TW200914909A - Lens system - Google Patents

Lens system Download PDF

Info

Publication number
TW200914909A
TW200914909A TW96135474A TW96135474A TW200914909A TW 200914909 A TW200914909 A TW 200914909A TW 96135474 A TW96135474 A TW 96135474A TW 96135474 A TW96135474 A TW 96135474A TW 200914909 A TW200914909 A TW 200914909A
Authority
TW
Taiwan
Prior art keywords
lens
lens system
object side
focal length
image side
Prior art date
Application number
TW96135474A
Other languages
Chinese (zh)
Other versions
TWI329755B (en
Inventor
Chun-Ling Lin
Chun-Hsiang Huang
Chung Lee
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96135474A priority Critical patent/TWI329755B/en
Publication of TW200914909A publication Critical patent/TW200914909A/en
Application granted granted Critical
Publication of TWI329755B publication Critical patent/TWI329755B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

The present invention relates to a lens system. The lens system includes, in order from the object side to the imaging plane thereof, a first lens of positive refraction power, a second lens of positive refraction power, a third lens of negative refraction power, a fourth lens of positive refraction power, and a fifth lens of negative refraction power. The lens system satisfies condition formulas: 1.6 < TT/f < 1.8, 1.6 < f/f2 < 1.8 and -0.6 < f/f5 < -0.4. Where, TT designates a distance between a surface of the first lens facing the object side and an imaging plane of the lens system, f2 is the effective focal length of the second lens. f5 is the effective focal length of the fifth lens. f is the effective focal length of the lens system.

