TW200912377A - Optical tweezers device and optical tweezers system - Google Patents

Optical tweezers device and optical tweezers system Download PDF

Info

Publication number
TW200912377A
TW200912377A TW96133150A TW96133150A TW200912377A TW 200912377 A TW200912377 A TW 200912377A TW 96133150 A TW96133150 A TW 96133150A TW 96133150 A TW96133150 A TW 96133150A TW 200912377 A TW200912377 A TW 200912377A
Authority
TW
Taiwan
Prior art keywords
optical
sample
focus
zoom lens
parallel beam
Prior art date
Application number
TW96133150A
Other languages
Chinese (zh)
Other versions
TWI352824B (en
Inventor
Paul Chang-Bo Chao
Kai-Teng Shi
Chi-Wei Chiu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW96133150A priority Critical patent/TWI352824B/en
Publication of TW200912377A publication Critical patent/TW200912377A/en
Application granted granted Critical
Publication of TWI352824B publication Critical patent/TWI352824B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

The present invention provides an optical tweezers, which includes a light source, a collimator, and a tunable focus lens. The light source is capable of generating a light beam and transmitting the light beam via an optical fiber. The collimator is mounted on an end of the optical fiber, for correcting the light beam to be parallel. Additionally, the tunable focus lens is mounted on a surface of the collimator, for receiving the parallel light beam, and focusing the parallel light beam to the vicinity of at least a minute sample.

Description

200912377 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光钳(〇ptjca| tweezers),並且特 別地’本發明係關於一種能用於操作微小粒子的光鉗。 【先前技術】 利用光的壓力來箝制並且操作微小粒子,如數微米 大小的微粒’的應用最早於197〇年由Arther Ashkin 提出。他利用兩束雷射光相對入射,並且聚焦於同一 處’藉此’兩束雷射光的軸向作用力於該聚焦處相抵 消’產生可將微小粒子侷限於其中的位能井(p〇tentja| well)。 於後續一連串的研究中,Ash kin進一步發現僅將單 束雷射光高度聚焦,能在焦點處產生與光的行進方向相 反的軸向吸力,進而穩定地箝制微小粒子。由於這樣的 現象如同以鉗子夾住該微小粒子一般,便因此被稱為光 鉗。 請參閱第1圖,第1圖係繪示習知光鉗的示意圖。 如苐1圖所示’該光钳7包含一光源(lightsource)70、 一濾'波構件(spatial filtering device) 72、一擴束構件 (beam expanding device) 74、一物鏡(object) 76 以及 一平台(platform) 78。 该光源7 0,例如一雷射光源,可發射一道連續雷射 光7〇2,並且該雷射光702的波長以及功率可視該微小 200912377 粒子的材質、種類等進行調整。該據波構件72則可使 雷射光702更均勻分布,並且可縮減光甜焦點的尺寸, 以增加光鉗的功率以及鉗制力。該擴束構件Μ則協助 雷射光702以最大角度聚焦 '照射該微小粒子,並且能 獲得物鏡76之最大數值孔徑(numerjca| 仙% ΝΑ)’也能使光钳的鉗制力達到最大。該平台μ則用以 置放待操作之微小粒子(未繪示於圖中)。 (- 因此,如第1圖所示,該光源7〇發射的雷射光702 經過該濾波構件72以及該擴束構件74後,由該物鏡 76聚焦於該平台78上,以鉗住微小粒子。 隨著相關技術的發展,光鉗已經被廣泛應用於微米 級的生物醫學細胞、金屬顆粒、塑夥顆粒以及其他材質 顆粒的操作’甚至也能被應用於奈米級的⑽Α等微小 粒子的二維空間(水平)之操控。 然而,習知技藝所揭露之光鉗大多僅限於二維空間 (如日本專利公告號第細144281號所揭露之光甜以 及光纖;以及N_ata, Takayukj、以如〇、BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical tongs (〇 ptjca| tweezers), and in particular, the present invention relates to an optical tongs which can be used for handling fine particles. [Prior Art] The use of light pressure to clamp and manipulate tiny particles, such as particles of a few micrometers, was first proposed by Arther Ashkin in 197. He uses two beams of laser light to oppose the incident, and focuses on the same place 'by this' the axial force of the two beams of laser light cancels at the focus to produce a potential energy well that can confine the tiny particles (p〇tentja | well). In a series of subsequent studies, Ashkin further discovered that only a single beam of laser light is highly focused, producing axial suction at the focus opposite to the direction of travel of the light, thereby steadily clamping the tiny particles. Since such a phenomenon is like holding a small particle with a pliers, it is called a light clamp. Please refer to FIG. 1 , which is a schematic view of a conventional optical tongs. As shown in FIG. 1 , the optical clamp 7 includes a light source 70, a spatial filtering device 72, a beam expanding device 74, an objective 76, and a light source 70. Platform 78. The light source 70, such as a laser source, emits a continuous laser beam 7〇2, and the wavelength and power of the laser light 702 can be adjusted depending on the material, type, and the like of the tiny 200912377 particle. The wave member 72 allows the laser light 702 to be more evenly distributed and reduces the size of the light sweet focus to increase the power of the optical clamp and the clamping force. The beam expanding member 协助 assists the laser light 702 to focus at the maximum angle to illuminate the minute particles, and the maximum numerical aperture (numerjca| %% ΝΑ) of the objective lens 76 can also maximize the clamping force of the optical tongs. The platform μ is used to place tiny particles to be operated (not shown). (- Therefore, as shown in Fig. 1, the laser light 702 emitted from the light source 7A passes through the filter member 72 and the beam expanding member 74, and is focused by the objective lens 76 on the stage 78 to clamp the fine particles. With the development of related technologies, optical forceps have been widely used in the operation of micro-scale biomedical cells, metal particles, plastic particles and other material particles' even can be applied to nano-scale (10) Α and other tiny particles. The manipulation of dimensional space (horizontal). However, the optical tongs disclosed in the prior art are mostly limited to two-dimensional space (such as the light sweetness and optical fiber disclosed in Japanese Patent Publication No. 144281; and N_ata, Takayukj, Rugao ,

