovered. This step is followed by a carbon-carbon double bond in the fatty acid formed by the nitrogen fermentation to form a methylol group, thereby being formed by the methylated fatty acid and the appropriate starter compound ^= - Poly vinegar or polyether / polyester. Preferably, the NOBP used in the present invention is a poly 15 ester polyol which is based on the reaction of a methylated fatty acid with a starter. The initiator for use in a multi-step process for producing a polyol is a hydrazine or the like which is usually used in the production of a conventional polyether polyol. Preferably, the initiator is selected from the following Structure: 20 alcohol; - tridecyl-tetradecyl alcohol; pear = sugar; glycerin; diethanolamine; glycerol, for example: 1,6Am butanediol; 1,4-cyclohexanediol; 5_ethylene diethylene glycol (ethylene glycol) diethylene glycol, triethylene glycol; bis-3-aminopropylmethylamine; ethylenediamine; diethylenetriamine; 9(1)-hydroxymethyl 18 Alkanol, hydrazine 3 or ^ or 1,4-bishydroxymethylcyclohexene or a mixture thereof; 8,8-bis(methyl)tricyclo[Czeze 15 200918570 dilute; demerool (Dimerol alcohol); hydrogenation; 9,9 (10,10)-bishydroxymethyl stearyl alcohol; 1,2,6-hexanetriol and combinations thereof, etc. Suitable starters also include: The above-mentioned initiators are alkoxylated with ethylene oxide or a mixture of ethylene and at least one other alkylene oxide to provide a mixture having from 200 to 6,000, especially from 400 to 2,000. a molecular weight burn-in initiator. The oxidizing initiator has a molecular weight of from 500 to 1000. The fatty acid-derived polyol advantageously has one molecule per molecule which is reactive with an aliphatic or aromatic isocyanate group, preferably a hydroxyl group. 10 has an average functional group of at least about 1.7, preferably at least about 1.8, more preferably at least about 1.9, most preferably at least about 1.95, and most preferably at most about 3.5, more preferably at most about 3, and In one embodiment, optimally up to about 2. In one embodiment, the fatty acid derived polyol advantageously has at least about 45, preferably at least about 65, more preferably at least about 80, 15 optimally at least about 85, and up to 100% by weight of a molecule having 2 groups and an aromatic isocyanate group, preferably a hydroxyl group, reacting. Moreover, the fatty acid-derived polyol advantageously has at least sufficient to form an elastomer. The number average molecular weight, that is, advantageously at least about 20 1000, preferably at least about 1500, more preferably at least about 2,000, and most preferably at most about 5,000, more preferably Up to about 4000, optimally up to about 3000. Preferably, NOBP is used as part of the first polyol component for producing a prepolymer. In general, NOBP will be the first Multicomponent 16 200918570 10 to 90 weight percent of the alcohol component. Preferably, nopb will comprise at least 20 and more preferably at least 35 weight percent of the first polyol component. In one embodiment, the first The polyol comprises at least 45 weight percent of the compound. Preferably, the cerium will comprise up to 75 and more preferably up to 5% by weight of the first polyol. In one embodiment, the first polyol comprises up to 55 weight percent Ν0ΒΡ. With regard to the second polyol component b), a polyol known in the art for producing a polyurethane or a polyurea elastomer can be used. Representative of the polyols include: polyether polyols, polyester polyols, polyhydroxy terminated acetal 10 lipids, and hydroxyl terminated amines. Examples of such and other suitable isocyanate reaction materials are more fully described in U.S. Patent 4,394,491. The optional polyols which may be used include polyhydric alcohols mainly composed of poly(p-lyalkylene carbonate) and polyphosphates mainly composed of polyphosphates. Preferred are polyether or polyester polyols. More preferably, it has 2 to 8, preferably 2, by adding an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a combination thereof. A polyether polyol prepared by preparing an initiator of 6 or more preferably 2 to 4 active hydrogen atoms. The catalysis of this polymerization may be anionic or cationic, with a catalyst such as: K0H, CsOH, boron trifluoride, or a double cyanide complex 20 (DMC) catalyst' such as zinc hexacyanocobaltate or It is a quaternary phosphazenium compound. Polyol blends may be used and such blends will generally have an average functionality of from 1.8 to 4, and more preferably from 1.8 to 3, more preferably from 18 to 25. In order to produce a polyurethane elastomer, the polyol blender has a twist of from 18.8 to 2.2. The average functionality of the polyol blend does not include any chain extenders or crosslinkers as more fully described herein. The average equivalent weight of the polyol or polyol blend is generally from 5 Torr to 3, Torr, preferably from 750 to 2,500, and more preferably from 1, 〇〇〇 to 2,200. 5 Exemplary starters of polyether polyols include, for example: ethanediol, 1,2- and 1,3-propanediol, diethylene glycol, dipropylene glycol, tripropyleneglycol; Polyethylene glycol, polypropylene glycol; 14_ butanediol, 1,6-hexanediol, glycerin, pentaerythritol, sorbitol, sucrose, neopentyl alcohol, 1,2-propanediol, dinonyl alcohol, glycerin, glycerin ; 1,6-hexanediol; 10 2,5-hexanol, 1,4-butanediol; 1,4-cyclohexanediol; ethylene glycol; diethylene glycol; Alcohol; 9(1)-hydroxymethylstearyl alcohol, 1,3- or 1,4-bishydroxydecylcyclohexane or a mixture thereof; 8,8-bis(hydroxyindenyl)tricyclic [5,2,1,02,6]decene; demerolol (36 carbon diol) available from Henkel Co., Ltd.; hydrogenated bisphenol; 9,9 (10,10) )-bis 15 hydroxymethyl stearyl alcohol; 1,2,6-hexanetriol; and combinations thereof. Other polyether polyol starters include linear and cyclic compounds containing a single amine. Exemplary polyamine initiators include: ethylenediamine, neopentylamine, 1,6-diaminehexane; bisamine methyltricyclodecane; bisaminocyclohexane; diethylenetriamine Bis-3-aminopropyl decylamine; tris 20 ethylene tetraamine; various isomers of indolediamine; diphenylnonanediamine; N-methyl-1,2-ethanediamine , N-mercapto-1,3-propanediamine, N,N-dimercapto-1,3-diaminepropane, N,N-dimethylethanolamine, 3,3'-diamine-N- Dipropylamine, hydrazine, hydrazine-dimercaptobis propylene triamine (Ν, Ν-dimethyldipropylenetriamine), amine propyl ° ° ° sit. 18 200918570 The exemplified polyester polyol can be prepared by having an organic dicarboxylic acid having from 2 to 12 carbon atoms, preferably having an aromatic diene of from 8 to 12 carbon atoms. The acid, and the polyol having from 2 to 12, preferably from 2 to 8, and more preferably from 2 to 6 carbon atoms, are more preferred than the diol. Examples of diterpenic acid are succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, malonic acid, pimelic acid, 2-methyl-1, 6-hexanoic acid, dodecanedioic acid, maleic acid, and fumaric acid. Preferred aromatic dicarboxylic acids are the isomers of phthalic