Description

200914909 九、發明說明: 【發明所屬之技術領域】 • 本發明涉及一種透鏡系統,尤其涉及一種用於電子 • 設備之透鏡系統。 【先前技術】 近年來,隨著半導體技術發展,應用於成像系統之 影像感測器,如電荷耗合器(Charge Coupled Device, CCD)或補充性半導體(Complementary Metal Oxide Semiconductor, CMOS)裝置,於提高晝素之同時,朝小 型化方向發展,以滿足消費者對成像系統之成像品質及 便攜性之要求。 對應地,成像鏡頭需提高解析度、縮小尺寸,以配 合影像感測器組成南成像品質、小尺寸之成像糸統。 【發明内容】 有鑒於此,有必要提供一種小型化、成像性能良好 之透鏡系統。 一種透鏡系統,其從物側到成像面依次包括:一具 有正光焦度之第一透鏡,一具有正光焦度之第二透鏡, 一具有負光焦度之第三透鏡,一具有正光焦度之第四透 鏡,一具有負光焦度之第五透鏡。所述透鏡系統滿足以 下條件:1.6&lt;TT/f&lt;1.8、1.6&lt;f/f2&lt;1.8 與-0.6&lt;f/f5&lt;-0.4, 其中,TT為第一透鏡靠近物側之表面到系統成像面之距 離,f2為所述第二透鏡之焦距,f5為所述第五透鏡之焦 距,f為透鏡系統之有效焦距。 6 200914909 條件式1.6&lt;TT/f&lt;1.8限制了透鏡系統之總長。條件 式1.6&lt;f/f2&lt;1.8保證了透鏡系統總長與球差及彗差之間 之平衡。條件式-0.6&lt;f/f5&lt;-0.4控制透鏡系統總長與透鏡 系統之畸變之間之平衡。滿足上述條件之透鏡系統,具 有較小長度,從而滿足透鏡系統小型化之要求,且該透 鏡系統於其長度縮小之情況下仍保證最終獲取較好圖像 品質。 【實施方式】 下面將結合附圖對本發明實施例作進一步之詳細 說明。 請參閱圖1,其為本發明實施例所提供之透鏡系統 100。該透鏡系統100從物侧到成像面依次包括:一具有 正光焦度之第一透鏡10, 一具有正光焦度之第二透鏡 20, 一具有負光焦度之第三透鏡30, 一具有正光焦度之 第四透鏡40, 一具有負光焦度之第五透鏡50。 當該透鏡系統100用於成像時,來自被攝物之光線 從物侧方向入射所述透鏡系統100並依次經過所述第一 透鏡10、第二透鏡20、第三透鏡30、第四透鏡40及第 五透鏡50,最終會聚到一成像面80上,藉由將CCD或 CMOS等影像感測裝置設於所述成像面80處,即可獲取 該被攝物之像。 為實現小型化及高成像性能之要求,該透鏡系統 100滿足以下條件式: (l)1.6&lt;TT/f&lt;1.8 ; 200914909 (2) 1.6&lt;f/f2&lt;1.8 ;與 (3) -0.6&lt;f/f5&lt;-0.4。 其中,TT為第一透鏡靠近物侧之表面到系統成像面 - 之距離,f2為所述第二透鏡20之焦距,f5為所述第五透 鏡50之焦距,f為透鏡系統100之有效焦距。條件式(1) 限制了透鏡系統100之總長。條件式(2)保證了透鏡系統 100之總長與球差及彗差之間之平衡。條件式(3)控制透 鏡糸統100之總長與崎變之間之平衡。 優選地,透鏡系統100還滿足以下條件: (4) l&lt;f/f4&lt;1.3。 其中,f4為所述第四透鏡40之焦距。條件式(4)滿 足透鏡系統100對總光焦度之要求,同時使透鏡系統100 更接近遠心(Telecentric)成像系統,增強外界光感測器之 , 收光率,保證了透鏡系統10 0之總長與像差之間之平衡。 為了更好消除透鏡系統100之色差,尤其係倍率色 差,透鏡系統100還滿足以下條件: ' (5) Vd2-Vd3&gt;15。 其中,Vd2為第二透鏡20之阿貝數,Vd3為第三透 鏡30之阿貝數。條件式(5)有助於保證透鏡系統100之 總長與色差之間之平衡。 為保證於第一透鏡10與第二透鏡20之間放置光圈 或快門’透鏡糸統10 0运滿足以下條件: (6) OJkDAu/fcOJ。 其中,DAi_2為第一透鏡10與第二透鏡20之軸上 8 200914909 .間隔(第一透鏡10之靠像侧面與第二透鏡20靠物側面之 間之光軸長度)。 - 為了加入手動調焦機構,第五透鏡50還滿足以下 - 條件: (7) FBL5/f&gt;0.46。 其中,fbl5為第五透鏡靠像侧面到透鏡系統100之 成像面之間之光轴長度。 所述透鏡系統100還包括一光闌(Aperture stop)60 以及一濾光片70。該光闌60位於第一透鏡10與第二透 鏡20之間,以限制經過第一透鏡10之光線進入第二透 鏡20之光通量,並讓經過第一透鏡10後之光錐能更加 對稱,使透鏡系統100之彗差得以修正。為節約成本, 可採用不透光材料塗佈第二透鏡20靠物侧表面外圈,充 當光闌60。可以理解,光闌60如此設置還有利於縮短 透鏡系統100之全長。所述濾光片70位於第五透鏡50 與成像面80之間,主要用於濾除進入透鏡系統100光線 中之位於紅外波段之光線。 可以理解,為保證良好成像品質,實施例之第一鏡 片10、第二鏡片20及第三鏡片30採用玻璃材料製成。 同時為節約成本,實施例之第四鏡片40及第五鏡片50 採用塑膠材料製成(如射出成型,利於量產)。 下面請參照圖2至圖10,以具體實施例來詳細說明 透鏡系統100。 以下每一實施例中,所述第一透鏡10、第二透鏡 9 200914909 20、第三透鏡30各表面均為球面。第四透鏡40及第五 透鏡50之各表面均為非球面。 以透鏡表面中心為原點,光轴為X軸,透鏡表面之 非球面面型運算式為: + l + ^J\-(k + l)c2h2 其中,α = λ/γ2+ζ2為從光軸到透鏡表面之高度,k係 二次曲面係數,A為第i階之非球面面型係數。 f :透鏡系統100之有效焦距;FN。: F(光圈)數;2ω : 視場角。 實施例1 該透鏡系統100之各光學元件滿足表1及表2之條 件,且其 ΤΤ=11,64 毫米(mm) ; f=6.86mm ; f2=3.918mm ; f5 = -13.262mm ; FNo = 3.2 ; 2ω=580。 表1 透鏡系統100 曲率半徑(mm) 厚度(mm) 折射率 阿貝數 第一透鏡10靠物 側表面 20 0.6 1.847 23.8 第一透鏡10靠像 側表面 40 0.68 --- --- 光闌60 無窮大 0.9848579 — —— 第二透鏡20靠物 侧表面 4.660256 1.218602 1.835 42.7 第二透鏡20靠像 側表面 -9.673455 0.1706635 --- --- 第三透鏡30靠物 側表面 -6.827207 0.55 1.805 25.4 第三透鏡30靠像 側表面 6.277945 1.372414 --- — 第四透鏡40靠物 側表面 -3.574036 1.519003 1.5253 55.95 第四.透鏡40靠像 側表面 -1.894176 0.1 — — 10 200914909 第五透鏡50靠物 側表面 4.335789 1.274355 1.5253 55.95 第五透鏡50靠像 側表面 2.402021 1.872747 — … 濾光片60靠物側 表面 無窮大 0.8 1.516 64.1 濾光片60靠像側 表面 無窮大 0.5 — … 表2 表面 表面非球面面型參數 第四透鏡40 面向物側表面 Κ=-0.629145; Α4=〇.000283365; Α6 = -0.007896287; Α8=3·68026Ε-03;Α10=-4.64809Ε-04; Α12=1.78941Ε-05 第四透鏡40 面向像側表面 Κ=-0.8988602; Α4=0.00281701; Α6=0.00117827; Α8=-8.50719Ε-04; Α10=2.66314Ε-04; Α12=-1.86077Ε-05 第五透鏡50 面向物側表面 Κ=-19.6134; Α4 = -0.00440008; Α6=0.00107469; Α8 = -8.65362Ε-05; Α10 = 2.07529Ε-06; Α12=8.19722Ε-09 第五透鏡50 面向像側表面 Κ=-7·431847; Α4 = -〇.01150747; Α6=0·00064682; Α8=-2·24282Ε-06; Α10=-2·36763Ε-06; Α12=7·82124Ε-08 該實施例1之透鏡系統100中,其球差、場曲及畸 變分別如圖2到圖4所示。圖2中,分別針對g線(波長 值435.8奈米(nm)),d線(波長值587.6 nm),c線(波長 值656.3 nm)而觀察到之球差值。總體而言,實施例1 之透鏡系統100對可見光(波長範圍於400 nm -700 nm 之間)產生之球差值於(-70微来(μιη),70μιη)範圍内。圖3 中之S(子午場曲值)與Τ(弧矢場曲值)均控制於 (-50μπι,50μιη)範圍内。圖4中之畸變率控制於(-2%,2%) 範圍内。由此可見,透鏡系統100之像差、場曲、畸變 都能被很好校正。 11 200914909 實施例2 該透鏡系統100之各光學元件滿足表3及表4之條 件,且其 TT = 11.675 毫米(mm) ; f=6.67mm; f2=3.785mm ; • f5 = -16.293mm ; FNo=3.2 ; 2ω=59.180。 表3 透鏡系統100 曲率半徑(mm) 厚度(mm) 折射率 阿貝數 第一透鏡10靠 物側表面 32.26686 0.6123 1.8322 25.14 第一透鏡10靠 像側表面 64.64433 0.6654 --- --- 光闌60 無窮大 0.9775 — ——— 第二透鏡20靠 物側表面 4.734222 1.248031 1.8315 43.1699 第二透鏡20靠 像側表面 -8.26632 0.1922626 --- 第三透鏡30靠 物側表面 -5.695776 0.55 1.755201 27.5795 第三透鏡30靠 像側表面 6.476238 1.338504 --- --- 第四透鏡40靠 物側表面 -3.53409 1.546552 1.48749 70.4058 第四透鏡40靠 像側表面 -1.848934 0.1 — — 第五透鏡50靠 物側表面 3.87294 1.245206 1.503667 68.6849 第五透鏡50靠 像側表面 2.34782 1.899395 --- — 濾光片60靠物 侧表面 無窮大 0.8 1.516 64.1 濾光片60靠像 側表面 無窮大 0.5 — --- 表4 表面 表面非球面面型參數 第四透鏡40面向 物側表面 Κ=-0.6734973; Α4 = 0.000522885; Α6 = -0.007918341; Α8 = 0.003667617; A10 = -0.000465353; Α12 = 1.86Ε-05 12 200914909 第四透鏡40面向 像側表面 Κ=-0.8867163; Α4=0.002429206; Α6=0.001176508; Α8 = -0.000848205; Α10=0.000266894; Α12=-1·86Ε-05 第五透鏡50面向 物側表面 Κ=-13.44202; Α4 = -0.004722538; Α6=0.001088901; Α8 = -8.58Ε-05; Α10=2.07Ε-06; Α12=3.62Ε-09 第五透鏡50面向 像側表面 Κ=-6.658952; Α4 = -0.011869003; Α6=0.000685275; Α8 = -2.41Ε-06; Α10 = -2.40Ε-06; Α12=7.92Ε-08 該實施例2之透鏡系統100中,其球差、場曲及畸 變分別如圖5到圖7所示。