Otam, Yuk丨toshi 以及 Umeda N〇「jhi「〇,」App丨 phys 4一 5,(2_);該等係以全文引用方式納人本文中),對於 二維空間的操控不論在實驗架構或是操控範圍皆尚未 成熟。 、此外’省知技藝所揭露之光鉗的光源傳遞多透過多 刀光鏡的交互反射達到物鏡,因此在傳遞的過程中光 源會有極高的損失問題。 200912377 進一步,習知技藝所揭露之光鉗經由單一光纖傳導 光線,因此若要同時操作多個微小粒子,則需增加光纖 數目使雷射光束增加(如美國專利申請號第 2004/0256542號所揭露之光鉗裝置;美國專利公告號 第7,049,579號所揭露之以光學微光束陣列進行活細胞 操作;以及 Jenny M_ Tam、lsrae| Bjran 以及 rOtam, Yuk丨toshi and Umeda N〇 "jhi "〇," App丨phys 4-5, (2_); these articles are cited in full text), for the manipulation of two-dimensional space whether in experimental architecture or The scope of control is not yet mature. In addition, the light source transmission of the optical clamp disclosed by the Provincial Technology Institute is mostly transmitted through the multi-blade mirror to reach the objective lens, so that the light source has a very high loss problem during the transmission. Further, the optical tongs disclosed in the prior art disclose light through a single optical fiber, so if a plurality of small particles are to be operated at the same time, it is necessary to increase the number of optical fibers to increase the laser beam (as disclosed in US Patent Application No. 2004/0256542). Light-clamping device; living cell operation with an optical microbeam array as disclosed in U.S. Patent No. 7,049,579; and Jenny M_ Tam, lsrae| Bjran and r