acid, isophthalic acid, terephthalic acid and naphthalene-dicarboxylic acid. These acids can be used alone or as a mixture. Examples of the dibasic and polyhydric alcohols include: ethylene glycol, diethylene glycol, triethylene glycol, 1,2- and 1,3-propanediol, dipropylene glycol, 1,4-butanediol, and other butanediols, 5-pentanediol and other pentanediol, hexanediol, 1,10-nonanediol, glycerol, and trimethylolpropane. The exemplified polyester polyols are poly(hexanedicarboxylate adipate), poly(butylene glycol adipate), poly(ethylene glycol adipate S). (poly(ethylene glycol adipate)), poly(diethylene glycol adipate), poly(hexanediol oxalate), poly(ethylene glycol sebacate) (poly(ethylene glycol sebecate)), and the like. 2. Although the polyester polyols can be prepared from substantially pure reactant materials, more complex components can be used, such as: phtalie acid, terephtalic acid, para-benzene. By-pass, waste or debris residues from the manufacture of dimethyl phthalate, polyethylene terephtalate, and the like. The other source is the PE used in the re-purification of 19 200918570 for ethylene terephthalate. After the acetation or vinegarization, the specific reaction product can selectively react with an epoxy burn. Another type of polyester that can be used is a polylactone polyol. These polyols are prepared by the inverse 5 of a lactone monomer and an active hydrogen-containing group initiator; the illustration of the lactone monomer & valerolactone, ε-caprolactone , ε_methyl-ε-caprolactone, ξ_heptanolactone, and the like; examples of the initiator are ethylene glycol, diethylene glycol, propylene glycol, hydrazine, 4-butanediol, it hexanediol 'trimercaptopropane propane, and the like. The production of such polyols is known in the art, see, for example, U.S. Patent Nos. 3, 丨69,945, 3,248,417, 10 3,021,309 and 3,021,317. Preferred lactone polyols are di-, tri-, and tetrahydroxy-functional caprolactone polyols known as polycaprolactone polyols. In order to produce a polyurea, component b) or c) will contain an amine terminated molecule. When part of the second polyol b), the active amine-containing hydrogen material is preferably a 15 amine-terminated polyether. These amine terminated polyols have a molecular weight greater than 1,000 and, in general, greater than 1,500. Preferred amine terminated agglomerates should be selected from aminated diols or triols, and a blend of aminated diols and/or triols can be used. Specifically, 'having a molecular weight greater than 1000, even more desirably greater than 1500, a degree of functionality from about 2 to about 6 and a poly bond of a secondary amine, and an equivalent of from about 750 to about 4,000. Amines are preferred. In the examples of the present invention, such amine-terminated polymysters having a functionality of from about 2 to about 3 are used. The tantalum material can be made by a variety of methods known in the art. The amine-terminated polyether may be, for example, a 20 200918570 polyether resin composed of the following method, adding a low-grade epoxy, such as: epoxy bromide, epoxy bromide, % milk Dingxuan or the like The mixture is passed to a suitable starter and the base-forming polyol is aminated. When two or more oxides are used, they may be present as a random mixture or as a block of one or the other polyether 5. In the amination step, it is highly desirable that the terminal group of the terminal group in the polyol is substantially all of the secondary radical group for ease of amination. The polyol thus prepared is then reductively aminated by known techniques, for example, as illustrated in U.S. Patent No. 3,654, 37, the entire disclosure of which is incorporated herein by reference. Reference materials. Conventionally, the amination step and 10 do not 70 completely replace all of the hydroxyl groups. However, most of the hydroxyl groups are replaced by amine groups. Thus, the amine terminated polyether resins generally have a greater than about 9 mole percent of their active hydrogen in the form of an amine hydrogen. An example of such amine terminated polyethers is the polyetheramine available from the JEFFAMINE® brand of Huntsman AG I5 Ltd. These include: JEFFAMINE® D-2000, JEFFAMINE® D-4000, JEFFAMINE® T-3000, and JEFFAMINE® T-5000. Other similar polyether amines are commercially available from BASF and Arch Chemicals. The isocyanate-terminated prepolymers for use in the present invention are prepared by standard procedures well known to those skilled in the art, and are disclosed, for example, in U.S. Patent No. 4,294,951, the entire disclosure of which is incorporated herein by reference. . The components are typically mixed together and heated to promote the reaction of the polyol and the polyisocyanate. The reaction temperature generally falls within the range of from about 30 ° C to about 150 ° C; a more preferred range is from 21 200918570 to from about 60 ° C to about 100 ° C. The reaction is advantageously carried out in an anhydrous atmosphere. A pure gas, such as nitrogen, argon or the like, can be used to mask the reaction mixture. If desired, an inert solvent can be used during the preparation of the prepolymer, although no one is required. A catalyst which promotes the formation of an amine phthalate 5-bond can also be used. The isocyanate is used in a stoichiometric excess and reacted with the polyol component using conventional techniques of prepolymerization to prepare a prepolymer having up to 5 to 25 weight percent free NCO groups. The prepolymers generally have from 8 to 20 weight percent free NCO groups, preferably from 10 to 18 weight percent, and more preferably from 14 to 17 weight percent free NCO groups. When the prepolymer contains a polybutadiene and a NOBP-based polyol, individual prepolymers can be produced, one of the isocyanate and polybutadiene, and the other isocyanate and NOBP. . The formed pre-polymers can be blended together. Alternatively, the prepolymer can be prepared by simultaneously reacting polybutadiene and NOBP polyol in the same procedure with isocyanate. Polyisocyanates suitable for use in the production of such prepolymers include: aromatic, cycloaliphatic and aliphatic isocyanates. Such isocyanate 20 esters are well known in the art. Examples of suitable aromatic isocyanates include: 4,4'-, 2,4' and 2,2'-isomers of diphenylmethane diisocyanate (MDI), and the like, and Polymeric and monomeric MDI blends, toluene-2,4- and 2,6-diisocyanate (TDI), meta-phenylene diisocyanate and p-phenylene diisocyanate, gas to benzene 22 200918570 -2,4-diisocyanate, Diphenylene-4,4'-diisocyanate, 4,4'-diisocyanate-3,3'-dimehtyldiphenyl, 3- Methyl diphenyl-methane-4,4'-diisocyanate and diphenyl ether diisocyanate, and toluene 2,4,6-triisocyanate and 2,4,4'-triisocyanate diphenyl ether . 