圖5中,分別針對g線(波長 值435.8 nm),d線(波長值587.6 nm),c線(波長值656.3 nm)而觀察到之球差值。總體而言,實施例2之透鏡系 統100對可見光(波長範圍於400 nm -700 nm之間)產生 之球差值於(-7〇0111,7〇卜111)範圍内。圖6中之3(子午場曲 值)與T(弧矢場曲值)均控制於(-50μιη,50μπι)範圍内。圖 7中之畸變率控制於(-2%,2%)範圍内。由此可見,透鏡 系統100之像差、場曲、畸變都能被很好校正。 實施例3 該透鏡系統100之各光學元件滿足表5及表6之條 件,且其 ΤΤ=11·47 毫米(mm) ; f=6.51mm ; f2=3.968mm ; f5=-11.485mm ; FNo = 3.2 ; 2ω=60.4〇。 表5 鏡系統100 曲率半徑(mm) 厚度(mm) 折射率 阿貝數 第一透鏡10靠 __物側表面 18.888 0.6421 1.8123 25.5689 第一透鏡10靠 象側表面 37.776 0.7 — — -_光闌60 無窮大 0.952 — — 第二透鏡20靠 物側表面 4.662901 1.207266 1.805 44.7 13 200914909 第二透鏡20靠 像側表面 -8.971283 0.1724069 -一 — 第三透鏡30靠 物側表面 -6.399854 0.55 1.8123 25.5689 第三透鏡30靠 像側表面 6.999723 1.363556 --- … 第四透鏡40靠 物側表面 -3.73191 1.476334 1.594884 61.7144 第四透鏡40靠 像側表面 -1.933912 0.1 --- — 第五透鏡50靠 物側表面 3.975914 1.107187 1.623906 47.358 第五透鏡50靠 像側表面 2.283559 1.903675 --- --- 濾光片60靠物 側表面 無窮大 0.8 1.516 64.1 濾光片60靠像 側表面 無窮大 0.5 — … 表6 表面 表面非球面面型參數 第四透鏡40面 向物侧表面 Κ=-0.4709513; Α4 = -0.00016586; Α6 = -0.007898677; Α8 = 0.003663979; Α10 = -0.00046653; Α12 = 1.87Ε-05 第四透鏡40面 向像側表面 Κ=-0.8916619; Α4=0.002874988; Α6=0.001026954; Α8 = -0.00086664; Α10 = 0.000266443; Α12 = -1.83Ε-05 第五透鏡50面 向物側表面 Κ=-16.81341; Α4 = -0.005188043; Α6 = 0.001120208; Α8 = -8.48Ε-05; Α10=2.09Ε-06; Α12=1.20Ε-09 第五透鏡50面 向像側表面 Κ=-7.204009; Α4 = -0.011436668; Α6=0.000691118; Α8 = -2.77Ε-06; Α10 = -2.39Ε-06; Α12 = 8.23Ε-08 該實施例3之透鏡系統100中,其球差、場曲及畸 變分別如圖8到圖10所示。圖8中,分別針對g線(波 長值435.8nm)’ d線(波長值587.6 nm)’ c線(波長值656.3 nm)而觀察到之球差值。總體而言,實施例3之透鏡系 統100對可見光(波長範圍於400 nm -700 nm之間)產生 之球差值於(-70μπι,70μιη)範圍内。圖9中之S(子午場曲 值)與Τ(弧矢場曲值)均控制於(-50μιη,50μιη)範圍内。圖 14 200914909 I/中之畸變率控制於(_2%,2%)範圍内。由此可見,透鏡 系統100之像差、場曲、畸變都能被很好校正。 衰二i所Ϊ,本發明確已符合發明專利要件,妥依法提出 r m所述者僅為本發明之較佳實施方式,舉 凡;^心本案技藝之人士,於 _或變化,皆應包含㈣下=本案發雜神所作之等效修 卜之申請專利範圍内。 【圖式簡單說明】 圖1為本發明實施例 〇 圖2為本發明實施例 圖3為本發明實施例 圖4為本發明實施例 圖5為本發明實施例 圖6為本發明實施例 圖7為本發明實施例 圖8為本發明實施例 圖9為本發明實施例 圖10為本發明實施例 J &amp;供之一種透鏡系統示意圖 之透鏡系統之球差圖。 丄之透鏡系統之場曲圖。 1之透鏡系統之畸變圖。 2之透鏡系統之球差圖。 2之透鏡系統之場曲圖。 2之透鏡系統之畸變圖。 之透鏡系統之球差圖。 之透鏡系統之場曲圖。 ;之透鏡系統之畸變圖。 【主要組件符號 說明】 透鏡系統 100 第一透鏡 10 第二透鏡 20 第三透鏡 30 第四透鏡 40 第五透鏡 50 光闌 60 濾、光片 70 成像面 80 15200914909 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a lens system, and more particularly to a lens system for an electronic device. [Prior Art] In recent years, with the development of semiconductor technology, image sensors applied to imaging systems, such as Charge Coupled Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS) devices, While improving the quality, it is developing in the direction of miniaturization to meet consumers' requirements for imaging quality and portability of imaging systems. Correspondingly, the imaging lens needs to be improved in resolution and downsized to match the image sensor to form a south imaging quality and small size imaging system. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a lens system that is miniaturized and has excellent imaging performance. A lens system comprising, in order from the object side to the imaging surface, a first lens having a positive power, a second lens having a positive power, a third lens having a negative power, and a positive power The fourth lens is a fifth lens having a negative power. The lens system satisfies the following conditions: 1.6 &lt; TT / f &lt; 1.8, 1.6 &lt; f / f2 &lt; 1.8 and -0.6 &lt; f / f5 &lt; - 0.4, wherein TT is the surface of the first lens near the object side to The distance of the imaging plane of the system, f2 is the focal length of the second lens, f5 is the focal length of the fifth lens, and f is the effective focal length of the lens system. 6 200914909 Conditional Formula 1.6 &lt;TT/f&lt;1.8 limits the total length of the lens system. The condition 1.6 &lt;f/f2&lt;1.8 guarantees a balance between the total length of the lens system and the spherical aberration and coma. The conditional expression -0.6 &lt;f/f5&lt;-0.4 controls the balance between the total length of the lens system and the distortion of the lens system. A lens system that satisfies the above conditions has a small length to meet the requirements for miniaturization of the lens system, and the lens system ensures a final image quality with a reduced length. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Please refer to FIG. 1, which is a lens system 100 according to an embodiment of the present invention. The lens system 100 includes, in order from the object side to the imaging surface, a first lens 10 having a positive power, a second lens 20 having a positive power, a third lens 30 having a negative power, and a positive light. The fourth lens 40 of the power is a fifth lens 50 having a negative power. When the lens system 100 is used for imaging, light from a subject is incident on the lens system 100 from the object side direction and sequentially passes through the first lens 10, the second lens 20, the third lens 30, and the fourth lens 40. And the fifth lens 50 finally gathers on an imaging surface 80, and an image sensing device such as a CCD or a CMOS is disposed on the imaging surface 80 to acquire an image of the object. In order to achieve miniaturization and high imaging performance, the lens system 100 satisfies the following conditional formula: (l) 1.6 &lt;TT/f&lt;1.8; 200914909 (2) 1.6&lt;f/f2&lt;1.8; and (3) - 0.6&lt;f/f5&lt;-0.4. Wherein, TT is the distance from the surface of the first lens to the object imaging surface, f2 is the focal length of the second lens 20, f5 is the focal length of the fifth lens 50, and f is the effective focal length of the lens system 100. . Conditional formula (1) limits the total length of lens system 100. Conditional formula (2) ensures a balance between the total length of the lens system 100 and the spherical aberration and coma. Conditional expression (3) controls the balance between the total length of the lens system 100 and the change. Preferably, the lens system 100 also satisfies the following conditions: (4) l &lt;f/f4 &lt; 1.3. Where f4 is the focal length of the fourth lens 40. Conditional formula (4) satisfies the requirements of the total power of the lens system 100, and at the same time makes the lens system 100 closer to the telecentric imaging system, enhances the external light sensor, and the light-receiving rate ensures the lens system 10 The balance between total length and aberration. In order to better eliminate the chromatic aberration of the lens system 100, especially the chromatic aberration of magnification, the lens system 100 also satisfies the following conditions: '(5) Vd2-Vd3&gt;15. Wherein, Vd2 is the Abbe number of the second lens 20, and Vd3 is the Abbe number of the third lens 30. Conditional expression (5) helps to ensure a balance between the total length of the lens system 100 and the chromatic aberration. In order to ensure that an aperture or a shutter lens is placed between the first lens 10 and the second lens 20, the following conditions are satisfied: (6) OJkDAu/fcOJ. Wherein, DAi_2 is an axis (the length of the optical axis between the image side of the first lens 10 and the side of the object of the second lens 20) on the axis of the first lens 10 and the second lens 20. - In order to incorporate the manual focus mechanism, the fifth lens 50 also satisfies the following - conditions: (7) FBL5/f&gt; 0.46. Wherein fbl5 is the optical axis length between the image side of the fifth lens image and the imaging surface of the lens system 100. The lens system 100 further includes an aperture stop 60 and a filter 70. The aperture 60 is located between the first lens 10 and the second lens 20 to limit the light flux entering the second lens 20 through the first lens 10, and to make the light cone passing through the first lens 10 more symmetrical. The coma of the lens system 100 is corrected. In order to save cost, the outer ring of the object side surface of the second lens 20 may be coated with an opaque material to fill the aperture 60. It will be appreciated that the arrangement of the aperture 60 in this manner also facilitates shortening the overall length of the lens system 100. The filter 70 is located between the fifth lens 50 and the imaging surface 80 and is mainly used to filter out light rays entering the infrared light of the lens system 100. It can be understood that the first lens 10, the second lens 20 and the third lens 30 of the embodiment are made of a glass material in order to ensure good image quality. At the same time, in order to save cost, the fourth lens 40 and the fifth lens 50 of the embodiment are made of a plastic material (such as injection molding, which is advantageous for mass production). Referring now to Figures 2 through 10, the lens system 100 will be described in detail with reference to specific embodiments. In each of the following embodiments, each surface of the first lens 10, the second lens 9 200914909 20, and the third lens 30 is a spherical surface. Each surface of the fourth lens 40 and the fifth lens 50 is aspherical. Taking the center of the lens surface as the origin and the optical axis as the