Wa丨t’App丨_^乂机84,(2〇〇4),該等文獻係以全Wa丨t’App丨_^乂机84, (2〇〇4), these documents are all

文引用方式納入本文中)m纖數目f要匹配實驗個 體數目,因此造成整個光鉗設備的體積以及成本增加, 也使光鉗的設計複雜度增加。 【發明内容】 因此,本發明之一範疇在於提供一種光鉗。特別 地,根據本發明之光鉗能實現三維操控,並且能在不大 幅增加體《、複雜度以及成本的前提下❹_操控多 個微小粒子的目的。 根據本發明之一較佳具體實施例,一種光鉗被提 供,該光钳包含-光源、—準直器以及—變焦透鏡。該 光源能產生-%束’ ϋ且透過一光纖傳遞該光束。該準 直器固定於該光纖之該底端,用以修正該光束成為一平 行光束。此外,該變焦透鏡則固定於該準直器之一表面 上,用以接收該平行光束,並且將該平行光束聚焦於至 少一微小樣本上。 根據本發明之另一較佳具體實施例,一種光鉗被提 200912377 供,該光鉗包含一平台、一光源、一準直器以及一變焦 透鏡。該平台係用以置放至少一微小樣本,並且該平台 能進行二維空間的移動。該光源係用以產生一光束,並 且透過一光纖傳遞該光束。該準直器固定於該光纖之該 底端,用以修正該光束成為一平行光束。 此外’該變焦透鏡固定於該準直器之一表面上,用 以接收該平行光束,並且將該平行光束聚焦於該至少— 微小樣本上。特別地,該變焦透鏡能進行變焦以控制該 至少一微小樣本沿著大致與該平台垂直之一方向移 動。並且,該變焦、透鏡還能使該平行光束準焦聚焦或散 焦聚焦於該至少一微小樣本上。 關於本發明之優點與精神可以藉由以下的發明詳 述及所附圖式得到進—步的瞭解。 【實施方式】 本發明提供—種能詩操作微小粒子的光鉗。以下 將詳述本發明之具體實施例以及實際應用案例,藉以充 分說明本發明之特徵、精神及優點。 曰 凊參閱第2圖,第2 ISI在έ各-j* 弟圖係繪不本發明之-具體實施 例的光鈕示意圖。如筮9阒 _ 口如弟2圖所不,該光鉗1包含一平二 ⑻抓織)1Q、—光源(light s瞻ce) 12、—準直^ (collimator) 14以及一變隹读於“ ° 久欠荐、透鏡(tunable f〇cus |ens) 1 6 °特別地,根據本發 進行三維操作。鉗1可對至少-微小樣本 200912377 該平台1 0係用以置放該至少一微小樣本2,並且該 平台1 〇能進行二維空間(水平)的微調移動。該光源,2 "Τ發出一光束(丨i g h t b e a m) ’例如但不受限於,雷射光 束,並且该光束之波長以及功率等特性可視該微小樣本 2的材質、種類等進行調整。舉例而言,當該為小樣本 2為生物樣本,如細胞、病毒、細菌等時,該光束之波 長較佳地介於約800 nm至約1 〇〇〇 nm之間。 特別地’該光源12最佳地為單一光源。進一步, 該光源12所發出之光束可透過一光纖(〇ptica| fjber) 13 進行傳遞。該光纖1 3可以是但不受限於,如一單模光 纖(single mode optical fiber)。單模光纖可減少光束的 能量損失’致使能量與作用力之間的轉換能如吾人所預 期。 該準直器14被固定於該光纖1 3之一端,用以修正 该光束成為一平行光束。而該變焦透鏡1 6,例如但不受 限於液悲變焦透鏡(tunable focus liquid lens),則固定 於°亥準直器14之一表面上,用以接收該平行光束,並 且將該平行光束聚焦於該平台1 0上之微小樣本2上。 當本發明之光钳1聚焦於該微小樣本2上時,其可 鉗制該微小樣本2,此時可將平台彳〇水平微調,直到平 台1 0上之一預期位置被移動至該微小樣本2之位置, 即元成水平方向(二維)的操控。此外,由於變焦透鏡i 6 可進行垂直於平台方向(如第2圖中之虛線箭頭所示 之方向)的焦點變換’可藉此控制該微小樣本2沿著垂 200912377 直於平台垂直之方向移動。因此’本發明之光鉗便可控 制該微小樣本2進行三維操控。 請參閱第3A圖以及第3B圖,第3八圖以及第3巳 圖係緣示本發明之光鉗垂直移動微小樣本之示意圖。如 第3A圖所示,該光鉗1之變焦透鏡16可先聚焦於平台 上之微小樣本2上(位置A)。當該變焦透鏡16變焦 後:聚焦於第3B圖中之位置A’時,也將該微小樣本2 提尚到位置A’,因此完成了該微小樣本2的垂直移動。 特別地,本發明之變焦透鏡16可使該平行光束準 焦(in-focus)聚焦或散焦(〇ff_f〇cus)聚焦於該至少一微 j樣本上。進一步,當該變焦透鏡使該平行光束準焦聚 焦於該至少-微小樣本上冑,該光钳能捕捉其中一個微 j樣本而田π亥憂焦透鏡使該平行光束散焦聚焦於該至 少一微小樣本上時,由於光束的強度與分佈範圍增加, 因此该光钳能捕捉其中複數個微小樣本。 此外,5亥變焦透鏡之一鏡面尺寸可以視需求而進行 設計,例如介於約10 μηι至約1〇〇 之間。當該變焦 透鏡之鏡面尺寸為微米等級時,其聚焦後的光腰尺寸更 小’因此可箝制並且操控奈米等級的微小樣本。 於實際應用中,前述之液態變焦透鏡可基於微機電 系統(Micro-Electro_Mechanical System, MEMS)並且 配合單模光纖的核心尺寸進行製造,藉此,其能改變一 電壓以控制包含於其中的液體以達到變焦效果。 於實際應用中,該準直器14與該光纖1 3之間,以 10 200912377 ί該變焦透鏡16與該準直器Μ之間皆是以黏合方式固 2 且需要對齊’使光束在黏合處不會發生偏折現 =二了準直器Μ與該光纖13之間,以及該變焦 透鏡彳6與該準直器14 行固定。 ]也了藉由其它適當的方式進 變以= 斤述’本發明之光鉗可藉由變焦透鏡的焦距改 二及對焦方式的調整而同時操作多個樣本,也可對樣 發2^維#控。此外’相較於習知技藝中的光鉗,本 下達到=在不增加光源、光纖以及透鏡數目的情況 點。 口此”有木構間早以及成本低廉等優 雖然本發明已藉由較佳實施例以及圖示揭露如 然其係用以闡述而非限制本發明之範圍,任何孰習 :項技藝者’在不脫離本發明之精神和範圍内,當;作 ^之更動與修飾。因此’本發明之範圍應以後面之申 〇月專利範圍所界定者為準。 200912377 【圖式簡單說明】 第1圖係繪示習知光鉗的示意圖。 第2圖係繪示本發明之一具體實施例的光鉗示意 圖。 第3A圖以及第3B圖係繪示本發明之光鉗垂直移動 微小樣本之示意圖。 【主要元件符號說明】 1、7 :光鉗 10、78 :平台 12、70 :光源 13 :光纖 14:準直器 16:變焦透鏡 2 :微小樣本 A、A’ :位置 72 :濾波構件 74 :擴束構件 76 :物鏡 702 :雷射光 12In this paper, the number of m fibers f is matched to the number of experimental individuals, thus causing an increase in the volume and cost of the entire optical clamp device, and also increasing the design complexity of the optical clamp. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an optical tong. In particular, the optical tongs according to the present invention can realize three-dimensional manipulation, and can control a plurality of minute particles without greatly increasing the body, complexity, and cost. In accordance with a preferred embodiment of the present invention, an optical tong is provided that includes a light source, a collimator, and a zoom lens. The source can produce a -% beam ' ϋ and transmit the beam through an optical fiber. The collimator is attached to the bottom end of the fiber to correct the beam into a parallel beam. Further, the zoom lens