5 A crude polyisocyanate can also be used in the practice of the invention, for example: crude toluene diisocyanate obtained by phosgene action of a mixture of toluenediamine or by crude diphenylamine (methylene) The crude phenylene burnt diisocyanate obtained by the phosgene action of diphenylamine). In one embodiment, a TDI/MDI blend is used. Examples of 10 aliphatic polyisocyanates include: ethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,3- and/or 1,4-bis(isocyanatomethyl)cyclohexane Alkanes (including any of cis- or trans-isomers), isophorone diisocyanate (IPDI), tetramethylene-1,4-diisocyanate, fluorenylene bis(cyclohexyl isocyanate) (H12MDI), cyclohexane 1,4-15 diisocyanate, 4,4'-dicyclohexyldecane diisocyanate, saturated analogs of the above-mentioned aromatic isocyanates and mixtures thereof. Derivatives of any of the aforementioned polyisocyanate groups containing diurea, urea, carbodiimide, allophonate and/or isocyanurate groups can also be used. Such derivatives often have increased functionality of the isocyanate 20 ester and are desirable when a more highly crosslinked product is desired. Preferably, the polyisocyanate is diphenyldecane-4,4'-diisocyanate, diphenylnonane-2,4'-diisocyanate, a polymer or derivative thereof, or a mixture thereof . In a preferred embodiment, the 'isocyanate seal 23 200918570 terminal prepolymer (iS0Cyanate-terminated prepolymers) is made of -MDI, or other mdi blend containing a large amount of moieties or 4·4 as described above. - Preparation of isomers or modified MDI. Preferably, the 'MDI contains from 45 to 95 weight percent of the 4,4,-isomer. It is also possible to use one or more chain extenders for the production of the polyurethane polymers and elastomers of the present invention. The presence of a chain extender provides the desired physical properties of the resulting polymer. The chain extender may be incorporated into the polyol component (1) or may be present as a separate stream during the formation of the polyaminophthalate polymer. For the purposes of the present invention, a chain extender system 10 is a material having 2 isocyanate reactive groups per molecule and having an equivalent of less than 4 Å per isocyanate reactive group, preferably less than 3 Å. Oh, and especially 31-125 Daltons. Representative of suitable chain extenders include: polyhydric alcohols, aliphatic diamines including polyoxyalkylene diamines, aromatic diamines, and mixtures thereof. The isocyanate reaction 15 group is preferably a hydroxyl group, a primary aliphatic or aromatic amine or a secondary aliphatic or aromatic amine group. Representative of chain extenders include: ethylene glycol, diethylene glycol, 1,3-propanediol, 1,3- or 1,4-butanediol, dipropylene glycol, 1,2- and 2,3-butyr Alcohol, 1,6-hexanediol, neopentyl glycol, tripropylene glycol, ethylamine, 1,4-butylenediamine, 1,6-hexamethylenediamine, p-benzene Diamine, 1,5-pentanediol, 1,3 or 1,4-bishydroxymethylcyclohexane or a mixture thereof, 1,6-hexanediol, bis(3-a)-4-aminobenzene Methane, 3,3,-dichloro-4,4-diaminodiphenyl fluorene, 4,4,-diaminodiphenyl ketone, double _A, double bis-F, 1 , 3-propane di-p-aminobenzene, di-o-aniline aniline methane (MOCA), 1,3-cyclohexanedi-24 200918570 alcohol, 1,4- Cyclohexanediol; 2,4-diamino-3,5-diethyl benzene 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, and mixtures thereof. It is intended that, if used, the chain extender is typically present in an amount of from about 0.5 to about 20 parts by weight, based on the weight of the polyol component, especially from about 2 to about 16 parts by weight. Such chain extenders are generally added to the production of elastomers. The chain extender is generally added to the second polyol component, however, if desired, a chain extender is added to the isocyanate terminated prepolymer to partially react the free isocyanate groups. Crosslinking agents can also be included in the formulations used to produce the polyaminophthalate 10 polymers of the present invention. For the purposes of the present invention, a "crosslinking agent" is a material which has three or more isocyanate reactive groups per molecule and an equivalent of less than 400 per isocyanate reactive group. Preferably, the crosslinking agent comprises from 3 to 8 per molecule, especially from 3-4 hydroxyl groups, a primary or secondary amine group, and an equivalent weight of from 30 to about 200, especially from 50 to 125. Examples of suitable cross-linking agents include: diethanolamine, monoethanolamine, triethanolamine, mono-, di- or tri(isopropanol)amine, glycerol, trimethylolpropane, pentaerythritol, sorbitol, diethyl Toluene diamine (DETA), meta-diphenylamine, and other diamine crosslinkers known to those skilled in the art. In order to produce a polyurethane-based elastomer, the amount of the 20 crosslinking agent is usually used in an amount of from about 0.1 to about 1 part by weight, especially from about 0.25, per 100 parts by weight of the polyol. Up to about 0.5 parts by weight. When producing a polyurea elastomer, the urea content may be derived from the reaction of an isocyanate with an amine terminated polyol which is present within the second polyol b) or by an amine seal The end chain extender or amine capping 25 is provided by the presence of a prepolymer of 200918570. Thus, the polyurea elastomeric systems referred to herein are formed from the reaction mixture, which have at least about 50 percent active hydrogen groups in the form of an amine oxime. Preferably, the reaction mixture has at least about 60 percent, and more preferably about 5 percent, of the active amine hydrogen groups in the form of amine groups. In a more preferred embodiment, the reaction mixture has at least about 90% active hydrogen groups in the form of amine groups. The equivalent ratio of the isocyanate groups in the polyisocyanate a) to the polyol component b) plus the active hydrogen 10 present due to any added chain extender or crosslinker is generally from 85 to 115. Preferably, the isocyanate index is a ratio of from 90 to 110, and more preferably from 95 to 110. The isocyanate index is the total molar equivalent of the isocyanate-reactive hydrogen atom present in one of the formulas known to those skilled in the art and is divided by the total molar equivalent of isocyanate-reactive hydrogen atoms present in a formulation, multiplied by 100. 