X-axis, the aspherical surface of the lens surface is: + l + ^J\-(k + l)c2h2 where α = λ/γ2+ζ2 is the light The height from the axis to the surface of the lens, k is the quadric surface coefficient, and A is the aspherical surface coefficient of the i-th order. f: effective focal length of the lens system 100; FN. : F (aperture) number; 2ω : field of view. Example 1 The optical elements of the lens system 100 satisfy the conditions of Tables 1 and 2, and their ΤΤ = 11,64 mm (mm); f = 6.86 mm; f2 = 3.918 mm; f5 = -13.262 mm; FNo = 3.2 ; 2ω = 580. Table 1 Lens System 100 Curvature Radius (mm) Thickness (mm) Refractive Index Abbe Number First Lens 10 Object Side Surface 20 0.6 1.847 23.8 First lens 10 image side surface 40 0.68 --- --- 阑 60 Infinity 0.9848579 ——— Second lens 20 object side surface 4.660256 1.218602 1.835 42.7 Second lens 20 image side surface - 9.673455 0.1706635 --- --- Third lens 30 object side surface - 6.827207 0.55 1.805 25.4 Third lens 30 image side surface 6.277945 1.372414 --- — fourth lens 40 object side surface -3.574036 1.519003 1.5253 55.95 fourth. lens 40 image side surface -1.894176 0.1 — — 10 200914909 fifth lens 50 object side surface 4.335789 1.274355 1.5253 55.95 Fifth lens 50 image side surface 2.402021 1.872747 - ... Filter 60 on the object side surface infinity 0.8 1.516 64.1 Filter 60 image side surface infinity 0.5 - ... Table 2 Surface surface aspheric surface type parameter fourth lens 40 facing surface side Κ=-0.629145; Α4=〇.000283365; Α6 = -0.007896287; Α8=3·68026Ε-03; Α10=-4.64809Ε-04; Α12=1.78941Ε-05 fourth through The mirror 40 faces the image side surface Κ=-0.8988602; Α4=0.00281701; Α6=0.00117827; Α8=-8.50719Ε-04; Α10=2.66314Ε-04; Α12=-1.86077Ε-05 fifth lens 50 facing the object side surfaceΚ =-19.6134; Α4 = -0.00440008; Α6=0.00107469; Α8 = -8.65362Ε-05; Α10 = 2.07529Ε-06; Α12=8.19722Ε-09 Fifth lens 50 facing image side surface Κ=-7·431847; Α4 = -〇.01150747; Α6=0·00064682; Α8=-2·24282Ε-06; Α10=-2·36763Ε-06; Α12=7·82124Ε-08 In the lens system 100 of the first embodiment, the spherical aberration is The field curvature and distortion are shown in Figure 2 to Figure 4, respectively. In Fig. 2, spherical aberration values were observed for the g line (wavelength value 435.8 nm (nm)), the d line (wavelength value 587.6 nm), and the c line (wavelength value 656.3 nm). In general, the lens system 100 of Example 1 produces spherical aberrations in the visible light range (wavelengths ranging from 400 nm to 700 nm) in the range of (-70 micron, 70 μm). In Fig. 3, S (meridian curvature value) and Τ (radial field curvature value) are controlled within the range of (-50μπι, 50μιη). The distortion rate in Figure 4 is controlled in the range of (-2%, 2%). It can be seen that the aberration, field curvature and distortion of the lens system 100 can be well corrected. 11 200914909 Embodiment 2 The optical components of the lens system 100 satisfy the conditions of Tables 3 and 4, and have TT = 11.675 mm (mm); f = 6.67 mm; f2 = 3.785 mm; • f5 = -16.293 mm; FNo =3.2 ; 2ω=59.180. Table 3 Lens system 100 Curvature radius (mm) Thickness (mm) Refractive index Abbe number First lens 10 object side surface 32.26686 0.6123 1.8322 25.14 First lens 10 image side surface 64.64433 0.6654 --- --- 阑 60 Infinity 0.9775 ————— Second lens 20 object side surface 4.743222 1.248031 1.8315 43.1699 Second lens 20 image side surface -8.262632 0.1922626 --- Third lens 30 object side surface - 5.695776 0.55 1.755201 27.5795 Third lens 30 Image side surface 6.476238 1.338504 --- --- Fourth lens 40 substrate side surface -3.53409 1.546552 1.48749 70.4058 Fourth lens 40 image side surface - 1.848934 0.1 — — Fifth lens 50 object side surface 3.78294 1.245206 1.503667 68.6849 Five lens 50 image side surface 2.37482 1.899395 --- — Filter 60 object side surface infinity 0.8 1.516 64.1 Filter 60 image side surface infinity 0.5 — --- Table 4 Surface surface aspheric surface parameter fourth The lens 40 faces the object side surface Κ=-0.6734973; Α4 = 0.000522885; Α6 = -0.007918341; Α8 = 0.003667617; A10 = -0.000465353; Α12 = 1.8 6Ε-05 12 200914909 The fourth lens 40 faces the image side surface Κ=-0.8867163; Α4=0.002429206; Α6=0.001176508; Α8 = -0.000848205; Α10=0.000266894; Α12=-1·86Ε-05 The fifth lens 50 faces the object side Surface Κ=-13.44202; Α4 = -0.004722538; Α6=0.001088901; Α8 = -8.58Ε-05; Α10=2.07Ε-06; Α12=3.62Ε-09 Fifth lens 50 facing image side surface Κ=-6.658952; Α4 = -0.011869003; Α6=0.000685275; Α8 = -2.41Ε-06; Α10 = -2.40Ε-06; Α12=7.92Ε-08 In the lens system 100 of the second embodiment, the spherical aberration, field curvature and distortion are respectively Figure 5 