is fixed to a surface of the collimator for receiving the parallel beam and focusing the parallel beam on at least one minute sample. In accordance with another preferred embodiment of the present invention, an optical tongs is provided in 200912377, the optical tongs comprising a platform, a light source, a collimator, and a zoom lens. The platform is used to place at least one tiny sample and the platform is capable of moving in a two dimensional space. The light source is for generating a beam of light and transmitting the beam through an optical fiber. The collimator is fixed to the bottom end of the optical fiber to correct the beam into a parallel beam. Further, the zoom lens is fixed to a surface of the collimator for receiving the parallel beam and focusing the parallel beam onto the at least minute sample. In particular, the zoom lens can be zoomed to control movement of the at least one tiny sample in a direction substantially perpendicular to the platform. Moreover, the zooming lens can also focus or focus the parallel beam on the at least one tiny sample. The advantages and spirit of the present invention can be further understood by the following detailed description of the invention and the accompanying drawings. [Embodiment] The present invention provides an optical tong that can manipulate tiny particles. The features, spirit and advantages of the present invention will be fully described in the following detailed description of the embodiments of the invention.曰 凊 Referring to Fig. 2, the second ISI shows a light button diagram of a specific embodiment of the present invention. If 筮9阒_ 口如弟2, the optical clamp 1 contains a flat two (8) grasping weave) 1Q, a light source (light s) ce 12, a collimator (collimator) 14 and a change in " ° Long recommended, lens (tunable f〇cus | ens) 1 6 ° In particular, three-dimensional operation according to this hair. Pliers 1 can be used for at least - tiny sample 200912377 This platform 10 is used to place the at least one tiny Sample 2, and the platform 1 〇 can perform a two-dimensional spatial (horizontal) fine-tuning movement. The light source, 2 " emits a light beam (丨ightbeam) 'for example but not limited to, a laser beam, and the beam The characteristics such as the wavelength and the power can be adjusted depending on the material, type, and the like of the minute sample 2. For example, when the small sample 2 is a biological sample such as a cell, a virus, a bacteria, or the like, the wavelength of the beam is preferably between Between about 800 nm and about 1 〇〇〇 nm. In particular, the light source 12 is preferably a single light source. Further, the light beam emitted by the light source 12 can be transmitted through a fiber (〇ptica|fjber) 13. The optical fiber 13 can be, but is not limited to, a single mode fiber Single mode optical fiber). Single mode fiber can reduce the energy loss of the beam', so that the conversion between energy and force can be expected. The collimator 14 is fixed at one end of the fiber 13 to correct the The light beam becomes a parallel beam, and the zoom lens 16 is, for example but not limited to, a tunable focus liquid lens, and is fixed on a surface of the collimator 14 for receiving the parallel beam. And focusing the parallel beam on the tiny sample 2 on the platform 10. When the optical clamp 1 of the present invention is focused on the minute sample 2, it can clamp the tiny sample 2, and the platform can be clamped at this time. Level fine-tuning until one of the expected positions on the platform 10 is moved to the position of the minute sample 2, that is, the manipulation of the element in the horizontal direction (two-dimensional). In addition, since the zoom lens i 6 can be perpendicular to the platform direction (eg, The focus conversion 'in the direction indicated by the dashed arrow in the figure' can be used to control the small sample 2 to move along the vertical direction of the platform along the vertical 200912377. Therefore, the optical clamp of the present invention can control the tiny sample. The present invention performs three-dimensional manipulation. Please refer to FIG. 3A and FIG. 3B, and FIG. 3 and FIG. 3 are schematic diagrams showing the vertical movement of the optical clamp of the present invention. As shown in FIG. 3A, the optical clamp The zoom lens 16 of 1 can be first focused on the tiny sample 2 on the platform (position A). When the zoom lens 16 is zoomed: when focusing on the position A' in the 3B figure, the tiny sample 2 is also raised. Position A', thus completing the vertical movement of the tiny sample 2. In particular, the zoom lens 16 of the present invention can focus the parallel beam in-focus focus or defocus (〇ff_f〇cus) onto the at least one micro j sample. Further, when the zoom lens focuses the collimated focus of the parallel beam on the at least-small sample, the optical clamp can capture one of the micro-j samples and the π-Hai focus lens focuses the parallel beam on the at least one focus On a small sample, the optical clamp can capture a plurality of tiny samples due to the increased intensity and distribution of the beam. In addition, the mirror size of one of the 5-cam zoom lenses can be designed as needed, for example, between about 10 μηι and about 1 。. When the mirror size of the zoom lens is on the order of micrometers, the size of the waist after focusing is smaller', so that a small sample of the nanometer level can be clamped and manipulated. In practical applications, the aforementioned liquid zoom lens can be fabricated based on a Micro-Electro-Mechanical System (MEMS) and a core size of a single-mode fiber, whereby it can change a voltage to control the liquid contained therein. Achieve the zoom effect. In practical applications, between the collimator 14 and the optical fiber 13 , the zoom lens 16 and the collimator 固 are fixed by the bonding method 2 and need to be aligned to make the light beam at the bonding place. No offset will occur. Between the collimator Μ and the optical fiber 13, and the zoom lens 彳6 is fixed to the collimator 14. ] Also, by other suitable means, the optical clamp of the present invention can simultaneously operate a plurality of samples by adjusting the focal length of the zoom lens and adjusting the focus mode, and can also perform 2^ dimensions on the sample. #control. In addition, compared to the optical tongs in the prior art, this is achieved = without increasing the number of light sources, optical fibers, and lenses. The present invention has been described as a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. The scope and scope of the present invention should be determined by the scope of the patent application of the following application. 200912377 [Simple description of the schema] No. 1 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 2 is a schematic view showing an optical tongs according to an embodiment of the present invention. Figs. 3A and 3B are schematic views showing a vertical movement of a small sample of the optical tongs of the present invention. Main component symbol description] 1, 7: optical clamp 10, 78: platform 12, 70: light source 13: optical fiber 14: collimator 16: zoom lens 2: minute sample A, A': position 72: filter member 74: expansion Beam member 76: objective lens 702: laser light 12