15 In order to obtain a suitable curing rate, a catalyst may be included in the polyol component. Suitable catalysts include: tertiary amines and organometallic compounds, for example, as described in U.S. Patent 4,495,081. When a monoamine catalyst is used, it is advantageous to have a chain extender in an amount of from 0.1 to 3, preferably from 0.1 to 1, and more preferably from 0.4 to 0.8, based on the total weight of the polyol, and a selective chain extender. When the catalyst is an organometallic catalyst, advantageously from 0.001 to 0.2, preferably from 0.002 to 0.1 and more preferably from 0.01 to 0.05 by weight and selective chain extension, based on the total weight of the polyol. Agent. Particularly useful catalysts include: in the case of amine catalysts: triethylenediamine, bis(N,N-dimethylaminoethyl)ether, and bis(indole, fluorenyl-dimethylamine 26 200918570 ethyl)amine And in the case of organometallic catalysts: stannous octoate, dibutyltin dilaurate, and dibutyltin diacetate. A combination of an amine and an organometallic catalyst can be used. The viscosity of the prepolymer can be reduced by mixing the diluents known to those skilled in the art. A preferred diluent is propylene carbonate. Various other additives commonly known to those skilled in the art can be added to the elastomer. For example, pigments such as titanium dioxide ^ and/or carbon black can be incorporated into the elastomer system to impart color properties. The color may be in the form of a solid or the solids may be predispersed in a resin carrier. Reinforcing materials, for example, flakes or ground glass, as well as fumes, can also be incorporated into the elastomer system to impart certain properties. Other additives, such as UV stabilizers, antioxidants, defoamers, adhesion promoters, or structural enhancers, can be added to the mixture depending on the desired properties of the final product. These are generally known to those skilled in the art. The amount of any such additive is not considered in determining the weight percent of polyf:butadiene in the final polymer. The elastic system of the present invention can be applied to applications requiring corrosion-resistant heavy-duty properties, such as chemical or food processing plant 20 floor, mini truck cargo lining, reservoir lining , storage tanks, floors, etc. Optionally, the polymers can be used in applications requiring higher heat resistance or in applications requiring high hydrolysis resistance, such as marine coatings. The polyurethane polymer prepared by the process of the present invention is a solid or a fine polyurethane polymer. This polymer is typically 27 200918570 prepared by thoroughly mixing the reaction components at room temperature or at a slightly elevated temperature for a short period of time and then pouring the resulting mixture into an open mold. Alternatively, the resulting mixture is fired into a closed mold which is tethered in either case. The fully reacted mixture has the shape of a mold to produce a polyurethane urethane polymer of a predetermined structure which, when fully cured, is capable of deforming at a minimum that is greater than the intended application of the intended application. The risk is removed from the mold. Suitable conditions for promoting the curing of the polymer include: typically from 2 Torr to 150 ° C., preferably from 35 ° C to 75 ° C, and more preferably from 45 乂 to 55 〇 ( : Forming temperature of 10. These temperatures generally allow for the removal of fully cured polymerization from the mold, typically 1 to 10 minutes after the detailed mixing of the eight reactants, and more typically from 1 to 5 minutes. The optimum curing conditions will depend on the particular component, including the catalyst and the amount used to prepare the polymer, as well as the size and shape of the article being manufactured. 15 For elastic spray coating, the component Typically, it is applied via treatment through a plurality of high pressure spray machines. The multi-component apparatus combines the two components a) and b), while the b) component generally comprises the other additives as described above. The isogas acid is preferably combined or mixed under high pressure from the purpose a) and the polyol b). In a preferred embodiment, it is directly impact blended in a high pressure spray device. Examples of such equipment include: GUSMER GX-7, GUSMER GX-7 400 series or GUSMER GX-8 impact mixing spray GUSMER H-2000, GUSMER H-3500, GUSMER H-20/35 And the proportioning unit of the Glas-Craft MH type. The two components are mixed under the high pressure of the spray to form a coating/20094570 material/lining system which is attached and applied to the desired substrate by spraying. However, the use of a multi-component spray apparatus is not critical to the invention, and an example of a suitable method for mixing only the isocyanate and polyol components of the present invention. 5 The following shell examples are provided to illustrate the invention. The examples are not intended to limit the scope of the invention and should not be construed as such. All percentages are by weight unless otherwise indicated. The description of the raw materials used in the examples is as follows. K is the commercial name of poly 10 butadiene polyol (diol) used in Krasol LBH2000, which has a reported functionality of about 1.9 and an average of] vrw 2000; (range 1800 - 2500), OH# 40 - 65 mg KOH/g, viscosity @ 25°C 5000 — 20000 mPa s. Krasol is a trademark of Sartomer Europe. 15 DETA is diethyl diethyltoluenediamine (DETDA) from Albemarle, which is a difunctional aromatic amine chain extender. The T-5000 is a 5000 MW polyetheramine available from The Hanson Group, LLC. The synonym for the T-5000 report is Aval 20 (alpha, pulse), Ava', Avalzindipine (Yami

茄(ω)-(2-胺甲乙氧)-聚-氧(甲基_1,2_乙二基))。 Polylink 4200係為二級芳香族的二胺,其具有的一分子里 310以及視羥基數量362,可得自於The Hanson Group LLC 29 200918570 D-2000 係為具有2,000的分子量之聚醚胺,其可得自於 The Hanson Group LLC。T2000之報導的同義字 是阿伐-(2-胺甲乙基)-亞米茄-(2-胺曱乙氧)-聚 (氧(曱基-1,2-乙二基))。 5 ISO-1 係為ISONATE* 50-OP,一單體MDI ;具有大約 50/50之2,4’/4,4’同分異構物的比率,可得自於 道氏化學公司(Dow Chemical Company)。 V 係為VORANOL* V220-110的稱號,1000 MW全 PO二醇,可得自於道氏化學公司。 10 *ISONATE和VORANOL係道氏化學公司的商標。 S 係為一以天然油為主的多元醇(NOBP)的稱號。 此(2000 MW二醇)多元醇(2000 MW二醇)是根據 曱基經曱基硬脂酸酯 (methyl hydroxymethylstearate) (HMS)的聚合作用。該多 15 元醇係藉由以下之反應予以生產:以商業命名Eggplant (ω)-(2-Aminomethylethoxy)-poly-oxygen (methyl-1,2-ethanediyl)). Polylink 4200 is a secondary aromatic diamine having a molecular weight of 310 and an apparent hydroxyl group of 362, available from The Hanson Group LLC 29 200918570 D-2000 as a polyetheramine having a molecular weight of 2,000. Available from The Hanson Group LLC. The synonym for the T2000 report is Ava-(2-aminomethylethyl)-omega-(2-aminopurine ethoxy)-poly(oxy(indolyl-1,2-ethanediyl)). 5 ISO-1 is ISONATE* 50-OP, a monomeric MDI; has a ratio of 2,4'/4,4' isomers of approximately 50/50, available from Dow Chemical Company (Dow) Chemical Company). V is the title of VORANOL* V220-110, 1000 MW of all PO diol, available from Dow Chemical Company. 10 *ISONATE and VORANOL are trademarks of Dow Chemical Company. S is the title of a natural oil-based polyol (NOBP). This (2000 MW diol) polyol (2000 MW diol) is polymerized according to the thiol methyl hydroxymethylstearate (HMS). The more than 15 yuan alcohol is produced by the following reaction: named after the business