to Figure 7. In Fig. 5, the spherical difference is observed for the g line (wavelength value 435.8 nm), the d line (wavelength value 587.6 nm), and the c line (wavelength value 656.3 nm). In general, the lens system 100 of Example 2 produces a spherical difference in visible light (with a wavelength ranging from 400 nm to 700 nm) in the range of (-7〇0111, 7〇111). In Fig. 6, 3 (mertz field curvature value) and T (satellite field curvature value) are both controlled within the range of (-50 μιη, 50 μπι). The distortion rate in Figure 7 is controlled in the range of (-2%, 2%). It can be seen that the aberration, field curvature and distortion of the lens system 100 can be well corrected. Embodiment 3 The optical components of the lens system 100 satisfy the conditions of Tables 5 and 6, and have ΤΤ=11·47 mm (mm); f=6.51 mm; f2=3.968 mm; f5=-11.485 mm; FNo= 3.2 ; 2ω = 60.4 〇. Table 5 Mirror system 100 Radius of curvature (mm) Thickness (mm) Refractive index Abbe number First lens 10 by __ object side surface 18.888 0.6421 1.8123 25.5689 First lens 10 image side surface 37.776 0.7 — — _ 阑 60 Infinity 0.952 - second lens 20 object side surface 4.626101 1.207266 1.805 44.7 13 200914909 second lens 20 image side surface - 8.971283 0.1724069 - one - third lens 30 object side surface - 6.399854 0.55 1.8123 25.5689 third lens 30 Image side surface 6.997723 1.363556 --- ... Fourth lens 40 object side surface -3.73191 1.476334 1.594884 61.7144 Fourth lens 40 image side surface -1.933912 0.1 --- — Fifth lens 50 object side surface 3.795514.1 1.107187 1.623906 47.358 Five lens 50 image side surface 2.283559 1.903675 --- --- Filter 60 on the object side surface infinity 0.8 1.516 64.1 Filter 60 image side surface infinity 0.5 — ... Table 6 Surface surface aspheric surface parameter fourth The lens 40 faces the object side surface Κ=-0.4709513; Α4 = -0.00016586; Α6 = -0.007898677; Α8 = 0.003663979; Α10 = -0.00046653; Α12 = 1 .87Ε-05 The fourth lens 40 faces the image side surface Κ=-0.8916619; Α4=0.002874988; Α6=0.001026954; Α8 = -0.00086664; Α10 = 0.000266443; Α12 = -1.83Ε-05 The fifth lens 50 faces the object side surfaceΚ =-16.81341; Α4 = -0.005188043; Α6 = 0.001120208; Α8 = -8.48Ε-05; Α10=2.09Ε-06; Α12=1.20Ε-09 The fifth lens 50 faces the image side surface Κ=-7.204009; Α4 = - 0.011436668; Α6=0.000691118; Α8 = -2.77Ε-06; Α10 = -2.39Ε-06; Α12 = 8.23Ε-08 In the lens system 100 of the third embodiment, the spherical aberration, curvature of field and distortion are respectively shown in Fig. 8. As shown in Figure 10. In Fig. 8, the spherical aberration values were observed for the g-line (wavelength value 435.8 nm) 'd-line (wavelength value 587.6 nm)' c-line (wavelength value 656.3 nm). In general, the lens system 100 of Example 3 produces a spherical difference in visible light (wavelengths ranging from 400 nm to 700 nm) in the range of (-70 μm, 70 μm). In Fig. 9, S (meridian curvature value) and Τ (radial field curvature value) are both controlled within the range of (-50 μιη, 50 μιη). Figure 14 The distortion rate in 200914909 I/ is controlled within (_2%, 2%). It can be seen that the aberration, field curvature and distortion of the lens system 100 can be well corrected. The invention has indeed met the requirements of the invention patents, and it is only the preferred embodiment of the present invention that the rm is described in accordance with the law, and the person skilled in the art of the present invention should include (4) Next = Within the scope of the patent application for the equivalent repair made by the god of the case. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an embodiment of the present invention, FIG. 2 is an embodiment of the present invention, FIG. 3 is an embodiment of the present invention, FIG. 4 is an embodiment of the present invention, FIG. 7 is an embodiment of the present invention. FIG. 8 is an embodiment of the present invention. FIG. 9 is an embodiment of the present invention. FIG. 10 is a spherical aberration diagram of a lens system of a lens system according to an embodiment of the present invention. The field curve of the lens system. Distortion diagram of the lens system of 1. The spherical aberration diagram of the lens system of 2. The field curve of the lens system of 2. Distortion diagram of the lens system of 2. The spherical aberration diagram of the lens system. Field curvature map of the lens system. The distortion diagram of the lens system. [Main component symbol description] Lens system 100 First lens 10 Second lens 20 Third lens 30 Fourth lens 40 Fifth lens 50 Optical aperture 60 Filter, light sheet 70 Imaging surface 80 15