Claims (1)

200912377 十、申請專利範圍: 〆種光甜(optical tweezers),其能對至少一微小 樣本進行三維操控,該光鉗包含: 一平台,用以置放該至少一微小樣本,並且該 平台能進行二維空間的移動; 一光源(light source),用以產生一光束(丨丨ght beam)’並且透過一光纖(〇ptjca丨fjber)傳遞 該光束; 一準直器(collimator),固定於該光纖之一端, 用以修正該光束成為一平行光束;以及 麦焦透鏡(tunable focus lens),固定於該準200912377 X. Patent application scope: Optical tweezers, which can perform three-dimensional manipulation on at least one small sample, the optical clamp includes: a platform for placing the at least one small sample, and the platform can perform a movement of a two-dimensional space; a light source for generating a 丨丨ght beam' and transmitting the light beam through an optical fiber (〇ptjca丨fjber); a collimator fixed to the light source One end of the optical fiber for correcting the beam to become a parallel beam; and a tunable focus lens fixed to the quasi 直器之一表面上,用以接收該平行光束,並 且將該平行光束聚焦於該至少一微小樣本 上’並且該變焦透鏡能進行變焦以控制該至 少一微小樣本沿著大致與該平台垂直之一 方向移動’並且該變焦透鏡能使該平行光束 準焦(in-f0cus)聚焦或散焦(〇ff_f〇cus)聚焦 於該至少一微小樣本上。 根據申請專利範圍第1項之光钳,其中該光源係 單一光源。 根據申請專利範圍第1項之光鉗,其中該光纖係 單模光纖(single mode optical fiber)。 根據申凊專利範圍第1項之光鉗,其中當該變焦 13 200912377 5、 透鏡使該平行光束準焦聚焦於該至少-微小樣本 上時,該光鉗能捕捉其中一個微小樣本。 根據申請專利範圍第1項之光鉗,其中當該變焦 透鏡使該平行光束散焦聚焦於該至少一微小樣本 上時’該光钳能捕捉其中複數個微小樣本。 6、 7、 根據申請專利範圍第1項之光鉗,其中該變焦透 鏡係一液態變焦透鏡(tunable focus |jqUjd |ens)。 根據申請專利範圍第6項之光鉗,其中該液態變 焦透鏡係基於微機電系統 (Micro-Electro-Mechanical System, MEMS),其 能改變一電壓以控制包含於其中的液體以達到變 焦效果。 8、 根據申請專利範圍第1項之光鉗,其中該變焦透 鏡之一鏡面尺寸介於約1〇 μηι至約1〇〇 μΓγι之間。 ϋ: 9、 根據申晴專利範圍第1項之光钳,其中該微小樣 本係一生物樣本。 10、 根據申請專利範圍第9項之光钳,其中該光束之 波長介於約8 0 0 n m至約10 0 0 n m之間。 11 ' 一種光鉗(optical tweezers),包含: 一光源(light source),用以產生一光束(|jght beam),並且透過一光纖(〇pt丨cal fiber〉傳遞 該光束; 14 一準直器(collimator),固定於該光纖之—端, 用以修正該光束成為一平行光束;以及 一變焦透鏡(tunable focus lens),固定於該準 直器之一表面上,用以接收該平行光束,並 且將該平行光束聚焦於至少一微小樣本上。 根據申請專利範圍第11項之光鉗,進一步包含: 一平台(platform) ’用以放置該至少一微小樣 本’並且該平台能進行二維空間的移動。 根據申請專利範圍第彳彳項之光鉗,其中該光源係 單一光源。 根據申請專利範圍第n項之光鉗,其中該光纖係 一單模光纖(single mode optical fiber)。 根據申請專利範圍第1彳項之光鉗,其中該變焦透 、兄此使及平行光束準焦(jn_f〇cus)聚焦或散焦 (〇ff-f〇cus)聚焦於該至少一微小樣本上。 根據申請專利範圍第15項之光鉗,其中當該變焦 透鏡使該平行光束準焦聚焦於該至少一微小樣本 上時,忒光鉗能捕捉其中一個微小樣本。 根據申凊專利範圍第15項之光鉗,其中當該變焦 、:使忒平行光束散焦聚焦於該至少一微小樣本 才忒光鉗能捕捉其中複數個微小樣本。 根據申請專利範圍第11項之光鉗,其中該變焦透 200912377 鏡係一液態變焦透鏡(tunable focus liquid lens)。 19、根據申請專利範圍第1 8項之光钳,其中該液態變 焦透鏡係基於微機電系統 (Micro-Electro-Mechanical System, MEMS),其 能?文變一電壓以控制包含於其中的液體以達到變 焦效果。 广 2〇、根據申晴專利範圍第1 1項之光鉗,其中該變焦透 鏡之一鏡面尺寸介於約10 μΓΤ!至約100 μπι之間。 21、 根據申請專利範圍第杓項之光鉗,其中該微小樣 本係一生物樣本。 22、 根據申請專利範圍f 21項之光鉗,其中該光束之 波長介於約8〇〇 nm至約1000 nm之間。 U 16a surface of one of the straighteners for receiving the parallel beam and focusing the parallel beam on the at least one tiny sample' and the zoom lens is zoomable to control the at least one tiny sample to be substantially perpendicular to the platform Moving in one direction 'and the zoom lens enables the parallel beam to focus or defocus (〇ff_f〇cus) onto the at least one tiny sample. An optical tong according to item 1 of the patent application, wherein the light source is a single light source. The optical forceps of claim 1, wherein the optical fiber is a single mode optical fiber. The optical forceps of claim 1, wherein the optical clamp is capable of capturing one of the minute samples when the lens focuses the focus of the parallel beam on the at least-small sample. The optical forceps of claim 1, wherein the optical lens is capable of capturing a plurality of minute samples when the zoom lens focuses the focus of the parallel beam on the at least one minute sample. 