Unoxol™且商業上可得自於道氏化學公司之混 合的1,3和1,4-環己烷二曱醇(36.2 g)以及甲基9-羥甲基硬脂酸酯(165.0 g; >90%純度)。該等反 應物係被倒至500 ml 3-頸圓底燒瓶中,其配備有 20 一短程冷凝器、接收瓶、氮入口、礦物油起泡器 的氮出口,以及磁力攪拌器。該混合物係於一由 熱電偶控制器減緩的油浴中予以加熱至120 °C,以及保持在氮氛圍下同時混合。在120 〇C 下,内容物被除氣且用氮回填3次,接而催化劑 30 200918570 (氧化二丁錫)係根據裝藥重以1000 ppm予以添 加。溫度係以每30分鐘增加10 °C直到達到190 °C 為止。 此溫度和條件被保持直到甲醇停止過來為止(通常超 5過4小時)。相同的產物係藉由持續本條件過夜予以獲得。 在可見的甲醇放出結束,維持溫度歷時最少2小時停留。接 而施加真空以移除微量的曱醇,驅使分子量至標的位準或 其等之組合。使用真空以及在12〇 〇c之上的溫度以移除盡量 多的甲醇是所欲的。 0 在高真空步驟的結束(低於0.5 mm)後,材料接而予以 冷卻至25°C以及予以轉移至一玻璃瓶。形成的黏性 '分子 量,以及羥基數量係被評估以及發現是238〇 cps (22 0C/Spindle #34)、824 Μη,以及經基數量 136。 15 斑塊的形成 斑塊係使用一由以下所說明的修飾的程序予以製備: W.R. Schmeal, Polymeric Engineering and Science 119 13,第1173頁。該預聚合物和多元醇組份係經由_靜態混 合器予以混合,而不是使用塗佈棒,通經一塑膠内襯的雙 20滾筒壓擠。在被製備之後,令該等斑塊平坦以及在移除塑 膠内襯之前允許停滯15至20 min·。形成的斑塊在執行任何 機械測試之前進一步在環境條件下予以固化過夜。 抗酸性試驗係依據試驗方法astm D543-06的程序予以實行。關於HN〇3的抗性試驗使用室 31 200918570 溫下3種不同長度的浸潰時間(6 hrs、24hrs,以及7天),以 及使用樣本的5個複製品歷時各暴露時間。由聚脲斑塊 (polyurea plaques)構成的骨形狀的試片係被秤重以及放置 於60 ml玻璃容器之内’其等係用hn〇3的水溶液(4〇%)予 5以充滿。在各種的浸潰時間之後,狗骨係用去離子的H2〇 予以沖洗,吸乾乾燥以及再秤重。狗骨係於環境條件之下 乾燥歷時24 hrs以及再次秤重。HJO4的抗性試驗使用相同 的實驗程序’除了樣本係在7〇°C下浸潰於H2S04的水溶液 (30%)之中歷時7天’且每天移除一狗骨的試片之外。 10 使用ASTM D 1708來測量抗拉強度,以及資料係應用以 產生應力-張力曲線。 使用ASTM D412以測量伸長百分率,以及資料係應用 以產生應力-張力曲線。 降伏點是產生的應力-張力曲線之曲線彎曲(反曲點)處。 15 ASTM D624以測量撕裂強度。 斑塊的熱性質係使用熱解重量分析(T G A)予以評估,其 係於空氣中以10oC/min於TGA Q50 (TA Instruments)處理範 圍自25°C至500°C之經選擇的樣本。 預聚合物的之劁備:預聚合物係以批次方式藉由以下 20 方式製備:首先添加異氰酸酯至一玻璃瓶中同時用氮予以 清洗,接著添加多元醇組份。該等混合物係在氮清洗下以 500卬m予以攪拌5分鐘,以及接而放置於一預設的70°C洪 箱之内歷時3小時。目標的游離NCO的含量大概是預聚合物 的15.7 wt百分比。預聚合物係使用於表1中提供的多元醇予 32 200918570 、‘備夕元醇的比例係根據一重量的比率。標示ci至匚6 的實例是對照組。大概U的氣化苯曱_添加至綱克的UnoxolTM and commercially available 1,3 and 1,4-cyclohexanedimethanol (36.2 g) and methyl 9-hydroxymethyl stearate (165.0 g; >90% purity). The reactions were poured into a 500 ml 3-neck round bottom flask equipped with a 20-pass condenser, receiver bottle, nitrogen inlet, nitrogen outlet for mineral oil bubbler, and a magnetic stirrer. The mixture was heated to 120 ° C in an oil bath slowed down by a thermocouple controller and kept under nitrogen while mixing. At 120 〇C, the contents were degassed and backfilled 3 times with nitrogen, followed by catalyst 30 200918570 (dibutyltin oxide) added at 1000 ppm depending on the charge. The temperature is increased by 10 °C every 30 minutes until it reaches 190 °C. This temperature and condition is maintained until the methanol stops (usually over 5 hours). The same product was obtained by continuing the conditions overnight. At the end of the visible methanol evolution, the temperature is maintained for a minimum of 2 hours. A vacuum is then applied to remove traces of sterols, driving the molecular weight to the target level or a combination thereof. It is desirable to use a vacuum and a temperature above 12 〇 〇c to remove as much methanol as possible. 0 At the end of the high vacuum step (less than 0.5 mm), the material is then cooled to 25 ° C and transferred to a glass vial. The viscous 'molecular weight, and the number of hydroxyl groups formed were evaluated and found to be 238 〇 cps (22 0C/Spindle #34), 824 Μη, and the number of meridians 136. 15 Formation of plaques Plaques were prepared using a modified procedure as described below: W. R. Schmeal, Polymeric Engineering and Science 119 13, p. 1173. The prepolymer and polyol components were mixed via a _static mixer instead of using a coating bar and pressed through a plastic lined double 20 roller. After being prepared, the plaques are flattened and allowed to stagnate for 15 to 20 min. before removal of the plastic liner. The resulting plaque was further cured overnight under ambient conditions prior to performing any mechanical testing. The acid resistance test was carried out in accordance with the procedure of the test method astm D543-06. For the HN〇3 resistance test use room 31 200918570 3 different lengths of impregnation time (6 hrs, 24 hrs, and 7 days), and 5 replicates of the sample were used for each exposure time. A test piece of a bone shape composed of polyurea plaques was weighed and placed in a 60 ml glass container, and was filled with an aqueous solution (4%) of hn〇3 to 5 to be filled. After various impregnation times, the dog bones were rinsed with deionized H2®, blotted dry and re-weighed. The dog bones were dried under ambient conditions for 24 hrs and weighed again. The HJO4 resistance test used the same experimental procedure 'except that the sample system was immersed in an aqueous solution (30%) of H2S04 at 7 ° C for 7 days' and the test piece of one dog bone was removed every day. 10 ASTM D 1708 was used to measure tensile strength and data system applications to generate stress-tension curves. ASTM D412 was used to measure the percent elongation and the data system was applied to generate a stress-tension curve. The point of descent is at the curve of the resulting stress-tension curve (recurve point). 15 ASTM D624 to measure tear strength. The thermal properties of the plaques were evaluated using thermogravimetric analysis (T G A), which was selected in air at 10 °C/min in TGA Q50 (TA Instruments) to select samples from 25 °C to 500 °C. Preparation of the prepolymer: The prepolymer was prepared in batches by the following 20 methods: first adding isocyanate to a glass vial while washing with nitrogen, followed by addition of the polyol component. The mixtures were stirred at 500 Torr for 5 minutes under nitrogen purge and placed in a predetermined 70 ° C tank for 3 hours. The target free NCO content is approximately 15.7 wt% of the prepolymer. The prepolymer was used in the polyols provided in Table 1 to 32 200918570, and the ratio of the singular alcohol was based on the ratio of one weight. An example of labeling ci to 匚6 is the control group. Probably U's gasified benzoquinone _ added to the gram

預聚合物D 預聚合物組成 預來合物 多元醇 % NCO C1 ------ "s 15.54 C2 --~-- V 14.55 C3 K ' 15.67 C4 K : V 的比率1 : 3 15.41 C5 K : V 的比率1 : 1 15.71 C6 K : V 的比率3 : 1 16.32 實施例1 S : K 的比率1 : 3 15.59 實施例2 S : K 的比率1 : 1 15.58 實施例3 S : K 的比率3 : 1 「15.73 關於形成彈性體,以上的預聚合物係與下列的多元醇 組份混合:22 wt% DETA ; 10 wt% T-5000 ; 10 wt% Polylink 4200以及58 wt% D-2000。用於生產斑塊的配方係於表2中 33 200918570 提供。標示c的實例是對照組。 表2.用於生產斑塊的配方 實施 例 預聚合物 實施例 異氰酸酯側 多元醇 預聚合物 (S) 碳酸丙烯西旨 (8) (g) C7 C1 190.34 11.5 183 C8 C2 214.55 7.2 196.8 C9 C3 197.9 10.5 188.47 C10 C4 173.6 8.2 161.0 C11 C5 190.3 9.5 181.2 C12 C6 165.3 10.0 162.7 4 1 179.9 10.5 168.9 5 2 179.7 10.7 168.8 6 3 172.8 10.2 163.8 碳酸丙烯酯係添加於以上的配方内以提供為了易於生 5 產斑塊之等體積的預聚合物/多元醇,以及也作用為降低預 聚合物的黏性。 由比較配方C7至C12以及實施例4至6所產生的斑塊之 機械性質係於表3中提供。 表3.抗拉強度、降伏點,以及伸長%係自斑塊樣本收集。 實施例 抗拉強度 (psi) 降伏點 (psi) 伸長% C7 1500 1020 260 34 200918570 C8 1800 960 380 C9 2150 1300 310 C10 2080 1150 413 C11 1800 1200 340 C12 2270 1200 427 E4 2820 1320 446 E5 2350 1300 358 E6 2260 1480 302 資料指出由以nobp和聚丁二烯多元醇(PBD)為主的混 ( 雜多元醇所產生的斑塊展現比起均多元醇(homopolyol)數 值為較佳的伸長百分率’指出該混雜多元醇具有對於製造 5的斑塊之性質之協同作用。此導致形成的聚脲塊具有提高 的抗拉強度。降伏應力通常不藉由使用此等混雜多元醇系 統予以改善,然而,於配方内包含NOBP確實對降伏應力具 有實質不利的作用。 酸處理的斑塊之機械性質係被測量以證明其等之性能 10作為暴露時間對酸的函數。如顯示於第3圖(比較實施例5) 、 中,自K/V (1 :丨)混雜聚服斑塊收集的應力-張力曲線係闡 日月在7GC下的3〇 % H2S04溶液對於K/v混雜不是嚴格的條 件’然而’在室溫下的4〇%而〇3暴露的條件戲劇性地在Μ h之後降解機械性質。此外,κ/ν混雜斑塊似乎在酸暴露 15之後維持高位準的延展性,其為一指示顯示出pBD組份不 止增強機械性質,而且亦增強K/v斑塊之酸耐久性。總的來 說,在ΗΑ〇4處理之後觀察到降伏應力的改變,其可能歸因 於有機硫酸的產生。有機硫酸的形成可能傾向推動軟鏈節 區之中的離子性的分子間交互作用,其等可以轉變成稍^ 35 200918570 更高的模數和降伏點。 作為酸暴露時間的函數之自S/κ 1 : 3斑塊收 力-張力曲線(第6圖)顯露出相似的降解,只有硫酸處理的應 本之伸長%是接近原始斑塊的伸長%是例外。而:的樣 =1 : 3即使在6 hrs的硝酸暴露之後仍維持可接受的^ 質’如降伏點描晝出的。第5和6圖闡明作為H ··=性 1混雜聚脲斑塊之酸暴露時間的函數之機械性f變異,= 指出斑塊的延展性和抗酸性係隨著Ν〇βρ的濃度增加/、係 10 弱。具有S/K=l: 3配方之斑塊切估的多元醇摻和物之^ 顯示出最佳的酸後的機械性質。 除了測量混雜聚脲斑塊之抗酸性能力之外,斑塊的熱 降解剖面係被評估以決定其等於熱攻擊性環境中的可能的' 應用。因此,熱解重量分析(TGA)係被使用於測量所有的抗 酸性試驗之斑塊樣本的降解溫度。