Claims (1)

200914909 十、申請專利範圍 h種透鏡系統,其從物側到成像面依次包括:一具有 正光焦度之第一透鏡,一具有正光焦度之第二透鏡,一 具有負光焦度之第三透鏡,一具有正光焦度之第四透 鏡 具有負光焦度之第五透鏡。所述透鏡系統滿足以 I 條件.1.6^&lt;TT/f&lt;i.8、i,6&lt;f/f2&lt;i.8 與 _〇.6&lt;f/f5&lt;_〇.4, :、申TT為第透鏡罪近物側之表面到系統成像面之距 離,為所述第:透鏡之焦距,f5為所述第五透鏡之焦 距,f為透鏡系統之有效焦距。 2.如申明專利範圍帛丄項所述之透鏡系統,其中,所述 透鏡系統還滿足以下條件:1&lt;f/f4&lt;13,其中,&amp;為所述 第四透鏡之焦距。 3. 如申請專利範圍帛i項所述之透鏡系統,其中,所述 透鏡系統還滿足以下條件式:Vd2_Vd3&gt;15,其中,Vd2 為第二透鏡之阿貝數,Vd3為第三透鏡之阿貝數。 4. 如申請專利範項所述之透鏡线,其中,所述透 鏡糸統還滿足以下關係式:〇.24&lt;DAi 2/f&lt;〇 3,其中, DAu為第一透鏡與第二透鏡之轴上間隔。 1如申請專利範圍第1項所述之透鏡系統,其中,所述透 =糸統=足以下關係式:FBL5/f&gt;〇 46,其中,㈣為 弟五透鏡靠像侧面與成像面之間之光軸長度。 t申請專利制第1項所述之透鏡线,其中,所述透 ^統還包括-光闌,該光闌位於第—透鏡與第二透鏡 16 200914909 .7.如申請專利範圍第6項所述之透鏡系統,其中,所述光 闌為塗佈於該第二透鏡物側表面外圈之不透光材料。 8.如申請專利範圍第1項所述之透鏡系統,其中,所述第 . 一透鏡、第二透鏡及第三透鏡之各表面均為球面,第四 透鏡及第五透鏡之各表面均為非球面。 9. 如申請專利範圍第1項所述之透鏡系統,其中,所述第 一透鏡、第二透鏡及第三透鏡採用玻璃材料製成。 10. 如申請專利範圍第1項所述之透鏡系統,其中,所述 第四透鏡及第五透鏡採用塑膠材料製成。 11. 如申請專利範圍第1項所述之透鏡系統,其中,所述 透鏡系統進一步包括設置於該第五透鏡像侧之紅外濾光 片。 17200914909 X. Patent application scope h lens system, which includes, from the object side to the imaging surface, a first lens having a positive power, a second lens having a positive power, and a third having a negative power. A lens, a fourth lens having a positive power having a negative power. The lens system satisfies the condition I.1.6^&lt;TT/f&lt;i.8, i,6&lt;f/f2&lt;i.8 and _〇.6&lt;f/f5&lt;_〇.4, :, Shen TT is the distance from the surface of the near object side of the lens to the imaging surface of the system, the focal length of the first lens, f5 is the focal length of the fifth lens, and f is the effective focal length of the lens system. 2. The lens system according to the invention, wherein the lens system further satisfies the following condition: 1 &lt; f / f4 &lt; 13 wherein &amp; is the focal length of the fourth lens. 3. The lens system of claim 1, wherein the lens system further satisfies the following conditional expression: Vd2_Vd3 &gt; 15, wherein Vd2 is the Abbe number of the second lens, and Vd3 is the third lens Number of shells. 4. The lens line according to the patent application, wherein the lens system further satisfies the following relationship: 〇.24 &lt;DAi 2/f&lt;〇3, wherein DAu is a first lens and a second lens Interval on the axis. 1 . The lens system of claim 1 , wherein the transmissive system is sufficient for the following relationship: FBL5/f> 〇 46, wherein (4) is between the image side of the phantom and the imaging surface. The length of the optical axis. The lens line of claim 1, wherein the lens further comprises an aperture, the aperture being located at the first lens and the second lens 16 200914909 .7. In the lens system described above, the aperture is an opaque material coated on an outer circumference of the second lens object side surface. 8. The lens system of claim 1, wherein each of the surfaces of the first lens, the second lens, and the third lens are spherical, and each of the surfaces of the fourth lens and the fifth lens are Aspherical. 9. The lens system of claim 1, wherein the first lens, the second lens, and the third lens are made of a glass material. 10. The lens system of claim 1, wherein the fourth lens and the fifth lens are made of a plastic material. 11. The lens system of claim 1, wherein the lens system further comprises an infrared filter disposed on the image side of the fifth lens. 17
TW96135474A 2007-09-21 2007-09-21 Lens system TWI329755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96135474A TWI329755B (en) 2007-09-21 2007-09-21 Lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96135474A TWI329755B (en) 2007-09-21 2007-09-21 Lens system

Publications (2)

Publication Number Publication Date
TW200914909A true TW200914909A (en) 2009-04-01
TWI329755B TWI329755B (en) 2010-09-01

Family

ID=44725586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96135474A TWI329755B (en) 2007-09-21 2007-09-21 Lens system

Country Status (1)

Country Link
TW (1) TWI329755B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959448A (en) * 2010-06-28 2013-03-06 索尼公司 Image capture lens and image capture device
TWI414840B (en) * 2009-08-11 2013-11-11 Largan Precision Co Ltd Imaging lens system
TWI461778B (en) * 2012-04-19 2014-11-21 Largan Precision Co Ltd Optical image system
TWI464481B (en) * 2012-04-18 2014-12-11 Sintai Optical Shenzhen Co Ltd Miniature lens
TWI491916B (en) * 2010-11-09 2015-07-11 Hon Hai Prec Ind Co Ltd Image lens
TWI610089B (en) * 2014-12-05 2018-01-01 三星電機股份有限公司 Lens module
TWI625546B (en) * 2016-11-09 2018-06-01 大立光電股份有限公司 Photographing optical lens system, imaging apparatus and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI431356B (en) 2011-01-03 2014-03-21 Largan Precision Co Image pick-up optical lens assembly
TWI424212B (en) 2011-01-20 2014-01-21 Largan Precision Co Image pick-up optical lens assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414840B (en) * 2009-08-11 2013-11-11 Largan Precision Co Ltd Imaging lens system
CN102959448A (en) * 2010-06-28 2013-03-06 索尼公司 Image capture lens and image capture device
TWI491916B (en) * 2010-11-09 2015-07-11 Hon Hai Prec Ind Co Ltd Image lens
TWI464481B (en) * 2012-04-18 2014-12-11 Sintai Optical Shenzhen Co Ltd Miniature lens
TWI461778B (en) * 2012-04-19 2014-11-21 Largan Precision Co Ltd Optical image system
US8988789B2 (en) 2012-04-19 2015-03-24 Largan Precision Co., Ltd. Optical image system
TWI610089B (en) * 2014-12-05 2018-01-01 三星電機股份有限公司 Lens module
US10061103B2 (en) 2014-12-05 2018-08-28 Samsung Electro-Mechanics Co., Ltd. Lens module
TWI625546B (en) * 2016-11-09 2018-06-01 大立光電股份有限公司 Photographing optical lens system, imaging apparatus and electronic device

Also Published As

Publication number Publication date
TWI329755B (en) 2010-09-01

Similar Documents

Publication Publication Date Title
TWI391701B (en) Imaging lens assembly
TWI422897B (en) Optical imaging lens assembly
JP6726916B2 (en) Imaging lens
TWI424189B (en) Imaging lens assembly
TWI435135B (en) Optical lens system
TWI421557B (en) Imaging lens system
TWI424217B (en) Image capturing lens assembly
TWI351530B (en) Inverse telephoto with correction lenses
TWI409497B (en) Photographing optical lens assembly
TWI329755B (en) Lens system
TWI410693B (en) Image pick-up optical lens assembly
TWI408409B (en) Imaging lens assembly
TWI402555B (en) Photographing optical system
TW201241502A (en) Optical lens assembly for image taking
CN104395808B (en) Imaging lens system and camera device
TW201232088A (en) Photographing optical lens assembly
JP4174553B1 (en) Imaging lens
JP4418844B2 (en) Imaging lens
TW201312199A (en) Image lens system
TW201215910A (en) Optical imaging lens system
TW201314254A (en) Imaging lens system
TWM487440U (en) Imaging lens and imaging apparatus including the imaging lens
JP2010060834A (en) Imaging lens and imaging device using the same
JP7396788B2 (en) imaging lens
TWI417595B (en) Thin optical lens assembly