6, 7 according to the patent application scope of the optical clamp, wherein the zoom lens is a liquid zoom lens (tunable focus | jqUjd | ens). The optical forceps according to claim 6 wherein the liquid zoom lens is based on a Micro-Electro-Mechanical System (MEMS) capable of changing a voltage to control a liquid contained therein to achieve a zooming effect. 8. The optical forceps of claim 1, wherein the one of the zoom lenses has a mirror size of between about 1 〇 μηι and about 1 〇〇 μΓ γι. ϋ: 9. According to the light clamp of the first paragraph of Shen Qing patent scope, the tiny sample is a biological sample. 10. The optical forceps according to claim 9 wherein the wavelength of the light beam is between about 800 nm and about 100 nm. 11 ' an optical tweezers, comprising: a light source for generating a beam (|jght beam) and transmitting the beam through an optical fiber (〇pt丨cal fiber); 14 a collimator a collimator fixed to the end of the optical fiber for correcting the beam to be a parallel beam, and a tunable focus lens fixed to a surface of the collimator for receiving the parallel beam And focusing the parallel beam on at least one small sample. The optical forceps according to claim 11 further comprising: a platform 'to place the at least one small sample' and the platform can perform two-dimensional space According to the optical tongs of the scope of the patent application, wherein the light source is a single light source. According to the optical clamp of the nth item of the patent application, wherein the optical fiber is a single mode optical fiber. The optical tongs of the first aspect of the patent, wherein the zooming, the collimating, and the parallel beam quasi-focus (jn_f〇cus) focus or defocus (〇ff-f〇cus) are focused on the According to the optical clamp of claim 15, wherein the zoom lens can capture one of the minute samples when the zoom lens focuses the focus of the parallel beam on the at least one small sample. The optical clamp of the fifteenth patent range, wherein the zooming: focusing the parallel beam defocusing on the at least one tiny sample, the corrugating forceps capable of capturing a plurality of small samples therein. According to the light of claim 11 Pliers, wherein the zoom lens 200912377 is a tunable focus liquid lens. 19. The optical forceps according to claim 18, wherein the liquid zoom lens is based on a micro-electro-mechanical system (Micro-Electro-Mechanical) System, MEMS), which can change the voltage to control the liquid contained in it to achieve the zoom effect. 广2〇, according to the optical tongs of the Shenqing patent range, item 1, the mirror size of one of the zoom lenses Between about 10 μΓΤ! and about 100 μπι. 21. The optical forceps according to the scope of the patent application, wherein the small sample is a biological sample. According to the optical clamp of claim 21, wherein the wavelength of the beam is between about 8 〇〇 nm and about 1000 nm. U 16
TW96133150A 2007-09-06 2007-09-06 Optical tweezers device and optical tweezers syste TWI352824B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96133150A TWI352824B (en) 2007-09-06 2007-09-06 Optical tweezers device and optical tweezers syste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96133150A TWI352824B (en) 2007-09-06 2007-09-06 Optical tweezers device and optical tweezers syste