表4提供自斑塊收集的 15 T G A資料作為酸暴露時間的函數。全部的樣本在大約2 8 〇和 390°C偵測到2個主要的降解溫度。據推理多元醇組份的聚 環氧丙烷(P〇lypr〇plyiene oxide) (pp0)基團在28〇〇c降解且 此溫度在酸暴露後立即直線地下降,可能由於分子剪切。 聚丁二烯主鏈似乎在大概39(rc^f歷降解,以及不論酸暴露 20時間具有一致的降解溫度。應該注意到使用更多的聚丁二 烯組份導致斑塊在3 〇 〇。c之後喪失較少的重量(資料未顯 示)。 表4 36 200918570 材料 TGA s 277 H2S04 1 天 276, 352, 第4天 272, 354 第7天 270, 351 HN〇3 6 h 259,349 24 hr 257,345 V 281 H2S04 1 天 277 第4天 265 第7天 261 HN〇3 6 h 264 24 hr 252 K H2S〇4 1 天 281 第4天 276 第7天 274 HN〇3 6 h 263 24 hr 260 κ/ν l : l 282,392 H2S04 1 天 273,387 第4天 272,386 第7天 271,391 HN〇3 6 h 268,391 24 hr 258, 396 K/V 1 : 3 未測量的 H2S04 1 天 第4天 第7天 HN〇3 6 h 24 hr K/V 3 : 1 未測量的 H2S〇4 1 天 第4天 第7天 HN〇3 6 h 24 hr K/S 1 : 3 300,403 H2S〇4 1 天 291, 397 37 200918570 第4天 275,392 第7天 275,384 HN〇3 6 h 266,402 24 hr 265,403 K/S 1 : 1 291, 398 H2S04 1 天 282,392 第4天 272,391 第7天 271,394 HN〇3 6 h 266,400 24 hr 264,414 K/S 3 : 1 277 H2S04 1 天 272,351 第4天 260,344 第7天 257,336 HN〇3 6 h 254,345 24 hr 255,342 得自於S/Κ混雜斑塊的TGA資料係顯示出如同Κ/V混 雜斑塊之相似的熱降解。資料指出290°C係代表ΡΡΟ和 NOBP多元醇主鏈之降解溫度(Td),而PBD的聚丁二烯在 5 大約400°C降解,隨著更高濃度的PBD被摻和至等斑塊内, 便注意到斑塊的熱安定性的改善。然而,不論S/Κ的比率, 第一個降解溫度係隨著暴露時間對酸的函數而降低。 對於本技藝中該等具有技術者而言,考慮到本說明書 或是本文中所揭示的本發明,本發明的其他實施例會是明 10 顯的。打算使本說明書和實施例僅被認為是例示性的,且 本發明的範疇和精神係藉由下列的申請專利範圍予以指 明。 C圖式簡單說明3 第1圖係比較實施例7的彈性體在暴露至硫酸或硝酸歷 38 200918570 曰守不同的時間之後的應力/張力曲線圖。比較實施例7的彈 性體係以具有以天然油為主的多元醇之預聚合物為主。第j 圖使用的大豆係代表操作的實施例中使用的以多元醇3為 主的預聚合物。 5 第2圖係比較實施例8的彈性體在暴露至硫酸或硝酸歷 時不同的時間之後的應力/張力曲線圖。比較實施例8的彈 性體係以具有以聚醚多元醇的預聚合物為主。第2圖使用的 Voranol係代表操作的實施例中使用的以多元醇v為主的預 聚合物。 10 第3圖係比較實施例Π的彈性體在暴露至硫酸或硝酸 歷時不同的時間之後的應力/張力曲線圖。比較實施例11的 彈性體係以具有聚醚和聚丁二烯多元醇的預聚合物為主。 第4圖係實施例4的彈性體在暴露至硫酸或硝酸歷時不 同的時間之後的應力/張力曲線圖。實施例4的彈性體係以 15具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 1 : 3之預聚合物為主。 第5圖係實施例5的彈性體在暴露至硫酸或硝酸歷時不 同的時間之後的應力/張力曲線圖。實施例5的彈性體係以 具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 20 1 : 1之預聚合物為主。 第6圖係實施例6的彈性體在暴露至硫酸或硝酸歷時不 同的時間之後的應力/張力曲線圖。實施例6的彈性體係以 具有以天然油為主的多元醇對聚丁二烯多元醇的重量比率 3 : 1之預聚合物為主。 39 200918570 【主要元件符號說明】 (無) 40Prepolymer D Prepolymer composition Prepolymer polyol % NCO C1 ------ "s 15.54 C2 --~-- V 14.55 C3 K ' 15.67 C4 K : V ratio 1: 3 15.41 C5 Ratio of K: V 1: 1 15.71 C6 K: ratio of V 3 : 1 16.32 Example 1 Ratio of S: K 1: 3 15.59 Example 2 Ratio of S: K 1: 1 15.58 Example 3 S: K Ratio 3: 1 "15.73 Regarding the formation of the elastomer, the above prepolymer is mixed with the following polyol components: 22 wt% DETA; 10 wt% T-5000; 10 wt% Polylink 4200 and 58 wt% D-2000 The formulation used to produce plaques is provided in Table 2, 2009, 2009 18570. An example of the label c is the control group. Table 2. Formulations for the production of plaques Examples Prepolymer Examples Isocyanate side polyol prepolymers ( S) Propylene carbonate (8) (g) C7 C1 190.34 11.5 183 C8 C2 214.55 7.2 196.8 C9 C3 197.9 10.5 188.47 C10 C4 173.6 8.2 161.0 C11 C5 190.3 9.5 181.2 C12 C6 165.3 10.0 162.7 4 1 179.9 10.5 168.9 5 2 179.7 10.7 168.8 6 3 172.8 10.2 163.8 propylene carbonate is added to the above formula to In order to facilitate the production of an equal volume of prepolymer/polyol for plaque production, and also to reduce the viscosity of the prepolymer. The mechanical properties of the plaque produced by comparing formulations C7 to C12 and Examples 4 to 6 The ratings are provided in Table 3. Table 3. Tensile strength, drop point, and % elongation are collected from plaque samples. Example Tensile Strength (psi) Drop Point (psi) Elongation % C7 1500 1020 260 34 200918570 C8 1800 960 380 C9 2150 1300 310 C10 2080 1150 413 C11 1800 1200 340 C12 2270 1200 427 E4 2820 1320 446 E5 2350 1300 358 E6 2260 1480 302 Information indicates a mixture dominated by nobp and polybutadiene polyol (PBD) The plaque produced by the heteropolyol exhibits a preferred percent elongation as compared to the homopolyol value' indicating that the hybrid polyol has a synergistic effect on the properties of the plaque from which it is made 5. This results in the formation of polyurea blocks having improved tensile strength. The lodging stress is usually not improved by the use of such a hybrid polyol system, however, the inclusion of NOBP in the formulation does have a substantial adverse effect on the stress. The mechanical properties of the acid treated plaque are measured to demonstrate their performance 10 as a function of exposure time versus acid. As shown in Figure 3 (Comparative Example 5), the stress-tension curve collected from the K/V (1:丨) hybrid plaque shows the 3〇% H2S04 solution at 7GC for K. The /v hybrid is not a strict condition 'however' at room temperature of 4% while the conditions of 〇3 exposure dramatically degrade the mechanical properties after Μh. In addition, the κ/ν mixed plaque appears to maintain a high level of ductility after acid exposure 15, which is an indication that the pBD component not only enhances mechanical properties, but also enhances the acid durability of K/v plaques. In general, changes in the stress of the fall were observed after the ΗΑ〇4 treatment, which may be attributed to the production of organic sulfuric acid. The formation of organic sulfuric acid may tend to promote ionic inter-molecular interactions in the soft link region, which may translate into higher modulus and fall points. As a function of acid exposure time, the S/κ 1 : 3 plaque force-tension curve (Fig. 6) reveals similar degradation, and only the percent elongation of the sulfuric acid treatment is close to the elongation % of the original plaque. exception. And: =1: 3 Even after 6 hrs of nitric acid exposure, the acceptable quality was maintained as shown by the drop point. Figures 5 and 6 illustrate the mechanical f-variation as a function of the acid exposure time of the H··=1 hybrid polyurea plaque, = indicating that the ductility and acid resistance of the plaque increase with the concentration of Ν〇βρ/ , Department 10 is weak. The polyol blend with the plaque cut of the S/K=l:3 formulation showed the best post-acid mechanical properties. In addition to measuring the acid resistance of hybrid polyurea plaques, the thermal degradation profile of the plaque is evaluated to determine its potential for use in a thermally aggressive environment. Therefore, thermogravimetric analysis (TGA) was used to measure the degradation temperature of all plaque samples tested for acid resistance. Table 4 provides 15 T G A data collected from plaque as a function of acid exposure time. All samples detected two major degradation temperatures at approximately 28 〇 and 390 °C. It is theorized that the P〇lypr〇plyiene oxide (pp0) group of the polyol component degrades at 28 ° C and this temperature decreases linearly immediately after acid exposure, possibly due to molecular shear. The polybutadiene backbone appears to degrade at approximately 39 rc^f and has a consistent degradation temperature regardless of acid exposure at 20. It should be noted that the use of more polybutadiene components results in plaques at 3 〇〇. Less weight lost after c (data not shown) Table 4 36 200918570 Material TGA s 277 H2S04 1 day 276, 352, day 4 272, 354 Day 7 270, 351 HN〇3 6 h 259,349 24 hr 257,345 V 281 H2S04 1 day 277 Day 4 265 Day 7 261 HN〇3 6 h 264 24 hr 252 K H2S〇4 1 day 281 Day 4 276 Day 7 274 HN〇3 6 h 263 24 hr 260 κ/ν l : l 282,392 H2S04 1 day 273,387 Day 4 272,386 Day 7 271,391 HN〇3 6 h 268,391 24 hr 258, 396 K/V 1 : 3 Unmeasured H2S04 1 day 4th day 7th day HN〇3 6 h 24 Hr K/V 3 : 1 Unmeasured H2S〇4 1 day 4th day 7th day HN〇3 6 h 24 hr K/S 1 : 3 300,403 H2S〇4 1 day 291, 397 37 200918570 Day 4 275,392 7 days 275,384 HN〇3 6 h 266,402 24 hr 265,403 K/S 1 : 1 291, 398 H2S04 1 day 282,392 Day 4 272,391 Day 7 27 1,394 HN〇3 6 h 266,400 24 hr 264,414 K/S 3 : 1 277 H2S04 1 day 272,351 Day 4 260,344 Day 7 257,336 HN〇3 6 h 254,345 24 hr 255,342 TGA data from S/Κ mixed plaque The system showed similar thermal degradation as the Κ/V mixed plaque. The data indicated that the 290 °C system represents the degradation temperature (Td) of the ruthenium and NOBP polyol backbone, while the PBD polybutadiene is at about 400 °C. Degradation, as higher concentrations of PBD are incorporated into the plaques, the thermal stability of the plaques is noted. However, regardless of the S/Κ ratio, the first degradation temperature is related to the exposure time. The function of acid is lowered. Other embodiments of the present invention will be apparent to those skilled in the art in view of this disclosure. The specification and examples are to be considered as illustrative only, and the scope and spirit of the invention are defined by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the stress/tension curve of the elastomer of Comparative Example 7 after exposure to sulfuric acid or nitric acid for a different period of time. The elastic system of Comparative Example 7 was mainly composed of a prepolymer having a polyol mainly composed of natural oil. The soybean line used in Figure j represents the prepolymer of polyol 3 as used in the examples of the operation. 5 Fig. 2 is a graph showing the stress/tension curve of the elastomer of Comparative Example 8 after exposure to sulfuric acid or nitric acid for various times. The elastic system of Comparative Example 8 was mainly composed of a prepolymer having a polyether polyol. The Voranol series used in Figure 2 represents a polyol v-based prepolymer used in the examples of the operation. 10 Figure 3 is a graph of the stress/tension curves of the elastomers of Comparative Example 在 after exposure to sulfuric acid or nitric acid for various times. The elastomeric system of Comparative Example 11 was predominantly a prepolymer having a polyether and a polybutadiene polyol. Figure 4 is a graph of stress/tension for the elastomer of Example 4 after exposure to sulfuric acid or nitric acid for a different time. The elastic system of Example 4 was mainly composed of a prepolymer having a weight ratio of a natural oil-based polyol to a polybutadiene polyol of 1:3. Fig. 5 is a graph of stress/tension after the time when the elastomer of Example 5 was exposed to sulfuric acid or nitric acid for a different period of time. The elastic system of Example 5 was mainly composed of a prepolymer having a weight ratio of a natural oil-based polyol to a polybutadiene polyol of 20 1 :1. Figure 6 is a graph of the stress/tension curve of the elastomer of Example 6 after exposure to sulfuric acid or nitric acid for a different time. The elastic system of Example 6 was mainly composed of a prepolymer having a weight ratio of a natural oil-based polyol to a polybutadiene polyol of 3:1. 39 200918570 [Explanation of main component symbols] (none) 40

Claims (1)

200918570 十、申請專利範圍: 1. 種異亂酉文@日封端的預聚合物(isocyanate terminate prepolymer) ’其具有自5至25重量百分比的含量之異氰 酸酯(NCO),該預聚合物包含化學計量過量的一或多個 5 一-或聚異氰酸酯與一第一多元醇組份的反應產物,其 中該第一多元醇組份包含自1〇至9〇重量百分比的至少 一以天然油為主的多元醇;自10至9〇重量百分比的至少 一聚丁二稀多元醇;以及選擇性地於額外的多元醇或多 個多元醇的存在之下。 1〇 2.如申請專利範圍第1項之預聚合物,其中該聚丁二烯具 有1.8至2.1的官能度以及5〇〇至1〇,〇0〇的一平均分子量。 3.如申請專利範圍第丨或2項之預聚合物,其中該聚丁二烯 具有1,000至5,000的一分子量。 4·如申請專利範圍第3項之預聚合物,其中該聚丁二烯包 15 含自20至75重量百分比的該第一多元醇組份。 5.如申請專利範圍第4項之預聚合物,其中該聚丁二烯包 含自35至66重量百分比的該第一多元醇組份。 6_如申請專利範圍第1_5項中任一項之預聚合物,其中該 以天然油為主的多元醇係至少一聚酯多元醇或脂肪酸 衍生的多元醇,其係至少一個起始劑和至少一個脂肪酸 或是至少一個脂肪酸的衍生物之反應產物。 7’如申请專利範圍第6項之預聚合物,其中該起始劑具有 平均1_7至4個反應性基團。 8’如申請專利範圍第7項之預聚合物,其中該以天然油為 41 200918570 主的多元醇具有500至5,000的一平均分子量。 9.如申請專利範圍第6項之預聚合物,其中該以天然油為 主的多元醇包含自35至66重量百分比的該第一多元醇 組份。 5 10. —種彈性體,其包含以下的混合: a) —個異氰酸酯封端的預聚合物,其具有自5至25 重量百分比的異氰酸酯(NCO)含量,該預聚合物包含化 學計量過量的一或多個二-或聚異氰酸醋與一第一多元 醇組份之反應產物,其中該第一多元醇組份包含自10 10 至90重量百分比的至少一以天然油為主的多元醇;自10 至90重量百分比的至少一聚丁二烯多元醇;以及選擇性 地於額外的多元醇或多個多元醇的存在之下; b) —第二多元醇組份,其中不是一聚丁二烯多元 醇或不是聚丁二烯之天然油多元醇的任何多元醇係一 15 多元醇或多元醇摻和物,其具有1.8至2.5的標稱官能度 以及500至10,000的平均分子量; c) 選擇性地於鏈延長劑及/或交聯劑存在之下,以及 d) 選擇性地於催化劑與彈性體的生產上當然知道 的其他添加劑存在之下。 20 11. 一種用於生產一彈性體的方法,其包含摻合: a) —個異氰酸酯封端的預聚合物,其具有一自5至 25重量百分比的含量之異氰酸酯(NCO),該預聚合物包 含化學計量過量的一或多個二-或聚異氰酸醋與一第一 多元醇組份的反應產物,其中該第一多元醇組份包含自 42 200918570 10至90重量百分比的至少一以天然油為主的多元醇;自 10至90重量百分比的至少一聚丁二烯多元醇;以及選擇 性地於額外的多元醇或多個多元醇的存在之下; b) —第二多元醇組份,其中不是一聚丁二烯多元 、 5 醇或不是聚丁二烯之天然油多元醇的任何多元醇係一 多元醇或多元醇摻和物,其具有1.8至2.5的標稱官能度 和500至10,000的一平均分子量; c) 選擇性地於鏈延長劑及/或交聯劑存在之下,以及 f d) 選擇性地於催化劑與彈性體的生產上當然知道 10 的其他添加劑存在之下。 43200918570 X. Patent application scope: 1. Isocyanate terminate prepolymer 'isocyanate terminate prepolymer' which has a content of from 5 to 25 weight percent of isocyanate (NCO), the prepolymer contains stoichiometry An excess of one or more reaction products of a mono- or polyisocyanate with a first polyol component, wherein the first polyol component comprises from at least 1% to 9% by weight of at least one natural oil Primary polyol; at least one polybutadiene polyol from 10 to 9 weight percent; and optionally in the presence of an additional polyol or polyols. 1. The prepolymer of claim 1, wherein the polybutadiene has a functionality of from 1.8 to 2.1 and an average molecular weight of from 5 to 1 Torr. 3. The prepolymer of claim 2 or 2 wherein the polybutadiene has a molecular weight of from 1,000 to 5,000. 4. The prepolymer of claim 3, wherein the polybutadiene package 15 comprises from 20 to 75 weight percent of the first polyol component. 5. The prepolymer of claim 4, wherein the polybutadiene comprises from 35 to 66 weight percent of the first polyol component. The prepolymer of any one of claims 1 to 5, wherein the natural oil-based polyol is at least one polyester polyol or a fatty acid-derived polyol, which is at least one initiator and A reaction product of at least one fatty acid or a derivative of at least one fatty acid. 7' The prepolymer of claim 6, wherein the initiator has an average of from 1 to 7 to 4 reactive groups. 8' The prepolymer of claim 7, wherein the polyol having a natural oil of 41 200918570 has an average molecular weight of from 500 to 5,000. 9. The prepolymer of claim 6, wherein the natural oil-based polyol comprises from 35 to 66 weight percent of the first polyol component. 5 10. An elastomer comprising the following: a) an isocyanate-terminated prepolymer having a content of isocyanate (NCO) from 5 to 25 weight percent, the prepolymer comprising a stoichiometric excess Or a reaction product of a plurality of di- or polyisocyanuric acid and a first polyol component, wherein the first polyol component comprises from 10 10 to 90% by weight of at least one natural oil-based a polyol; from 10 to 90 weight percent of at least one polybutadiene polyol; and optionally in the presence of an additional polyol or polyols; b) a second polyol component, wherein Any polyol that is not a polybutadiene polyol or a natural oil polyol that is not a polybutadiene, a 15-polyol or polyol blend having a nominal functionality of 1.8 to 2.5 and 500 to 10,000 The average molecular weight; c) is optionally present in the presence of a chain extender and/or crosslinker, and d) is optionally present in the presence of other additives which are of course known in the production of catalysts and elastomers. 20 11. A method for producing an elastomer comprising blending: a) an isocyanate-terminated prepolymer having an isocyanate (NCO) content of from 5 to 25 weight percent, the prepolymer A reaction product comprising a stoichiometric excess of one or more di- or polyisocyanuric acid and a first polyol component, wherein the first polyol component comprises from at least 42 2009 18570 10 to 90 weight percent of at least a natural oil-based polyol; from 10 to 90% by weight of at least one polybutadiene polyol; and optionally in the presence of an additional polyol or a plurality of polyols; b) - second a polyol component, which is not a polybutadiene polyol, a 5 alcohol or a polyol of a natural oil polyol other than polybutadiene, a polyol or polyol blend having a mass ratio of 1.8 to 2.5 a nominal functionality and an average molecular weight of from 500 to 10,000; c) optionally in the presence of a chain extender and/or crosslinker, and fd) of course selective for the production of catalysts and elastomers Other additives are present. 43
TW097136057A 2007-09-21 2008-09-19 Prepolymers and polymers for elastomers TW200918570A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97425507P 2007-09-21 2007-09-21

Publications (1)

Publication Number Publication Date
TW200918570A true TW200918570A (en) 2009-05-01

Family

ID=40076588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136057A TW200918570A (en) 2007-09-21 2008-09-19 Prepolymers and polymers for elastomers

Country Status (7)

Country Link
US (1) US20100256323A1 (en)
EP (1) EP2193154A1 (en)
JP (1) JP2010540698A (en)
CN (1) CN101861347A (en)
BR (1) BRPI0815961A2 (en)
TW (1) TW200918570A (en)
WO (1) WO2009039130A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098417A1 (en) * 2007-09-21 2011-04-28 Dow Global Technologies Inc. Polyurethane polymer systems
WO2011112829A1 (en) * 2010-03-12 2011-09-15 Dow Global Technologies Llc Gels and soft polyurethane elastomers made with natural oil based polyols
EP2552990B1 (en) * 2010-03-31 2017-04-19 Dow Global Technologies LLC Polyurethane/polyurea spray elastomers
US9522396B2 (en) 2010-12-29 2016-12-20 S.D. Sight Diagnostics Ltd. Apparatus and method for automatic detection of pathogens
US20130040128A1 (en) * 2011-08-12 2013-02-14 Carl E. Boddie Highly corrosion resistant polyurea composition
CN104169719B (en) 2011-12-29 2017-03-08 思迪赛特诊断有限公司 For detecting the method and system of pathogen in biological sample
US9018432B2 (en) * 2012-10-25 2015-04-28 Barnhardt Manufacturing Company Processing radioactive waste for shipment and storage
JP6255038B2 (en) 2013-02-26 2017-12-27 トリアクト セラピューティクス,インク. Cancer treatment
WO2015050811A1 (en) 2013-10-02 2015-04-09 Dow Global Technologies Llc Sprayable polyurethane based protective coating
EP3859425B1 (en) 2015-09-17 2024-04-17 S.D. Sight Diagnostics Ltd. Methods and apparatus for detecting an entity in a bodily sample
CN108290993B (en) * 2015-12-16 2020-09-29 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition and laminate
EP3710810B1 (en) 2017-11-14 2023-09-06 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
EP3737429B1 (en) * 2018-01-12 2024-03-20 Covestro Deutschland AG Method for the manufacture of elastic and tear-resistant polyurethane foams and their applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923298A (en) * 1972-06-27 1974-03-01
US4168258A (en) * 1978-02-15 1979-09-18 N L Industries, Inc. Grease compatible, mineral oil extended polyurethane
JPS5780421A (en) * 1980-11-10 1982-05-20 Idemitsu Kosan Co Ltd Polyurethane composition
CA1290631C (en) * 1985-05-13 1991-10-15 Hirohisa Maki Protective coating on concrete construction
US4742112A (en) * 1987-01-23 1988-05-03 Caschem, Inc. Ricinoleate modified hydrocarbon polyols
DE3915426A1 (en) * 1989-05-11 1990-11-15 Bayer Ag METHOD FOR PRODUCING HIGH-ELASTIC, CHEMICAL-RESISTANT POLYURETHANE AND COATINGS
JP3474000B2 (en) * 1994-09-16 2003-12-08 三井化学株式会社 Method for producing urethane elastomer
DE60100395T2 (en) * 2000-05-10 2004-04-22 Rohm And Haas Co. Hotmelt adhesive
US6797789B2 (en) * 2001-10-19 2004-09-28 Visuron Technologies, Inc. Phenolic/polyurea coating co-polymer compositions and process
US7056976B2 (en) * 2002-08-06 2006-06-06 Huntsman International Llc Pultrusion systems and process

Also Published As

Publication number Publication date
US20100256323A1 (en) 2010-10-07
CN101861347A (en) 2010-10-13
JP2010540698A (en) 2010-12-24
EP2193154A1 (en) 2010-06-09
BRPI0815961A2 (en) 2018-02-14
WO2009039130A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
TW200918570A (en) Prepolymers and polymers for elastomers
US20110098417A1 (en) Polyurethane polymer systems
TWI454527B (en) Polyurethane resin composition and molded article thereof
KR101723252B1 (en) Polyureas preparable from two polyetheramines and a prepolymer
TW200418895A (en) Polyurethane dispersion and articles prepared therefrom
CA2650791A1 (en) Polyurethane-urea polymers derived from cyclohexane dimethanol
JP2013527281A (en) Polyisocyanate prepolymer and use thereof
KR101411069B1 (en) A polymeric composition and a method for producing the same
TW200808853A (en) Aliphatic, sinterable, thermoplastic polyurethane molding compositions with improved blooming behavior
CN101821310B (en) Aqueous polyurethane resin, coating film, and artificial and synthetic leather
KR101586509B1 (en) Process for preparing polyether alcohols
JP6553597B2 (en) Copolymer polyol
CN102427934A (en) Natural oil polyols in elastomers for tires
CN106103528A (en) Come from the block prepolymer of natural oil and there is the acrylic acid acrylic sol composition of described block prepolymer
US20130018147A1 (en) Polyurethane/polyurea spray elastomers
US20190359850A1 (en) Low-solvent coating systems for textiles
JP2011001397A (en) Aliphatic polyurea resin composition and aliphatic polyurea resin
WO2012132912A1 (en) Polyol composition and polyurethane resin
JP2022535760A (en) Solvent borne thermosetting polyamide urethane and/or urea based coatings
KR20150117593A (en) Transparent polyurethanes
TWI445723B (en) Biodegradable hydrophilic polyurethane
EP2245081A1 (en) Elastomeric materials having a high hardblock content and process for preparing them
WO2024063024A1 (en) Biodegradable polyurethane resin
JP2010189544A (en) Polyurethane resin, printing ink composition, coating agent composition and adhesive composition