Publications (2)

Publication Number Publication Date
TW200912377A true TW200912377A (en) 2009-03-16
TWI352824B TWI352824B (en) 2011-11-21

Family

ID=44724871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96133150A TWI352824B (en) 2007-09-06 2007-09-06 Optical tweezers device and optical tweezers syste

Country Status (1)

Country Link
TW (1) TWI352824B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569912B (en) * 2014-12-08 2017-02-11 國立高雄應用科技大學 Laser focusing optical module and laser focusing method
CN107357044A (en) * 2017-08-28 2017-11-17 重庆三峡医药高等专科学校 A kind of step multimode fibre optical tweezer based on skew ray annular light field

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891943B (en) * 2016-05-25 2019-01-15 哈尔滨工程大学 A kind of adjustable optical tweezer of drop suspension type focus based on twin-core fiber
TWI694249B (en) * 2018-11-30 2020-05-21 國立高雄科技大學 Light-trapping microbial identifying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569912B (en) * 2014-12-08 2017-02-11 國立高雄應用科技大學 Laser focusing optical module and laser focusing method
CN107357044A (en) * 2017-08-28 2017-11-17 重庆三峡医药高等专科学校 A kind of step multimode fibre optical tweezer based on skew ray annular light field

Also Published As

Publication number Publication date
TWI352824B (en) 2011-11-21

Similar Documents

Publication Publication Date Title
Chen et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes
Volpe et al. Roadmap for optical tweezers
Han et al. MEMS-actuated metasurface Alvarez lens
Zou et al. Miniature adjustable-focus endoscope with a solid electrically tunable lens
US9201008B2 (en) Method and system for obtaining an extended-depth-of-field volumetric image using laser scanning imaging
US20120140302A1 (en) Mems-based optical image scanning apparatus, methods, and systems
Zou et al. Ultra-compact optical zoom endoscope using solid tunable lenses
CN107861230B (en) Confocal microscopic imaging device and method of zoom optical tweezers
JP2014534462A (en) MEMS type zoom lens system
CN103676126A (en) Operation instrument for optical tweezers
CN108072970A (en) Optical tweezer mating plate microscopic imaging device and method
Le Harzic et al. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens
TWI352824B (en) Optical tweezers device and optical tweezers syste
CN107991769B (en) Two-dimensional scanning device
JP2003514252A (en) Device for connecting optical tweezers and / or processing beam into microscope
CN117434627A (en) Membrane for retaining microspheres
KR20170042659A (en) Macro lens
Zhang et al. Distributed force control for microrobot manipulation via planar multi‐spot optical tweezer
KR20120093629A (en) Optical tweezer system and method of trapping micro-object using the same
JP2017078832A (en) Particulate capture method and optical tweezers device
CN113900247A (en) Endoscope with a detachable handle
CN110794561A (en) Microscope convenient to array is used
US20140182021A1 (en) A microdevice for emitting electromagnetic radiation
CN110927879A (en) Nano optical jet scanning probe based on optical fiber tweezers
CN103983808A (en) Optical method for transmitting micro-nano particles in two directions and controllably locating micro-nano particles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees